
CHAPTER

Getting	Organized

Knowledge	Goals
You should be able to

 � describe some benefits of object-oriented programming

 � describe the genesis of the Unified Method

 � explain the relationships among classes, objects, and applications

 � explain how method calls are bound to method implementations with respect to inheritance

 � describe, at an abstract level, the following structures: array, linked list, stack, queue, list, tree, map, and graph

 � identify which structures are implementation dependent and which are implementation independent

 � describe the difference between direct addressing and indirect addressing

 � explain the subtle ramifications of using references/pointers

 � explain the use of O notation to describe the amount of work done by an algorithm

 � describe the sequential search, binary search, and selection sort algorithms

Skill	Goals
You should be able to

 � interpret a basic UML class diagram

 � design and implement a Java class

 � create a Java application that uses the Java class

 � use packages to organize Java compilation units

 � create a Java exception class

 � throw Java exceptions from within a class and catch them within an application that uses the class

 � predict the output of short segments of Java code that exhibit aliasing

 � declare, initialize, and use one- and two-dimensional arrays in Java, including both arrays of a primitive type and arrays of objects

 � given an algorithm, identify an appropriate size representation and determine its order of growth

 � given a section of code determine its order of growth

1

©
 Ake13bk/Shutterstock

9781284098204_CH01_001_066.indd 1 06/07/16 5:29 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

2 Chapter	1 Getting	Organized

B
efore	embarking	on	any	new	project,	 it	 is	a	good	idea	to	prepare	carefully—to	“get	

organized.”	In	this	�irst	chapter	that	is	exactly	what	we	do.	A	careful	study	of	the	topics	

of	this	chapter	will	prepare	us	for	the	material	on	data	structures	and	algorithms,	using	

the	object-oriented	approach,	covered	in	the	remainder	of	the	book.

1.1	 Classes,	Objects,	and	Applications
Software	design	is	an	interesting,	challenging,	and	rewarding	task.	As	a	beginning	student	

of	computer	science,	you	wrote	programs	that	solved	relatively	simple	problems.	Much	

of	your	effort	went	into	learning	the	syntax	of	a	programming	language	such	as	Java:	the	

language’s	reserved	words,	its	data	types,	its	constructs	for	selection	and	looping,	and	its	

input/output	mechanisms.

As	your	programs	and	the	problems	they	solve	become	more	complex	it	is	important	

to	follow	a	software	design	approach	that	modularizes	your	solutions—breaks	them	into	

coherent	manageable	subunits.	Software	design	was	originally	driven	by	an	emphasis	on	

actions.	Programs	were	modularized	by	breaking	them	into	subprograms	or	procedures/

functions.	A	subprogram	performs	some	calculations	and	returns	information	to	the	call-

ing	program,	but	it	does	not	“remember”	anything.	In	the	late	1960s,	researchers	argued	

that	 this	 approach	was	 too	 limiting	 and	did	not	 allow	us	 to	 successfully	 represent	 the	

constructs	needed	to	build	complex	systems.

Two	Norwegians,	Kristen	Nygaard	and	Ole-Johan	Dahl,	 created	Simula	67	 in	1967.	

It	was	 the	 �irst	 language	 to	support	object-oriented	programming.	Object-oriented	 lan-

guages	promote	 the	object	as	 the	prime	modularization	mechanism.	Objects	 represent	

both	information	and	behavior	and	can	“remember”	internal	information	from	one	use	to	

the	next.	This	crucial	difference	allows	them	to	be	used	in	many	versatile	ways.	In	2001,	

Nygaard	and	Dahl	received	the	Turing	Award,	sometimes	referred	to	as	the	“Nobel	Prize	

of	Computing,”	for	their	work.

The	capability	of	objects	to	represent	both	information	(the	objects	have	attributes)	

and	behavior	(the	objects	have	responsibilities)	allows	them	to	be	used	to	represent	“real-

world”	entities	as	varied	as	bank	accounts,	genomes,	and	hobbits.	The	self-contained	na-

ture	of	objects	makes	them	easy	to	implement,	modify,	and	test	for	correctness.

Object	orientation	is	centered	on	classes	and	objects.	Objects	are	the	basic	run-time	

entities	used	by	applications.	An	object	is	an	instantiation	of	a	class;	alternatively,	a	class	

de�ines	the	structure	of	its	objects.	In	this	section	we	review	these	object-oriented	pro-

gramming	constructs	that	we	use	to	organize	our	programs.

Classes
A	class	de�ines	the	structure	of	an	object	or	a	set	of	objects.	A	class	de�inition	includes	

variables	(data)	and	methods	(actions)	that	determine	the	behavior	of	an	object.	The	fol-

lowing	Java	code	de�ines	a	Date	class	that	can	be	used	to	create	and	manipulate	Date	
objects—for	example,	within	a	school	course-scheduling	application.	The	Date	class	can	
be	used	to	create	Date	objects	and	to	learn	about	the	year,	month,	or	day	of	any	particular	

9781284098204_CH01_001_066.indd 2 06/07/16 5:29 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

31.1	 Classes,	Objects,	and	Applications

Date	 object.1
	
The	 class	 also	 provides	

methods	 that	return	 the	Lilian	Day	Num-

ber	of	the	date	(the	code	details	have	been	

omitted—see	the	feature	section	on	Lilian	

Day	Numbers	 for	more	 information)	 and	

return	a	string	representation	of	the	date.

//--
// Date.java by Dale/Joyce/Weems Chapter 1
//
// Defines date objects with year, month, and day attributes.
//--
package ch01.dates;
public class Date
{
 protected int year, month, day;
 public static final int MINYEAR = 1583;

// Constructor
 public Date(int newMonth, int newDay, int newYear)
 {
 month = newMonth; day = newDay; year = newYear;
 }

// Observers
 public int getYear() { return year; }
 public int getMonth() { return month; }
 public int getDay(){ return day; }

 public int lilian()
 {

// Returns the Lilian Day Number of this date.
// Algorithm goes here. Code is included with the program files.
// See Lilian Day Numbers feature section for details.

 }

 @Override2

 public String toString()

1 The Java library includes a Date class, java.util.Date. However, the familiar properties of dates make them a natural
example to use in explaining object-oriented concepts. Here we ignore the existence of the library class, as if we must design
our own Date class.

2 The purpose of @Override is discussed in Section 1.2 “Organizing Classes.”

Authors’	Convention

Java-reserved	words	(when	used	as	such),	user-defined	
identifiers,	class	and	file	names,	and	so	on,	appear	in	
this font	throughout	the	entire	text.

9781284098204_CH01_001_066.indd 3 06/07/16 5:29 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

4 Chapter	1 Getting	Organized

// Returns this date as a String.
 {
 return(month + "/" + day + "/" + year);
 }
}

The	Date	 class	demonstrates	 two	kinds	of	variables:	 instance	variables	and	class	vari-
ables.	The	instance	variables	of	this	class	are	year,	month,	and	day	declared	as

protected int year, month, day;

Their	values	vary	for	each	“instance”	of	an	object	of	the	class.	Instance	variables	provide	

the	internal	representation	of	an	object’s	attributes.

The	variable	MINYEAR	is	declared	as

public static final int MINYEAR = 1583;

MINYEAR	 is	de�ined	as	being	static,	and	thus	it	 is	a	class	variable.	It	 is	associated	di-
rectly	with	the	Date	class,	instead	of	with	objects	of	the	class.	A	single	copy	of	a	class	vari-
able	is	maintained	for	all	objects	of	the	class.

Remember	that	the	final	modi�ier	states	that	a	variable	is	in	its	�inal	form	and	can-
not	be	modi�ied;	thus	MINYEAR	 is	a	constant.	By	convention,	we	use	only	capital	letters	
when	naming	constants.	It	is	standard	procedure	to	declare	constants	as	class	variables.	

Because	the	value	of	the	variable	cannot	change,	there	is	no	need	to	force	every	object	of	a	

class	to	carry	around	its	own	version	of	the	value.	In	addition	to	holding	shared	constants,	

class	variables	can	be	used	to	maintain	information	that	is	common	to	an	entire	class.	For	

example,	a	BankAccount	class	may	have	a	class	variable	that	holds	the	number	of	current	
accounts.

In	the	Date	class	example,	the	MINYEAR	con-
stant	represents	the	�irst	full	year	that	the	widely	

used	Gregorian	calendar	was	 in	effect.	The	 idea	

here	 is	 that	 programmers	 should	 not	 use	 the	

class	 to	 represent	 dates	 that	 predate	 that	 year.	

We	look	at	ways	to	enforce	this	rule	in	Section	1.3	

“Exceptional	Situations,”	where	we	discuss	han-

dling	exceptional	situations.

The	methods	of	 the	class	are	Date,	 	getYear,	getMonth,	getDay,	lilian,	 and	
toString.	Note	that	the	Date	method	has	the	same	name	as	the	class.	Recall	that	this	
means	it	is	a	special	type	of	method,	called	a	class		constructor.	Constructors	are	used	to	

create	new	instances	of	a	class—that	is,	to	instantiate	objects	of	a	class.	The	other	meth-

ods	are	classi�ied	as	observer	methods,	because	they	“observe”	and	return	information	

based	on	the	instance	variable	values.	Other	names	for	observer	methods	are	“accessor”	

methods	and	“getters,”	as	in	accessing	or	getting	information.	Methods	that	simply	return	

the	value	of	an	instance	variable,	such	as	getYear()	in	our	Date	class,	are	very	common	
and	always	follow	the	same	code	pattern	consisting	of	a	single	return	statement.	For	this	
reason	we	will	format	such	methods	as	a	single	line	of	code.	In	addition	to	constructors	

Authors’	Convention

We	highlight	important	terms	that	might	be	unfamiliar	to	
the	student	in	green,	the	first	time	they	are	featured,	to	
indicate	that	their	definition	can	be	found	in	the	glossary	
in	Appendix	E.

9781284098204_CH01_001_066.indd 4 06/07/16 5:29 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

51.1	 Classes,	Objects,	and	Applications

and	observers,	there	is	another	general	category	of	method,	called	a	transformer.	As	you	

probably	recall,	transformers	change	the	object	in	some	way;	for	example,	a	method	that	

changes	the	year	of	a	Date	object	would	be	classi�ied	as	a	transformer.
You	have	undoubtedly	noticed	the	use	of	the	access	modi�iers	protected	and		public	

within	 the	Date	 class.	Let	us	review	the	purpose	and	use	of	access modi�iers.	This	dis-

cussion	assumes	you	recall	the	basic	ideas	behind	inheritance	and	packages.	Inheritance	

supports	the	extension	of	one	class,	called	the	superclass,	by	another	class,	called	the	sub-

class.	The	subclass	“inherits”	properties	(data	and	actions)	from	the	superclass.	We	say	that	

the	subclass	is	derived	from	the	superclass.	Packages	let	us	group	related	classes	together	

into	a	single	unit.	Inheritance	and	packages	are	both	discussed	more	extensively	in	the	next	

section.

Java	allows	a	wide	spectrum	of	access	control,	as	summarized	in	Table 1.1.	The	public	
access	modi�ier	used	with	the	methods	of	Date	makes	them	“publicly”	available;	any	code	
that	can	“see”	an	object	of	the	class	can	use	its	public	methods.	We	say	that	these	methods	

are	“exported”	from	the	class.	Additionally,	any	class	that	is	derived	from	the	Date	class	us-
ing	inheritance	inherits	its	public	methods	and	variables.

Public	access	sits	at	one	end	of	the	access	spectrum,	allowing	open	access.	At	the	other	

end	of	the	spectrum	is	private	access.	When	you	declare	a	class’s	variables	and	methods	as	

private,	they	can	be	used	only	inside	the	class	itself	and	are	not	inherited	by	subclasses.	
You	should	routinely	use	private	(or	protected)	access	within	your	classes	to	hide	their	

data.	You	do	not	want	the	data	values	to	be	changed	by	code	that	is	outside	the	class.	For	

example,	 if	 the	month	 instance	variable	 in	our	Date	class	was	declared	to	be	public,	
then	the	application	code	could	directly	set	the	value	of	a	Date	object’s	month	to	strange	
numbers	such	as	−12	or	27.

An	exception	to	this	guideline	of	hiding	data	within	a	class	is	shown	in	the	Date	ex-
ample.	Notice	that	the	MINYEAR	constant	is	publicly	accessible.	It	can	be	accessed	directly	
by	the	application	code.	For	example,	an	application	could	include	the	statement

if (myYear < Date.MINYEAR) ...

Because	MINYEAR	is	a	�inal	constant,	its	value	cannot	be	changed	by	the	application.	Thus,	
even	though	it	is	publicly	accessible,	no	other	code	can	change	its	value.	It	is	not	necessary	

Table 1.1 Java Access Control Modifiers

Access Is Allowed

Within
the Class

Within
the Package

Within
Subclasses

Everywhere

public X X X X
protected X X X
package X X
private X

9781284098204_CH01_001_066.indd 5 06/07/16 5:29 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

6	 Chapter	1	 Getting	Organized

to	hide	 it.	The	application	code	above	also	shows	how	to	access	a	public	class	variable	

from	outside	 the	class.	Because	 	MINYEAR 	 is	a	class	variable,	 it	 is	accessed	through	the	
class	name,		Date ,	rather	than	through	an	object	of	the	class.	

	Private	 access	 affords	 the	 strongest	 protection.	 Access	 is	 allowed	 only	 within	 the	

class.	However,	if	you	plan	to	extend	your	classes	using	inheritance,	you	may	want	to	use	

protected	access	instead.	

	The	 	protected 	 access	 modi�ier	 used	 in	
Date 	provides	visibility	similar	to	private	access,	
only	slightly	less	rigid.	It	“protects”	its	data	from	

outside	access,	but	allows	the	data	to	be	accessed	

from	within	 its	 own	 package	 	or from	 any	 class	

derived	 from	 its	 class.	Therefore,	 the	methods	within	 the	 	Date 	 class	 can	access	 	year ,
month , and		day , and	if,	as	we	will	show	in	Section	1.2	“Organizing	Classes,”	the		Date 	class	
is	extended,	the	methods	in	the	extended	class	can	also	access	those	variables.	

	The	remaining	type	of	access	is	called	package	access.	A	variable	or	method	of	a	class	

defaults	to	package	access	if	none	of	the	other	three	modi�iers	are	used.	Package	access	

means	that	the	variable	or	method	is	accessible	to	any	other	class	in	the	same	package.	

1582 1582OCTOBER

SUN

31

17

24

MON

1

18

25

TUE

2

19

26

WED

3

20

27

THU

4

21

28

FRI

15

22

29

SAT

16

23

30

Coding	Convention

We	use	protected	access	extensively	for	instance	
	variables	within	our	classes	in	this	text.	

Lilian	Day	Numbers
 Various approaches to numbering days have been proposed. Most choose a particular day in history
as day 1, and then number the actual sequence of days from that day forward with the numbers 2,
3, and so on. The Lilian Day Number (LDN) system uses October 15, 1582, as day 1, or LDN 1.

 Our current calendar is called the Gregorian calendar. It was established in 1582 by Pope Greg-
ory XIII. At that time 10 days were dropped from the month of October, to make up for small errors
that had accumulated throughout the years. Thus, the day following October 4, 1582, in the Gre-
gorian calendar is October 15, 1582, also known as LDN 1 in the Lilian day numbering scheme. The
scheme is named after Aloysius Lilius, an advisor to Pope Gregory and one of the principal instigators
of the calendar reform.

 Originally, Catholic European countries adopted the Gregorian calendar. Many Protestant na-
tions, such as England and its colonies, did not adopt the Gregorian calendar until 1752, at which

1582 1582OCTOBER

SUN

31

17

24

MON

1

18

25

TUE

2

19

26

WED

3

20

27

THU

4

21

28

FRI

15

22

29

SAT

16

23

30

Lilian	Day	Numbers
 Various approaches to numbering days have been proposed. Most choose a particular day in history
as day 1, and then number the actual sequence of days from that day forward with the numbers 2,
3, and so on. The Lilian Day Number (LDN) system uses October 15, 1582, as day 1, or LDN 1.

 Our current calendar is called the Gregorian calendar. It was established in 1582 by Pope Greg-
ory XIII. At that time 10 days were dropped from the month of October, to make up for small errors
that had accumulated throughout the years. Thus, the day following October 4, 1582, in the Gre-
gorian calendar is October 15, 1582, also known as LDN 1 in the Lilian day numbering scheme. The
scheme is named after Aloysius Lilius, an advisor to Pope Gregory and one of the principal instigators
of the calendar reform.

 Originally, Catholic European countries adopted the Gregorian calendar. Many Protestant na-
tions, such as England and its colonies, did not adopt the Gregorian calendar until 1752, at which

9781284098204_CH01_001_066.indd 6 06/07/16 5:29 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

71.1	 Classes,	Objects,	and	Applications

	The	Unifi	ed	Method	
	The	object-oriented	approach	to	programming	is	based	on	implementing	models	of	real-

ity.	But	how	do	you	go	about	this?	Where	do	you	start?	How	do	you	proceed?	The	best	plan	

is	to	follow	an	organized	approach	called	a		methodology .	
	In	the	late	1980s,	many	people	proposed	object-oriented	methodologies.	By	the	mid-

1990s,	three	proposals	stood	out:	the	Object	Modeling	Technique,	the	Objectory	Process,	

and	the	Booch	Method.	Between	1994	and	1997,	the	primary	authors	of	these	proposals	

got	 together	 and	 consolidated	 their	 ideas.	 The	 resulting	methodology	was	dubbed	 the	

Uni�ied	Method.	It	is	now,	by	far,	the	most	popular	organized	approach	to	creating	object-

oriented	systems.	

	The	Uni�ied	Method	features	three	key	elements:	

1. It	is	use-case	driven.	A	use-case	is	a	description	of	a	sequence	of	actions	performed	

by	a	user	within	the	system	to	accomplish	some	task.	The	term	“user”	here	should	be	

interpreted	in	a	broad	sense	and	could	represent	another	system.

2. It	is	architecture-centric.	The	word	“architecture”	refers	to	the	overall	structure	of	the	

target	system,	the	way	in	which	its	components	interact.

time they also “lost” 11 days. Today, most countries use the Gregorian calendar, at least for of� cial
international business. When comparing historical dates, one must be careful about which calendars
are being used.

 In our Date class implementation, MINYEAR is 1583, representing the � rst full year during
which the Gregorian calendar was in operation. We assume that programmers will not use the
Date class to represent dates before that time, although this rule is not enforced by the class. This
assumption simpli� es calculation of day numbers, as we do not have to worry about the phantom
10 days of October 1582.

 To calculate LDNs, one must understand how the Gregorian calendar works. Years are usually
365 days long. However, every year evenly divisible by 4 is a leap year, 366 days long. This aligns the
calendar closer to astronomical reality. To � ne-tune the adjustment, if a year is evenly divisible by
100, it is not a leap year but, if it is also evenly divisible by 400, it is a leap year. Thus 2000 was a
leap year, but 1900 was not.

 Given a date, the lilian method of the Date class counts the number of days between that
date and the hypothetical date 1/1/0—that is, January 1 of the year 0. This count is made under the
assumption that the Gregorian reforms were in place during that entire time period. In other words,
it uses the rules described in the previous paragraph. Let us call this number the Relative Day Number
(RDN). To transform a given RDN to its corresponding LDN, we just need to subtract the RDN of
October 14, 1582, from it. For example, to calculate the LDN of July 4, 1776, the method � rst cal-
culates its RDN (648,856) and then subtracts from it the RDN of October 14, 1582 (578,100), giving
the result of 70,756.

 Code for the lilian method is included with the program code � les.

time they also “lost” 11 days. Today, most countries use the Gregorian calendar, at least for of� cial
international business. When comparing historical dates, one must be careful about which calendars
are being used.

 In our Date class implementation, MINYEAR is 1583, representing the � rst full year during
which the Gregorian calendar was in operation. We assume that programmers will not use the
Date class to represent dates before that time, although this rule is not enforced by the class. This
assumption simpli� es calculation of day numbers, as we do not have to worry about the phantom
10 days of October 1582.

 To calculate LDNs, one must understand how the Gregorian calendar works. Years are usually
365 days long. However, every year evenly divisible by 4 is a leap year, 366 days long. This aligns the
calendar closer to astronomical reality. To � ne-tune the adjustment, if a year is evenly divisible by
100, it is not a leap year but, if it is also evenly divisible by 400, it is a leap year. Thus 2000 was a
leap year, but 1900 was not.

 Given a date, the lilian method of the Date class counts the number of days between that
date and the hypothetical date 1/1/0—that is, January 1 of the year 0. This count is made under the
assumption that the Gregorian reforms were in place during that entire time period. In other words,
it uses the rules described in the previous paragraph. Let us call this number the Relative Day Number
(RDN). To transform a given RDN to its corresponding LDN, we just need to subtract the RDN of
October 14, 1582, from it. For example, to calculate the LDN of July 4, 1776, the method � rst cal-
culates its RDN (648,856) and then subtracts from it the RDN of October 14, 1582 (578,100), giving
the result of 70,756.

 Code for the lilian method is included with the program code � les.

9781284098204_CH01_001_066.indd 7 06/07/16 5:29 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

8 Chapter	1 Getting	Organized

3. It	is	iterative	and	incremental.	The	Uni�ied	Method	involves	a	series	of	development	

cycles,	with	each	one	building	upon	the	foundation	established	by	its	predecessors.

One	of	the	main	bene�its	of	the	Uni�ied	Method	is	improved	communication	among	the	

people	 involved	 in	 the	project.	 The	Uni�ied	Method	 includes	 a	 set	 of	 diagrams	 for	 this	

purpose,	called	the	Uni�ied Modeling Language (UML).
3
	
	
UML	diagrams	have	become	a	

de	facto	industry	standard	for	modeling	software.	They	are	used	to	specify,	visualize,	con-

struct,	and	document	the	components	of	a	software	system.	We	use	UML	class	diagrams

throughout	this	text	to	model	our	classes	and	their	interrelationships.

A	diagram	representing	the	Date	class	is	shown	in	Figure 1.1.	The	diagram	follows	
the	standard	UML	class	notation	approach.	The	name	of	the	class	appears	in	the	top	sec-

tion	of	the	diagram,	the	variables	(attributes)	appear	in	the	next	section,	and	the	meth-

ods	(operations)	appear	in	the	�inal	section.	The	diagram	includes	information	about	the	

nature	of	the	variables	and	method	parameters;	for	example,	we	can	see	at	a	glance	that	

year,	month,	and	day	are	all	of	type	int.	Note	that	the	variable	MINYEAR	is	underlined;	
this	indicates	that	it	is	a	class	variable	rather	than	an	instance	variable.	The	diagram	also	

indicates	the	visibility	or	protection	associated	with	each	part	of	the	class	(+	=	public,	#	
=	protected).

Objects
Objects	are	created	from	classes	at	run	time.	They	can	contain	and	manipulate	data.	Mul-

tiple	objects	can	be	created	from	the	same	class	de�inition.	Once	a	class	such	as	Date	has	
been	de�ined,	a	program	can	create	and	use	objects	of	that	class.	The	effect	is	similar	to	

expanding	the	language’s	set	of	standard	types	to	include	a	Date	type.	To	create	an	object	
in	Java	we	use	the	new	operator,	along	with	the	class	constructor,	as	follows:

Date myDate = new Date(6, 24, 1951);
Date yourDate = new Date(10, 11, 1953);
Date ourDate = new Date(6, 15, 1985);

Figure 1.1 UML class diagram for the Date class

Date
#year:int
#month:int
#day:int
+MINYEAR:int = 1583

+Date(newMonth:int,newDay:int,newYear:int)
+getYear():int
+getMonth():int
+getDay():int
+lilian():int
+toString():String

3 The official definition of the UML is maintained by the Object Management Group. Detailed information can be found at
http://www.uml.org/.

9781284098204_CH01_001_066.indd 8 06/07/16 5:29 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

91.1	 Classes,	Objects,	and	Applications

We	say	that	the	variables	myDate,	yourDate,	and	ourDate	reference	“objects	of	the	class	
Date”	or	simply	“objects	of	type	Date.”	We	could	also	refer	to	them	as	“Date	objects.”

Figure 1.2	extends	our	previous	diagram	(shown	in	Figure	1.1)	to	show	the	relation-

ship	between	the	instantiated	Date	objects	and	the	Date	class.	As	you	can	see,	the	objects	
are	associated	with	the	class,	as	represented	by	arrows	from	the	objects	to	the	class	in	the	

diagram.	Notice	that	the	myDate,	yourDate,	and	ourDate	variables	are	not	objects,	but	
actually	hold	references	to	the	objects.	The	references	are	shown	by	the	arrows	from	the	

variable	boxes	to	the	objects.	In	reality,	references	are	memory	addresses.	The	memory	

address	of	the	instantiated	object	is	stored	in	the	memory	location	assigned	to	the	vari-

able.	If	no	object	has	been	instantiated	for	a	particular	variable,	then	its	memory	location	

holds	a	null	reference.
Methods	are	invoked	through	the	object	upon	which	they	are	to	act.	For	example,	to	

assign	the	return	value	of	the	getYear	method	of	the	ourDate	object	to	the	integer	vari-
able	theYear,	a	programmer	would	code

theYear = ourDate.getYear();

Recall	that	the	toString	method	is	invoked	in	a	special	way.	Just	as	Java	automatically	
changes	an	integer	value,	such	as	that	returned	by	getDay,	to	a	string	in	the	statement

System.out.println("The big day is " + ourDate.getDay());

it	automatically	changes	an	object,	such	as	ourDate,	to	a	string	in	the	statement

System.out.println("The party will be on " + ourDate);

The	output	from	these	statements	would	be

The	big	day	is	15

The	party	will	be	on	6/15/1985

Figure 1.2 Class diagram showing Date objects

Date

#year:int
#month:int
#day:int
+MINYEAR:int = 1583

yourDate

year: 1951
month: 6
day: 24

year: 1953
month: 10
day: 11

myDate

year: 1985
month: 6
day: 15

ourDate

+Date(newMonth:int,newDay:int,newYear:int)
+getYear():int
+getMonth():int
+getDay():int
+lilian():int
+toString():String

9781284098204_CH01_001_066.indd 9 06/07/16 5:29 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

10 Chapter	1 Getting	Organized

To	determine	how	to	change	the	object	to	a	string,	the	Java	compiler	looks	for	a	toString	
method	for	that	object,	such	as	the	toString	method	we	de�ined	for	Date	objects	in	our	
Date	class.

Applications
You	should	view	an	object-oriented	program	as	a	set	of	objects	working	together,	by	send-

ing	one	another	messages,	to	solve	a	problem.	But	where	does	it	all	begin?	How	are	the	

objects	created	in	the	�irst	place?

A	 Java	 program	 typically	 begins	 running	when	 the	 user	 executes	 the	 Java Virtual

Machine	and	passes	it	the	program.	How	you	begin	executing	the	Java	Virtual	Machine	

depends	on	your	environment.	You	may	simply	use	the	command	“java”	if	you	are	working	

in	a	command	line	environment.	Or,	you	may	click	a	“run”	icon	if	you	are	working	within	

an	integrated	development	environment.	In	any	case,	you	indicate	the	name	of	a	class	that	

contains	a	main	method.	The	Java	Virtual	Machine	loads	that	class	and	starts	executing	
that	method.	The	class	that	contains	the	main	method	is	called	a	Java application.

Suppose	we	want	to	write	a	program	named	DaysBetween	that	provides	informa-
tion	about	the	number	of	days	between	two	dates.	The	idea	is	for	the	program	to	prompt	

the	user	for	two	dates,	calculate	the	number	of	days	between	them,	and	report	this	infor-

mation	back	to	the	user.

In	object-oriented	programming	a	key	step	is	identifying	classes	that	can	be	used	to	

help	solve	a	problem.	Our	Date	class	is	a	perfect	�it	for	the	days-between	problem.	It	allows	
us	to	create	and	access	Date	objects.	Plus,	 its	lilian	method	returns	a	value	that	can	

help	us	determine	 the	number	of	days	between	

two	dates.	We	simply	subtract	the	two		Lilian	Day	

Numbers.	 The	 design	 of	 our	 application	 code	 is	

straightforward—prompt	for	and	read	in	the	two	

dates,	 check	 that	 valid	 years	 are	 provided,	 and	

then	 display	 the	 difference	 between	 the	 Lilian	

Day	Numbers.

The	application	code	is	shown	below.	Some	items	to	note:

•	 The	application	imports	the	util	package	from	the	Java	Class	Library.	The	util	
package	contains	Java’s	Scanner	class,	which	the	application	uses	for	input.

•	 The	DaysBetween	class	contains	just	a	single	method,	the	main	method.	It	is	pos-
sible	to	de�ine	other	methods	within	the	class	and	to	invoke	them	from	the	main	
method.	Such	functional	modularization	can	be	used	if	the	main	method	becomes	
long	and	complicated.	However,	because	we	are	emphasizing	an	object-oriented	

approach,	our	application	code	rarely	subdivides	a	solution	in	that	manner.	Classes	

and	objects	are	our	primary	modularization	mechanisms,	not	application	methods.

•	 Although	the	program	checks	to	ensure	the	entered	years	of	the	dates	are	“modern,”	it	

does	not	do	any	other	input	correctness	checking.	In	general,	throughout	the	text,	we	

assume	the	users	of	our	applications	are	“friendly,”	that	is,	they	enter	input	correctly.

Design	Convention

Our	application	code	usually	consists	of	a	class	with	a	
	single	method—main.	Modularization	is	provided	by	
	using	externally	defined	classes	and	objects.	

9781284098204_CH01_001_066.indd 10 06/07/16 5:29 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

111.1	 Classes,	Objects,	and	Applications

//--
// DaysBetween.java by Dale/Joyce/Weems Chapter 1
//
// Asks the user to enter two "modern" dates and then reports
// the number of days between the two dates.
//--
package ch01.apps;

import java.util.Scanner; import ch01.dates.*;

public class DaysBetween
{
public static void main(String[] args)
{
Scanner scan = new Scanner(System.in);
int day, month, year;

 System.out.println("Enter two 'modern' dates: month day year");
 System.out.println("For example, January 21, 1939, would be: 1 21 1939");
 System.out.println();
 System.out.println("Modern dates are not before " + Date.MINYEAR + ".");
 System.out.println();

 System.out.println("Enter the first date:");
 month = scan.nextInt(); day = scan.nextInt(); year = scan.nextInt();
 Date d1 = new Date(month, day, year);

 System.out.println("Enter the second date:");
 month = scan.nextInt(); day = scan.nextInt(); year = scan.nextInt();
 Date d2 = new Date(month, day, year);

if ((d1.getYear() <= Date.MINYEAR) || (d2.getYear() <= Date.MINYEAR))
System.out.println("You entered a 'pre-modern' date.");

else
{
System.out.println("The number of days between");
System.out.print(d1 + " and " + d2 + " is ");
System.out.println(Math.abs(d1.lilian() - d2.lilian()));

}
}

}

9781284098204_CH01_001_066.indd 11 06/07/16 5:29 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

12 Chapter	1 Getting	Organized

Here	is	the	result	of	a	sample	run	of	the	application.	User	input	is	shown	in	this color	.

Enter two ‘modern’ dates: month day year
For example, January 21, 1939, would be: 1 21 1939
Modern dates are not before 1583.
Enter the first date:
1 1 1900
Enter the second date:
1 1 2000
The number of days between
1/1/1900 and 1/1/2000 is 36524

1.2	 Organizing	Classes
During	object-oriented	development,	dozens—even	hundreds—of	classes	can	be	gener-

ated	or	 reused	 to	help	build	a	 system.	The	 task	of	keeping	 track	of	all	of	 these	classes	

would	be	impossible	without	some	type	of	organizational	structure.	In	this	section	we	re-

view	two	of	the	most	important	ways	of	organizing	Java	classes:	inheritance	and	packages.	

As	you	will	see,	both	of	these	approaches	are	used	“simultaneously”	for	most	projects.

Inheritance
Inheritance	is	much	more	than	just	an	organizational	mechanism.	It	is,	in	fact,	a	powerful	

reuse	mechanism.	Inheritance	allows	programmers	to	create	a	new	class	that	is	a	special-

ization	of	an	existing	class.	The	new	class	is	a	subclass	of	the	existing	class	that	in	turn	is	

the	superclass	of	the	new	class.

A	subclass	 “inherits”	 features	 from	 its	 superclass.	 It	adds	new	 features,	as	needed,	

related	to	its	specialization.	It	can	also	rede�ine	inherited	features	as	necessary	by	over-

riding	them.	“Super”	and	“sub”	refer	to	the	relative	positions	of	the	classes	in	a	hierarchy.	

A	subclass	is	below	its	superclass	and	a	superclass	is	above	its	subclasses.

Suppose	we	already	have	a	Date	class	as	de�ined	previously,	and	we	are	creating	a	
new	application	 to	manipulate	Date	 objects.	 Suppose	 also	 that	 the	new	application	 is	
often	required	to	“increment”	a	Date	object—that	is,	to	change	a	Date	object	so	that	it	
represents	the	next	day.	For	example,	if	the	Date	object	represents	7/31/2001,	it	would	
represent	8/1/2001	after	being	incremented.	The	algorithm	for	incrementing	the	date	is	

not	trivial,	especially	when	you	consider	leap	year	rules.	But	in	addition	to	developing	the	

algorithm,	another	question	that	must	be	addressed	is	where	to	put	the	code	that	imple-

ments	the	algorithm.	There	are	several	options:

•	 Implement	the	algorithm	within	the	application.	The	application	code	would	

need	to	obtain	the	month,	day,	and	year	from	the	Date	object	using	the	observer	

9781284098204_CH01_001_066.indd 12 06/07/16 5:29 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

131.2	 Organizing	Classes

methods;	calculate	the	new	month,	day,	and	year;	instantiate	a	new	Date	object	to	
hold	the	updated	month,	day,	and	year;	and	if	required,	assign	all	the	variables	that	

previously	referenced	the	original	Date	to	the	new	object.	This	might	be	a	complex	
task	so	this	is	probably	not	the	best	approach.	Besides,	if	future	applications	also	

need	this	functionality,	their	programmers	would	have	to	reimplement	the	solution	

for	themselves.	This	approach	does	not	promote	reusability	and	possibly	requires	

complex	tracking	of	object	aliases.

•	 Add	a	new	method,	called	increment,	to	the	Date	class.	This	method	would		
update	the	value	of	the	current	object.	Such	an	approach	allows	future	programs		

to	use	the	new	functionality.	However,	in	some	cases,	a	programmer	may	want	a	

Date	class	with	protection	against	any	changes	to	its	objects.	Such	objects	are	said	
to	be	immutable.	Adding	increment	to	the	Date	class	undermines	this	protection.

•	 Add	a	new	method,	called	nextDay,	to	the	Date	class.	Rather	than	updating	the	
value	of	the	“current”	object,	nextDay	would	return	a	new	Date	object	that	repre-
sents	the	day	after	the	Date	object	upon	which	it	is	invoked.	An	application	could	
then	reassign	a	Date	variable	to	its	next	day,	perhaps	like	this:

d1 = d1.nextDay();

This	approach	resolves	the	drawbacks	of	the	previous	approach	in	that	the	Date	
objects	remain	immutable,	although	if	one	wants	all	variables	that	referenced	the	

original	object	to	also	re�lect	the	updated	information	it	is	lacking.	Aliases	of	the		

d1	object	will	not	be	updated.

•	 Use	inheritance.	Create	a	new	class,	called	IncDate,	that	inherits	all	the	features	
of	the	current	Date	class,	but	that	also	provides	the	increment	method.	This	ap-
proach	allows	Date	objects	to	remain	immutable	but	at	the	same	time	provides	a	
mutable	Date-like	class	that	can	be	used	by	the	new	application.

We	now	look	at	how	to	implement	the	�inal	

option,	that	is,	to	use	inheritance	to	solve	

our	problem.	The	inheritance	relationship	

is	often	called	an	is-a relationship.	An	ob-

ject	 of	 the	 class	IncDate	 is	 also	 a	Date	
object,	 because	 it	 can	 do	 anything	 that	 a	

Date	object	can	do—and	more.	This	idea	

can	be	clari�ied	by	remembering	that	inheritance	typically	means	specialization.	IncDate	
is-a	special	case	of	Date,	but	not	the	other	way	around.	Here	is	the	code	for	IncDate:

package ch01.dates;
public class IncDate extends Date
{
 public IncDate(int newMonth, int newDay, int newYear)

Important

Inheritance	is	a	powerful	reuse	mechanism	that	allows		
us	to	define	a	new	class	as	an	extension	of	a	current	class.	
The	new	class	is	a	specialization	of	the	current	class.	New	
features	can	be	added	and	inherited	features	can	be	
redefined.	

9781284098204_CH01_001_066.indd 13 06/07/16 5:29 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

14 Chapter	1 Getting	Organized

 {
super(newMonth, newDay, newYear);

 }

 public void increment()
// Increments this IncDate to represent the next day.

 // For example, if this = 6/30/2005, then this becomes 7/1/2005.
 {

// Increment algorithm goes here.
 }
}

Inheritance	is	indicated	by	the	keyword	ex-
tends,	 that	 shows	 that	IncDate	 inherits	 from	
Date.	 It	 is	 not	 possible	 in	 Java	 to	 inherit	 con-
structors,	 so	IncDate	must	 supply	 its	 own.	 In	
this	case,	the	IncDate	constructor	simply	takes	
the	month,	day,	and	year	arguments	and	passes	

them	to	the	constructor	of	its	superclass	(that	is,	to	the	Date	class	constructor)	using	the	
super	reserved	word.

The	other	part	of	the	IncDate	class	is	the	new	increment	method,	which	is	classi-
�ied	as	a	transformer	because	it	changes	the	internal	state	of	the	object.	The	increment	
method	changes	the	object’s	day	and	possibly	the	month	and	year	values.	The	method	
is	invoked	through	the	object	that	it	is	to	transform.	For	example,	if	aDate	is	an	object	of	
type	IncDate	then	the	statement

aDate.increment();

transforms	the	aDate	object.
Although	we	have	left	out	the	details	of	the	increment	method	because	they	are	not	

crucial	to	our	current	discussion,	note	that	it	would	require	access	to	the	year,	month,	
and	day	 instance	 variables	 of	 its	 superclass.	 Therefore,	 using	protected	 rather	 than	
private	access	 for	those	variables	within	the	Date	class,	as	we	did,	 is	crucial	 for	our	
approach	to	be	viable.

A	program	with	access	to	each	of	the	date	classes	can	now	declare	and	use	both	Date	

and	IncDate	objects.	Consider	the	following	program	segment:

Date myDate = new Date(6, 24, 1951);
IncDate aDate = new IncDate(1, 11, 2001);

System.out.println("myDate day is: " + myDate.getDay());
System.out.println("aDate day is: " + aDate.getDay());

aDate.increment();
System.out.println("the day after is: " + aDate.getDay());

Authors’	Convention

Note	that	sometimes	in	our	code	listings	we	emphasize	
the	sections	of	code	most	pertinent	to	the	current	discus-
sion	by	underlining	them.	

9781284098204_CH01_001_066.indd 14 06/07/16 5:29 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

151.2	 Organizing	Classes

This	 program	 segment	 instantiates	 and	 initializes	 myDate	 and	 aDate,	 outputs	 the	
	values	of	their	days,	increments	aDate,	and	�inally	outputs	the	new	day	value	of	aDate.	
You	might	 ask,	 “How	 does	 the	 system	 resolve	 the	 use	 of	 the	getDay	 method	 by	 an	
	IncDate	 object	when	getDay	 is	de�ined	 in	 the	Date	 class?”	Understanding	how	 in-
heritance	is	supported	by	Java	provides	the	answer	to	this	question.	The	extended	class	

diagram	in	Figure 1.3,	that	shows	the	inheritance	relationships	and	captures	the	state	

of	the	system	after	the	aDate	object	has	been	incremented,	helps	us	investigate	the	situ-
ation.	As	is	standard	with	UML	class	diagrams,	inheritance	is	indicated	by	a	solid	arrow	

with	an	open	arrow	head	(a	triangle).	Note	that	the	arrow	points	from	the	subclass	to	

the	superclass.

The	compiler	has	available	 to	 it	all	 the	declaration	 information	captured	 in	 the	ex-

tended	class	diagram.	Consider	the	getDay	method	call	in	the	statement

System.out.println("the day after is: " + aDate.getDay());

To	resolve	this	method	call,	the	compiler	follows	the	reference	from	the	aDate	variable	
to	the	IncDate	class.	It	does	not	�ind	a	de�inition	for	a	getDay	method	in	the	IncDate	

Figure 1.3 Extended class diagram showing inheritance

Date

#year:int
#month:int
#day:int
+MINYEAR:int = 1583

+IncDate(in newMonth:int, in newDay:int, in newYear:int)
+increment():void

Object

aDate:IncDate

year:int = 2001
month:int = 1
day:int = 12

aDate

myDate:Date

year:int = 1951
month:int = 6
day:int = 24

myDate

+Object():Object
#clone():Object
+equals(in arg:Object):boolean
+toString():String
+etc....()

IncDate

+Date(newMonth:int,newDay:int,newYear:int)
+getYear():int
+getMonth():int
+getDay():int
+lilian():int
+toString():String

9781284098204_CH01_001_066.indd 15 06/07/16 5:29 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

16 Chapter	1 Getting	Organized

class,	so	it	follows	the	inheritance	link	to	the	superclass	Date.	There	it	�inds,	and	uses,	the	
getDay	method.	In	this	case,	the	getDay	method	returns	an	int	value	that	represents	
the	day	value	of	the	aDate	object.	During	execution,	the	system	changes	the	int	value	to	
a	String,	concatenates	it	to	the	string	“the	day	after	is:	”,	and	prints	it	to	System.out.

The	Inheritance	Tree

Java	supports	single	inheritance	only.	This	means	that	a	class	can	extend	only	one	other	

class.	Therefore,	in	Java,	the	inheritance	relationships	de�ine	an	inheritance tree.

Class

Class

Class

Class Class

Figure	1.3	shows	one	branch	of	the	overall	system	inheritance	tree.	Note	that	because	of	

the	way	method	calls	are	resolved,	by	searching	up the	inheritance	tree,	only	objects	of	

the	class	IncDate	can	use	the	increment	method—if	you	try	to	use	the	increment	
method	on	an	object	of	the	class	Date,	such	as	the	myDate	object,	no	de�inition	is	avail-

able	in	either	the	Date	class	or	any	of	the	classes	
above	Date	in	the	inheritance	tree.	The	compiler	
would	report	a	syntax	error	in	this	situation.

Notice	the	Object	class	in	Figure	1.3.	Where	
did	it	come	from?	In	Java,	any	class	that	does	not	

explicitly	extend	another	class	implicitly	extends	

the	prede�ined	Object	class.	Because	Date	does	
not	 explicitly	 extend	any	other	 class,	 it	 inherits	

directly	from	Object.	The	Date	class	is	a	direct	
subclass	of	Object.

All	Java	classes	can	be	traced	up	to	the		Object	
class.	We	say	that	the	Object	class	is	the	root	of	
the	 inheritance	 tree.	 The	Object	 class	 de�ines	
several	 basic	methods:	 comparison	 for	 equality	

(equals),	conversion	to	a	string	(toString),	and	
so	on.	Therefore,	for	example,	any	object	in	any	Java	program	supports	the	method	toString	
because	it	is	inherited	from	the	Object	class.	Let	us	consider	the	toString	example	more	
carefully.

As	discussed	previously,	just	as	Java	automatically	changes	an	integer	value	to	a	string	

in	the	statement

System.out.println("aDate day is: " + aDate.getDay());

Important

Association	of	method	names	with	method	code	is		
accomplished	by	moving	up	the	inheritance	tree.	If	a	
matching	method	is	not	found	in	the	named	class,	then	
its	superclass	is	searched.	And	if	not	found	there,	then	
the	superclass	above	that	and	so	on.	

Java	Note

In	Java,	the	Object	class	is	the	root	of	the	inheritance	
tree—all	classes	inherit	from	Object.	Therefore,	for	
example,	all	objects	support	equals	and	toString,	
although	unless	their	class	overrides	the	Object	class	
definitions	of	those	methods,	they	may	not	support	those	
operations	well.	

9781284098204_CH01_001_066.indd 16 06/07/16 5:29 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

171.2	 Organizing	Classes

so	it	automatically	changes	an	object	to	a	string	in	the	statement

System.out.println("tomorrow: " + aDate);

To	accomplish	this,	the	Java	compiler	looks	for	a	toString	method	for	that	object.	In	this	
case,	the	toString	method	is	not	found	in	the	IncDate	class,	but	it	is	found	in	its	super-
class,	the	Date	class.	However,	if	it	was	not	de�ined	in	the	Date	class,	the	compiler	would	
continue	looking	up	the	inheritance	hierarchy	and	would	�ind	the	toString	method	in	
the	Object	class.	Given	that	all	classes	trace	their	roots	back	to	Object,	the	compiler	is	
always	guaranteed	to	�ind	a	toString	method	eventually.

But	wait	a	minute.	What	does	it	mean	to	“change	an	object	to	a	string”?	Well,	that	de-

pends	on	the	de�inition	of	the	toString	method	that	is	associated	with	the	object.	The	
toString	method	of	the	Object	class	returns	a	string	representing	some	of	the	internal	
system	 implementation	details	 about	 the	object.	This	 information	 is	 somewhat	 cryptic	

and	generally	not	useful	to	us.	This	situation	is	an	example	of	where	it	is	useful	to	rede-

�ine	an	inherited	method	by	overriding	it.	We	generally	override	the	default	toString	
method	when	creating	our	own	classes	so	as	to	return	a	more	relevant	string,	as	we	did	

with	 the	Date	 class.	This	 is	why	we	use	 the	@Override	notation	with	 the	toString	
method	as	shown	on	page	3.	By	annotating	our	toString	method	as	overriding	an	ances-
tor’s	toString	method,	we	allow	the	compiler	to	double-check	our	syntax.	If	it	cannot	
�ind	an	associated	ancestor	method	with	the	same	signature,	 it	will	generate	an	error.	

Additionally,	 some	development	 environments	will	 use	 the	 information	 to	 inform	how	

they	display	the	code.

Table 1.2	shows	the	output	from	the	following	program	segment:

Date myDate = new Date(6, 24, 1951);
IncDate currDate = new IncDate(1, 11, 2001);
System.out.println("mydate: " + myDate);
System.out.println("today: " + currDate);

currDate.increment();
System.out.println("tomorrow: " + currDate);

The	results	on	the	left	show	an	example	of	the	output	generated	if	the	toString	method	
of	the	Object	class	is	used	by	default;	the	results	on	the	right	show	the	outcome	if	the	
toString	method	of	our	Date	class	is	used.

Table 1.2 Output from Program Segment

Object Class toString Used Date Class toString Used

mydate: Date@256a7c mydate: 6/24/1951

today: IncDate@720eeb today: 1/11/2001

tomorrow: IncDate@720eeb tomorrow: 1/12/2001

9781284098204_CH01_001_066.indd 17 06/07/16 5:29 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

18 Chapter	1 Getting	Organized

Inheritance-Based	Polymorphism

This	 is	 a	 good	 place	 to	 introduce	 an	 important	 object-oriented	 concept.	 The	 word	

polymorphism	has	Greek	roots	and	literally	means	“many	forms.”	Object-oriented	lan-

guages	that	support	polymorphism	allow	an	object	variable	to	reference	objects	of	differ-

ent	classes	at	different	times	during	the	execution	of	a	program—the	variable	can	have	

“many	types”	and	is	called	a	polymorphic	variable	or	polymorphic	reference.

There	 are	 two	ways	 to	 create	 polymorphic	 references	with	 Java.	 Here	we	 look	 at	

inheritance-based	polymorphism.	In	Section	2.1,	“Abstraction,”	we	will	look	at	interface-

based	polymorphism.

Typically	in	our	programs	we	can	tell	exactly	what	method	will	be	executed	when	a	

method	is	invoked	through	an	object	variable.	For	example,	in	the	following	code	section	

the	third	and	fourth	lines	respectively	invoke	the	toString	method	of	the	String	class	
and	the	toString	method	of	the	Date	class.

String s = new String("Hello");
Date d = new Date(1,1,2015);
System.out.println(s.toString());
System.out.println(d.toString());

It	is	easy	to	see	that	this	code	will	print	“Hello”	followed	by	“1/1/2015”.

Remember	that	both	String	and	Date	 inherit	from	the	Object	class.	In	terms	of	
inheritance	we	say	that	a	String	“is-an”	Object	and	that	a	Date	also	“is-an”	Object.	
Due	to	the	polymorphism	built	into	the	Java	language	this	means	that	we	can	declare	a	

variable	to	be	of	type	Object,	and	then	instantiate	it	as	a	String	or	as	a	Date.	In	fact,	
since	the	Object	class	is	at	the	root	of	the	Java	inheritance	tree,	an	Object	reference	can	
refer	to	an	object	of	any	class.

In	the	following	code	section	assume	that	cutoff	was	assigned	a	random	value	be-
tween	1	and	100,	perhaps	through	the	Random	class’s	nextInt	method.	Can	you	predict	
what	method	is	invoked	by	the	obj.toString()	method	invocation?	Can	you	predict	
what	will	be	printed?	Do	not	forget	that	both	the	String	class	and	the	Date	class	over-
ride	the	toString	method	of	the	Object	class.

Object obj;
if (cutoff <= 50)
 obj = new String("Hello");
else
 obj = new Date(1,1,2015);
System.out.println(obj.toString());

We	cannot	infer	from	the	code	whether	the	obj	variable	references	a	String	or	a	Date.	
We	can	only	infer	that	it	references	one	or	the	other.	The	binding	of	the	obj	variable	to	
a	class	occurs	dynamically,	at	run	time.	As	 is	 implied	by	the	arrows	connecting	objects	

to	classes	 in	Figure	1.3,	each	object	carries	 information	 indicating	the	class	to	which	 it	

belongs.	This	can	also	be	noticed	in	the	output	of	the	Object	class’s	toString	method,	

9781284098204_CH01_001_066.indd 18 06/07/16 5:29 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

191.2	 Organizing	Classes

displayed	 on	 the	 left	 side	 of	 Table	 1.2.	

Run-time	(also	called	dynamic)	binding	

and	 polymorphism	 go	 hand	 in	 hand.	We	

can	only	predict	 that	half	of	 the	 time	 the	

toString	 method	 of	 the	 String	 class	
is	 invoked	 and	 the	other	half	 of	 the	 time	

the	toString	method	of	 the	Date	 class	
is	invoked.

You	might	ask	how	the	compiler	can	parse	a	method	invocation	to	ensure	syntactical	

correctness	when	run-time	binding	is	used.	The	key	is	that	the	Object	class	itself	de�ines	
a	toString	method.	The	compiler	is	able	to	verify	that	the	obj.toString()	invocation	
correctly	matches	a	de�ined	method	in	the	Object	class,	and	after	all,	obj	was	declared	
to	be	of	type	Object.	The	Java	Virtual		Machine,	however,	when	executing	the	method	in-
vocation,	follows	the	dynamically	created	reference	from	obj	to	either	the	String	class	
de�inition	or	the	Date	class	de�inition	and	uses	the	toString	method	de�ined	there.

Although	the	preceding	example	does	demonstrate	polymorphism,	it	does	not	really	

do	justice	to	the	power	of	inheritance-based	polymorphism	or	demonstrate	how	it	should	

be	used.	The	example	was	selected	due	to	its	simplicity	and	conciseness.	We	will	see	an-

other	example	of	how	polymorphism	can	be	used	in	the	next	chapter,	and	although	we	will	

not	make	extensive	use	of	it	throughout	the	text,	it	is	an	important	object-oriented	concept,	

useful	for	creating	easily	maintained,	versatile,	adaptable	systems	of	classes.	Its	true	power	

becomes	apparent	when	constructing	large	enterprise-level	systems	and	their	interfaces.	If	

you	continue	to	study	object	orientation,	you	will	�ind	it	a	powerful	and	crucial	tool.

Packages
Java	lets	us	group	related	classes	together	into	a	unit	called	a	package.	Packages	provide	

several	advantages:

•	 They	let	us	organize	our	�iles.

•	 They	can	be	compiled	separately	and	imported	into	our	programs.

•	 They	make	it	easier	for	programs	to	use	common	class	�iles.

•	 They	help	us	avoid	naming	con�licts	(two	classes	can	have	the	same	name	if	they	

are	in	different	packages).

Package	Syntax

The	syntax	for	a	package	is	extremely	simple.	All	one	has	to	do	is	to	specify	the	package	

name	at	the	start	of	the	�ile	containing	the	class.	The	�irst	noncomment,	nonblank	line	of	

the	�ile	must	contain	the	keyword	package	followed	by	an	identi�ier	and	a	semicolon.	By	
convention,	Java	programmers	start	a	package	identi�ier	with	a	lowercase	letter	to	distin-

guish	package	names	from	class	names:

package someName;

Important	Concept

Inheritance,	overriding	of	methods,	and	dynamic	binding	
all	interact	to	support	polymorphic	references.	Because	
objects	carry	with	them	information	about	their	class,	that	
information	can	vary	dynamically,	as	long	as	it	satisfies	the	
is-a	relationship	established	by	the	inheritance	tree.	

9781284098204_CH01_001_066.indd 19 06/07/16 5:29 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

20 Chapter	1 Getting	Organized

Following	the	package	name	speci�ication	in	the	�ile,	the	programmer	can	write	import	

declarations,	so	as	to	make	the	contents	of	other	packages	available	to	the	classes	inside	

the	package	being	de�ined,	and	then	one	or	more	declarations	of	classes.	 Java	calls	this	

�ile	a	compilation unit.	The	classes	de�ined	 in	the	 �ile	are	members	of	 the	package.	The	

imported	classes	are	not	members	of	the	package.

The	name	of	the	�ile	containing	the	compilation	unit	must	match	the	name	of	the	pub-

lic	class	within	the	unit.	Therefore,	although	a	programmer	can	declare	multiple	classes	

in	a	compilation	unit,	only	one	of	them	can	be	declared	public.	All	nonpublic	classes	in	the	

�ile	are	hidden	from	the	world	outside	the	package.	If	a	compilation	unit	can	hold	at	most	

one	public	class,	how	do	we	create	packages	with	multiple	public	classes?	We	have	to	use	

multiple	compilation	units,	as	described	next.

Packages	with	Multiple	Compilation	Units

Each	Java	compilation	unit	is	stored	in	its	own	�ile.	The	Java	system	identi�ies	the	�ile	using	

a	combination	of	the	package	name	and	the	name	of	the	public	class	in	the	compilation	

unit.	Java	restricts	us	to	having	a	single	public	class	per	�ile	so	that	it	can	use	�ile	names	

to	locate	public	classes.	Thus	a	package	with	multiple	public	classes	is	 implemented	as	

multiple	compilation	units,	each	in	a	separate	�ile.

Using	 multiple	 compilation	 units	 has	 the	 further	 advantage	 of	 providing	 us	 with	

greater	 �lexibility	 in	 developing	 the	 classes	 of	 a	 package.	 Team	 programming	 projects	

would	be	more	cumbersome	if	Java	made	multiple	programmers	share	a	single	package	

�ile.

We	split	a	package	among	multiple	�iles	simply	by	placing	its	members	into	separate	

compilation	units	with	the	same	package	name.	For	example,	we	can	create	one	�ile	con-

taining	the	following	code	(the	.	.	.	between	the	braces	represents	the	code	for	each	class):

package gamma;
public class One{ ... }
class Two{ ... }

A	second	�ile	could	contain	this	code:

package gamma;
class Three{ ... }
public class Four{ ... }

The	result:	The	package	gamma	contains	four	classes.	Two	of	the	classes,	One	and	Four,	
are	public,	so	they	are	available	to	be	imported	by	application	code.	The	two	�ile	names	

must	match	the	two	public	class	names;	that	is,	the	�iles	must	be	named	One.java	and	
Four.java,	respectively.

How	does	the	Java	compiler	manage	to	�ind	these	pieces	and	put	them	together?	The	

answer	is	that	it	requires	that	all	compilation	unit	�iles	for	a	package	be	kept	in	a	single	

directory	or	folder	that	matches	the	name	of	the	package.	For	our	preceding	example,	a	

programmer	would	store	the	source	code	in	�iles	called	One.java	and	Four.java,	both	
in	a	directory	called	gamma.

9781284098204_CH01_001_066.indd 20 06/07/16 5:29 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

211.2	 Organizing	Classes

	The	Import	Statement	

	To	access	the	contents	of	a	package	from	within	a	program,	you	must	import	it	into	your	

program.	You	can	use	either	of	the	following	forms	of	import	statements:	

 import packagename.*;
 import packagename.Classname;

	An	import	declaration	begins	with	the	keyword		import ,	the	name	of	a	package,	and	a	dot	
(period).	Following	the	dot	you	can	write	either	the	name	of	a	class	in	the	package	or	an	as-

terisk	(*).	The	declaration	ends	with	a	semicolon.	If	you	want	to	access	exactly	one	class	in	a	

particular	package,	then	you	can	simply	use	its	name	in	the	import	declaration.	If	you	want	

to	use	more	than	one	of	the	classes	in	a	package,	the	asterisk	is	a	shorthand	notation	to	the	

compiler	that	says,	“Import	whatever	classes	from	this	package	that	this	program	uses.”	

	Packages	and	Subdirectories		

	Many	 computer	 platforms	 use	 a	 hierar-

chical	 �ile	system.	The	 Java	package	rules	

are	de�ined	to	work	seamlessly	with	such	

systems.	Java	package	names	may	also	be	

hierarchical;	 they	 may	 contain	 “periods”	

separating	different	parts	of	 the	name—for	example,	 	ch01.dates .	 In	 such	a	case,	 the	
package	�iles	must	be	placed	underneath	a	set	of	subdirectories	that	match	the	separate	

parts	 of	 the	 package	 name.	 Continuing	 the	 same	 example,	 the	 package	 �iles	 should	 be	

placed	in	a	directory	named		dates 	that	is	a	subdirectory	of	a	directory	named		ch01 .	You	
can	then	import	the	entire	package	into	your	program	with	the	following	statement:	

 import ch01.dates.*;

	As	long	as	the	directory	that	contains	the		ch01 	directory	is	on	the		ClassPath 	of	your	
system,	the	compiler	will	be	able	to	�ind	the	package	you	requested.	The	compiler	auto-

matically	looks	in	all	directories	listed	in		ClassPath .	Most	programming	environments	
provide	a	command	to	specify	the	directories	to	be	included	in	the		ClassPath .	You	will	
need	to	consult	the	documentation	for	your	particular	system	to	see	how	to	do	this.	In	our	

example,	 the	compiler	will	search	all	 	ClassPath 	directories	for	a	subdirectory	named	
	ch01 	that	contains	a	subdirectory	named		dates ;	upon	�inding	such	a	subdirectory,	it	will	
import	all	of	the	members	of	the		ch01.dates 	package	that	it	�inds	there.	

	Java	Note	

	The	Java	package	construct	is	designed	to	work	seam-
lessly	with	the	commonly	used	hierarchical	fi	le	system.		

The	Program	Files

The	 �iles	 created	 to	 support	 this	 text	 are	 organized	 into	packages.	 They	 are	 organized	

exactly	as	we	have	described	and	are	available	at	the	book’s	website,	go.jblearning.com/

oods4ecatalog/9781449613549/.	All	of	the	�iles	are	found	in	a	directory	named	book-
Files.	It	contains	a	separate	subdirectory	for	each	chapter	of	the	book:	ch01,	ch02,	etc.	
You	will	 �ind	 the	 corresponding	 subdirectories	 underneath	 the	 chapter	 subdirectories.	

9781284098204_CH01_001_066.indd 21 06/07/16 5:29 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

22	 Chapter	1	 Getting	Organized

	1.3	 Exceptional	Situations	
	In	this	section	we	take	a	look	at	various	methods	of	handling	exceptional	situations	that	

might	arise	when	running	a	program.	

	Handling	Exceptional	Situations	
	Many	 different	 types	 of	 exceptional	 situations	 can	 occur	 when	 a	 program	 is	 running.	

	Exceptional	situations	alter	the	�low	of	control	of	the	program,	sometimes	resulting	in	a	

crash.	Some	examples	follow:	

•	 	A	user	enters	an	input	value	of	the	wrong	type.	

•	 	While	reading	information	from	a	�ile,	the	end	of	the	�ile	is	reached.	

•	 	A	user	presses	a	control	key	combination.	

•	 	A	program	attempts	to	invoke	a	method	on	a	null	object.	

•	 	An	out-of-bounds	value	is	passed	to	a	method,	for	example,	passing	25	as	the	

month	value	to	the		Date 	constructor.			

	Java	(along	with	some	other	languages)	provides	built-in	mechanisms	to	manage	excep-

tional	situations.	In	Java	an	exceptional	situation	is	referred	to	simply	as	an	 	exception .	

The	Java	exception	mechanism	has	three	major	parts:	

•	 		De
ining the exception. Usually	as	a	subclass	of	Java’s		Exception 	class	

•	 		Generating (raising) the exception. By	recognizing	the	exceptional	situation	and	

then	using	Java’s		throw 	statement	to	“announce”	that	the	exception	has	occurred.	

•	 		Handling the exception. Using	Java’s		try -	catch 	statement	to	discover	that	an	ex-
ception	has	been	thrown	and	then	take	the	appropriate	action.	

For	example,	the	ch01	subdirectory	does,	indeed,	contain	a	subdirectory	named	dates,	
that	in	turn	contains	�iles	that	de�ine	Java	classes	related	to	dates.	Each	of	the	class	�iles	

begins	with	the	statement

package ch01.dates;

Thus	they	are	all	in	the	ch01.dates	package.	If	you	write	a	program	that	needs	to	use	
these	 �iles,	you	can	simply	 import	 the	package	 into	your	program	and	make	sure	the	

parent	directory	of	the	ch01	directory	(that	is,	the	bookFiles	directory),	is	included	
in	your	computer’s	ClassPath.

We	suggest	 that	you	copy	the	entire	bookFiles	directory	to	your	computer’s	hard	
drive,	ensuring	easy	access	 to	all	of	 the	book’s	 �iles	and	maintaining	 the	crucial	 subdi-

rectory	structure	required	by	the	packages.	Also,	make	sure	you	extend	your	computer’s	

ClassPath	to	include	your	new	bookFiles	directory.

9781284098204_CH01_001_066.indd 22 06/07/16 5:29 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

231.3	 Exceptional	Situations

Java	 also	 includes	 numerous	 prede�ined	

built-in	exceptions	that	are	raised	automati-

cally	under	certain	situations.

From	this	point	on	we	use	the	Java	term	

“exception”	 instead	 of	 the	 more	 general	

phrase	“exceptional	situation.”	Here	are	some	

general	guidelines	for	using	exceptions:

•	 An	exception	may	be	handled	anywhere	in	the	software	hierarchy—from	the	

place	in	the	program	module	where	it	is	�irst	detected	through	the	top	level	of	the	

program.

•	 Unhandled	built-in	exceptions	carry	the	penalty	of	program	termination.

•	 Where	in	an	application	an	exception	is	handled	is	a	design	decision;	however,	

	exceptions	should	be	handled	at	a	level	that	knows	what	the	exception	means.

•	 An	exception	need	not	be	fatal.

•	 For	nonfatal	exceptions,	the	thread	of	execution	should	continue	from	the	lowest	

level	that	can	recover	from	the	exception.

Exceptions	and	Classes:	An	Example
When	creating	our	own	classes	we	identify	exceptions	that	require	special	processing.	If	

the	special	processing	is	application	dependent,	we	use	the	Java	exception	mechanism	to	

throw	the	problem	out	of	the	class	and	force	the	application	programmers	to	handle	it.	

Conversely,	if	the	exception	handling	can	be	hidden	within	the	class,	then	there	is	no	need	

to	burden	the	application	programmers	with	the	task.

For	an	example	of	an	exception	created	to	support	a	programmer-de�ined	class,	we	re-

turn	to	our	Date	class	example.	As	currently	de�ined,	an	application	could	invoke	the	Date	
constructor	with	an	invalid	month—for	example,	25/15/2000.	We	can	avoid	the	creation	

of	such	dates	by	checking	the	legality	of	the	month	argument	passed	to	the	constructor.	But	

what	should	our	constructor	do	if	it	discovers	an	illegal	argument?	Here	are	some	options:

•	 Write	a	warning	message	to	the	output	stream.	This	is	not	a	good	option	because	

within	the	Date	class	we	do	not	really	know	which	output	stream,	if	any,	is	used	by	
the	application.

•	 Instantiate	the	new	Date	object	to	some	default	date,	perhaps	0/0/0.	The	problem	
with	this	approach	is	that	the	application	program	may	just	continue	processing	as	if	

nothing	is	wrong	and	produce	erroneous	results.	In	general,	it	is	better	for	a	program	

to	“bomb”	than	to	produce	erroneous	results	that	may	be	used	to	make	bad	decisions.

•	 Throw	an	exception.	This	way,	normal	processing	is	interrupted	and	the	constructor	

does	not	have	to	return	a	new	object;	instead,	the	application	program	is	forced	to	

acknowledge	the	problem	(catch	the	exception)	and	either	handle	it	or	throw	it	to	

the	next	level.

Java	Note

In	Java,	exceptions	are	objects.	They	can	be	defined,	
instantiated,	raised,	thrown,	caught,	and	handled.	They	
allow	us	to	control	the	flow	of	execution	of	a	program		
to	handle	exceptional	situations.

9781284098204_CH01_001_066.indd 23 06/07/16 5:29 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

24 Chapter	1 Getting	Organized

Once	we	 have	 decided	 to	 handle	 the	 situation	with	 an	 exception,	we	must	 decide	

whether	 to	use	one	of	 the	 Java	 library’s	prede�ined	exceptions	or	 to	 create	one	of	 our	

own.	A	study	of	the	library	in	this	case	reveals	a	candidate	exception	called	DataFormat-
Exception,	 to	 be	 used	 to	 signal	 data	 format	 errors.	We	 could	 use	 that	 exception	but	
decide	it	does	not	really	�it;	it	is	not	the	format	of	the	data	that	is	the	problem	in	this	case,	

it	is	the	value	of	the	data.

We	 decide	 to	 create	 our	 own	 exception,	 DateOutOfBounds.	 It	 could	 be	 called	
	MonthOutOfBounds,	but	we	decide	that	we	want	to	use	the	exception	to	indicate	other	
potential	problems	with	dates,	not	 just	problems	with	 the	month	value.	Our	exception	

class	is	placed	in	a	�ile	named	DateOutOfBounds.java.
Our	DateOutOfBounds	exception	extends	the	library’s	Exception	class.	It	is	cus-

tomary	when	creating	your	own	exceptions	to	de�ine	two	constructors,	mirroring	the	two	

constructors	of	the	Exception	class.	In	fact,	the	easiest	thing	to	do	is	de�ine	the	construc-
tors	so	that	they	just	call	the	corresponding	constructors	of	the	superclass:

package ch01.dates;
public class DateOutOfBoundsException extends Exception
{
 public DateOutOfBoundsException()
 {
 super();
 }
 public DateOutOfBoundsException(String message)
 {
 super(message);
 }
}

The	 �irst	 constructor	 creates	 an	 exception	without	 an	 associated	message.	The	 second	

constructor	creates	an	exception	with	a	message	equal	to	the	string	argument	passed	to	

the	constructor.

Let	us	create	a	new	class	SafeDate.	We	could	simply	upgrade	our	previous	Date	
class	but	do	not	want	to	invalidate	our	previous	examples.	So	we	will	use	the	new	class,	

SafeDate,	 to	demonstrate	 the	use	of	exceptions.	Where,	within	our	SafeDate	 class,	
should	we	throw	the	exception?	All	places	within	our	class	where	a	date	value	is	created	

or	changed	should	be	examined	to	see	if	the	resultant	value	could	be	an	illegal	date.	If	so,	

we	should	create	an	object	of	our	exception	class	with	an	appropriate	message	and	throw	

the	exception.

Here	is	a	SafeDate	constructor	that	checks	for	legal	months	and	years:

public SafeDate(int newMonth, int newDay, int newYear)
 throws DateOutOfBoundsException
{
 if ((newMonth <= 0) || (newMonth > 12))
 throw new DateOutOfBoundsException("Month " + newMonth + " illegal.");

9781284098204_CH01_001_066.indd 24 06/07/16 5:29 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

251.3	 Exceptional	Situations

 else
 month = newMonth;

 day = newDay;

 if (newYear < MINYEAR)
 throw new DateOutOfBoundsException("Year " + newYear + " too early.");
 else
 year = newYear;
}

Notice	that	the	message	de�ined	for	each	throw	statement	pertains	to	the	problem	dis-
covered	at	that	point	in	the	code.	This	should	help	the	application	program	that	is	han-

dling	the	exception,	or	at	least	provide	pertinent	information	to	the	user	of	the	program	if	

the	exception	is	propagated	all	the	way	to	the	user	level.

Finally,	we	see	how	an	application	program	might	use	the	SafeDate	class.	Consider	
a	program	called	UseSafeDate	that	prompts	the	user	for	a	month,	day,	and	year	and	cre-
ates	a	SafeDate	object	based	on	the	user’s	responses.	In	the	following	code	we	hide	the	
details	of	how	the	prompt	and	response	are	handled	by	replacing	those	statements	with	

comments.	This	way	we	can	emphasize	the	code	related	to	our	current	discussion:

//--
// UseSafeDate.java by Dale/Joyce/Weems Chapter 1
//
// Example of re-throwing exceptions thrown by SafeDate class
//--

package ch01.apps;
public class UseSafeDate
{
public static void main(String[] args) throws DateOutOfBoundsException
{
SafeDate theDate;

// Program prompts user for a date.
// M is set equal to user's month.
// D is set equal to user's day.
// Y is set equal to user's year.

theDate = new SafeDate(M, D, Y);

// Program continues ...
}

}

9781284098204_CH01_001_066.indd 25 06/07/16 5:29 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

26 Chapter	1 Getting	Organized

When	this	program	runs,	if	the	user	responds	with	an	illegal	value—for	example,	a	year	

of	1051—the	DateOutOfBoundsException	is	thrown	by	the	SafeDate	constructor;	
because	it	is	not	caught	and	handled	within	the	program,	it	is	thrown	to	the	interpreter	

as	indicated	by	the	emphasized	throws	clause.	The	interpreter	stops	the	program	and	
displays	a	message	like	this:

Exception in thread "main" DateOutOfBoundsException: Year 1051 too early.
at SafeDate.<init>(SafeDate.java:18)
at UseSafeDate.main(UseSafeDate.java:57)

The	interpreter’s	message	includes	the	name	and	message	string	of	the	exception	as	well	

as	a	trace	of	calls	leading	up	to	the	exception.

Alternatively,	 the	UseSafeDate	 class	 could	 catch	 and	 handle	 the	 exception	 itself,	
rather	than	throw	it	to	the	interpreter.	The	application	could	ask	for	a	new	date	when	the	

exception	occurs.	Here	is	how	UseSafeDate	can	be	written	to	do	this:

//--
// UseSafeDate.java by Dale/Joyce/Weems Chapter 1
//
// Example of catching exceptions thrown by SafeDate class
//--
package ch01.apps;

import java.util.Scanner; import ch01.dates.*;

public class UseSafeDate
{
public static void main(String[] args)
{
int month, day, year;
SafeDate theDate;
boolean DateOK = false;
Scanner scan = new Scanner(System.in);

while (!DateOK)
{
System.out.println("Enter a date (month day and year):");
month = scan.nextInt(); day = scan.nextInt(); year = scan.nextInt();
try
{
theDate = new SafeDate(month, day, year);
DateOK = true;
System.out.println(theDate + " is a safe date.");

}

9781284098204_CH01_001_066.indd 26 06/07/16 5:29 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

271.4	 Data	Structures

catch(DateOutOfBoundsException DateOBExcept)
{
System.out.println(DateOBExcept.getMessage() + "\n");

}
}

// Program continues . . .
}

}

If	the	new	statement	executes	without	any	trouble,	meaning	the	SafeDate	constructor	did	
not	throw	an	exception,	then	the	DateOK	variable	is	set	to	true,	the	date	is	output,	and	
the	while loop	terminates.	However,	if	the	DateOutOfBounds	exception	is	thrown	by	the	
Date	constructor,	the	latter	two	statements	in	the	try	clause	are	skipped	and	the	exception	
is	caught	by	the	catch	statement.	This,	in	turn,	prints	the	message	from	the	exception	and	
the	while	loop	is	executed,	again	prompting	the	user	for	a	date.	The	program	repeatedly	

prompts	for	date	information	until	it	is	given	a	legal	date.	Notice	that	the	main	method	no	
longer	throws	DateOutOfBoundsException,	as	it	handles	the	exception	itself.

One	 last	 important	note	about	exceptions.	The	java.lang.Run- TimeException	
class	is	treated	uniquely	by	the	Java	environment.	Exceptions	of	this	class	are	thrown	when	a	

standard	run-time	program	error	occurs.	Examples	of	run-time	errors	include	null-pointer-

exception	and	array-index-out-of-bounds.	Because	run-time	exceptions	can	happen	in	vir-

tually	 any	 method	 or	 segment	 of	 code,	 we	

are	 not	 required	 to	 explicitly	 handle	 these	

exceptions.	Otherwise,	 our	programs	would	

become	unreadable	because	of	so	many	try,	
catch,	and	throw	statements.	These	errors	
are	classi�ied	as	unchecked exceptions.

1.4	 Data	Structures
You	are	already	familiar	with	various	ways	of	organizing	data.	When	you	look	up	a	course	

description	in	a	catalog	or	a	word	in	a	dictionary,	you	are	using	an	ordered	list	of	words.	

When	you	 take	 a	number	 at	 a	 delicatessen	or	barbershop,	 you	become	part	 of	 a	 line/

queue	of	people	awaiting	service.	When	you	study	the	pairings	 in	a	sports	tournament	

and	try	to	predict	which	team	or	player	will	advance	through	all	the	rounds	and	become	

champion,	you	create	a	treelike	list	of	predicted	results.

Just	as	we	use	many	approaches	 to	organize	data	 to	deal	with	everyday	problems,	

programmers	use	a	wide	variety	of	approaches	to	organize	data	when	solving	problems	

using	computers.	When	programming,	the	way	you	view	and	structure	the	data	that	your	

programs	manipulate	greatly	in�luences	your	success.	A	language’s	set	of	primitive	types	

(Java’s	are	byte,	char,	short,	int,	long,	float,	double,	and	boolean)	can	be	very	
useful	if	we	need	a	counter,	a	sum,	or	an	index	in	a	program.	Generally,	however,	we	must	

also	deal	with	large	amounts	of	data	that	have	complex	interrelationships.

Java	Note

Java	“Run-Time	Exceptions”	do	not	need	to	be	handled	
explicitly.	If	we	elect	not	to	handle	them	and	they	are	
raised,	they	will	eventually	be	thrown	out	to	the	Java	
	Interpreter	and	our	program	will	“bomb.”	

9781284098204_CH01_001_066.indd 27 06/07/16 5:29 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

28 Chapter	1 Getting	Organized

Computer	scientists	have	devised	many	organizational	structures	to	represent	data	

relationships.	These	structures	act	as	a	unifying	theme	for	this	text.	In	this	section	we	in-

troduce	the	topic	in	an	informal	way,	by	brie�ly	describing	some	of	the	classic	approaches.

Implementation-Dependent	Structures
The	internal	representation	of	the	�irst	two	structures	is	an	inherent	part	of	their	de�ini-

tion.	These	structures	act	as	building	blocks	for	many	of	the	other	structures.

Array

[0]

[1]

[2]

[3]

[4]

[5]

x

x

x

x

x

x

You	have	studied	and	used	arrays	in	your	previous	work.	An	array’s	components	are	ac-

cessed	by	using	 their	positions	 in	 the	 structure.	Arrays	are	one	of	 the	most	 important	

organizational	structures.	They	are	available	as	a	basic	language	construct	in	most	high-

level	programming	languages.	Additionally,	they	are	one	of	the	basic	building	blocks	for	

implementing	other	structures.	We	look	at	arrays	more	closely	in	Section	1.5,	“Basic	Struc-

turing	Mechanisms.”

Linked	List

x

x

x

x

LL

A	linked	list	is	a	collection	of	separate	elements,	with	each	element	linked	to	the	one	that	

follows	it	in	the	list.	We	can	think	of	a	linked	list	as	a	chain	of	elements.	The	linked	list	is	

a	versatile,	powerful,	basic	implementation	structure	and,	like	the	array,	it	is	one	of	the	

primary	building	blocks	for	the	more	complicated	structures.	Teaching	you	how	to	work	

with	links	and	linked	lists	is	one	of	the	important	goals	of	this	text.	We	look	at	Java’s	link	

9781284098204_CH01_001_066.indd 28 06/07/16 5:30 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

291.4	 Data	Structures

mechanism,	 the	reference,	 in	Section	1.5,	 “Basic	Structuring	Mechanisms.”	Additionally,	

throughout	the	rest	of	the	text	we	study	how	to	use	links	and	linked	lists	to	implement	

other	structures.

Implementation-Independent	Structures
Unlike	the	array	and	the	linked	list,	the	organizational	structures	presented	in	this	subsec-

tion	are	not	tied	to	a	particular	implementation	approach.	They	are	more	abstract.

The	structures	presented	here	display	different	kinds	of	relationships	among	their	

constituent	elements.	For	stacks	and	queues,	the	organization	is	based	on	when	the	ele-

ments	were	placed	into	the	structure;	for	sorted	lists,	maps,	and	priority	queues	it	is	re-

lated	to	the	values	of	the	elements;	and	for	trees	and	graphs,	it	re�lects	some	feature	of	the	

problem	domain	that	is	captured	in	the	relative	positions	of	the	elements.

These	structures	(and	others)	are	treated	separately	 later	 in	the	text,	when	we	de-

scribe	them	in	more	detail,	investigate	ways	of	using	them,	and	look	at	several	possible	

implementations.

Stack

x

x

x

x

x

In Out

The	de�ining	feature	of	a	stack	is	that	whenever	you	access	or	remove	an	element,	you	

work	with	the	element	that	was	most	recently	inserted.	Stacks	are	“last	in,	�irst	out”	(LIFO)	

structures.	To	see	how	they	work,	think	about	a	stack	of	dishes	or	trays.	Note	that	the	con-

cept	of	a	stack	is	completely	de�ined	by	the	relationship	between	its	accessing	operations,	

the	operations	for	inserting	something	into	it	or	removing	something	from	it.	No	matter	

what	the	internal	representation	is,	as	long	as	the	LIFO	relationship	holds,	it	is	a	stack.

Queue

xxxx

InOut

Queues	are,	in	one	sense,	the	opposite	of	stacks.	They	are	“�irst	in,	�irst	out”	(FIFO)	struc-

tures.	The	de�ining	feature	of	a	queue	is	that	whenever	you	access	or	remove	an	element	

9781284098204_CH01_001_066.indd 29 06/07/16 5:30 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

30 Chapter	1 Getting	Organized

from	a	queue,	you	work	with	the	element	that	was	in	the	queue	for	the	longest	time.	Think	

about	an	orderly	line	of	people	waiting	to	board	a	bus	or	a	group	of	people,	holding	onto	

their	service	numbers,	at	a	delicatessen.	In	both	cases,	the	people	will	be	served	in	the	or-

der	in	which	they	arrived.	In	fact,	this	is	a	good	example	of	how	the	abstract	organizational	

construct,	the	queue,	can	have	more	than	one	implementation	approach—an	orderly	line	

or	service	numbers.

Sorted	List

George, John, Paul, Ringo

The	elements	of	a	sorted	list	display	a	linear	relationship.	Each	element	(except	the	�irst)	

has	a	predecessor,	and	each	element	(except	the	last)	has	a	successor.	In	a	sorted	list,	the	

relationship	also	re�lects	an	ordering	of	the	elements,	from	“smallest”	to	“largest,”	or	vice	

versa.

You	might	be	thinking	that	an	array	whose	elements	are	sorted	is	a	sorted	list—and	

you	would	be	correct!	As	we	said	earlier,	arrays	are	one	of	the	basic	building	blocks	for	

constructing	other	structures.	But	that	is	not	the	only	way	to	implement	a	sorted	list.	We	

will	cover	several	other	approaches.

Map
Keys

K1

K2

K3

K4

Info

Maps,	also	known	as	dictionaries,	tables,	or	associative	arrays,	are	used	to	store	“key”-

“info”	ordered	pairs.	Maps	provide	quick	access	to	desired	information	when	you	provide	

an	appropriate	key.	Consider,	for	example,	when	you	enter	a	bank	and	provide	a	teller	

with	your	account	number—within	a	 few	seconds	 (hopefully)	 the	 teller	has	access	 to	

your	account	 information.	Your	account	number	 is	 the	“key”—it	“maps”	onto	your	ac-

count	information.	Although	there	are	many	ways	to	implement	a	map	structure,	they	

all	must	 follow	 the	 same	 simple	 rules:	 keys	 are	unique	 and	a	 key	maps	onto	 a	 single	

information	node.

9781284098204_CH01_001_066.indd 30 06/07/16 5:30 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

311.4	 Data	Structures

Tree

Trees	and	graphs	are	nonlinear.	Each	element	of	a	tree	is	capable	of	having	many	succes-

sor	elements,	called	its	children.	A	child	element	can	have	only	one	parent.	Thus,	a	tree	is	

a	branching	structure.	Every	tree	has	a	special	beginning	element	called	the	root.	The	root	

is	the	only	element	that	does	not	have	a	parent.

Trees	are	useful	for	representing	hierarchical	relationships	among	data	elements.	For	

example,	they	can	be	used	to	classify	the	members	of	the	animal	kingdom	or	to	organize	

a	set	of	tasks	into	subtasks.	Trees	can	even	be	used	to	re�lect	the	is-a relationship	among	

Java	classes,	as	de�ined	by	the	Java	inheritance	mechanism.

Graph

A	graph	is	made	up	of	a	set	of	elements,	usually	called	nodes or	vertices,	and	a	set	of	edges

that	connect	the	vertices.	Unlike	with	trees,	there	are	no	restrictions	on	the	connections	

between	the	elements.	Typically,	the	connections,	or	edges,	describe	relationships	among	

the	vertices.	In	some	cases,	values,	also	called	weights,	are	associated	with	the	edges	to	

represent	some	feature	of	the	relationship.	For	example,	the	vertices	may	represent	cities	

and	the	edges	may	represent	pairs	of	cities	that	are	connected	by	airplane	routes.	Values	

of	the	edges	could	represent	the	distances	or	travel	times	between	cities.

What	Is	a	Data	Structure?
We	divided	our	examples	of	structures	 into	 implementation-dependent	and	implemen-

tation-independent	categories.	Originally,	in	the	infancy	of	computing,	such	a	distinction	

was	not	made.	Most	of	 the	emphasis	on	the	study	of	structures	at	 that	 time	dealt	with	

their	implementation.	The	term	“data	structure”	was	associated	with	the	details	of	coding	

lists,	stacks,	trees,	and	so	on.	As	our	approaches	to	problem	solving	have	evolved,	we	have	

recognized	the	importance	of	separating	our	study	of	such	structures	into	both	abstract	

and	implementation	levels.

As	is	true	for	many	terms	in	the	discipline	of	computing,	you	can	�ind	varied	uses	of	the	

term	“data	structure”	throughout	the	literature.	One	approach	is	to	say	that	a	data	structure	

is	the	implementation	of	organized	data.	With	this	approach,	of	the	structures	described	

9781284098204_CH01_001_066.indd 31 06/07/16 5:30 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

32 Chapter	1 Getting	Organized

in	this	section,	only	the	implementation-dependent	structures,	the	array	and	the	linked	

list,	are	considered	data	structures.	Another	approach	is	to	consider	any	view	of	organiz-

ing	data	as	a	data	structure.	With	this	second	approach,	the	implementation-	independent	

structures,	such	as	the	stack	and	the	graph,	are	also	considered	data	structures.

No	matter	how	you	 label	 them,	 all	 of	 the	 structures	described	here	 are	 important	

tools	 for	solving	problems	with	programs.	 In	 this	 text	we	will	explore	all	of	 these	data	

structures,	plus	many	additional	structures,	from	several	perspectives.	When	you	are	pre-

sented	with	a	problem	and	are	devising	a	computational	solution,	it	is	important	to	decide	

how	you	will	store,	access,	and	manipulate	the	information	associated	with	the	problem	

at	an	early	stage	of	the	solution	design	process.	Knowledge	of	data	structures	allows	you	

to	successfully	make	and	carry	out	this	decision.

1.5	 Basic	Structuring	Mechanisms
All	of	the	structures	described	in	Section	1.4	“Data	Structures”	can	be	implemented	using	

some	 combination	 of	 two	 basic	mechanisms,	 the	 reference	 and	 the	 array.	Most	 general-

purpose	high-level	languages	provide	these	two	mechanisms.	In	this	section	we	review	Java’s	

versions	of	them.	In	Chapter	2	we	will	begin	to	use	references	and	arrays	to	build	structures.

Memory
All	programs	and	data	are	held	in	memory.	Although	memory	is	buried	under	layers	of	

system	software	that	hides	it	from	us	and	manages	it	for	us,	at	its	most	basic	level	memory	

consists	of	a	contiguous	sequence	of	addressable	words:

address word

0

1

2

3

•••

A	variable	in	our	program	corresponds	to	a	memory	location.	The	compiler	handles	

the	translation	so	that	every	time	the	code	references	the	same	variable,	the	system	uses	

the	same	memory	location.

When	doing	low-level	programming,	assembly	level	or	lower,	there	are	typically	many	

different	addressing	“modes”	that	can	be	used.	However,	the	two	most	basic	approaches	

are	direct	addressing	and	indirect	addressing.

9781284098204_CH01_001_066.indd 32 06/07/16 5:30 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

331.5	 Basic	Structuring	Mechanisms

With	direct addressing	 the	memory	 location	associated	with	 the	variable	holds	 the	

value	of	the	variable.	This	corresponds	to	how	primitive variables	are	used	in	Java.	For	

example,	if	the	char	variable	ch	holds	the	value	’A’	and	is	associated	with	memory	loca-
tion	572,	it	can	be	pictured	as:

••• char ch = ‘A’;

ch: ‘A’

•••

571

572 ‘A’ch:

573

address word Java code:

Abstract view:

On	the	left,	we	show	how	things	are	implemented	in	memory—to	clarify	the	�igure	we	in-

clude	the	variable	name	ch	beside	its	associated	memory	location.	On	the	right,	we	show	
the	Java	code	that	declares	and	instantiates	the	variable,	as	well	as	how	we	model	the	vari-

able	and	its	contents	in	our	abstract	view	of	memory.

With	 indirect addressing	 the	 memory	 location	 associated	 with	 the	 variable	 holds	

the	address	of	the	location	that	holds	the	value	of	the	variable.	This	corresponds	to	how	

 reference variables	are	used	in	Java.	For	example,	if	the	String	object	str	holds	the	
value	 “cat”	 and	 is	 associated	with	memory	 location	823,	with	 the	 actual	 object	 stored	

beginning	at	memory	location	320,	it	can	be	pictured	as:

address word

•••

319

320 3

320

•••

‘c’ ‘a’ ‘t’321

322

323

•••

•••

823str:

822

String str = “cat”;

Java code:

str

Abstract view:

“cat”

The	variable	str	corresponds	to	 location	823,	which	holds	the	address	of	the	 location	
where	the	information	about	the	String	object	begins—that	 location,	 location	320,	 is	

where	the	system	stores	information	about	the	string	including	the	string	length,	the	char-

acters,	and	more—for	example,	a	link	to	the	String	class.	Note	that	the	String	variable,	
like	all	reference	variables,	is	held	in	a	single	word	(at	address	823)	whereas	the	string	

itself	requires	several	words.	In	our	abstract	view	we	represent	the	former	location	with	

9781284098204_CH01_001_066.indd 33 06/07/16 5:31 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

34 Chapter	1 Getting	Organized

the	variable	name	“str”	and	the	latter	location	with	the	arrow.	Throughout	the	text	we	will	

use	arrows	to	represent	references—in	actuality	they	represent	memory	locations.

References
To	help	present	 the	concepts	of	 this	section,	we	assume	access	 to	a	Circle	 class.	The	
Circle	class	de�ines	circular	objects	of	different	diameters.	It	provides	a	constructor	that	
accepts	an	integer	value	that	represents	the	diameter	of	the	circle.	The	Circle	class	pro-
vides	a	convenient	example,	allowing	us	to	graphically	represent	objects	in	our	�igures—

we	simply	use	actual	circles	of	various	diameters	to	represent	the	Circle	objects.
Variables	of	an	object	class	hold	references	to	objects—they	use	indirect	addressing.	

Consider	the	effects	of	the	following	Java	statements:

Circle circleA;
Circle circleB = new Circle(8);

The	�irst	statement	reserves	memory	space	for	a	variable	of	class	Circle.	The	second	
statement	does	the	same	thing,	but	also	creates	an	object	of	class	Circle	and	places	a	
reference	to	that	object	in	the	circleB	variable.

circleB

circleA null

The	reference	is	indicated	by	an	arrow,	but	the	reference	is	actually	a	memory	address,	as	

discussed	 in	 the	 previous	 subsection.	 References	 are	 sometimes	 referred	 to	 as	 links,	ad-

dresses,	or	pointers.	The	memory	address	of	the	Circle	object	is	stored	in	the	memory	loca-
tion	assigned	to	the	circleB	variable.	Note	how	we	are	representing	the	Circle	object	
with	an	actual	circle.	In	reality,	it	would	consist	of	a	section	of	memory	allocated	to	the	object.

Because	 no	 object	 has	 been	 instantiated	 or	 assigned	 to	 the	circleA	 variable,	 its	
memory	location	holds	a	null	reference.	Java	uses	the	reserved	word	null	to	indicate	
an	“absence	of	reference.”	 If	a	reference	variable	 is	declared	without	being	assigned	an	

instantiated	object,	it	is	automatically	initialized	to	whatever	the	system	uses	to	represent	

the	value	null.	You	can	also	explicitly	assign	null	to	a	variable:

circleB = null;

In	addition,	you	can	use	null	in	a	comparison:

if (circleA == null)
 System.out.println("The Circle does not exist");

Reference	Types	Versus	Primitive	Types

It	 is	 important	 to	understand	 the	differences	 in	how	primitive	and	nonprimitive	 types	

are	 handled	 in	 Java.	 Primitive	 types,	 such	 as	 the	 int	 type,	 are	 handled	 “by	 value.”	

9781284098204_CH01_001_066.indd 34 06/07/16 5:31 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

351.5	 Basic	Structuring	Mechanisms

Nonprimitive	 types,	 such	 as	 arrays	 and	

classes,	are	handled	“by	reference.”	Whereas	

the	 variable	 of	 a	 primitive	 type	 holds	 the	

value	 of	 the	 variable,	 the	 variable	 of	 a	

nonprimitive	 type	 holds	 a	 reference to	 the	

value	of	 the	variable.	That	 is,	 the	variable	

holds	the	address	where	the	system	can	�ind	

the	value	associated	with	the	variable.

The	difference	 in	how	 “by	value”	 and	 “by	 reference”	 variables	 are	handled	 is	 seen	

dramatically	in	the	result	of	a	simple	assignment	statement.	Figure 1.4	shows	the	result	

of	the	assignment	of	one	int	variable	to	another	int	variable,	and	the	result	of	the	as-
signment	of	one	Circle	variable	to	another	Circle	variable.

Aliases

When	we	assign	a	variable	of	a	primitive	type	to	another	variable	of	the	same	type,	the	

latter	becomes	a	copy	of	the	former.	After	the	integer	assignment	statement	in	Figure	1.4	

both	intA	and	intB	contain	the	value	10.
Although	the	same	occurs	for	reference	variables,	that	is,	a	value	is	copied,	when	we	

assign	a	variable	of	a	reference	type	to	another	variable	of	the	same	type,	the	effect	is	quite	

different.	Because	the	value	being	copied	is	a	reference	in	this	case,	the	result	is	that	both	

variables	now	point	to	the	same	object.	Thus	we	have	two	“names”	for	the	same	object.	In	

this	case,	we	have	an	alias	of	the	object.	Good	programmers	avoid	aliases	when	possible	

because	 they	make	programs	dif�icult	 to	understand.	An	object’s	 state	 can	 change,	 even	

though	it	appears	that	the	program	did	not	access	the	object,	when	the	object	is	accessed	

through	the	alias.	For	example,	consider	the	IncDate	class	that	was	de�ined	in	Section	1.3	
“Exceptional	Situations.”	If	date1	and	date2	are	aliases	for	the	same	IncDate	object,	then	
the	code

Java	Note

In	Java,	variables	of	a	primitive	type	such	as	int	or	
char	are	stored	using	direct	addressing.	We	say	they	are	
stored	“by	value.”	Variables	of	a	reference	type,	such	as	
type	Circle,	are	stored	using	indirect	addressing.	We	
say	they	are	stored	“by	reference.”	

Figure 1.4 Results of assignment statements

intA

intB

15

10

intA

intB

10

10

c1

c2

c1

c2

Initial state Final state

intA = intB

Operation

c1 = c2

9781284098204_CH01_001_066.indd 35 06/07/16 5:31 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

36 Chapter	1 Getting	Organized

System.out.println(date1);
date2.increment();
System.out.println(date1);

would	 print	 out	 two	 different	 dates,	 even	 though	 at	 �irst	 glance	 it	would	 appear	 that	

it	 should	 print	 out	 the	 same	 date	 twice	 (see	 Figure 1.5).	 This	 behavior	 can	 be	 very	

confusing	 for	a	maintenance	programmer	and	 lead	 to	hours	of	 frustrating	 testing	and	

debugging.

Garbage

It	would	be	 fair	 to	ask	 in	 the	situation	depicted	 in	 the	 lower	half	of	Figure	1.4,	 “What	

happens	to	the	space	being	used	by	the	larger	circle?”	After	the	assignment	statement	

the	program	has	 lost	 its	 reference	 to	 the	 large	circle,	 so	 it	 can	no	 longer	be	accessed.	

This	kind	of	memory	space,	that	has	been	allocated	to	a	program	but	can	no	longer	be	

accessed	by	a	program,	is	called	garbage.	Garbage	can	be	created	in	several	other	ways	

in	 a	 Java	program.	 For	 example,	 the	 following	 code	would	 create	100	objects	 of	 class	

Circle,	but	only	one	of	 them	can	be	accessed	through	the	c1	variable	after	 the	 loop	
�inishes	executing:

Circle c1;
for (n = 1; n <= 100; n++)
{
 Circle c1 = new Circle(n);

// Code to initialize and use c1 goes here.
}

The	other	99	objects	cannot	be	reached	by	the	program.	They	are	garbage.

When	an	object	is	unreachable,	the	Java	run-time	system	marks	it	as	garbage.	The	sys-

tem	regularly	performs	an	operation	known	as	garbage collection,	in	which	it	identi�ies	

unreachable	objects	and	deallocates	their	storage	space,	returning	the	space	to	the	free	

pool	for	the	creation	of	new	objects.

Figure 1.5 Aliases can be confusing

date1

Initial state

date2

date1

date2

year 2005
month 1
day 1

State after date2. increment ()

year 2005
month 1
day 2

9781284098204_CH01_001_066.indd 36 06/07/16 5:31 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

371.5	 Basic	Structuring	Mechanisms

This	 approach—creating	 and	 destroying	 objects	 at	 different	 points	 in	 the	 applica-

tion	by	allocating	and	deallocating	space	 in	 the	 free	pool—is	called	dynamic memory

 management.	Without	it,	the	computer	would	be	much	more	likely	to	run	out	of	storage	

space	for	data.

Comparing	Objects

The	fact	that	nonprimitive	types	are	handled	by	reference	affects	the	results	returned	by	

the	==	comparison	operator.	Two	variables	of	a	nonprimitive	type	are	considered	identi-
cal,	in	terms	of	the	==	operator,	only	if	they	are	aliases	for	each	other.	This	makes	sense	
when	you	consider	that	the	system	compares	the	contents	of	the	two	variables;	that	is,	it	

compares	the	two	references	that	those	variables	contain.	So	even	if	two	variables	of	type	

Circle	reference	circles	with	the	same	diameter,	they	are	not	considered	equal	in	terms	
of	the	comparison	operator.	Figure 1.6	shows	the	results	of	using	the	comparison	opera-

tor	in	various	situations.

Parameters

When	methods	are	invoked,	they	are	often	passed	information	(arguments)	through	pa-

rameters.	Some	programming	languages	allow	the	programmer	to	control	whether	argu-

ments	are	passed	by	value	(a	copy	of	the	argument’s	value	is	used)	or	by	reference	(a	copy	

of	the	argument’s	address	is	used).	Java	does	not	allow	such	control.	Whenever	a	variable	

is	passed	as	an	argument,	the	value	stored	in	that	variable	is	copied	into	the	method’s	cor-

responding	parameter	variable.	In	other	words,	all	Java	arguments	are	passed	by	value.	

Figure 1.6 Comparing primitive and nonprimitive variables

intA

intB

"intA == intB" evaluates to true

"c1 == c2" evaluates to false

"c1 == c2" evaluates to true

10

10

c1

c2

c1

c2

9781284098204_CH01_001_066.indd 37 06/07/16 5:31 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

38 Chapter	1 Getting	Organized

Therefore,	if	the	argument	is	of	a	primitive	type,	the	actual	value	(int,	double,	etc.)	is	
passed	to	the	method.	However,	if	the	argument	is	a	reference	type,	an	object,	or	an	array,	

then	the	value	passed	to	the	method	is	the	value	of	the	reference—it	is	the	address	of	the	

object	or	the	array.

As	a	consequence,	passing	an	object	variable	

as	an	argument	causes	 the	receiving	method	 to	

create	an	alias	of	the	object.	 If	 the	method	uses	

the	 alias	 to	 make	 changes	 to	 the	 object,	 then	

when	the	method	�inishes,	an	access	via	the	orig-

inal	variable	�inds	the	object	in	its	modi�ied	state.

Arrays
The	second	basic	structuring	construct	is	the	array.	An	array	allows	the	programmer	to	

access	a	sequence	of	locations	using	an	indexed	approach.	We	assume	you	are	already	fa-

miliar	with	the	basic	use	of	arrays	from	your	previous	work.	In	this	subsection	we	review	

some	of	the	subtle	aspects	of	using	arrays	in	Java.

Arrays	in	Java	are	a	nonprimitive	type	and,	therefore,	are	handled	by	reference,	just	

like	objects.	Thus	they	need	to	be	treated	carefully,	 just	like	objects,	in	terms	of	aliases,	

comparison,	and	their	use	as	arguments.	And	like	objects,	in	addition	to	being	declared,	

arrays	must	be	instantiated.	At	instantiation	you	specify	how	large	the	array	will	be:

numbers = new int[10];

As	with	objects,	you	can	both	declare	and	instantiate	arrays	with	a	single	command:

int[] numbers = new int[10];

Let	us	discuss	a	few	questions	you	may	have	about	arrays	in	Java:

•	 What	are	the	initial	values	in	an	array	instantiated	by	using	new?	If	the	array	com-
ponents	are	primitive	types,	they	are	set	to	their	default	value.	If	the	array	com-

ponents	are	reference	types,	such	as	arrays	or	classes,	the	components	are	set	to	

null.

•	 Can	you	provide	initial	values	for	an	array?	Yes.	An	alternative	way	to	create	an	

array	is	with	an	initializer	list.	For	example,	the	following	line	of	code	declares,	in-

stantiates,	and	initializes	the	array	numbers:

int numbers[] = {5, 32, -23, 57, 1, 0, 27, 13, 32, 32};

•	 What	happens	if	we	try	to	execute	the	statement

numbers[n] = value;

when	n	is	less	than	0	or	when	n	is	greater	than	9?	A	memory	location	outside	the	
array	would	be	indicated,	which	causes	an	out-of-bounds	exception.	Some	lan-

guages—C++,	for	instance—do	not	check	for	this	error,	but	Java	does.	If	your	

program	attempts	to	use	an	index	that	is	not	within	the	bounds	of	the	array,	an	

	ArrayIndexOutOfBoundsException
	
is	thrown.

Java	Note

All	java	arguments	are	“passed	by	value.”	If	the	argument	
is	of	a	primitive	type,	it	represents	the	value	of	the	primi-
tive.	If	the	argument	is	of	a	reference	type,	then	it	repre-
sents	the	address	of	the	object.

9781284098204_CH01_001_066.indd 38 06/07/16 5:31 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

391.5	 Basic	Structuring	Mechanisms

In	 addition	 to	 component	 selection,	 one	 other	 “operation”	 is	 available	 for	 our	 arrays.	

In	Java,	each	array	that	is	instantiated	has	a	public	instance	variable	of	type	int,	called	
length,	associated	with	it	that	contains	the	number	of	components	in	the	array.	You	ac-
cess	this	variable	using	the	same	syntax	you	use	to	invoke	object	methods—you	use	the	

name	of	the	object	followed	by	a	period,	followed	by	the	name	of	the	instance	variable.	

For	the	numbers	example,	the	expression	“numbers.length”	would	have	the	value	10.

Arrays	of	Objects

Although	arrays	with	primitive-type	 components	are	very	 common,	many	applications	

require	a	collection	of	objects.	In	such	a	case	we	can	simply	de�ine	an	array	whose	com-

ponents	are	objects.

Here	we	de�ine	an	array	of	Circle	objects.	Declaring	and	creating	the	array	of	objects	
is	exactly	like	declaring	and	creating	an	array	where	the	components	are	primitive	types:

Circle[] allCircles = new Circle[10];

This	means	allCircles	is	an	array	that	can	hold	10	references	to	Circle	objects.	What	
are	the	diameters	of	 the	circles?	We	do	not	know	yet.	The	array	of	circles	has	been	 in-

stantiated,	but	 the	Circle	 objects	 themselves	have	not.	Another	way	of	 saying	 this	 is	
that		allCircles	is	an	array	of	references	to	Circle	objects,	that	are	set	to	null	when	
the	array	is	instantiated.	The	objects	must	be	instantiated	separately.	The	following	code	

segment	 initializes	 the	 �irst	 and	 second	 circles.	We	will	 assume	 that	 a	Circle	 object	
myCircle	has	already	been	instantiated	and	initialized	to	have	a	diameter	of	8.

Circle[] allCircles = new Circle[10];
allCircles[0] = myCircle;
allCircles[1] = new Circle(4);

Figure 1.7	provides	a	visual	representation	of	the	array.

Figure 1.7 The allCircles array

allCircles

•
•
•

•
•
•

allCircles[0]

allCircles[1]

allCircles[2]

allCircles[9]

myCircle

null

null

9781284098204_CH01_001_066.indd 39 06/07/16 5:31 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

40	 Chapter	1	 Getting	Organized

	Generating	Images	

The	BufferedImage	class	in	the	Java	Library	allows	us	to	create	and	manipulate	images	
using	a	two-dimensional	model.	It	supports	most	of	the	popular	image	types.	In	this	fea-

ture	we	see	how	to	generate	JPEG	images	using	this	class.	Consider	the	following	program:		

 //***
//
// ImageGen01.java By Dale/Joyce/Weems Chapter 1
//
// Demonstrates image generation
//
//***
package ch01.apps;

import java.awt.image.*;
import java.awt.Color;
import java.io.*;
import javax.imageio.*;

public class ImageGen01
{
 public static void main (String[] args) throws IOException
 {
 String fileOut = args[0]; // destination file

 // create BufferedImage of SIZE and TYPE
 final int SIDE = 1024;
 final int TYPE = BufferedImage.TYPE_INT_RGB;
 BufferedImage image = new BufferedImage(SIDE, SIDE, TYPE);

 final int LIMIT = 255; // limit of RGB values
 int c; // specific value for R G and B
 Color color;

 for (int i = 0; i < SIDE; i++)
 for (int j = 0; j < SIDE; j++)
 {
 c = (i + j) % LIMIT;
 color = new Color(c, c, c); // creates ‘gray’ values
 image.setRGB(i, j, color.getRGB()); // saves pixel
 }

 File outputfile = new File(fileOut);
 ImageIO.write(image, “jpg”, outputfile);
 }
}

9781284098204_CH01_001_066.indd 40 06/07/16 5:31 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

411.5	 Basic	Structuring	Mechanisms

	The	ImageGen01	application	is	in	the	ch01.apps	package.	It	uses	a	run-time	argument	
as	the	name	of	its	output	�ile.	It	is	best	to	use	a	standard	JPEG	�ile	extension	within	this	

name,	for	example	test.jpg.	The	program	instantiates	a	BufferedImage	object	im-
age	of	size	1024	×	1024	and	of	type	RGB.	Images	of	this	type	consist	of	pixels	(picture	
elements)	that	use	a	red-green-blue	model.	The	values	for	red,	green,	and	blue	can	range	

from	0	to	255.	Individual	pixels	can	be	set	using	the	setRGB	method,	for	example

color = new Color(200, 20, 125);
image.setRGB(10, 20, color.getRGB);

sets	the	pixel	in	the	10th	row	and	20th	column	to	a	pinkish	purplish	color.	In	the	above	

snippet	of	code	we	�irst	create	a	Color	object	with	a	red	value	of	200,	a	green	value	of	
20,	and	a	blue	value	of	125.	The	method	getRGB	invoked	on	that	Color	object	returns	a	
single	int	value	that	represents	the	corresponding	color.	It	is	that	value	that	is	used	by	the	
setRGB	method	to	set	the	value	of	the	pixel.

To	create	“black	and	white”	images	for	our	textbook	we	use	the	fact	that	within	the	RGB	

color	model,	colors	with	identical	red,	green,	and	blue	values	are	“gray”.	For	example	(0,	

0,	0)	represents	black,	(255,	255,	255)	represents	white	and	(127,	127,	127)	represents	a	

medium	gray.	The	double	for-loop	in	the	ImageGen01	program	walks	through	the	entire	
image,	from	top	left	to	bottom	right.	The	loop	body	generates	an	int	value	c	based	on	the	

expression	(i + j) % LIMIT.	The	corresponding	Color	object,	which	is	set	to	an	RGB	
value	of	(c, c, c)	will	cycle	through	grey	values	from	black	to	white.	The	resulting	
image	is	shown	in	Figure 1 . 8 (a)	below.	By	varying	the	expression	used	for	the	value	of	c,	

alternate	images	can	be	generated.	It	is	not	dif�icult	to	generate	interesting	images	using	

this	approach.	For	example	Figure	1.8	(b)	shows	the	image	resulting	from	the	expression	

(i * j) % LIMIT.			

(b)	Using	(i * j) % LIMIT(a)	Using	(i + j) % LIMIT		

Figure 1.8 Generated images

9781284098204_CH01_001_066.indd 41 06/07/16 5:31 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

42 Chapter	1 Getting	Organized

Figure 1.9 Java implementation of the alpha array

[0] [1] [2] [3] [4] [5] [6] [7] [8]

[0]

[1]

[2]

[3]

[98]

[99]

alpha[0][5]

alpha[98][2]

•

•

•

•

•

•

•

•

•

alpha

Two-Dimensional	Arrays

A	one-dimensional	array	is	used	to	represent	elements	in	a	list	or	a	sequence	of	values.	A	

two-dimensional	array	is	used	to	represent	elements	in	a	table	with	rows	and	columns.	

Two	dimensional	arrays	are	useful	when	we	need	to	store	multiple	pieces	of	information	

about	multiple	 elements.	 They	 can	 also	be	used	 to	 represent	 images	 (see	 the	Feature:	

Generating	Images).

Figure 1.9	shows	a	two-dimensional	array	with	100	rows	and	9	columns.	The	rows	

are	accessed	by	an	integer	ranging	from	0	through	99;	the	columns	are	accessed	by	an	in-

teger	ranging	from	0	through	8.	Each	component	is	accessed	by	a	row—column	pair—for	

example,	[0][5].

A	two-dimensional	array	variable	is	declared	in	exactly	the	same	way	as	a	one-dimen-

sional	array	variable,	except	that	there	are	two	pairs	of	brackets.	A	two-dimensional	array	

object	is	instantiated	in	exactly	the	same	way,	except	that	sizes	must	be	speci�ied	for	two	

dimensions.

9781284098204_CH01_001_066.indd 42 06/07/16 5:31 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

431.6	 Comparing	Algorithms:	Order	of	Growth	Analysis

The	following	code	fragment	would	create	the	array	shown	in	Figure	1.8,	where	the	

data	in	the	table	are	of	type	double.

double[][] alpha;
alpha = new double[100][9];

The	�irst	dimension	speci�ies	the	number	of	rows,	and	the	second	dimension	speci�ies	the	

number	of	columns.

To	access	an	individual	component	of	the	alpha	array,	two	expressions	(one	for	each	
dimension)	are	used	to	specify	its	position.	We	place	each	expression	in	its	own	pair	of	

brackets	next	to	the	name	of	the	array:

alpha[0][5] = 36.4;

Row
number

Column
number

Note	that	alpha.length	would	give	the	number	of	rows	in	the	array.	To	obtain	the	num-
ber	of	columns	in	a	row	of	an	array,	we	access	the	length	�ield	for	the	speci�ic	row.	For	
example,	the	statement

rowLength = alpha[30].length;

stores	the	length	of	row	30	of	the	array	alpha,	which	is	9,	into	the	int	variable	rowLength.
It	is	not	dif�icult	to	imagine	many	ways	that	a	two-dimensional	array	can	be	used—

rows	could	represent	students	and	columns	could	be	test	grades,	rows	could	represent	

employees	and	columns	the	hours	they	work	each	day,	and	so	on.	

Remember	that	in	Java	each	row	of	a	two-dimensional	array	is	itself	a	one-	dimensional	

array.	 Many	 programming	 languages	 directly	 support	 two-dimensional	 arrays;	 Java	

doesn’t.	In	Java,	a	two-dimensional	array	is	an	array	of	references	to	array	objects.	If	higher	

dimension	arrays	are	required	we	simply	extend	the	number	of	levels	of	arrays	used,	so	

for	example,	a	three-dimensional	array	can	be	created	as	an	two-dimensional	array	whose	

elements	are	arrays.

1.6	 	Comparing	Algorithms:	Order	
of	Growth	Analysis

Alice:	“I’m	thinking	of	a	number	between	1	and	1,000.”

Bob:	“Is	it	1?”

Alice:	“No	.	.	.	it’s	higher.”

Bob:	“Is	it	2?”

Alice:	“No	.	.	.	it’s	higher.”

Bob:	“Is	it	3?”

Alice:	rolls	her	eyes	.	.	.

9781284098204_CH01_001_066.indd 43 06/07/16 5:31 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

44 Chapter	1 Getting	Organized

Eventually,	Bob	will	guess	the	secret	number	by	incrementing	his	guess	by	1	each	time.	

Despite	Alice’s	obvious	frustration	with	him,	he	is	following	a	valid	algorithm	known	as	

sequential search.

The	analysis	of	algorithms	is	an	important	area	of	theoretical	computer	science.	In	

this	section	we	introduce	you	to	this	topic	to	an	extent	that	will	allow	you	to	determine	

which	of	two	algorithms	requires	fewer	resources	to	accomplish	a	particular	task.	The	

ef�iciency	of	algorithms	and	 the	code	 that	 implements	 them	can	be	studied	 in	 terms	

of	 both	 time	 (how	 fast	 it	 runs)	 and	 space	 (the	 amount	 of	memory	 required).	When	

appropriate	 throughout	 this	 text	we	 point	 out	 space	 considerations,	 but	 usually	we	

concentrate	on	the	time	aspect—how	fast	 the	algorithm	is,	as	opposed	to	how	much	

space	it	uses.

Before	 continuing	 with	 a	 discussion	 of	 the	 time	 efficiency	 of	 algorithms	 we	

should	point	out	that	quite	often	time	efficiency	and	space	efficiency	are	interrelated,	

and	trade-offs	between	time	and	space	efficiency	can	be	made.	Consider,	for	example,	

the	problem	of	sorting	a	deck	of	cards	numbered	1–300.	Suppose	you	are	sitting	on	

a	bus	with	these	cards	and	have	to	sort	them	while	holding	them	in	your	hands.	You	

will	 spend	a	 lot	of	 time	 shuffling	 through	 the	 cards,	 and	you	will	most	 likely	need	

to	look	at	each	card	many	times.	Alternately,	 imagine	trying	to	sort	the	same	set	of	

cards	if	you	are	standing	in	front	of	a	table	large	enough	to	hold	all	300	of	them.	In	

this	situation	you	can	look	at	each	card	just	once	and	place	it	in	its	correct	spot	on	the	

table.	The	extra	space	afforded	by	the	table	allows	for	a	more	time-efficient	sorting	

algorithm.

Measuring	an	Algorithm’s	Time	Efficiency
How	do	programmers	compare	the	time	ef�iciency	of	two	algorithms?	The	�irst	approach	

that	comes	to	mind	is	simply	to	code	the	algorithms	and	then	compare	the	execution	times	

after	running	the	two	programs.	The	one	with	the	shorter	execution	time	is	clearly	the	

better	algorithm.	Or	is	it?	Using	this	technique,	we	really	can	determine	only	that	program	

A	is	more	ef�icient	than	program	B	on	a	particular	computer	at	a	particular	time	using	a	

particular	set	of	input	data.	Execution	times	are	speci�ic	to	a	particular	computer,	because	

different	computers	run	at	different	speeds.	Sometimes	they	are	dependent	on	what	

else	the	computer	 is	doing	in	the	background.	For	example,	 if	 the	Java	run-time	engine	

is	performing	garbage	collection,	it	can	affect	the	execution	time	of	the	program.	Coding	

style	and	input	conditions	can	also	effect	the	time	of	a	running	program.	We	need	a	better	

approach.

A	standard	technique,	and	the	one	we	use	in	this	text,	is	to	isolate	a	particular	opera-

tion	fundamental	to	the	algorithm	and	count	the	number	of	times	that	this	operation	is	

performed.	When	selecting	which	operation	to	count,	we	want	to	be	sure	to	select	an	op-

eration	that	is	executed	at	least	as	many	times	as	any	other	operation	during	the	course	

of	the	algorithm.

9781284098204_CH01_001_066.indd 44 06/07/16 5:31 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

451.6	 Comparing	Algorithms:	Order	of	Growth	Analysis

	Consider,	 for	example,	Bob’s	use	of	the	sequential	search	algorithm	to	guess	Amy’s	

secret	number	for	the	Hi-Lo	game.	

Hi-Lo	Sequential	Search	
 Set guess to 0
 do
 Increment guess by 1
 Announce guess
 while (guess is not correct)

	It	 is	 clear	 that	 “Announce	 guess”	 is	 a	 fundamental	 operation	 for	 the	 Hi-Lo	 Sequential	

Search	algorithm.	It	is	found	inside	the	loop	so	it	executes	over	and	over	again,	and	it	is	

directly	related	to	the	goal	of	discovering	the	hidden	number.	

	So,	 how	many	 times	 is	 “Announce	 guess”	 executed?	 How	many	 guesses	 does	 Bob	

make?	

Complexity	Cases	
	If	 Bob	 is	 lucky,	Alice	 is	 thinking	 of	 a	 low	number	 and	he	will	 not	 need	 to	make	many	

guesses.	On	the	other	hand,	 if	he	 is	unlucky	he	will	be	guessing	for	a	 long	time,	 for	ex-

ample,	if	Alice	is	thinking	of	the	number	998.	

	Clearly,	the	number	of	“guesses”	required	by	the	Hi-Lo	Sequential	Search	algorithm	

depends	upon	the	input	conditions.	This	is	not	unusual.	To	handle	this	situation,	analysts	

de�ine	three	complexity	cases:	

•	 		Best case complexity 	tells	us	the	complexity	when	we	are	very	lucky.	It		represents	
the	fewest	number	of	steps	that	an	algorithm	can	take.	For	Alice’s	guessing	game,	

the	best	case	occurs	when	she	is	thinking	of	the	number	1	and	Bob	only	needs	to	

make	one	guess.	In	general,	best	case	complexity	is	not	very	useful	as	a	complexity	

measure.	We	would	not	want	to	choose	an	algorithm	due	to	its	best	case	complexity	

and	then	hope	we	get	lucky	in	terms	of	the	input	conditions.	

•	 		Average case complexity 	represents	the	average	number	of	steps	required,	con-
sidering	all	possible	inputs.	In	the	guessing	game	case	this	is	not	dif�icult	to	deter-

mine:	if	all	of	the	numbers	between	1	and	1,000	are	equally	likely	to	occur,	then	on	

average	it	will	require	(1		+ 	1,000)	/2		= 	500.5	guesses	to	guess	a	number.	Average	
case	complexity	analysis	can	be	useful	but	it	is	often	dif�icult	to	de�ine	for	a	speci�ic	

algorithm.	

•	 		Worst case complexity 	represents	the	highest	number	of	steps	that	an	algo-
rithm	would	require.	If	Alice	is	thinking	of	the	number	1,000	then	Bob	will	

need	to	make	1,000	guesses.	With	his	approach	he	would	never	need	to	make	

 Set guess to 0
do
 Increment guess by 1
 Announce guess
 while (guess is not correct)

9781284098204_CH01_001_066.indd 45 06/07/16 5:31 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

46 Chapter	1 Getting	Organized

more	than	1,000	guesses.	For	our	purposes	we	will	usually	use	worst	case	

analysis.	It	is	typically	easier	to	define	and	calculate	than	the	average	case	

and	it	gives	us	useful		information.	If	we	know	that	we	can	afford	the	amount	

of	work	required	in	the	worst	case	then	we	can	confidently	use	the	algorithm	

under	review.

We	 conclude	 that	 in	 the	 worst	 case	 the	 Hi-Lo	 Sequential	 Search	 algorithm	 requires	

1,000	guesses.	But	wait—what	if	the	game	is	changed	slightly?

Size	of	Input
Bob:	“Is	it	366?”

Alice,	patiently:	“No	.	.	.	it’s	higher.”

Bob:	“Is	it	367?”

Alice:	“Yes!”

Bob:	“Ha—that	was	easy.”

Alice:	“Want	to	play	again?”

Bob:	“Sure.”

Alice:	“OK.	I’m	thinking	of	a	number	between	1	and	1,000,000.”

Bob:	blinks

If	we	 perform	worst	 case	 analysis	 of	 the	Hi-Lo	 Sequential	 Search	 algorithm	 for	 this	

new	 version	 of	 the	 game,	we	 arrive	 at	 a	 different	 answer—1,000,000	 steps.	 Clearly,	

the	number	of	steps	required	by	the	algorithm	depends	on	the	range	of	possible	num-

bers.	Rather	than	saying	the	algorithm	requires	1,000	steps	under	this	condition	and	

1,000,000	steps	under	that	condition	we	can	describe	the	complexity	of	the	algorithm	

as	a	function	of	the	input	size.	If	the	game	is	to	guess	a	number	between	1	and	N,	the	

size	of	the	input	is N,	and	for	the	sequential	search	algorithm,	the	worst	case	number	

of	guesses	required	is	also N.

Most	algorithms	require	more	work	to	solve	larger	problems.	For	example,	clearly	it	

is	more	dif�icult	to	sort	a	list	of	500	numbers	than	it	is	to	sort	a	list	of	10	numbers.	There-

fore,	it	makes	sense	to	speak	of	an	algorithm’s	ef�iciency	in	terms	of	the	input	size,	and	

to	use	that	size	as	a	parameter	when	describing	the	ef�iciency	of	the	algorithm.	For	the	

problems	we	address	in	this	text	 it	 is	usually	obvious	how	to	identify	the	required	size	

parameter	although	for	some	interesting	complex	algorithms	this	is	not	the	case.	Most	of	

the	problems	in	this	book	involve	data	structures—stacks,	queues,	lists,	maps,	trees,	and	

graphs.	Each	structure	is	composed	of	elements.	We	develop	algorithms	to	add	an	element	

to	the	structure	and	to	modify	or	delete	an	element	from	the	structure.	We	can	describe	

the	work	done	by	these	operations	in	terms	of N,	where N	is	the	number	of	elements	in	

the	structure.

9781284098204_CH01_001_066.indd 46 06/07/16 5:31 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

471.6	 Comparing	Algorithms:	Order	of	Growth	Analysis

	Comparing	Algorithms	
	Carlos:	“What’s	up?”	

	Bob:	“Alice	wants	me	to	guess	a	number	between	1	and	1,000,000.	No	way.”	

	Carlos:	“Hmmm.	I’ll	try.	Is	it	500,000?”	

	Alice:	“No,	it’s	lower.”	

	Carlos:	“Is	it	250,000?”	

	Alice:	“No,	it’s	higher.”	

	Carlos:	“Is	it	375,000?”	

	.	.	.	

	As	you	can	see,	Carlos	is	using	a	different	algorithm	than	Bob.	It	is	called		binary search

and	leverages	the	fact	that	Carlos	can	eliminate	half	the	remaining	numbers	each	time	by	

cleverly	choosing	a	number	in	the	middle	of	the	range.	Carlos	will	need,	in	the	worst	case,	

only	20	guesses	to	guess	a	number	between	1	and	1,000,000!	

Hi-Lo	Binary	Search(N)	4		
 Set range to 1 . . . N
 do
 Set guess to middle of range
 Announce guess
 if (guess was too high)
 Set range to � rst half of range
 if (guess was too low)
 Set range to second half of range
 while (guess is not correct)

	What	is	the	worst	case	complexity	of	the	Hi-Lo	Binary	Search	algorithm?	Let	us	again	

count	how	many	times,	 in	 the	worst	case,	 the	statement	“Announce	guess”	 is	executed.	

Each	time	an	incorrect	guess	is	made,	the	remaining	range	of	possible	numbers	is	cut	in	

half.	So,	another	way	of	asking	this	is	“How	many	times	can	you	reduce	 N 	by	half,	before	

you	get	down	to	1?”	The	answer	is	log	
2		
N .

5
	
	
	After	log	

2		
N 	guesses	all	of	the	numbers	except	

 Set range to 1 . . . N
do
 Set guess to middle of range
 Announce guess
 if (guess was too high)
 Set range to � rst half of range
 if (guess was too low)
 Set range to second half of range
 while (guess is not correct)

4 Code that implements this algorithm is found in the SelSortAndBinSearch.java fi le of the ch01.apps package.

5 Recall that log2N is the power that you raise 2 to, in order to get N. For example, log28 = 3 because 23 = 8. But another way
of looking at this is to consider that log2N is the number of times you can cut N in half before reaching 1. We can cut 8 in half
3 times: 8 → 4 → 2 → 1.

9781284098204_CH01_001_066.indd 47 06/07/16 5:31 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

48 Chapter	1 Getting	Organized

one	would	have	been	eliminated	so	with	one	last	

guess	you	will	be	correct.	Therefore,	in	the	worst	

case	 Hi-Lo	 Binary	 Search	 requires	 log
2
N	 +	 1		

guesses	 as	 compared	 to	 the N	 guesses	of	Hi-Lo	

Sequential	Search.	Of	course,	log
2
N	is	not	always	

an	integer—we	can	“round	down”	in	the	case	of	a	

nonintegral	result.	For	an	input	size	of	1,000,000,	

this	 equates	 to	20	guesses	 for	 	binary	 search	as	

opposed	 to	 1,000,000	 guesses	 for	 	sequential	

search.

Obviously,	 the	 binary	 search	 approach	 is	

faster	than	the	sequential	search	approach.	Or	is	

it?	Each	time	a	guess	is	made	using	the	binary	search	approach,	the	algorithm	must	do	

more	calculations	than	when	using	sequential	search.	Determining	the	middle	of	the	re-

maining	range	is	more	time	consuming	than	just	adding	1	to	the	previous	guess.	Just	by	

looking	at	the	descriptions	of	the	two	algorithms	we	can	see	that	the	sequential	search	is	

simpler	than	the	binary	search.	So	which	is	better?

Let	 us	 try,	 in	 this	 one	 case,	 to	 count	 the	 operations	more	 carefully.	 For	 sequential	

search	the	initial	guess	is	set	to	0,	and	then	each	time	a	guess	is	made	the	value	must	be	

both	incremented	and	announced.	In	the	worst	case	this	will	require	two	steps	(increment,	

announce)	for	each	guess	plus	the	one	initial	step	resulting	in	a	total	of	2N	+	1	steps.	For	
binary	search	the	algorithm	must	set	the	low	value	and	high	value	of	the	range,	and	then	

each	time	a	guess	is	made	it	must	add	together	the	low	value	and	high	value,	divide,	round,	

announce	the	guess,	and	adjust	the	range.	It	must	also	make	the	�inal	guess.	In	the	worst	

case,	this	will	require	�ive	steps	for	each	guess	(add,	divide,	round,	announce,	and	adjust)	

plus	the	two	initial	steps	and	one	�inal	step,	resulting	in	a	total	of	5	log
2
N	+	3	steps.	The	

accompanying	table	compares	the	counts	of	our	two	algorithms	for	various	values	of N.	

Clever	Algorithms

Devising	clever	algorithms	that	efficiently	solve	problems	
is	an	exciting	part	of	computer	science.	Proving	such	
algorithms	are	correct,	analyzing	space/time	trade-offs,	
devising	heuristics	for	special	cases,	and	determining	
optimal	bounds	are	all	key	steps	in	the	evolution	of	our	
understanding	of	computation.	Such	work	also	has	im-
portant	practical	benefits	as	evidenced	by	advancements	
in	areas	such	as	genome	sequencing,	modeling,	signal	
processing,	encryption,	data	compression,	and	network	
analysis.

Size Sequential Search Binary Search

N 2N	+	1	steps 5	log
2
N	+	3	steps

2 5 8

4 9 13

8 17 18

16 33 23

32 65 28

1,024 2,049 53

1,000,000 2,000,001 98

1,000,000,000 2,000,000,001 148

9781284098204_CH01_001_066.indd 48 06/07/16 5:31 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

491.6	 Comparing	Algorithms:	Order	of	Growth	Analysis

A	study	of	the	table	shows	that	if	the	size	of	the	problem	is	8	or	less,	fewer	steps	are	re-

quired	by	sequential	search	than	by	binary	search.	And	for	problem	sizes	like	16	and	32,	

the	difference	in	number	of	steps	needed	by	the	two	algorithms	is	not	much.	On	the	other	

hand,	as	 the	size	of	 the	problem	grows,	 the	difference	 in	 the	number	of	steps	required	

b	ecomes	dramatic,	in	favor	of	binary	search.

Our	 example	 is	 typical.	 For	 many	 problems	 we	 can	 devise	 simple	 “brute	 force”	

	algorithms	that	are	easy	to	understand	and	that	perform	adequately	when	the	size	of	the	

problem	is	small	but	as	the	problem	size	increases	they	become	prohibitively	expensive.	If	

you	play	the	Hi-Lo	guessing	game	where	the	range	of	possible	numbers	is	small,	go	ahead	

and	use	Bob’s	brute	force	approach—but	as	that	range	increases	you	will	be	much	better	

off	emulating	the	cleverer	Carlos.

In	general,	we	are	interested	in	�inding	solutions	to	large	problems.	If	you	want	to	sort	

a	list	of	three	names	into	alphabetical	order,	you	most	likely	would	not	need	to	consider	

an	automated	solution	right?	But	what	if	it	was	a	list	of	a	million	names?	The	study	of	al-

gorithms	focuses	on	large	problem	sizes.

Order	of	Growth
We	must	point	out	that	the	counting	steps	exercise	of	the	previous	subsection,	although	

enlightening,	is	also	somewhat	futile.	It	is	dif�icult	to	count	accurately	the	number	of	steps	

required	by	an	algorithm.	At	what	level	should	you	count?	The	pseudo-code	description,	

the	high-level	language	encoding,	the	machine	language	translation?	And	how	to	handle	

the	 issue	 that	 all	 steps	 are	 not	 created	 equal,	 for	 example,	 “increment	 a	 number”	 and	

“	divide	two	numbers”	will	require	different	amounts	of	time.

Besides,	the	detailed	counts	do	not	really	give	us	extra	information	in	terms	of	com-

paring	algorithms.	Consider	the	 following	table,	 identical	 to	 the	previous	one,	except	 it	

does	not	use	any	of	the	detailed	step	counting	information.	Here	we	simply	use	an	esti-

mate	of	how	many	times	the	fundamental	operation	occurs, N	steps	for	sequential	search	

and	log
2
N	(rounded	to	closest	integer)	steps	for	binary	search.

Size Sequential Search Binary Search

N N	steps log
2
N	steps

2 2 1

4 4 2

8 8 3

16 16 4

32 32 5

1,024 1,024 10

1,000,000 1,000,000 20

1,000,000,000 1,000,000,000 30

9781284098204_CH01_001_066.indd 49 06/07/16 5:31 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

50 Chapter	1 Getting	Organized

From	this	table	we	can	still	conclude	that	as	the	size	of	the	problem	increases,	the		binary	

search	 vastly	 outperforms	 the	 sequential	 search.	 That	 is	 the	 focus	 of	 our	 analysis—	

determining	which	algorithm	is	better	for	large	problems.

Computer	scientists	take	advantage	of	the	fact	that	what	really	matters	when	com-

paring	algorithms	is	the	highest	order	of	the	polynomial	that	represents	the	number	of	

steps	needed.	We	simply	report	that	order	to	describe	the	ef�iciency.	Perhaps	the	number	

of	steps	needed	for	the	sequential	search	is	f(N)	=	2N	+	1,	but	we	say	that	it	is	“Order

of Growth N”	or	even	O(N)	read	as	“Oh	of N”	or	“Order N.”
6
	Perhaps	the	number	of	steps	

needed	for	binary	search	is	f(N)	=	5	log
2
N	+	3,	but	we	say	it	is	O(log

2
N).	Here	are	some	

more	examples:

2N
5
	+	N2

	+37	is	O(N5
)	 2N

2
log

2
N	+	3N2

	is	O(N
2
log

2
N)	 1	+	N2

	+	N3
	+	N4

	is	O(N
4
)

By	focusing	only	on	the	critical	information	provided	by	the	order	of	growth,	our	analysis	

is	simpli�ied.	We	are	able	to	simply	look	at	an	algorithm	like	Hi-Lo	Sequential	Search,	rec-

ognize	that	in	the	worst	case	the	loop	will	account	for	every	number	in	the	range,	and	state	

con�idently	that	the	ef�iciency	of	the	algorithm	is	O(N).	Similarly,	with	the	Hi-Lo	Binary	

Search	algorithm,	we	recognize	that	half	the	range	is	removed	from	consideration	each	

time	through	the	loop	and	that	therefore	the	algorithm	is	O(log
2
N).	There	is	no	need	to	

count	operations	in	detail.

Selection	Sort
Let	us	analyze	one	more	example	using	the	techniques	we	developed	in	this	section.	Put-

ting	an	unsorted	list	of	data	elements	into	order—sorting—is	a	very	common	and	useful	

operation.	Entire	books	have	been	written	about	sorting	algorithms.	Here	we	 look	at	a	

relatively	simple	brute-force	algorithm	that	 is	somewhat	similar	 to	the	approach	many	

people	use	to	sort	a	hand	of	randomly	dealt	cards	in	games	such	as	bridge	or	poker.

Given	an	unsorted	list	of	elements,	the	algorithm	scans	through	the	list	and	�inds	the	

smallest	element.	It	then	selects	that	element	and	swaps	it	with	the	�irst	element.	Next	it	

scans	the	list	again	to	�ind	the	second	smallest	element,	again	selecting	it	and	swapping	

it	with	the	second	element.	As	the	algorithm	repeatedly	selects	the	next	smallest	element	

and	swaps	it	into	its	“correct”	position,	the	sorted	section	of	the	list	grows	larger	and	the	

unsorted	section	of	the	list	grows	smaller,	until	eventually	the	entire	list	is	sorted.	For	rea-

sons	which	should	be	obvious,	this	algorithm	is	called	the	Selection Sort.

Before	we	can	analyze	the	Selection	Sort	algorithm	we	need	to	identify	the	size	of	the	

input.	It	is	easy	to	see	that	the	larger	the	list,	the	more	work	is	required	to	sort	it.	So	the	

number	of	elements	in	the	list	is	the	natural	choice	for	the	size	of	the	input	for	the	sort-

ing	problem.	We	will	use N	to	indicate	this	size.	Here	is	a	more	formal	description	of	the	

6 Many people read the notation as “Big Oh of N”. There is a specific mathematical definition of the concept of “Big Oh” that is
related to the order of growth and is used in the analysis of algorithms; however, the way we pursue analysis in this text is more
properly called “order of growth” and we will use that term.

9781284098204_CH01_001_066.indd 50 06/07/16 5:31 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

511.6	 Comparing	Algorithms:	Order	of	Growth	Analysis

algorithm,	where	our	goal	is	to	sort	an	array		values 	of	size	 N 	(the	indices	of	the	array	go	
from	0	to		N 		− 	1):	

Figure 1 . 10 Example of a Selection Sort (sorted elements are shaded)

(a)

(b)

(c)

(d)

126

43

26

1

113

[0]

[1]

[2]

[3]

[4]

values

1 <126?

<43?

<26?

<1?

YES

YES

YES

NO

2

3

4

[0]

[1]

[2]

[3]

[4]

values

[0]

[1]

[2]

[3]

[4]

[0]

[1]

[2]

[3]

[4]

values

1 <43?

<26?

<26?

YES

NO

NO

2

3

[0]

[1]

[2]

[3]

[4]

[0]

[1]

[2]

[3]

[4]

[0]

[1]

[2]

[3]

[4]

values

1 <43? NO

<43? NO2

[0]

[1]

[2]

[3]

[4]

[0]

[1]

[2]

[3]

[4]

1

43

26

126

113

1

26

43

126

113

1

26

43

126

113

[0]

[1]

[2]

[3]

[4]

values

1 <126 YES

126

43

26

1

113

1

43

26

126

113

1

26

43

126

113

1

26

43

126

113

[0]

[1]

[2]

[3]

[4]

values

values

values

1

43

26

126

113

1

26

43

126

113

1

26

43

126

113

1

26

43

113

126

[0]

[1]

[2]

[3]

[4]

values

values

values

values

Selection	Sort(values[0	.	.	.	N	−	1])
for current going from 0 to N − 2
 Set minIndex to index of smallest unsorted element
 Swap the elements at indices current and minIndex

for current going from 0 to N − 2
 Set minIndex to index of smallest unsorted element
 Swap the elements at indices current and minIndex

Figure 1 . 10					 shows	 the	steps	 taken	by	 the	algorithm	to	sort	a	 �ive-element	array.	Each	

section	of	the	�igure	represents	one	iteration	of	the		for 	loop.	The	�irst	part	of	a	section	rep-

resents	the	“�ind	the	smallest	unsorted	element”	step.	To	do	that	it	repeatedly	examines	

the	unsorted	elements	asking	if	each	one	is	the	smallest	seen	so	far.	The	second	part	of	a	

9781284098204_CH01_001_066.indd 51 06/07/16 5:31 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

52	 Chapter	1	 Getting	Organized

section	shows	the	two-array	elements	to	be	swapped	and	the	�inal	part	shows	the	result	

of	the	swap.				

	During	the	progression,	we	can	view	the	array	as	being	divided	into	a	sorted	part	and	

an	unsorted	part.	Each	time	it	performs	the	body	of	the		for 	loop,	the	sorted	part	grows	by	

one	element	and	the	unsorted	part	shrinks	by	one	element.	Except	at	the	very	last	step	

the	sorted	part	grows	by	two	elements—do	you	see	why?	When	all	 the	array	elements	

except	the	last	one	are	in	their	correct	locations,	the	last	one	is	in	its	correct	location	also,	

by	default.	This	is	why	our		for 	loop	can	stop	at	index	 N 	–	2,	instead	of	at	the	end	of	the	ar-

ray,	index	 N 	–	1.	

	We	must	be	careful	in	identifying	the	“operation	fundamental	to	the	algorithm”	to	use	

in	our	analysis.	Can	we	use	“Swap	the	elements”?	Although	it	appears	to	be	a	fundamental	

operation	and	is	executed	once	for	each	iteration	of	the		for 	 loop,	it	 is	not	the	operation	

that	is	executed	the	most.	Consider	that	in	the	act	of	�inding	the	smallest	element	in	the	

remaining	part	of	the	array	each	time	through	the	loop	we	must	“look	at”	all	the	remain-

ing	elements.	If	we	add	more	detail	to	our	algorithm,	we	see	that	we	actually	have	a	loop	

inside	a	loop:	

7 Code that implements this algorithm is found in the SelSortAndBinSearch.java fi le of the ch01.apps package.

	Clearly,	the	innermost	operation,	the	comparison	of	the	two-array	elements,	 is	the	fun-

damental	 operation	 that	 occurs	 most	 frequently.	 This	 is	 also	 evident	 from	 a	 study	 of	

				Figure							1			.			10				,	where	we	can	count	10	comparisons	that	occur	in	contrast	to	only	four	swaps.	

We	describe	the	number	of	comparisons	as	a	function	of	the	number	of	elements	in	the	

array,	that	is,	 N .	

	The	comparison	operation	is	 in	the	 inner	 loop.	We	know	that	this	 loop	is	executed	

N 	–	1	times	because	the	outer	loop	goes	from	0	to	 N 	–	2.	Within	the	inner	loop,	the	number	

of	comparisons	varies,	depending	on	the	value	of	current.	The	�irst	time	the	inner	loop	is	

executed,	current	is	0	so	the	algorithm	checks	locations	1	to	 N 	–	1,	so	there	are	 N 	–	1	com-

parisons;	the	next	time	the	current	is	1	so	there	are	 N 	–	2	comparisons,	and	so	on,	until	in	

the	last	call,	there	is	only	one	comparison.	The	total	number	of	comparisons	is	

	(N	–	1)		+ 	(N	–	2)		+ 	(N	–	3)		+ 	.	.	.		+ 	2		+ 	1	

	Applying	 a	 well-known	 summation	 formula	 tells	 us	 this	 sum	 is	 equal	 to	 N (N 	 –	 1)/2.	

To	 accomplish	 our	 goal	 of	 sorting	 an	 array	 of	 N 	 elements,	 the	 selection	 sort	 requires	

Selection	Sort(values[0	.	.	.	N	–	1])7

for current going from 0 to N – 2
 Set minIndex to current
 for check going from (current + 1) to (N – 1)
 if (values[check] < values[minIndex)
 Set minIndex to check
 Swap the elements at indices current and minIndex

for current going from 0 to N – 2N – 2N
 Set minIndex to current
 for check going from (current + 1) to (N – 1)N – 1)N
 if (values[check] < values[minIndex)
 Set minIndex to check
 Swap the elements at indices current and minIndex

9781284098204_CH01_001_066.indd 52 06/07/16 5:31 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

531.6	 Comparing	Algorithms:	Order	of	Growth	Analysis

N(N	–	1)/2	comparisons.	The	particular	arrangement	of	values	in	the	array	does	not	affect	

the	amount	of	work	done	at	all.	Even	if	the	array	is	in	sorted	order	before	using	Selection	

Sort,	the	algorithm	still	makes	N(N	–	1)/2	comparisons.	Best	case,	average	case,	and	worst	

case	all	require N(N	–	1)/2	comparisons.

How	 do	 we	 describe	 this	 algorithm	 in	 terms	 of	 order	 of	 growth?	 If	 we	 expand

N(N	–	1)/2	as	½N
2
	–	½N,	it	is	easy	to	see.	In	order	of	growth	notation	we	only	consider	

the	term	“½N
2
,	”	because	it	increases	fastest	relative	to N.	Further,	we	ignore	the	con-

stant	coef�icient,	½,	making	this	algorithm	O(N
2
).	This	means	that,	for	large	values	of N,	

the	computation	time	is	approximately	proportional	to	N
2
.

Computer	scientists	who	study	and	analyze	many	algorithms	reach	the	point	where	

they	can	often	quickly	determine	the	order	of	growth	of	an	algorithm.	For	example,	they	

could	look	at	the	Selection	Sort	algorithm	described	above	and	they	would	immediately	

know	it	is	O(N
2
)	because	they	have	seen	that	pattern—a	loop	inside	a	loop	with	conditions	

interrelated	in	the	same	way—many	times	before.	The	exercises	for	this	section	hopefully	

will	help	you	reach	that	level	of	expertise!

Common	Orders	of	Growth
In	this	subsection	we	discuss	some	common	orders	of	growth,	listed	from	most	ef�icient	

to	least	ef�icient.

O(1)	is	called	“bounded	time.”	The	amount	of	work	is	bounded	by	a	constant	and	is	not	

dependent	on	the	size	of	the	problem.	Initializing	a	sum	to	0	is	O(1).	Although	bounded	

time	is	often	called	constant	time,	the	amount	of	work	is	not	necessarily	constant.	It	is,	

however,	bounded	by	a	constant.

O(log
2
N)	is	called	“logarithmic	time.”	The	amount	of	work	depends	on	the	logarithm,	

in	base	2,	of	the	size	of	the	problem.	Algorithms	that	successively	cut	the	amount	of	data	

to	be	processed	in	half	at	each	step,	like	the	binary	search	algorithm,	typically	fall	into	this	

category.	Note	that	 in	the	world	of	computing	we	often	just	say	“log	N”	when	we	mean	

log
2
N.	The	base	2	is	assumed.

O(N)	is	called	“linear	time.”	The	amount	of	work	is	some	constant	times	the	size	of	the	

problem.	Algorithms	that	work	through	all	the	data	one	time	to	arrive	at	a	conclusion,	like	

the	sequential	search	algorithm,	typically	fall	into	this	category.

O(N	log
2
N)	is	called	(for	lack	of	a	better	term) “N	log N	time”.	Algorithms	of	this	type	

typically	involve	applying	a	logarithmic	algorithm N	times.	The	better	sorting	algorithms,	

such	as	Quicksort	presented	in	Chapter	11,	have N	log N	complexity.

O(N
2
)	is	called	“quadratic	time.”	Algorithms	of	this	type	typically	involve	applying	a	

linear	algorithm N	times.	Most	simple	sorting	algorithms,	such	as	the	Selection	Sort	algo-

rithm,	are	O(N
2
)	algorithms.

This	 pattern	 of	 increasingly	 time	 complex	 algorithms	 continues	with	 O(N
2
	 log

2
N),	

O(N
3
),	O(N

3
	log

2
N),	and	so	on.

O(2
N
)	is	called	“exponential	time.”	These	algorithms	are	extremely	costly	and	require	

more	 time	 for	 large	 problems	 than	 any	 of	 the	 polynomial	 time	 algorithms	 previously	

listed.	An	example	of	a	problem	for	which	the	best	known	solution	is	exponential	is	the	

9781284098204_CH01_001_066.indd 53 06/07/16 5:31 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

54 Chapter	1 Getting	Organized

traveling	salesman	problem—given	a	set	of	cities	and	a	set	of	roads	that	connect	some	

of	them,	plus	the	lengths	of	the	roads,	�ind	a	route	that	visits	every	city	exactly	once	and	

minimizes	total	travel	distance.

Table 1.3	presents	the	values	of	various	common	orders	of	growth	functions	for	sev-

eral	different	values	of N.	As	you	can	see	in	the	table,	the	differences	in	the	function	values	

become	quite	dramatic	as	the	size	of N	increases.

Table 1.3 Comparison of Rates of Growth

N log2N N log2N N2 N3 2N

1 0 1 1 1 2

2 1 2 4 8 4

4 2 8 16 64 16

8 3 24 64 512 256

16 4 64 256 4,096 65,536

32 5 160 1,024 32,768 4,294,967,296

64 6 384 4,096 262,144 approximately 20 billion billion

128 7 896 16,384 2,097,152 It would take a fast computer a
 trillion billion years to execute this
many instructions

256 8 2,048 65,536 16,777,216 Do not ask!

Summary
This	chapter	is	all	about	organization.

Object	orientation	allows	developers	to	organize	their	solutions	around	models	of	re-

ality,	accruing	bene�its	of	understandability,	reusability,	and	maintainability.	The	primary	

construct	for	creating	systems	using	this	approach	is	the	class.	Classes	are	used	to	create	

objects	 that	work	 together	 to	provide	solutions	 to	problems.	 Java’s	 inheritance	mecha-

nism	and	package	construct	help	us	organize	our	classes.

Java’s	exception	handling	mechanisms	provide	a	powerful	way	to	organize	our	sys-

tem’s	 responses	 to	 special	 situations.	We	 can	 choose	 to	 handle	 exceptional	 situations	

where	 they	are	 �irst	encountered	or	 to	 throw	the	responsibility	out	 to	another	 level.	A	

good	understanding	of	this	mechanism	is	a	crucial	 ingredient	for	creating	safe,	reliable	

systems.

Programs	operate	on	data,	so	how	the	data	are	organized	is	of	prime	importance.	Data	

structures	deal	with	this	organization.	Several	classic	organizational	structures	have	been	

identi�ied	through	the	years	to	help	programmers	create	correct	and	ef�icient	solutions	

to	problems.	The	Java	language	provides	basic	structuring	mechanisms	for	creating	these	

©
 Photodisc

9781284098204_CH01_001_066.indd 54 06/07/16 5:31 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

55

©
 PhilipYb/Shutterstock

Exercises

structures—namely,	the	array	and	the	reference	mechanisms.	Order	of	growth	notation	

is	an	approach	for	classifying	the	ef�iciency	of	the	algorithms	that	we	will	employ	when	

implementing	and	using	our	data	structures.

Programmers	are	problem	solvers.	Object	orientation	allows	seamless	integration	of	

problem	analysis	and	design,	 resulting	 in	problem	solutions	 that	are	maintainable	and	

reusable.	Data	structures	provide	ways	of	organizing	the	data	of	the	problem	domain	so	

that	solutions	are	correct	and	ef�icient.	Staying	organized	 is	 the	key	 to	solving	dif�icult	

problems!

Exercises
1.1	Classes,	Objects,	and	Applications

1. Research Question:	The	Turing	Award	has	been	awarded	annually	since	1966	to	a	

person	or	persons	for	making	contributions	of	lasting	and	major	technical	impor-

tance	to	the	computer	�ield.	Locate	information	about	this	award	on	the	Web.	Study	

the	list	of	award	winners	and	their	contributions.	Identify	those	winners	whose	

contribution	dealt	directly	with	programming.	Then	identify	those	winners	whose	

contributions	dealt	directly	with	object	orientation.

2. Research Question:	List	and	brie�ly	describe	the	UML’s	14	main	diagramming	types.

3. What	is	the	difference	between	an	object	and	a	class?	Give	some	examples.

4. Describe	each	of	the	four	levels	of	visibility	provided	by	Java’s	access	modi�iers.

5. According	to	the	DaysBetween	application,	how	many	days	are	between	1/1/1900	
and	1/1/2000?	How	many	leap	years	are	there	between	those	dates?	What	about	

between	1/1/2000	and	1/1/2100?	Explain	the	difference	in	these	answers.

6. Use	the	DaysBetween	application	to	answer	the	following:

a. How	old	are	you,	in	days?

b. How	many	days	has	it	been	since	the	United	States	adopted	the	Declaration	of	

Independence,	on	July	4,	1776?

c. How	many	days	between	the	day	that	Jean-François	Pilâtre	de	Rozier	and	

François	Laurent	became	the	�irst	human	pilots,	traveling	10	kilometers	in	a	hot	

air	balloon	on	November	21,	1783,	near	Paris	and	the	day	Neil	Armstrong	took	

one	small	step	onto	the	moon,	at	the	Sea	of	Tranquility,	on	July	20,	1969?

7. Think	about	how	you	might	test	the	DaysBetween	application.	What	type	of	input	
should	give	a	result	of	0?	Of	1?	Of	7?	Of	365?	Of	366?	Try	out	the	test	cases	that	you	

identi�ied.

8. Modify	the	Date	class	so	that	it	includes	a	compareTo	method	with	signature

int compareTo(Date anotherDate)

This	method	should	return	the	value	0	if	this	date	(the	date	of	the	object	upon	which	

the	method	is	invoked)	is	equal	to	the	argument	date;	a	value	less	than	0	if	this	date	

is	a	date	earlier	than	the	argument	date;	and	a	value	greater	than	0	if	this	date	is	a	

9781284098204_CH01_001_066.indd 55 06/07/16 5:31 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

56 Chapter	1 Getting	Organized

©
 Photodisc

date	later	than	the	argument	date.	Create	a	test driver	that	shows	that	your	method	

performs	correctly.

9. A	common	use	of	an	object	is	to	“keep	track”	of	something.	The	object	is	fed	data	

through	its	transformer	methods	and	returns	information	through	its	observer	

methods.	De�ine	a	reasonable	set	of	instance	variables,	class	variables,	and	methods	

for	each	of	the	following	classes.	Indicate	the	access	level	for	each	construct.	Note	

that	each	of	these	class	descriptions	are	somewhat	“fuzzy”	and	allow	multiple	varied	

“correct”	answers.

a. A time counter—this	will	keep	track	of	total	time;	it	will	be	fed	discrete	time	

amounts	(in	either	minutes	and	seconds	or	just	in	seconds);	it	should	provide	

information	about	the	total	time	in	several	“formats,”	number	of	discrete	time	

units,	and	average	time	per	unit.	Think	of	this	class	as	a	tool	that	could	be	used	

to	keep	track	of	the	total	time	of	a	collection	of	music,	given	the	time	for	each	

song.

b. Basketball statistics tracker—this	will	keep	track	of	the	score	and	shooting	sta-

tistics	for	a	basketball	team	(not	for	each	player	but	for	the	team	as	a	unit);	it	

should	be	fed	data	each	time	a	shot	is	taken;	it	should	provide	information	about	

shooting	percentages	and	total	score	when	requested.

c. Tic-Tac-Toe game tracker—this	will	keep	track	of	a	tic-tac-toe	game;	it	should	be	

fed	moves	and	return	an	indication	of	whether	or	not	a	move	was	legal;	it	should	

provide	information	about	the	status	of	the	game	(is	it	over?	who	won?)	when	

requested.

10. For	one	or	more	of	the	classes	described	in	the	previous	exercise

a. Implement	the	class.

b. Design	and	implement	an	application	that	uses	the	class.

c. Use	your	application	to	help	verify	the	correctness	of	your	class	implementation.

11. You	will	create	a	class	that	models	a	standard	pair	of	dice.

a. Create	a	class	called	PairOfDice.	Objects	of	this	class	represent	a	single	pair	
of	six-sided	dice.	The	only	attributes	of	such	an	object	are	the	face	values	of	the	

dice.	Provide	a	constructor.	Provide	a	roll	method	that	simulates	rolling	the	
dice.	Provide	a	value	method	that	returns	the	sum	of	the	face	values	of	the	dice.	
Provide	a	toString	method	that	returns	a	nicely	formatted	string	representing	
the	pair	of	dice,	for	example	“5	:	3	=	8”.	Finally,	create	a	“test	driver”	that	demon-
strates	that	your	PairOfDice	class	performs	correctly.

b. The	game	of	Craps	is	played	in	casinos	all	over	the	world.	The	basic	bet	made	

by	the	“shooter”	in	this	game	is	the	pass-line	bet.	To	start	a	pass-line	round,	the	

shooter	makes	a	“come-out”	roll.	A	come-out	roll	of	2,	3,	or	12	is	called	“craps”	

or	“crapping	out,”	and	the	shooter	loses.	A	come-out	roll	of	7	or	11	is	a	“natural,”	

and	the	shooter	wins.	The	other	possible	numbers	are	the	point	numbers:	4,	5,	

6,	8,	9,	and	10.	If	the	shooter	rolls	one	of	these	numbers	on	the	come-out	roll,	

9781284098204_CH01_001_066.indd 56 06/07/16 5:31 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

57

©
 PhilipYb/Shutterstock

this	establishes	the	“point”—to	win,	the	point	number	must	be	rolled	again	be-

fore	a	seven.	So	in	the	case	where	a	“point”	is	established	the	shooter	rolls	over	

and	over	until	either	the	point	is	rolled	(a	win)	or	a	seven	is	rolled	(a	loss).	Using	

your	PairOfDice	class	simulate	100,000	pass-line	bets	and	output	how	many	
result	in	a	win,	and	how	many	result	in	a	loss.	Hint:	Your	result	should	tell	you	to	

be	wary	of	casinos.

12. You	will	create	a	class	that	keeps	track	of	the	total	cost,	average	cost,	and	number	of	

items	in	a	shopping	bag.

a. Create	a	class	called	ShoppingBag.	Objects	of	this	class	represent	a	single	
shopping	bag.	Attributes	of	such	an	object	include	the	number	of	items	in		

the	bag	and	the	total	retail	cost	of	those	items.	Provide	a	constructor	that		

accepts	a	tax	rate	as	a	double	argument.	Provide	a	transformer	method	called	
place	that	models	placing	a	number	of	identically	priced	items	into	the	bag—	

it	accepts	an	int	argument	indicating	the	number	of	items	and	a	double		
argument	that	indicates	the	cost	of	each	of	the	items.	For	example,	myBag.
place(5, 10.5)	represents	placing	�ive	items	that	cost	$10.50	each	into		
myBag.	Provide	getter	methods	for	both	the	number	of	items	in	the	bag	and	
their	total	retail	cost.	Provide	a	totalCost	method	that	returns	the	total	cost	
with	tax	included.	Provide	a	toString	method	that	returns	a	nicely	formatted	
string	that	summarizes	the	current	status	of	the	shopping	bag.	Finally,	provide		

a	program,	a	“test	driver,”	that	demonstrates	that	your	ShoppingBag	class		
performs	correctly.

b. Create	an	application	that	repeatedly	prompts	the	user	for	a	number	of	items		

to	put	in	the	bag,	followed	by	a	prompt	for	the	cost	of	those	items.	Use	a	0	for	

the	number	of	items	to	indicate	that	there	are	no	more	items.	The	program	then	

displays	a	summary	of	the	status	of	the	shopping	bag.	Assume	the	tax	rate	is	6%.	

A	short	sample	run	might	look	something	like	this:

Enter count (use 0 to stop): 5
Enter cost: 10.50
Enter count (use 0 to stop): 2
Enter cost: 2.07
Enter count (use 0 to stop): 0
The bag contains seven items. The retail cost of the items is $56.64.
The total cost of the items, including tax, is $60.04.

13. You	will	create	a	class	that	represents	a	polynomial;	for	example,	it	could	represent	

5x
3

	
+	2x	–	3	or	x2

	
–	1.

a. Create	a	class	called	Polynomial.	Objects	of	this	class	represent	a	single	poly-
nomial.	Attributes	of	such	an	object	include	its	degree	and	the	coefficients	
of	each	of	its	terms.	Provide	a	constructor	that	accepts	the	degree	of	the	poly-

nomial	as	an	int	argument.	Provide	a	transformer	method	called	setCoeffi-
cient	that	accepts	as	int	arguments	the	degree	of	the	term	it	is	setting	and	the	

Exercises

9781284098204_CH01_001_066.indd 57 06/07/16 5:32 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

58 Chapter	1 Getting	Organized

©
 Photodisc

coef�icient	to	which	it	should	be	set.	For	example,	the	polynomial	5x
3

	
+	2x	–	3	

could	be	created	by	the	sequence	of	statements:

Polynomial myPoly = new Polynomial(3);
myPoly.setCoefficient(3,5);
myPoly.setCoefficient(1,2);
myPoly.setCoefficient(0,–3);

Provide	an	evaluate	method	that	accepts	a	double	argument	and	returns	the	
value	of	the	polynomial,	as	a	double,	as	evaluated	at	the	argument	value.	For	
example,	given	the	previous	code	the	following	sequence	of	code	would	print	

–3.0,	4.0,	and	–1.375.

System.out.println(myPoly.evaluate(0.0));
System.out.println(myPoly.evaluate(1.0));
System.out.println(myPoly.evaluate(0.5));

Finally,	provide	a	program,	a	“test	driver,”	that	demonstrates	that	your	

	Polynomial	class	performs	correctly.

b. Create	an	application	that	accepts	the	degree	of	a	polynomial	and	the	coef�i-

cients	of	the	polynomial,	from	highest	degree	to	lowest,	as	a	command	line	argu-

ment	and	then	creates	the	corresponding	Polynomial	object.	For	example,	the	
polynomial	5x

3	
+	2x	–	3	would	be	represented	by	the	command	line	argument	

“3	5	0	2	–	3.”	The	program	should	then	repeatedly	prompt	the	user	for	a	double	

value	at	which	to	evaluate	the	polynomial	and	report	the	result	of	the	evalua-

tion.	A	sample	run,	assuming	the	previously	stated	command	line	argument,	

might	look	something	like	this:

Enter a value> 0.0
The result is –3.0
Continue?> Yes
Enter a value> 1.0
The result is 4.0
Continue?> Yes
Enter a value> 0.5
The result is –1.375
Continue?> No

c. Create	an	application	that	accepts	the	degree	of	a	polynomial	and	the	coef�i-

cients	of	the	polynomial	as	a	command	line	argument	as	in	part	b.	The	program	

should	then	prompt	the	user	for	two	double	values	that	will	represent	the	end	
points	of	an	interval	on	which	the	polynomial	is	de�ined.	Your	program	should	

then	calculate	and	output	the	approximation	of	the	de�inite	integral	of	the	poly-

nomial	on	the	indicated	interval,	using	1,000	bounding	rectangles.

9781284098204_CH01_001_066.indd 58 06/07/16 5:32 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

59

©
 PhilipYb/Shutterstock

1.2	Organizing	Classes

14. Describe	the	concept	of	inheritance,	and	explain	how	the	inheritance	tree	is	tra-

versed	to	bind	method	calls	with	method	implementations	in	an	object-oriented	

system.

15. Research:	Find	the	Java	library	description	of	the	ArrayList	class	and	answer	the	
following	questions:

a. What	class	does	it	directly	inherit	from?

b. How	many	direct	subclasses	does	it	have?

c. How	many	methods	does	it	implement?

d. How	many	methods	does	it	inherit?

e. If	we	invoke	the	toString	method	on	an	object	of	class	ArrayList,	which	
class’s	toString	method	will	be	used?

16. Given	the	de�inition	of	the	Date	and	IncDate	classes	in	this	chapter,	and	the	follow-
ing	declarations

int temp;
Date date1 = new Date(10,2,1989);
IncDate date2 = new IncDate(12,25,2001);

indicate	which	of	 the	 following	statements	are	 illegal,	and	which	are	 legal.	Explain	

your	answers.

a. temp = date1.getDay();

b. temp = date2.getYear();

c. date1.increment();

d. date2.increment();

17. Design	a	set	of	at	least	three	classes	related	by	inheritance	from	the	world	of

a. Banking—for	example,	account,	checking	account,	savings	account

b. Gaming—for	example,	creature,	hero,	villain,	pet

c. Travel—for	example,	vehicle,	plane,	boat

d. Whatever—use	your	imagination

18. Devise	a	program	that	demonstrates	polymorphism,	using	the	example	provided	on	

page	18.

19. Explain	how	packages	are	used	to	organize	Java	�iles.

20. Research:	Copy	the	program	�iles	to	your	system	and	answer	the	following	questions:

a. How	many	classes	are	in	the	support	package?

b. How	many	classes	are	in	the	ch01.apps	package?

c. The	CSInfo	class	is	in	the	ch05.apps	package:

i.	 What	four	packages	does	it	import	from?

ii.	 How	do	the	import	statements	differ?

Exercises

9781284098204_CH01_001_066.indd 59 06/07/16 5:32 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

60 Chapter	1 Getting	Organized

©
 Photodisc

d. The	Dates	class	is	in	the	ch01.dates	class:

i.	 What	happens	if	you	change	its	package	statement	from	package ch01.
dates	to	package ch01.date	and	compile	it?	Explain.

ii.	 What	happens	if	you	remove	its	package	statement	and	compile	it?	Explain.

iii.	 What	happens	if	you	remove	its	package	statement	and	compile	the	Days-
Between	application	that	is	in	the	ch01.apps	package?	Explain.

21. Suppose	�ile	1	contains		 	 	and	�ile	2	contains

package media.records; package media.records;
public class Labels{ . . . } public class Length{ . . . }
class Check { . . . } class Review { . . . }

a. Are	the	Check	class	and	the	Review	class	in	the	same	package?

b. What	is	the	name	of	�ile	1?

c. What	is	the	name	of	�ile	2?

d. What	is	the	name	of	the	directory	that	contains	the	two	�iles?

e. What	is	that	directory	a	subdirectory	of?

1.3	Exceptional	Situations

22. Explain	the	difference	between	a	programmer-de�ined	exception	that	extends	the	

Java	Exception	class	and	one	that	extends	the	Java	RunTimeException	class.

23. Create	a	program	that	asks	users	to	enter	an	integer	and	then	thanks	them.	If	they	

do	not	enter	an	integer	your	program	should	ask	again,	until	they	do.	Running	your	

program	might	result	in	this	sort	of	console	trace:

Please enter an integer.
OK
That is not an integer. Please enter an integer.
Twenty-seven
That is not an integer. Please enter an integer.
64
Thank you.

24. Create	a	BankAccount	class	that	models	a	typical	bank	account	where	you	deposit	
and	withdraw	money.	To	keep	things	simple,	assume	this	bank	account	deals	only	

with	integral	amounts.

a. You	should	provide	a	constructor,	a	toString	method,	a	getTotal	method	
that	returns	an	int,	and	both	deposit	and	withdraw	methods	that	take	int	
arguments	and	return	void.	Also	create	an	application	UseBankAccount	that	
demonstrates	that	the	BankAccount	class	works	correctly.

b. Create	a	BankAccountException	class.	Change	your	deposit	method	
so	that	it	throws	an	appropriate	exception	if	an	attempt	is	made	to	deposit	a	

9781284098204_CH01_001_066.indd 60 06/07/16 5:32 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

61

©
 PhilipYb/Shutterstock

negative	amount.	Do	the	same	with	the	withdraw	method,	but	also	have	it	
throw	an	exception	if	an	attempt	is	made	to	withdraw	more	money	than	is	avail-

able.	In	each	case	include	appropriate	exception	messages.	Create	three	short	

applications	that	demonstrate	each	of	the	three	exceptional	situations—it	is	OK	

if	the	applications	bombs,	as	long	as	it	demonstrates	that	the	appropriate	excep-

tion	has	been	thrown.

c. Create	a	new	application,	Banker,	that	creates	a	BankAccount	object	and	then	
interacts	with	users,	allowing	them	to	deposit	or	withdraw	funds,	or	to	request	

an	account	total.	This	application	should	not	bomb	in	any	of	the	exceptional	

situations—it	should	catch	the	exception,	pass	the	message	to	the	user,	and	

continue	processing.

25. There	are	three	parts	to	this	exercise:

a. Create	a	“standard”	exception	class	called	ThirteenException.

b. Write	a	program	that	repeatedly	prompts	the	user	to	enter	a	string.	After	each	

string	is	entered,	the	program	outputs	the	length	of	the	string,	unless	the	length	

of	the	string	is	13,	in	which	case	the	ThirteenException	is	thrown	with	the	
message	“Use	thirteen	letter	words	and	stainless	steel	to	protect	yourself!”	Your	

main	method	should	simply	throw	the	ThirteenException	exception	out	to	
the	run-time	environment.	A	sample	run	of	the	program	might	be:

Input a string > Villanova University
That string has length 20.
Input a string > Triscadecaphobia
That string has length 16.
Input a string > misprogrammed

At	this	point	the	program	bombs	and	the	system	provides	some	information,	

including	the	“Use	thirteen	letter	words	and	stainless	steel	to	protect	yourself!”	

message.

c. Create	another	program	similar	to	the	one	you	created	for	part	b,	except	this	

time,	within	your	code,	include	a	try-catch	clause	so	that	you	catch	the	exception	

when	it	is	thrown.	If	it	is	thrown,	then	catch	it,	print	its	message,	and	end	the	

program	“normally.”

1.4	Data	Structures

26. Research Question:	On	the	Web	�ind	two	distinct	de�initions	of	the	term	“data	struc-

ture.”	Compare	and	contrast	them.

27. Identify	things	in	the	following	story	that	remind	you	of	the	various	data	structures	

described	in	the	section.	Be	imaginative.	How	many	can	you	�ind?	What	are	they?	

[Note:	We	can	�ind	nine!]

Kaede	arrives	at	the	train	station	with	just	a	few	minutes	to	spare.	This	week-

end	is	shaping	up	to	be	a	disaster.	She	studies	the	electronic	map	on	the	wall	

Exercises

9781284098204_CH01_001_066.indd 61 06/07/16 5:32 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

62 Chapter	1 Getting	Organized

©
 Photodisc

for	a	few	seconds	in	confusion.	She	then	realizes	she	just	needs	to	select	her	

destination	from	the	alphabetized	list	of	buttons	on	the	right.	When	she	presses	

Gloucester	a	path	on	the	map	lights	up—so,	she	should	take	the	Blue	train	

to	Birmingham	where	she	can	connect	to	the	Red	train	that	will	take	her	to	

Gloucester.	The	wait	in	line	to	buy	her	ticket	does	not	take	long	time.	She	hur-

ries	to	the	platform	and	approaches	the	fourth	car	of	the	train.	Double-checking	

that	her	ticket	says	“car	4,”	she	boards	the	train	and	�inds	a	seat.	Whew,	just	in	

time,	as	a	few	seconds	later	the	train	pulls	out	the	station.	About	an	hour	into	

the	journey	Kaede	decides	it	is	time	for	lunch.	She	walks	through	cars	5,	6,	and	

7,	to	arrive	at	car	8,	the	dining	car.	She	grabs	the	top	tray	(it	is	still	warm	from	

the	tray	dryer)	and	heads	for	the	candy	machine,	thinking	to	herself,	“May	as	

well	�igure	out	what	to	have	for	dessert	�irst,	as	usual.	Hmmm,	that’s	an	inter-

esting	Pez	dispenser	in	slot	F4.”	She	presses	the	button	contentedly,	and	thinks	

“Looks	like	this	is	going	to	be	a	nice	weekend	after	all.	Thank	goodness	for	data	

structures.”

28. Describe	three	uses	of	a	tree	structure	as	a	way	of	organizing	information.

29. Some	aspect	of	each	of	the	following	can	be	modeled	with	a	graph	structure.	

Describe,	in	each	case,	what	the	nodes	would	represent	and	what	the	edges	would	

represent.

a. Trips	available	using	a	speci�ic	airline

b. Countries	and	their	borders

c. A	collection	of	research	articles	about	data	structures

d. Actors	(research	the	“six	degrees	of	Kevin	Bacon”)

e. The	computers	at	a	university

f. A	labyrinth

g. The	Web

1.5	Basic	Structuring	Mechanisms

30. Draw	images	similar	to	those	shown	in	the	Memory	subsection	of	Section	1.5	“Basic	

Structuring	Mechanisms”	that	represent	the	contents	of	memory	resulting	from	the	

following	code	segments.	Assume	that	i	is	associated	with	memory	location	123,	
j	with	124,	the	str1	variable	with	135	and	its	associated	object	with	100,	and	the	
str2	variable	with	136.

a. int i = 10;
 int j = 20;
 String str1 = "cat";

b. int i = 10;
 int j = i;
 String str1 = "cat";
 String str2 = str1;

9781284098204_CH01_001_066.indd 62 06/07/16 5:32 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

63

©
 PhilipYb/Shutterstock

31. What	is	an	alias?	Show	an	example	of	how	it	is	created	by	a	Java	program.	Explain	

the	dangers	of	aliases.

32. Assume	that	date1	and	date2	are	objects	of	class	IncDate	as	de�ined	in	
	Section	1.2	“Organizing	Classes.”	What	would	be	the	output	of	the	following	code?

date1 = new IncDate(5, 5, 2000);
date2 = date1;
System.out.println(date1);
System.out.println(date2);
date1.increment();
System.out.println(date1);
System.out.println(date2);

33. What	is	garbage?	Show	an	example	of	how	it	is	created	by	a	Java	program.

34. Assume	that	date1	and	date2	are	objects	of	class	IncDate	as	de�ined	in	Section	
1.2	“Organizing	Classes.”	What	would	be	the	output	of	the	following	code?

date1 = new IncDate(5, 5, 2000);
date2 = new IncDate(5, 5, 2000);
if (date1 = = date2)
 System.out.println("equal");
else
 System.out.println("not equal");
date1 = date2;
if (date1 = = date2)
 System.out.println("equal");
else
 System.out.println("not equal");
date1.increment();
if (date1 = = date2)
 System.out.println("equal");
else
 System.out.println("not equal");

35. Write	a	program	that	declares	a	10-element	array	of	int,	uses	a	loop	to	initialize	
each	element	to	the	value	of	its	index	squared,	and	then	uses	another	loop	to	print	

the	contents	of	the	array,	one	integer	per	line.

36. Write	a	program	that	declares	a	10-element	array	of	Date,	uses	a	loop	to	initialize	
the	elements	to	December	1	through	10	of	2005,	and	then	uses	another	loop	to	print	

the	contents	of	the	array,	one	date	per	line.

37. Create	an	application	that	instantiates	a	20	×	20	two-dimensional	array	of	integers,	
populates	it	with	random	integers	drawn	from	the	range	of	1	to	100,	and	then	out-

puts	the	index	of	the	row	with	the	highest	sum	among	all	the	rows	and	the	index	of	

the	column	with	the	highest	sum	among	all	the	columns.

Exercises

9781284098204_CH01_001_066.indd 63 06/07/16 5:33 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

64 Chapter	1 Getting	Organized

©
 Photodisc

38. Compile	and	run	the	ImageGen01	application.	Experiment	with	alternate	formulas	
for	the	value	of	c.	Add	two	more	int	variables	so	that	you	can	separately	set	the	
RGB	values	of	color	and	experiment	some	more.	Share	your	most	interesting	re-
sults	with	your	classmates.

1.6	Comparing	Algorithms:	Order	of	Growth	Analysis

39. We	examined	two	approaches	to	guessing	the	secret	number	for	the	Hi-Lo	Guessing	

Game:	Hi-Lo	Sequential	Search	and	Hi-Lo	Binary	Search.	What	is	the	best	and	worst	

case	number	of	guesses	required	by	each	of	these	approaches	if	the	highest	possible	

number	is	(a)	10,	(b)	1,000,	(c)	1,000,000,	and	(d)	1,000,000,000.

40. For	each	of	the	following	problems	brie�ly	describe	an	algorithm	that	solves	the	

problem,	identify	a	good	“operation	fundamental	to	the	algorithm”	that	could	be	

used	to	calculate	the	algorithm’s	ef�iciency,	succinctly	describe	the	size	of	the	prob-

lem,	and	state	the	number	of	times	the	fundamental	operation	occurs	as	a	function	

of	the	problem	size	in	the	best	case	and	worst	case.	For	example,	if	the	problem	was	

“guess	the	secret	number	in	the	Hi-Lo	Guessing	Game”	your	answer	might	be	“start	

at	1	as	my	�irst	guess	and	keep	adding	one	to	my	guess	until	I	guess	the	number;	

announce	my	guess;	the	highest	possible	number—call	it N;	best	case	1	time,	worst	

case N	times”.

a. Finding	The Art of Computer Programming	on	a	shelf	of	unsorted	books.

b. Sorting	an	array	of	integers.

c. Finding	the	cheapest	pair	of	shoes	in	a	shoe	catalog.

d. Figuring	out	how	much	money	is	in	a	piggy	bank.

e. Computing N!	for	a	given N.

f. Computing	the	sum	of	the	numbers	1	to N,	for	a	given N.

g. Multiplying	two N	× N	matrices.

41. Compare	each	of	the	following	pairs	of	functions	f(x)	and	g(x)	by	graphing	them	on	

the	set	of	nonnegative	numbers	(yes,	just	like	in	algebra	class).	Note	that	in	each	case	

the	higher	ordered	function	g	eventually	becomes	larger	than	the	lower	ordered	

function	f.	Identify	the	x	value	where	this	occurs.

a. f(x)	=	3	log
2
	x	 g(x)	=	x

b. f(x)	=	5	log
2
	x	+	3	 g(x)	=	2x	+	1

c. f(x)	=	4	x2	 g(x)	=	x3

d. f(x)	=	8	x2	 g(x)	=	2x

42. Describe	the	order	of	growth	of	each	of	the	following	functions	using	O	notation.

a. N
2
	+	3N

b. 3N
2
	+	N

c. N
5
	+	100N3

	+	245

9781284098204_CH01_001_066.indd 64 06/07/16 5:33 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

65

©
 PhilipYb/Shutterstock

d. 3Nlog
2
N	+	N2

e. 1	+ N	+ N
2
	+ N

3
	+ N

4

f. (N	*	(N	−	1))	/	2
43. Describe	the	order	of	growth	of	each	of	the	following	code	sections,	using		

O	notation:

a. count = 0;
for (i = 1; i <= N; i++)
count++;

b. count = 0;
for (i = 1; i <= N; i++)
for (j = 1; j <= N; j++)
count++;

c. value = N;
count = 0;
while (value > 1)
{
value = value / 2;
count++;

}
d. count = 0;

value = N;
value = N * (N – 1);
count = count + value;

e. count = 0;
for (i = 1; i <= N; i++)
count++;

for (i = N; i >= 0; i--)
count++;

f. count = 0;
for (i = 1; i <=N; i++)
for (j = 1; j <= 5; j++)
count++;

44. The	method	Sum	listed	below	returns	the	sum	of	the	integers	between	1	and	n.	What	
is	its	order	of	growth?	Create	a	new	method	that	performs	the	same	function	that	is	

a	lower	order	of	growth.

public int Sum (int n)
// Precondition: n is > 0
{
 int total = 0;
 for (int i = 1; i <= n; i++)
 total = total + i;
 return total;
}

Exercises

9781284098204_CH01_001_066.indd 65 06/07/16 5:33 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

66 Chapter	1 Getting	Organized

©
 Photodisc

45. Assume	that	numbers	is	a	large	array	of	integers,	currently	holding N	values	in	loca-
tions	0	through N –	1.	Describe	the	order	of	growth	(worst	case)	of	each	of	the	fol-

lowing	operations,	using	O	notation:

a. Set	location N	of	numbers	to	17.

b. Shift	all	values	in	the	numbers	array	to	the	“right”	one	location	to	make	room	at	
location	0	for	a	new	number	without	disrupting	the	order	of	the	current	values;	

insert	the	number	17	into	location	0.

c. Randomly	choose	a	location	L	from	0	to N –	1;	Shift	all	the	values	in	the	num-
bers	array,	from	location	L	to	location N –	1,	to	the	right	one	location	to	make	
room	at	location	L	for	a	new	number;	insert	the	number	17	into	location	L.

46. Show	the	sequence	of	changes	the	array	values	undergoes	while	it	is	sorted	using	
selection	sort.

values
27 15 83 12 104 28 57 30

47. For	this	exercise	you	must	implement	the	selection	sort	algorithm.

a. Create	a	program	named	SelectionSort	that	instantiates	an	array	of	int	of	
size	100	and	initializes	it	with	random	numbers	between	1	and	1000.	The	pro-

gram	should	display	the	integers	from	the	array	in	�ive	columns.	Next	it	sorts		

the	array	using	selection	sort.	Finally,	it	prints	the	contents	of	the	array	again,		

in	columns	of	5.

b. Augment	your	program	from	part	a	so	that	it	also	counts	the	number	of	com-

parisons	and	the	number	of	swaps	executed	during	the	selection	sort.	It	should	

report	these	numbers	after	printing	the	sorted	array.	Based	on	the	analysis	of	

selection	sort	in	this	section	what	are	the	expected	values	for	the	number	of	

comparisons	and	the	number	of	swaps?	How	do	the	values	reported	by	your	

program	compare	to	the	“theoretical”	values?

c. Augment	your	program	from	part	b	so	that	it	works	�irst	with	an	array	of	size	

10,	then	100,	then	1000,	then	10,000,	and	�inally	100,000	(remove	the	code	that	

prints	out	the	array	values	of	course).	For	each	array	size	your	program	should	

display	the	number	of	comparisons	and	swaps.	Have	the	program	display	these	

numbers	in	a	nice	tabular	format.

9781284098204_CH01_001_066.indd 66 06/07/16 5:34 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

