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Preface 
 

 
 
This book contains programming experiments that are designed to reinforce 
the learning of discrete mathematics, logic, and computability. Most of the 
experiments are short and to the point, just like traditional homework 
problems, so that they reflect the daily classroom work. The experiments in 
the book are organized to accompany the material in Discrete Structures, Logic, 
and Computability, Third Edition, by James L. Hein. 
 In traditional experimental laboratories, there are many different tools 
that are used to perform various experiments. The Prolog programming 
language is the tool used for the experiments in this book. Prolog has both 
commercial and public versions. The language is easy to learn and use 
because its syntax and semantics are similar to that of mathematics and 
logic. So the learning curve is steep and no prior knowledge of the language is 
assumed. In fact, the experiments are designed to introduce language features 
as tools to help explore the problems being studied. 
 The instant feedback provided by Prolog’s interactive environment can 
help the process of learning. When students get immediate feedback to 
indicate success or failure, there is a powerful incentive to try and get the 
right solution. This encourages students to ask questions like, “What happens 
if I do this?” This supports the idea that exploration and experimentation are 
keys to learning. 
 The book builds on the traditional laboratory experiences that most 
students receive in high school science courses. i.e., experimentation, 
observation, and conclusion. Each section contains an informal description of 
a topic—with examples as necessary—and presents a list of experiments to 
perform. Some experiments are simple, like using a program to check answers 
to hand calculations, and some experiments are more sophisticated, like 
checking whether a definition works, or constructing a small program to 
explore a concept. 
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1 

Introduction to Prolog 

The Prolog language allows us to explore a wide range of topics in discrete 
mathematics, logic, and computability. Prolog’s powerful pattern-matching 
ability and its computation rule give us the ability to experiment in two 
directions. For example, a typical experiment might require a test of a 
definition with a few example computations. Prolog allows this, as do all 
programming languages. But the Prolog computation rule also allows a 
definition to be tested in reverse, by specifying a result and then asking for 
the elements that give the result. From a functional viewpoint this means 
that we can ask for domain elements that map to a given result. 
 After a brief introduction to Prolog we’ll start right in doing experiments. 
To keep the emphasis on the discrete mathematics, logic, and computability, 
we’ll introduce new Prolog tools in the experiments where they are needed. 

1.1   Getting Started 
This section introduces a few facts to help you get started using Prolog. To 
start the Prolog interpreter in a UNIX environment type prolog (or sicstus for 
those using SICStus Prolog) and hit return. Once Prolog has started up it 
displays the prompt 

|?-  

which indicates that the interpreter is waiting for a command from the user. 
All commands must end with a period. For example, the command 

|?- integer(3.4). 

returns the answer no because 3.4 is not an integer. A command is usually 
called a goal or a query. To exit the interpreter type control D—press the 
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control key and the D key at the same time.  
  Before we go any further, we’re going to go through an introductory 
example to get the look and feel of Prolog. After the example, we’ll present 
some useful programming tools. 

1.2   An Introductory Example 
A Prolog program is a set of facts or rules called definite clauses. We’ll usually 
refer to them as clauses. The example program that follows describes some 
family relationships. We’ll use the predicates “par” and “grand” with the 
following meanings.  

   par(X, Y) means that X is a parent of Y.  
   grand(X, Y) means that X is a grandparent of Y.  

Now we’ll list the program, which consists of some parent facts together with 
a rule that defines the grandparent relationship in terms of parents. Note 
that a comment is signified by the character % followed by any sequence of 
characters up to the end of the line. Another way to comment is to place any 
sequence of characters, including new lines, between the symbols /* and */.  

 % Here is a set of facts describing parental relationships. 

 par(lloyd, james). 
 par(lloyd, janet). 
 par(ruth, james). 
 par(ruth, janet). 
 par(emma, lloyd). 
 par(katherine, ruth). 
 par(adolph, lloyd). 
 par(edgar, ruth). 

 % The grandparent relationship. Any rule of the form 
 % A :- B, C is read, “A is true if B is true and C is true.” 

 grand(X, Z) :- par(Y, Z), par(X, Y). 
 
Now, suppose that you have entered this program into a file named 
familyTree. To read in the program type the following command. 

|?- [familyTree]. 

Once the program has been read in it won’t do anything until it is presented 
with a goal. We’ll give some example goals that ask questions about children 
and grandparents. 
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Finding the Children of a Person 
Suppose that we want to find the children of ruth. We can find them by typing 
the following goal, where the letter C stands for a variable. 

|?- par(ruth, C). 

Prolog will search the program statements from top to bottom until it can 
match the goal with some fact or the left part of a rule. In this case, the goal 
matches par(ruth, james) by identifying C with james. Prolog responds with 

C = james ? 

At this point, we can hit return and Prolog will answer 

Yes. 

But if we hit a semicolon followed by return, then Prolog will backtrack and 
continue to search for another match for the goal par(ruth, C). The goal 
matches par(ruth, janet) by identifying C with janet. Prolog responds with 

C = janet ? 

If we hit a semicolon followed by return, then Prolog will continue to search for 
another match. It doesn’t find any and lets us know with the statement 

no. 

So we can conclude that the two children of ruth are james and janet. 

Finding the Grandparents of a Person 
Suppose that we want to find all the grandparents of james. In this case, we 
can enter the goal 

|?- grand(A, james).  

Prolog matches this goal with grand(X, Z) in the rule  

grand(X, Z) :- par(Y, Z), par(X, Y).  

It identifies X with A and Z with james. Now Prolog attempts to find matches 
for the two goals on the right side of the grandparent rule: 

par(Y, james)     and     par(A, Y). 
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It tries par(Y, james) first, and finds a match with par(lloyd, james) by 
identifying Y with lloyd. With this identification it tries to find a match for 
the second goal par(A, lloyd). This goal matches the fact par(emma, lloyd) by 
identifying A with emma. So Prolog outputs the answer 

A = emma? 

If we hit semicolon followed by return, then Prolog will try to find another 
match for the goal par(A, lloyd). This goal matches the fact par(adolph, lloyd) 
by identifying A with adolph. So Prolog outputs the answer 

A = adolph? 

If we hit semicolon followed by return, then Prolog will not find another match 
for the goal par(A, lloyd). So it will backtrack and try to find a different match 
for the first of the two goals  

par(Y, james)     and    par(A, Y).  

The goal par(Y, james) matches the fact par(ruth, james) by identifying Y with 
ruth. With this identification it tries to find a match for the second goal par(A, 
ruth). This goal matches the fact par(katherine, ruth) by identifying A with 
katherine. So Prolog outputs the answer 

A = katherine? 

If we hit semicolon followed by return, then Prolog will try to find another 
match for the goal par(A, ruth). This goal matches the fact par(edgar, ruth) by 
identifying A with edgar. So Prolog outputs the answer 

A = edgar? 

If we hit semicolon followed by return, then Prolog will not find another match 
for the goal par(A, ruth). When it backtracks, it won’t find any new matches 
for the goals par(Y, james) and par(A, Y). So it backtracks to the original goal 
grand(A, james). There are no other matches for this goal, so Prolog outputs 
the answer 

no. 

Thus the four grandparents of james are emma, adolph, katherine, and edgar. 
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1.3   Some Programming Tools 
We’ll record here several Prolog programming tools that should prove useful in 
doing the experiments. 

Loading Information 
To read in the contents of a file named filename type 

|?- [filename]. 

and hit return. If the file name contains characters other than letters or digits, 
then put single quotes around the filename. For example, if the name of the 
file is file.p, then type  

|?- [‘file.p’]. 

will load the file named file.p. 
 You can read in several files at once. For example, to read in files named 
foo, goo, and moo type 

|?- [foo, goo, moo]. 

Sometimes it may be useful to enter a few clauses directly from the a 
terminal to test something or other. In this case you must type the command  

|?- [user].  

and hit return. The prompt  

|  

will appear to indicate that the interpreter is waiting for data. To exit the 
entry mode type Control D, which we’ll signify by writing ^D. For example, to 
enter the two statements p(a, b) and q(X, Y) :- p(X, Y) type the following 
statements. 

|?- [user]. 
| p(a, b). 
| q(X, Y) :- p(X, Y). 
|^D 
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Listing Clauses 
To list the clauses of a Prolog program type the command 

|?- listing. 

To list only clauses beginning with predicate p type the command 

|?- listing(p). 

To list clauses beginning with predicates p, q, and r type the command 

|?- listing([p, q, r]). 

Using Unix Commands 
To execute UNIX commands from SICStus Prolog, first load the system 
library package with the command 

|?- use_module(library(system)).  

This goal can be automatically loaded and executed by placing the following 
command in the .sicstusrc file. 

:- use_module(library(system)).  

Then UNIX commands can be executed using the system predicate. For 
example, to edit the file named filename with the vi editor, type  

|?- system(‘vi filename’). 

Tracing Note 
To interactively trace each step of a computation type the trace command. 

|?- trace. 

Now the execution of any goal will stop after each step. The names of the 
computation steps are from the set {call, exit, redo, fail}. To continue the 
computation you must react in one of several ways. For example, here are 
some of the options that are available.  
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 To “creep” to the next step hit return. 
 To “leap” to the end of the computation, type l and hit return. 
 To list the menu of available options type h and hit return. 

You can switch off tracing by typing the notrace command. 

|?- notrace. 

Spying Note 
It is usually not necessary to creep through every execution step of a program. 
Spy-points make it possible to stop the execution at predicates of your choice. 
For example, to stop the execution at each use of the predicate p, type the goal 

|?- spy p. 

You can set more than one spy-point. For example, if you want to set spy-
points for predicates p, q, and r, type the goal 

|?- spy [p, q, r]. 

Now you can “leap” between uses of spy-points or you can still creep from step 
to step. To “leap” to the next use of a spy-point, type l and hit return.   
 You can remove spy-points too. For example, to remove p as a spy-point, 
type the nospy goal 

|?- nospy p. 

To remove p, q, and r as spy-points type the goal 

|?- nospy [p, q, r]. 

To remove all spy-points type the goal 

|?- nospyall. 
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2 

Beginning Experiments 

This chapter contains some simple experiments that are designed to 
introduce some of the basic ideas of programming in Prolog.  

2.1   Variables, Predicates, and Clauses 
In this experiment we’ll see how to represent variables, predicates, clauses, 
and goals. We’ll also introduce the computation rule used to execute Prolog 
programs.  

Variables 
A variable may be represented by a string of characters made up of letters or 
digits or the underscore symbol _, and that begins with either an uppercase 
letter or _. For example, the following strings denote variables: 

X, Input_list, Answer, _,  

A variable name that begins with the underscore symbol represents an 
unspecified (or anonymous) variable.  

Predicates 
A predicate is a relation. In Prolog the name of a predicate is an alphanumeric 
string of characters (including _) that begins with a lowercase letter. For 
example, we used the predicate “par” in the introductory example to denote 
the “is parent of” relation. The number of arguments that a predicate has is 
called the arity of the predicate. For example, par has arity 2. If a predicate q 
has arity n, then we sometimes write q/n to denote this fact. For example, 
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par/2 means that par is a predicate of arity 2.  
 An expression consisting of a predicate applied to arguments is called an 
atomic formula Atomic formulas are the building blocks of Prolog programs. 
For example, the following expressions are atomic formulas. 

p(a, b, X), 
capital_of(salem, oregon). 

Clauses 
The power of Prolog comes from its ability to process clauses. A clause is a 
statement taking one of the forms 

head. 
or 

head :- body. 

where head is an atomic formula and body is a sequence of atomic formulas 
separated by commas. For example, the following statements are clauses.   

capital–of(salem, oregon). 
q(b). 
p(X) :- q(X), r(X), s(X). 

The last clause has head p(X) and its body consists of the atomic formulas 
q(X), r(X), and s(X).  
 Now let’s look at the meaning that Prolog gives to clauses. The meaning 
of a clause of the form 

head. 

is that head is true.  A clause of the form 

head :- body. 

has a declarative meaning and a procedural meaning. The declarative 
meaning is that the head is true if all of the atomic formulas in the body are 
true. The procedural meaning is that for head to succeed, each atomic formula 
in the body must succeed. For example, suppose we have the clause   

p(X) :- q(X), r(X), s(X). 

From the declarative point of view this means that  

for all X, p(X) is true if q(X) and r(X) and s(X) are true.  
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From the procedural point of view this means that for all X, p(X) succeeds if 
q(X), r(X), and s(X) succeed.  

Or Clauses 
Prolog also allows us to represent the “or” operation in two different ways. For 
example, suppose that we have the following two Prolog clauses to define the 
parentOf relation in terms of the motherOf and fatherOf relations. 

 parentOf(X, Y) :- motherOf(X, Y). 
 parentOf(X, Y) :- fatherOf(X, Y). 

We can think of the two clauses as having the following form. 

 c :- a. 
 c:- b. 

From a logical viewpoint, these two clauses represent the conjunction of two 
conditionals of the following form. 

(a → c) ∧ (b → c). 

Now recall that the following equivalence holds. 

(a → c) ∧ (b → c) ≡ a ∨ b → c. 

The right side of the equivalence can be represented in Prolog as the following 
or-clause, where the semi-colon denotes disjunction. 

c :- a;b. 

For example, the original two clauses that we used to define the parentOf 
relation can also be expressed as the following or-clause. 

parentOf(X, Y) :- motherOf(X, Y) ; fatherOf(X, Y). 

Experiments to Perform 

 1. Input the program consisting of the two clauses p(a) and p(b). Then ask 
the following questions: 

  |?- p(a). 
  |?- p(b). 
  |?- p(c). 
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  Use backtracking to find all possible answers to the following question. 

  |?- p(X). 

 2.  Input the single clause q(_). Then ask the following questions: 

  |?- q(a). 
  |?- q(b). 
  |?- q(c). 

  Describe what happens when you try to find all possible answers to the 
following question. 

  |?- q(X). 

 3.  Input the following three clauses. 

  r(a). 
  r(b). 
  s(X) :- r(X). 

  Now ask the following questions: 

  |?- s(a). 
  |?- s(b). 
  |?- s(c). 

  Use backtracking to find all possible answers to the following questions. 

  |?- s(A). 
  |?- r(A). 

 4.  Verify that the conjunction of clauses with the same head can be 
represented by a single clause using the “or” construction by doing the 
following tests. For each input the given data and then ask the question 

|?- p(a). 

  Perform each test separately with only the given clauses as input. 

  a. p(b). b. p(c). 
   p(a) :- p(b).  p(a) :- p(b). 
   p(a) :- p(c).  p(a) :- p(c). 

  c. p(b). d. p(c). 
   p(a) :- p(b) ; p(c).  p(a) :- p(b) ; p(c). 
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2.2   Equality, Unification, and Computation 
Most of us will agree that any object is equal to itself. For example, b is equal 
to b, and p(c) is equal to p(c). We might call this “syntactic equality.” It’s the 
most basic kind of equality and Prolog represents it with the following 
symbol. 

== 

For example try out the following goals. 

 |?- b == b. 
 |?- p(a) == p(a). 
 |?- p(X) == p(b). 
 |?- 5 == 5. 
 |?- 2 + 3 == 1 + 4. 

The expressions 2 + 3 and 1 + 4 are not syntactically equal, but they both 
denote the number 5. This might be called “numerical” or “semantic equality.” 
Prolog represents this equality with the following symbol. 

=:= 

For example try out the following goals. 

 |?- b =:= b. 
 |?- p(a) =:= p(a). 
 |?- p(X) =:= p(b). 
 |?- 5 =:= 5. 
 |?- 2 + 3 =:= 1 + 4. 

What about expressions like p(X) and p(b)? They are not syntactically equal 
and they are not semantically equal. But if we consider X to be a variable, 
then we can say p(X) and p(b) are equal under the assumption that X stands 
for b. This is an example of “unification” and it is a basic ingredient in the 
matching process used for computation in logic programming. 

Unification 
Unification is the process of matching two expressions by attempting to 
construct a set of bindings for the variables so that when the bindings are 
applied to the two expressions, they become syntactically equal. Unification is 
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used as part of Prolog’s computation rule. The following symbol is used for 
unification within a program. 

= 

If two expressions can be unified, then Prolog will return with corresponding 
bindings for any variables that occur in the expressions. For example, try out 
the following tests. 

 |?- b = b. 
 |?- p(a) = p(a). 
 |?- p(X) = p(b). 
 |?- 5 = 5. 
 |?- 2 + 3 = 1 + 4. 

Computation 
A Prolog program executes goals, where a goal is the body of a clause. In other 
words, a goal is one or more atomic formulas separated by commas. The 
atomic formulas in a goal are called subgoals. For example, the following 
expression is a goal consisting of two subgoals. 

|?- par(X, james), par(Y, X). 

The execution of a goal proceeds by unifying the subgoals with heads of 
clauses. The search for a matching head starts by examining clauses at the 
beginning of the program and proceeds linearly through the clauses. If there 
are two or more subgoals, then they are executed from left to right. A subgoal 
is true in two cases: 

1. It matches a fact (i.e., the head of a bodyless clause). 

2. It matches the head of a clause with a body and when the matching 
substitution is applied to the body, each subgoal of the body is true.  

A goal is true if there is a substitution that when applied to its subgoals 
makes each subgoal true. For example, suppose we have the following goal for 
the introductory program example. 

|?- par(X, james), par(Y, X). 

This goal is true because there is a substitution {X=ruth, Y=katherine} that 
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when applied to the two subgoals gives the following subgoals, both of which 
are true. 

par(ruth, james),  par(katherine, ruth).  

Experiments to Perform 

 1. Try out some unification experiments like the following. First find the 
answers by hand. Then check your answers with Prolog. 

  |?- p(X) = p(a). 

  |?- p(X, f(Y)) = p(a, Z). 

  |?- p(X, a, Y) = p(b, Y, Z). 

  |?- p(X, f(Y, a), Y) = p(f(a, b), V, Z). 

  |?- p(f(X, g(Y)), Y) = p(f(g(a), Z), b). 

 2. An algorithm that tries to match terms is called a unification algorithm. 
These algorithms have an “occurs check” that stops the process if an 
attempt is made to unify a variable X with a non-variable term in which 
X occurs. For example, X and p(X) do not unify. However, most versions of 
Prolog do not implement the occurs check to save processing time. Try the 
following tests to see whether Prolog implements the occurs check. 

  |?- p(X) = p(g(X)). 

  |?- p(f(a, X)) = p(X). 

  |?- f(X) = X. 

  |?- [a|X] = X. 

 3. The international standard ISO Prolog has a predicate for unification 
with the occurs check. The name of the predicate is 

unify_with_occurs_check. 

  In SICStus Prolog the predicate is in the “terms” library. So the following 
command must be executed first. 

|?- use_module(library(terms)). 

  For example, to unify p(X) and p(a) we type the goal 

|?- unify_with_occurs_check(p(X), p(a)). 
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 which returns X = a. But the goal 

|?- unify_with_occurs_check(p(X), p(g(X))). 

  returns no. Try out the predicate with the examples given in the 
preceding experiments. Compare the results. To simplify typing input 
the following definition. 

u(X, Y) :- unify_with_occurs_check(X, Y). 

2.3   Numeric Computations 
Prolog has a built-in predicate “is” that is used to evaluate numerical 
expressions. The predicate is infix with a variable on the left and a numerical 
expression on the right. For example, try out the following goals. 
 
 |?- X is 5 + 7. 
 |?- X is 5 - 4 + 2. 
 |?- X is 5 * 45. 
 |?- X is log(2.7). 
 |?- X is exp(1). 
 |?- X is 12 mod 5. 

The expression on the right must be able to be evaluated. For example, try out 
the goal 
 
 |?- X is Y + 1. 
 
Now try out the goal 
 
 |?- Y is 5, X is Y + 1. 
 
SICStus Prolog has a rich set of numerical operations that includes all of the 
ISO operations: 
 
Binary operators 

+, –, *, /, //, rem, mod, sin, cos, atan. 

Unary operators 

+, –, abs, ceiling, floor, float, truncate, round, exp, sqrt, log. 
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Numeric Comparison. Numerical expressions can be compared with binary 
comparison operators. The six operators are given as follows: 

=:=, =\=, <, >, =<, >=. 

For example, try out the following goals. 
 
 |?- 5 < 6 + 2. 
 |?- 5 =< 6 + 2. 
 |?- 5 =:= 6 - 1. 

Experiments to Perform 
 1. Test each of the numeric binary, unary, and comparison operations. 

 2. If we don’t want to type goals of the form “X is expression” we can define 
a predicate to do the job. For example, a predicate to evaluate and print 
a numeric expression can be defined as follows: 

eval(X) :- A is X, write(A). 

  Try it out on several expressions. For example, try the goal 

  |?- eval(sin(5)*sin(5) + cos(5)*cos(5)). 

2.4   Type Checking 
Prolog has several built-in predicates for type checking. For example, try out 
the following goals. 

 |?- integer(25). 
 |?- integer(25.0). 

The ISO type checking predicates are listed as follows. 

var, nonvar, integer, float, number, atom, atomic, compound. 

We can create our own type checkers too. For example, suppose we let nat(X) 
mean that X is a natural number. We can define nat as follows. 

nat(X) :- integer(X), X >= 0. 



         Beginning Experiments 21  

 

Experiments to Perform 
 1.  Test each of the type checker predicates. 

 2. Construct a type checker for each of the following sets. 

  a. The non-negative numbers. 

  b. The even integers. 

  c. {0, 1, 2, 3,4, 5, 6, 7, 8}. 

 3. We can solve for any of the three variables in X + Y = Z if the other two 
arguments are given as follows: 

  sum(X, Y, Z) :- nonvar(X), nonvar(Y), Z is X + Y. 
  sum(X, Y, Z) :- nonvar(X), nonvar(Z), Y is Z - X. 
  sum(X, Y, Z) :- nonvar(Z), nonvar(Y), X is Z - Y. 

a. Check it out. 

b. Write a solver for the linear equation A*X + B = 0. Let the predicate 
linear(A, B, X) return the root X of the equation. 

2.5   Family Trees 
In this experiment we’ll continue working with a family tree by examining a 
few of the many family relations. To keep things short and concise, let 
 
 p(X, Y) mean that X is a parent of Y,  

and let  

 g(X, Y) mean that X is a grandparent of Y.  

Experiments to Perform 

 1. Enter the following program into a file. 

  p(a, b). 
  p(a, c). 
  p(a, d). 
  p(b, e). 
  p(b, f). 
  p(c, g). 
  p(d, h). 
  p(e, i). 
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  p(g, j). 
  p(h, k). 
  g(X, Y) :- p(X, Z), p(Z, Y). 

a. Draw a graph to represent the “is a parent of” relation and orient the 
graph so that parents are above their children. 

b. Load the program and then find all possible answers to each of the 
following goals. 

  |?- p(a, e). 
  |?- p(X, e). 
  |?- p(a, X). 
  |?- g(a, T). 
  |?- g(M, e). 
  |?- g(U, V). 

For each of the preceding goals and answers write down (1) an informal 
description of the goal and (2) an informal description of the answer in 
terms of parents and grandparents. 

 2. Continue the experiment by adding definitions for the following 
relationships to the program and then testing them. 

a. ch(X, Y) means that X is a child of Y. 

b. gch(X, Y) means that X is a grandchild of Y. 

 3. Let sib(X, Y) mean that “X is a sibling of Y.” We can define sib as follows 
by using the inequality operation. 

sib(X, Y) :- p(Z, X), p(Z, Y), X \== Y. 

  Continue the experiment by adding this definition to the program and 
then testing it. Find definitions for the following relationships and then 
test them. 

a. co(X, Y) means that X is a cousin of Y, which means that their parents 
are siblings. 

b. sco(X, Y) means that X is a second cousin of Y, which means that their 
parents are cousins. 
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 4. Construct a Prolog program for a real family with facts of the form 
parent(a, b), male(x), and female(y). 

a. Define and test the relations son, daughter, mother, father, brother, 
sister, grandmother, grandfather, grandson, and granddaughter.  

b. Define and test the relations aunt, uncle, niece, nephew, and the 
maternal and fraternal versions of grandmother and grandfather. 

2.6   Interactive Reading and Writing 
In this experiment we’ll construct a simple interactive Prolog program. Since 
interactive programs need to read and write, we’ll discuss writing to the 
screen and reading from the keyboard. Try out the following goals to get 
familiar with the “write” predicate. 

|?- write(‘hello world’). 

|?- write(hello), write(‘ ‘), write(world). 

|?- write(hello), tab(10), write(world). 

|?- write(hello), nl, write(world). 

|?- write(hello world). 

|?- write(X). 

|?- write(x). 

The operation nl means “start a new line”. The operation tab(10) means “tab 
10 spaces”. Be sure to place single quotes around text if it contains spaces, 
punctuation marks, etc. If a single quote is part of the text, then write two 
single quotes. 
 It is easy to read a Prolog term from the keyboard as long as the term ends 
with a period followed by a return. Try out the following goals to get the 
familiar with the “read” predicate. 

|?- read(X). 

|?- read(yes). 

|?- read(hello). 

Note that read(yes) and read(hello) will only succeed if the terms typed are 
yes and hello, respectively. Similarly, any read statement with a nonvariable 
argument will succeed only if that argument is typed. 
 Now we’re in position to give an example of a simple interactive program. 
This example allows a user to ask for the name of the capital of a state. We’ll 
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only use a partially complete knowledge base consisting of the following six 
facts. 
 
capital(salem, oregon). 
capital(olympia, washington). 
capital(boise, idaho). 
capital(juneau, alaska). 
capital(honolulu, hawaii). 
capital(sacramento, california). 

The program begins by asking the user to type a state. Then it reads the 
input, gets the capital from the knowledge base, and writes out the answer. 
Here is the definition. 

start :- write(‘For what state do you want to know the capital?’), nl, 
 write(‘Type a state in lowercase followed by a period.’), nl, 
 read(A), 
 capital(B, A), 
 write(B), write(‘ is the capital of ‘), write(A), write(‘.’), nl. 

Here is a typical interactive session, where bold face printing indicates typing 
by the user. 

  |?- start. 
  For what state do you want to know the capital? 
  Type a state in lowercase followed by a period.’ 
  |: oregon. 
  salem is the capital of oregon. 

Suppose now that we want to modify the program to find either the state of a 
capital or the capital of a state. We can do this by changing the written text 
appropriately and then defining a predicate to find either the capital of a 
state or the state of a capital. Here is the code. 
 
start :-  
  write(‘What state’’s capital or capital’’s state do you wish to know?’), nl, 
 write(‘Type a state or a capital in lowercase followed by a period.’), nl, 
 read(A), 
 process(A). 
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process(A) :- capital(B, A), output(B, A). 
process(A) :- capital(A, B), output(A, B). 
 
output(X, Y) :- write(X), write(' is the capital of '), write(Y), write('.'), nl. 

 Experiments to Perform 

 1. Put the sample data and the modified program in a file. Then make the 
following tests. 

a. Make three tests by typing cities and three tests by typing states. 

b. Test the program by typing an uppercase letter followed by a period. 
Trace the computation to see what happens. 

 2. Write an interactive program to find information in a knowledge base of 
your choice. Use a database of at least ten elements. If you can’t think of 
one, here are a couple of examples: 

a. (Chemistry) Use some facts that associate each chemical element 
with its notation. For example, here are three facts about elements.  

 element(iron, fe). 
 element(hydrogen, h). 
 element(helium, he). 

b. (Language Translation) Use some facts that associate words of two 
different languages. For example, here are three facts that relate 
Spanish to English.  

 translate(adios, goodby). 
 translate(bueno, good). 
 translate(porque, because). 

2.7   Adding New Clauses 
In this experiment we’ll see how to add new clauses (i.e., with new predicate 
names) to the program by using the backtracking feature of Prolog. We’ll 
introduce the idea with the familiar family tree example. Assume that the 
following facts have been input from a file named familyTree. 

p(a, b). 
p(a, c). 
p(a, d). 
p(b, e). 
p(b, f). 
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p(c, g). 
p(d, h). 
p(e, i). 
p(g, j). 
p(h, k). 

Suppose that we want to add all possible sibling relationships to the file. 
We’ll assume that siblings are people who share a common parent and no one 
is a self-sibling. In other words, we’ll use the definition 

sib(X, Y) :- p(Z, X), p(Z, Y), X \== Y. 

To add all possible siblings to the program we can type the following goals 

|?- p(Z, X), p(Z, Y), X \== Y, assertz(sib(X, Y)), fail. 

The predicate “assertz” adds a clause to the program putting it after any 
other clauses whose heads have the same predicate name. The goal “fail” 
causes backtracking to occur, which in turn causes a search for new siblings to 
be asserted. We can list the predicates p and sib to see that they have indeed 
been added to the program as follows: 

|?- listing([p, sib]). 

Suppose that we want to save the data for predicates p and sib in a file 
named x. We can do this by opening x for writing with the “tell” predicate, 
listing the data that we want to go into the file, and then closing the file with 
the “told” predicate. Here is the goal. 

|?- tell(x), listing([p, sib]), told. 

Experiments to Perform 

 1. Verify the examples given by starting with a file that contains the “p” 
facts and ending with a file that contains the “p” and “sib” predicates. Do 
a trace to observe how siblings are found by backtracking. 

 2. Use the same technique to add all grandchild facts to the file, where 
grandChild(X, Y) means that X is a grandchild of Y. 
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2.8   Modifying Clauses 
In this experiment we’ll see how to modify clauses by declaring their 
predicates to be dynamic. We’ll introduce the idea with the familiar family 
tree example. Assume that the following facts have been loaded into the 
program from a file named familyTree. 

  p(a, b). 
  p(a, c). 
  p(a, d). 
  p(b, e). 
  p(b, f). 
  p(c, g). 
  p(d, h). 
  p(e, i). 
  p(g, j). 
  p(h, k). 
  sib(X, Y) :- p(Z, X), p(Z, Y), X \== Y. 

Suppose that we want to add all possible sibling relationships to the file. We 
might try the following goal. 

|?- sib(X, Y), assertz(sib(X, Y)), fail. 

This will not work because sib is a predicate that is already used in the 
“static” file familyTree. If we wish to modify the predicates of a file we must 
declare the predicates to be “dynamic.” We can do this by placing the following 
declaration at the beginning of the predicates that we want to be dynamic. 

  :- dynamic p/2, sib/2. 
  p(a, b). 
  p(a, c). 
  p(a, d). 
  p(b, e). 
  p(b, f). 
  p(c, g). 
  p(d, h). 
  p(e, i). 
  p(g, j). 
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  p(h, k). 
  sib(X, Y) :- p(Z, X), p(Z, Y), X \== Y. 

Now we can add all the sibling relations to the program as follows: 

|?- sib(X, Y), assertz(sib(X, Y)), fail. 

The goal “fail” causes backtracking to occur, which in turn causes a search for 
new siblings to be asserted. We can list the predicates p and sib to see that 
they have indeed been added to the program as follows: 

|?- listing([p, sib]). 

Suppose that we want to save the data for predicates p and sib in a file 
named x. We can do this by opening x for writing, listing the data that we 
want to go into the file, and then closing the file. Here is the goal. 

|?- tell(x), listing([p, sib]), told. 

If we want the predicates in file x to be dynamic then we must put the 
appropriate dynamic declaration at the beginning of the file. We can do this 
as follows. 

|?- tell(x), write(‘:- dynamic p/2, sib/2.’), listing([p, sib]), told. 

Experiments to Perform 

 1. Verify the examples given by starting with a file that contains the given 
dynamic declaration of p and sib together with the “p” facts and the 
definition of the sib predicate.  

 2. Use the same technique to add all grandchild facts to the file. In other 
words, place the definition for grandChild(X, Y) into the file and declare 
grandChild/2 to be a dynamic predicate. 

2.9   Deleting Clauses 
In this experiment we’ll see how to delete clauses from the program. We’ll 
introduce the idea with the familiar family tree example. In previous 
experiments we’ve seen that backtracking is a powerful tool for finding 
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information. But sometimes we get more information than we want or need. 
 For example, if b and c are siblings, then backtracking produces sib(b, c) 
as well as sib(c, b). We can delete unwanted clauses from the program with 
the retract and abolish predicates. For example, suppose that we have the 
following clauses in the program. 

p(b, a). 
p(a, c). 
p(b, d). 
p(d, f). 
p(e, b). 
p(c, g). 
p(f, h). 
p(c, i). 

We can add all siblings to the program with the following goal. 

|?- p(X, Y), p(X, Z), Y \== Z, assertz(sib(Y, Z)), fail. 

Now a listing of the program will produce the following clauses. 

p(b, a). 
p(a, c). 
p(b, d). 
p(d, f). 
p(e, b). 
p(c, g). 
p(f, h). 
p(c, i). 
sib(a, d). 
sib(d, a). 
sib(g, i). 
sib(i, g). 

Since sib is a symmetric relation, the backtracking has produced some 
repetition that we may not want. Suppose we want to keep just one sib clause 
for each pair of siblings. The following goal will do the job. 

|?- sib(X,Y), sib(Y,X), retract(sib(X,Y)), fail. 
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The retract predicate deletes the first occurrence of the clause in its argument. 
As we have already seen, the “fail” predicate automatically forces 
backtracking to look for other unwanted clauses. Now a listing of the clauses 
will produce 

p(b, a). 
p(a, c). 
p(b, d). 
p(d, f). 
p(e, b). 
p(c, g). 
p(f, h). 
p(c, i). 
sib(a, d). 
sib(g, i). 

Note: The retract predicate works only for dynamic clauses. So we can’t retract 
any of the p clauses of our example. 
 
 The “abolish” predicate can be used to delete clauses that are static or 
dynamic. But it deletes all clauses that have a head that matches the given 
predicate. 
For example, the goal 

|?- abolish([p, sib]). 

will delete all p clauses and sib clauses in the program, whatever their arity. 
For example, the goal 

|?- abolish(p/3). 

will only abolish p clauses that take three arguments. 

Experiments to Perform 

 1. Start with a family tree (your own or an example) consisting of parent 
relations in the program. Make sure that the tree is large enough to have 
several cousin relationships. Next, write a cousin predicate and use it to 
add all cousin relations to the program. Then experiment with the retract 
operation by retracting cousin(X, Y) if cousin(Y, X) is in the program. 

 2. Test the abolish operation on predicates that are dynamic, predicates 
that are static, and predicates with the same head name, but with 
different arities. 
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3 

Recursive Techniques 

This chapter introduces some recursive techniques to explore problems. The 
use of recursion makes it possible to write very short programs with a high 
degree of accuracy. This allows one to spend most of the time thinking about 
the experiment rather than the programming. Each problem includes an 
experiment that uses the trace and spy debugging tools to observe how 
recursive computations work. All the remaining sections contain problems 
that use recursion. 

3.1   The Ancestor Problem 
An ancestor is a person from whom one is descended. We’ll write a predicate 
for the ancestor relation, where ancestor(A, B) means that A is an ancestor of 
B. If we assume that the knowledge base contains parent relations, then we 
can easily define the ancestor relation. Clearly a parent is an ancestor of a 
child, and any ancestor of a parent is also an ancestor of the child. For 
example, suppose we have the following graph representing some parent 
relations, where the orientation is such that parents are directly above their 
children 
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We can represent the graph in Prolog as the following list of parent facts, 
where p(X, Y) means that X is a parent of Y. 

p(a, b). 
p(a, c). 
p(c, d). 
p(d, e). 
p(d, f). 
p(n, w). 
p(w, y). 
p(z, y). 
p(y, x). 
p(y, m). 
p(x, f). 
p(x, t). 

Who are the ancestors of e? From observation we can see that they are d, c, 
and a. Our observation started by looking for the parents of a and then looking 
for their ancestors. This provides us with the basis case (an ancestor is a 
parent) and the recursive case (an ancestor of a parent is an ancestor) for a 
definition of the ancestor predicate. 

ancestor(A, B) :- p(A, B).     % a parent is an ancestor 
ancestor(A, B) :- p(X, B), ancestor(A, X). % ancestor of parent is ancestor 

Suppose we type the following goal and then continue backtracking as long as 
possible. 

|?- ancestor(A, e). 

The results with backtracking should be: A = d; A = c; A = a; no.  

Experiments to Perform 

 1. Implement the ancestor program along with the given knowledge base. 
Then perform the following tests and discuss the results in each case. 

a. Try several different goals, and backtrack as much as possible. 
Include goals to find the largest list of ancestors, and goals to find no 
ancestors.  
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b. Try goals with a variable in either or both argument positions and 
backtrack as much as possible. Are there any interesting results? 

 2. (Tracing and Spying) Do each of the following tracing tests on the 
ancestor program. In parts (b) and (c) you can observe the recursive calls 
to the ancestor predicate. 

  a. |?- ancestor(a, e). 
  b. |?- trace, ancestor(a, e). 
  c. |?- spy ancestor, ancestor(a, e).  
   (Use l to leap to each use of ancestor.) 
  d. |?- nospy ancestor, spy p, ancestor(a, e).  
   (Use l to leap to each use of p.) 

 3. Modify the definition of the ancestor predicate as indicated in each of the 
following cases. Test each new definition and discuss the results. 

a. Swap the two clauses so that the recursive clause is listed before the 
basis clause. 

b. Interchange the two predicates in the body of the recursive clause to 
obtain the following recursive clause. 

ancestor(A, B) :- ancestor(A, X), p(X, B). 

 4. Modify the ancestor predicate to return the number of generations 
between the two people. For example the goal 

|?- ancestor(a, e, N). 

  will return N = 3. Test your predicate on several examples, including 
cases where either or both of the first two arguments are variables. Try 
backtracking and observe the results. 

3.2   Writing and Summing 
Suppose that for any natural number n we wish to write out the sequence of 
consecutive numbers from 0 to n. To discover a program to do the job we can 
make a couple of observations. First, we can observe that if the input is 0, 
then we should write out 0. On the other hand, if n > 0, then the task will be 
accomplished if we write out the sequence from 0 to n – 1 and then write out n. 
These observations provide us with the basis case and the recursive case for a 
predicate “seq” to do the job. For example, the goal 

|?- seq(3). 
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should print out the sequence 0 1 2 3. A definition for the seq predicate can be 
written as follows, where we’ve included a check to see whether the input is a 
natural number. We’ll write out the sequence as a column of numbers. 

seq(0) :- write(0), nl. 

seq(N) :- nat(N),      % check to see if N is a natural number 
 M is N – 1, seq(M), % write the sequence 0 to N – 1 
 write(N), nl.     % write N 
 
nat(X) :- integer(X), X >= 0.  % type checker for natural numbers. 
 
For another example with a similar style of programming, suppose that for 
any natural number n we want to compute the sum 0 + 1 + ... + n. You may 
recall that this sum has a simple formula given by n(n + 1)/2. But we’re trying 
to do some examples of recursive programming. So we’ll forget about the 
formula for now and try to write a recursive predicate to do the job. We can 
make some observations about the sum to help construct the program. First, 
we can observe that if the input is 0, then we should return 0. On the other 
hand, if n > 0, then the task will be accomplished if we can calculate the sum 0 
+ 1 + ... + (n – 1) and then add n to the result. These observations provide us 
with the basis case and the recursive case for a predicate “sum” to do the job. 
For example, the goal 

|?- sum(3, Out). 

should return Out = 6. A definition for the sum predicate can be written as 
follows 
 
sum(0, 0). 
sum(N, S) :- nat(N), K is N - 1, sum(K, T), S is T + N. 

Experiments to Perform 

 1. (Tracing and Spying) Implement the program for the seq predicate and 
try it out on several different numbers. Then do each of the following 
tracing tests. In parts (b) and (c) you can observe the recursive calls to the 
seq predicate. 

  a. |?- seq(3). 
  b. |?- trace, seq(3). 
  c. |?- spy seq, seq(3).  
   (Use l to leap to each use of seq.) 
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  d. |?- nospy seq, spy nat, seq(3).  
   (Use l to leap to each use of nat.) 
  e. |?- trace, seq(3).  
   (Try out g to see “ancestor” goals at various points.) 

 2. Make each of the following modifications to the definition of the seq 
predicate. 

a.  Interchange the two seq clauses so that the basis case comes after 
the recursive case. Test the new definition to see whether anything 
happens. Why or why not?  

b. Starting with the modification to the seq predicate made in part (a), 
delete the call to nat(N) in the recursive clause. Test the new 
definition to see whether anything happens. Why or why not?  

 3.  Modify the original definition of the seq predicate so that numbers are 
printed in reverse order. For example, the goal 

  |?- seq(3). 

  should print the sequence 3 2 1 0. 

 4.  (Tracing and Spying) Implement the program for the sum predicate and 
try it out on several different numbers. Then do each of the following 
tracing tests. In parts (b) and (c) you can observe the recursive calls to the 
sum predicate. 

  a. |?- sum(3, X). 
  b. |?- trace, sum(3, X). 
  c. |?- spy sum, sum(3, X).  
   (Use l to leap to each use of sum.) 
  d. |?- nospy sum, spy is, sum(3, X).  
   (Use l to leap to each use of is.) 
  e. |?- nospy is, sum(3, X).  
   (Try out g to see “ancestor” goals at various points.) 
  f. |?- trace, sum(N, 2). 
   Explain why the answer is no. 

 5. Make each of the following modifications to the definition of the sum 
predicate. 

a.  Interchange the two sum clauses so that the basis case comes after 
the recursive case. Test the new definition to see whether anything 
happens. Why or why not?  
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b. Starting with the modification to the sum predicate made in part (a), 
delete the call to nat(N) in the recursive clause. Test the new 
definition to see whether anything happens. Why or why not?  

c. The order of formulas in the body of a clause is important because 
subgoals are executed from left to right. To see this, reorder the body 
of the second clause to obtain the following program. 

  sum(0, 0). 
  sum(N, S) :- nat(N), sum(K, T), K is N - 1, S is T + N. 

 Now trace the goal sum(3, X) to see how computation proceeds. 

3.3   Switching Pays 
Suppose there is a lottery in which the winner will be chosen from among a set 
of three numbers {x, y, z}. We choose one of the three numbers, say x. Later, 
after the winning number has been drawn, but not yet made public, we are 
given the additional information that one of the other numbers, say y, is not a 
winner. Then we are given the opportunity to switch our choice from x to z. 
What should we do? We should switch.  
 To see this, notice that once we pick a number, the probability that we 
did not pick the winner is 2/3. In other words, it is more likely that one of the 
other two numbers is a winner. So when we are given one of the other numbers 
and told that it is not the winner, it follows that the remaining other number 
has probability 2/3 of being the winner. So go ahead and switch.  
 We can write an experiment to test the claim by using a random number 
generator. The SICStus random number package can be loaded by placing the 
following statement within your program. 

:- use_module(library(random)). 

The random predicate returns a random integer within a specified range. For 
example, suppose we type the goal 

|?- random(5, 88, Out). 

The variable Out will be instantiated to a random integer in the range  

5 ≤ Out < 88.  

Now we’re in position to make a definition for the trial predicate, which will 
perform one trial of the experiment. 
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trial :- 
 random(1, 4, Guess),   %  guess a number from the set {1, 2, 3} 
 random(1, 4, Winner),  %  pick a winner from the set {1, 2, 3} 
 check(Guess, Winner). 
 
check(A, B) :- A = B, write(A), write(B), write(‘ Gave away a winner.’). 

check(A, B) :- write(A), write(B), write(‘ Switching paid off.’). 

To test the theory we need to observe what happens over many trials. Here is 
a recursively defined predicate to run one or more trials. 
 
trials(0) :- write(‘ Done with trials.’), nl. 
trials(N) :-  
 N >= 1, 
 trial, 
 K is N - 1, 
 trials(K). 

Experiments to Perform 

 1. Test the claim that switching pays by doing several trials. Switching 
should pay off about two thirds of the time. So make several sets of trials 
with sizes that are divisible by 3. For example, execute goals like 
trials(3), trials(6), trials(9), and so on. And do each of these several 
times. Make a table to record the statistics.  

 2. (Tracing and Spying) Do each of the following tracing tests on the trials 
program. In parts (b) and (c) you can observe the recursive calls to the 
trials predicate. 

  a. |?- trials(3). 

  b. |?- trace, trials(3). 

  c. |?- spy trials, trials(3).  
   (Use l to leap to each use of trials.) 

  d. |?- nospy trials, spy random, trials(3).  
   (Use l to leap to each use of random.) 

 3. Another way to see that switching is the best policy is to modify the 
problem to a set of 50 numbers and a 50-number lottery. If we pick a 
number, then the probability that we did not pick a winner ii 49/50. Later 
we are told that 48 of the remaining numbers are not winners, but we are 
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given the chance to keep the number we picked or switch and choose the 
remaining number. What should we do? We should switch because the 
chance that the remaining number is the winner is 49/50. 

  Modify the trial predicate for a 50 number lottery and do several trials to 
confirm that switching pays off almost all of the time. 

 4. Write a definition for a predicate “rands” to call the random number 
generator one or more times to write out random numbers from a given 
interval. For example, rands(A, B, N) means that  

random(A, B, Out), write(Out) 

  should be executed N times. Use the trials predicate as a prototype for 
your definition. Test your definition on several different intervals and for 
several different repetitions. 

3.4   Inductively Defined Sets 
A set S that is inductively defined if it can be described by naming some 
specific elements that are in S (the basis case) and giving one or more rules to 
construct new elements of S from existing elements of S (the induction case). 
It is also assumed that S contains only the elements constructed by these 
cases. For example, let S be defined as follows. 

Basis:  2 ∈ S. 
Induction: If x ∈ S then x + 3 ∈ S. 

If we let inS(x) stand for a test to see whether x ∈ S, then we can define the 
inS predicate in Prolog as follows. 

inS(2). 
inS(X) :- Y is X - 3, Y >=2, inS(Y). 

 
 We can form inductive sets from any operation we wish if we have some 
basis to start from. Such a set together with its operations forms a special 
kind of algebra called an induction algebra. For example, suppose that we 
have the induction algebra 〈A; g, e〉, where g is a unary operator on A and e ∈ A 
such that 

A = {e, g(e), g(g(e)), ..., gn(e), ... }. 

Since the set is infinite we can’t store it anywhere. But we can certainly 
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compute with its elements. Let the predicate inA(X) mean that X ∈ A. So we 
can represent the fact that e is a constant of A by writing the Prolog fact 

inA(e). 

Since g is a unary operation on A, we know that g(X) ∈ A if X ∈ A. In other 
words, we know that inA(g(X)) is true if inA(X) is true. In Prolog this becomes 
the recursive clause 

inA(g(X)) :- inA(X). 

So we have the following recursive definition for inA. 

inA(e). 
inA(g(X)) :- inA(X). 
 
Now we can test for any element of A. For example, to see whether g(g(e)) is an 
element of A we can type the goal 

|?- inA(g(g(e))). 

For this algebra, we can list “all” the elements of A (if we have the time) by 
typing the following goal and then forcing the system to continually backtrack. 

|?- inA(X). 

Experiments to Perform 

 1. Write down a description of the set S from the example. Then implement 
the definition for the inS predicate. Perform some tests to see whether 
the inS predicate does indeed test for membership in the set S that you 
described. Try some arguments that are not in S. Try some non integers 
too. 

 2. (Tracing and Spying) Do each of the following tracing tests on the inS 
predicate. In parts (b) and (c) you can observe the recursive calls to the 
inS predicate. 

  a. |?- inS(5). 
  b. |?- trace, inS(5). 
  c. |?- spy inS, inS(11).  
   (Use l to leap to each use of trials.) 
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d. Find out what happens when a variable is used as an argument to the 
inS predicate. What about backtracking? Why or why not?  

 3. For each of the following inductive definitions, write down a set 
description of A. Then give a Prolog definition for the inA predicate, 
where inA(x) means that x ∈ A. Test your definition against your set 
description of A and perform tests similar to those of Experiment (2). 

  a. Basis:   3 ∈ A. 
   Induction: if x ∈ A then 2x + 1 ∈ A. 

  b. Basis:   0 ∈ A. 
   Induction: if x ∈ A then x + 4 ∈ A and x + 9 ∈ A. 

 4. Implement the definition for the inA predicate to test for elements of A 
in the sample induction algebra 〈A; g, e〉. Perform each of the following 
tests. 

a. Test the definition on several terms, some of which are in A and some 
that are not.  

b. Do a trace of the goal |?- inA(g(g(e))).  

c. See if you can generate all the elements of the induction algebra with 
the following goal and backtracking (if you have an infinite amount of 
time). 

|?- inA(X).  

 5. Suppose that we have the induction algebra 〈T; ƒ, a, b〉, where ƒ is a 
unary operation on T and a, b ∈ T. Write a definition for the inT 
predicate, where inT(X) means that X ∈ T. Then perform each of the 
following tests. 

a. Test the definition on several terms, some of which are in T and some 
that are not.  

b. Do a trace of the goal |?- inT(f(f(b))).  

c. See if you can generate all the elements of the induction algebra with 
the following goal and backtracking (if you have an infinite amount of 
time). 

|?- inT(X).  

 Can backtracking generate all the elements of T? Why or why not? 

 6. Suppose that we have the induction algebra 〈U; h, a, b〉, where h is a 
binary operation on U and a and b are constants in U. Write a definition 
for the inT predicate, where inU(X) means  X ∈ U. For example, the 
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expressions h(a, b), h(h(b, a), b) and h(h(a, a), h(b, b)) represent elements 
of U. Then perform each of the following tests. 

a. Test the definition on several terms, some of which are in U and some 
that are not.   

b. Do a trace of the goal |?- inU(h(h(b, a), b)).  

c. See if you can generate all the elements of the induction algebra with 
the following goal and backtracking (if you have an infinite amount of 
time). 

|?- inU(X).  

 Can backtracking generate all the elements of U? Why or why not? 
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4 

Logic 

This chapter contains experiments that use Prolog to explore some basic 
ideas about logic. 

4.1   Negation and Inference Rules 
In this experiment we’ll examine relationships between Prolog and logic by 
examining negation and some inference rules. We know from logic that if A is 
a statement, then the negation of the A is the statement ¬ A, which is 
opposite in truth value from that of A. The modus ponens inference rule says 
that from the two statements A and A → B we can infer B. The hypothetical 
syllogism inference rule says that from the two statements A → B and B → C 
we can infer A → C.  
 In SICStus Prolog the “not” operation is denoted by the two-character 
string \+. For example, the expression \+ p should be written in place of the 
expression not p. As the experiments will show, the not operation in Prolog is 
better thought of as meaning “not provable from the program facts”. 

Experiments to Perform 

 1.  (Negation) Enter the following fact into the program. 

p(a). 

  Try the following two questions.  

 |?- p(a). 
 |?- \+ p(a). 
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  Now try the following two questions. 

 |?- p(b). 
 |?- \+ p(b). 

What does this experiment have to do with the formal idea of logical 
negation? 

 2. (If-then-else) We want to experiment with the statement “If c(X) then 
p(X) else q(X)” where c, p, and q are predicates. First, enter the following 
facts in the program: 

 c(b). 
 p(X) :- c(X). 
 q(X) :- \+ c(X). 

  Try out the following two questions: 

 |?- p(a). 
 |?- q(a). 

  Now ask the two questions: 

 |?- p(b). 
 |?- q(b). 

  What does this experiment have to do with logical if-then-else? 

 3. (If-then-else) For each of the following experiments enter the given data 
in the program and then ask the following questions.  

|?- s(a). 
|?- s(b). 
|?- s(c). 
|?- s(X). 

  Use backtracking whenever possible to find alternative answers. Each 
experiment is an attempt to define s(X) as the statement, “if p(X) then 
q(X) else r(X).” Compare the two tests and discuss whether one definition 
is preferable to the other. 

  a. p(a). b. p(a). 
   p(b).  p(b). 
   q(a).  q(a). 
   r(b).  r(b). 
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   s(X):- p(X), q(X).  s(X):- p(X), q(X). 
   s(X):- \+ p(X), r(X).  s(X):- r(X). 

 4.  (Modus ponens) Enter the following two facts into the program. 

p(a). 
q(X) :- p(X). 

  Ask the question 

|?- q(a).  

  Discuss how this experiment is related to the modus ponens inference 
rule. 

 5.  (Hypothetical syllogism) Enter the following three facts into the Prolog 
program: 

 r(X) :- q(X). 
 q(X) :- p(X). 
 p(a). 
  Now ask the question 

|?- r(a). 

Discuss how this experiment is related to the hypothetical syllogism 
inference rule. 

4.2   The Blocks World 
This experiment introduces the blocks world, which consists of a set of 
building blocks arranged in some way. We’ll examine some questions about 
the blocks world and see how negation can be used to describe some typical 
predicates.  
 To describe the fact that one block is on top of another block we’ll use the 
“on” predicate. For example, to say that block a is sitting on top of block b, 
we’ll write the Prolog fact  

on(a, b). 

Once we have a blocks world described by a set of these facts, there are many 
questions that can be asked and operations that can be performed. We’ll 
describe two such predicates. The “blocked” predicate tells us whether there is 
a block above a given block. It can be defined by the following Prolog clause. 
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blocked(X) :- on(Y, X). 

For example, if on(a, b) is in the program, then the following goal will succeed. 

|?- blocked(b). 

The “onTop” predicate tells us whether a block is on the top of a stack of one 
or more blocks. It can be defined by the following Prolog clause. 

onTop(X) :- \+ blocked(X). 

For example, if on(a, b) is in the program, then the following goal will succeed. 
|?- onTop(a). 

Experiments to Perform 

 1. Load the following program into the program. 

    on(a, b). 
    blocked(X) :- on(Y, X). 
    onTop(X) :- \+ blocked(X). 

  For each of the following goals, give the answer that you might expect, 
and then execute the goal to see whether Prolog agrees with your answer. 

 |?- onTop(a). 
 |?- onTop(b). 
 |?- onTop(X). 
 |?- \+ onTop(a). 
 |?- \+ onTop(b). 
 |?- \+ onTop(X). 

 2. Let’s extend the blocks program to allow us to move blocks around. For 
example, we’ll let move(a, b) mean that block a is to be moved onto block 
b if they are both on top. To accomplish this we’ll need to test whether 
the two blocks are on top and, if so, to retract one clause and to assert 
another clause. We’ll modify the program so that on(a, [ ]) means that a 
is on the bottom. Here is the extended program, which includes a set of 
blocks to use in testing. 

:- dynamic on/2. 
on(a, b). 
on(b, c). 
on(d, [ ]). 
on(c, [ ]). 
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onTop(X) :- \+ blocked(X). 
blocked(X) :- on(Y, X). 
move(X, [ ]) :- onTop(X), retract(on(X, Y)), assertz(on(X, [ ])). 
move(X, Y) :- onTop(X), onTop(Y), retract(on(X, Z)), assertz(on(X, Y)). 

a. Draw a picture of the blocks as given. Test the “move” predicate by 
constructing a single stack of the blocks so that from top to bottom 
they read a, b, c, d. Draw a picture of the blocks after each call of 
move. List the program of facts to confirm the result. 

b. Implement and test the bottom predicate to find the bottom of a 
stack of blocks. For example, if a stack of blocks has a on top and b on 
the bottom, then the query bottom(a, X) returns X = b. 

c. Implement and test the move_ordered predicate, where 
move_ordered(a, b) means move the stack of blocks with a on the top 
to the top of block b such that the blocks of the stack keep their same 
relative order. For example, if abc and de represent two stacks of 
blocks with tops a and d, then move_ordered(a, d) would move abc 
onto the top of d resulting in abcde. 

d. Implement and test the move_reversed predicate, where 
move_reversed(a, b) means move the stack of blocks with a on the top 
to the top of block b such that the blocks of the stack are reversed in 
relative order. For example, if abc and de represent two stacks of 
blocks with tops a and d, then move_reversed(a, d) would move cba 
onto the top of d resulting in cbade. 

4.3   Verifying Arguments in First-Order Logic 
In this experiment we'll see if we can get Prolog to verify an argument in first-
order predicate calculus. We’ll start with an example. Suppose we’re given the 
following argument in English: 

Every dog likes people or hates cats or both. Rover is a dog. Rover loves 
cats. Therefore some dog likes people. 

Let d(x) mean that x is a dog, lp(x) mean that x likes people, lc(x) mean that x 
loves cats, and let a = Rover. Then the argument can be formalized as follows: 

∀x (d(x) → lp(x) ∨ ¬ lc(x)) ∧ d(a) ∧ lc(a) → ∃x (d(x) ∧ lp(x)). 

A formal proof of this statement can be given as follows: 
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  1. ∀x (d(x) → lp(x) ∨ ¬ lc(x)) P 
  2. d(a)       P 
  3. lc(a)      P  
  4. d(a) → lp(a) ∨ ¬ lc(a) 1, UI 
  5. lp(a) ∨ ¬ lc(a)   2, 4, MP 
  6. lp(a)      3, 5, DS 
  7. d(a) ∧ lp(a)     2, 6, Conj 
  8. ∃x (d(x) ∧ lp(x))   7, EG  
   QED      1–8, CP. 

To see whether Prolog will verify such an argument, we need to give Prolog the 
three premises on lines 1, 2, and 3 and then give Prolog the goal on line 8. 
Before we can write line 1 as a Prolog statement, we need to do some 
rewriting: 

 ∀x (d(x) → lp(x) ∨ ¬ lc(x)) ≡ ∀x (¬ d(x) ∨ lp(x) ∨ ¬ lc(x)) 
         ≡ ∀x (¬ (d(x) ∧ lc(x)) ∨ lp(x)) 
         ≡ ∀x (d(x) ∧ lc(x) → lp(x)). 

The latter wff can now be written in Prolog as the following clause. 

lp(X) :- d(X), lc(X). 

The second and third premises can be written as the following Prolog facts. 

 d(a). 
 lc(a). 

The goal corresponding to the conclusion on line 8 can be written in Prolog as 
follows: 

|?- d(X), lp(X). 

Prolog returns the answer X = a, yes. 
 Note: If there is an existentially quantified wff as a premise, Prolog can’t 
handle it. So we need to use the result of EI as the premise. For example, if ∃x 
p(x) is a premise, then use the premise p(c) for a new constant c. 
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Experiments to Perform 

 1. Use Prolog to verify the following argument: 

  Every committee member is rich and famous. Some committee members 
are old. Therefore some committee members are old and famous. 

 2. Use Prolog to verify the following argument: 

  No human beings are quadrupeds. All men are human beings. Therefore 
no man is a quadruped. 

 3. Use Prolog to verify the following argument: 

  Some freshmen like all sophomores. No freshman likes any junior. 
Therefore no sophomore is a junior. 

4.4   Equality Axioms 
Suppose we have the following two axioms for an equality theory. 

 EA Axiom: ∀x (x = x) 
 EE Axiom: (t = u) ∧ p(... t ...) → p(... u ...).  

The EA Axiom together with universal instantiation implies the reflexive 
property t = t for any term t. We’ll call this result the EA Axiom too. 

 EA Axiom: t = t 

We can use these axioms to prove the following symmetric and transitive 
properties for terms: 
 (t = u) → (u = t) 
 (t = u) ∧ (u = v) → (t = v). 

For example, we have the following proof of the symmetric property: 

  1. t = u     P 
  2. t = t      EA Axiom 
  3. (t = u) ∧ (t = t) → (u = t) EE Axiom 
  4. (t = u) ∧ (t = t)  1, 2, Conj 
  5. u = t     3, 4, MP 
   QED     1–5, CP. 
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To see if Prolog validates this argument, enter the following facts in the 
program, where e(a, b) means a = b. 

 e(t, u). 
 e(X, X). 
 e(U, T) :- e(T, U), e(T, T). 

Now ask the following question.  

|?- e(u, t). 

Experiments to Perform 

 1.  Why does this Prolog experiment verify the six line proof of symmetry? 

 2. Consider the following proof of transitivity. 

  1. t = u    P 
  2. u = v    P 
  3. (u = v) ∧ (t = u) → (t = v) EE Axiom 
  4. (u = v) ∧ (t = u) 1, 2, Conj 
  5. t = v    3, 4, MP 
   QED    1– 5, CP 

  a. Construct a Prolog experiment to verify this proof. 

  b. Explain how your Prolog experiment verifies the transitivity proof. 

4.5   SLD-Resolution 
Let’s introduce some terminology regarding computations of logic programs. 
“SLD-resolution” is name of the inference rule—which is a special case of the 
resolution inference rule—that is used to perform computation in logic 
programs. The rule is always applied to a goal atom and a clause whose head 
unifies with the goal atom. An SLD-derivation is a sequence of applications of 
the SLD-resolution rule. An SLD-refutation is a finite SLD-derivation that 
ends with the empty clause. As an example, let’s consider the logic program P 
consisting of the following clauses. 

  p(a, b).  
  p(a, c).  
  p(b, d).  
  p(c, e).  
  g(X, Y) :- p(X, Z), p(Z, Y). 
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Let G be the goal 
|?- g(a, W). 

Here’s an SLD-refutation for P ∪ {G}. To start, we can resolve the goal with 
the 5th clause using the most general unifier θ1 = {X/a, W/Y}. The result is the 
goal 

|?- p(a, Z), p(Z, Y). 

We can resolve the leftmost atom of this goal with the 1st clause using the 
most general unifier θ2 = {Z/b}. The result is the goal 

|?- p(b, Y). 

We can resolve this goal with the 3rd clause using the most general unifier θ3 
= {Y/d}. The result is the empty clause 

 . 

So we have an SLD-refutation of P ∪ {G}. Here the refutation as a formal 
proof. 

1. p(a, b)  P 
2. p(a, c)  P 
3. p(b, d) P 
4. p(c, e) P 
5. g(X, Y) :- p(X, Z), p(Z, Y) P 
6. |?-g(a, W) P (the goal) 
7. |?-p(a, Z), p(Z, Y) 5, 6, R, θ1 = {X/a, W/Y}. 
8. |?-p(b, Y) 1, 7, R, θ2 = {Z/b} 
9.    3, 8, R, θ3 = {Y/d}.  

Applying the composition of the three unifiers to the given goal atom, we 
obtain g(a, W)θ1θ2θ3 = g(a, d), which is a logical consequence of the program P.  

Experiments to Perform 

 1. For the given program, trace the execution of the goal G. Then observe the 
relationships between the calls of the trace and the clauses on lines 6, 7, 
8, and 9 of the SLD-refutation. 

 2. For the given example there is another SLD-refutation. All SLD-
refutations of are contained as paths in the computation tree for P ∪ {G}. 
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a. Draw a picture of the computation tree (i.e., the SLD-tree) for the 
program and goal P ∪ {G}. Be sure to label each success leaf of the 
tree with the computed answer. 

b. Verify your answers by tracing the execution of the goal and by using 
backtracking. 

 3. We can define addition and multiplication of natural numbers as follows, 
where the natural numbers are represented as 0, s(0), s(s(0)), and so on. 

  add(0, Y, Y).  
  add(s(X), Y, s(Z)) :- add(X, Y, Z). 

  mult(0, Y, 0).  
  mult(s(X), Y, Z) :- mult(X, Y, W), add(Y, W, Z). 

  For example, the goal 

|?- add(s(s(0)), s(0), A). 

  computes the value of the expression 2 + 1. Similarly, the goal 

|?- mult(s(s(0)), s(s(0)), A). 

 computes the value of the expression 2*2. 

a. Construct an SLD-refutation for the goal |?- add(s(s(0)), s(0), A). Trace 
the execution of the goal to help verify that the refutation is correct. 

b. Construct an SLD-refutation for the goal |?- mult(s(s(0)), s(s(0)), A). 
Trace the execution of the goal to help verify that the refutation is 
correct. 

4.6   The Cut Operation 
The “cut” is an operation that is used to cut off backtracking when it is not 
wanted. For example, consider the following logical statement, where s, p, q, 
and r are all predicates. 

s(X) = if p(X) then q(X) else r(X). 

Suppose we implement the statement in Prolog with the following two 
clauses. 

 s(X) :- p(X), q(X). 
 s(X) :- r(X). 
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Now suppose we have a goal of the form 

|?- s(X).  

If p(X) is true, then we want q(X) to execute and we want the truth value of 
s(X) to be that of q(X). If p(X) is false, then we want r(X) to execute and we 
want the truth value of s(X) to be that of r(X). Everything looks fine. But 
suppose that p(X) is true and q(X) returns a no answer. Then backtracking 
may cause the computation to proceed to the second clause, which gives s(X) 
the value of r(X) when at the same time p(X) is true.  
 We can avoid this situation by inserting a cut, symbolized by the 
exclamation mark, !, after p(X) in the first clause to obtain the following 
implementation of “if p(X) then q(X) else r(X).” 

 s(X) :- p(X), !, q(X). 
 s(X) :- r(X). 

The cut is a nullary predicate that always succeeds as a goal and if it is 
encountered on backtracking, then it causes the backtracking to skip all 
clauses beginning with s(X).  
 Now suppose that the goal s(X) is given and p(X) is true. Then the cut will 
succeed and q(X) will be executed. If q(X) succeeds, then s(X) will be given its 
value as desired. And if q(X) fails, then backtracking will reach the cut and 
the cut will force backtracking to skip the second s clause. Thus s(X) fails too, 
just as q(X) did, as we desired. 
 Let’s consider the logic program consisting of the following clauses. 
Notice that the two clauses with “b” at the head form an “if d then e else f” 
statement. 

 a :- b, c. 
 a :- d, f. 
 b :- d, !, e. 
 b :- f. 
 c.  
 d :- g, h. 
 d.  
 e :- i, j. 
 e :- k. 
 f.  
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Experiments to Perform 

 1. Draw a picture of the SLD-tree for the goal |?- a.  

 2. Draw a closed curve around the subtree that will be pruned if the cut is 
encountered on backtracking.  

 3. Test the program with different goals to see that the cut performs as 
expected. For example, to confirm the results of parts (1) and (2) above, 
try out the goal  

|?- a.  

  Try some other goals too. For example, try the following goals.  

|?- b.     and     |?- c.  

  Use trace to see what is happening. Make some observations.  

Note: In sicstus a goal atom will cause the computation to abort with an 
existence error message if the predicate name of the atom does not 
appear as the head of any clause in the program. To get a failure rather 
than an abort, replace each occurrence of g, h, i, j, and k in the program 
with g(a), h(a), i(a), j(a), k(a). Then add the following facts to the program: 
g(b), h(b), i(b), j(b), k(b). Now a goal such as g(a) will fail but the 
computation will continue. 
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List Structures 

Lists are fundamental structures for representing information. In this chapter 
we’ll see how to represent and access lists and we’ll see a variety of ways that 
lists are used to represent sets and binary trees.  

5.1   List and String Notation 
A list is represented in Prolog by separating the elements with commas and 
placing square brackets at the ends. The empty list is denoted by [ ]. Some 
examples of lists are 

 [a, b, c] 
[17, 13, 11, 7, 5, 3, 2] 
[orange, orange, apple, banana] 
[X, f(A), hello, 3, -9.4] 
[a, [a, a], [a, [a, a]], a] 
[the, [ ], has, nothing, in, it]  

A list can be constructed or taken apart by using the symbol | to separate the 
head from the tail. For example, try the following goal. 

|?- [H|T] = [a, b, c]. 

Notice that H represents the head and T represents the tail of the list. We can 
also construct lists. For example, try the following goal. 

|?- A = a, B = [b, c], C = [A|B]. 

Next we’ll look at two goals that should confirm something that we know 
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about lists. Try out the following two goals only after you have thought about 
what the answer should be. 

 |?- [a] = [H|T]. 
 |?- [ ] = [H|T]. 

If a string of characters is enclosed within double quotes, then Prolog treats 
the string internally as a list of natural numbers representing the ASCII 
codes for the characters in the string. For example, the string “abcd” and the 
list [97, 98, 99, 100] are treated the same by Prolog. So strings can be 
processed as lists. Try out the following goals to get the idea. 

 | ?- "abcd"=X. 
 |?- “abcd” = [97, 98, 99, 100]. 
 |?- “abcd” = [H|T]. 
 |?- “X*(Y+Z)” = [H|T]. 

If a string of characters is not enclosed within double quotes, then Prolog 
treats the string as an atom that can’t be manipulated. Try out the following 
goals to get the idea. 

 | ?- abcd = X. 
 | ?- abcd = [H|T]. 
 | ?- a+b = X. 
 | ?- ‘a+b’ = X. 
 | ?- ‘a+b’ = [H|T]. 

Although atoms can’t be manipulated, there is a Prolog predicate that 
transforms between atoms and strings. The predicate “name” does the job. 
Try out the following goals to get the idea. 

 | ?- name(abc, X). 
 | ?- name(X, [97, 98, 99]). 
 | ?- name(abc, [97, 98, 99]). 
 | ?- name(a+b, X). 
 | ?- name('a+b',X). 

Experiments to Perform 

 1. Try out a few more examples to get used to the notation for lists. For 
example, try out the following goals. 

    |?- [A, B | C] = [1, 2, 3, 4, 5]. 
    |?- [[a, b], [c, d]] = [[A, B] | C]. 
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 2. Suppose that we want to construct a test to see whether a list consists of 
an even number of a’s. If we let p be the test predicate, then we should get 
yes answers on goals such as 

|?- p([ ]). 
|?- p([a, a]). 

  And we should get no answers to goals like 

|?- p([b]). 
|?- p([a, a, a]). 

  We can define p as follows. 

       p([ ]). 
       p([a, a|X]) :- p(X). 

  a. Test the definition on several lists.  

  b. To see what is going on, trace the goal |?- p([a, a]). 

c. Generate the set of terms for which p is true with the following goal 
and backtracking. 

|?- p(A). 

 3. Find a definition for the predicate q where q(t) is true if and only if t is a 
list that contains an odd number of b’s.  

a. Test the definition on several lists.  

b. To see what is going on, trace the goal |?- q([b, b, b]). 

c. Generate the set of terms for which q is true with the following goal 
and backtracking. 

|?- q(B). 

5.2   Sets and Bags of Solutions to a Query 
In this experiment we’ll examine some powerful tools for constructing sets and 
bags. 

The Setof Predicate 
When we work with sets in a programming language we normally work with 
lists that have no repeated elements. The Prolog language treats sets in this 
manner too and it uses list notation for sets. So, for example, when we think 
about a set like  

{a, b, c},  
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we must use the notation  

[a, b, c] 

to represent it in Prolog.  
 We can often describe a set by describing a property (i.e., a predicate) 
that the elements of the set must satisfy. For example, if we let p(a, b) mean 
that “a is a parent of b,” then the set S of all people who are parents can be 
described as  

S = {x | p(x, y) for some y} 

In terms of formal logic, the statement “p(x, y) for some y” can be written as ∃y 
p(x, y). So we can describe S as  

S = {x | ∃y p(x, y)}. 

Prolog provides a useful tool called the “setof” predicate that can be quite 
useful in calculating sets. We’ll introduce it with some examples. Suppose we 
put the following four facts in the program. 

p(a, b). 
p(a, c). 
p(b, d). 
p(c, e). 

Suppose that we want to find the set S of all letters that appear in the first 
argument of one of the facts. In other words, we want to calculate the set 
S that we defined above. Since there are only four facts in the program it is 
easy to see that  

S = {x | ∃y p(x, y)} = {a, b, c}.  

Let’s try to use the setof predicate to find S. In Prolog the notation Y^ means 
“there exists Y.” We can compute the set S with the following goal. 

| ?- setof(X, Y^p(X, Y), S). 

This goal returns S = [a, b, c].  
 For another example, suppose that we want to calculate the set of second 
arguments that have the letter a as a first argument of p. In other words, we 
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want to calculate the set 

S = {x | p(a, x)} = {b, c}. 

We can compute the set S with the following goal. 

| ?- setof(X, p(a, X), S). 

This goal returns S = [b, c].  
 For another example, suppose that we want to construct the set of 
“grandparent” relationships from p. If we let g(x, y) mean that x is a 
grandparent of y, then we can describe the set S of these relations as the 
following set. 

S = {g(x, y) | ∃z (p(x, z) ∧ p(z, y))}. 

We can compute the set S with the following goal. 

| ?- setof(g(X, Y), Z^(p(X, Z), p(Z, Y)), S). 

This goal returns S = [g(a, d), g(a, e)]. 

The Bagof Predicate 
A bag (or multiset) is like a set except that repetitions of elements can occur 
in a bag. Bags are represented in Prolog as lists. The bagof predicate works 
just like the setof predicate except that repeated elements are kept. For 
example, to find the bag B of all letters that appear in the first argument of 
one of the facts in the preceding example we type the following goal. 

| ?- bagof(X, Y^p(X, Y), B). 

This goal returns B = [a, a, b, c].  

The Findall Predicate 
The findall predicate is similar to the bagof predicate. It finds a bag of 
elements by examining all solutions to a query without any need to use 
quantifiers. For example, to find the bag B of all letters that appear in the 
first argument of one of the facts in the preceding example we type the 
following goal. 
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| ?- findall(X, p(X, Y), B). 

This goal returns B = [a, a, b, c].  

Experiments to Perform 

 1.  Try the sample goals for the given set of facts. Then, for each of the 
following cases, use the setof predicate to construct and test a goal to 
compute the given set.  

  a. C = {y | ∃x p(x, y)}  (children).  

  b. R = {c(y, x) | p(x, y)}  (child relations).  

 2. Modify the sample goals by eliminating quantified variables. For 
example, in place of the goal 

   |?- setof(X, Y^p(X, Y), S).  

  use the goal  

   |?- setof(X, p(X, Y), S). 

  Also try the goal 

   |?- setof(X, p(X, _), S). 

  In each test, be sure to backtrack as much as possible. Try to explain the 
difference in the outcomes. 

 3. The setof predicate returns no instead of the empty set. For example, 
using the given set of facts we have {x | ∃y p(x, a)} = ∅.  

a. Do a test to verify this fact.  

b. Define a new predicate “newsetof” that calls the setof predicate. But 
if the setof predicate returns no, then newsetof returns [ ]. Test 
newsetof on 3 nonempty sets and 3 empty sets. 

 4. Enter the following set of facts in the Prolog database.  

 p(0, 0, 0, 49). 
 p(0, 0, 1, 143). 
 p(0, 1, 0, 78). 
 p(0, 1, 1, 398). 
 p(1, 0, 0, 87). 
 p(1, 0, 1, 398). 
 p(1, 1, 0, 49). 
 p(1, 1, 1, 374). 
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  For each of the following cases, use setof, bagof, or findall to construct the 
indicated set or bag. 

a. The set of all facts of the form p(0, X, Y, Z) for some X, Y, and Z. 

b. The bag of all numbers N such that p(X, Y, 0, N) for some X and Y. 

c. The bag of all numbers N such that p(X, Y, Z, N) for some X, Y, and Z. 

d. The bag of all pairs [Y, Z] such that p(X, Y, Z, N) for some X and N. 

e. The set of all facts of the form p(X, Y, Z, N) where N < 100. 

5.3   List Membership and Set Operations 
Most versions of Prolog have a predicate to test whether an element is a 
member of a list. In SICStus Prolog the “member” predicate resides in the 
lists library. But it is easy to define in any case. Here is one definition that we 
can use. 

 member(H, [H|_]). 
 member(X, [_|T]) :- member(X, T). 

For example, the goal 

|?- member(a, [b, a, c, b]). 

succeeds with the answer yes. We can use the backtracking feature of Prolog 
to generate all elements in a list. For example, the goal 

|?- member(X, [b, a, c, b]). 

succeeds with X = b. With backtracking the other elements of the list will also 
be found. 

Subset and Equality Relations 
Since a set is a list with no repeated elements, we can use the member 
predicate to test for membership in a set too. This gives us a tool that can be 
used to construct many useful operations that involve sets. 
 We’ll start with the subset relation. Recall that A ⊂ B if and only if every 
element of A is an element of B. It follows from this that the empty set is a 
subset of every set. This gives us the basis case for the following recursive 
definition of the subset predicate. 
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 subset([ ], _). 
 subset([H|T], X) :- member(H, X), subset(T, X). 

For example, the following goal returns yes. 

|?- subset([a, b], [c, a, d, b]). 

Now we can use the subset relation as a tool to define a test for equality of 
sets. Recall that equality of sets can be described in terms of subset as 
follows. 

A = B if and only if A ⊆ B and B ⊆ A. 

So we can easily define the equal predicate as follows. 
 
 equal(A, B) :- subset(A, B), subset(B, A). 
 
For example, the following goal returns yes. 

|?- equal([a, b, c], [c, a, b]). 

Union, Intersection, and Difference of Sets 
Now we’ll look at a few standard operations to construct sets. We’ll start with 
the union operation. The union S of two sets A and B is the set 

S = A ∪ B = {x | x ∈ A or x ∈ B}. 

We might try to define the union operation by using the setof predicate as the 
follows. 
 
 union(A, B, S) :- setof(X, (member(X, A); member(X, B)), S). 
 
A problem with this definition, which we can observe with testing, is that the 
setof predicate will return a set only if the statement in the middle argument 
is true for some X. Otherwise a no answer will be returned. So a goal like 
 
 |?- union([ ], [ ], S). 
 
will return a no answer instead of giving S the value [ ]. This problem is easily 
fixed by adding the fact union([ ], [ ], [ ]) to the definition. So the complete 
definition looks like the following. 
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 union([ ], [ ], [ ]).  
 union(A, B, S) :- setof(X, (member(X, A); member(X, B)), S). 
 
Next, we’ll consider the intersection S of two sets A and B, which is the set 

S = A ∩ B = {x | x ∈ A and x ∈ B}. 

Suppose we attempt to define the intersection operation using the setof 
predicate as follows. 
 
 intersect(A, B, S) :- setof(X, (member(X, A), member(X, B)), S). 
 
In this case, the middle statement of the setof predicate will be false if either 
of both of A and B are [ ]. So we need to add cases to handle this problem as 
follows to get a proper definition. 
 
 intersect([ ], _, [ ]). 
 intersect(_, [ ], [ ]). 
 intersect(A, B, S) :- setof(X, (member(X, A), member(X, B)), S). 
 
Now we’ll describe two other set operations and leave the Prolog definitions 
as experiments. The difference between A and B (also called the relative 
complement of B in A) is the set of elements in A that are not in B, and it is 
denoted by A – B. A natural extension of the difference A – B is the symmetric 
difference of sets A and B, which is the union of A – B with B – A and is 
denoted by A ⊕ B. For example, if A = {a, b, c} and B = {c, d}, then we have  

A – B = {a, b}     and     A ⊕ B = {a, b, d}.  

Experiments to Perform 

 1. Check each of the following statements by hand and then use “member” 
to confirm your answers: 

  a. x ∈ {a, b}.  b. x ∈ {a, x}. c. a ∈ {a}. 
  d. ∅ ∈ {a, b}.  e. ∅ ∈ ∅. f. ∅ ∈ {∅}.  
  g. {a, b} ∈ {a, b, c}. h. {a, b} ∈ {{a, b}, b, c}. 

 2. Use “member” and Prolog’s backtracking feature to generate all 
elements in each of the following sets: 

  a. {a, b}. b. ∅. c. {∅}. d. {{a, b}, b, c}. e. {{a}, b, {{∅}}}. 
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 3. Test the “member” predicate to see how it behaves when variables are 
placed in various positions in a goal. 

a. Both arguments are variables. For example, try out the goal  

|?- member(A, S).  

 Use backtracking to discover any patterns. 

b. The first argument is a constant and the second is a variable. For 
example, try out the goal 

|?- member(a, S).  

 Use backtracking to discover any patterns. 

 4. Test the “subset” and “equal” predicates. Use the trace command on one 
test for subset. Try a few tests with variables in different argument 
positions. 

 5. Perform each of the following tests for the union and intersection 
operations.  

a. Test the definitions of the union and intersect predicates on a variety 
of sets, including [ ]. 

b. Remove the basis cases in the definitions of union and intersect 
predicates and observe what happens when either or both arguments 
is [ ].  

c. Try out the following alternative definition for union that uses two 
predicates from the SICStus Prolog lists library. 

    union(A, B, S) :- append(A, B, R), remove_duplicates(R, S).  

 6. Define and test the operation “minus” for set difference. For example, the 
goal  

|?- minus([a, b, c], [a, c, d], S).  

  should return S = [b]. Be sure to check the definition with [ ] as either or 
both of the first two arguments. 

 7. Recall that the symmetric difference of two sets A and B can be written 
in two ways:  

     A ⊕ B = (A – B) ∪ (B – A)  

     A ⊕ B = (A ∪ B) – (A ∩ B). 
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  Define two predicates, sym1 and sym2, to test each of these properties. 
For example, the goal  

|?- sym2([a, b, c], [b, c, d], S). 

  should return S = [a, d]. Be sure to check the definitions with [ ] as either 
or both of the first two arguments. 

 8. The following two properties of sets relate the subset operation to the 
operations of intersection or union. 

A ⊆ B if and only if A ∩ B = A. 
A ⊆ B if and only if A ∪ B = B. 

  Define two predicates, sub1 and sub2, to test each of these properties. 
For example, the goal  

|?- sub1([a, b], [c, b, a]). 

  should return yes. Be sure to check the definitions with [ ] for either or 
both of the arguments. 

5.4   List Operations 
This experiment focuses on defining and testing a variety of operations that 
use lists. The emphasis will be on short recursive definitions for predicates to 
implement the operations. We’ll give some examples and then continue with 
more problems in the experiments. 
 For example, suppose we need to find the length of a list. Since most 
versions of Prolog already have a length predicate for lists, we’ll use the name 
“lngth” for our definition. The definition can be constructed once we observe 
that the length of an empty list is 0 and the length of a nonempty list is 1 plus 
the length of its tail. This gives us the basis case ( the length of the empty list 
is 0) and the recursive case (the length of [H|T] is 1 plus the length of T) that 
we can use to construct a definition for the lngth predicate.  

lngth([ ], 0). 
lngth([Head|Tail], L) :- lngth (Tail, N), L is 1 + N.  

For another example, suppose we need to construct a predicate “cat” to 
concatenate two lists. For example, if [h, e] and [l, l, o] are two lists, then the 
goal 
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|?- cat([h, e], [l, l, o], A). 
 
should return A = [h, e, l, l, o]. Most Prolog implementations have a predicate 
to concatenate lists called the append predicate. But we’ll write our own 
definition for the cat predicate for practice. We’ll start with a few observations 
about the concatenation of lists. Certainly the concatenation of the empty list 
[ ] with any other list X is just X. For the nonempty case, it can be observed 
that the concatenation of a nonempty list [H|T] with any other list X takes 
the form [H|Y], where Y is the result of concatenating T with X. This gives us 
the basis and recursive cases needed for our definition of cat. 

  cat([ ], X, X). 
  cat([H|T], X, [H|Y]) :- cat(T, X, Y). 

Experiments to Perform 

 1. Test cat on a few lists. For example the goal 

|?- cat ([a, b], [c, a], A). 

  should return the answer A = [a, b, c, a]. Now try the same goal with the 
trace command. Try a few tests with variables in different argument 
positions. 

 2. Implement the following definition for the “last” predicate, which finds 
the last element of a non-empty list.  

   last([X], X). 
   last([_|T], L) :- last(T, L). 

  Test the predicate on several lists. Use the trace command on one test. 
Try a few tests with variables in different argument positions. 

 3. Construct a recursive Prolog program for the “first” predicate, which 
removes the rightmost element of a nonempty list. For example, the goal 

|?- first([a, b, c], X). 

  returns X = [a, b]. Test the predicate on several lists. Use the trace 
command on one test. Try a few tests with variables in different 
argument positions. 
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 4. Construct a recursive Prolog program for the “pairs” predicate, which 
takes two lists of equal length and outputs a list consisting of the 
corresponding pairs from the two input lists. For example, the goal 

|?- pairs([a, b, c], [1, 2, 3], X). 

  returns X = [[a, 1], [b, 2], [c, 3]]. Test the predicate on several pairs of 
lists. Use the trace command on one test. Try a few tests with variables 
in different argument positions. 

 5. Construct a recursive Prolog program for the “dist” predicate, which 
takes an element and a list and outputs a list of pairs made up by 
distributing the given element with each element of the list. For 
example, the goal 

|?- dist(x, [a, b, c], X). 

  returns X = [[x, a], [x, b], [x, c]]. Test the predicate. Use the trace 
command on one test. Try a few tests with variables in different 
argument positions. 

 6. Construct a recursive Prolog program for the “prod” predicate, which 
takes two lists and outputs the product of the two lists. For example, the 
goal 

|?- prod([1, 2], [a, b, c], X). 

  returns X = [[1, a], [1, b], [1, c], [2, a], [2, b], [2, c]]. Test the predicate. Use 
the trace command on one test. Try a few tests with variables in different 
argument positions. 

 7. Construct a recursive Prolog program for the “replace” predicate, which 
replaces all occurrences of an element in a list. For example, the goal 

|?- replace(a, o, [b, a, n, a, n, a], X). 

  returns X = [b, o, n, o, n, o]. Test the predicate. Use the trace command on 
one test. Try a few tests with variables in different argument positions. 
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 8. Construct a recursive Prolog program for the “power” predicate, which 
computes the set of all subsets of a finite set, represented as a list. For 
example, the goal 

|?- power([a, b], X). 

  should return X = [[ ], [a], [b], [a, b]] or some other ordering of the same 
sets. Test the predicate. Use the trace command on one test. Try a few 
tests with variables in different argument positions. 

 9. (Printing a List). Suppose that we wish to construct a recursive Prolog 
program for the “out” predicate, which outputs a list of elements with a 
given number of elements on each line. For example, if L is a list with 
100 items, then the goal  

|?- out(L, 15). 

  Should print nine lines with 15 items per line and the last line will have 
10 items. The following definition uses a predicate outLine(L, N, K), 
which prints N elements from list L and returns the list K of elements 
from L that remain to be printed. 
 
out(L, N) :- length(L, M), M > N, outLine(L, N, K), nl, out(K, N). 
out(L, N) :- length(L, M), outLine(L, M, [ ]), nl. 

  Define and test the outLine predicate. Then test the out predicate on 
several lists of varying sizes with a different number of items per line.  

  Notes: The predicate nl means “start a new line”. There is a predicate tab 
that might be useful. For example,  tab(2) means “tab 2 spaces”.  
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6 

List Applications 

This chapter contains a variety of experiments, all of which use recursive 
techniques to explore problems that use lists.  

6.1   Binary Trees 
Binary trees are inherently recursive in nature. In this experiment we’ll see 
how binary trees can be created, searched, and traversed by simple recursive 
algorithms. SICStus Prolog has a package of binary tree operations that can 
be accessed by 

| ?- use_module(library(trees)). 

The empty binary tree is denoted by the letter 

t. 

A nonempty tree is represented by an expression of the form 

t(Root, Left, Right), 

where Root is the root of the tree and Left and Right are the left and right 
subtrees, respectively. Lists can be transformed into binary trees by the 
predicate list_to_tree. For example, try out the following goal. 

|?-list_to_tree([a, b, c, d, e, f], Tree). 

We can observe the way that the tree is constructed by examining the output 
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and drawing a picture of the tree. But we can also build traversal algorithms. 
For example, here is an algorithm to traverse a binary tree in preorder and 
return the result as a list of nodes.  

pre(t, [ ]). 
pre(t(A, B, C), [A|X]) :- pre(B, U), pre(C, V), append(U, V, X). 

The append predicate concatenates two lists. It is in the SICStus Prolog 
library of list operations, which we can access as follows. 

| ?- use_module(library(lists)). 

The following goal will first transform the list [a, b, c, d] into a binary tree, 
and then, using our preorder predicate, construct the list of elements obtained 
by a preorder traversal of the tree. 

| ?- list_to_tree([a, b, c, d], T), pre(T, Out). 

 Suppose that we did not have the binary tree library available. We can 
easily construct a binary search tree from a list of numbers as follows, using 
the same notation for binary trees as above. 

build([ ], t). 
build([H|T], Tree) :- build(T, U), insert(H, U, Tree). 

The predicate “insert” takes a number and a binary search tree and returns a 
new binary search tree that contains the number. 

insert(X, t, t(X, t, t)). 
insert(X, t(A, L, R), t(A, New, R)) :- X =< A, insert(X, L, New). 
insert(X, t(A, L, R), t(A, L, New)) :- X > A, insert(X, R, New). 

Experiments to Perform 

 1. Do some testing to see whether list_to_tree constructs a binary tree of 
the smallest possible depth. Test the predicate on lists of length 3, 4, 7, 
and 8. For each test draw a picture of the corresponding tree.  

 2. The expression to represent a binary tree is not very inviting. To see the 
information in a binary tree we can traverse it by one of the standard 
methods, preorder, inorder, and postorder.  

a. Test the preorder predicate “pre” as follows 

| ?- list_to_tree([a, b, c, d], T), pre(T, Out). 
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b. Construct and test the predicate “in” to traverse a binary tree in 
inorder. Use the same tree as in part (a). 

c. Construct and test the predicate “post” to traverse a binary tree in 
inorder postorder. Use the same tree as in part (a). 

 3. Test the “build” and “insert” predicates on several lists. Be sure to try 
lists that are sorted in either direction as well as unsorted lists. E.g., 
[1,2,3,4], [4,3,2,1], and [3,1,4,2]. 

 4. Construct and test a Prolog predicate “isIn” to see whether a number is 
in a binary search tree. 

6.2   Arranging Objects 
The process of arranging things seems to be part of almost every kind of 
endeavor. In this section we’ll look at arbitrary arrangements (permutations) 
and specific arrangements (sorting). 

Permutations 
Suppose we want to generate permutations of a list. For example, suppose 
“perm” is a predicate such that the goal 

|?- perm([a, b, c], A).  

returns the permutation A = [a, b, c], and on backtracking will return the other 
five permutations of [a, b, c]. We can write a definition of “perm” as follows: 

  perm([ ], [ ]). 
  perm([H|T], [A|B]) :- delete(A, [H|T], X), perm(X, B). 

where “delete” is the predicate that deletes the first occurrence of an element 
from a list. For example, the goal 

|?- delete(a, [b, a, c], X). 

returns X = [b, c]. We can write a definition of “delete” as follows: 

  delete(H, [H|T], T). 
  delete(X, [H|T], [H|Y]) :- delete(X, T, Y). 
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Sorting 
Let’s write a sorting predicate for a list of numbers. We’ll use the idea of 
sorting by insertion, where the head of the list is inserted into the sorted 
version of the tail of the list. For the moment, we’ll assume that “insert” does 
the job of inserting an element into a sorted list. We’ll use the name “isort” 
because SICStus Prolog already has its own “sort” predicate. 

 isort(〈 〉) = 〈 〉  
 isort(h :: t) = insert(h, isort(t)) 

Now we’ll translate this definition into a Prolog program. 

 isort( [ ], [ ]). 
 isort([H|T], S) :- isort(T, A), insert(H, A, S). 

Of course, we can’t test this definition until we write the definition for the 
insert predicate. This predicate inserts an element into a sorted list by 
comparing the element with each member of the list until it reaches a larger 
element or the end of the list, at which time the element is placed in the 
proper position. Here’s a definition for the insert predicate in if-then-else 
form: 

 insert(a, x) =  if x = 〈 〉 then 〈a〉  
   else if a <= head(x) then a :: x 
   else hd(x) :: insert(a, tail(x))) 
   fi     

Here’s a Prolog definition for the insert predicate. 

 insert(A, [ ], [A]). 
 insert(A, [H|T], [A|[H|T]]) :- A =< H. 
 insert(A, [H|T], [H|S]) :- insert(A, T, S). 

Now we can test both the insert predicate and the isort predicate. 

 |?- insert(7, [1, 4, 9, 14], X). 
 |?- isort([4, 9, 3, 5, 0], X); 
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Experiments to Perform 

 1. Test “perm” with both arguments as atomic lists (e.g., perm([a, b], [b, 
a])), both as variables, and both cases where one argument is a variable 
and the other an atomic list. Use backtracking to observe any patterns. 

 2. Test “delete” with various combinations of the three arguments as 
variables. Use backtracking to observe any patterns. 

 3. Perform several tests of insert and isort and do at least one trace for 
each predicate. 

 4. What happens if we insert an element into a list that is not sorted? 

 5. Modify the definition of insert by replacing =< with <. Try out some tests 
on lists that have repeated elements to see what happens. Is one version 
more efficient than the other? 

 6. Try backtracking with both isort and insert and notice the results. Find a 
way to modify the definition of insert so that both isort and insert return 
“no” on backtracking. 

 7. Try out the sort predicate that comes with the system. Notice whether it 
removes repeated occurrences of elements. Write a second version of 
insert so that repeated occurrences of elements are removed. 

 8. (Slow Sorting). The following slowsort program sorts a list X of numbers 
by generating permutations of X until a sorted version is found. 

 slowsort(X, Y) :- perm(X, Y), sorted(Y). 
 sorted([ ]). 
 sorted([X]). 
 sorted([X|[Y|Z]]) :- X =< Y, sorted([Y|Z]). 
 perm([ ],[ ]). 
 perm([X|Y], [U|V]) :- delete(U, [X|Y], Z), perm(Z, V). 
 delete(X, [X|Y], Y). 
 delete(X, [Y|Z], [Y|W]) :- delete(X, Z, W). 

a. Try out some simple examples to see whether slowsort works. For 
example, try the goal 

|?- slowsort([4, 8, 2, 5], Y). 

 Do a trace of one goal to observe the order in which permutations are 
generated. 

b. Try out slowsort with X free and Y bound and then with both X and Y 
free. 
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c. Suppose that we replace the slowsort predicate with slowsort2 
defined as follows: 

slowsort2(X, Y) :- sorted(Y), perm(X, Y). 

 The two atoms in the body of slowsort have been swapped so that 
sorted is called without Y bound to any list. Do some tests to find out 
what happens. 

6.3   Simple Ciphers 
This experiment involves ciphers for encoding or decoding messages. To get 
things started we’ll construct a cipher that will encode or decode a string of 
text by means of a simple translation of the characters. For example, the 
message ‘abc’ translated by 5 letters becomes ‘fgh’. We'll construct a predicate 
‘cipher’ to do the job in such a way that the goal 

|?- cipher(abc, 5, B). 

will return the value B = fgh.  
 We’ll assume that the messages use only the alphabet of lowercase 
letters a to z, which have ASCII codes 97 to 122. With this assumption the 
cipher is easy to write once we figure out how to wrap around the end of the 
alphabet. For example, to translate the letter z (i.e., 122) by 5 we need to 
come up with the letter e (i.e., 101). All we need to do is add the two numbers 
(z – 97) and 5 modulo 26. Then add 97 to the result to get back within the 
proper ASCII range. Since we want to be able to use any integer as a key, we 
need to make sure that for any integer n we have 0 ≤ n mod 26 < 26. Since the 
Sicstus mod function returns negative results if n is negative, we'll write a 
predicate "mod2" to implement the mod function that we need. Here is the 
program. 

cipher(A, Key, B) :-  
 name(A, X),  
 change(X, Key, Y),  
 name(B, Y). 

change([ ], _, [ ]). 
change([H|T], Key, [R|S]) :- 
 mod2(H – 97 + Key, 26, A), 
 R is A + 97, 
 change(T, Key, S). 

mod2(X, Y, Z) :- Z is integer(X - Y*floor(X/Y)). 
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The program can be used to encode or decode a message. For example, 
consider the following goals. 

| ?- cipher(hello, 3, X). 
X = khoor ? 
yes 

| ?- cipher(khoor, -3, X). 
X = hello ? 
yes 

The cipher we’ve been talking about is called an additive cipher. The program 
can also be used as a tool by a cryptanalyst who doesn’t know the cipher but 
thinks it might be an additive cipher. An additive cipher is an example of a 
monoalphabetic cipher, which is a cipher that always replaces any character of 
the alphabet by the same character from the cipher alphabet. In our example 
the two alphabets are the same and each letter is replaced by the third letter 
to its right. 

Experiments to Perform 

 1. Implement the given program for an additive cipher. Perform the 
following tests to see whether the algorithm can be used for encoding and 
decoding. 

a. Perform tests on a message with two different keys. Then perform 
tests to decode the encoded messages. Do a test on messages that 
wrap around the left and the right ends of the alphabet.  

b. Make some tests on several different keys to be sure that a 
permutation of the cipher alphabet results. For example, try the goal 

|?- cipher(abcdefghijklmnopqrstuvwxyz, –2, X). 

 2. A multiplicative cipher is a monoalphabetic cipher that translates each 
letter by using a multiplier key.  

a. Modify the algorithm for an additive cipher to obtain an algorithm for 
a multiplicative cipher that does multiplication modulo 26. Perform 
tests on a message with two different keys.   

b. For a given key, will we get a permutation of the original alphabet? 
For example, try the following goal, and see whether the key 2 gives a 
permutation of the alphabet.  

 |?- cipher(abcdefghijklmnopqrstuvwxyz, 2, X). 
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  Instead of inspecting the output X by hand to see whether we have 26 
distinct letters, we can write a few lines of code to do the job. For 
example, we’ll convert the output string back into a list, make it into 
a set and then let the length predicate find the number of elements in 
the set. We’ll let distinct(X, L) mean that the string X has L distinct 
letters. Then we can write a simple definition for distinct as follows: 

 distinct(X, L) :- 
  name(X, Y),  
  setof(A, member(A, Y), Z), 
  length(Z, L). 
  
 For example, to check whether the number 2 is a good choice for a key, 

we can write the goal 
 
 |?- cipher(abcdefghijklmnopqrstuvwxyz, 2, X), distinct(X, L). 
 
 which might return something like 
 
   L = 13, 
   X = acegikmoqsuwyacegikmoqsuwy. 
 
 This tells us that X has only 13 distinct letters, so we know that 2 is 

not a good choice for a key. 
  Find which of the 26 keys 1, ... 26 yield permutations of the 

letters a...z. You could execute the preceding goal 26 times, once for 
each of the 26 keys. But first try to write a loop to do the job 
automatically. 

c. Which keys act as an identity (they don't change the message)? Is 
there always one letter that never changes no matter what the key? 
Do fractions work as keys? What about decoding (i.e., deciphering) a 
message? Do you need a new deciphering algorithm?  

3. An affine cipher is a monoalphabetic cipher that translates each letter by 
using two kinds of translation. For example, let A and M be the keys for 
an additive and a multiplicative cipher. Then we can transform an input 
string by first applying the additive cipher with key A to get an 
intermediate result. Then apply the multiplicative cipher with key M to 
obtain an output string. Let “affine” be the predicate for the cipher. A 
typical goal might look like  

|?- affine(hello, 3, 4, X). 
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  Write a program for affine and test it thoroughly. Are there any 
restrictions on the value of the keys? What about decoding (i.e., 
deciphering) a message? Do you need a new deciphering algorithm?  

6.4   The Birthday Problem 
The “birthday problem” illustrates that some coincidences are actually 
probable events. This experiment is designed to reinforce this idea. For 
example, we know that if we choose 23 numbers (e.g., birthdays) at random 
out of 365 possible numbers (e.g., the days of the year), then the probability 
that two of the chosen numbers will be the same is 0.507. For 30 numbers the 
probability is 0.706, and for 40 numbers the probability is 0.891. Consider 
the following Prolog program to generate a list of random numbers in the 
interval 1 to 365. 

 birth(0, [ ]).  
 birth(N, [Out|T]) :-  random(1, 366, Out),   
  K is N - 1,  
  birth(K, T). 

The random number package can be loaded by the following statement: 

|?- use_module(library(random)). 

After the program has been loaded, a goal such as 

|?- birth(23, L). 

will return a list L of 23 random integers in the range 1 to 365. 

Experiments to Perform 

 1. It is hard for our eyes to find duplicates in a list of random numbers. But 
it is not hard to write a program that for any given list of numbers 
returns a list of any duplicates that occur. Let dup(L, D) mean that D is a 
list of duplicates that occur in the list L. For example, the goal 

  |?- dup([2, 6, 2, 7, 2, 6, 9], D). 

  should return D = [2, 6]. Now we can let trial(N, D) mean that D is a list 
of duplicates that occur in a list of N random numbers in the interval 1 to 
365. The definition for trial is easy. 
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trial(N, D) :- birth(N, L), dup(L, D). 

  Your task is to construct and test the predicate “dup” so that trial works 
as desired. 

 2. Test the birthday paradox by doing 10 trials for each of the following 
values of N. In each case, observe how close the results of the 10 trials 
come to the actual probabilities.  

  a. 23 numbers. 

  b. 30 numbers. 

  c. 40 numbers. 

6.5   Predicates as Variables 
In first-order predicate calculus, the only arguments allowed in a predicate 
are terms. If a predicate is allowed as an argument to another predicate, then 
the logic is of second or higher order. Prolog has a mechanism for passing 
predicates as arguments. The two Prolog operations that are needed to 
accomplish the task are 

=..     and     call. 

These operations are used in a Prolog program whenever we want to process 
an arbitrary predicate that is passed as an argument to the program. For 
example, to process R(A, B), where R varies over different predicate names 
that have two arguments, we must write the following sequence of two 
statements. 

P =.. [R, A, B], call(P)  

For another example, to process R(A, B, C), where R varies over different 
predicate names that have three arguments, we must write the following 
sequence of two statements. 

P =.. [R, A, B, C], call(P)  

The following tests serve to introduce these two operations. 

Experiments to Perform 

 1. Ask the following questions to get used to the =.. operation. The answer 
to the last question will be an error message. 

  |?- A =.. [r, a, b]. 
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  |?- A =.. [r, A, B, c]. 
  |?- p(a, b) =.. [A, B, C]. 
  |?- R = r, A =.. [R, a]. 
  |?- A =.. [R, a]. 

 2. Enter s(a, b) into the data base. Then ask the following questions. The 
answer to the last question will be an error message. 

  |?- s(a, b). 
  |?- A =.. [s, a, b]. 
  |?- A =.. [s, a, b], call(A). 
  |?- S = s, A =.. [S, a, b], call(A). 
  |?- A =.. [S, a, b], call(A). 

 3. Discuss why the answers to the last question in each of the two tests are 
error messages. 

 4. (Reflexivity) Suppose we want to test whether a binary relation is 
reflexive. We’ll let “reflex” be the predicate to do the job. For example, let 
r be the binary relation over the set {a, b, c} given by the following facts. 

   r(a, b). 
   r(b, a). 
   r(a, a). 

  Then the goal 

   |?- reflex(r, [a, b, c]). 

  will return “no” since r is not reflexive. Here is a definition for reflex. 

 reflex(R, [ ]). 
 reflex(R, [H|T]) :- Q =.. [R, H, H], call(Q), reflex(R, T). 

a. Enter the relation r and the program into the program and then 
perform the following tests for reflexivity. 

  |?- reflex(r, [ ]). 
  |?- reflex(r, [a]). 
  |?- reflex(r, [b]). 
  |?- reflex(r, [a, b]). 
  |?- reflex(r, [a, b, c]). 
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b. Trace the execution of the following two goals to see how the 
computation proceeds. 

  |?- reflex(r, [a]). 
  |?- reflex(r, [a, b]). 

c. Create a reflexive binary relation s over the set {a, b, c} and enter it 
into the program. Then perform at least the following tests for 
reflexivity. 

  |?- reflex(s, [a]). 
  |?- reflex(s, [a, b]). 
  |?- reflex(s, [a, b, c]). 
  |?- reflex(s, [a, b, c, d]). 

6.6   Mapping Numeric Functions 
The built-in numeric functions in Prolog are evaluated with the “is” predicate. 
For example, try out the following goals. 
 
 |?- X is floor(-3.1). 
 |?- X is ceiling(-3.1). 
 |?- X is truncate(-3.1). 
 |?- X is exp(2, 16). 
 |?- X is log(2, 16). 
 
It is often convenient to examine a list of values for a function. For example, if 
ƒ is a function and [a, b, c, d] is a list of elements in the domain of ƒ, then we 
might want to examine the list [ƒ(a), ƒ(b), ƒ(c), ƒ(d)]. We’ll define the 
predicate “mapf” to do the job for any Prolog numeric function of a single 
variable that is evaluated with the “is” predicate. For example, the goal 
 
 |?- mapf(floor, [-1.5, 2.4, 8.9], X). 
 
returns X = [-2.0, 2.0, 8.0]. 
 
Here is the definition of mapf. 
 

mapf(F, [ ], [ ]). 
mapf(F, [H|T], [A|B]) :- G =.. [F, H],  
 A is G,  
 mapf(F, T, B). 
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We can use the following “gen” predicate to generate an increasing sequence of 
numbers where each differs from its predecessor by one. For example, the goal  

 |?- gen(–2.4, 6, X). 

returns X = [-2.4, -1.4, -0.4, 0.6, 1.6, 2.6]. Here is the definition of gen. 

gen(_, 0, [ ]). 
gen(S, N, [S|T]) :- K is S + 1,  
 M is N – 1,  
 gen(K, M, T). 
 

Now it’s easy to map a function different lists. For example, to map the floor 
function onto the list [-2.4, -1.4, -0.4, 0.6, 1.6, 2.6], type the following goal. 

 |?- gen(-2.4, 6, X), mapf(floor, X, Y). 

This goal returns Y = [-3.0, -2.0, -1.0, 0.0, 1.0, 2.0]. 

Experiments to Perform 

 1. Use gen and mapf to compare the following arithmetic functions over the 
rational numbers.  

   floor, ceiling, truncate, round. 

 How are they different? How are they alike? Find sets of rationals where 
they are equal/not equal.  

 2. Construct and test a program to define the predicate genSeq, where 
genSeq(S, I, N, L) means that L is a list of N numbers beginning with S 
such that succeeding numbers differ by interval I. Test the predicate by 
using it with mapf to explore values of the following functions. 

  a. round(X).  b. sin(X).  c. cos(X). 

6.7   Mapping Predicates 
If a predicate contains one or more input variables and an output variable, 
then we can map the predicate onto a list of input values to return a list of 
output values. We’ll define a “map” predicate to do the job. For example, 
suppose the program contains the following facts. 
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 q(a, x). 
 q(b, y). 
 q(c, z). 
 
Then the goal 
 
 |?- map(q, [a, b, c], A). 
 
will return 

 A = [x, y, z]. 

In the case of two or more input arguments, the map predicate will take as 
input the name of the predicate together with a list of inputs, where each 
input is a list of input arguments. For example, suppose the program contains 
the following facts. 

p(a, b, x). 
p(a, c, y). 
p(b, c, z). 

Then the goal 

 |?- map(p, [[a, b], [a, c], [b, c]], T). 

will return T = [x, y, z]. 
 
Here is the definition for the map predicate. 
 

% The basis case. 
map(P, [ ], [ ]). 
 
% The case for predicates with two or more input arguments. 
map(P, [H|T], [X|R]) :-  is_list(H),  
 append(H, [X], C),  
 Q =.. [P|C],  
 call(Q),  
 map(P, T, R). 
 
% The case for predicates with one input argument. 
map(P, [H|T], [X|R]) :- Q =.. [P, H, X],  
 call(Q),  
 map(P, T, R). 
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Experiments to Perform 

 1. If a function is a composition of several numeric functions, then it cannot 
be mapped with “mapf” because it does not have a name. So we must 
define it as a predicate and then use “map”. For example, we know that 
among binary trees with n nodes, that the minimum depth of any tree is 
floor(log2 n). Suppose that we want find out the value of the composition 
on the list [1, 2, 3, 4, 5, 5, 7, 8]. To do this we need to define a predicate 
that we can pass to the map function. For example, suppose we define 

   minDepth(N, X) :- X is floor(log(2, N)). 

  now we can map minDepth as follows 

   |?- map(minDepth, [1, 2, 3, 4, 5, 5, 7, 8], X).  

  Of course, we can use gen to generate lists of numbers. For example, if we 
want to map minDepth onto the list [1, 2, ..., 16], then the following goal 
will do the job. 

   |?- gen(1, 16, X), mapf(minDepth, X, Y). 

  Use map to test the following compositions and compare them over 
several ranges of values with minDepth. 

  a. ceiling(log(2, X)). 

  b. integer(log(2, X)). 

  c. truncate(log(2, X)). 

 2. The following two predicates provide alternative definitions for the mod 
function. The first uses the mod function provided by Prolog. 

  mod1(X, Y, Z) :- Z is X mod Y. 
  mod2(X, Y, Z) :- Z is integer(X - Y*floor(X/Y)). 

  Do they agree? If not, describe the differences between the two functions. 
Use map to test the two definitions over sets of integers. Hint: pick a 
modulus, say 5, and define  

  mod1_5(X, Y) :- mod1(X, 5, Y). 
  mod2_5(X, Y) :- mod2(X, 5, Y). 

  Then do some tests of mod1_5 and mod2_5 using gen and map. Be sure 
to include some negative integers in your tests. Also use different moduli. 
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6.8   Comparing Numeric Functions 
Suppose that we want to compare two arithmetic functions over a set of 
values. We’ll write a predicate “comparef” to do the job. For example, to 
compare whether floor and truncate agree on the 5-element set  

{–2.5, –1.5, –0.5, 0.5, 1.5}  

we type the goal 
 
 |?- gen(–2.5, 5, X), comparef(floor, truncate, X, Answer). 
 
The following results are returned. 
 
X = [-2.5,-1.5,-0.5,0.5,1.5], 
Answer = [false, false, false, true, true] 
 
which indicate that floor and truncate do not agree on the set. Here is a 
definition of the comparef predicate. 
 
 comparef(F, G, [ ], [ ]). 
 comparef(F, G, [H|T], [true|S]) :- A =.. [F, H], X is A, 
         B =.. [G, H],Y is B, 
         X =:= Y, 
         comparef(F, G, T, S). 
 comparef(F, G, [H|T], [false|S]) :- comparef(F, G, T, S). 
 
gen(_, 0, [ ]). 
gen(S, N, [S|T]) :- K is S + 1, M is N - 1, gen(K, M, T). 

Experiments to Perform 

 1. Use comparef to test pairs of the following functions.  

floor, ceiling, truncate, round.  

  How are they different? How are they alike? Find sets of rationals where 
they are equal/not equal.  

 2. To compare functions that are compositions of Prolog numeric functions, 
we need to represent them as predicates. For example, consider the 
following two compositions. 
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  minDepth(N, X) :- X is floor(log(2, N)). 
  alternateDepth(N, X) :- X is ceiling(log(2, N)). 

  But we cannot use comparef because the compositions are now 
predicates. But we can alter the definition of comparef to call predicates 
and then compare the results as follows 

 compare_cf(F, G, [ ], [ ]). 
 compare_cf(F, G, [H|T], [true|S]) :- A =.. [F, H, V1], call(A), 
  B =.. [G, H, V2], call(B), 
  V1 =:= V2, 
  compare_cf(F, G, T, S). 
 compare_cf(F, G, [H|T], [false|S]) :- compare_cf(F, G, T, S). 
 
 Compare the two functions on several lists to see whether they 
 are equal. Also compare them with the following compositions. 

 a. integer(log(2, N)).  
 b. round(log(2, N)) 
 c. truncate(log(2, N)). 

6.9   Comparing Predicates 
Problems can usually be solved in many different ways. So it is useful to be 
able to easily compare solutions. It would be nice if we had a tool to compare 
two predicates to see whether they agree over various domains. We’ll 
construct a predicate “compare” to do the job. For example, suppose we have 
the two predicates “pop” and “quiz” defined as follows. 

  pop(N, X) :- X is floor(log(2, N)). 

  quiz(N, X) :- X is ceiling(log(2, N)). 
 
To test the two predicates over the 6-element set {4, 5, 6, 7, 8, 9} we’ll type the 
goal 

|?- gen(4, 6, X), compare(pop, quiz, X, Result). 

The goal should return 

Result = [true, false, false, false, true, false]. 

This indicates that the two predicates agree on the set {4, 8} and they 
disagree on the set {5, 6, 7, 9}. Here is a definition for compare.  
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 compare(F, G, X, Result) :- map(F, X, A), 
  map(G, X, B), 
  compare_lists(A, B, Result). 

The compare–lists predicate compares two lists of the same length, 
outputting a list of true/false values. 

 compare_lists([ ], [ ], [ ]). 
 compare_lists([H|S],[H|T], [true|U]) :- compare_lists(S, T, U). 
 compare_lists([H|S],[K|T], [false|U]) :- compare_lists(S, T, U). 

Experiments to Perform 

 1. Suppose that we have two different definitions to test whether a number 
is even, given as “even1” and “even2” as follows. 

even1(N, true) :- N mod 2 =:= 0. 
even1(_, false). 

even2(N, true) :- N =:= 2*floor(N/2). 
even2(_, false). 

  Compare the two definitions over several sets of integers to see whether 
they agree. 

 2. The compare predicate returns a list of Boolean values that is not very 
interesting and can get cumbersome if we are testing two functions over a 
large set of integers. We can modify the program to return a subset of 
{true, false} by replacing the compare predicate with the following 
compare2 predicate, which uses the remove_duplicates predicate in the 
lists library. 

 compare2(F, G, X, Result) :- map(F, X, A), 
  map(G, X, B), 
  compare_lists(A, B, C), 
  remove_duplicates(C, Result). 

a. Use compare2 to test whether pop and quiz are equal over several 
different large ranges of integers. 

b. Use compare2 to test whether even1 and even2 from Experiment 1 
are equal over several different large ranges of integers.  

 3. Write two different definitions for a predicate to test whether a number 
is odd. Test your definitions to make sure that they agree on the numbers 
in the set {-1000, ... 1000}. 



 

86 

7 

Languages and Expressions 

This chapter contains experiments that use Prolog to explore some of the 
basic ideas of language parsing. We’ll also explore associated semantic 
actions to evaluate arithmetic expressions.  

7.1   Grammar and Parsing 
How can we implement a parser for the language of a grammar? If the 
grammar is context-free and all left recursion has been removed, then it is 
quite easy to build a parser in Prolog. 
 Recall that each step in a leftmost derivation of a string consists of 
replacing the leftmost nonterminal of a sentential form with the right side of 
a production. So each nonterminal often derives only a proper substring of the 
given string. For this reason, each nonterminal will be associated with a 
predicate having two arguments, one for the given string and one to hold the 
rightmost portion of the string not derived by the nonterminal.  
 Let’s do an example to help get the idea. Suppose we start with the 
following grammar. 

S → aST | Λ 
T → aSb | c 

Let s and t denote the predicates to be associated with nonterminals S and T, 
respectively. We’ll represent strings as lists for ease of notation. Now we can 
give the Prolog definitions of s and t as follows. 
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  s(X, Z) :- X = [a|R], s(R, U), t(U, Z). % S → aST  
  s(X, Z) :- X = Z.       % S → Λ 
  t(X, Z) :- X = [a|R], s(R, U), U = [b|Z]. % T → aSb  
  t(X, Z) :- X = [c|Z].       % T → c 
 
A typical goal tests whether a string is in the language. For example, to see 
whether the string aab is in the language, type the goal 
 
 |?- s([a, a, b], [ ]). 
 
Notice that the second argument of the goal is always [ ], which represents the 
empty string Λ. The reason for this is that the initial call to s asks whether 
there is a leftmost derivation of the entire input string. In other words, the 
goal asks whether there is a derivation S ⇒+ aab. 

Experiments to Perform 

 1. Test the example parser on five strings that are accepted and five strings 
that are not accepted. Then observe how computation takes place by 
tracing the goal  

|?- s([a, a, b], [ ]). 

 2. Write and test a parser for each of the following grammars and observe 
in each case how computation takes place by tracing a goal. 

a. S → aSb | Λ. 

b. S → AB | abA | bBab 
 A → aA | Λ 
 B → bB | c. 

7.2   A Parsing Macro 
Prolog has a nice macro facility for constructing a parser for the language of a 
grammar. For example, suppose we have the following grammar that we used 
in Section 7.1. 

S → aST | Λ 
T → aSb | c 

To create a parser for the language of this grammar we simply write the 
following "macro" clauses. 



88 Prolog  Experiments 

 

s --> “a”, s, t | [ ]. 

t --> “a”, s, “b”|”c”. 

These two clauses can also be written as four separate clauses, one for each of 
the four productions. 

 s --> “a”, s, t. 
 s --> [ ]. 
 t --> “a”, s, “b”. 
 t --> ”c”. 

So nonterminals must be lowercase names, terminal letters are strings in 
quotes, and the empty string is represented by the empty list. The operation --
> is macro operation that transforms the input clauses into other clauses that 
are used to do the parsing. The nonterminals are converted to predicates with 
two arguments. For example, to see if the string aab is derived by the 
grammar we write the following goal. 

|?- s(“aab ”, [ ]). 

 If we are going to be doing much testing it can be tedious to always have 
to type the double quotes and the empty list. We can avoid this tedium by 
defining our own predicate to parse strings of the grammar. For example, 
consider the following definition for a predicate p: 

  p([ ]) :- s([ ], [ ]). 
  p(X) :- name(X, Y), s(Y, [ ]). 

The Prolog predicate name is used to transform between a string X and a list 
Y of ASCII codes for the letters of X. Once we’ve added this definition to the 
program, we can find out whether the string aabb is derived by the grammar 
by writing the following simpler goal. 

|?- p(aabb). 

Note: Prolog parses in a top-down left-to-right fashion. So if a grammar is left 
recursive, then make sure to remove the left recursion before you write the 
Prolog clauses. 
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Experiments to Perform 

 1. Try out the parser for the example grammar on five strings that are in 
the language of the grammar and five strings that are not in the 
language of the grammar.  

 2. Find out how Prolog expands the parsing macros for the sample 
grammar by typing the following query. 

 |?- listing. 

a. Notice that the clauses in the listing use the predicate ‘C’, which is a 
system predicate defined by the single fact 

‘C’([H|T], H, T). 

 For example, the goal ‘C’(B, c, D) will succeed if B is a list with head c 
and tail D. In other words, C’(B, c, D) is the same as the Prolog 
statement B = [c|D]. In section 7.1 we constructed our own parsers 
using clauses that included statements such as B = [c|D] to recognize 
a letter. Compare the clauses in the listing with the clauses for the 
example parser given in Section 7.1.  

b. Observe how computation takes place by tracing the goal 

|?- s(“aab ”, [ ]). 

 Compare this trace with the trace that you did in Experiment 1 of 
Section 7. 1.  

 3. Write a grammar and a parser for each of the following languages. Test 
your results on several strings. 

  a. {anbn | n ∈ ℕ}. 

  b. {ambncm + n | m, n ∈ ℕ}. 

7.3   Programming Language Parsing 
In this experiment we’ll consider the problem of parsing a simple imperative 
programming language given by the following grammar: 

 P → S | ST 

 T → ;ST | Λ 

 S → while V <> 0 do P od | V := 0 | V := succ(V) | V := pred(V) 

 V → identifier 
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We'll assume for this experiment that an identifier is a single uppercase 
letter. With this assumption, a parser for this language can be written in 
Prolog as follows: 

 p --> s | s , t. 
 t --> ";", s, t | [ ]. 
 s --> "while", v, "<>", "0", "do", p, "od". 
 s --> v, ":=", "0" | v, ":=", "succ", "(", v, ")" | v, ":=", "pred", "(", v, ")". 
 v --> [D], {"A"=<D, D=<"Z"}. 

For example, to parse the statement 

while A <> 0 do A := pred(A) od 

type the following goal: 

|?- p("whileA<>0doA:=pred(A)od", [ ]). 

Note that the Prolog grammar does not allow for spaces between syntactic 
objects. For example, the goal 

|?- p(“X:=succ(Y)”, [ ]). 

will return yes. But the following goal will return no: 

|?- p(“X  :=     succ(Y)”, [ ]).  

Experiments to Perform 

 1. Test the parser with ten example program statements. Make sure you 
test all parts of the grammar. E.g., “A:=0;B:=succ(A)”, and so on. 

 2. Modify the Prolog implementation of the grammar so that an arbitrary 
number of spaces are allowed in the usual places in a program. Do ten 
tests to show that the experiment is a success. 

7.4   Arithmetic Expression Evaluation 
In this experiment we’ll consider the problem of parsing and evaluating 
arithmetic expressions. For example, consider the following grammar. 

 E → N–E | N 
 N → D | DN 
 D → decimal digit. 
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This grammar defines subtraction to be right associative. For readability in 
Prolog we'll use expr, nat, and dig to represent the nonterminals E, N, and D 
and obtain the following implementation. 

 expr --> nat, "–", expr | nat. 
 nat --> dig | dig, nat.  
 dig --> "0"|"1"|"2"|"3"|"4"|"5"|"6"|"7"|"8"|"9". 
or alternatively, 
 dig --> [D], {"0"=<D, D=<"9"}. 

To evaluate an arithmetic expression we need to introduce variables to hold 
values and we need to introduce semantic actions to compute values. The 
semantic actions are placed in parentheses to separate them from the macro 
code. Here is the modified grammar with value variables and semantic 
actions added. 

 expr(A) --> nat(B, T), "–", expr(C), {A is B – C}. 
 expr(A) --> nat(B, T), {A is B}. 
 nat(X, 1) --> dig(X). 
 nat(X, T) --> dig(A), nat(B, S), {T is 10*S, X is A*T + B}. 
 dig(X) --> [D], {"0" =< D, D =< "9", X is D – "0"}. 

Note: The extra variable in nat is used to keep track of the tens place of the 
leading (i.e., leftmost) digit of each number. This is needed because parsing is 
from left to right. 

For an example, suppose we want to evaluate the expression 

12 – 3 – 9.  
We type the following goal: 

|?- expr(A, "12–3–9", [ ]). 

The answer will be returned as 

A = 18.  

Experiments to Perform 

 1. Do five tests to evaluate correct expressions. Do five tests of incorrect 
expressions. 

 2. Try to discover how evaluation takes place during parsing. First, list the 
contents of the program to see the code that is generated by the 
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grammar. Then trace the execution of a simple example goal such as 

|?- expr(A, "5–2", [ ]). 

 3. Modify the Prolog implementation of the grammar so that any number of 
spaces are allowed in the usual places. Do three tests such as the goal, 

|?- expr(A, "5 –   2", [ ]). 

 4. The following grammar that makes subtraction left associative. 

 E → E–N |N 
 N → D | DN 
 D → decimal digit. 

  For example, the expression 4 – 5 – 6 means (4 – 5) – 6. Since the 
grammar is left recursive, it can’t be transformed directly into Prolog. So 
we’ll remove left recursion to obtain the following grammar. 

 E → N R 
 R → – N R | Λ 
 N → D | DN 
 D → decimal digit. 

  This grammar is not as “natural” as the left recursive grammar. What 
semantics can we add to the productions to accomplish the evaluation of 
an expression? One solution is to construct a postfix representation of the 
expression during the parse and then evaluate it after the parse is 
completed. For example, the parse of 4 – 5 – 6 would construct the list [4, 
5, –, 6, –]. Then an evaluation predicate could evaluate it. Here is the 
Prolog code to build the postfix list for the parsed expression, where eval 
is the evaluation predicate. 

  expr(A) --> nat(B, T), r(C), {eval([B|C], A)}. 
  r(A) --> "–", nat(B, T), r(C), {A = [B, –|C]}. 
  r(A) --> [ ], {A = [ ]}. 

  eval([A], A). 
  eval([A, B, –|T], Ans) :- X is A – B, eval([X|T], Ans). 

 
a. Test the eval predicate to make sure that it evaluates postfix 

expressions represented as lists. For example, test the goal 

 |?- eval([4, 5, –, 6, –], Ans). 
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b. Do five tests to evaluate arithmetic expressions. For example, test 
the goal 

|?- expr(A, “4–5–6”, [ ]). 

 5. The following grammar expands the description given in (4) of arithmetic 
expressions to those that use the operations +, –, and * together with 
parentheses. 

E → E + T | E – T | T 
T → T * F | F 
F → (E) | N 
N → D | D N 
D → decimal digit. 

  Remove the left recursion and add semantics actions to the resulting 
grammar as was done in (4). You will also have to modify the eval 
predicate to handle the two operations of + and *. Test the resulting 
grammar with several expressions that use various combinations of the 
operations. 
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8 

Computability 

The experiments in this chapter use Prolog to explore some of the basic 
computational models. We’ll be looking at various kinds of finite automata, 
pushdown automata, and Turing machines. We’ll also see the string 
processing models of Markov and Post. 

8.1   Deterministic Finite Automata 
Let’s see how to build an interpreter for executing deterministic finite 
automata. The input for the interpreter will be a DFA in the form of a 
transition table. If t is the transition function for a DFA, then we’ll represent 
the state transitions in the Prolog program as a collection of facts having the 
following form: 

t(state, letter, nextstate). 

To indicate that state i is the start state we’ll write the fact 

start(i). 

To indicate that state s is a final state, we’ll write the fact 

final(s). 

For example, the following DFA recognizes the language of the regular 
expression ab*. 
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This DFA in Prolog as the following facts. 

 start(0). 
 t(0, a, 1). 

 t(0, b, 2). 
 t(1, a, 2). 
 t(1, b, 1). 
 t(2, a, 2). 
 t(2, b, 2). 
 final(1). 

The interpreter will process strings that are written as lists of letters. For 
example, to test whether the string abb is accepted by a DFA, we write the 
string as a list of letters and type the following goal: 

|?- accept([a, b, b]). 

This action starts the execution of the following DFA interpreter, where the 
path predicate tries to find out whether a path exists from the start state to a 
final state that consumes all letters of the input string. 

 accept(S) :- start(I), path(I, S). 

 path(K, [ ]) :- final(K). 

 path(K, [H|T]) :- t(K, H, N), path(N, T). 

Experiments to Perform 

 1. Calculate the transition function t for the following DFA and enter it as a 
collection of Prolog facts into an input file. 
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a. Use the DFA interpreter to test five strings that are accepted by the 
DFA and five strings that are rejected by the DFA. 

b. To gain a better understanding of how the DFA interpreter works, 
trace the execution on a string that is accepted and on a string that is 
rejected by the DFA.  

 2. See whether you can generate some strings that are accepted by the DFA 
by using backtracking of goals that contain variables in place of letters. 
For example, try out goals like the following with backtracking.  

  |?- accept([A, B, C, D, E]). 
  |?- accept([H|T]). 

 Note: If an infinite loop occurs, do a trace to see what is happening. 

 3. Find a DFA for the regular expression  

aa*b + b(a + b).  

  Draw a picture of the DFA. Use the DFA interpreter to test the DFA on 
five strings that are accepted and five strings that are rejected. Try 
backtracking with goals that contain variables in place of letters. 

8.2   Nondeterministic Finite Automata 
Let’s see how to build an interpreter for executing nondeterministic finite 
automata. The input for the interpreter will be an NFA in the form of a 
transition table. If t is the transition function for an NFA, then we’ll represent 
the state transitions in the Prolog program as a collection of facts having the 
following form: 

t(state, symbol, nextstate). 

We’ll use the empty list [ ] to denote the symbol Λ. To indicate that state i is 
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the start state we’ll write the fact 

start(i). 

To indicate that state s is a final state, we’ll write the fact 

final(s). 

For example, the following NFA recognizes the language of the regular 
expression a*ab + a*. 

  

We can represent this NFA in Prolog as the following facts. 

 start(0). 
 t(0, a, 0). 
 t(0, a, 1). 
 t(0, [ ], 2). 
 t(1, b, 2). 
 final(2). 

The interpreter will process strings that are written as lists of letters. For 
example, to test whether the string aab is accepted by the NFA, we write the 
string as a list of letters and type the following goal: 

|?- accept([a, a, b]). 

This action starts the execution of the following NFA interpreter, where the 
path predicate tries to find out whether a path exists from the start state to a 
final state that consumes all letters of the input string. 

 accept(S) :- start(I), path(I, S). 
 path(K, [ ]) :- final(K). 
 path(K, [H|T]) :- t(K, H, N), path(N, T). 
 path(K, X) :- t(K, [ ], N), path(N, X). 
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Experiments to Perform 

 1. Calculate the transition function t for the following NFA and enter it as a 
collection of Prolog facts into an input file: 

Start 0 1
a

a

a

b
3

2
!,  b

b

 

a. Use the NFA interpreter to test five strings that are accepted by the 
NFA and five strings that are rejected by the NFA. 

b. To gain a better understanding of how the NFA interpreter works, 
trace the execution on a string that is accepted and on a string that is 
rejected by the NFA.  

 2. See whether you can generate some strings that are accepted by the NFA 
by using backtracking of goals that contain variables in place of letters. 
For example, try out goals like the following with backtracking.  

  |?- accept([A, B, C]). 
  |?- accept([a|T]). 
  |?- accept([b|T]). 
  |?- accept([H|T]). 

 Note: If an infinite loop occurs, do a trace to see what is happening. 

 3. Find an NFA for the regular expression  

ab*c + b*c + ac*b.  

  Draw a picture of the NFA. Use the NFA interpreter to test the NFA on 
five strings that are accepted and five strings that are rejected. Try 
backtracking with goals that contain variables in place of letters. 

 4. Since any DFA is an NFA by default, we should be able to execute any 
DFA on the NFA interpreter. Try it out with a DFA of your own choosing.  
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 5. We want to include the capability of executing NFAs with instructions 
that include lists of next states. For example, instead of writing the two 
instructions t(0, a, 1) and t(0, a, 2), we write the single instruction  

t(0, a, [1, 2]).  

  Modify the NFA interpreter so that, in addition to executing instructions 
with single next states as it does now, it also executes instructions that 
have lists of next states. So it should be able to handle instructions of 
the form   

   t(state, letter, [next1, next2, ...]) 
   t(state, [ ], [next1, next2, ...]) 

 Hint: Add two more “path” clauses to execute lists of states. 

  Test the definition on the following NFA to accept strings for the 
language of the regular expression abb* + bb* + baa* + aa*. 

start(0). 
t(0,a,1). 
t(0,b,2). 
t(0,[ ], [1, 2]). 
t(1,b,[1,3]). 
t(2,a,[2,3]). 
final(3). 

8.3   Mealy Machines 
Recall that a Mealy machine is a finite automaton with output where each 
edge has a label of the form a/x, where a is a letter of the input alphabet and 
x is an output letter. For example, a typical edge from state i to state j with 
input a and output x looks like the following. 

 
j

a/x
i

 

If the machine is in state i with input letter a, then the letter x is output and 
the machine moves to state j. There is a start state but no final state since we 
are not concerned with acceptance or rejection of an input string. A Mealy 
machine has one edge out of each state for each letter of the alphabet. For 
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example, let’s construct a Mealy machine to collapse substrings of two or 
more identical letters over the alphabet {a, b} to a single letter. For example, 
the input abbaaabbbaa will yield the output ababa. Here is a picture of the 
machine. 

 

We can represent state transitions as facts of the form 

t(state, input, output, nextstate). 

To indicate that state i is the start state we’ll write the fact 

start(i). 

For example, the preceding Mealy machine can be represented by the 
following facts, where the output symbol Λ is represented by an empty list. 

 start(0). 
 t(0, a, a, 1). 
 t(0, b, b, 2). 
 t(1, a, [ ], 1). 
 t(1, b, b, 2). 
 t(2, a, a, 1). 
 t(2, b, [ ], 2). 

It’s quite easy to construct an interpreter for Mealy machines. We’ll represent 
input and output strings as lists. Let the predicate mealy(A, B) mean that for 
a given Mealy machine with input list A the output after execution is the list 
B. For example, for the preceding machine, the goal 

|?- mealy([a, b, b, a, a, a, b], X). 

will return X = [a, b, a, b].  With these assumptions the Mealy interpreter can 
be written as the following simple program, where the execute predicate tries 
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to find a path that consumes all letters of the input string and at the same 
time keeps track of the output string. 

 mealy(In, Out) :- start(I), execute(I, In, Out). 
 execute(S, [ ], [ ]). 
 execute(S, [H|T], Y) :- t(S, H, [ ], N), execute(N, T, Y). 
 execute(S, [H|T], [X|Y]) :- t(S, H, X, N), execute(N, T, Y). 

Experiments to Perform 

 1. Use the Mealy machine interpreter and the example Mealy machine to 
perform each of the following tests. 

a. Test the Mealy machine interpreter and the Mealy machine on five 
input strings. 

b. To gain a better understanding of how the Mealy machine interpreter 
works, trace the execution on at least two strings.  

 2. See whether you can generate some input and/or output strings for the 
example Mealy machine by using backtracking of goals that contain 
variables as arguments. For example, try out goals like the following 
with backtracking to see if any patterns occur.  

  |?- mealy(X, Y). 
  |?- mealy(X, [a]). 
  |?- mealy(X, [b]). 
  |?- mealy(X, [c]). 

 3. Construct a Mealy machine to decode a string of binary digits of even 
length, where the code is defined as follows: 00 = a, 01 = b, 10 = c, 11 = d. 
For example, the string 010011 decodes to the string bad. Representing 
strings as lists, the goal  

|?- mealy([0, 1, 0, 0, 1, 1], X). 

   will return X = [b, a, d]. Use the Mealy interpreter to test the machine on 
five input strings. Do a trace on one of the tests.  

  Note: If you wish, you may create a more sophisticated code together with 
a Mealy machine to decode strings. 

 4. Construct a Mealy machine to model a candy machine that dispenses 
two kinds of 15 cent candy bars and accepts only nickels and dimes. Let n 
and d represent nickel and dime, respectively. Let a and b represent 
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buttons to push for candy bars alpha and beta, respectively. Assume that 
the machine always returns correct change and if a button is pushed with 
less than 15 cents in the machine, then the coins are returned. For 
example, the goal 

|?- mealy([d, d, a], X). 

  should return X = [n, alpha] or X = [alpha, n]. Use the Mealy interpreter 
to test your Mealy machine on five input strings. Do a trace on one of the 
tests.  

8.4   Moore Machines 
Recall that a Moore machine is a finite automaton with output that occurs at 
each state. For example, if the output associated with state i is x, we’ll write 
i/x inside the state circle. A typical state transition for a Moore machine can 
be pictured as follows: 

a
i/x j/y

 

Each time a state is entered, an output takes place. So the first output always 
occurs as soon as the machine is started. There is a start state but no final 
state since we are not concerned with acceptance or rejection of an input 
string. A Moore machine has one edge out of each state for each letter of the 
alphabet. For example, let’s construct a Moore machine to interchange a’s and 
b’s in strings over the alphabet {a, b}. For example, the input abab will yield 
the output baba. Here is a picture of the machine. 

 

We can represent a state transition as a fact of the form 

t(state, output, input, nextstate). 

To indicate that state i is the start state we’ll write the fact 

start(i). 
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For example, the example Moore machine can be represented by the following 
facts, where the output symbol Λ is represented by an empty list. 

 start(0). 
 t(0, [ ], a, 1). 
 t(0, [ ], b, 2). 
 t(1, b, a, 1). 
 t(1, b, b, 2). 
 t(2, a, a, 1). 
 t(2, a, b, 2). 

It’s easy to construct an interpreter for Moore machines. For example, for this 
machine, the goal 

|?- moore([a, b, a, b], X). 

will return X = [b, a, b, a]. The Moore machine interpreter is a simple 
program, consisting of the following clauses, where the execute predicate tries 
to find a path that consumes all letters of the input string and at the same 
time keeps track of the output string. 

 moore(In, Out) :- start(I), execute(I, In, Out). 
 execute(S, [ ], [ ]) :- t(S, [ ], Y, Z). 
 execute(S, [ ], [X]) :- t(S, X, Y, Z). 
 execute(S, [H|T], Y) :- t(S, [ ], H, N), execute(N, T, Y). 
 execute(S, [H|T], [A|Y]) :- t(S, A, H, N), execute(N, T, Y). 

Experiments to Perform 

 1. Use the Moore machine interpreter and the example Moore machine to 
perform each of the following tests. 

a. Test the Moore machine interpreter and the Moore machine on five 
input strings. 

b. To gain a better understanding of how the Moore machine interpreter 
works, trace the execution on at least two strings.  

 2. See whether you can generate some input and/or output strings for the 
example Moore machine by using backtracking of goals that contain 
variables as arguments. For example, try out goals like the following 
with backtracking to see if any patterns occur.  

  |?- moore(X, Y). 
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  |?- moore(X, [a, b, a, b]). 
  |?- moore(X, [c]). 

 3. Construct a Moore machine to collapse substrings of two or more 
identical letters over the alphabet {a, b} to a single letter. For example, 
the input abbaaabbbaa will yield the output ababa. Use the Moore 
interpreter to test your Moore machine on five input strings. Do a trace 
on one of the tests. 

8.5   Pushdown Automata 
In this experiment we’ll construct an interpreter for pushdown automata. 
Suppose we write a pushdown automaton as a set of Prolog facts of the 
following two forms. 

     t(state, letter, top, operation, nextstate). 
     start(state). 
     final(state). 

In order to write a simple interpreter for PDAs, we’ll need to make a few 
assumptions. The input string will be represented as a list. The stack is a list 
that is initialized with the value [e], which means e is always the starting 
stack symbol. We’ll reserve the letters p and n for the operations pop and nop, 
and we’ll agree to let the push instruction be represented by the symbol that 
is to be pushed. For example, in the instruction  

t(0, a, e, b, 1)  

the letter b means push b.  
 For example, a PDA to recognize the language {anbn | n ∈ ℕ} can be 
written as the following set of facts. 

 start(0). 
 t( 0, a, e, a, 0 ). 
 t( 0, a, a, a, 0 ). 
 t( 0, b, a, p, 1 ). 
 t( 0, [ ], e, n, 2 ). 
 t( 1, b, a, p, 1 ). 
 t( 1, [ ], e, n, 2 ). 
 final(2). 

To check whether this PDA accepts the string aabb, we type the following goal: 
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|?- accept([a, a, b, b]). 

This action starts the execution of the PDA interpreter, which we will describe 
next. 
 The interpreter executes a computation sequence, where the “path” 
predicate represents an ID containing the current state, the current input 
string, and the current stack. If the input is empty and the current state is 
final, then the computation ends successfully. Otherwise, if the input is not 
empty, the computation continues by looking up an appropriate instruction. 
The predicate oper(Stack, O, NewStack) means “perform stack operation O on 
Stack, resulting in NewStack.” The interpreter can be written as follows, 
where S is the list representing the input string: 

 accept(S) :- start(I), path(I, S, [e]). 
 path(K, [ ], Stack) :- final(K). 
 path(K, [A|B], [H|T]) :- t(K, A, H, O, N), 
   oper([H|T], O, NewStack), 
   path(N, B, NewStack). 
 path(K, S, [H|T]) :- t(K, [ ], H, O, N), 
  oper([H|T], O, NewStack), 
  path(N, S, NewStack). 
 oper([H|T], p, T). 
 oper(Stack, n, Stack). 
 oper(Stack, A, [A|Stack]).  

Experiments to Perform 

 1. Use the PDA interpreter and the example PDA to perform each of the 
following tests. 

a. Test five strings that are accepted and five strings that are rejected.. 

b. To gain a better understanding of how the PDA interpreter works, 
trace the execution on two acceptable strings and a string that is not 
accepted.  

 2. Find a PDA for the language of all strings over {a, b} that have the same 
number of a’s and b’s. Test your solution with the PDA interpreter. 

 3. Modify the PDA interpreter so that it executes PDAs that accept by 
empty stack rather than by final state. The following PDA accepts the 
language {anbn | n ∈ ℕ} by empty stack. 

 t( 0, a, e, e, 0 ). 
 t( 0, [ ], e, p, 1 ). 
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 t( 1, b, e, p, 1 ). 
 start(0). 

  Test this PDA on your modified interpreter by checking five strings that 
are accepted and five strings that are rejected. 

 4. Modify the PDA interpreter so that it executes PDA instructions that 
contain lists of stack operations. For example, the interpreter should be 
able to execute an instruction like  

 t( 0, b, a, [p, b, a], 1 ). 

  This instruction performs three stack operations: pop, push(b), push(a). 

8.6   Turing Machines 
We’ll describe a logic program interpreter for Turing machines. The 
interpreter will execute any Turing machine with a single two-way infinite 
tape. We’ll make the following assumptions about any Turing machine that is 
to be executed by the interpreter.  

 The read/write head is at the left end of any nonempty input string. 
 The letters l, s, and r represent the moves of the read/write head.  
 The symbol # denotes a blank tape cell.  
 Instructions are represented as facts of the following form. 

t(state, letterToRead, letterToWrite, move, nextState). 
start(state). 

For example, a Turing machine to add 1 to a binary number can be written as 
the following set of facts: 

 start(0). 
 t( 0, 0, 0, r, 0 ). 
 t( 0, 1, 1, r, 0 ). 
 t( 0, #, #, l, 1 ). 
 t( 1, 0, 1, s, halt ). 
 t( 1, 1, 0, l, 1 ). 
 t( 1, #, 1, s, halt ). 

To find the result of adding 1 to the binary number 1011, we type the goal 

|?- compute([1, 0, 1, 1], Out). 
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This action starts the execution of the Turing machine interpreter, which in 
turn executes a computation sequence of the given Turing machine. When a 
“halt” instruction is executed the variable Out will be returned as a list that 
represents the tape.  
 The interpreter starts out by placing the input list onto the tape. The 
tape is represented by the following three items.  

“Cell” is a variable that holds the tape symbol in the current cell pointed 
at by the read/write head. 

“Left” is a list that holds the information on the tape to the left of the 
current cell. The head of the list holds the symbol immediately to the left 
of the current cell. 

“Right” is a list that holds the information on the tape to the right of the 
current cell. The head of the list holds the symbol immediately to the 
right of the current cell. 

 For example, the input list [1, 0, 1, 1] is represented on the tape as  

left = [ ],     Cell = 1,     Right = [0, 1, 1]. 

 The “find” predicate tries to find and execute an instruction. Its first 
argument is the state. The next three arguments are the representation of the 
tape, and the last argument holds the variable for the output tape. The 
“move” predicate makes a move and returns a new representation of the tape 
in variables A, B, and C. The “continue” predicate checks for the halt state. If 
it’s found, the output tape is constructed and placed in the last variable. 
Otherwise the execution continues by calling the “find” predicate to execute 
another instruction. The clauses for the interpreter are listed as follows: 

 compute([ ], OutTape) :-  
  start(I), 
   find(I, [ ], #, [ ], OutTape).  

 compute([Head|Tail], OutTape) :-  
   start(I), 
   find(I, [ ], Head, Tail, OutTape). 

 find(State, Left, Cell, Right, OutTape) :-  
   t(State, Cell, Write, Move, Next), 
   move(Move, Left, Write, Right, A, B, C), 
   continue(Next, A, B, C, OutTape). 
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 continue(halt, Left, Cell, Right, OutTape) :- 
   reverse(Left, R), 
   append(R, [Cell|Right], OutTape). 

 continue(State, Left, Cell, Right, OutTape) :- 
   find(State, Left, Cell, Right, OutTape). 

 move(l, [ ], Cell, Right, [ ], #, [Cell|Right]). 
 move(l, [Head|Tail], Cell, Right, Tail, Head, [Cell|Right]).  
 move(s, Left, Cell, Right, Left, Cell, Right). 
 move(r, Left, Cell, [ ], [Cell|Left], #, [ ]). 
 move(r, Left, Cell, [Head|Tail], [Cell|Left], Head, Tail). 

When the halt state is reached, the tape is reconstructed as a single list with 
entries in the proper order.  To do this we need to reverse the “Left” part of the 
tape before concatenating it to the list [Cell|Right]. The predicate “reverse(X, 
Y)” sets Y to the reverse of list X. The output tape consists of all cells that 
were used during the computation. The predicate “append(X, Y, Z)” sets Z to 
the concatenation of the two lists X and Y. These predicates can be accessed 
by including the following statement with the source. 

 :- use_module(library(lists)). 

 For the example Turing machine, to add 1 to the binary number 1011, we 
write the goal  

|?- compute([1, 0, 1, 1], Out).  

This causes the Turing machine interpreter to execute the instructions of the 
Turing machine and, upon halting, to return the list 

Out = [1, 1, 0, 0, #], 

which represents the binary number 1100. Notice in this example that the 
symbol # is included in the output tape. This is because the computation used 
that extra cell when it scanned to the right looking for a blank.  

Experiments to Perform 

 1. Use the Turing machine interpreter and the sample Turing machine to 
perform each of the following tests. 

a. Test five input strings that represent binary numbers as lists like 

[0],    [1, 1, 1, 1],    [0, 1, 1, 0, 0, 1, 1],    and so on.  
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b. What happens when the sample Turing machine is started on a blank 
tape [ ]? Is there any significance to this? 

c. To gain a better understanding of how the Turing machine interpreter 
works, trace the execution on at least two strings.  

 2. Write a Turing machine to accept strings of the form {anbncn | n ∈ ℕ}. 
Test your solution with the Turing machine interpreter. 

 3. Notice that the Turing machine interpreter stops with a “no” answer 
whenever it tries to execute an instruction that is not in the program. For 
example, suppose that we have the example Turing machine in the 
program and we type the following goal. 

|?- compute([a, 1, 0], X). 

  Since there is no instruction with “a” in the “letterTo Read” position, the 
find predicate fails and thus the goal fails. Suppose that instead of a 
“no” answer we want the tape returned along with a message like  

“Error: no instruction to execute of the form t(State, Cell, _, _, _).”  

  Modify the interpreter to accomplish this action and test it with a 
sample Turing machine. Hint: Add a second clause to the find predicate. 

 4. Write and test a multi-tape Turing machine interpreter that executes 
any Turing machine having one or more tapes. Use a goal of the following 
type to execute such a Turing machine. 

|?- compute(Input, Output). 

  where Input is a list of input lists that will initialize each of the tapes, 
and Output is a variable that returns a list of lists representing the 
content of the tapes. For example, suppose that a typical instruction for a 
2-tape Turing machine is written as the Prolog fact 

t(0, [a, b], [b, a], [r, s], 1). 

  Suppose further that we wanted to execute this Turing machine with 
initial tape configurations such as [a, b, a, b] and [a, a, a, a, a]. Then we 
would write the following goal. 

|?- compute([[a, b, a, b], [a, a, a, a, a]], Output). 
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8.7   Markov Algorithms 
Markov algorithms, which are string processing functions, form a 
computational model that has the same power as Turing machines. We’ll 
describe a logic program interpreter for Markov algorithms.  
 A Markov algorithm over an alphabet A is a finite ordered sequence of 
productions x → y, where x, y ∈ A*. Some productions may be labeled with the 
word “halt,” although this is not a requirement. A Markov algorithm trans-
forms an input string into an output string. In other words, a Markov algo-
rithm computes a function from A* to A*. Here’s how the execution proceeds:  
 

Given an input string w, the productions are scanned, starting at the 
beginning of the ordered sequence. If there is a production x → y such that 
x occurs as a substring of w, then the leftmost occurrence of x in w is 
replaced by y to obtain a transformed string. If x → y is a halt production, 
then the process halts with the transformed string as output. Otherwise, 
the process starts all over again with the transformed string, where 
again the scan starts at the beginning of the ordered sequence of 
productions. If a scan of the instructions occurs without any new re-
placements of the current string, then the process halts with the current 
string as output. 

 

 If a production has the form Λ → y, then it transforms any string w into 
the string yw. For example, suppose we wish to transform any string of the 
form ai into the string ai+1. The following single production Markov algorithm 
will do the job: 

Λ → a  (halt). 

This production causes the letter a to be appended to the left of any input 
string, after which the process halts. 
 Here is a simple example of a Markov algorithm to interchange a’s and 
b’s in a string over {a, b}. For example, the string abba will be transformed 
into the string baab. The algorithm consists of the following productions. 
 

#a → b# 
#b → a# 
# → Λ (halt) 
Λ → # 

 
 The interpreter is quite simple to construct once we decide on the 
representation for the productions. Since strings are represented internally as 
lists, we’ll assume that all strings are lists of characters represented in 
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ASCII. Thus we need to put double quotes around each string. The empty 
string will be represented by adjacent double quotes, ““. Since an instruction 
may have halt attached, we’ll assume that each production is a Prolog fact of 
the following form, where the third argument indicates whether the 
production has halt attached. 

m(Left, Right, no/halt). 

For example, the productions of the example Markov algorithm are 
represented by the following Prolog facts. 
 
 m(“#a”, “b#”, no). 
 m(“#b”, “a#”, no). 
 m(“#”, “”, halt). 
 m(“”, “#”, no). 
  
With the preceding assumptions we can write a simple interpreter to execute 
any Markov algorithm. The predicate “markov” will initiate the computation. 
For example, the goal 

|?- markov(“abba”, Out). 

will return the answer Out = baab. Here are the definitions, including an 
access call to the lists library.  

:-use_module(library(lists)). 
 
markov(In, Out) :- mark(In, ListOut), name(Out, ListOut). 
 
mark(In, Out) :-  
 m(L, R, Status), 
 replace(L, R, In, X), 
 check(Status, X, Out). 
mark(In, In). 
 
check(halt, X, X). 
check(no, X, Out) :- mark(X, Out). 
 
The “replace” predicate checks to see whether the sublist L occurs in the list 
In and if so, it replaces the leftmost occurrence of L by R. For example, the 
goal replace([a, b], [x, y, z], [b, a, b, a, b], X) returns X = [b, x, y, z, a, b]. The 
“prefix” predicate tests for a prefix and if found, it returns the rest of the list. 
For example, the goal prefix([a, b], [a, b, e, f, g], R) returns R=[e, f, g]. Here are 
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the definitions. 
 
replace(L, R, In, Out):- prefix(L, In, T), append(R, T, Out). 
replace(L, R, [X|Xs], [X|Out]) :- replace(L, R, Xs, Out). 
 
prefix([ ], X, X). 
prefix([H|T], [H|S], Rest):- prefix(T, S, Rest). 
 

Experiments to Perform 

 1. Use the Markov interpreter and the example Markov algorithm to 
perform each of the following tests. 

a. Test five input strings. 

b. To gain a better understanding of how the Markov interpreter works, 
trace the execution on at least two strings.  

 2. Construct and test a Markov algorithm to collapse strings over {a, b} into 
strings with no repeated substrings of a’s or b’s. For example, the string 
aaabbbabbb will be transformed into the string abab.  

 3. Construct and test a Markov algorithm to reverse a string over the 
alphabet {a, b}. For example, if the input string is abbaa, then the output 
string is aabba. 

8.8   Post Algorithms 
Post algorithms, which are string processing functions, form a computational 
model that has the same power as Turing machines. We’ll describe a logic 
program interpreter for Post algorithms.  
 A Post algorithm over an alphabet A is a finite set of productions that are 
used to transform strings. So a Post algorithm computes a function from A* to 
A*. The productions have the form s → t, where s and t are strings made up of 
symbols from A and possibly some variables. A variable X occurs in s if and 
only if it occurs in t. There is no particular ordering of the productions in a 
Post algorithm, unlike the ordering of productions in Markov algorithms. 
Some productions may be labeled with the word “halt,” although this is not 
required. 
 The computation of a Post algorithm proceeds by string pattern match-
ing. If the input string matches the left side of some production, then we con-
struct a new string to match the right side of the same production. If the pro-
duction is a halt production, then the computation halts, and the new string is 
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output. Otherwise, the process continues by trying to match the new string 
with the left side of some production. If no matches can be found, then the 
process halts, and the output is the current string.  
 A Post algorithm can be either deterministic or nondeterministic. 
Nondeterminism occurs if some computation has a string that matches the 
left side of more than one production or matches the left side of a production 
in more than one way. Any nondeterministic Post algorithm can be rewritten 
as a deterministic Post algorithm. So no additional power is obtained by non-
determinism. 
 The interpreter is quite simple to construct once we decide on the 
represention for the productions. Since strings are represented internally as 
lists, we’ll assume that all strings are lists of characters represented in 
ASCII. Thus we need to put double quotes around each string. The empty 
string will be represented by adjacent double quotes, ““. Since an instruction 
may have halt attached, we’ll assume that each production is a Prolog fact of 
the following form, where the third argument indicates whether the 
production has halt attached. 

p(Left, Right, no/halt). 

For example, a deterministic Post algorithm to remove the rightmost 
occurrence of the letter b from any string over {a, b} can be written as follows. 
 

Xb → X (halt) 
Xa → X#a@ 
Xa#Y → X#aY 
Xb#Y@ → XY (halt) 
#X@ → X (halt) 

 
These instructions are represented as the following Prolog facts. 
 
p([X, "b"], [X], halt). 
p([X, "a"], [X, "#a@"], no). 
p([X, "a#", Y], [X, "#a", Y], no). 
p([X, "b#", Y, "@"], [X, Y], halt). 
p(["#", X, "@"], [X], halt). 
 
With the preceding assumptions we can write an interpreter to execute any 
Post algorithm. The predicate “post” will initiate the computation. For 
example, the goal 

|?- post(“abbba”, Out). 
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will return the answer Out = abba. Here are the definitions, including an 
access call to the lists library.  

:-use_module(library(lists)). 

post(In, Out):- 
 po(In, ListOut), 
 flatten(ListOut, List), 
 name(Out, List). 

po(In, Out) :- 
 p(L, R, Status), 
 match(L, In), 
 check(Status, R, Out). 
po(In, In). 

check(halt, R, R). 
check(no, R, Out) :- 
 flatten(R, F), 
 po(F, Out). 

match([ ], [ ]). 
match([X], X). 
match([H|T], Input):- 
 var(H), 
 getVariables(T, Vars, String, Rest),    % get variables 
 partition(Input, String, Left, Right), 
 assign([H|Vars], Left), 
 match(Rest,Right). 
match([H|T], Input):- 
 is_list(H), 
 prefix(H, Input, Rest), 
 match(T, Rest). 

getVariables([H|T],[H|K], String, Rest):- 
 var(H), 
 getVariables(T, K, String, Rest). 
getVariables([H|T], [ ], H, T) :- is_list(H). 
getVariables([ ], [ ], [ ], [ ]). 

partition(In, Pattern, [ ], Right) :- prefix(Pattern, In, Right). 
partition([H|T], Pattern, [H|L], Right) :- partition(T, Pattern, L, Right). 

assign([X|T], R) :- var(X), X=R, assign(T,[ ]). 
assign([ ], _). 
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The “prefix” predicate tests for a prefix and, if found, returns the rest of the 
list. For example, the goal prefix([a, b], [a, b, e, f, g], R) returns R=[e, f, g]. The 
“flatten” predicate flattens a list of lists into a list of elements. Here are the 
definitions. 
 
prefix([ ], X, X). 
prefix([H|T], [H|S], Rest):- prefix(T, S, Rest). 
 
flatten([H|T], Out):- 
 is_list(H), 
 flatten(H, F), 
 flatten(T, S), 
 append(F, S, Out). 
flatten([H|T],[H|S]):- flatten(T, S). 
flatten([ ], [ ]). 

Experiments to Perform 

 1. Implement the interpreter for Post algorithms and test it in the following 
ways. 

a. Test the sample Post algorithm to remove the rightmost occurrence of 
the letter b from any string over {a, b}. Be sure to test the algorithm 
on a variety of strings such as: the empty string; the single letter a; 
the single letter b; all a’s; all b’s; b’s followed by a’s; a’s followed by b’s; 
and intermixed a’s and b’s. 

b. To gain a better understanding of how the Post interpreter works, 
trace the execution on at least two strings.  

c. The Post algorithm consisting of the single production XaY → XY is a 
nondeterministic algorithm to remove all occurrences of the letter a 
from any string over any alphabet. Use the interpreter to test this 
Post algorithm on at least five input strings. 

 2. Construct and test a Post algorithm to collapse strings over {a, b} into 
strings with no repeated substrings of a’s or b’s. For example, the string 
aaabbbabbb will be transformed into the string abab.  

 3. Construct and test a Post algorithm to reverse a string over the alphabet 
{a, b}. For example, if the input string is baabba, then the output string 
is abbaab. 
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9 

Problems and Projects 

The experiments in this chapter use Prolog to explore a variety of problems 
and projects that have lengthier programming needs. 

9.1   Lambda Closure 
When constructing a DFA from an NFA, we need to calculate the lambda 
closure of various sets of states. In this experiment, the predicate “closure” 
will do the job. For example, suppose we are given an NFA with states 0, 1, 2, 
3, 4. To calculate the closure of the set {0, 1} we can type the following goal: 

|?- closure([0, 1], [0, 1, 2, 3, 4], C). 

In the following program for closure, as in the NFA experiment, an NFA table 
is represented as a collection of facts of the form 

t(state, symbol, nextstate). 

The lamba transitions for the NFA are represented in the form  

t(state, [ ], nextstate). 

We can write a program for the closure predicate as follows. 

 %  The closure predicate. 
 closure(S, [ ], [ ]). 
 closure(S, [H|T], Ans)  
     :- inClosure(H, S), closure(S, T, B), append([H], B, Ans). 
 closure(S, [H|T], Ans) :- closure(S, T, Ans). 
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 % Test to see if X is in the closure of S. 
 inClosure(X, S) :- member(X, S). 
 inClosure(X, [H|T]) :- trans(H, X). 
 inClosure(X, [H|T]) :- inClosure(X, T). 

 % Test to see if (I, J) is in the transitive closure of t via lambda. 
 trans(I, J) :- t(I, [ ], J). 
 trans(I, J) :- t(I, [ ], K), trans(K, J). 

Experiments to Perform 

 1. Suppose we have the following NFA table:  

a          b          Λ

0          ∅      {1, 2}     {1}

1         {2}        ∅         ∅

2          ∅        {2}        {1}    

Start

Final

 

  For this NFA, compute the lambda closures of the following sets by hand, 
and then use the closure predicate to verify your answers. 

 a. {0}. b. {1}. c. {2}. d. {0, 1}. e. {1, 2}.   

 2. It can get tedious to type goals that always include the states of an NFA. 
For example, if there are 12 states in some NFA {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 
10, 11} and we want the closure of the set {0, 1}, then we have to type the 
goal 

|?- closure([0, 1], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], C). 

  Modify the program so that you only need to type the input set whose 
closure is to be found. Do this by putting the states in the data base 
along with the transition table. For example, we can create a states 
predicate and enter a fact like the following. 

states([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]). 

  Then the modified program can “pick up” the states that it needs to use 
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in the computation from the states predicate. So the closure goal can be 
modified to something like 

|?- newClosure([0, 1], C). 

 3. Use “Thompson’s Construction” to find an NFA for the regular 
expression (aa + b)*(ab)*. Then use the closure predicate to compute the 
lambda closure of each entry of the transition table.  

 4. In Exercise (2) the closure predicate was modified by putting the states of 
an NFA in the program. Modify the closure predicate by computing the 
list of states without having them in the program. In other words, try to 
find an algorithm that constructs the list of states from the transition 
table of the NFA. 

9.2   Transforming an NFA into a DFA 
In this experiment, we’ll develop and test an algorithm to transform any NFA 
to an equivalent DFA such that both machines recognize the same regular 
language. We’ll assume that an NFA is represented in the program in the 
usual way. For example, suppose we have the following NFA. 

Start 0 1
a

a

a

b
3

2
!,  b

b

!

 

This NFA will be represented by the following set of facts.  

start(0). 
t(0, a, 1). 
t(0, b, 2). 
t(0, [ ], 2) 
t(1, b, 1). 
t(1, b, 3). 
t(1, [ ], 2). 
t(2, a, 2). 
t(2, a, 3). 
final (3). 
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Given an NFA in the program, we’ll translate the NFA into an equivalent 
DFA by typing the goal 

|?- dfa(S, T, F). 

The program will return the start state S, the table T of DFA instructions as 
a list, and the list F of final states.  
 We’ll need the list processing library, which can be accessed by including 
the following statement with the source program. 

:- use_module(library(lists)). 

Here is the defintion of the dfa predicate. 

dfa(S, T, F) :- 
  getAlphabet(Alphabet),   % get DFA alphabet 
  getStartState(S),    % get DFA start state 
  getTable([S], Alphabet, T),  % get DFA table 
  getFinals(T, F).    % get DFA final states 
 
The getAlphabet and getStartState predicates can be written as follows. 

getAlphabet(Alphabet):- 
  setof(X, Y^Z^t(Y, X, Z), A), 
  delete(A, [ ], Alphabet). 
 
getStartState(S):- start(I), closure([I], S). 
 
The getTable predicate constructs the DFA table by rows, beginning with the 
row indexed by the start state of the DFA. As long as new entries appear in 
the table, continue to construct rows indexed by them. The initial call to 
compute the table T is the goal  

|?- getTable([DFAStartState], Alphabet, T). 

For example, if the DFA start state is [0, 2] and the alphabet is [a, b], then 
the initial goal would be  

|?- getTable([[0,2]], [a, b], T). 

Here is the definition of the getTable predicate. 
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getTable([ ], _, [ ]). 
getTable([H|T], A, Table) :-  
   row(H, A, Row, Y),   % get row H of table 
   delete(Y, H, Z),    % compute remaining 
   append(T, Z, W),   % row indices 

    getTable(W, A, Rest),   % get rest of the table 
    union(Row, Rest, Table). 
 
The row predicate constructs a row of DFA table instructions. For example, to 
find the row indexed by the state [0, 2] with column alphabet [a, b], we would 
write the goal 

|?- row([0, 2], [a, b], R, N). 

The goal returns the row R of DFA instructions and the list N of next states, 
some of which might be new row indices. For example, the goal might return R 
= [t([0, 2], a, [1, 2, 3]), t([0, 2], b, [2])], and N = [[1, 2, 3], [2]]. Here is the 
definition of the row predicate. 
 

row(_, [ ], [ ], [ ]). 
row(S, [H|T], [t(S, H, X)|Y], [X|Z]) :- entry(S, H, X), row(S, T, Y, Z). 

 
The entry predicate constructs next state for an entry of the DFA table. For 
example, to find the entry in row [0, 2] and column "a" of the DFA table, we 
would write the goal 

|?- entry([0, 2], a, X). 

If the goal returns X = [1, 2, 3], then this defines the DFA instruction 
instruction t([0, 2], a, [1, 2, 3]). The algorithm computes X as the Λ-closure of 
the union of the entries in the NFA table that occur in column “a” at rows 0 
and 2. Here is the definition of the entry predicate. 
 

entry([ ], _, [ ]). 
entry([H|T], A, U) :-  
 setof(X, t(H, A, X), R),  
 entry(T, A, S), 
 union(R, S, V),  
 closure(V, U). 
 entry([H|T], A, U) :-   % no t(H, A, _) entry 
 entry(T, A, S),   
 closure(S, U).  
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Here is a definition for the getFinals predicate to compute the set F of final 
states from the  table T of DFA instructions. 
 

getFinals(T, F) :- 
 setof(S, A^B^member(t(S, A, B), T), SS), 
 setof(S, (member(S, SS), X^(member(X, S), final(X))), F). 

 
Here is a definition for the closure predicate to compute the lambda closure C 
of a list of states S in an NFA. 

 
closure(S, C) :- getStates(States), getClosure(S, States, C). 

 
getClosure(S, [ ], [ ]). 
getClosure(S, [H|T], Ans) :-  
 inClosure(H, S),  
 getClosure(S, T, B),           
 append([H], B, Ans). 
getClosure(S, [H|T], Ans) :- getClosure(S, T, Ans). 

Here is a definition for the getStates predicate to compute the list of DFA 
states from the NFA instructions. 
 
 getStates(States) :-  
  setof(S, Y^Z^t(S, Y, Z), C), % get current states 
  setof(S, X^Y^t(X, Y, S), N),  % get next states 
  union(C, N, States). 

Here is a definition for the inClosure predicate to test to see if X is in the Λ-
closure of S. 

 
inClosure(X, S) :- member(X, S). 
inClosure(X, [H|T]) :- trans(H, X). 
inClosure(X, [H|T]) :- inClosure(X, T). 

Here is a definition for the trans predicate to test to see whether there is a 
path from state I to state J by Λ-edges. 

 
trans(I, J) :- t(I, [ ], J). 
trans(I, J) :- t(I, [ ], K), trans(K, J). 
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Experiments to Perform 
 1. Implement the translator and test it with the example NFA. You will 

have to find a definiton for the union predicate. Notice that the output is 
not ready to be executed by the DFA interpreter. For example, if S is the 
start state, then we need to construct a Prolog fact of the following form. 

start(S). 

  Similarly, for each final state S in the list of final states, we need to 
construct a Prolog fact of the following form. 

final(S). 

  For each instruction in the table of the form t(S, A, N) we need to 
construct a Prolog fact of the following form 

t(S, A, N). 

a. Write a predicate “outPut” to place the DFA into a file as Prolog facts. 
Then test it with the following goal, where filename is the name of the 
file that will hold the DFA instructions. 

|?- dfa(S, T, F), outPut(S, T, F, filename). 

b. Test the translator and the outPut predicate from part (a) on the 
following NFA 

. 

    

! 

Start   

Final  

a b "

0 # {1, 2} {1}

1 {2} # #

2 # {2} {1}

 

c. Test the translator and the outPut predicate from part (a) on a DFA 
of your own choosing. Is there any change between the given DFA and 
the output DFA? 

 2. Do the following tests to observe whether the translator constructs 
equivalent DFAs. 

a. Use the NFA interpreter to test the sample NFA on five strings that 
it accepts and five strings that it rejects.  

b. Then use the DFA interpreter to test the DFA obtained from the 
sample NFA on the same ten strings. 
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 3. Repeat the two tests asked for in (2) on the following machines. 

a. Use the given NFA and translated DFA from (1b).  

b. Use the given DFA and translated DFA from (1c).  

 4. Suppose that we don’t like the form of the output of the translator where 
the states are lists. Instead, we want to modify the output so that each 
state is a natural number. For example, if the states output by the 
translator are [0, 1, 2], [0, 2], [1, 2], and [ ], then we might associate these 
states with the numbers 0, 1, 2, and 3, respectively. Thus an instruction 
like t([0, 1, 2], a, [1, 2]) would be modified to t(0, a, 2). A predicate, 
modifyDFA, to do the job can be written as follows. 

 modifyDFA(Start, Table, Finals, NewS, NewT, NewFs) :- 
  setof(X, Y^Z^member(t(X, Y, Z), Table), S), % get old states  
  associate(0, S, AssocPairs),     % associate with 0, 1,... 
  member([Start, NewS], AssocPairs),    % get NewS 
  makeFinals(Finals, AssocPairs, NewFs),  % get NewFs 
  replaceStates(Table, AssocPairs, NewT).  % get NewT 

  The predicate modifyDFA transforms the start state, table, and final 
states of the DFA into new forms where states are numbers. Write the 
Prolog definitions for the three predicates, associate, makeFinals, and 
replaceStates. A short description of each predicate follows. 

  The associate predicate creates a list of association pairs. For example, 
the list of pairs might look like  

[ [ [0, 1, 2], 0], [ [0, 2], 1], [ [1, 2], 2], [ [ ], 3] ]. 

  The makeFinals predicate constructs the list of final state numbers. 

  The replaceStates predicate constructs the list of modified instructions 
like, [t(0, a, 2), t(0, b, 3), ...]. 

  After completing the definitions for these predicates, test modifyDFA on 
the sample NFA with the following goal. 

|?- dfa(S, T, F), modifyDFA(S, T, F, NewS, NewT, NewF). 
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9.3   Minimum-State DFA 
This experiment implements and tests a Prolog program to transform a DFA 
into an equivalent minimum-state DFA. As a concrete example, we’ll consider 
the following DFA from Example 4, page 623 of DS,L,&C. 
 
start(0). 
t(0,a,1). 
t(0,b,2). 
t(1,a,4). 
t(1,b,1). 
t(2,a,4). 
t(2,b,3). 
t(3,a,4). 
t(3,b,3). 
t(4,a,4). 
t(4,b,5). 
t(5,a,5). 
t(5,b,5). 
final(4). 
final(5). 
 
The algorithm must construct a partition of the set of DFA states into 
equivalence classes, where each class contains a subset of DFA states that 
are equivalent. We start the process by forming the set 

E0  

of distinct pairs of the form {s, t}, where s and t are either both final or both 
nonfinal. E0 contains the possible equivalent pairs. 
 Next we construct a new collection E1 from E0 by throwing away any pair 
{s, t} if there is some letter a such that {T(s, a), T(t, a)} is a distinct pair that 
does not occur in E0. This means that the pair {T(s, a), T(t, a)} contains two 
states of different types. So we must throw {s, t} away. 
 The process continues by constructing a new collection E2 from E1 by 
throwing away {s, t} if there is some letter a such that {T(s, a), T(t, a)} is a dis-
tinct pair that does not occur in E1. This means that there is a string of length 
2 such that the DFA, if started from either s or t, consumes the string and 
enters two different types of states. So we must throw {s, t} out of E1. 
 We continue the process by constructing a descending sequence 

 E0 ⊇ E1 ⊇ E2 ⊇ ... ⊇ En ⊇ ... . 
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Each set En in the sequence has been constructed to have the property that for 
each pair {s, t} in En  and for any string of length less than or equal to n, the 
DFA, if started from either s or t, will consume the string and enter the same 
type of states—either both reject or both accept. Since E0 is a finite set, the 
sequence of sets must eventually stop with some set Ek such that 

Ek+1 = Ek. 

This means Ek is the desired set of equivalent pairs of states, because for any 
pair {s, t} in Ek and any length string, the DFA, if started from either s or t, will 
consume the string and enter the same type of states—either both reject or 
both accept. 
 Now we’ll write the program. The “minDFA” predicate will execute the 
program with a goal such as the following where “outfile” represents the name 
of a file to put the minimum-state DFA as a set of Prolog facts. 
 
 |?- minDFA(S, T, F, outfile). 
 
The goal returns a minimum state DFA where 
 
 S = start state, 
 T = table of instructions, 
 F = set of final states. 
 
The instructions for the minimum-state DFA are placed in outfile for 
subsequent execution on the DFA Interpreter. Here is the Prolog program. 
 
:- use_module(library(lists)). 
 
minDFA(S, T, F, File):- 
 getStates(States, Finals, NonFinals), % find the finals and nonfinals 
 getEzero(NonFinals, Finals, Ezero), % compute E0  

 getEquivStates(Ezero, Elast),   % compute Elast 

 getEquivClasses(Elast, States, Classes), % construct the classes 
 getStartState(Classes, S),    % get the min-state start state 
 makeTable(Classes, T),    % get the min-state table 
 getFinalStates(Classes, F),    % get the min-state final 
states 
 outPut(S, T, F, File). 
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The predicate definitions use several set operations (minus, equal, subset), 
all of which have been defined earlier. 
 
getStates(States,Finals, NonFinals) :- 
 setof(X, Y^Z^t(X,Y,Z), States), 
 setof(X, final(X), Finals), 
 minus(States, Finals, NonFinals). 
 
getEzero(NonFs, Fs, Ezero):- 
 getFinalPairs(Fs, FinalPairs), 
 getNonFinalPairs(NonFs, NonFinalPairs), 
 append(FinalPairs, NonFinalPairs, Ezero). 
 
getFinalPairs(Fs, FinalPairs) :- 
 setof([I,J],(member(I, Fs), member(J, Fs)),FinalPairs). 
 
getNonFinalPairs(NonFs, NonFinalPairs) :- 
 setof([I,J],(member(I, NonFs), member(J, NonFs)),NonFinalPairs). 
 
getEquivStates(Ei, Elast) :- 
 getNextESet(Ei, En), 
 checkEsets(Ei, En, Elast). 
 
checkEsets(_, [ ], [ ]). 
checkEsets(Ei, En, En) :- 
 equal(Ei, En). 
checkEsets(Ei, En, Elast) :- 
 getEquivStates(En, Elast). 
 
getNextESet(Ei, En) :- 
 getAlphabet(Alpha), 
 setof([I, J], (member([I, J], Ei), check(I, J, Alpha, Ei)), En). 
getNextEset(Ei,[ ]). 
 
getAlphabet(Alpha) :- setof(Y, X^Z^t(X, Y, Z), Alpha). 
 
% Check if [t(I, a), t(J, a)] ∈ Ei for all a in alphabet. 
% The goal is check(I, J, alphabet, Ei). 
 
check(_, _, [ ], _). 
check(I, J, [H|T], Ei) :- 
 t(I, H, S1), t(J, H, S2), !, member([S1, S2], Ei), 
 check(I, J, T, Ei). 
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%  Compute the set of equivalence classes from the relation Elast and the 
%  set of States. The goal is getEquivClasses(Elast, States, Classes). 

getEquivClasses(Elast, States, Classes):- 
 getClasses(Elast, States, Cs), 
 getDistinctClasses(Cs, Classes). 
 
getClasses(_, [ ], [ ]). 
getClasses(Elast, [H|T], [HClass|Classes]) :- 
 setof(X, member([H, X], Elast), HClass), 
 getClasses(Elast, T, Classes). 
 
getDistinctClasses([ ], [ ]). 
getDistinctClasses([H|T], [H|Rest]):- 
 remove(H, T, NewT), 
 getDistinctClasses(NewT, Rest). 
 
remove(H, [ ], [ ]). 
remove(H, [X|T], New):- 
 subset(H, X), 
 remove(H, T, New). 
remove(H, [X|T], [X|New]):- remove(H, T, New). 
 
getStartState(Classes, S):- 
 start(I), 
 getStart(I, Classes, S). 
getStart(I, [S|_], S):- member(I, S). 
getStart(I, [_|T], S):- getStart(I, T, S). 
 
makeTable([ ], [ ]). 
makeTable([C|Cs], Table):- 
 setof(t(C, A, K),  
  I^J^(member(I, C), t(I, A, J),member(K, [C|Cs]), member(J, K)), Row), 
 makeTable(Cs, Rows), 
 append(Row, Rows, Table). 
 
getFinalStates(Classes, F):- 
 setof(C, I^(final(I), member(C, Classes), member(I, C)), F). 
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% Output DFA to a file as Prolog facts. 
 
outPut(S, T, F, File):- tell(File), 
 write('start('), write(S), write(').'), nl, 
 outDFA(T), 
 outFinals(F), 
 told. 

outDFA([H|T]):-write(H), write('.'), nl, outDFA(T). 
outDFA([ ]). 

outFinals([H|T]):- write('final('), write(H), write(').'), nl, outFinals(T). 
outFinals([ ]). 

Experiments to Perform 

 1. Implement the minimum-state transformer. Be sure to include 
definitions for the set operations minus, equal, and subset. Test the 
transformer on the example DFA. Then perform the following two tests. 

a. Use the DFA interpreter to test the sample DFA on five strings that 
it accepts and five strings that it rejects.  

b. Then use the DFA interpreter to test the minimum-state DFA 
obtained from the sample DFA on the same ten strings. 

 2. Take the minimum-state DFA obtained from the example DFA and use 
it as input for the the minimum-state transformer. Is the output the 
same?  

9.4   Defining Operations 
Prolog has a predicate that allows one to define atoms as unary and binary 
operators. For example, suppose that we want to use the atoms “or” and “and” 
to denote two binary operations. We can do this by typing the goals 

 |?- op(500, xfy, or). 
 |?- op(400, xfy, and). 

We can test the operations with a few goals as follows. 

 |?- a or b or c = A or B. 
 |?- a and b and c = A and B. 
 |?- a or b and c = A and B. 
 |?- a or b and c = A or B. 
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Experiments to Perform 

 1. Try out the tests and then make some conjectures about the precedence 
and associativity properties of the two defined operators. 

 2. Redefine the two operators by using “yfx” rather than “xfy” in both cases. 
Perform the same tests. What conjectures can you make about the 
redefined operators? 

 3. Now redefine the operators using “xfy” again, but interchange the 400 
and 500 in the first arguments. Perform the same tests. What 
conjectures can you make about the redefined operators? 

 4. Redefine the operators by using “yfx” in both cases. Perform the same 
tests. What conjectures can you make about the redefined operators? 

 5. Now redefine both operators using “xfx” in both cases. Perform the same 
tests. What conjectures can you make about the redefined operators? 

 6. We can define prefix unary operators using “fx” or “fy.” Similarly, we can 
define postfix unary operators using “xf” or “yf.” Try out various 
definitions for unary operators. To start things off you might try the 
definition 

|?- op(100, fx, ~). 

  Then test the definition with something like 

|?- ~ ~ p = ~ A. 

  Try out all combinations and make some conjectures about the various 
different definitions of your operators. 

 7. If we have a binary predicate, then we can make it into an infix operator. 
For example, suppose that we have written a definition for the “subset” 
predicate to test whether a set is a subset of another set, where sets are 
represented as lists. Then a typical goal might look like 

|?- subset([a, b], [c, b, d, a]). 

  It we want to also use subset as an infix operator, we can make the 
following definition. 

|?- op(400, xfy, subset). 

  Then we can use either form for the same goal. For example, the following 
goals should return the same result. 
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 |?- subset([a, b], [c, b, d, a]). 
 |?- [a, b] subset [c, b, d, a]. 

  Define a binary predicate of your choice in the usual way. Then redefine it 
as an infix operator and test the two different ways to represent the 
same goal. 

9.5   Tautology Tester 
Recall that a propositional wff is a tautology if it is true for all assignments of 
truth values to its letters. The goal of this experiment is to write a logic 
program to test whether a wff is a tautology. For this experiment we’ll assume 
the wffs use lowercase letters, together with the four operators in the set {¬, ∧, 
∨, → }. We’ll use the method of Quine together with the following fact. 

If A is a wff containing a letter p, then A is a tautology iff A(p / true) and 
A(p / false) are both tautologies. 

To implement this idea, let “replace” be the predicate defined as follows: 

replace(p, true, A, B) means B = A(p / true).  

Then we can say that A is a tautology iff B and C are tautologies where B and 
C are calculated by 

replace(p, true, A, B)     and     replace(p, false, A, C). 

At this point, B and C might contain another letter, say q. In this case we 
would call  

replace(q, true, B ∧ C, D)     and     replace(q, false, B ∧ C, E). 

Then we can say that A is a tautology iff D and E are tautologies. We continue 
in this manner until there are no propositional letters left. If D and E consist 
only of expressions involving true and false, then we find the value of D ∧ E by 
calling the predicate 

val(D ∧ E, Answer) 

which returns the truth value of D ∧ E and puts it in Answer. 
 This is a very sketchy introduction to the problem. Now we’ll give a 
partially completed Prolog program to solve the problem. Note that the 
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symbols ->, #, &, and ~ on the keyboard will stand for the propositional 
operators →, ∨, ∧, and ¬, where the operators are listed in order of precedence 
from lowest to highest. 

% This is a partial Prolog program to process a file containing propositional 
% wffs. As each wff is processed, a statement will be written saying whether 
% it is a tautology. Whenever a definition needs to be completed, a comment 
% marks the place where the clauses should go. Your task is to complete the 
% definitions and then test the program. 

main(InFile) :- see(InFile), loop. 

loop :- read(X), process(X).  

process(X) :- X == end_of_file, write('session terminated.'), seen. 
process(X) :- write(X), nl, 

 vars(X, L),   % L is the list of propositional variables in X. 
 setof(Y, member(Y, L), S),  % S is L without repetitions.  
 evaluate(X, S, Y), 
 output(Y), nl, 
 loop. 

output(true) :- write('is a tautology.'), nl. 
output(_) :- write('is not a tautology.'), nl. 

evaluate(X, [ ], Y) :- val(X, Y). 
evaluate(X, [H|T], Y) :- replace(H, true, X, A), 
      replace(H, false, X, B), 
      evaluate(A&B, T, Y). 

vars(X, [X]) :- atom(X). 
vars(~X, Y):- vars(X, Y). 
vars(X&Y, C):- vars(X, A), vars(Y, B), append(A, B, C). 
 
% Finish the definition of vars for the operators # and ->. 
 
val(true, true). 
val(false, false). 

val(~true, false). 
val(~false, true). 
val(~P, R) :- val(P, Q), val(~Q, R). 
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val(false&X, false). 
val(X&false, false). 
val(X&true, Y) :- val(X, Y). 
val(true&X, Y) :- val(X, Y). 
val(X&Y, R) :- val(X, A), val(Y, B), val(A&B, R). 
 
% Finish the definition of val for the operators # and ->. 
 
replace(P, true, P, true). 

replace(P, true, ~P, false). 
replace(P, true, ~R, ~Q):- replace(P, true, R, Q). 

replace(P, true, P&Q, T):- replace(P, true, Q, T). 
replace(P, true, Q&P, T):- replace(P, true, Q, T). 
replace(P, true, R&Q, T&S):- replace(P, true, R, T), replace(P, true, Q, S). 
 
% Finish the definition of replace(P, true, ...) for wffs that use the 
% operators # and ->.  
 
replace(P, true, X, X). 
 
% Complete the definition of replace(P, false, ...). 

Experiments to Perform 

 1. What is accomplished by putting the clause replace(P, true, X, X) as the 
last clause for replacing P by true in a wff?  

 2. Could we remove the clause replace(P, true, ~P, false) from the program? 
Why or why not? 

 3. Could we remove the following two clauses from the program? Why or 
why not? 

replace(P, true, P&Q, T):- replace(P, true, Q, T). 
replace(P, true, Q&P, T):- replace(P, true, Q, T). 

 4. Finish the definitions asked for in the comments of the program and put 
the completed program in a file named “program.” Then create a file for 
each of the following files. Test the program by following the instructions 
in the “Readme” file. 
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-------------------------------------------------------------------------------------------------- 

This is the “Readme” file for a program to evaluate whether  
a propositional wff is a tautology. To run the program, enter Prolog  
and then type the following commands: 

  |?- [taut]. 
  |?- main(input). 
 
The wffs use the operators ~, &, #, and -> to stand for not, and, or,  
and *  implication, respectively. The input file is a set of wffs, one per 
line. 

--------------------------------------------------------------------------------------------------  

%  This is a “operators” file that contains definitions for the four 
%  propositional operators  ->, #, &, and ~. 
 
declare :- op(200, yfx, ->), 
   op(150, yfx, #), 
   op(100, yfx, &), 
   op(50, fy , ~). 

--------------------------------------------------------------------------------------------------  

% This is the “taut” file. To test whether the wffs in the file “input”   
%  are tautologies, load this file and then type the goal 
% 
%  main(input). 
 
use_module(library(lists)). 
:- [operators], declare, [program]. 

--------------------------------------------------------------------------------------------------  

% This is the “input” file that contains sample propositional wffs. Note 
% that the negation operator needs a preceding space when it follows  
% another operator. For example, write p& ~p instead of p&~p. 

pp&q&pp->pp# ~q. 
p&q&p->p# ~q. 
(a&b). 
a# ~a. 
p& ~p. 
p->(q->p). 
(p&q)->p. 
(p&(p->q))->q. 
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(~q&(p->q))-> ~p. 
(p&(q#r))->((p&q)#(p&r)). 
(p->q)&(q->p). 
(p# ~q)->p. 

 5. Modify the program so that for any propositional wff the program will 
write out whether it is a tautology, contingency, or contradiction.  

9.6   CNF Generator 
Recall that a conjunctive normal form (CNF) is a conjunction of fundamental 
disjunctions, each of which is a disjunction of literals, where a literal is either 
a propositional letter or its negation. For example, the following wff is a CNF. 

p ∧ (¬ q ∨ p) ∧ (q ∨ r ∨ ¬ p). 

Any propositional wff is equivalent to a CNF. For example, 

   p ∧ (q ∨ r) → s  ≡ ¬ p ∨ ¬ (q ∨ r) ∨ s 
         ≡ ¬ p ∨ (¬ q ∧ ¬ r) ∨ s 
         ≡ ((¬ p ∨ ¬ q) ∧ (¬ p ∨ ¬ r)) ∨ s 
         ≡ (¬ p ∨ ¬ q ∨ s ) ∧ (¬ p ∨ ¬ r ∨ s) 
         ≡ (¬ p ∨ ¬ q ∨ s) ∧ (¬ p ∨ ¬ r ∨ s) 

How can we write a Prolog program to find a CNF for any wff? First of all, 
Prolog has a predicate “atom” that we can use to define a literal, and thus to 
define a fundamental disjunction. Let fundis(X) mean that X is a 
fundamental disjunction and let literal(X) mean that X is a literal. We can 
define these predicates as follows. 

 fundis(A) :- literal(A). 
 fundis(A#B) :- fundis(A), fundis(B). 

 literal(A) :- atom(A). 
 literal(~A) :- atom(A). 

Now let cnf(X, Y) mean that X has a CNF Y. We can start the definition of cnf 
by noticing that a wff is already in CNF if it is a fundamental disjunction. 

cnf(X, X) :- fundis(X). 



         Problems and Projects 135  

 

We’ll continue by noticing that the CNF of a conjunction of two wffs is the 
conjunction of the CNFs of the two wffs. 

 cnf(A&B, A&B) :- fundis(A), fundis(B). 
 cnf(A&B, C&D) :- cnf(A, C), cnf(B, D). 

What about negation? We must move negations as far to the right as possible. 

 cnf(~(~A), B) :- cnf(A, B). 
 cnf(~(A&B), C) :- cnf(~A# ~B, C). 
 cnf(~(A#B), X&Y) :- cnf(~A, X), cnf(~B, Y). 
 cnf(~(A->B), C) :- cnf(A& ~B, C). 

We need to distribute or (#) over and (&). 

 cnf(X#(Y&Z), C) :- cnf((X#Y)&(X#Z), C). 
 cnf((Y&Z)#X, C) :- cnf((Y#X)&(Z#X), C). 

Of course, we also need to handle the conditional and disjunction operations. 

 cnf(A->B, C) :- cnf(~A#B, C). 
 cnf(A#B, C) :- cnf(A, X), cnf(B, Y), cnf(X#Y, C). 

Experiments to Perform 

 1. Finish the program by writing a loop to read a file of wffs and convert 
each wff to CNF. Test the program on a variety of wffs. 

 2. For each cnf clause in the program, find a wff that uses the clause to 
calculate its CNF.  

 3. Argue or give a counterexample to show that the cnf clauses will do the 
job of finding a CNF for any propositional wff. 

9.7   Resolution Theorem Prover for Propositions 
The resolution inference rule is nice from a computational point of view 
because it is a single rule that can be applied repeatedly to prove 
propositions. The resolution inference rule works something like a 
cancellation process. It takes two clauses and constructs a new clause from 
them by deleting all occurrences of a positive literal p from one clause and all 
occurrences of ¬ p from the other clause. For example, suppose we are given 
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the following two propositional clauses:  

p ∨ q, 
¬ p ∨ r ∨ ¬ p.  

We obtain a new clause by first eliminating p from the first clause and elimi-
nating the two occurrences of ¬ p from the second clause. Then we take the dis-
junction of the leftover clauses to form the new clause: 

q ∨ r. 

 Let’s write down the resolution rule in a more general way. Suppose we 
have two propositional clauses of the following forms: 

p ∨ A, 
¬ p ∨ B. 

Let A – p denote the disjunction obtained from A by deleting all occurrences of 
p. Similarly, let B – ¬ p denote the disjunction obtained from B by deleting all 
occurrences of ¬ p. The resolution rule allows us to infer the propositional 
clause 

(A – p) ∨ (B – ¬ p). 

We’ll write the rule as follows. 

 Resolution Rule for Propositions 

 

! 

p" A, ¬p"B

(A # p)" (B #¬p)
. 

 Although the rule may look strange, it’s a good rule. That is, it maps tau-
tologies to a tautology. To see this, we can suppose that  

(p ∨ A) ∧ (¬ p ∨ B) is true.  

If p is true, then B must be true. Since ¬ p is false, we can remove all 
occurrences of ¬ p from B, so that the result B – ¬ p is true. Therefore  

(A – p) ∨ (B – ¬ p) is true.  

We obtain the same result if p is false. So the inference rule does its job. 
 A proof by resolution is a refutation that uses only the resolution rule. So 
we can define a resolution proof as a sequence of clauses, ending with the 
empty clause, in which each clause in the sequence either is a premise or is in-
ferred by the resolution rule from two preceding clauses in the sequence. No-
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tice that the empty clause is obtained when A either is empty or contains only 
copies of p and when B either is empty or contains only copies of ¬ p. For 
example, the simplest version of the resolution rule can be stated as follows. 

! 

p,¬p

[]
. 

In other words, we obtain the well known tautology p ∧ ¬ p → false. 
 For example, let’s prove that the following clausal form is unsatisfiable: 

(¬ p ∨ q) ∧ (p ∨ q) ∧ (¬ q ∨ p) ∧ (¬ p ∨ ¬ q). 

In other words, we’ll prove that the following set of clauses is unsatisfiable: 

{¬ p ∨ q, p ∨ q, ¬ q ∨ p, ¬ p ∨ ¬ q}. 

The following resolution proof does the job: 

  1. ¬ p ∨ q P 
  2. p ∨ q  P 
  3. ¬ q ∨ p P 
  4. ¬ p ∨ ¬ q P 
  5. q ∨ q  1, 2, Resolution 
  6. p   3, 5, Resolution 
  7. ¬ p   4, 5, Resolution 
  8.     6, 7, Resolution 
   QED. 

To program the proof process, we need to access the individual literals in each 
clause. To do this, we’ll represent each clause as a list of it’s literals. Thus 
each wff will be represented as a list of clauses, where each clause is 
represented as a list of literals. So the process will start out as follows. 

1. Read a propositional wff. 
2. Find the cnf of the negation of the wff. 
3. Represent the cnf as a list of its clauses, where each clause is 

represented as a list of literals. 
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Here is the formal proof with the clauses represented as lists of literals. 

  Formal Proof      Clause as list of literals 
  1. ¬ p ∨ q P  [¬ p, q] 
  2. p ∨ q P  [p, q] 
  3. ¬ q ∨ p P  [¬ q, p] 
  4. ¬ p ∨ ¬ q P  [¬ p,¬ q] 
  5. q ∨ q 1, 2, Resolution  [q, q] 
  6. p 3, 5, Resolution  [p] 
  7. ¬ p 4, 5, Resolution  [¬ p] 
  8.   6, 7, Resolution  [ ] 

Let L be the list of clauses representing the cnf of the negation of the original 
wff. For example, in this proof we have  

L = [[¬ p, q], [ p, q], [¬ q, p], [¬ p, ¬ q]]. 

We’ll add a new resolvant to L at each proof step. A refutation occurs once the 
empty clause is found in the list. Let proof(L) return yes if a refutation of L 
exists. A Prolog definition for proof can be written as follows, where 
find_resolvant(L, R) and tries to find a resolvant R for two clauses in L. 

 proof(L) :- member([ ], L). 
 proof(L) :- find_resolvant(L, R), distinct(R, L), proof([R|L]). 

The predicate distinct(R, L) checks to see whether the clause R found by 
find_resolvant is a new clause that does not occur in L. If R is not new, then 
backtracking will cause find_resolvant to try again. For example, if R = [p, q] 
and L = [[q, p]], then distinct(R, L) should return no because [p, q] and [q, p] 
contain the same elements. For another example, the clauses [p, p] and [p] are 
distinct. 
 Let’s try to define the find_resolvant predicate. We can use the 
backtracking feature of Prolog to use the member predicate to search for a 
clause to resolve with the clause at the head of the list of clauses. 

 find_resolvant([C|T], R) :- member(D, T),  
  resolvable(C, D, Literal),  
  resolve(C, D, Literal, R). 

 find_resolvant([C|T], R) :- find_resolvant(T, R). 
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The predicate “resolvable” tests whether two clauses can be resolved, and if so 
returns a selected literal from the first clause. The predicate “resolve” 
constructs the resolution of two clauses. Here are the definitions, where 
“negation” is a predicate to return the negation of a literal. 

 resolvable([H|T], C, H) :- negation(H, V), member(V, C). 
 resolvable([H|T], C, K) :- resolvable(T, C, K). 

 resolve(C, D, Literal, R) :- negation(Literal, V), 
       removeAll(Literal, C, A), 
       removeAll(V, D, B), 
       append(A, B, S), 
       makeSet(S, R), !. 

 negation(~A, A). 
 negation(A, ~A). 
 
Note: The definition for resolve ends with a cut symbol so that the predicate 
will not be called again on backtracking, which might occur if the resolvant is 
not distinct from the given proof list. In this case, the backtracking goes to the 
resolvable predicate which then attempts to find another  

Experiments to Perform 

 1. Write a program to test whether a propositional wff is a tautology by 
checking whether there is a resolution proof for the negation of the wff. 
You can use the predicates given in the discussion as a starting point. 
Then supply the missing definitions for the three predicates: distinct, 
removeAll, and makeSet. 

 2. Modify your program so that the clauses of a resolution proof are output 
for each input wff that is a tautology. 
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10 

Logic Programming Theory 

The experiments in this chapter use Prolog to explore some of the theoretical 
ideas that underlie logic programming.  

10.1   The Immediate Consequence Operator 
For a definite logic program P, the Herbrand base of P is the set of ground 
atoms that can be formed by the predicate names, constants, and function 
names that occur in P. The set of atoms in the Herbrand base of P that are 
logical consequences of P can be calculated using the immediate consequence 
operator TP. TP has the power set of the Herbrand base of P for its domain and 
codomain, and it is defined as follows, where I is any set of atoms in the 
Herbrand base of P.  

TP(I) = {A | A ← B1, ..., Bn is a ground instance of a clause in P and Bi ∈ I}.  

If we start with the empty set and keep applying Tp to the previous result, we 
obtain the following sequence of sets that are ordered by inclusion. 

∅  ⊆ TP(∅) ⊆ TP(TP(∅)) ⊆ ... ⊆  TP
k(∅) ⊆ ... 

The symbol TP↑k is used to denote TP
k(∅). So the sequence can be written as  

∅   ⊆ TP↑1 ⊆ TP↑2 ⊆ ... ⊆ TP↑k ⊆ ... 

The union of this sequence is denoted by TP↑ω and it equals the set of atoms 
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in the Herbrand base of P that are logical consequences of P. For example, let 
P be the following logic program. 

 p(a) ← p(x), q(x) 
 p(ƒ(x)) ← p(x) 
 q(b) ←  
 q(ƒ(x)) ← q(x) 

For this program we can calculate TP↑ω = {q(ƒn(b)) | n ∈ ℕ}. 

Experiments to Perform 

 1. Translate the given program into Prolog. Then make some tests to 
convince yourself that the calculation of TP ↑ω is correct.  

 2. Add the following clause to the given program: 

p(b) ←  

  Let P denote the new larger program. Calculate TP↑ω for this new 
program P. Translate the new program into Prolog. Then make some 
tests to convince yourself that your calculation of TP↑ω is correct.  

10.2   Negation as Failure 
We’ll examine theorems about the soundness and completeness of the 
negation as failure rule.  

Soundness 
A normal logic program is a logic program in which the clauses may contain 
negative atoms in their bodies. A normal goal is a goal that may contain 
negative atoms. If P is a normal program, then the completion of P is denoted 
by comp(P). A soundness theorem regarding the negation as failure rule in 
logic programming can be stated in terms of the program’s completion.  

Let P be a normal program and let G be a normal goal. If P ∪ {G} has a 
finitely failed SLDNF-tree, then G is a logical consequence of comp(P).  

This result assumes that a negative literal is picked during resolution only if 
its atom is grounded. This is called the safeness condition. If we drop the 
safeness condition and allow the computation to proceed without regard to 
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whether a picked negative literal is grounded, then we might not obtain the 
results of the soundness theorem. For example, consider the following 
program: 

 p ← ¬ q(x) 
 q(a) ← 

Without the safeness condition, the program and goal  

← p  

have a finitely failed SLDNF-tree. But the theorem does not hold because ¬ p 
is not a logical consequence of comp(P). 

Completeness 
A completeness theorem regarding the negation as failure rule in logic 
programming can be stated as follows: 

Let P be a definite program and G be a definite goal. If comp(P) logically 
implies G, then every fair SLD-tree for P ∪ {G} is finitely failed.  

This result does not extend to normal programs. We’ll examine the reasons in 
the experiments.  

Experiments to Perform 

 1. (Without the Safeness Condition). Let P be the following program. 

  p ← ¬ q(x) 
  q(a) ← 

Consider the goal 

← p. 

a. Compute comp(P) and show that ¬ p is not a logical consequence of 
comp(P). 

b. Translate P and the goal ← p into Prolog and test whether the safeness 
condition holds. Use the trace facility to construct the SLDNF-tree. 

 2. (With the Safeness Condition). Let P be the following program, which is 
similar to the program in Experiment (1). 

  p ← ¬ r 
  r ← q(x) 
  q(a) ← 
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  Consider the goal 

← p. 

  In this case, ¬ p is a logical consequence of comp(P).  

a. Compute comp(P) and show that ¬ p is a logical consequence of 
comp(P). 

b. Translate the program and goal into Prolog and test whether the 
safeness condition comes into play. Use the trace facility to construct 
the SLDNF-tree. 

 3. Let P be the following normal program: 

 q(a) ← ¬ r(a) 
 r(a) ← p(a) 
 r(a) ← ¬ p(a) 
 p(x) ← p(ƒ(x)) 

  We will consider the goal ← q(a).  

a. Compute comp(P) and verify that ¬ q(a) is a logical consequence of 
comp(P). 

b. Show that P ∪ {← q(a)} does not have any finitely failed SLDNF-tree. 

c. Translate program P into Prolog and test the result of part (b).  

10.3   SLDNF-Resolution 
We’ll examine theorems about the soundness and non-completeness of the 
SLDNF-resolution rule.  

Soundness 
The term SLDNF means SLD-resolution with the Negation as Failure rule. A 
soundness theorem regarding computed answers via SLDNF-resolution in 
logic programming can be stated as follows: 

Let P be a normal program and let G be a normal goal. Then every 
computed answer for P ∪ {G} is a correct answer for comp(P) ∪ {G}.  

For example, let P be the program 

 p(a) ←  
 q(b) ←  
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We will consider the goal G:  

 ← ¬ p(x), q(x).  

Non-Completeness 
SLDNF-resolution is not complete. For example, consider the following 
program P. 

 p(x) ←  
 q(a) ←  
 r(b) ←  

We will consider the goal G:  

← p(x), ¬ q(x). 

Experiments to Perform 

 1. Show that there is an SLDNF-refutation of P ∪ {G} with computed 
answer {x/b}. Then show that {x/b} is a correct answer for comp(P) ∪ {G}.  

 2. Translate the program into Prolog and find out whether Prolog preserves 
the soundness of SLDNF-resolution in this case. 

 3. Show that {x/b} is a correct answer for comp(P) ∪ {G}. In other words, 
show that p(b) ∧ ¬ q(b) is a logical consequence of comp(P). 

 4. Translate the program into Prolog and try to verify that {x/b} cannot be 
an instance of any computed answer for P ∪ {G}. 

 5. For another example of non-completeness of SLDNF-resolution, consider 
the following program P. 

 r(a) ← p(a) 
 r(a) ← ¬ p(a) 
 p(x) ← p(ƒ(x)) 

  We will consider the goal G:  

← r(a). 

a. Show that the empty substitution is a correct answer for  

comp(P) ∪ {G}.  

 In other words, show that r(a) is a logical consequence of comp(P). 

b. Translate the program into Prolog and try to verify that the empty 
substitution cannot be an instance of any computed answer for  

P ∪ {G}. 



 

 
145 

 
Answers to Selected 
Experiments 
 
 
 
 
 
 
Chapter 2 

2.5 Family Trees 
1. |?- p(a, e). means “Is a a parent of e?” 
 |?- p(X, e). means “Who is a parent of e?” 
 |?- p(a, X). means “Who is a child of a?” 
 |?- g(a, T). means “Who is a grandchild of?” 
 |?- g(M, e). means “Who is a grandparent of e ?” 
 |?- g(U, V). means “Is there a grandparent-grandchild pair?” 
2a. ch(X, Y) :- p(Y, X). 
2b. gch(X, Y) :- g(Y, X). 
3a. co(X, Y) :- p(A, X), p(B, Y), sib(A, B). 
3b. sco(X, Y):- p(A, X), p(B, Y), co(A, B). 

Chapter 3 

3.1 The Ancestor Problem 

4.  ancestor(X, Y, 1) :- p(X, Y). 
  ancestor(X, Y, N) :- p(X, W), ancestor(W, Y, M), N is M + 1. 

3.3 Switching Pays 
4. rands(_, _, 0):- write(' Done with trials.'), nl. 
 rands(A, B, N) :-  
  N >= 1, 
  random(A, B, Out),  
  write(Out), nl, 
  K is N - 1, 
   rands(A, B, K). 
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3.4 Inductively Defined Sets 

1. S = {2, 5, 8, ... } = {2 + 3k | k ∈ ℕ}. 

3. a. A = {3, 7, 15, 31, 63, ... } = {3 + 2n | n > 0 and n ∈ ℕ}. 
b. A = {4x + 9y | x, y ∈ ℕ}.  
inA(0). 
inA(X) :- Y is X - 4, Y >= 0, a(Y). 
inA(X) :- Y is X - 9, Y >= 0, a(Y). 

6. All elements of U can be recognized by the program 

 inU(a). 
 inU(b). 
 inU(h(X, Y)) :- inU(X), inU(Y). 

But the goal inU(X) will not generate all elements of U by backtracking 
because only the left side of the computation tree, which is infinite, will be 
traversed on backtracking. 

Chapter 4 

4.1 Negation and Inferences in Prolog 
5. The experiment is a proper test for hypothetical syllogism because we have 
the following equivalence  

[((p → q) ∧ (q → r) ∧ p) → r] ≡ [(p → q) ∧ (q → r) → (p → r)].  

4.2 The Blocks World 
1. The answers we might expect are: yes, no, X = a, no, yes, X = b. 
The third and sixth goals might have problems because negation is used 
without the varible being instantiated. In these cases the goals and answers 
are as follows:  
 |?- onTop(X). 
 no  
 |?- \+ onTop(X). 
 yes 
2b. 
bottom(A, A):- on(A, [ ]). 
bottom(A, Y):- on(A, X), bottom(X, Y). 

2c. 
move_ordered(A, B) :-  
 onTop(A), onTop(B),  
 bottom(A, X), 
 retract(on(X, [ ])), assertz(on(X, B)). 
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2d.  
move_reversed(A, B) :-  
 onTop(A), onTop(B), 
 retract(on(A, X)), assertz(on(A, B)), 
 move_reversed(X, A). 
move_reversed([ ], _). 
 
4.3 Verifying Arguments in First-Order Logic 

1.  (Committees) Let c(x) mean that x is a committee member, r(x) mean that 
x is rich, o(x) mean that x is old, and f(x) mean that x is famous. Then the 
argument can be formalized as follows: 

∀x (c(x) → r(x) ∧ f(x)) ∧ ∃x (c(x) ∧ o(x)) → ∃x (c(x) ∧ o(x) ∧ f(x)). 

To see whether prolog will verify such an argument, we need to do some 
rewriting of the first premise: 

 ∀x (c(x) → r(x) ∧ f(x)) ≡ ∀x (¬ c(x) ∨ (r(x) ∧ f(x)) 
       ≡ ∀x ((¬ c(x) ∨ r(x)) ∧ (¬ c(x) ∨ f(x)) 
       ≡ ∀x ((¬ c(x) ∨ r(x)) ∧ ∀x ((¬ c(x) ∨ f(x)) 
       ≡ ∀x ((c(x) → r(x)) ∧ ∀x ((c(x) → f(x)). 

The latter wff can be written in prolog as the following two facts: 

 r(X) :- c(X). 
 f(X) :- c(X). 

The second premise can be written as the following prolog facts: 

 c(a). 
 o(a). 

The goal corresponding to the conclusion can be written in prolog as follows: 

|?- c(X), o(X), f(X). 

2. (quadrupeds). Let h(x) mean that x is a human, m(x) mean that x is a man, 
and nq(x) mean that x is not a quadruped. Then the argument can be 
formalized as follows: 

∀x (h(x) → nq(x)) ∧ ∀x (m(x) → h(x)) → ∀x (m(x) → nq(x)). 

The two premises can be written in prolog as the following two facts: 

 nq(X) :- h(X). 
 h(X) :- m(X). 

To verify the conclusion, we can use two cases. If a is a being such that m(a) is 
false, then m(a) → nq(a) is true. On the other hand, if a is a being such that 
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m(a) is true, then the two premises of the experiment tell us that m(a) → 
nq(a) is true. This can be verified by writing the fact 

m(a). 
and then executing the goal 

|?- nq(a). 

3. (freshman). Let f(x) mean that x is a freshman, s(x) mean that x is a 
sophomore, and j(x) mean that x is a junior, nj(x) mean that x is not a junior, 
and l(x, y) mean that x likes y. Then the argument can be formalized as 
follows. 

∃x (f(x) ∧ ∀y(s(y) → l(x, y))) ∧ ∀x ∀y(f(x) ∧ l(x, y) → nj(y)) → ∀x (s(x) → nj(x)). 

The premises can be written in prolog as the following facts: 

 f(a). 
 l(a, Y) :- s(Y). 
 nj(Y) :- f(X), l(X, Y). 

We also need the following fact to test for the existence of juniors: 

 j(X) :- \+ nj(X). 

To verify the conclusion, we can use two tests. If there are no sophomores, then 
certainly no sophomore is a junior. This can be verified with the following goal. 

|?- s(X), j(X). 

For the other case, we’ll assume the existence of some sophomore by writing 
the fact 

s(b). 

To see that b is not a junior, we should get a yes-answer to the goal 

|?- nj(b). 

4.4 Equality Axioms 

2. e(t, u). 
 e(u, v). 
 e(A, B) :- e(A, C), e(C, B). 

Chapter 5 

5.1 List and String Notation 

3. q([b]). 
 q([b, b|X]) :- q(X). 
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5.2 Sets and Bags of Solutions to a Query 

2. When Y does not occur in the first argument and it occurs free in the second 
argument of setof, the goal returns the set S for each particular value of Y. 
This is similar to the situation in formal logic where an interpretation for a 
wff that has a free variable must assign that variable to a constant. 

3b.  newsetof(X, P, S):- setof(X, P, S). 
 newsetof(_, _, [ ]). 

4e.  setof(p(X, Y, Z, N), (p(X, Y, Z, N), N < 100), S). 
 
5.3 List Membership and Set Operations 

6. minus([ ],_,[ ]). 
 minus(A, B, S):- setof(X, (member(X, A), \+ member(X, B)), S). 
 minus(X, X, []). 
 
5.4 List Operations 

3. first([X], [ ]). 
 first([H|T], [H|X]) :- first(T, X). 

4. pairs([ ], [ ], [ ]). 
 pairs([H|T], [J|S], [[H, J]|X]) :- pairs(T, S, X). 

5. dist(A, [ ], [ ]). 
 dist(A, [H|T], [[A, H]|X]) :- dist(A, T, X). 

6. prod([ ], Y, [ ]). 
 prod([H|T], Y, W) :- dist(H, Y, A), prod(T, Y, B), cat(A, B, W). 

7. replace(A, B, [ ], [ ]). 
 replace(A, B, [A|T], [B|S]) :- replace(A, B, T, S). 
 replace(A, B, [H|T], [H|S]) :- replace(A, B, T, S). 

8. This solution uses the append predicate that is in the “lists” library. It 
also uses a predicate “dist” that distributes an element into a set of sets. For 
example, the goal 

 |?- dist(a, [[b, c], [d, e, f]], X). 

 will return X = [[a, b, c], [a, d, e, f]]. Here is the program. 

 :- use_module(library(lists)). 

 power([ ], [[ ]]). 
 power([H|T], C) :- power(T, A), dist(H, A, B), append(A, B, C). 
 dist(X,[Y], [[X|Y]]). 
 dist(X,[H|T], [[X|H]|Z]) :- dist(X, T, Z). 
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9. The goal |?- outLine(L, N, K) means print out N elements from list L and 
return K as the list of the remaining elements from L. 

 
outLine(L, 0, L). 
outLine([H|T], N, K) :- print(H), tab(2), M is N-1, outLine(T, M, K). 

Chapter 6 

6.1 Binary Trees 

2b.  in(t, [ ]). 
  in(t(A, B, C), X) :- in(B, S), in(C, T), append(S, [A|T], X). 

2c.  post(t, [ ]). 
  post(t(A, B, C), X) :- post(B, S), post(C, T),  
      append(S, T, Y), apppend(Y, [A], X). 
4. isIn(N, t(N, _, _)). 
 isIn(N, t(A, B, C)) :- N < A, isIn(N, B). 
 isIn(N, t(A, B, C)) :- N > A, isIn(N, C). 

6.2 Arranging Objects 

6. One solution replaces the third clause of insert with 

insert(A, [H|T], [H|S]) :- A > H, insert(A, T, S). 

Another solution places a cut at the end of the second clause of insert:  

insert(A, [H|T], [A|[H|T]]) :- A =< H, !. 

6.3 Simple Ciphers 

2b. Here is a simple loop to do the job. It can be executed by the call 

|?- loop(1). 

loop(27). 
loop(K) :-  cipher(abcdefghijklmnopqrstuvwxyz, K, S), 
  distinct(S, L), 
  print(S), tab(3), print(L), nl, 
  M is K + 1, 
  loop(M). 

3. An affine cipher can be defined as follows, where “additive” and 
“multiplicative” are additive and a multiplicative cipher, respectively. 

affine(In, AddKey,MultKey, Out) :-  
    additive(In, AddKey, X), 
    multiplicative(X, MultKey,Out). 
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6.4 The Birthday Problem 

1. The goal dup(L, D) returns D as a list of duplicates, if any, that occur in the 
list L. The “member” predicate tests membership in a list and the the 
“remove” predicate removes all occurrences of an element from a list. These 
predicates must be written too. 

dup([ ], [ ]). 
dup([H|T], [H|S]) :- member(H, T), remove(H, T, U), dup(U, S). 
dup([H|T], S) :- dup(T, S). 
 
remove(A, [ ],[ ]). 
remove(A, [A|T], X):- remove(A,T,X). 
remove(A, [H|T], [H|X]):- remove(A,T,X). 

Chapter 7 

7.4 Arithmetic Expressions 

3. We can define a grammar for strings of spaces as follows: 

space --> [ ]|" ", space. 

Now we can insert space where ever we wish to allow zero or more spaces. For 
example, to allow spaces on either side of the – symbol, we would change the 
production 

  expr --> nat, "–", expr. 
 to 
  expr --> nat, space, "–", space, expr. 
 
5. 
expr(A) --> term(B), r(C), {eval([B|C],A)}. 
r(A) --> "+",term(B), r(C), {A = [B,+|C]}. 
r(A) --> "–",term(B), r(C), {A = [B,–|C]}. 
r(A) --> [ ], {A = [ ]}. 
 
term(A) --> factor(B), t(C), {eval([B|C],A)}. 
t(A) --> "*", factor(B), t(C), {A = [B, *|C]}. 
t(A) --> [ ], {A = [ ]}. 
 
factor(A) --> “(“, expr(B), “)”, {A is B}. 
factor(A) --> nat(B, T), {A is B}. 
 
nat(X, 1) --> dig(X). 
nat(X, T) --> dig(A), nat(B, S), {T is 10*S, X is A*T + B}. 
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dig(X) --> [D],{"0" =< D, D =< "9", X is D – "0"}. 
 
eval([A], A). 
eval([A, B, +|T],Ans) :- X is A + B, eval([X|T], Ans). 
eval([A, B, –|T],Ans) :- X is A – B, eval([X|T], Ans). 
eval([A, B, *|T],Ans) :- X is A * B, eval([X|T], Ans). 

Chapter 8 

8.2 Nondeterministic Finite Automata 

5. To add the capability of executing instructions that include a list of next 
states (e.g., t(0, a, [2, 3])), add two more path clauses at the end of the 
definition to obtain the following program. 
 

accept(S) :- start(I), path(I, S). 
path(K, [ ]) :- final(K). 
path(K, [H|T]) :- t(K, H, N), path(N, T). 
path(K, X) :- t(K, [ ], N), path(N, X). 
path([K|M], X) :- path(K, X). 
path([K|M], X) :- path(M, X). 
 

8.3 Mealy Machines 

2. The goal mealy(X, Y) yields, upon backtracking, pairs of the form  

X = Y = [ ] and X = [a, a, ..., a], Y = [a]. 

The goal mealy(X, [a]) yields inputs of the form X = [a, a, ..., a]. The goal 
mealy(X, [b]) yields inputs of the form X = [b, b, ..., b]. The goal mealy(X, [c]) 
returns no.  
 
4. t(0, a, [ ], 0) t(1, a, n, 0) t(2, a, n, rn)  
 t(0, b, [ ], 0) t(1, b, n, 0) t(2, b, n, rn)  
 t(0, n, [ ], 1) t(1, n, [ ], 2) t(2, d, n, 3)  
 t(0, d, [ ], 4) t(1, d, [ ], 3) t(2, n, [ ], 3)  
   t(rn, [ ], n, 0) 

 t(3, a, alpha, 0) t(4, a, d, 0) 
 t(3, b, beta, 0) t(4, b, d, 0) 
 t(3, n, n, 3) t(4, n, [ ], 3) 
 t(3, d, d, 3) t(4, d, n, 3) 
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8.4 Moore Machines 

2. The goal moore(X, Y) yield  s, upon backtracking, yields double pairs of the 
form X = Y = [ ], X = [ ], Y = [[ ]], and X = [a, a, ..., a], Y = [b, b, ..., b]. The goal 
mealy(X, [a]) yields inputs of the form X = [a, a, ..., a]. The goal moore(X, [a, b, 
a, b]) yields X = [b, a, b, a] twice, then returns no. The goal moore(X, [c]) 
returns no.  

8.5 Pushdown Automata 

3. Replace the clause   

 path(K, [ ], Stack) :- final(K). 

with the clause   

 path(K, [ ], [ ]). 

8.6 Turing Machines 

3. Add the following “find” clause that executes upon failure of the first one. 

  find(State, Left, Cell, Right, OutTape)  
   :-  reverse(Left, R), append(R, [Cell|Right], OutTape), 
    write(‘Error: cannot execute instruction of the form’), tab(2), 
    write(t(State, Cell, _, _, _)). 

Chapter 9 

9.1 Lambda Closure 

2. newClosure(In, Out) :- states(S), closure(In, X, Out). 

4. newClosure(In, Out) :- states(S), closure(In, X, Out). 
states(S):- s([ ], S). 
s(X, Y) :- t(A, _, _), \+ member(A, X), s([A|X], Y). 
s(X, X). 

9.2 Transforming an NFA into an equivalent DFA 

1a.  outPut(S,T,F, File) :- tell(File), 
      write('start('), write(S), write(').'), nl, 
      outDFA(T), 
      outFinals(F), 
      told. 

outDFA([H|T]):-write(H), write('.'), nl, outDFA(T). 
outDFA([ ]). 

outFinals([H|T]):- write('final('), write(H), write(').'), nl, outFinals(T). 
outFinals([ ]). 
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4.  replaceStates([ ],_,[ ]). 
 replaceStates([t(S, A, T)|Tail], Assoc, [t(N, A, M)|Rest]) :- 
  member([S, N], Assoc), member([T, M], Assoc), 
 replaceStates(Tail, Assoc, Rest). 
 
associate(N, [ ], [ ]). 
associate(N, [H|T], [[H, N]|X]) :- M is N+1, associate(M, T, X). 

makeFinals(F, Assoc, Out) :-  
 setof(X, H^(member(H, F), member([H, X], Assoc)), Out). 
 

9.4 Defining Operations 

The symbols xfy, yfx, and xfx mean that the operator is right associative, left 
associative, and not associative, respectively. A higher number in the first 
argument of “op” indicates a lower precedence of evaluation. The symbol fx 
means that the prefix unary operator cannot be applied to itself. The symbol 
fy means that the prefix unary operator can be applied to itself.  
 

9.5 Tautology Tester 

1. The clause replace(P, true, X, X) is needed to return X if P does not occur in 
X. For example, replace(p, true, p&q, X) calls replace(p, true, q, X), which 
returns X = q.  

2. The clause replace(P, true, ~P, false) could be removed from the program. 
Then a call like replace(p, true, ~p, X) would return X = ~true, which would 
eventually be evaluated to false by the val predicate. 

3. Both clauses can be removed from the program. For example, a call like 
replace(p, true, p&q, X) would be computed by the clause 

replace(P, true, R&Q, T&S):-  replace(P, true, R, T),  
        replace(P, true, Q, S). 

and return X = true&q instead of X = q. Eventually the val predicate will 
evaluate either version of X to the same value. 

5. Modify the output predicate as follows: 

 output(X, S, true):- write('is a tautology.'), nl. 
 output(X, S, false):- evaluate(~X, S, Y), secondOutput(Y). 
 secondOutput(true):- write('is a contradiction.'), nl. 
 secondOutput(_):-  write('is a contingency.'), nl. 
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9.6 CNF Generator 

1. The loop can be written as follows: 
 main(InFile) :- see(InFile), loop. 
 loop :- read(X), process(X). 
 process(X):- X = end_of_file, write('session terminated.'), nl, seen. 
 process(X) :- write(X), nl, cnf(X, Y), write(Y), nl, nl, loop. 
 
9.7 Resolution Theorem Prover for Propositions 

2. To output the proof list modify the definition for “proof” as follows: 
 proof(L, L) :- member([ ], L). 
 proof(L, K) :- find_resolvant(L, R), distinct(R, L), proof([R|L], K). 
 proof(L, L). 

Chapter 10 

10.1 The Immediate Consequence Operator 

2. TP↑ω = {p(ƒn(a)) | n ∈ ℕ} ∪ {p(ƒn(b)) | n ∈ ℕ} ∪ {q(ƒn(b)) | n ∈ ℕ}. 
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