
Access 2003 Programming by Example with VBA, XML and ASP by Julitta Korol
Appendix A

Appendix A

Creating and Manipulating Databases with DAO

Although the default Object Model in Microsoft Office Access 2003 is ADO
(ActiveX Data Objects), you will still encounter numerous Microsoft Access
applications out there that are programmed using the previous data access
object model known as DAO (Data Access Objects). Since these database
applications may need to be updated to the newest data access technology, you
may want to go over most important features of DAO to better understand
programming differences when porting code from DAO to ADO.

Similar to ADO, you can use DAO to manipulate both the structure of your
database as well as its data by using Visual Basic code. Most DAO objects
represent objects that you work with in your database. For example, a TableDef
object represents an Access table, a QueryDef object represents a query, and a
Field object corresponds to a field in a table. This appendix introduces you to
many DAO objects. You will learn here how to create various objects and set
their properties. Next, you will manipulate these objects by applying various
methods. Before we start, you may want to take a look at the DAO hierarchy of
objects shown in Figure A-1.

Figure A-1 The DAO Object Model

As you can see from Figure A-1, DAO objects are organized in hierarchical
relationships. The DBEngine object positioned at the top in the DAO object

1

Access 2003 Programming by Example with VBA, XML and ASP by Julitta Korol
Appendix A

hierarchy is often referred to as the Jet engine and is used to reference the
database engine as a whole. All the other objects and collections in the DAO
object hierarchy fall under DBEngine.

The DBEngine contains the following two collections of objects:

• The Errors collection stores a list of errors that have occurred in the

DBEngine. These errors are represented by the Error objects and should not
be confused with the Err object which stores run-time errors generated in
Visual Basic.

• The Workspaces collection (which is the default collection of the DBEngine

object) contains the Workspace objects and is used for database security in
multi-user applications. The Workspace object is used in conjunction with
User and Group objects.

Each open database is represented by the Database object. The Database
object is used to reference a Microsoft Access database file (.MDB file) or
another external database represented by an ODBC data source. The Databases
collection contains all currently open databases (unlike the Microsoft Access user
interface, in DAO you can have more than one database open at a time).

The Containers, QueryDefs, Relations, and TableDefs collections contain objects
which are used to reference various components of the Database object.
For example, the TableDef object represents a table or a linked table in a
Microsoft Jet workspace. The QueryDef object represents a query in DAO. If
values are supplied to a query, they are represented in DAO by a Parameter
object. The Parameter collection contains all of the Parameter objects defined for
a QueryDef object. The Relation object represents a relationship between fields
in tables and queries. The Container object is used to access collections of
saved objects that represent databases, tables, queries, and relationships.

The Recordsets collection contains all open Recordset objects. Each Recordset
object represents a set of records within a database. You will use Recordset
objects for retrieving, adding, editing, and deleting records from a database.

The Field object represents a field in a table, query, index, relation, or recordset.
The Fields collection is the default collection of a Tabel Def, QueryDef, Index,
Relation, and Recordset object.

Some DAO objects have a Properties collection. The Properties collection
contains a separate object for each property of the DAO object that is referenced.
You can use an object’s Properties collection to enumerate its properties or to
return their settings. You can also define your own custom properties on DAO
objects.

As you work with the following pages of this appendix, refer to the DAO object

2

Access 2003 Programming by Example with VBA, XML and ASP by Julitta Korol
Appendix A

model to find out how the objects used in example procedures relate to one
another.

Before you can begin programming with Data Access Objects (DAO), you must
establish a reference to the DAO Object Library. Follow these steps to set up the
necessary reference:

1. In the Visual Basic Editor window, choose Tools | References.

2. In the Available References box (Figure A-2), click Microsoft DAO 3.6 Object

Library.

3. Click OK.

If you cannot find the Microsoft DAO 3.6 Object Library in the Available
References box, you must rerun Microsoft Office 2003 Setup to install Data
Access Objects for Visual Basic.

Figure A-2 Referencing DAO Object Library

This appendix explains how to:

• Work with a database using Data Access Objects (DAO)
• Create tables and define fields
• Add indexes and relations
• Create and execute queries
• Manipulate records and sets of records
• Implement database security and transaction processing

3

Access 2003 Programming by Example with VBA, XML and ASP by Julitta Korol
Appendix A

Working with a Database Using DAO
During the course of working with Microsoft Access, you’ve probably designed a
great number of databases using the Access user interface. You already know
that creating a new database is as simple as coming up with a database name.
However, if you want to perform the same task programmatically, things can get
a little more complicated, especially when you’re new to database programming.

The easiest way to learn how to work with a Microsoft Access database
programmatically is to create a short VBA procedure that performs a specific
task. Figure A-3 shows typical things you may want to do with a database object.

Figure A-3 Typical Database Operations

Creating a Database

To get started with a database creation you need to learn about the Workspace
object and its CreateDatabase method. Each Access user session has one
Workspace object. When you start Microsoft Access, the program automatically
creates a default workspace named DBEngine.Workspaces(0). The Workspace
object has several useful methods among which the most frequently used ones
are CreateDatabase (for creating a new database, see Listing A-3 A) and
OpenDatabase (for opening an existing database, see Listing A-3 C).

Creating a new database requires that you specify the name and the path of your
database as well as the built-in constant indicating a collating order for creating
the database. For English, German, French, Portuguese, Italian, and Modern
Spanish use the built-in constant dbLangGeneral. For other languages, and other
options that can be used when creating a new database, see the online Help for
the CreateDatabase method.

4

Access 2003 Programming by Example with VBA, XML and ASP by Julitta Korol
Appendix A

The procedure in Listing A-3 A prompts the user for a database name and then
proceeds to create a new database. As soon as the database is created, it is
closed with the Close method of a Database object.

Listing A-3 A Creating a new database using DAO

Private Sub cmdCreate_Click()
 Dim db As DAO.Database
 Dim dbName As String

 dbName = InputBox("Enter the name of a new database:", _
 "Database Name")
 If dbName = "" Then Exit Sub
 Set db = CreateDatabase(dbName, dbLangGeneral)
 db.Close
 Set db = Nothing
End Sub

To create a Database object in code, first declare an object variable of type
Database. Because in Access 2003 the default object library is ADO (see
Chapter 2 for working with ADO objects), it’s a good idea to qualify the object
with the name of the DAO object library. By qualifying objects when you use
them, you ensure that Visual Basic will always create the correct object. Once
the Database object variable is defined set the variable to the object returned by
the CreateDatabase method:

Set db = CreateDatabase(dbName, dbLangGeneral)

The CreateDatabase method creates an empty database. If the database already
exists, an error occurs. You can check for the existence of the database by using
an If statement in combination with the VBA Dir function and then use the VBA
Kill statement to delete the database before calling the CreateDatabase method
(see Listing A-3 B).

Copying a Database

At times you may want to duplicate your database programmatically. Creating a
copy of your database in code requires that you define two string variables: one
for holding the name of the source database and the other one specifying the
name for the duplicate version. These variables are then used with the
CompactDatabase method of a DBEngine object to create a copy of a database.

Before using the CompactDatabase method, make sure the source database is
closed and there is enough disk space to create a duplicate copy. Listing A-3 B
shows how to copy a database.

5

Access 2003 Programming by Example with VBA, XML and ASP by Julitta Korol
Appendix A

Listing A-3 B Copying a database with DAO

Private Sub cmdCopy_Click()
 Dim dbName As String
 Dim dbNewName As String

 dbName = InputBox("Enter the name of the database you want " & _
 "to copy: " & Chr(13) _
 & "(example: C:\TestData.mdb)", "Create a copy of")
 If dbName = "" Then Exit Sub
 If Dir(dbName) = "" Then
 MsgBox dbName & " was not found. " & Chr(13) _
 & "Check the database name or path."
 Exit Sub
 End If
 dbNewName = InputBox("Enter the name of the duplicate " & _
 "database:" & Chr(13) _
 & "(example: C:\TestData2.mdb)", "Save As")
 If dbNewName = "" Then Exit Sub
 If Dir(dbNewName) <> "" Then
 Kill dbNewName
 End If
 DBEngine.CompactDatabase dbName, dbNewName
End Sub

The procedure in Listing A-3 B prompts for the name of the source database and
checks whether the user entered a valid database name. If the user clicked
Cancel or entered invalid name, the procedure ends. The second InputBox
statement prompts the user for the name of the duplicate database. The new
database name must be different from the existing one. If the user clicks Cancel,
the procedure will end. If the database already exists, it will be automatically
deleted. Notice how the VBA Dir function is used to check for the existence of the
database with the specified name:

If Dir(dbNewName) <> "" Then

Kill dbNewName
End If

Because the database cannot be deleted programatically using DAO, the VBA
Kill statement is used to perform the deletion. The last statement in the above
procedure uses the CompactDatabase method of the DBEngine object to create
a copy of a database using the user-supplied arguments: a source database
name (dbName) and a destination database (dbNewName).

Opening and Examining an Existing Database

To open an existing database, use the OpenDatabase method of the Workspace
object. This method requires that you provide at least one parameter — the

6

Access 2003 Programming by Example with VBA, XML and ASP by Julitta Korol
Appendix A

name of an existing database. Before you can list the contents of your database,
you should learn few things about containers and documents. Each Database
object has a Containers collection that consists of built-in Container objects. The
Containers collection is used for storing Microsoft Access’s own objects. The Jet
engine creates the following container objects: Databases, Tables, and
Relations. Other container objects are created by Microsoft Access (Forms,
Reports, Macros, and Modules).

The table below shows container objects and the type of information they
contain.
Table A.1 Container objects and the type of information they contain

Container Name Type of information stored

Databases Saved databases

Tables Saved tables and queries

Relations Saved relationships

Forms Saved forms

Modules Saved modules

Reports Saved reports

Scripts Saved scripts

Each container object contains a Documents collection. Each document in this
collection represents an object that can be found in an Access database. For
example, the Forms container stores a list of all saved forms in a database and
each form is represented by a document object. You cannot create new
Container and Document objects. You can only retrieve the information about
them.

Listing A-3 C uses For Each…Next loop to retrieve the names of all the container
objects in the opened database. If there are any documents in the specified
container, the inner For Each… Next loop prints the name of each document
object in the Immediate window.

When you open the database with the OpenDatabase method, you should
remember to close it. The Close method removes the database from the
Database collection.

Listing A-3 C Opening a database with DAO and reading its contents

Private Sub cmdOpen_Click()
 Dim db As DAO.Database
 Dim dbName As String
 Dim conType As Container
 Dim doc As Document

7

Access 2003 Programming by Example with VBA, XML and ASP by Julitta Korol
Appendix A

 dbName = InputBox("Enter a name of an existing database:", _
 "Database Name")
 If dbName = "" Then Exit Sub
 If Dir(dbName) = "" Then
 MsgBox dbName & " was not found."
 Exit Sub
 End If
 Set db = OpenDatabase(dbName)
 With db
 ' list the names of the Container objects
 For Each conType In .Containers
 Debug.Print conType.Name & " container: " & _
 conType.Documents.count
 If conType.Documents.count > 0 Then
 ' list the document names in the specified container
 For Each doc In conType.Documents
 Debug.Print doc.Name
 Next doc
 End If
 Next conType
 .Close
 End With
End Sub

The cmdOpen_Click procedure shown above uses the OpenDatabase method of
the DBEngine object to open the specified database in the default workspace.
The database is opened as shared and read/write. By supplying additional
arguments for the OpenDatabase method you could open the database
exclusively (a database opened exlusively can be accessed by a single user at a
time) or as read-only. See the online help for details.

Adding User-Defined Properties to a Database

The Database object, like other Data Access Objects in Microsoft Access,
contains a Properties collection. You can use a For…Each loop in your VBA
code to display values of properties associated with the Database object.

To find out which properties apply to the currently open database, open a new
module in your Microsoft Access database and type the ListDatabaseProperties
procedure, as shown below:

Sub ListDatabaseProperties()

Dim db As DAO.Database
Dim prp As DAO.Property

Set db = CurrentDb()

Debug.Print "Database properties:"

8

Access 2003 Programming by Example with VBA, XML and ASP by Julitta Korol
Appendix A

For Each prp In db.Properties
Debug.Print prp.Name

Next prp
End Sub

Some of the database properties that will be listed in the Immediate window after
running the above procedure are: Name, Connect, Transactions, Updatable,
CollatingOrder, QueryTimeout, Version, RecordsAffected, ReplicaID,
DesignMasterID, Connection, AccessVersion, Build.

In addition to built-in database properties, you can add custom (user-defined)
properties to a database by using the Microsoft Access user interface, or you can
write a Visual Basic procedure like the one in Listing A-3 D further in this section.

Figure A-4 shows the Database Properties window where you can add custom
properties to a database by using the Microsoft Access user interface. To access
this window open the database for which you want to set up custom properties
and choose File | Database Properties. Click the Custom tab and type the name
of the custom property in the Name box. Click the down arrow next to the Type
box and choose the data type for your custom property. Next, type the value of
the property in the Value box. Lastly, click the Add button to add the property to
the Properties collection.

Figure A-4 You can use the Database Properties window to add custom properties to your

database, or you can write a VBA procedure (see Listing A-3 D further in this section).

The cmdDbCustomProp_Click procedure in Listing A-3 D below creates a user-
defined property for the current database and appends it to the Properties
collection of the database. Next, the procedure enumerates the names and
values of all properties in the database.

Notice that instead of using three separate statements to create a user-defined
property, you can use the following line of code:

9

Access 2003 Programming by Example with VBA, XML and ASP by Julitta Korol
Appendix A

Set prp = db.CreateProperty(custPrpName, dbText, “1”)

After creating a new property, you must append it to the Properties collection of
the Database object:

db.Properties.Append prp

The ErrorHandler code in this procedure deletes the custom property from the
Properties collection if the property with the specified name already exists. This
allows you to run the procedure an unlimited number of times. While looping
through the Properties collection of your database, other errors may occur.

For example, an attempt to read the value of the Connection property causes
Microsoft Access to display error 3251 (“Operation is not supported for this type
of object”). If you are working with a Microsoft Access database and not with an
ODBC data source, attempting to read the Connection property value will
generate an error. You can ignore this error by using the VBA Resume Next
statement. This statement will cause Visual Basic to resume the statement
immediately following the statement that caused the error, therefore the
remaining database property names and values can be read.

After running the procedure in Listing A-3 D the new custom property will be
listed as the last property in the Immediate window. This property will not appear
in the list of custom properties in the Database Properties window.

Listing A-3 D Adding a custom property to a Database with DAO

Sub cmdDBCustomPrp_Click()
 Dim db As DAO.Database
 Dim prp As DAO.Property
 Dim custPrpName As String

 custPrpName = "dbVersion"
 On Error GoTo ErrorHandler
 Set db = DBEngine.Workspaces(0)(0)
 Set prp = db.CreateProperty()
 prp.Name = custPrpName
 prp.Type = dbText
 prp.Value = "1"
 db.Properties.Append prp
 MsgBox "New property was created."
 For Each prp In db.Properties
 Debug.Print prp.Name & ": " & prp.Value
 Next prp
 Exit Sub
ErrorHandler:
 'property with this name already exists

10

Access 2003 Programming by Example with VBA, XML and ASP by Julitta Korol
Appendix A

 If Err.Number = 3367 Then
 db.Properties.Delete custPrpName
 Resume 0
 ' ignore the Connection property
 ElseIf Err.Number = 3251 Then Resume Next
 Else
 MsgBox Err.Number & ": " & Err.Description
 End If
End Sub

Although the DBObject has a version property that indicates the version number
of the Microsoft Jet database engine (the current version is 4.0), you could use
the dbVersion custom property as created in the above procedure to store
version number for your database.
To use your custom property (dbVersion), add a text box to any form in a current
database. Next, activate the Properties window for the selected text box and
type the following in the Default Value property of the text box control:

=[CurrentDB].[Properties]("dbVersion").[Value]

When you run the form, the text box control will show 1 — the current setting of
the dbVersion property.

As mentioned earlier, the DBEngine object represents the Jet database engine.
The default collection for this object is Workspaces. When a database is opened
it is assigned to DBEngine.Workspaces(0).Databases(0).

In Microsoft Jet you can have multiple databases open at one time. To quickly
check the full name of the current database, open the Immediate window and
type the bolded statements below:

?DBEngine.Workspaces(0)(0).Name
C:\AccessPro\DBSProjectsE\LearnDAO.mdb

?DBEngine(0)(0).Name
C:\AccessPro\DBSProjectsE\LearnDAO.mdb

?CurrentDb.Name
C:\AccessPro\DBSProjectsE\LearnDAO.mdb

Deleting a Database

You cannot delete a database programmatically with DAO. To delete a
database, use the Visual Basic Kill statement as demonstrated in Listing A-3 E
below.

Listing A-3 E Deleting a database

11

Access 2003 Programming by Example with VBA, XML and ASP by Julitta Korol
Appendix A

Private Sub cmdDelete_Click()
 Dim dbName As String

 dbName = InputBox("Enter the name of the database " & _
 "you want to delete:" & Chr(13) & _
 "(example: C:\TestData2.mdb)", "Database Name including path")
 If dbName = "" Then
 Exit Sub
 Else
 On Error GoTo ErrorHandler:
 Kill dbName
 MsgBox dbName & " was successfully deleted."
 Exit Sub
 End If
ErrorHandler:
 MsgBox Err.Description
End Sub

Creating and Linking Tables with DAO
Now that you know how to create a database programmatically as well as
retrieve and create database properties, it’s time to fill it in with some useful
objects. The first object you will need to create is a table. Figure A-5 shows
types of operations you may want to perform on database tables and fields.

Figure A-5 Frequent operations on database tables and fields

Creating a Table and Setting Field Properties

Each saved table in an Access database is an object called a TableDef object.

12

Access 2003 Programming by Example with VBA, XML and ASP by Julitta Korol
Appendix A

The TableDef object has a number of properties that characterize it — for
example, Name, RecordCount, DateCreated, DateUpdated. The TableDef
object also has methods that act on the object. For example, CreateField
method creats a new field for the TableDef object and OpenRecordset method
creates an object called Recordset that is used to manipulate the data in the
table.

The procedure in Listing A-5 A further in this section illustrates how to create a
table in a current database. The line,

Set db = CurrentDb

sets the db variable to point to the currently open database. The instruction
CurrentDb is a VBA function. It is not a part of DAO. The CurrentDB function
allows you to access the current database from Visual Basic without having to
know the database name. The CurrentDB function returns an object variable of
type Database that represents the database that is currently open in the
Microsoft Access application window. In DAO you refer to the current database
as DBEngine.Workspaces(0).Databases(0) or DBEngine(0)(0), or by using the
VBA function CurrentDb.

To create a table programmatically, use the CreateTableDef method of a Data-
base object. This method requires that you specify a string or string variable to
hold the name of the new TableDef object.

For instance, the following line sets the variable tblNew to point to a table
named Agents.

Set tblNew = db.CreateTableDef(“Agents”)

Because a table must have at least one field, the next step in the table
creation is using the CreateField method of the TableDef object to create
fields. For instance, in the following statement:

Set fld = tblNew.CreateField(“AgentId”, dbText, 6)

• tblNew is a table definition variable.
• “AgentId” is a string specifying the name for the new field object.
• dbText is an integer constant that determines the data type of the new

Field object (See Table A.2 below).
• 6 is an integer indicating the maximum size in bytes for a text field. Text

fields can hold from 1 to 255 bytes. This argument is ignored for other
types of fields.

Table A.2 Constants for the Type property in VBA

13

Access 2003 Programming by Example with VBA, XML and ASP by Julitta Korol
Appendix A

Data Type Constant Value

Boolean dbBoolean 1

Byte dbByte 2

Integer dbInteger 3

Long dbLong 4

Currency dbCurrency 5

Single dbSingle 6

Double dbDouble 7

Date/Time dbDate 8

Text dbText 10

OLE object dbLongBinary 11

Memo dbMemo 12

GUID dbGUID 15

When creating fields for your table you may want to set certain Field properties.
Listing A-5 A demonstrates how to set the following built-in properties:
Validation Rule, Validation Text, Default Value, and Required.

When you define validation rules for a field you need to set two properties. The
Validation Rule property is a text string that describes the rule for validation. In
Listing A-5 A we require that each entry in the AgentId field begins with the letter
“A”. The validation Text property is a string that is displayed to the user when the
validation fails, that is when the user attempts to enter data that does not comply
with the validation rule.

The Default value property sets or returns the default value of a Field object. In
Listing A-5 A we make the data entry easier for the user by specifying the “USA”
as the default value in the Country field. Each new record will automatically have
an entry of “USA” in the Country field. Because certain fields should not be left
blank, to ensure that the user enters data in a particular field, you should set the
Required property of that field to True.

In addition to built-in properties of an object, there are two other types of
properties:

• application-defined properties
• user-defined properties

The application-defined property is created only if you assign a value to that
property. A classic example of such a property is the Description property of the
TableDef object. To set the Description property of a table in the Access user
interface, simply right-click on the table name and choose Properties, then type
the text you want in the Description field. At this time Access will create a

14

Access 2003 Programming by Example with VBA, XML and ASP by Julitta Korol
Appendix A

Description property for the table and will append it automatically to the
Properties collection for that TableDef object. If you do not type a description in
the Description field, Access will not create a Description property. Therefore, if
you use the Description property in your code, Access will display an error. For
this reason, it is a good idea to check beforehand whether a referenced property
exists.

Users may create their own properties to hold additional information about an
object.

Listing A-5 A demonstrates how to use the CreateProperty method of the
TableDef object to create application-defined or user-defined properties. To
create a property you will need to supply the name for the property, the property
type and the property value. For example, in Listing A-5 A the CreateProperty
method property is used to create a Caption property for the DateOfBirth field in
the newly created table Agents:

Set prp = tblNew.Fields(“DateOfBirth”).CreateProperty(“Caption”)

Next, the data type of the Property object is defined:

prp.Type = dbText

Table A.2 above lists constants for the Type Property in VBA. Finally, a value is
assigned to our new Property:

prp.Value = “Date of Birth”

Instead of writing three separate lines of code, you can create a new property of
an object with the following line:

Set prp = tblNew.Fields(“DateOfBirth”).CreateProperty(“Caption”, dbText, “Date of Birth”)

A user-defined property must be appended to Properties collection of the
corresponding object.

In Listing A-5 A, the Caption property is appended to the Properties collection of
the Field object, and the Description property is appended to the Properties
collection of the TableDef object:

fld.Properties.Append prp
tblNew.Properites.Append prp

After creating a field and setting its built-in, application-defined or user-defined
properties, you should use the Append method to add this field to the Fields collection,
as in the following example:

15

Access 2003 Programming by Example with VBA, XML and ASP by Julitta Korol
Appendix A

tblNew.Fields.Append fld

Once all the fields have been created and appended to the Fields collection, you
must remember to append the new table to the TableDefs collection, as in the
following example:

dbTableDefs.Append tblNew

You can delete user-defined properties from the Properties collection, but you
can’t delete built-in properties. If you set a property in the user interface, you
don’t need to create and append the property in code because the property is
automatically included in the Properties collection.

Listing A-5 A Creating a table and setting field properties

Private Sub cmdCreateTable_Click()
 Dim db As DAO.Database
 Dim tblNew As DAO.TableDef
 Dim fld As DAO.Field
 Dim prp As DAO.Property

 On Error GoTo ErrorHandler
 Set db = CurrentDb
 Set tblNew = db.CreateTableDef("Agents")

 Set fld = tblNew.CreateField("AgentId", dbText, 6)
 fld.ValidationRule = "Like 'A*'"
 fld.ValidationText = "Agent Id must begin with the letter 'A' " _
 & "and cannot contain more than 6 characters."

 tblNew.Fields.Append fld

 Set fld = tblNew.CreateField("Country", dbText)
 fld.DefaultValue = "USA"
 tblNew.Fields.Append fld

 Set fld = tblNew.CreateField("DateOfBirth", dbDate)
 fld.Required = True
 tblNew.Fields.Append fld

 db.TableDefs.Append tblNew

 'Create Caption property and set its value
 'add it to the collection of field properties
 Set prp = tblNew.Fields("DateOfBirth").CreateProperty("Caption")
 prp.Type = dbText
 prp.Value = "Date of Birth"
 fld.Properties.Append prp
 MsgBox fld.Properties("Caption").Value

16

Access 2003 Programming by Example with VBA, XML and ASP by Julitta Korol
Appendix A

 Set prp = tblNew.CreateProperty("Description")
 prp.Type = dbText
 prp.Value = "Sample table created with DAO code"
 tblNew.Properties.Append prp
 Exit Sub
ErrorHandler:
 MsgBox Err.Number & ": " & Err.Description
End Sub

After running the code in Listing A-5 A, a new table named “Agents” appears in
the Access database window. If you can’t see the table, press F5 to refresh the
database window.

To check the properties which were set and defined in this procedure, activate
the Agents table in the design view, click the Field name for which you set or
created a custom property in the code, and examine the corresponding Field
Properties. Figure A-6 shows the current settings of the Validation Rule and
Validation Text properties for the AgentId field.

Figure A-6 You can create a database table like this one using VBA code. You can also set

appropriate field properties programmatically (see Listing A-5 A).

To check the value of the Description property for the Agents table that was set
as a result of running the procedure in Listing A-5 A, right-click the Agents table
in the Database window, and choose Properties from the shortcut menu.

Figure A-7 A description property for a table object can be set using the Access user interface or

via the VBA code (see Listing A-5 A).

17

Access 2003 Programming by Example with VBA, XML and ASP by Julitta Korol
Appendix A

Adding New Fields to a Table

Using the Access user interface, you can easily add new fields to an existing
table by opening a table in Design view and choosing Insert from the menu. After
typing the name and data type for the new field in an empty row, the field
becomes a part of your table. At times, however, you may need to insert
additional fields into an existing table using VBA code.

Listing A-5 B shows how to use the CreateField and Append methods to add two
new fields to the tblClientMeetings. See the preceding section on creating tables
if you need to review the process of creating a table and defining its fields.
Listing A-5 B Adding new fields to a table

Private Sub cmdAddField_Click()
 Dim db As DAO.Database
 Dim tdf As DAO.TableDef

 On Error GoTo ErrorHandler
 Set db = OpenDatabase("C:\DAOEXTE.MDB")
 Set tdf = db.TableDefs("tblClientMeetings")

 MsgBox "Number of fields in the table: " & _
 db.TableDefs("tblClientMeetings").Fields.count
 With tdf
 .Fields.Append .CreateField("NoOfMeetings", dbInteger)
 .Fields.Append .CreateField("Result", dbMemo)
 End With
 MsgBox "Number of fields in the table: " & _
 db.TableDefs("tblClientMeetings").Fields.count
 db.Close
 Exit Sub
ErrorHandler:

18

Access 2003 Programming by Example with VBA, XML and ASP by Julitta Korol
Appendix A

 MsgBox Err.Number & ": " & Err.Description
End Sub

The cmdAddField_Click procedure shown above uses the following With…End
With construct to quickly add two new fields to an existing table:

With tdf
 .Fields.Append .CreateField("NoOfMeetings", dbInteger)
 .Fields.Append .CreateField("Result", dbMemo)
End With

Each new field is appended to the Fields collection of the specified TableDef
object. In the above example, we create a new field on the fly while calling the
Append method. Make sure to include a space after the Append method and the
dot opearator in front of the CreateField method.

To add two new fields to an existing table without using the With…End With
construct, you would use the following two statements:

tdf.Fields.Append tdf.CreateField("NoOfMeetings", dbInteger) tdf.Fields.Append
tdf.CreateField("Result", dbMemo)

However, using the With…End With construct makes the code both clearer
and faster to execute.

Removing a Field from a Table

You may remove any field from an existing table, whether or not this field
contains data. However, you can’t delete a Field object from a TableDefs
object’s Fields collection after you have created an index that references that
field. You must first delete the index.

To remove the field in code, use the Delete method. In Listing A-5 C we remove
two fields that were added by the cmdAddField _Click procedure in Listing A-5 B.

Listing A-5 C Removing a field from a table

Private Sub cmdDeleteField_Click()
 Dim db As DAO.Database
 Dim tdf As DAO.TableDef

 On Error GoTo ErrorHandler
 Set db = OpenDatabase("C:\DAOEXTE.MDB")
 Set tdf = db.TableDefs("tblClientMeetings")

 MsgBox "Number of fields in the table: " & _

19

Access 2003 Programming by Example with VBA, XML and ASP by Julitta Korol
Appendix A

 db.TableDefs("tblClientMeetings").Fields.count
 With tdf
 .Fields.Delete "NoOfMeetings"
 .Fields.Delete "Result"
 End With

 MsgBox "Number of fields in the table: " & _
 db.TableDefs("tblClientMeetings").Fields.count
 db.Close
 Exit Sub
ErrorHandler:
 MsgBox Err.Number & ": " & Err.Description
End Sub

Modifying Table and Field Properties

The cmdChangePrp_Click procedure in Listing A-5 D illustrates how to change
the description of a table programmatically:

tdf.Properties("Description").Value = "Change properties"

This procedure also shows how to set the Format property of a field from a VBA
code. Because the Format property of the DateOfBirth field was not yet set via
the user interface, Access doesn’t know it exists, so the VBA code must use the
CreateProperty method to create this property prior to setting its value.

When writing procedures to set properties defined by Microsoft Access, you
should write error handling code to verify that the property you are trying to set
already exists in the Properties collection.

Listing A-5 D Changing table and field properties

Private Sub cmdChangePrp_Click()
 Dim db As DAO.Database
 Dim tdf As DAO.TableDef
 Dim prp As DAO.Property
 Dim fld As DAO.Field

 On Error GoTo ErrorHandler
 Set db = CurrentDb
 Set tdf = db.TableDefs("Agents")
 Set fld = tdf.Fields("DateOfBirth")

 tdf.Properties("Description").Value = "Change properties"
 Set prp = fld.CreateProperty("Format")
 prp.Type = dbText
 prp.Value = "mm/dd/yyyy"
 fld.Properties.Append prp

20

Access 2003 Programming by Example with VBA, XML and ASP by Julitta Korol
Appendix A

 db.Close
 Exit Sub
ErrorHandler:
 MsgBox Err.Number & ": " & Err.Description
End Sub

Figure A-8 The table description can be set manully by right-clicking the table and choosing

Properties, or by running a Visual Basic procedure (see Listing A-5 D above).

Figure A-9 The Format property of a field in a table can be set manually in the Design view of a table

or programmatically from VBA code (see Listing A-5 D above).

Retrieving Table Properties

As mentioned earlier, some DAO objects have a Properties collection. Properties
are objects, and just like other objects, they are contained in collections. You can
iterate through all of the properties of an object using the For Each…Next
programming structure.

Listing A-5 E demonstrates how to produce a list of all properties of a table.
When you run the cmdTablePrp_Click procedure, the property names and their
current values are written to the Immediate window. The Properties collection
allows you to create and store new properties. Refer to the Listing A-5 A to find

21

Access 2003 Programming by Example with VBA, XML and ASP by Julitta Korol
Appendix A

out how to create new field and table properties.

Listing A-5 E Retrieving table properties

Private Sub cmdTablePrp_Click()
 Dim prp As DAO.Property
 Dim tdf As DAO.TableDef
 Dim db As DAO.Database

 Set db = CurrentDb
 Set tdf = db.TableDefs("Agents")

 For Each prp In tdf.Properties
 On Error Resume Next
 Debug.Print prp.Name & ": " & prp.Value
 Next
 MsgBox "Finished processing."
End Sub

Linking a Table to a Database

Linking allows you to use data in another Access database without actually
copying the data from the other database. You can also link tables that reside in
other programs or file formats such as Microsoft Excel, Microsoft FoxPro, dBase,
or Paradox.

To link a table to a database, use the CreateTableDef method to create a new
table:

Set myTable = db.CreateTableDef("TableDBASE")

Next, specify the Connect property of the TableDef object. For example, the
following statement specifies the connect string:

myTable.Connect = "dBase 5.0;Database=C:\Program Files\Microsoft Office\Office11\1033"
Next, specify the SourceTableName property of the TableDef object to
indicate the actual name of the table in the Source database:

myTable.SourceTableName = "Customer.dbf"

Finally, use the Append method to append the TableDef object to the
TableDefs collection:

db.TableDefs.Append myTable

22

Access 2003 Programming by Example with VBA, XML and ASP by Julitta Korol
Appendix A

The procedure in Listing A-5 F demonstrates how to link a dBase table to a
current database. Prior to running this procedure, locate the Customer.dbf file on
your computer and modify the Database path used in the procedure’s Connect
string.

Listing A-5 F Linking a table to a database

Private Sub cmdLinkTblDbase_Click()
 Dim db As DAO.Database
 Dim myTable As DAO.TableDef

 On Error GoTo err_LinkDbaseTable

 Set db = CurrentDb
 Set myTable = db.CreateTableDef("TableDBASE")
 myTable.Connect = "dBase 5.0;Database=C:\Program Files\" & _
 "Microsoft Office\Office11\1033"
 myTable.SourceTableName = "Customer.dbf"
 db.TableDefs.Append myTable

 db.TableDefs.Refresh
 MsgBox "dBase table has been successfully linked."
 Exit Sub
err_LinkDbaseTable:
 MsgBox Err.Number & ": " & Err.Description
End Sub

Retrieving the Names of All the Fields in all the Tables

The following procedure prints the name of every table in the current database
and lists the names of all the fields in those tables.

Listing A-5 G Retrieving table and field names

Private Sub cmdListFields_Click()
 Dim db As DAO.Database
 Dim x As Integer
 Dim y As Integer

 Set db = CurrentDb
 For x = 0 To db.TableDefs.count - 1
 Debug.Print "Table: " & db.TableDefs(x).Name
 For y = 0 To db.TableDefs(x).Fields.count - 1
 Debug.Print Chr(9) & db.TableDefs(x).Fields(y).Name
 Next y
 Next x
End Sub

23

Access 2003 Programming by Example with VBA, XML and ASP by Julitta Korol
Appendix A

Creating Indexes and Establishing Table Relationships
with DAO
After defining the fields for your tables, take time to identify fields with unique
values as well as determine the relationships between tables (Figure A-10).

Figure A-10 Learning about table relationships and indexes.

Creating a Primary Key and Setting Its Properties

As you know, each table in your database should include a field (or set of fields)
that uniquely identifies each individual record in a table. Such a field or set of
fields is called a Primary Key. Listing A-10 A demonstrates how to use DAO
programming to create a Primary Key in a table as well as how to set some of the
index properties.

Indexes determine the order of records accessed from database tables and
whether or not duplicate records are accepted. While indexes can speed up
access to specific records in large tables, too many indexes can also slow down
updates to the database.
In DAO indexes are created using the CreateIndex method for a TableDef object.
The following statement creates an index named PrimaryKey:

Set idx = tdf.CreateIndex("PrimaryKey")

24

Access 2003 Programming by Example with VBA, XML and ASP by Julitta Korol
Appendix A

To ensure that the correct type of index is created, you need to set index
properties as needed. For example, the Primary property of an index indicates
that the index fields constitute the primary key for the table:

idx.Primary = True

To specify that the fields in a multi-field index must be filled in, use the Required
property as shown below:

idx.Required = True

In other words, the Required property indicates whether the index can accept null
values. When you set this property to True, nulls will not be accepted.

Use the IgnoreNulls property to determine whether a record with a null value in
the index fields should be included in the index:

idx.IgnoreNulls = False

Use the Unique property to specify whether or not the values in an index must be
unique:

idx.Unique = True

To actually index a table, you must use the CreateField method on the
Index object to create a Field object for each field to be included in the
index:

Set fld = idx.CreateField("AgentId", dbText)

Once the Field object is created, you need to append it to the Fields
collection:

idx.Fields.Append fld

The last step in index creation is appending the Index object to the
Indexes collection:

tdf.Indexes.Append idx

The result of running the cmdCreateIndex_Click procedure is shown in
Figure A-11 following Listing A-10 A.

Listing A-10 A Creating a Primary Key and setting its properties

Private Sub cmdCreateIndex_Click()

25

Access 2003 Programming by Example with VBA, XML and ASP by Julitta Korol
Appendix A

 Dim db As DAO.Database
 Dim tdf As DAO.TableDef
 Dim fld As DAO.Field
 Dim idx As DAO.Index

 Set db = CurrentDb
 Set tdf = db.TableDefs("Agents")

 'create a Primary Key
 Set idx = tdf.CreateIndex("PrimaryKey")
 idx.Primary = True
 idx.Required = True
 idx.IgnoreNulls = False
 Set fld = idx.CreateField("AgentId", dbText)
 idx.Fields.Append fld

 'add the index to the Indexes collection in the Agents table
 tdf.Indexes.Append idx
End Sub

Figure A-11 Indexes window after running the procedure in Listing A-10 A.

Creating a Multi-Field Index

The cmdMultiIndex_Click procedure in Listing A-10 B (shown below) creates a
two-field index in the Agents table. Start by using the CreateIndex method on a
TableDef object. Next, use the CreateField method on the Index object to create
the first field to be included in the index, and then append this field to the Fields
collection. Repeat the same two steps for the second field you want to include in
the index.

It is important to remember that the order in which the fields are appended has
an effect on the index order. If you open the Indexes window after running the
procedures in Listing A-10 A and A-10 B, you should see two indexes named
AgentCountry and PrimaryKey (see Figure A-12 below Listing A-10 B).

26

Access 2003 Programming by Example with VBA, XML and ASP by Julitta Korol
Appendix A

Listing A-10 B Creating a multi-field index

Private Sub cmdMultiIndex_Click()
 Dim db As DAO.Database
 Dim tdf As DAO.TableDef
 Dim fld As DAO.Field
 Dim idx As DAO.Index

 Set db = CurrentDb
 Set tdf = db.TableDefs("Agents")

 Set idx = tdf.CreateIndex("AgentCountry")

 Set fld = idx.CreateField("AgentId", dbText)
 idx.Fields.Append fld

 Set fld = idx.CreateField("Country", dbText)
 idx.Fields.Append fld

 tdf.Indexes.Append idx
End Sub

Figure 2-12 Indexes displayed in this window were created by running VBA procedures in

Listing A-10 A and A-10 B.

Listing All Indexes in a Table

Instead of opening the Indexes window in the Microsoft Access user interface to
check the names of available indexes, you may use the For Each…Next VBA
looping structure to retrieve the names of indexes from the Indexes collection of
the TableDef object. To get the names of indexes in the Agents table, run the
cmdIndexNames_Click procedure in Listing A-10 C below. The last statement in

27

Access 2003 Programming by Example with VBA, XML and ASP by Julitta Korol
Appendix A

this procedure activates the Immediate window, so that you can quickly see the
results of running this procedure. The statement,

SendKeys "^g"

is the same as pressing Ctrl+g, which opens the Immediate window.

Listing A-10 C Retrieving the names of indexes defined in a specific table

Private Sub cmdIdxNames_Click()
 Dim db As DAO.Database
 Dim tdf As DAO.TableDef
 Dim idx As DAO.Index

 Set db = CurrentDb
 Set tdf = db.TableDefs("Agents")

 For Each idx In tdf.Indexes
 Debug.Print idx.Name
 Next
 'show immediate window
 SendKeys "^g"
End Sub

Establishing Relationships Between Tables

The right relationship is everything. In order to combine data from two or more
tables you need to link the tables through established related fields. A
relationship simply matches data in key fields — usually these are fields with the
same name in both tables. To create a relationship manually you open the
Relationship window, add the tables you want to relate, drag the key field from
one table, and drop it on the key field in another table.

A Relation object represents a relationship between certain fields in tables and
queries. The Relation object can be used to view or create relationships.

Listing A-10 D demonstrates how to relate three tables to one another using

28

Access 2003 Programming by Example with VBA, XML and ASP by Julitta Korol
Appendix A

DAO. The first step in establishing a relationship between two tables is to use
the CreateRelation method, as shown below:

Set myRelation = db.CreateRelation("OneToMany1")

Notice that this method requires a string or a string variable denoting the name
of the new relation. In this example, we named the first relationship
“OneToMany1.”

The statement,

myRelation.Table = "tblCountries"

specifies the name of the referenced table (this table contains the primary
key).

The statement,

myRelation.ForeignTable = "tblCountriesProvinces"

specifies the name of the referencing table in this relationship (this table
contains the foreign key).

You may specify the Key Table and Foreign Table using one statement as
follows:

Set myRelation = db.CreateRelation("OneToMany1", "tblCountries", tblCountriesProvinces")

Next, you may want to set the Attributes property of the Relation object to
allow cascading updates and cascading deletes, so that Microsoft Jet
database engine updates or deletes records in related tables automatically:

myRelation.Attributes = dbRelationUpdateCascade + dbRelationDeleteCascade

Table A-3 shows the attributes for the Relation object.
Table A-3 Attributes for a Relation object

Description Constant

Set one-to-one relationship dbRelationUnique

No referential integrity dbRelationDontEnforce
Relationship exists in non-current
database that contains the two
linked tables

dbRelationInherited

Cascading updates enabled dbRelationUpdateCascade

Cascading deletions enabled dbRelationDeleteCascade

After setting the relation attributes, specify the key field in referenced table and

29

Access 2003 Programming by Example with VBA, XML and ASP by Julitta Korol
Appendix A

foreign key in referencing table:

Set myField = myRelation.CreateField("CountryId")
myField.ForeignName = "CountryId"

Next, Append the Field object to the Fields collection of the Relation object:

myRelation.Fields.Append myField

The last step in establishing the relationship between two tables requires that you
append Relation object to the Relations collection:

db.Relations.Append myRelation

The purpose of the cmdRelations_Click procedure is to establish one-to-many
relationship between three tables, therefore the procedure goes on to create
“OneToMany2” relationship. Because duplicate or invalid Relation names will
cause an error when the Append method is invoked, an error handler is included.

The error handler will delete the Relation objects from the collection, if the
relations with the specified names already exist. This ensures that you can run
the procedure in Listing A-10 D an unlimited number of times. The Resume 0
statement sends the Visual Basic back to the line that caused the error, and the
procedure can continue. If any other error is encountered, the procedure will
display the error number and its description.

Listing A-10 D Establishing relationships between tables

Private Sub cmdRelations_Click()
 Dim db As DAO.Database
 Dim myRelation As DAO.Relation
 Dim myField As DAO.Field

 On Error GoTo Err_Relations
 Set db = CurrentDb
 Set myRelation = db.CreateRelation("OneToMany1")
 myRelation.Table = "tblCountries"
 myRelation.ForeignTable = "tblCountriesProvinces"

 'create one-to-many relationship with Cascading Updates and Deletes
 myRelation.Attributes = _
 dbRelationUpdateCascade + dbRelationDeleteCascade

 Set myField = myRelation.CreateField("CountryId")
 myField.ForeignName = "CountryId"
 myRelation.Fields.Append myField

30

Access 2003 Programming by Example with VBA, XML and ASP by Julitta Korol
Appendix A

 'save the relationship
 db.Relations.Append myRelation

 'create a new relationship
 Set myRelation = db.CreateRelation("OneToMany2")

 myRelation.Table = "tblStateProvince"
 myRelation.ForeignTable = "tblCountriesProvinces"

 'create one-to-many relationship with Cascading Updates and Deletes
 myRelation.Attributes = _
 dbRelationUpdateCascade + dbRelationDeleteCascade

 Set myField = myRelation.CreateField("StateProvinceId")
 myField.ForeignName = "StateProvinceId"
 myRelation.Fields.Append myField

 'save the relationship
 db.Relations.Append myRelation
 Exit Sub
Err_Relations:
 If Err.Number = 3012 Then
 db.Relations.Delete "OneToMany1"
 db.Relations.Delete "OneToMany2"
 Resume 0
 Else
 MsgBox Err.Number & ": " & Err.Description
 End If
End Sub

Figure A-14 below shows the Relationship window after running the
cmdRelations_Click procedure in Listing A-10 D. To examine this window, make
sure the Database window is active and choose Tools | Relationships from the
Access menu bar. Select Relationships | Show All.

Figure A-14 You can relate two tables by dragging the primary key from one table and dropping in on

the corresponding foreign key in the other table, or by running a VBA procedure in
Listing A-10 D.

31

Access 2003 Programming by Example with VBA, XML and ASP by Julitta Korol
Appendix A

Figure A-15 The Edit Relationships dialog box displays the Enforced Referential Integrity rules as set

by the VBA code in Listing A-10 D.

Creating and Running Queries with DAO
Microsoft Access supports several types of queries. The simplest queries allow
you to select a set of records from a table or a number of tables. Other queries
perform specific actions on existing data, such as making a new table, appending
rows to a table, updating the values in a table, or deleting rows from a table.
Access provides a friendly interface for creating queries manually. This section
teaches you how to create the same queries using DAO code.

Figure A-16 Creating and executing queries programmatically.

32

Access 2003 Programming by Example with VBA, XML and ASP by Julitta Korol
Appendix A

Creating a Select Query with DAO

The cmdSelectQuery_Click procedure in Listing A-16 A illustrates how to create
a simple select query that lists all the employees with the entry of ‘Ms.’ in the
Employees table. Select queries retrieve a set of records from a database table.
These queries are easily recognized by the SELECT and FROM keywords in
their syntax:

SELECT LastName FROM Employees Selects the LastName field from the Employees
table. If there is a space in the field name
enclose the field name in the square brackets:
[Last Name].

SELECT FirstName, LastName,
PhoneNo FROM Employees

Selects the FirstName, LastName, and PhoneNo
fields from the Employees table.

SELECT * FROM Employees Selects all fields for all records from the
Employees table. The asterrisk (*) is used to
represent all fields.

The QueryDef object represents a saved query in a database. All QueryDefs
objects are contained in the QueryDefs collection. You can read and set the SQL
definition of a Query object using the SQL property.

To create a query in code, use the CreateQueryDef method. For example, to
create a Select query named myQuery, the following statement is used:

Set qdf = db.CreateQueryDef("myQuery", mySQL)

When you specify the name for your query, the new QueryDef object is automati-
cally appended to the QueryDefs collection when it is created. The second
argument of the CreateQueryDef method is a string variable that holds a valid
Access SQL statement. Prior to using this variable, you must assign to it a string
expression:

mySQL = "SELECT * FROM Employees WHERE TitleOfCourtesy = 'Ms.'"

The WHERE clause is used with the Select queries to specify criteria that deter-
mine which records the query will affect. The procedure in Listing A-16 A selects
from the Employees table all records that have a value of ‘Ms.’ in the
TitleOfCourtesy field. The equals (=) operator can be substituted by the keyword
LIKE, as in the following:

mySQL = "SELECT * FROM Employees WHERE TitleOfCourtesy LIKE 'Ms.'"

Other examples of using the WHERE clause to restrict records are shown below:

33

Access 2003 Programming by Example with VBA, XML and ASP by Julitta Korol
Appendix A

SELECT * FROM Employees
WHERE City IN (‘Redmond’, ‘London’)

Selects from the Employees table all fields for
all the records that have the value Redmond
or London in the City field.

SELECT * FROM Employees
WHERE City IN (‘Redmond’, ‘London’)
AND
[ReportsTo] LIKE ‘Buchanan, Steven’

Selects from the Employees table all fields for
all records that have the value Redmond or
London in the City field and have a value
‘Buchanan, Steven’ in the [ReportsTo] field.

SELECT*FROM Employees
WHERE ((Year([HireDate])<1993)
OR
(City=’Redmond’))

Selects from the Employees table all fields for
all records that have a value less than 1993 in
the HireDate field or have the value
‘Redmond’ in the City field.

SELECT DISTINCT City
FROM Employees

Selects from the Employees table all the
distinct values in the City field. The DISTINCT
keyword eliminates duplicate values from the
returned set of records.

When creating queries in code, be sure to include an error handler. After all, the
query you are trying to create may already exist, or an unexpected error could
occur.

Listing A-16 A Creating a Select query

Private Sub cmdSelectQuery_Click()
 Dim db As DAO.Database
 Dim qdf As DAO.QueryDef
 Dim mySQL As String
 On Error GoTo Err_SelectQuery

 mySQL = "SELECT * FROM Employees WHERE TitleOfCourtesy = 'Ms.'"
 Set db = OpenDatabase("C:\Program Files\Microsoft Office\" & _
 "Office11\Samples\Northwind.mdb")
 Set qdf = db.CreateQueryDef("myQuery", mySQL)
 Exit Sub
Err_SelectQuery:
 If Err.Number = 3012 Then
 MsgBox "Query with this name already exists."
 Else
 MsgBox Err.Description
 End If
End Sub

If you run the cmdSelectQuery_Click procedure in Listing A-16 A, next time you
open the Northwind database you should see the query named myQuery in the
list of stored queries in the database window.

Instead of queries that have been saved in the database for future use, it is
possible to create a temporary query by setting the QueryDefName property to a
zero-length string (""), as in the following example:

34

Access 2003 Programming by Example with VBA, XML and ASP by Julitta Korol
Appendix A

Set qdf = db.CreateQueryDef("", mySQL)

The advantage of temporary queries is that they don’t clutter the database
window.

If you’d like to sort records returned by the Select query, use the ORDER BY
clause with the ASC (ascending sort) and DESC (descending sort) keywords,
as shown in the following example:

SELECT *
FROM Employees
ORDER BY Country DESC

Select all records from the Employees table and arrange them in
descending order based on the Country field. If no order is
specified, the order is ascending (ASC) by default.

Creating and Running Parameter Queries with DAO

A special type of a Select query is known as a Parameter query. Instead of
retrieving the same records each time a query is run, a user can enter the search
criteria in a special dialog box at run time. In DAO, the parameters of a
Parameter query are represented by Parameter objects. The QueryDef object
contains a Parameters collection. Parameter objects represent existing
parameters.

To create a Parameter query, create a query string that includes the
PARAMETERS keyword:

mySQL = "PARAMETERS [Enter Country] Text;"&_
"SELECT * FROM CUSTOMERS WHERE Country = [Enter Country];"

Listing A-16 B demonstrates how to create a Parameter query that prompts the
user for the name of the country to retrieve appropriate records from the
Customers table in the Northwind sample database. Before you run this
procedure, change the path of the Northwind.mdb to point to the correct folder on
your computer.

Listing A-16 B Creating a Parameter query

Private Sub cmdParametrQuery_Click()
 Dim db As DAO.Database
 Dim qdf As DAO.QueryDef
 Dim mySQL As String

 On Error GoTo Err_Handler

 mySQL = "PARAMETERS [Enter Country] Text; " & _

35

Access 2003 Programming by Example with VBA, XML and ASP by Julitta Korol
Appendix A

 "SELECT * FROM Customers WHERE Country = [Enter Country];"

 Set db = OpenDatabase("C:\Program Files\Microsoft Office\Office11\" & _
 "Samples\Northwind.mdb")
 Set qdf = db.CreateQueryDef("myParamQuery", mySQL)
ExitHere:
 Set db = Nothing
 Exit Sub
Err_Handler:
 If Err.Number = 3012 Then
 MsgBox "Query with this name already exists."
 Else
 MsgBox Err.Description
 End If
 Resume ExitHere
End Sub

Before executing an existing Parameter query, assign a value to the parameter,
as shown in Listing A-16 C below. Once the parameter value is specified, you
need to open a recordset based on the query. Read the section “Finding and
Reading Records” later in this appendix for introduction to recordsets.

Listing A-16 C Running a Parameter query

Private Sub cmdRunParamQry_Click()
 Dim db As DAO.Database
 Dim qdf As DAO.QueryDef
 Dim rst As DAO.Recordset
 Dim fld As DAO.Field

 Set db = CurrentDb
 Set qdf = db.QueryDefs("qryPrmClientsByLastName")

 'specify the parameter
 qdf.Parameters("Enter Client's Name") = "K"

 'open a recordset based on the specified query
 Set rst = qdf.OpenRecordset(dbOpenDynaset)
 MsgBox "Number of records: " & rst.RecordCount

 'write the contents of the second field to the Immediate window
 Do Until rst.EOF
 Debug.Print rst(1)
 rst.MoveNext
 Loop

 'close the recordset
 rst.Close
 Set db = Nothing

36

Access 2003 Programming by Example with VBA, XML and ASP by Julitta Korol
Appendix A

End Sub

Creating and Running an Update Query with DAO

An Update query is a type of action query. Update queries are very convenient
to use when you want to change fields for a single record or for multiple records
in a table. The procedure in Listing A-16 D creates and runs an Update query.
As a result, the prices for all products supplied by Tokyo Traders are increased
by two dollars. The Execute method of a QueryDef object is used to run any
type of action query.

The UPDATE statement consists of the following three parts:

UPDATE tableName or QueryName

SET expression / operation to perform

WHERE criteria / limit operation to desired rows

The criteria in the WHERE clause is used to determine which rows will be
updated. The update query does not produce a result table. To avoid updating
wrong records, always determine which rows you want to be updated by creating
and running a Select query first.

Listing A-16 D Creating an Update query

Private Sub cmdUpdateQuery_Click()
 Dim db As DAO.Database
 Dim qdf As DAO.QueryDef
 Dim mySQL As String

 On Error GoTo Err_Handler

 mySQL = "UPDATE Suppliers INNER JOIN Products ON " & _
 "Suppliers.SupplierID = Products.SupplierID " & _
 "SET Products.UnitPrice = [UnitPrice]+2 " & _
 "WHERE (((Suppliers.CompanyName)='Tokyo Traders'));"

 Set db = OpenDatabase("C:\Program Files\" & _
 "Microsoft Office\Office11\Samples\Northwind.mdb")

 Set qdf = db.CreateQueryDef("PriceIncrease", mySQL)
 qdf.Execute

ExitHere:
 Set db = Nothing
 Exit Sub
Err_Handler:
 If Err.Number = 3012 Then
 MsgBox "Query with this name already exists."
 Else
 MsgBox Err.Description

37

Access 2003 Programming by Example with VBA, XML and ASP by Julitta Korol
Appendix A

 End If
 Resume ExitHere
End Sub

The cmdUpdateRun_Click procedure in Listing A-16 E demonstrates how to use
the Execute method to run an existing (previously saved) Update query.
Listing A-16 E Running an Update query

Private Sub cmdUpdateRun_Click()
 Dim db As DAO.Database

 Set db = OpenDatabase("C:\Program Files\Microsoft Office\" & _
 "Office11\Samples\Northwind.mdb")
 db.Execute "PriceIncrease"
 Set db = Nothing
End Sub

Running a Delete Query with DAO

With a Delete query you can delete a single record or multiple records from a
database. The Delete statement used to delete rows from a table consists of the
following three parts:

DELETE
FROM Table Name

WHERE criteria/limit operation to desired rows

You cannot reverse the operation performed by the Delete statement. Always
make a backup copy of your table prior to running a Delete query. It is a good
idea to create and run a Select query before Delete to see which rows will be
affected by the Delete operation.

The Execute method is used to run action queries or execute an SQL state-
ment. This method can take optional arguments. For example, in the
statement:

qdf.Execute dbFailOnError

the constant dbFailOnError will generate a run-time error and will roll back
updates or deletes if an error occurs.

Use the RecordsAffected property of the QueryDef object to determine the

38

Access 2003 Programming by Example with VBA, XML and ASP by Julitta Korol
Appendix A

number of records affected by the most recent Execute method. For example,
the following statement displays the number of records that were deleted:

MsgBox qdf.RecordsAffected & " records were deleted."

The procedure in Listing A-16 F runs an existing Delete query if the user
responds positively to the message shown in Figure A-17.

Figure A-17 You can display a SQL statement underlying a query in a message box.

Listing A-16 F Running a Delete query

Private Sub CmdDeleteQuery_Click()
 Dim db As DAO.Database
 Dim qdf As DAO.QueryDef

 On Error GoTo ExitProc

 Set db = CurrentDb
 Set qdf = db.QueryDefs("qryClientsWithoutMeeting")
 ' Chr(13) & Chr(13) is a double carriage return
 If (MsgBox("Do you want to perform the following: " & _
 Chr(13) & Chr(13) _
 & qdf.SQL, vbYesNo + vbDefaultButton2, _
 "SQL Expression")) = vbYes Then
 qdf.Execute dbFailOnError
 MsgBox qdf.RecordsAffected & " records were deleted."
 End If
ExitHere:
 Set db = Nothing
 Exit Sub
ExitProc:
 MsgBox "Unexpected error."
 Resume ExitHere
End Sub

Creating and Running a Make-Table Query with DAO

39

Access 2003 Programming by Example with VBA, XML and ASP by Julitta Korol
Appendix A

The Make-Table query creates a new table out of records from one or more
tables or queries. Make-Table queries are often used to preserve data as it
existed at a particular time or to create a backup copy of a table without backing
up the entire database.

Use the SELECT INTO statement to create a make-table query. This statement
can consist of the following parts:

SELECT fieldName Field Name (use * for all fields)

INSERT newTableName Name of the new table

FROM table/query Name Name of a table or query from which data is taken

WHERE condition Criteria / limit operation to desired rows

ORDER BY fieldName Order the records in the new table

The SELECT INTO statement in cmdMakeATableQuery_Click (Listing A-16 G) is
used to make a new table named SouthAmericanClients to store the names of all
Brazilian customers from the Customers table in the Northwind database.
Notice that by not assigning a name to the query, we create a temporary make-
table query:

Set qdf = db.CreateQueryDef("", mySQL)

Listing A-16 G Creating and running a Make-Table query

Private Sub cmdMakeATableQuery_Click()
 Dim db As DAO.Database
 Dim qdf As DAO.QueryDef
 Dim mySQL As String

 On Error GoTo Err_Handler

 mySQL = "SELECT * INTO SouthAmericanClients FROM Customers " & _
 "WHERE Country='Brazil';"
 Set db = OpenDatabase("C:\Program Files\Microsoft Office\" & _
 "Office11\Samples\Northwind.mdb")
 Set qdf = db.CreateQueryDef("", mySQL)
 qdf.Execute
ExitHere:
 Set db = Nothing
 Exit Sub
Err_Handler:
 MsgBox Err.Description
 Resume ExitHere
End Sub

40

Access 2003 Programming by Example with VBA, XML and ASP by Julitta Korol
Appendix A

Creating and Running an Append Query with DAO

Append queries are used for adding records from one or more tables to other
tables. You can append records to a table in a current database or another
Access or non-Access database.

An Append query is an action query that adds new records to the end of an
existing table or query. Append queries don’t return records. They are useful for
archiving records. Before you can archive the records you need to create a new
table structure to hold the records. To add a record or multiple records to a table,
use the INSERT INTO statement. This statement has the following parts:

INSERT INTO target [(Field1, Field2)]

The name of the table or query to append records
to. You may indicate the names of the fields to
append data to.

SELECT fieldname

The names of fields to obtain data from.

FROM tableExpression

The name of the table or tables from which records
are inserted, or the name of a saved query, or a
SELECT statement.

WHERE condition

Criteria / limit operation to desired rows.

The procedure in Listing A-16 H demonstrates how to create and execute an
append query using DAO.

Listing A-16 H Creating and running an Append query

Private Sub cmdAppend_Click()
 Dim db As DAO.Database
 Set db = OpenDatabase("C:\Program Files\Microsoft Office\" & _
 "Office11\Samples\Northwind.mdb")
 db.Execute "INSERT INTO SouthAmericanClients " _
 & "SELECT * FROM Customers " _
 & "WHERE Country = 'Argentina'"
 db.Close
 MsgBox "Argentina clients have been appended."
 Set db = Nothing
End Sub

Running the above procedure more than once will produce duplicate records in
the SouthAmericanClients table. You can clean up this table by creating a VBA
procedure that eliminates duplicate records.

41

Access 2003 Programming by Example with VBA, XML and ASP by Julitta Korol
Appendix A

Creating and Running a Pass-Through Query with DAO

A Pass-through query works directly with an external ODBC (Open Database
Connectivity) data source. Instead of linking to a table that resides on a server,
you can send commands directly to the server to retrieve data.

To execute a SQL pass-through query, use the Connect property. If you do not
specify a connection string in the Connect property, Access will ask you for the
connection information every time you run the Pass-through query (and this can
be very annoying).

The procedure in Listing A-16 I uses the MaxRecords property to return 15
records from the dbo.entity table located on a SQL server. Notice that the
ReturnsRecords property is set to True. If your query does not need to return
records, set the ReturnsRecords property to False.

Listing A-16 I Creating a Pass-through query (Example 1)

Private Sub cmdPassThru_Click()
 Dim db As DAO.Database
 Dim qdfPass As DAO.QueryDef

 On Error GoTo err_PassThru
 Set db = CurrentDb
 Set qdfPass = db.CreateQueryDef("GetRecords")
 'enter your own connect string
 'suppy the server database name you want to connect to,
 'your User Id, password and the Data Source name
 qdfPass.Connect = "ODBC;Database=myDbName; " _
 & "UID=MILL;PWD=year00;DSN=myDataS"
 qdfPass.SQL = "Select * From dbo.entity"
 qdfPass.ReturnsRecords = True
 qdfPass.MaxRecords = 15
 DoCmd.OpenQuery "GetRecords"
 Exit Sub
err_PassThru:
 If Err.Number = 3151 Then
 MsgBox Err.Description
 Exit Sub
 End If
 db.QueryDefs.Delete "GetRecords"
 Resume 0
 Exit Sub
End Sub

Instead of displaying a datasheet with the records retrieved from the SQL
database, the procedure below reads the records to a temporary query and

42

Access 2003 Programming by Example with VBA, XML and ASP by Julitta Korol
Appendix A

proceeds to open a recordset based on that query. Next, the contents of two
fields are printed to the Immediate window. Note that this procedure uses the
OpenRecordset method which is covered later in this chapter.

Listing A-16 J Creating and running a Pass-through query (Example 2)

Sub PassThru2()
 Dim db As DAO.Database
 Dim qdfPass As DAO.QueryDef
 Dim rstTemp As DAO.Recordset

 On Error GoTo err_PassThru

 Set db = CurrentDb
 Set qdfPass = db.CreateQueryDef("")

 qdfPass.Connect = "ODBC;Database=myDbName;UID=MILL;" _
 & "PWD=year00;DSN=myDataS"
 qdfPass.SQL = "Select * From dbo.entity"
 qdfPass.ReturnsRecords = True
 qdfPass.MaxRecords = 15

 Set rstTemp = qdfPass.OpenRecordset()
 'dump data from two fields to the Immediate window
 With rstTemp
 Do While Not .EOF
 Debug.Print , .Fields("entity_id"), .Fields("entity_name")
 .MoveNext
 Loop
 .Close
 End With
 SendKeys "^g"
ExitHere:
 Set db = Nothing
 Exit Sub
err_PassThru:
 MsgBox Err.Number & ":" & Err.Description
 Resume ExitHere
End Sub

Performing Other Operations with Queries

Now that you know how to programmatically create and run various queries,
you may be interested to find out how to use Visual Basic to perform other
operations related to queries, such as retrieving a list of queries and their
properties, sorting data in queries, and so on.

Figure A-18 Programming other tasks related to queries.

43

Access 2003 Programming by Example with VBA, XML and ASP by Julitta Korol
Appendix A

Retrieving Query Properties

Just like tables and other database objects, queries have properties. To generate
a list of properties for a specific query, use the For Each…Next looping structure
to iterate through the Properties collection of a QueryDef object. The procedure
in Listing A-18 A demonstrates this.

Listing A-18 A Listing query properties

Private Sub cmdListQueryProperties_Click()
 Dim db As DAO.Database
 Dim prp As DAO.Property

 On Error Resume Next
 Set db = OpenDatabase("C:\Program Files\" & _
 "Microsoft Office\Office11\Samples\Northwind.mdb")
 For Each prp In db.QueryDefs("Invoices").Properties
 Debug.Print prp.Name & "= " & prp.Value
 Next prp
 Set db = Nothing
End Sub

Below are some of the properties printed to the Immediate window by running the

44

Access 2003 Programming by Example with VBA, XML and ASP by Julitta Korol
Appendix A

code in the cmdListQueryProperties_Click procedure above.

Name= Invoices
DateCreated= 9/13/1995 10:51:44 AM
LastUpdated= 3/12/2003 5:09:58 AM
Type= 0
SQL= SELECT Orders.ShipName, Orders.ShipAddress, Orders.ShipCity, Orders.ShipRegion,
Orders.ShipPostalCode, Orders.ShipCountry, Orders.CustomerID, Customers.CompanyName,
Customers.Address, Customers.City, Customers.Region, Customers.PostalCode, Customers.Country,
[FirstName] & " " & [LastName] AS Salesperson, Orders.OrderID, Orders.OrderDate, Orders.RequiredDate,
Orders.ShippedDate, Shippers.CompanyName, [Order Details].ProductID, Products.ProductName, [Order
Details].UnitPrice, [Order Details].Quantity, [Order Details].Discount, CCur([Order
Details].UnitPrice*[Quantity]*(1-[Discount])/100)*100 AS ExtendedPrice, Orders.Freight
FROM Shippers INNER JOIN (Products INNER JOIN ((Employees INNER JOIN (Customers INNER JOIN
Orders ON Customers.CustomerID=Orders.CustomerID) ON Employees.EmployeeID=Orders.EmployeeID)
INNER JOIN [Order Details] ON Orders.OrderID=[Order Details].OrderID) ON Products.ProductID=[Order
Details].ProductID) ON Shippers.ShipperID=Orders.ShipVia;

Updatable= True
Connect=
ReturnsRecords= True
ODBCTimeout= 60
RecordsAffected= 0
MaxRecords= 0
RecordLocks= 0
FilterOn= False
Description= (Criteria) Record source for Invoice report. Based on six tables. Includes expressions that
concatenate first and last employee name and that use the CCur function to calculate extended price.
OrderOn= True
DatasheetGridlinesBehavior= 3
OrderByOn= False
RecordsetType= 0
Orientation= 0

Listing All Queries in a Database

You can obtain the listing of all queries in a database by using the For…Each
loop to enumerate the QueryDefs collection of the QueryDef. The procedure in
Listing A-18 B writes to the Immediate window the names of all queries in the
Northwind database. Before running this procedure, modify the path so it points
to the valid location of the Northwind.mdb file on your computer.

Listing A-18 B Listing queries in a database

Private Sub cmdListAllQueries_Click()
 Dim db As DAO.Database
 Dim qdf As DAO.QueryDef

 Set db = OpenDatabase("C:\Program Files\" & _

45

Access 2003 Programming by Example with VBA, XML and ASP by Julitta Korol
Appendix A

 "Microsoft Office\Office11\Samples\Northwind.mdb")
 For Each qdf In db.QueryDefs
 Debug.Print qdf.Name
 Next qdf
 Set db = Nothing
End Sub

Open the Immediate window to view the names of queries retrieved by the
cmdListAllQueries_Click procedure above.

Sorting Data in a Query

In the query design view you can specify the desired record order in a query
results via the Sort cell in the column containing the field you want to sort by. The
procedure in Listing A-18 C demonstrates how to create a query that returns
records from the tblClients table sorted by the client’s name.

The CreateQueryDef method creates a QueryDef object and assigns it the name
that it will have when it is saved:

Set qdf = db.CreateQueryDef("qryClientsSorted")

Next, the SQL property of the QueryDef is set:

qdf.SQL = "SELECT * FROM tblClients ORDER BY ClientName"

Notice that the sort order is determined by the ORDER BY clause followed by the
name of field (or fields) you want to sort by. Finally, the query is closed with the
following statement:

qdf.Close

Run the cmdSortData_Click() procedure in Listing A-18 C. Switch to the
database window and open the query to check the sort order. If the query does
not appear in the list of queries, press F5 to refresh the Queries view in the
Database window.

Listing A-18 C Sorting data in a query

Private Sub cmdSortData_Click()
 Dim qdf As DAO.QueryDef

 On Error GoTo Err_SortData

 Set qdf = CurrentDb.CreateQueryDef("qryClientsSorted")

46

Access 2003 Programming by Example with VBA, XML and ASP by Julitta Korol
Appendix A

 qdf.SQL = "SELECT * FROM tblClients ORDER BY ClientName"
 qdf.Close
ExitHere:
 Exit Sub
Err_SortData:
 If Err.Number = 3012 Then
 CurrentDb.QueryDefs.Delete "qryClientsSorted"
 Resume 0
 Else
 MsgBox Err.Number & ": " & Err.Description
 End If
 Resume ExitHere
End Sub

Deleting a Query from a Database

To remove a QueryDef object from a QueryDef collection, use the Delete method
as shown in Listing A-18 D. The cmdDeleteAQuery_Click deletes the query that
was created by running the cmdSelectQuery_Click procedure in Listing A-16 A.

Listing A-18 D Deleting a query from a database

Private Sub cmdDeleteAQuery_Click()
 Dim db As DAO.Database
 Dim qdf As DAO.QueryDef

 On Error GoTo ErrorHandler

 Set db = OpenDatabase("C:\Program Files\" & _
 "Microsoft Office\Office11\Samples\Northwind.mdb")
 db.QueryDefs.Delete "myQuery"
 db.Close

ExitHere:
 Set db = Nothing
 Exit Sub
ErrorHandler:
 MsgBox Err.Number & ": " & Err.Description
 Resume ExitHere
End Sub

Determining if a Query is Updatable

When a query is updatable you may edit the values in the result set of records
and your changes are automatically reflected in the underlying tables. Microsoft
Access online help lists situations when query results can or cannot be updated
(Figure A-19). The QueryDef object has the Updatable property that you can use
in your VBA code to find out if a query can be updated.

47

Access 2003 Programming by Example with VBA, XML and ASP by Julitta Korol
Appendix A

Figure A-19 Records returned by a query may or may not be updatable.

Listing A-18 E checks whether two queries in the Northwind database can be
updated. The Updatable property returns True for the Invoices query, and False
for the Order Subtotals query. The OpenRecordset method is used to open each
of these queries.
Listing A-18 E Determining if a query is updatable

Private Sub cmdIsUpdatable_Click()
 Dim db As DAO.Database
 Dim rst As DAO.Recordset

 Set db = OpenDatabase("C:\Program Files\Microsoft Office\" & _
 "Office11\Samples\Northwind.mdb")
 Set rst = db.OpenRecordset("Order Subtotals")
 Debug.Print rst.Updatable
 Set rst = db.OpenRecordset("Invoices")
 Debug.Print rst.Updatable
 Set db = Nothing
 rst.Close
 Set rst = Nothing
End Sub

48

Access 2003 Programming by Example with VBA, XML and ASP by Julitta Korol
Appendix A

Finding and Reading Records
Working with database records requires that you understand the Recordset
object. In DAO there are three types of Recordset objects: Table-type, Dynaset,
and Snapshot. Each of these recordsets offers a different functionality (see Table
A-4). The numerous procedures in this section demonstrate how to manipulate
data using the Recordset object and its methods.

In general, a Recordset object is used to manipulate data from one or more
tables or queries. Each column of a Recordset object represents a field, and
each row represents a record. The Recordset is a temporary object and is not
saved in the database. All Recordset objects cease to exist after the procedure
ends. All open recordset objects are contained in the Recordset collection. You
create a Recordset object using the OpenRecordset function.

Table A-4 Types of recordsets

Table recordsets Used to access records in a table stored in Microsoft Access
 database (.mdb file). Table recordsets allow you to retrieve, add,

update, and delete records in a single table. A Table-type
recordset object stores references to underlying data in RAM
(Random Access Memory).

Dynaset recordsets Used to access records in a local table stored in Microsoft Access
database (.mdb file), as well any table that is linked to an .mdb
file. Using Dynasets, you can retrieve, add, update, and delete
records from one or more tables. Dynaset recordsets contain
indirect references to records in tables.

Snapshot recordsets Used to access records from a local table stored in Microsoft
Access database (.mdb file), as well as any linked table or a
query. Snapshot recordsets contain a copy of the records in RAM
and provide no direct access to the underlying data. They are
used for reading data only — you can’t use them to add, update,
or delete records. A special type of a snapshot recordset known
as Forward-Only, provides the fastest access to the data.

In order to find and read records, you must understand how to navigate through a
Recordset object. When you open a Recordset object, the first record is the
current record. All Recordsets have a current record.

• To move to subsequent records, use the MoveNext method.
• To move to the previous record, use the MovePrevious method.
• The MoveFirst and MoveLast methods will move the cursor to the first and

last records.
• If you call the MoveNext method when the cursor is already pointing to the

last record, the cursor will move off the last record to the area known as
end of file (EOF), and the EOF property will be set to True.

49

Access 2003 Programming by Example with VBA, XML and ASP by Julitta Korol
Appendix A

• If you call the MoveNext method when the EOF property is True, an error
is generated, because you cannot move past the end of the file. Similarly,
by calling the MovePrevious method when the cursor is pointing to the first
record, you will move the cursor to the area known as beginning of file
(BOF). This will set the BOF property to True. When the BOF property is
True and you call the MovePrevious method, an error will be generated.

In the sections that follow, you will find many examples of navigating through
recordsets. When navigating through a recordset you may want to mark a specifc
record to return to it at a later time. You can use the Bookmark property to obtain
a unique identification for a specific record. In a later section you will find out how
to use other navigation methods to quickly locate a specific record or a set of
records.

The Recordset object has numerous properties and methods. We will discuss
only those properties and methods that are required for performing a specific
task as demonstrated in the example procedures.

Figure A-20 Finding and reading records using code.

Opening and Closing Various Types of Recordsets
Use the OpenRecordset method to create or open a Recordset. For example, to
open a table-type recordset on a table named tblClients, use the following
statement:

50

Access 2003 Programming by Example with VBA, XML and ASP by Julitta Korol
Appendix A

Set rst = CurrentDb.OpenRecordset(“tblClients”, dbOpenTable)

Notice that the second argument in the OpenRecordset method specifies the
type of a Recordset. In this position, the following constants can be used:

dbOpenTable Opens a table-type Recordset object

dbOpenDynaset Opens a dynaset-type Recordset object
dbOpenSnapshot Opens a snapshot-type Recordset object

If you don’t specify a Recordset type, a table-type Recordset will be created
based on the tblClients. A table-type Recordset represents the records in a single
table in a database.

The OpenRecordset method opens a new Recordset object for reading, adding,
updating, or deleting records from a database. The OpenRecordset method can
also be performed on a query. Note that a query can only be opened as a
dynaset or snapshot recordset object. For example, to open a recordset based
on a query, you could use the following statements:

Dim db As DAO.Database
Dim rst As DAO.Recordset

set db = CurrentDb()
Set rst = db.OpenRecordset(“qryMyQuery”, dbOpenSnapshot)

The procedure in Listing A-20 A demonstrates how to open various types of
recordsets on the tblClients table and return the total number of records. Notice
that to get the correct count of records in a Dynaset and Snapshot recordsets,
you need to invoke the MoveNext method to access all the records. Counting
records in covered in more detail in the next section.

Listing A-20 A Opening Table-, Dynaset-, and Snapshot-type recordsets

Private Sub cmd3Rst_Click()
 Dim tblRst As DAO.Recordset
 Dim dynaRst As DAO.Recordset
 Dim snapRst As DAO.Recordset

 Set tblRst = CurrentDb.OpenRecordset("tblClients", dbOpenTable)
 Debug.Print "# of records in a table: " & tblRst.RecordCount

 Set dynaRst = CurrentDb.OpenRecordset("tblClients", dbOpenDynaset)
 Debug.Print "# of records in a Dynaset: " & dynaRst.RecordCount
 dynaRst.MoveLast
 Debug.Print "# of records in a Dynaset: " & dynaRst.RecordCount

 Set snapRst = CurrentDb.OpenRecordset("tblClients", dbOpenSnapshot)

51

Access 2003 Programming by Example with VBA, XML and ASP by Julitta Korol
Appendix A

 Debug.Print "# of records in a Snapshot: " & snapRst.RecordCount
 snapRst.MoveLast
 Debug.Print "# of records in a Snapshot: " & snapRst.RecordCount

 tblRst.Close
 dynaRst.Close
 snapRst.Close
 SendKeys "^g"
End Sub

Opening a Snapshot and Counting Records

When you want to search tables or queries, you will get the fastest results by
opening a Snapshot-type recordset. A snapshot is simply a non-updateable set
of records that contain fields from one or more tables or queries. Snapshot-type
Recordset objects can be used only for retrieving data. Use the OpenRecordset
method to create or open a recordset. For example, to open a Snapshot-type
recordset on a table named tblClients, use the following statement:

Set rst = CurrentDb.OpenRecordset(“tblClients”, dbOpenSnapshot)

At times, you may need to know where you are in a recordset. There are two
properties that can be used to determine your position in the recordset:

• The AbsolutePosition property allows you to position the current record
pointer to a specific record based on its ordinal position in a dynaset or
snapshot type recordset object. This property allows determining the
current record number. Zero (0) refers to the first record in the Recordset
object. If there is no current record, the AbsolutePosition property returns
–1. However, because the position of a record changes when preceding
records are deleted, you should rely more on bookmarks to position the
current record. The AbsolutePosition property can be only used with
Dynasets and Snapshots. Because the AbsolutePosition property value is
zero-based, one is added to the AbsolutePosition value to display current
record information:

MsgBox "Current record: " & rst.AbsolutePosition + 1

• The PercentPosition property shows the current position relative to the

number of records that have been accessed. Both the AbsolutePosition
and PercentPosition are not accurate until you move to the last record.

The procedure in Listing A-20 B attempts to get the total number of records in the
Snapshot-type recordset by using the RecordCount property. Dynaset-and
Snapshot-type recordsets, the RecordCount property is the number of records

52

Access 2003 Programming by Example with VBA, XML and ASP by Julitta Korol
Appendix A

accessed. Therefore, to determine the correct number of records in these
recordsets you need to invoke the MoveLast method, to access all records.

Listing A-20 B Opening a Snapshot and retrieving the number of records

Private Sub cmdOpenSnapshot_Click()
 Dim rst As DAO.Recordset
 Set rst = CurrentDb.OpenRecordset("tblClients", dbOpenSnapshot)
 MsgBox "Current record: " & rst.AbsolutePosition + 1
 MsgBox "Number of records: " & rst.RecordCount
 rst.MoveLast
 MsgBox "Current record: " & rst.AbsolutePosition + 1
 MsgBox "Number of records: " & rst.RecordCount
 rst.Close
 Set rst = Nothing
End Sub

Retrieving the Contents of a Specific Field in a Table

To retrieve the contents of any field, start by creating a recordset based on the
desired table or query, then loop through the recordset, printing the field’s
contents for each record to the Immediate window.

The procedure in Listing A-20 C generates a listing of all clients in the tblClients
table. Client names are retrieved starting from the last record (see the MoveLast
method). The BOF property of the Recordset object determines when the
beginning of your recordset was reached. The last statement in this procedure
(SendKeys "^g") activates the Immediate window so that you can see the results
for yourself.

Listing A-20 C Retrieving field values

Private Sub cmdReadFromEnd_Click()
 Dim db As DAO.Database
 Dim rst As DAO.Recordset

 Set db = CurrentDb
 Set rst = db.OpenRecordset("tblClients", dbOpenTable)
 rst.MoveLast
 Do Until rst.BOF
 Debug.Print rst!ClientName
 rst.MovePrevious
 Loop
 SendKeys "^g"
 rst.Close
 Set rst = Nothing
End Sub

53

Access 2003 Programming by Example with VBA, XML and ASP by Julitta Korol
Appendix A

Moving Between Records in a Table

All recordsets have a current position and a current record. A current record is
usually the record at the current position. However, the current position can be
before the first record and after the last record. You can use one of the following
Move methods to change the current position:

MoveFirst Moves to the first record.
MoveLast Moves to the last record.
MoveNext Moves to the next record.
MovePrevious Moves to the previous record.
Move n Move forward or backward n positions.

Listing A-20 D Moving between records in a table

Private Sub cmdNavigateRecords_Click()
 Dim db As DAO.Database
 Dim tblRst As DAO.Recordset
 Dim dynaRst As DAO.Recordset

 Set db = CurrentDb
 Set tblRst = db.OpenRecordset("tblClients")
 tblRst.Index = "ClientName"
 tblRst.MoveFirst

 Do While Not tblRst.EOF
 Debug.Print "Client: " & tblRst!ClientName
 tblRst.MoveNext
 Loop

 Set dynaRst = db.OpenRecordset("tblClients", dbOpenDynaset)
 dynaRst.MoveFirst
 Do While Not tblRst.EOF
 Debug.Print "Hello" & tblRst!ClientName
 tblRst.MoveNext
 Loop

 tblRst.Close
 dynaRst.Close
 Set tblRst = Nothing
 Set dynaRst = Nothing
 Set db = Nothing
 SendKeys "^g"
End Sub

Counting Records in a Recordset

54

Access 2003 Programming by Example with VBA, XML and ASP by Julitta Korol
Appendix A

The RecordCount property of a Recordset object returns the number of records
that have been accessed. It is equal to zero (0), if there are no records in the
recordset, and it is equal to 1, if there are records in a recordset. If you open a
table-type recordset (see procedure in Listing A-20-E) and check the
RecordCount property, it will return the total number of records in a table.

However, if you open a dynaset or snapshot type recordset, the RecordCount
property will return 1, indicating that the recordset contains records. To find out
the total number of records in a dynaset or snapshot, call the MoveLast method
prior to retrieving the RecordCount property value. The record count becomes
accurate after you’ve visited all the records in the recordset. Refer to the
procedure cmd3Rst_Click in Listing A-20-A earlier in this appendix for an
example.

Listing A-20 E Retrieving the number of records in a Table-type recordset

Private Sub cmdRecCount_Click()
 Dim db As DAO.Database
 Dim rst As DAO.Recordset

 Set db = CurrentDb
 Set rst = db.OpenRecordset("tblClients", dbOpenTable)
 MsgBox "Number of Records: " & rst.RecordCount
 Set rst = Nothing
 Set db = Nothing
End Sub

Finding Records in a Table-Type Recordset

While the Move methods are convenient to loop through records in a Recordset
object, you should use Seek or Find methods to look for specific records. When
you know exactly which record you want to find in a Table-type recordset, and
the field you are searching is indexed, the quickest way to find that record is by
using the Seek method. One thing to remember with the Seek method is that
the table must contain an index. The Index property must be set before the
Seek method can be used. If you try to use the Seek method on a Table-type
recordset without first setting the current index, a run-time error will occur. The
Seek method searches through the recordset and locates the first matching
record. Once the record is found it is made the current record and the NoMatch
property is set to False. If the record is not found, the NoMatch property is set to
True and the current record is undefined.

You can use the following comparison strings with the Seek method:

“=” Finds the first record whose indexed field is equal to the specified value.

“>=” Finds the first record whose index field is greater than or equal to the

55

Access 2003 Programming by Example with VBA, XML and ASP by Julitta Korol
Appendix A

 specified value.

“>” Finds the first record whose index field is greater than the specified value.

“<=” Finds the first record whose index field is less than or equal to the specified

 value.

“<” Finds the first record whose index field is less than the specified value.

The comparison operator used with the Seek method must be enclosed in
quotes. If there are several records that match your criteria, the Seek method
returns the first record it finds. The Seek method cannot be used to search for
records in a linked table. You must use the Find methods (see the next section)
for locating specific records in linked tables, as well as Dynaset-type and
Snapshot-type recordsets.

Listing A-20 F Finding records in a Table-type recordset

Private Sub cmdFindRecords_Click()
 Dim db As DAO.Database
 Dim tblRst As DAO.Recordset

 Set db = CurrentDb
 Set tblRst = db.OpenRecordset("tblClients", dbOpenTable)
 'find the first client in the table whose name
 'begins with the letters "Ka"
 tblRst.Index = "ClientName"
 tblRst.Seek ">=", "Ka"
 If Not tblRst.NoMatch Then
 MsgBox "Found the following client: " & tblRst!ClientName
 Else
 MsgBox "There is no client with such a name."
 End If
 tblRst.Close
 db.Close
 Set tblRst = Nothing
 Set db = Nothing
End Sub

Finding Records in Dynasets or Snapshots

Use Find methods to search for a record in a Dynaset-type and Snapshot-type
recordset. The following Find records are available:

FindFirst Finds the first matching record in the recordset.

FindNext Finds the next matching record, starting at the current record.

FindPrevious Finds the previous matching record, starting at the current record.

FindLast Finds the last matching record in the recordset.

56

Access 2003 Programming by Example with VBA, XML and ASP by Julitta Korol
Appendix A

If a record is not found for the given criteria, the NoMatch property is set to True.

Before searching for records, set a bookmark at the current record. If the search
fails, you will be able to use the bookmark to return to the current record,
otherwise you will get the error “No current record.” Each record in a Recordset
object has a unique bookmark. You can use the bookmark to locate that record.
To get the current record’s bookmark, you need to move the cursor to that
record, and assign the value of the Bookmark property of the Recordset object
to a variant variable:

Dim mySpot As Variant
mySpot = dynaRst.Bookmark

In the example procedure in Listing A-20 G, the bookmark is set on the first
record of a Dynaset-type recordset. The procecure then searches for clients
whose name contains the string "Sp." The names of all clients that match the
search criteria are printed to the Immediate window. Next, we return to the
bookmarked record by setting the Bookmark property to the value held by the
variant variable:

dynaRst.Bookmark = mySpot

While recordsets based on local Microsoft Access tables support bookmarks,
non-Access databases may not support them. To determine whether a
Recordset object supports bookmarks, you can check the Bookmarkable
property. Bookmarks are supported if this property is True.

If dynaRst.Bookmarkable Then
 mySpot = dynaRst.Bookmark
End If

If the Recordset object does not support bookmarks, an error occurs. You can
set as many bookmarks as you wish. Bookmarks can be created for a record
other than the current record by moving to the desired record and assigning the
value of the Bookmark property to a String variable that identifies that record.

Listing A-20 G Finding a record in a Dynaset

Private Sub cmdFindRecInDynaset_Click()
 Dim db As DAO.Database
 Dim dynaRst As DAO.Recordset
 Dim mySpot As Variant

 Set db = CurrentDb
 Set dynaRst = db.OpenRecordset("tblClients", dbOpenDynaset)
 MsgBox "Current client: " & dynaRst!ClientName
 mySpot = dynaRst.Bookmark

57

Access 2003 Programming by Example with VBA, XML and ASP by Julitta Korol
Appendix A

 'find clients whose name contains the following string "Sp."
 dynaRst.FindFirst "ClientName Like '*Sp.*'"

 Do While Not dynaRst.NoMatch
 Debug.Print dynaRst!ClientName
 dynaRst.FindNext "ClientName Like '*Sp.*'"
 Loop

 dynaRst.Bookmark = mySpot

 MsgBox "Back to record: " & dynaRst!ClientName
 dynaRst.Close
 db.Close
 Set dynaRst = Nothing
 Set db = Nothing
 SendKeys "^g"
End Sub

Finding the nth Record in a Dynaset or Snapshot

The procedure in Listing A-20 H demonstrates how to locate the nth record in a
Snapshot-type recordset. Notice that immediately after opening the recordset,
the MoveLast method is used to ensure that all records have been visited. The
total number of records is then stored in the totalRec variable. Next, the
MoveFirst method returns to the first record and the InputBox method is used to
prompt the user for the number of positions to move forward in the recordset. If
the user-supplied value is less than the total number of records, the cursor
moves to the specified record and the For…Each loop is used to print this
record’s field names and values to the Immediate window. An attempt to move
beyond the end of the Recordset will cause an error. Therefore, the procedure
displays a message if the user-supplied position to move to is greater than the
total number of records.

Listing A-20 H Finding the nth record in a Dynaset or Snapshot

Private Sub cmdFindRecSnap_Click()
 Dim rst As DAO.Recordset
 Dim fld As DAO.Field
 Dim totalRec As Integer
 Dim nth As String

 Set rst = CurrentDb.OpenRecordset("tblClients", dbOpenSnapshot)
 rst.MoveLast
 totalRec = rst.RecordCount
 rst.MoveFirst
 nth = InputBox("Enter the number of positions to move forward:")
 If totalRec > nth Then
 rst.Move nth

58

Access 2003 Programming by Example with VBA, XML and ASP by Julitta Korol
Appendix A

 For Each fld In rst.Fields
 Debug.Print fld.Name & ": " & fld.Value
 Next fld
 Else
 MsgBox "You must enter a value that is less than " _
 & totalRec & "."
 End If
 rst.Close
 Set rst = Nothing
End Sub

Working with Records
After learning the methods of moving through the recordset, finding a record and
retrieving a record’s contents, it’s time to get to know methods that are used for
adding, editing, and modifying data in a Table-type or Dynaset-type recordsets.
Because Snapshot-type recordsets are static, you can’t change, delete, or add
records to them.

Figure A-21 Manipulating records with DAO programming.

Adding New Records

In the Microsoft Access user interface, before you can add a new record to a
table you must first open the appropriate table. In code, you simply open the
Recordset object by calling the OpenRecordset method. For example, the
following statements declare and open the Recordset object based on the table
named tblClients2:

59

Access 2003 Programming by Example with VBA, XML and ASP by Julitta Korol
Appendix A

Dim tblRst As DAO. Recordset Set tblRst = db.OpenRecordset("tblClients2")

Once the Recordset object is open, use the AddNew method to create a blank
record. For example:

tblRst.AddNew

Next, you may set values for all or some of the fields in the new record. You must
set the Field’s value if the Required property of a field is set to True. In the
Microsoft Access user interface in Table Design view, there will be a Yes entry
next to the Required property if the entry in the selected field is required. Here
are some examples of setting field values in code:
tblRst.Fields(“ClientName”).Value = "Gosh, Regina"
tblRst.Fields(“ClientType”).Value = "I"

Note that because Value is the default property of a Field object, the use of this
keyword is optional and it was omitted in the code of the example procedure in
Listing A-21 A.

After filling in field values, you need to use the Update method on the Recordset
object to ensure that the newly added record is saved:

tblRst.Update

Listing A-21 A demonstrates how to add a new record to the tblClients2 table and
populate some of its fields with values.

Listing A-21 A Adding a new record to an existing table

Private Sub cmdAddNewRec_Click()
 Dim db As DAO.Database
 Dim tblRst As DAO.Recordset

 Set db = CurrentDb
 Set tblRst = db.OpenRecordset("tblClients2")
 With tblRst
 .AddNew
 .Fields("ClientName") = "Gosh, Regina"
 .Fields("ClientType") = "I"
 .Fields("ClientFromYear") = "1999"
 .Fields("DateEntered") = Now()
 .Fields("IDEntered") = "JO"
 .Fields("DateModified") = Now()
 .Fields("IdModified") = "JO"
 .Update
 End With
 MsgBox tblRst.Fields(1).Value

60

Access 2003 Programming by Example with VBA, XML and ASP by Julitta Korol
Appendix A

 tblRst.Bookmark = tblRst.LastModified
 MsgBox tblRst.Fields(1).Value
 tblRst.Close
 db.Close
 Set tblRst = Nothing
 Set db = Nothing
End Sub

In a Table-type recordset, the new record is placed in the order identified by the
table’s index. In a Dynaset-type recordset, the new record is added at the end of
the recordset. When you add a new record to a table, the new record does not
become a current record. A record that was current prior to adding the new
record remains current. In other words, while a new record is being added to the
end of the table, the cursor remains in the record that was selected prior to
adding a new record. You can, however, make the newly added record current
by using a Bookmark and the LastModified property:

tblRst.Bookmark = tblRst.LastModified

To better understand the truth of the above statements, perform the following:

1. Open the tblClients2 table in the Microsoft Access user interface and delete
the record for Regina Gosh that was added to this table when you ran the
procedure in Listing A-21 A.

2. Close the tblClients2 table.

3. Modify the procedure cmdAddNewRec_Click in Listing A-21 A by typing the

following statements below the End With keywords:

MsgBox tblRst.Fields(1).Value
tblRst.Bookmark = tblRst.LastModified
MsgBox tblRst.Fields(1).Value

4. Run the modified cmdAddNewRec_Click procedure.

Modifying Records

To edit an existing record, use the OpenRecordset method to open the
Recordset object. Next, locate the record you want to modify. In a Table-type
recordset, you can use the Seek method and a table index to find a record that
meets your criteria. In a Dynaset-type and Snapshot-type recordsets, you can
use any of the Find methods (FindFirst, FindNext, FindPrevious, FindLast) to
locate the appropriate record. However, recall that you can edit data only in the
Table-type or Dynaset-type recordsets (snapshots are used for retrieving data

61

Access 2003 Programming by Example with VBA, XML and ASP by Julitta Korol
Appendix A

only). Once you’ve located the record, use the Edit method on the Recordset
object, and proceed to change fields’ values.When you are done with the record
modification, invoke the Update method for the Recordset object.

The procedure cmdModifyRecord_Click in Listing A-21 B opens a Table-type
recordset based on the tblClients2 table and changes the status of all clients
from K to A. Next, the procedure locates a specific client record. Note that the
Index property must be set before using the Seek method for searching the
Table-type recordset. If you set the Index property to an index that doesn’t exist,
a run-time error will occur. Once the desired record is located, the procedure
displays the client name in a message box as follows:

MsgBox rst!ClientName

The above statement is the same as:

MsgBox rst.Fields(“ClientName”).Value

The bang operator (!) is used to separate an object’s name from the name of the
collection of which it is a member. Because the default collection of the
Recordset object is the Fields collection, you can omit the default collection
name. Next, the procedure places the client record into an Edit mode, and
changes the value of the ClientFromYear field:

rst!ClientFromYear = "1998"

This statement can be also written as:

rst.Fields(“ClientFromYear”).Value
The procedure then calls the Update method to make the field modification
permanent. Finally, the Recordset is closed and the table is automatically opened
in the Microsoft user interface as read-only.

Listing A-21 B Modifying a record in a table

Private Sub cmdModifyRecord_Click()
 Dim db As DAO.Database
 Dim rst As DAO.Recordset
 Dim crit As String

 Set db = CurrentDb
 Set rst = db.OpenRecordset("tblClients2", dbOpenTable)
 rst.MoveFirst
 ' change the status of all clients from K to A (Active)
 Do While Not rst.EOF
 With rst
 .Edit

62

Access 2003 Programming by Example with VBA, XML and ASP by Julitta Korol
Appendix A

 .Fields("ClientStatus") = "A"
 .Update
 .MoveNext
 End With
 Loop
 ' find the record for Anna Korc - enter data in ClientFromYear field
 crit = "Korc, Anna"
 rst.MoveFirst
 rst.Index = "ClientName"
 rst.Seek "=", crit
 MsgBox rst!ClientName
 rst.Edit
 rst!ClientFromYear = "1998"
 rst.Update
 rst.Close
 db.Close
 Set rst = Nothing
 Set db = Nothing
 'open the modified table as Read-Only
 DoCmd.OpenTable "tblClients2", acViewNormal, acReadOnly
End Sub

Deleting Records

To delete an existing record, open the Recordset object by calling the
OpenRecordset method. Locate the record you want to delete. In a Table-type
recordset, you can use the Seek method and a table index to find a record that
meets your criteria. In a Dynaset-type recordset, you can use any of the Find
methods (FindFirst, FindNext, FindPrevious, FindLast) to locate the appropriate
record. Next, use the Delete method on the Recordset object to perform the
deletion. Before using the Delete method, it is a good idea to write code to ask
the user to confirm or cancel the deletion. Immediately after a record is deleted,
there is no current record. Use the MoveNext method to move the record pointer
to an existing record.

The example procedure in Listing A-21 C deletes those clients who show the
entry of zero (0) in the NoOfMeetings field. The statement, Do While Not
tblRst.EOF tells Visual Basic to execute the statements inside the loop until the
end of file is reached (EOF). The If statement inside the loop checks the value of
the NoOfMeetings field, and deletes the current record only if the specified
condition is True. Every time a record is deleted, the counter variable’s value is
increased by one. The counter variable stores the total number of deleted
records. After the record is deleted, the MoveNext method is callled to move the
record pointer to the next existing record as long as the end of file has not yet
been reached. Even though you can use the Delete method and the While loop
to remove the required records as shown in Listing A-21 C, it is more efficient to
delete records with a delete query.

63

Access 2003 Programming by Example with VBA, XML and ASP by Julitta Korol
Appendix A

Listing A-21 C Deleting records

Private Sub cmdDeleteRecord_Click()
 'create a copy of tblClients as tblClients3

 Dim db As DAO.Database
 Dim tblRst As DAO.Recordset
 Dim counter As Integer
 'delete all the clients with zero (0) meetings

 Set db = CurrentDb
 Set tblRst = db.OpenRecordset("tblClients3")

 tblRst.MoveFirst
 Do While Not tblRst.EOF
 If tblRst!NoOfMeetings = 0 Then
 tblRst.Delete
 counter = counter + 1
 End If
 tblRst.MoveNext
 Loop

 MsgBox "Number of deleted records: " & counter
 tblRst.Close
 db.Close
 Set tblRst = Nothing
 Set db = Nothing
End Sub

Saving Field Values to Variables

Once you locate a particular record in a recordset, you can write individual field
values to variables, and pass these values to other procedures. The variable
must be of the appropriate data type. The example procedure in Listing A-21 D
moves to the first record in a Table-type recordset and stores the values of the
ClientName and NoOfMeetings fields in the variables named strClientName and
intMeetings. Next, these variables are passed as parameters to the ShowData
procedure that follows the Listing A-21 D. The ShowData procedure’s main
purpose is to display the retrieved values to the user in a message box. Notice
that the vbCr is a Visual Basic constant denoting the carriage return character. It
is equivalent to Chr(13). Therefore, the statement,

MsgBox "Client: " & strClient & vbCr _
& "Meetings: " & intMeetings

can also be written as:

MsgBox "Client: " & strClient & Chr(13) _
& "Meetings: " & intMeetings

Listing A-21 D Saving data in variables

64

Access 2003 Programming by Example with VBA, XML and ASP by Julitta Korol
Appendix A

Private Sub cmdDataInVariables_Click()
 Dim db As DAO.Database
 Dim tblRst As DAO.Recordset
 Dim strClientName As String
 Dim intMeetings As Integer

 Set db = CurrentDb
 Set tblRst = db.OpenRecordset("tblClients")
 tblRst.MoveFirst
 strClientName = tblRst!ClientName
 intMeetings = tblRst!NoOfMeetings
 ShowData strClientName, intMeetings

 tblRst.Close
 db.Close
 Set tblRst = Nothing
 Set db = Nothing
End Sub

Sub ShowData(strClient As String, intMeetings As Integer)
 MsgBox "Client: " & strClient & vbCr _
 & "Meetings: " & intMeetings
End Sub

Saving Records to an Array

Sometimes you may need to retrieve the contents of one or more records. Using
the GetRows method of the Recordset object you can copy a block of records
from a Recordset object into a VBA array. The GetRows method accepts one
argument which specifies the number or rows to be copied to the array. The
procedure in Listing A-21 E opens a Dynaset-type recordset based on the
tblClients table and calculates the total number of available records. After the
record pointer is returned to the first record, the procedure prompts the user for
the number of rows to copy. The user-supplied value is then used as the
argument of the GetRows method. The records are returned to a Variant variable
(myRecords). The GetRows method returns a two-dimensional array. If you run
this procedure in the Debug mode, you can find out the values stored in the array
by typing the following statements in the Immediate window:

?myRecords(0, 0)
1 (contents of the first field in the first record)

?myRecords(1, 1)
1787 Reklama Sp. z o.o. (contents of the second field in the second record)

?myRecords(2, 1)
B (contents of the third field in the second record)

65

Access 2003 Programming by Example with VBA, XML and ASP by Julitta Korol
Appendix A

In the statements shown above, the first subscript identifies the column (field)
number, and the second identifies the row (record) number. Because by default
arrays are zero-based, zero’s in the column and row position indicate the first
field in the first record.

Next, the procedure in Listing A-21 E uses the UBound function to calculate the
upper bound indices of an array:

a) the total number of returned rows (records):

r = UBound(myRecords, 2) + 1

b) the total number of fields (columns) in a returned record:

c = UBound(myRecords, 1) + 1

Because by default arrays are zero-based, a value of 1 is added. Next, to make it
more interesting and easier to understand, the procedure dumps the contents of
the Variant variable (myRecords) to an Excel worksheet object (OLEExcel) that is
embedded in the form (see Figure A-21 earlier in this chapter). To access the
embedded Excel worksheet, the GetObject function is called:

Dim objEx As Object
Set objEx = GetObject(, "Excel.Application")

The next statement,

Me!OLEExcel.Action = acOLEActivate

uses the Action property in Visual Basic to specify the operation to perform on an
OLE object. The constant, acOLEActivate, opens an OLE object for an operation,
such as editing.

Next, Excel VBA statements are used to place the contents of the array in an
appropriate worksheet range. The dumped data is then reselected and
transposed. When the procedure ends, you are left with the Excel Worksheet in
edit mode. Click outside the embedded worksheet object to exit the edit mode.
Or, you can have the procedure exit the edit mode upon finishing by using the
following statement:

Me!OLEExcel.Action = acOLEClose

The above statement closes an OLE object and ends the connection with the
application that supplied the object. Using this setting is equivalent to clicking
Close on the object's Control menu.

Listing A-21 E Saving records to an array

66

Access 2003 Programming by Example with VBA, XML and ASP by Julitta Korol
Appendix A

Private Sub cmdSaveToArray_Click()
 Dim db As DAO.Database
 Dim rst As DAO.Recordset
 Dim myRecords As Variant
 Dim count As Long
 Dim rowsToReturn As Integer
 Dim r As Integer
 Dim c As Integer
 Dim objEx As Object

 On Error GoTo ErrorHandler

 Set db = CurrentDb
 Set rst = db.OpenRecordset("tblClients", dbOpenDynaset)
 Set objEx = GetObject(, "Excel.Application")
 With rst
 .MoveLast
 count = .RecordCount
 .MoveFirst
 End With
 rowsToReturn = CInt(InputBox("How many records to retrieve?"))
 If rowsToReturn <= count Then
 myRecords = rst.GetRows(rowsToReturn)
 r = UBound(myRecords, 2) + 1
 c = UBound(myRecords, 1) + 1
 Me!OLEExcel.Action = acOLEActivate
 With objEx
 .Worksheets(1).Cells.Clear
 .Worksheets(1).Range(Cells(1, 1), _
 Cells(c, r)).Value = myRecords
 Selection.Copy
 .Worksheets(1).Range(Cells(1, 1), _
 Cells(c, r)).Copy
 .Worksheets(1).Range("A" & c + 2).Select
 Selection.PasteSpecial Paste:=xlAll, _
 Operation:=xlNone, _
 SkipBlanks:=False, Transpose:=True
 .Application.CutCopyMode = False
 .Worksheets(1).Range("A" & c + 2).Select
 End With
 ' Me!OLEExcel.Action = acOLEClose
 Else
 MsgBox "Too many rows to retrieve."
 End If
ExitHere:
 Set objEx = Nothing
 rst.Close
 db.Close
 Set rst = Nothing
 Set db = Nothing

67

Access 2003 Programming by Example with VBA, XML and ASP by Julitta Korol
Appendix A

 Exit Sub
ErrorHandler:
 Resume ExitHere
End Sub

Copying Records to a Worksheet Range

You can copy records directly to a worksheet range by using the
CopyFromRecordset method.

• To copy all the records in the Recordset object to a worksheet range starting

at cell A1, use the following statement:

Worksheets(1).Range(“A1”).CopyFromRecordset rst

The rst following the name of the method is an object variable representing a
Recordset object.

• To copy five records to a worksheet range, use the following statement:

Worksheets(1).Range(“A1”).CopyFromRecordset rst, 5

• To copy five records and four fields to a worksheet range, use the following

statement:

Worksheets(1).Range(“A1”).CopyFromRecordset rst, 5, 4

• You can also specify the number of records (rows) and fields to be copied

using variables:

Worksheets(1).Range(“A1”).CopyFromRecordset rst, myRows, myColumns

The procedure in Listing A-21 F uses the CopyFromRecordset method to copy
data from a Recordset object created from the tblClients table. After prompting
the user for the number of records to copy, the procedure dumps the contents of
the first four (4) fields in those records to an Excel worksheet embedded in the
Access form. Figure A-21 shows the result of running this procedure.

Listing A-21 F Copying records to a worksheet range

Private Sub cmdCopyToExcelRange_Click()
 Dim db As DAO.Database
 Dim rst As DAO.Recordset
 Dim rowsToCopy As Integer
 Dim colNum As Integer
 Dim count As Integer

68

Access 2003 Programming by Example with VBA, XML and ASP by Julitta Korol
Appendix A

 Dim objEx As Object

 On Error GoTo ErrorHandler

 Set db = CurrentDb
 Set rst = db.OpenRecordset("tblClients", dbOpenDynaset)
 Set objEx = Me!OLEExcel.Object
 With rst
 .MoveLast
 count = .RecordCount
 .MoveFirst
 End With
 rowsToReturn = CInt(InputBox("How many records to copy?"))
 If rowsToReturn <= count Then
 Me!OLEExcel.Verb = acOLEVerbShow
 Me!OLEExcel.Action = acOLEActivate
 With objEx.Worksheets(1)
 .Cells.Clear
 .Range("A1").CopyFromRecordset rst, rowsToReturn, 4
 .Range("A1").Select
 End With
 ' keep the Excel object open so that you can check the results
 ' Me!OLEExcel.Action = acOLEClose
 End If
ExitHere:
 Set objEx = Nothing
 rst.Close
 db.Close
 Exit Sub
ErrorHandler:
 Resume ExitHere
End Sub

Filtering Records

When you want to work only with a certain subset of records you can filter out
those records you don’t want to see. You can filter records using the SQL
WHERE clause or you can use the Filter property. You can apply a filter to a
Dynaset-type or Snapshot-type Recordset object. The fastest way to filter
records is to open a new Recordset object by using an SQL statement that
includes a WHERE clause. For example, Listing A-21 G provides an example of
using the SQL WHERE clause to retrieve data for clients whose last name
begins with the letter “B” and who had at least one meeting.

Listing A-21 G Filtering records using SQL WHERE clause

Private Sub cmdFilterSQLWhere_Click()
 Dim db As DAO.Database

69

Access 2003 Programming by Example with VBA, XML and ASP by Julitta Korol
Appendix A

 Dim rst As DAO.Recordset
 Dim qdf As DAO.QueryDef
 Dim mySQL As String

 Set db = CurrentDb
 mySQL = "SELECT * FROM " _
 & "tblClients WHERE ClientName LIKE 'B*' AND NoOfMeetings >0;"
 Set qdf = db.CreateQueryDef("BClients")
 qdf.SQL = mySQL
 Set rst = db.OpenRecordset("BClients")
 DoCmd.OpenQuery "BClients"
End Sub

Listing A-21 H uses the Filter propery to restrict the subset of records to those in
which the client name begins with the letter “B” and the value in the
NoOfMeetings field is greater than zero (0). The procedure begins with opening a
Dynaset-type Recordset object based on the tblClients table and setting the Filter
property on this recordset:

rst.Filter = "ClientName like 'B*' and NoOfMeetings >0"

For the filter to take effect after you set it, you must open a new recordset based
on the Recordset object to which the filter was applied:

Set FilterRst = rst.OpenRecordset()

Next, the procedure writes to the Immediate window the value of the ClientName
field for all of the records in the filtered recordset.

Listing A-21 H Filtering records using filter property

Private Sub cmdFilterData_Click()
 Dim db As DAO.Database
 Dim rst As DAO.Recordset
 Dim FilterRst As DAO.Recordset

 Set db = CurrentDb
 Set rst = db.OpenRecordset("tblClients", dbOpenDynaset)
 rst.Filter = "ClientName like 'B*' and NoOfMeetings >0"

 Set FilterRst = rst.OpenRecordset()
 Do Until FilterRst.EOF
 Debug.Print FilterRst.Fields("ClientName").Value
 FilterRst.MoveNext
 Loop
 rst.Close
 FilterRst.Close

70

Access 2003 Programming by Example with VBA, XML and ASP by Julitta Korol
Appendix A

 db.Close
 Set rst = Nothing
 Set FilterRst = Nothing
 Set db = Nothing
End Sub

Creating a Recordset Object from a Form

So far you have worked with Recordset objects that were created from tables or
queries. You can also create a Recordset object based on a form. Recall that
the source of the data for a form is specified by setting the form’s RecordSource
property to a table name, a query name, or an SQL statement. Use the
RecordsetClone property to refer to the recordset underlying the form.

The RecordsetClone property is used for:
• Navigating and manipulating records without affecting the records displayed

in the form.
• Synchronizing the form to the record found in the recordset clone.
• Accessing the RecordCount property of the Recordset object to determine

the number of records displayed in the form.
• Determining the value in a particular field of the current record. Listing A-21 I

shows an example of creating and using the RecordsetClone property.

Listing A-21 I Working with a recordset underlying a form

Private Sub cmdFindClientRecord_Click()
 Dim frmRst As DAO.Recordset
 Dim r As String

 DoCmd.OpenForm "frmClients", acNormal
 MsgBox "Form Name: " & Screen.ActiveForm.Name
 ' get the form and its recordset
 Set frmRst = Screen.ActiveForm.RecordsetClone
 ' find out how many records are in the Clients form
 ' and ask user which record to display
 r = InputBox("There are " & frmRst.RecordCount & " clients." & vbCr _
 & "Which client record would you like to display?", _
 "Enter Client Id", 1)
 If r = "" Then Exit Sub
 frmRst.FindFirst "[ClientId] = " & r
 If frmRst.NoMatch Then
 MsgBox "ClientId " & r & " does not exist in this table."
 Else
 ' show the value of the ClientName field
 ' of the current record in the clone

71

Access 2003 Programming by Example with VBA, XML and ASP by Julitta Korol
Appendix A

 MsgBox "Client Name: " & Forms!frmClients.RecordsetClone!ClientName
 ' display the found record in the form by setting the form's
 ' bookmark to the bookmark of the Recordset clone
 Forms!frmClients.Bookmark = frmRst.Bookmark
 End If
 frmRst.Close
 Set frmRst = Nothing
End Sub

Database Security and Transaction Processing
If your database contains confidential information, or you don’t want others to
change the code or modify the design of database objects, you should consider
some method of protecting your application from unauthorized access. In
addition to managing database security through Microsoft Access user interface
via the options available from the Tools | Security menu, you can write VBA
procedures to secure your application. The procedures that follow demonstrate
how to use DAO to program security. This section also discusses how you can
use transactions when making changes to large amounts of data.

Understanding Workspaces

To programmatically manage security and execute transactions, you need to
learn about the Workspace object. As you know, in the Microsoft Access user
interface you can only open a single database and log on as a single user at one
time. When you start Access, the Jet database engine automatically logs you
onto a default workspace (DBEngine.Workspaces(0)) as the Admin user and
does not require that you specify a password. The following statements entered
in the Immediate window return information about the current Microsoft Access
user session:

?DBEngine.Workspaces(0).Count
 1
?DBEngine.Workspaces(0).Name
#Default Workspace#
?DBEngine.Workspaces(0).UserName
admin

How many workspaces are currently open?

What is the name of the currently open workspace object?

Who is the owner of the Workspace object?

Figure A-22 Using the Workspace Object.

72

Access 2003 Programming by Example with VBA, XML and ASP by Julitta Korol
Appendix A

Using the VBA code, you can:

• Create as many workspace objects as you need
• Log on as a different user
• Require to log on with a specific user ID
• Open a second database (When you open multiple workspaces you can

open a different database in each workspace and manipulate data in
those databases.)

The procedure in Listing A-22 A demonstrates how to create a workspace object
using DAO and list its properties. The procedure begins by displaying the number
of currently open workspaces. Next the procedure uses a For…Each Next loop to
iterate through the collection of properties in the default workspace. The
properties of the Workspace object are then written to the Immediate window as
shown below:

Name = #Default Workspace#
UserName = admin
IsolateODBCTrans = 0
LoginTimeout =
DefaultCursorDriver =
Type = 2

Notice that some of the properties of the Workspace object are not set. To avoid
an error when attempting to retrieve the value of these properties, the procedure
uses the error handler QuickFix.

Next, the procedure uses the CreateWorkspace method to create a new

73

Access 2003 Programming by Example with VBA, XML and ASP by Julitta Korol
Appendix A

workspace named “2ndWksp” while logged on as the Admin user.

Set myWorkspace = DBEngine.CreateWorkspace(Name:="2ndWksp",
UserName:="Admin", Password:="")

In the statement above, myWorkspace is an object variable that represents the
Workspace object you want to create.

The required arguments of the CreateWorkspace method are as follows:

• Name is a string that uniquely names the new Workspace object.
• UserName is a string that identifies the owner of the new Workspace

object.
• Password is a string containing the password for the new Workspace

object. The password can be up to 14 characters long and can include
any characters except ASCII character 0 (null).

The CreateWorkspace method can be used to log on to another workspace as a
different user using different security permissions. Once the new workspace
object is created with the CreateWorkspace method, you must use the Append
method to add this object to the Workspaces collection:

DBEngine.Workspaces.Append myWorkspace

Use the Count method of the Workspaces collection to return the number of
workspace objects in this collection. Once the new workspace object has been
added to the Workspaces collection, the procedure lists its properties to the
Immediate window by using the For…Each Next looping structure. The result is
shown below:

Name = 2ndWksp
UserName = Admin
IsolateODBCTrans = 0
LoginTimeout =
DefaultCursorDriver =
Type = 2

Finally, the Close method is used to remove the Workspace object from the
Workspaces collection:

myWorkspace.Close

Before removing a Workspace object from the Workspaces collection, make
sure to close all open databases and connections.

Listing A-22 A Creating a workspace and listing its properties

74

Access 2003 Programming by Example with VBA, XML and ASP by Julitta Korol
Appendix A

Private Sub cmdWorkspace_Click()
 Dim myWorkspace As DAO.Workspace
 Dim prp As DAO.Property

 On Error GoTo QuickFix
 MsgBox DBEngine.Workspaces.count

 For Each prp In DBEngine.Workspaces(0).Properties
 Debug.Print prp.Name & " = " & prp
 Next prp

 Set myWorkspace = DBEngine.CreateWorkspace(Name:="2ndWksp", _
 UserName:="admin", _
 Password:="")

 DBEngine.Workspaces.Append myWorkspace
 MsgBox DBEngine.Workspaces.count
 Debug.Print "------------------------------"
 For Each prp In myWorkspace.Properties
 Debug.Print prp.Name & " = " & prp.Value
 Next prp
 myWorkspace.Close
 SendKeys "^g"
 Exit Sub
QuickFix:
 Debug.Print prp.Name & "="
 Resume Next
End Sub

Creating a New User Account

The user information is stored in the workgroup information file called
System.mdw. Use the User object to establish individual user accounts in a VBA
procedure. Use the CreateUser method of the Workspace object to create a new
user. The CreateUser method accepts three arguments: userName, userPID,
and userPassword. The last argument is optional.

Figure A-23 Setting up Users and Groups with DAO.

75

Access 2003 Programming by Example with VBA, XML and ASP by Julitta Korol
Appendix A

The procedure in Listing A-23 A that follows shows how to programmatically
create a new user named John. When creating a new user, you must supply a
name and a personal identifier (PID). Note that PID is not a password. In the
example procedure, the following statement creates a new user account:

Set newUser = wsp.CreateUser(strUser)

The user name is defined by the contents of the strUser variable. The procedure
then uses the PID property of the User object to specify a unique personal
identifier for the new user:

newUser.PID = "SPC100000"

Next, the Password property is used to specify a password for the user. Instead
of three lines of code, you can use the following statement:

Set newUser = wsp.CreateUser(strUser, "SPC100000", "gramofon")

Each new user must be added to the Users collection, using the Append method:
wsp.Users.Append newUser

If the specified user account already exists, an error will occur. To trap this error,
the procedure in Listing A-23 A uses the error handler, which includes the
following two statements:

wsp.Users.Delete strUser
Resume 0

The first statement above deletes the user name specified by the strUser from
the Users collection. The second statement returns to the statement that caused
the error.
Listing A-23 A Creating a new user Account

76

Access 2003 Programming by Example with VBA, XML and ASP by Julitta Korol
Appendix A

Private Sub cmdAddNewUser_Click()
 Dim wsp As DAO.Workspace
 Dim newUser As DAO.User
 Dim strUser As String

 On Error GoTo ErrorHandler
 Set wsp = DBEngine.Workspaces(0)
 strUser = "John"
 ' if the user account already exists, an error occurs
 Set newUser = wsp.CreateUser(strUser)
 newUser.PID = "SPC100000"
 newUser.Password = "gramofon"
 wsp.Users.Append newUser
 MsgBox "A new user was added."
 Exit Sub
ErrorHandler:
 wsp.Users.Delete strUser
 Resume 0
End Sub

Figure A-24 The User and Group Accounts section in the Tools | Security submenu lists the new user

account (John) that was created by running the VBA procedure in Listing A-23 A.

Figure A-25 Using a custom form to create a New User Account.

77

Access 2003 Programming by Example with VBA, XML and ASP by Julitta Korol
Appendix A

To speed up the process of creating new users, Figure A-23 earlier in this
section includes a button named “Add a New User.” Upon clicking this button,
the procedure makes visible several hidden controls that allow you to specify
the arguments for the CreateUser method. Here’s the code for the button that is
disabled in Figure A-25 above.

Private Sub cmdAddUser_Click()
 Dim ctrl As Control

 For Each ctrl In Me.Controls
 If ctrl.Properties("Tag").Value = "tgUserAccount" Then
 ctrl.Visible = True
 End If
 Next
 Me.txtName.SetFocus
 cmdAddUser.Enabled = False
End Sub

When you click the OK button (Figure A-25), the procedure in Listing A-23 A3 is
called. This procedure first checks whether the required user data was supplied,
and whether it is valid. You may want to add to it a code block validating the
entry in the Password field (passwords can be up to 14 alphanumeric characters
long). If everything is looks good, the procedure calls the CreateUserAccount
function (see Listing A-23 A4) and passes to it the entries from the corresponding

78

Access 2003 Programming by Example with VBA, XML and ASP by Julitta Korol
Appendix A

text boxes (txtName, txtPID, and txtPassword).

Listing A-23 A3 Adding a user account

' enter the following declaration at the top of the module

Option Compare Database
Dim Flag As Boolean

Private Sub cmdAdd_Click()

 'check if parameters were supplied
 If Me.txtName = "" Or Me.txtPID = "" Then
 MsgBox "You must enter User Name and User Id. ", _
 , "Required Parameters"
 Me.txtName.SetFocus
 Exit Sub
 End If
 If Len(Me.txtPID) < 4 Then
 MsgBox "You must enter at least 4 characters."
 Me.txtPID.SetFocus
 Exit Sub
 End If
 CreateUserAccount Me.txtName, Me.txtPID, Me.txtPassword
 If Not Flag Then
 MsgBox Me.txtName & " is a new user in Users group."
 Me.cmdAddUser.Enabled = True
 Else
 MsgBox "A user account with such a name already exists."
 Me.cmdAddUser.Enabled = False
 Me.txtName.SetFocus
 End If
 With Me
 .txtName.Value = ""
 .txtPID.Value = ""
 .txtPassword.Value = ""
 End With
End Sub

The procedure in Listing A-23 A3 above calls the CreateUserAccount function
in Listing A-23 A4. Notice that this function can take three parameters. Recall
that when a parameter is optional its name is preceded by the Optional
keyword.

Listing A-23 A4 Creating a user account

Function CreateUserAccount(strUserName, strUserId, _
 Optional strUserPassword)
 Dim wsp As DAO.Workspace

79

Access 2003 Programming by Example with VBA, XML and ASP by Julitta Korol
Appendix A

 Dim newUser As DAO.User

 On Error GoTo ErrorHandler
 Set wsp = DBEngine.Workspaces(0)
 Set newUser = wsp.CreateUser(strUserName, _
 strUserId, strUserPassword)
 wsp.Users.Append newUser
 ' add a new user to the Users group
 newUser.Groups.Append wsp.CreateGroup("Users")
 Exit Function
ErrorHandler:
 MsgBox "A problem occurred."
 MsgBox Err.Number & ": " & Err.Description
 Flag = True
 Exit Function
End Function

You can cancel adding a new user, by clicking the Cancel button (see Figure A-
25 earlier). The procedure shown below clears the entries in the text boxes, and
hides controls that are used for supplying the new user’s information.

Listing A-23 A5 Canceling the add new user operation

Private Sub cmdCancel_Click()
 Dim ctrl As Control
 On Error GoTo ErrorHandler
 With Me
 .txtName.Value = ""
 .txtPID.Value = ""
 .txtPassword.Value = ""
 .cmdAddUser.Enabled = True
 .cmdAdd.SetFocus
 End With
 For Each ctrl In Me.Controls
 If ctrl.Properties("Tag").Value = "tgUserAccount" Then
 ctrl.Visible = False
 End If
 Next
 Exit Sub
ErrorHandler:
 Me.cmdAddUser.SetFocus
 Resume 0
 Exit Sub
End Sub

Listing All Users

You can check the names of users you added by running the procedures in the
previous section by opening the User and Group Accounts dialog box in the user

80

Access 2003 Programming by Example with VBA, XML and ASP by Julitta Korol
Appendix A

interface (Figure A-24 in the previous section), or you can create a list of users
programmatically.

The procedure in Listing A-23 B lists the names of all users in a message box
(Figure A-26 below).

Listing A-23 B Listing all users

Private Sub cmdListUsers_Click()
 Dim wsp As DAO.Workspace
 Dim myUser As DAO.User
 Dim strUser As String

 Set wsp = DBEngine.Workspaces(0)
 For Each myUser In wsp.Users
 strUser = strUser & Chr(13) & myUser.Name
 Next
 MsgBox strUser, , "Users"
End Sub

Figure A-26 You can read the user names in code by retrieving the data from the Users collection.

Creating a New Group Account

A Group object represents a group of user accounts that have common access
permissions within a specific Workgroup. Each group can contain one or more
users. Using the Group object, you can establish certain permissions for the
group, and each user added to the group will assume permissions granted to the
whole group. Microsoft Access has two default groups. The Admins group has
permissions to everything. The Users group has full permissions on all newly-
created objects. Similar to user accounts, the information about groups is stored
in a Workgroup information file called System.mdw.

Listing A-23 C demonstrates how to create a User Group named PERSONNEL.
Figure A-2 shows the result of running this procedure.

81

Access 2003 Programming by Example with VBA, XML and ASP by Julitta Korol
Appendix A

Listing A-23 C Creating a new group account

Private Sub cmdAddNewGroup_Click()
 Dim wsp As DAO.Workspace
 Dim newGroup As DAO.Group

 On Error GoTo ErrorHandler
 Set wsp = DBEngine.Workspaces(0)

 'create a group
 Set newGroup = wsp.CreateGroup("PERSONNEL", "PER50000")
 wsp.Groups.Append newGroup
 MsgBox "A new group was added."
 Exit Sub
ErrorHandler:
 wsp.Groups.Delete "PERSONNEL"
 Resume 0
End Sub

Figure A-27 The Personnel Group was added by the cmdAddNewGro up_Click() procedure

in Listing A-23 C.

Adding a User to a Group

All new users should be added to an appropriate User group. Use the
Append method to add the specified user object to the Users collection:

Set groupP = wsp.Groups("PERSONNEL")

82

Access 2003 Programming by Example with VBA, XML and ASP by Julitta Korol
Appendix A

groupP.Users.Append
groupP.CreateUser("John")

The procedure in Listing A-23 D demonstrates how to add the user named John
to the group named PERSONNEL. Prior to running this procedure, make sure
that both the specified user and the group already exist (see Listing A-23 A for
creating the User account, and Listing A-23 C for creating the Group account).

Listing A-23 D Adding a user to a group account

Private Sub cmdAddToGroup_Click()
 Dim wsp As DAO.Workspace
 Dim groupP As DAO.Group
 On Error GoTo ErrorHandler
 Set wsp = DBEngine.Workspaces(0)
 Set groupP = wsp.Groups("PERSONNEL")
 groupP.Users.Append groupP.CreateUser("John")
 Exit Sub
ErrorHandler:
 MsgBox Err.Number & ": " & Err.Description
End Sub

Figure A-28 A new user can be added to an existing group account via the User Interface or by

running the VBA procedure in Listing A-23 D.

Listing User Accounts in Groups

A group account can contain one or more users. To create a list of users in each
group account, run the procedure in Listing A-23 E.

Listing A-23 E Listing users in groups

83

Access 2003 Programming by Example with VBA, XML and ASP by Julitta Korol
Appendix A

Private Sub cmdListGroupsAndUsers_Click()
 Dim wsp As DAO.Workspace
 Dim myUser As DAO.User
 Dim myGroup As DAO.Group
 Dim thisGroup As DAO.Group

 Set wsp = DBEngine.Workspaces(0)
 For Each myGroup In wsp.Groups
 Debug.Print "Group: " & myGroup.Name
 Set thisGroup = wsp.Groups(myGroup.Name)
 If thisGroup.Users.count < 1 Then
 Debug.Print Chr(9) & "No users found"
 End If
 For Each myUser In thisGroup.Users
 Debug.Print Chr(9) & myUser.Name
 Next
 Next
End Sub

Removing Users from Groups

Deleting a user from an existing group is simple. All you need to do is specify the
name of user you want to delete, and the name of group this user currently
belongs to. Run the procedure in Listing A-23 F to remove any users you created
by running previous procedures in this chapter. Notice that this procedure calls
the DeleteFromGroup function to perform the deletion.

Listing A-23 F Removing a user from a group

Private Sub cmdRemoveFromGroup_Click()
 Dim strUser As String
 Dim strGroup As String

 On Error GoTo ErrorHandler
 strUser = InputBox("Enter user name:", "Remove User")
 strGroup = InputBox("Enter group name", "Remove from Group")

 DeleteFromGroup strUser, strGroup
 Exit Sub
ErrorHandler:
 MsgBox Err.Number & ": " & Err.Description
 Exit Sub
End Sub

Function DeleteFromGroup(UserAccount, GroupAccount)
 Dim myGroup As DAO.Group
 Dim myUser As DAO.User

84

Access 2003 Programming by Example with VBA, XML and ASP by Julitta Korol
Appendix A

 Dim wsp As DAO.Workspace

 On Error GoTo ErrorHandler

 Set wsp = DBEngine(0)
 Set myUser = wsp.Users(UserAccount)

 myUser.Groups.Delete GroupAccount
 MsgBox UserAccount & " was removed from the " & _
 GroupAccount & " group."
 Exit Function
ErrorHandler:
 If Err.Number = 3265 Then
 MsgBox "There is no such user in the " & GroupAccount & " group."
 Else
 MsgBox Err.Number & ": " & Err.Description
 End If
 Exit Function
End Function

User Passwords

Recall that when you create a new user account you are not required to supply
a password. If you created several users without a password, you can write a
VBA procedure to find out which of these users don’t have passwords. The pro-
cedure in Listing A-23 G uses the For…Each loop to obtain the names of users
in the Users collection. To find out whether a user has a password, the
procedure creates a new workspace and attempts to log onto it using the user’s
name (returned by the Name property of the User object) and a zero-length (“”)
password.

A successful login indicates that the user does not have a password, therefore
the hasPassword variable is set to False. The user name is then printed to the
Immediate window.

Listing A-23 G Obtaining a list of users without passwords

Private Sub cmdNoPassword_Click()
 Dim wksDef As DAO.Workspace ' default Workspace
 Dim wks As DAO.Workspace ' another Workspace
 Dim myUser As DAO.User
 Dim strUserName As String
 Dim hasPassword As Boolean

 On Error GoTo ErrorHandler
 Set wksDef = DBEngine.Workspaces(0)
 ' get the name of each user account in the Users collection
 For Each myUser In wksDef.Users

85

Access 2003 Programming by Example with VBA, XML and ASP by Julitta Korol
Appendix A

 ' store the user account name to the strUserName variable
 strUserName = myUser.Name
 If strUserName <> "Creator" And strUserName <> "Engine" Then
 hasPassword = False
 ' Try to log on to a new workspace as this user, using using
 ' a zero-length string password
 ' if the password is invalid, then goto ErrorHandler
 Set wks = DBEngine.CreateWorkspace("NoPassword", _
 strUserName, "")
 ' if you are able to log on, then the user does not
 ' have password
 If hasPassword = False Then
 Debug.Print "Without Password: " & strUserName
 End If
 End If
 Next
 Exit Sub
ErrorHandler:
 If Err.Number = 3029 Then 'user has password
 hasPassword = True
 Resume Next
 End If
 MsgBox Err.Number & ": " & Err.Description
End Sub

User and Group Permissions

In Microsoft Access, there are two types of permissions. Implicit permissions are
those that you have as a member of a group. Explicit permissions are those that
are assigned to you directly as a user. To simplify maintenance, you should
assign permissions to groups, and then assign users membership in those
groups. This will allow you to change permissions at the group level without
having to do so for each user.

Before you can set user permissions and ownership of objects, you need to
review few things you already know about Container objects and Document
objects. Recall that in Microsoft Access, there is a Containers collection that
stores the following container objects: Databases container, Tables container,
Relations container, Forms container, Reports container, Module container, and
Scripts container. A container object contains information about the database
and about each of its saved forms, modules, relationships, reports, macros,
tables and queries. The Container object has several useful properties that you
will use for setting user permissions and ownership (Permissions property,
Owner property, UserName property, and Inherit property). Each Container
object has a Documents collection containing Document objects. Each Document
object in turn includes information about a single document.

Figure A-29 Managing user and group permissions.

86

Access 2003 Programming by Example with VBA, XML and ASP by Julitta Korol
Appendix A

The procedure in Listing A-29 A demonstrates how to loop through all the con-
tainer objects within the current database and list the permissions in that
container for the Admin user. The procedure also lists all the documents stored
in each of the containers.

Listing A-29 A List containers, documents and admin user permissions

Private Sub cmdListContainers_Click()
 Dim myCont As DAO.Container
 Dim myDoc As DAO.Document
 Dim prp As DAO.Property

 For Each myCont In DBEngine(0)(0).Containers
 Debug.Print "Container: " & myCont.Name
 Debug.Print "Properties of " & myCont.Name
 Debug.Print "------------------------------"
 For Each prp In myCont.Properties
 Debug.Print " " & prp.Name _
 & " = " & prp
 Next prp
 Debug.Print "------------------------------"
 Debug.Print "Documents in " & myCont.Name & " container:"
 For Each myDoc In myCont.Documents
 Debug.Print "Document Name: " & myDoc.Name _
 & "(" & myDoc.LastUpdated & ")"
 Next myDoc
 Debug.Print "=============================="
 Next myCont
End Sub

87

Access 2003 Programming by Example with VBA, XML and ASP by Julitta Korol
Appendix A

After running the above procedure, open the Immediate window to view the
output. A partial listing is shown below.

Container: Forms Properties of Forms
 ——————————————

Name = Forms
Owner = admin
UserName = admin
Permissions = 1048575
AllPermissions = 1048575
Inherit = True

———————————————
Documents in Forms container:
Document Name: frmClients(5/1/00 9:24:33 PM)
Document Name: frmDAOEx1(11/2/99 10:26:01 PM)
Document Name: frmDAOEx2(11/3/99 10:26:59 PM)
Document Name: frmDAOEx3(11/3/99 10:32:25 PM)
Document Name: frmDAOEx4(1/19/00 10:35:30 PM)
Document Name: frmDAOEx5(11/13/99 12:50:29 AM)
Document Name: frmDAOEx6(11/17/99 1:17:54 AM)
==============================

Note: The Permissions property set to 1048575 indicates that the Admin has full
permissions to the specified container object.

Changing the Owner of an Object

You can transfer ownership of an object (table, query, form, report, or script) to
another user by choosing Tools | Security | User and Group Permissions, and
activating the Change Owner tab, or you can do this programmatically, as shown
in Listing A-29 B. This procedure demonstrates how to make John the new
owner of the frmDAOEx1 form. This procedure calls the ChangeRights function.
In order to check whether the user has permission to change the ownership of an
object, you need to compare the document’s AllPermissions property with the
constant dbSecWriteOwner using the AND operator:

If (doc.AllPermissions And dbSecWriteOwner) <> 0 Then

If the result is True (<>0), the user is authorized to change ownership of objects.

Listing A-29 B Changing the owner of a form

Private Sub cmdChangeRights_Click()
 Dim newOwner As String
 Dim ObjType As String
 Dim ObjName As String

 On Error GoTo ErrorHandler

88

Access 2003 Programming by Example with VBA, XML and ASP by Julitta Korol
Appendix A

 newOwner = "John"
 ObjType = "Forms"
 ObjName = "frmDAOEx1"
 ChangeRights newOwner, ObjType, ObjName
 Exit Sub
ErrorHandler:
 MsgBox Err.Number & ": " & Err.Description
End Sub

Function ChangeRights(newOwner, ObjType, ObjName)
 Dim db As DAO.Database
 Dim cont As DAO.Container
 Dim doc As DAO.Document

 On Error GoTo ErrorHandler
 Set db = CurrentDb
 Set cont = db.Containers(ObjType)
 Set doc = cont.Documents(ObjName)

 'check whether you are authorized to change ownership of objects
 If (doc.AllPermissions And dbSecWriteOwner) <> 0 Then
 doc.Owner = newOwner
 MsgBox "The new owner: " & newOwner, , ObjType & ": " _
 & ObjName
 Else
 MsgBox "You are not authorized to change ownership.", , _
 "Contact the database administrator."
 Exit Function
 End If
 Exit Function
ErrorHandler:
 MsgBox Err.Number & ": " & Err.Description
End Function

Checking Permissions to Objects

You can check to see whether a user has permissions to a specific object by
browsing the User and Group Permissions dialog box (choose Tools | Security,
User and Group Permissions), or run the procedure in Listing A-29 C. This
procedure asks for the user name and loops through all Container objects and
documents to list user’s permissions to each of the documents. Check the
procedure output in the Immediate window. Zero (0) indicates that the user
cannot access the object at all.

Listing A-29 C Checking user permissions

Private Sub cmdCheckPermissions_Click()
 Dim myCont As DAO.Container

89

Access 2003 Programming by Example with VBA, XML and ASP by Julitta Korol
Appendix A

 Dim myDoc As DAO.Document
 Dim strUserName As String

 strUserName = InputBox("Enter user name:", "Check Permissions")
 If strUserName = "" Then Exit Sub
 For Each myCont In DBEngine(0)(0).Containers
 Debug.Print "Container: " & myCont.Name
 For Each myDoc In myCont.Documents
 Debug.Print Chr(9) & "Document name: " & myDoc.Name
 myDoc.UserName = strUserName
 Debug.Print myDoc.Permissions
 Next
 Next
End Sub

Figure A-30 A partial listing of all user permissions to objects as generated by the cmdCheck-

Permissions_ Click() procedure in Listing A-29 C.

Checking Permissions to a Specific Object

You can check programmaticaly whether a user has a certain permission to a
specific object. For example, the procedure in Listing A-29 D demonstrates how
to check whether the specified user is authorized to delete tblClients in the
currently open database. To do this, the document’s AllPermissions property is
compared with the constant dbSecDeleteData using the AND operator:

If (myDoc.Permissions And dbSecDeleteData) > 0 Then

90

Access 2003 Programming by Example with VBA, XML and ASP by Julitta Korol
Appendix A

If the result of the If statement is True, the user is authorized to delete data from
the specified table.

Listing A-29 D Checking permissions to a specific object

Private Sub cmdCheckDeletePermission_Click()
 Dim db As DAO.Database
 Dim myCont As DAO.Container
 Dim myDoc As DAO.Document
 Dim strUserName As String

 On Error GoTo ErrorHandler

 Set db = CurrentDb
 Set myCont = db.Containers("Tables")
 Set myDoc = myCont.Documents("tblClients")
 strUserName = InputBox("Enter user name", "Check Permissions")

 myDoc.UserName = strUserName
 If (myDoc.Permissions And dbSecDeleteData) > 0 Then
 Debug.Print Chr(9) & "Authorized"
 Else
 Debug.Print "Not Authorized"
 End If
 Debug.Print myDoc.Permissions
 Exit Sub
ErrorHandler:
 MsgBox Err.Number & ": " & Err.Description
End Sub

Assigning Specific Permissions to Groups

Listing A-29 E illustrates how to assign a delete permission for a table in the
currently open database to the PERSONNEL group. Each member of the
PERSONNEL group will have the right to delete the specified table from this
database.

Listing A-29 E Assigning a delete permission to a group

Private Sub cmdGiveDeletePermission_Click()
 Dim db As DAO.Database
 Dim doc As DAO.Document
 Dim tlbRight As String
 Dim strUserOrGroup As String

 strUserOrGroup = "PERSONNEL"

91

Access 2003 Programming by Example with VBA, XML and ASP by Julitta Korol
Appendix A

 tblRight = "tblClients"

 Set db = CurrentDb
 Set doc = db.Containers("Tables").Documents(tblRight)
 doc.UserName = strUserOrGroup
 doc.Permissions = doc.Permissions Or dbSecDeleteData
End Sub

Transaction Processing

To improve your application’s performance and to ensure that database activities
can be recovered in case an unexpected hardware or software error occurs, you
should group sets of activities into a transaction. Database transactions involve
modifications and additions of one or more records in a single table or in several
tables.

A transaction is a set of operations treated as a single unit. If you use an ATM
(Automatic Teller Machine), you are already familiar with transaction processing.
Every time you make cash withdrawal, the bank debits your checking or saving
account and credits their cash account. For the transaction to be successful you
must receive cash and your account must be debited. This transaction is a two-
sided operation. If one side fails, the entire transaction fails. When a transaction
has to be undone or cancelled, it is said that the transaction is rolled back. Often,
when you perform batch updates to database tables and an error occurs,
updates to all tables must be cancelled, or the database could be left in an
inconsistent state.

To maintain database consistency, VBA supports transaction processing with
three methods of the Workspace object: BeginTrans, CommitTrans, and
Rollback.

Use the BeginTrans method to specify the beginning of a transaction. Use the
CommitTran method to save the changes. The BeginTrans and CommitTrans are
used in pairs. The data-modifying instructions you place between these keywords
are stored in memory until Visual Basic encounters the CommitTrans statement.
When the CommitTrans is reached, Access writes the changes that occurred
since the BeginTrans to the disk, therefore any changes you’ve done in the
tables become permanent. If an error is generated during the transaction
process, the Rollback statement placed further down in your procedure will undo
all changes made since the BeginTrans statement. The rollback ensures that the
data is returned to the state it was in before you started the transaction. Because
not all recordset objects support transactions, you should use the Transactions
property of a Recordset object to see whether it supports transaction processing.

Figure A-31 Implementing transaction processing (Example 1).

92

Access 2003 Programming by Example with VBA, XML and ASP by Julitta Korol
Appendix A

The procedure in Listing A-31 A demonstrates how you can use a transaction to
add new records to a database table based on the information stored in another
table. Table GermanClients contains client IDs that need to be associated with a
specified Employee Id (537847). The procedure reads each record from the
GermanClients table and creates a new record in the EmpAssociation table. This
requires calling the AddNew method on the Recordset object and filling in data in
four fields. Notice that this procedure contains two error-handling routines. The
MainErrorHandler will take care of any errors that occur outside the transaction
processing loop. Suppose you misspell the name of the GermanClients table.
When you run the procedure, Visual Basic won’t be able to fill the rst1 variable
with the data from a non-existing table, therefore it will jump to the statements
following the MainErrorHandler label. If an error occurs during transaction
processing, program execution will jump to the error handling routine
err_Rollback, and the Rollback instruction will be executed. The result of running
the cmdAssociateClients_Click procedure in Listing A-31 A is illustrated in Figure
A-32.
Listing A-31 A Executing a transaction (Example 1)

Private Sub cmdAssociateClients_Click()
 Dim myDb As DAO.Database
 Dim rst1 As DAO.Recordset
 Dim rst2 As DAO.Recordset
 Dim EmpID As String

 On Error GoTo MainErrorHandler

93

Access 2003 Programming by Example with VBA, XML and ASP by Julitta Korol
Appendix A

 Set myDb = CurrentDb
 Set rst1 = myDb.OpenRecordset("GermanClients")
 Set rst2 = myDb.OpenRecordset("EmpAssociation")
 EmpID = "537847"

 BeginTrans
 On Error GoTo err_Rollback
 With rst1
 Do Until .EOF
 Debug.Print rst1!CustomerID
 With rst2
 .AddNew
 rst2!CustomerID = rst1!CustomerID
 rst2!EmployeeID = EmpID
 rst2!DateAdded = Now()
 'uncomment next statement to force transaction rollback
 'rst2!UserAdded = "myId"
 rst2!AddedBy = "myId"
 .Update
 End With
 rst1.MoveNext
 Loop
 End With
CommitTrans
 rst1.Close
 Set myDb = Nothing
 Me.lboxAssociations.Requery
 Me.ChangeLabel.Caption = "Remove Associations"
 Me.cmdRemoveAssociations.Enabled = True
 Me.cmdRemoveAssociations.SetFocus
 Me.cmdAssociateClients.Enabled = False
 Exit Sub
MainErrorHandler:
 MsgBox Err.Number & ": " & Err.Description
 Exit Sub
err_Rollback:
 Rollback
 MsgBox "Transaction was rolled back.", _
 vbOKOnly + vbExclamation, "Unexpected Error"
 rst1.Close
 Set myDb = Nothing
End Sub

Figure A-32 Implementing transaction processing (Example 2).

94

Access 2003 Programming by Example with VBA, XML and ASP by Julitta Korol
Appendix A

The procedure in Listing A-31 B shows how you can use transaction processing
to perform a bulk deletion of records. This procedure deletes from
EmpAssociation table only the records that were added to this table when you
ran the procedure in the previous listing.

Listing A-31 B Executing a transaction (Example 2)

Private Sub cmdRemoveAssociations_Click()
 Dim myDb As DAO.Database
 Dim rst1 As DAO.Recordset
 Dim EmpID As String
 Dim strSQL As String

 On Error GoTo err_RemoveAssociations
 Set myDb = CurrentDb
 Set rst1 = myDb.OpenRecordset("GermanClients")
 EmpID = "537847"

 BeginTrans
 Do Until rst1.EOF
 Debug.Print rst1!CustomerID
 strSQL = "DELETE FROM EmpAssociation " _
 & "WHERE ([CustomerID] = """ _
 & rst1!CustomerID & """) And" _
 & "(EmpAssociation.[EmployeeID]) = """ & _
 EmpID & """"
 Debug.Print strSQL
 myDb.Execute strSQL, dbFailOnError
 rst1.MoveNext

95

Access 2003 Programming by Example with VBA, XML and ASP by Julitta Korol
Appendix A

 Loop
 CommitTrans
 rst1.Close
 Set myDb = Nothing
 With Me
 .lboxAssociations.Requery
 .ChangeLabel.Caption = "Add New Associations"
 .cmdAssociateClients.Enabled = True
 .cmdAssociateClients.SetFocus
 .cmdRemoveAssociations.Enabled = False
 End With
 Exit Sub
err_RemoveAssociations:
 Rollback
 MsgBox "Transacton was rolled back.", _
 vbOKOnly + vbExclamation, "Unexpected Error"
 End Sub

Summary
This appendix has given you numerous, practical examples of using Microsoft
Data Access Objects, commonly referred to as DAO. Although you can create an
entire database with the information gained here, many of the discussed tasks
are simply easier to accomplish through the user interface. Therefore, it is wiser
to perform the easy tasks, such as creating queries or setting up relationships
between tables, via the standard user interface, and use DAO programmable
objects to automate more tedious tasks.

96

