Pycture Perfect Programs

6.1 Objectives

m To understand pixel-based image processing

= To use nested iteration
= To use and understand tuples
= To implement a number of image processing algorithms

= To understand passing functions as parameters

6.2 What s Digital Image Processing?

Digital photography is a very common way to produce photographs today. It seems that
almost everyone has a digital camera as well as software that can organize and manipulate
photographs. In this chapter we consider digital images and many of the techniques that
can be used to modify them.

Digital image processing refers to the process of using algorithms to edit and manipulate
digital images. A digital image is a finite collection of small, discrete picture elements
called pixels. These pixels are organized in a two-dimensional grid and represent the
smallest amount of picture information that is available. If you look closely at an image,
pixels can sometimes appear as small “dots.” More pixels in your image mean more detail
or resolution.

Digital cameras are often rated according to how much resolution they provide. Typically
resolution is expressed as a number of megapixels. One megapixel means that the picture
you take is composed of 1 million pixels. An 8 megapixel camera is capable of taking a
picture with up to 8 million pixels.

185

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

186 CHAPTER 6 Pycture Perfect Programs

6.2.1 The RGB Color Model

Each pixel in the digital image is limited to having a single color. The specific color
depends on a formula that mixes various amounts of the primary colors red, green, and
blue. Viewing colors as a combination of red, green, and blue is often referred to as the
RGB color model.

The amount of each primary color component is referred to as its intensity. Intensities
will range from a minimum of 0 to a maximum of 255. For example, a color with 255 red
intensity, 0 green intensity, and 255 blue intensity will be purple (or magenta). Black will
have zero intensity for all primary color components and white will have full color intensity,
255, for all. Table 6.1 shows some common combinations.

An interesting question arises when you consider how many colors there might be using
the RGB color model. Since each of the three colors has 256 intensity levels, there are
2563 = 16,777,216 different combinations of red, green, and blue intensities. All of these
colors make up the color palette for the RGB color model.

6.2.2 The cImage Module

In order to manipulate images we will use a group of objects found in our cImage module.
(See “Installing the Required Software” (Appendix A) for instructions on downloading
and installing cImage.py). This module contains objects that allow us to construct and
manipulate pixels. We can also construct an image from a file or create a blank image that
we can fill in later. In addition, we can create windows where images can be displayed.

Color | Red | Green | Blue
Red 255 0 0
Green 0 255 0
Blue 0 0 255
Magenta | 255 0 255
Yellow 255 255 0
Cyan 0 255 255
White 255 255 255
Black 0 0 0

Table6.1 Red, green, and blue intensities for some common colors

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

6.2 What Is Digital Image Processing? 187 -

Method Name | Example Use Explanation

Pixel(r, g, b) p = Pixel(25, 200, 143) | Create a pixel with 25 red, 200 green,
and 143 blue.

getRed () r = p.getRed() Return the red component intensity.

getGreen() g = p.getGreen() Return the green component intensity.

getBlue() g = p.getBlue() Return the blue component intensity.

setRed () p.setRed(100) Set the red component intensity to 100.

setGreen() p-setGreen(45) Set the green component intensity to 45.

setBlue () p.setBlue(87) Set the blue component intensity to 87.

The Pixel Object

Table6.2 Pixel object

Images are collections of pixels. In order to represent a pixel, we need a way to collect
together the red, green, and blue components. The Pixel object provides a constructor
and methods that allow us to create and manipulate the color components of pixels. Table
6.2 shows the constructor and methods provided by pixel objects. Session 6.1 shows them in
action. The constructor will require the three color components. It will return a reference to
a Pixel object that can be accessed or modified. We can extract the color intensities using
the getRed, getGreen, and getBlue methods. Similarly, we can modify the individual
components within a pixel using setRed, setGreen, and setBlue.

>>> from cImage import *
>>> p = Pixel(200,100,150)

>>> p

(200, 100, 150)
>>> p.getRed ()
200

>>> p.setBlue(20)

>>> p
(200, 100, 20)
>>>

Session 6.1

Creating and using a pixel

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

188 CHAPTER 6 Pycture Perfect Programs

The ImageWin Object

Before creating images, we will create a window that can be used to display our images.
The ImageWin object provides a constructor that produces a window with a title, width,
and height. When a window is constructed, it is immediately shown. The code below
produces an empty window that is 600 pixels wide and 400 pixels high. Table 6.3 shows
additional methods for the ImageWin object. Note that the getMouse method returns a
coordinate position within the window itself and is not related to any particular image that
might be displayed within the window.

>>> from cImage import *

>>> myWin = ImageWin("Image Processing",600,400)

>>>

Method Name

Example Use

Explanation

ImageWin(title, width, height)

ImageWin("Pictures", 800, 600)

Create a win-
dow to display
images that
are 800 pixels
wide and 600
pixels high.

exitOnClick()

myWin.exitOnClick()

Close the
image window
and exit when

the mouse is
clicked.

getMouse ()

pos = myWin.getMouse ()

Return an (x,
y) tuple rep-
resenting the
position of the
mouse click in
the window.

Table 6.3

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

The ImageWin object

6.2 What Is Digital Image Processing?

Method Name

Example Use

Explanation

FileImage (filename)

im = FileImage(
"pic.gif")

Create an image object from
a file named pic.gif.

EmptyImage (width,
height)

im = EmptyImage (300,

200)

Create an empty image that is
300 pixels wide and 200 pixels
high.

getWidth() w = im.getWidth() Return the width of the image
in pixels.
getHeight () h = im.getHeight () Return the height of the im-
age in pixels.
getPixel(col, row) p = im.getPixel (150, Return the Pixel from row
100) 100, column 150.

setPixel(col, row,
newp)

im.setPixel (150, 100,
Pixel (255, 255, 255))

Set the pixel at row 100, col-
umn 150 to be white.

setPosition(col, im.setPosition (20, 20) Position the top-left corner of

row) the image at (col, row) in the
window.

draw(imagewin) im.draw(myWin) Draw the image im in the

myWin image window. It will
default to the upper-left cor-
ner.

save(fileName)

im.save(fileName)

Save the image to a file. Use
gif or ppm as the extension.

Table 6.4

FileImage and EmptyImage Objects

Now that we have a window, we need to create images to display. The cImage module
provides two kinds of image objects: FileImage and EmptyImage. These objects allow us
to create and manipulate images, and they give us simple access to the pixels in each image.
Table 6.4 shows the two constructors for creating images as well as other methods that are

provided by both objects.

The FileImage Object

The FileImage object is an image that is constructed from files such as those that are cre-
ated by digital cameras or that reside on web pages. For example, the file lutherBell.gif

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

130 N

190 CHAPTER 6 Pycture Perfect Programs

was taken with an ordinary digital camera. Session 6.2 shows that the FileImage con-
structor needs only the name of the image file. It converts the image stored in that file
to an image object. In this case, bell is the reference to that object. Finally, we can use
the draw method to ask the image object to show itself in an image window. The default
positioning is to place the image in the upper-left corner of the window. Figure 6.1 shows
the result.

>>> from cImage import *

>>> myWin = ImageWin("Luther Bell",300,200)
>>> bell = FileImage("lutherBell.gif")

>>> bell.draw(myWin)

>>>

Session6.2 Creating and showing a file image

OO0 Luther Bell

Figure6.1 Drawing an image in a window

As we said earlier, an image is a two-dimensional grid of pixel values. Each small square in
Figure 6.2 represents a pixel that can take on any one of the millions of colors in the RGB
color model. We can access information about our specific image by using the getWidth
and getHeight methods (see Session 6.3). This image is 300 pixels across and 200 pixels
top to bottom. Rows are numbered from 0 to 1 less than the height of the image. Columns
are numbered from 0 to 1 less than the width.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

6.2 What Is Digital Image Processing? 191 [

012 .. w-1

H ST)

h-1

Figure6.2 Details of an image

>>> bell.getWidth()

300

>>> bell.getHeight ()

200

>>> bell.getPixel(124,165)
(117, 123, 123)

>>>

Session6.3 Accessing information about an image

We can access a particular pixel by using the getPixel method. To use getPixel, we
need to provide the location for the pixel of interest. The location will be a pair of values,
one specifying the column and one specifying the row. Each unique column-row pair will
provide access to a single pixel.

In the example, we are accessing the pixel located at column 124, row 165. In other words,
it is the pixel that is 125 pixels from the left and 166 pixels from the top. It is important
to remember that we start counting at 0. The value that is returned in our example shows
the red, green, and blue components of the Pixel at that location in our image.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

192 CHAPTER 6 Pycture Perfect Programs

The EmptyImage Object

We often want to build a new image pixel by pixel starting with a “blank” image. Using
the EmptyImage constructor, we can create an image that has a specific width and height
but where each pixel is void of color. This means that each Pixel has the value (0,0,0)
or “black.” The statements in Session 6.4 create an empty image with all black pixels.

>>> myImWin = ImageWin("Empty Image", 300, 300)
>>> emptyIm = EmptyImage(300,300)

>>> emptyIm.draw(myImWin)

>>>

Session6.4 Creating and displaying an empty image

As an example to show the basic use of the image methods, we will construct an image
that starts out empty and is filled with white pixels at specific locations. Session 6.5 starts
by creating a window and an empty image that is sized to fit within the window. In order
to create a line of white pixels, we use a loop variable i and iterate over the range from 0
to 299. The setPixel method can be called using the value of i for both column and row
with a pixel called whitePixel that has been created with a combination of red, green,
and blue corresponding to the color white. We draw the image in the window as shown in
Figure 6.3. Finally, we save the image to a file using the save method.

>>> from cImage import *

>>> myImWin = ImageWin("Line Image",300,300)

>>> lineImage = EmptyImage (300,300)

>>> whitePixel = Pixel(255,255,255)

>>> for i in range(300):
lineImage.setPixel(i,i,whitePixel)

>>> lineImage.draw(myImWin)
>>> lineImage.save("lineImage.gif")
>>>

Session 6.5 Using EmptyImage

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

6.3 Basic Image Processing 193 [

Line Image

Figure6.3 Creating a white diagonal line

Exercises

6.1 Modify Session 6.5 to create a line with random pixel colors.

6.2 Write a function to create an image of a rectangle. Start with an EmptyImage.
Challenge: Create a filled rectangle.

6.3 Write a function to create an image of a circle.

6.4 Download an image from the Web or your personal image collection and display it in
a window. Note the image must be in gif format.

6.5 Modify some pixels in the image from the previous question and save it.

6.6 Why is the number of color intensities limited to the range 0-2557 Do some research
to find the answer to this question.

6.3 Basiclmage Processing

We now have all of the tools necessary to do some simple image processing. Our first
examples will perform color manipulations on an image. In other words, we want to take
the existing pixels and modify them in some way to change the appearance of the original

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

o s W N =

194 CHAPTER 6 Pycture Perfect Programs

image. The basic idea will be to systematically process each pixel one at a time and perform
the following operations:

1. Extract the color components.
2. Build a new pixel.

3. Place that pixel in a new image at the same location as the original.

Once we see the general pattern, the options are endless. Note that all of the newly
constructed images in this section will be the same dimensions as the image they are based
on.

6.3.1 Negative Images

When images are placed on film and then developed, a set of negatives is produced. A
negative image is also known as a color-reversed image. In a negative image, red becomes
cyan where cyan is the mixture of green and blue. Likewise, yellow becomes blue and blue
becomes yellow. Regions that are white turn black, black turns white, light turns dark and
dark turns light. This continues for all possible color combinations.

At the pixel level, the negative operation is just a matter of “reversing” the red, green, and
blue components in that pixel. Since color intensity ranges from 0 to 255, a pixel with a
large amount of a specific color—say, red—will have a small amount in the negative. At the
maximum, a pixel with a red intensity of 255 will have a red intensity of 0 in the negative.
This suggests that the way to create a negative pixel is to subtract each of the red, green,
and blue intensity values from 255. The results can then be placed in a new pixel.

Listing 6.1 shows a function that will take a Pixel as a parameter and return the negative
pixel using the suggested process from above. Note that the function expects to receive an
entire Pixel and will decompose the color components, perform the subtractions, and then
build and return a new Pixel. We can easily test this function as shown in Session 6.6.

def negativePixel (0oldPixel):
newred = 255 - o0ldPixel.getRed ()
newgreen = 255 - o0ldPixel.getGreen()
newblue = 255 - oldPixel.getBlue ()
newPixel = Pixel(newred, newgreen, newblue)
return newPixel

Listing6.1 Constructing a negative pixel

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

6.3 Basic Image Processing 195 -

>>> apixel = Pixel(155,23,230)
>>> negativePixel (apixel)
(100, 232, 25)

>>>

Session 6.6 Testing the negativePixel function

In order to create the negative image, we call the negativePixel function on each pixel.
We need to come up with a pattern that will allow us to process each pixel. To do this, we
can think of the image as having a specific number of rows equal to the height of the image.
Each row in turn has a number of columns equal to the width of the image. With this in
mind, we can build an iteration that will systematically move through all of the rows and
within each, will move through all of the columns. This gives rise to the notion of nested
iteration—the placement of an iteration as the process inside of another iteration. In other
words, for each pass of the “outer” iteration, the “inner” iteration will run to completion.
The inner iteration will run from start to finish for each pass of the outer iteration.

As an example, consider the code fragment in Session 6.7 using for statements. The outer
iteration is moving over the list [0,1,2], which was produced by range (3). For each item
in that list, the inner loop will iterate over the characters 'c', 'a', 't'. This means that
the print function will be called for each character in the string "cat" for each number in
the list [0,1,2].

>>> for num in range(3):
for ch in "cat":
print (num, ch)

NNMNNRPR, R, P2, OOO
P O P O P o

>>>

Session 6.7 Showing nested iteration with lists and strings

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

196 CHAPTER 6 Pycture Perfect Programs

The resulting output shows nine lines. Each group of three represents one pass of the outer
loop. Within each group, the value of num stays the same. For each value of num, the entire
inner loop completes, and therefore each of the three characters of the string appears.

We can now apply this idea to the construction of a function to compute the negative of
each pixel in an image (see Listing 6.2). The function will take a single parameter that
gives the name of a file containing an image. The function will not return anything but
will simply display both the original and the negative image.

The first step (lines 2-8), is to create an image window, open an original image, and draw
it in the window. We then need to create an empty image that has the same width and
height as the original. Note that width and height are the width and height of both the
original and new image.

Using the idea of nested iteration, we will first iterate over the rows, starting with row 0
and extending down to height-1. For each row, we will process all of the columns within
the row.

for row in range(height):
for col in range(width):

FEach pixel is accessed by row and col. We can get the original color tuple at that location
using the getPixel method (line 12). Once we have the original pixel, we can use the
negativePixel function to transform it into the negative. Finally, using the same row and
col, we can place the new negative pixel in the new image (line 14) using the setPixel
method. Once the iteration is complete for all pixels, the new image is drawn in the window.
Note that we use the setPosition method to place the new image next to the original.
Figure 6.4 shows the resulting images.

Image Processing

Figure6.4 A negative image

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© W N O s W N =

e e e e e =
o N O s W N = O

6.3 Basic Image Processing 197 [

def makeNegative (imageFile):
myimagewindow = ImageWin("Image Processing" ,600,200)
oldimage = FileImage (imageFile)
oldimage.draw(myimagewindow)

width = oldimage.getWidth ()
height = oldimage.getHeight ()
newim = EmptyImage (width,height)

for row in range (height):
for col in range(width):
originalPixel = oldimage.getPixel (col,row)
newPixel = negativePixel(originalPixel)
newim.setPixel (col,row,newPixel)

newim.setPosition(width+1,0)
newim.draw(myimagewindow)
myimagewindow.exitOnClick ()

Listing6.2 Constructing a negative image

6.3.2 Grayscale

Another very common color manipulation is to convert an image to grayscale, where each
pixel will be a shade of gray, ranging from very dark (black) to very light (white). With
grayscale, each of the red, green, and blue color components will take on the same value.
In other words there are 256 different grayscale color values ranging from darkest (0, 0, 0)
to lightest (255, 255, 255). The standard color known as “gray” is typically coded as (128,
128, 128).

Our task then is to take each color pixel and convert it into a gray pixel. The easiest way
to do this is to consider that the intensity of each red, green, and blue component needs
to play a part in the intensity of the gray. If all of the color intensities are close to zero,
the resulting color is very dark, which should in turn show as a dark shade of gray. On the
other hand, if all of the color intensities are closer to 255, the resulting color is very light
and the resulting gray should be light as well.

This analysis gives rise to a simple but accurate formula for grayscale. We will simply take
the average intensity of the red, green, and blue components. This average can then be
used for all three color components in a new pixel that will be a shade of gray. Listing 6.3
shows a function, similar to the negativePixel function described previously, that takes
a Pixel and returns the grayscale equivalent. Session 6.8 shows the function in use.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

B e R

198 CHAPTER 6 Pycture Perfect Programs

def grayPixel(oldpixel):
intensitySum = oldpixel.getRed() + oldpixel.getGreen() + \
oldpixel.getBlue ()
aveRGB = intensitySum // 3

newPixel = Pixel (aveRGB,aveRGB,aveRGB)
return newPixel

Listing6.3 Constructing a grayscale pixel

>>> grayPixel(Pixel(34,128,74))
(78, 78, 78)

>>> grayPixel(Pixel(200,234,165))
(199, 199, 199)

>>> grayPixel(Pixel(23,56,77))
(52, 52, 52)

>>>

Session 6.8 Testing the grayPixel function

Now the process of creating a grayscale image can proceed in the same way as described for
creating the negative (see Listing 6.4). After opening and drawing the original image, we
create a new, empty image. Using nested iteration, process each pixel, this time converting
each to the corresponding grayscale value (line 13). The final image is shown in Figure 6.5.

We developed the previous examples by continually building upon a framework of simple
ideas. We started with the pixel, then created a function to transform the color components

Figure6.5 A grayscale image

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© W N O s W N =

e e e e e =
o N O s W N = O

6.3 Basic Image Processing

199 [N

def

makeGrayScale (imageFile):

myimagewindow = ImageWin("Image Processing" ,600,200)
oldimage = FileImage (imageFile)
oldimage.draw(myimagewindow)

width = oldimage.getWidth ()
height = oldimage.getHeight ()
newim = EmptyImage (width,6height)

for row in range (height):
for col in range(width):
originalPixel = oldimage.getPixel (col,row)
newPixel = grayPixel (originalPixel)
newim.setPixel (col ,row,newPixel)

newim.setPosition(width+1,0)
newim.draw(myimagewindow)
myimagewindow.exitOnClick ()

Listing6.4 Constructing a grayscale image

of a pixel, and finally applied that function to all of the pixels in the image. This stepwise
construction is a very common methodology used in writing computer programs. Building
upon those functions that already work in order to provide more complex functionality that
can again be used as a foundation allows programmers to be very efficient. We take this
one step further in the next section.

Exercises
6.7 Write a function that removes all red from an image.
6.8 Write a function that enhances the red intensity of each pixel in an image.
6.9 Write a function that diminishes the blue intensity of each pixel in an image.
6.10 Write a function that manipulates all three color intensities in a pixel using a strategy
of your own choice.
6.11 Write a function that takes a color image and displays a black and white image next

to it. Hint: You may want to start by converting the image to grayscale. Any pixel
with a gray value less than some threshold will become black. All other pixels will be

white.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

| 200 CHAPTER 6 Pycture Perfect Programs

6.3.3 A General Solution: The Pixel Mapper

If you compare the Python listings for the makeGrayScale and makeNegative functions,
you will note that there is quite a bit of redundancy. In fact, the same steps were followed
with only one exception—namely, the function that was called to map each original pixel
into a new pixel. This similarity causes us to think that we could factor out the code that
is the same and create a more general Python function. This is another example of using
abstraction to solve problems.

Figure 6.6 shows how such a function might be constructed. We will create a function
called pixelMapper that will take two parameters, an original image and an RGB func-
tion. The pixelMapper function transforms the original image into a new image using the
RGB function. After applying the RGB function to every pixel, the transformed image is
returned. In this way we have a single function that is capable of transforming an image
given any function that manipulates the color intensities of a single pixel.

In order to implement this general pixel mapper, we need to be able to pass a function as a
parameter. Up to this point, all of our parameters have been data objects such as integers,
floating point numbers, lists, tuples, and images. The question to consider is whether there
is any difference between a function and a typical data object.

The answer to this question is that there is no difference. To understand why, we will first
look at a simple example. The function squareIt takes a number and returns the square.

def squarelIt(n):
return n * n

We can invoke the squareIt function with the usual syntax (see Session 6.9), placing the
actual value to be squared as a parameter. However, if we evaluate the name of the function
without invoking it (without the parameters in parentheses), we can see that the result is
a function definition. The name of a Python function is a reference to a data object—in
particular, a function definition (see Figure 6.7). Note that the strange looking “number,”
0x1021730, is actually the address where the function is stored in memory.

original image

—> ixelMapper ———> new image
RGB function P PP g

Figure6.6 A general pixel mapping function

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

6.3 Basic Image Processing 201 -

squarelt

; squarelt

definition

Figure6.7 A function is a data object

Since a function is simply another data type, you might wonder what kinds of operators
you can use with it. In fact there are only two operators that you can use with a function.
The parentheses are actually an operator that tells Python to apply the function to the
supplied parameters. In addition, since a function is an object, you can use the assignment
operator to give a function another name, as shown in Session 6.9. Note that now the
variable z is a reference to the same data object as squareIt and can be used with the
parenthesis operator.

>>> squarelIt(3)

9

>>> squarelt(squareIt(3))

81

>>> squarelt

<function squarelt at 0x1021730>
>>> z = squarelt

>>> z(3)

9

>>> z

<function squareIt at 0x1021730>

Session6.9 Evaluating the squareIt function

Since any Python object can be passed as a parameter, it is certainly possible to pass the
function definition object. We just need to be careful not to invoke the function prior to
passing it. To show this (Session 6.10), we create a simple function called test that expects
two parameters, a function object and a number. The body of test will invoke the function
object using the number as a parameter and return the result.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

I o2 CHAPTER 6 Pycture Perfect Programs

>>> def test(funParm, n):

return funParm(n)

>>>

>>> test(squarelt,3)

9

>>> test(squarelt,5)

25

>>> test(squarelIt(3),5)

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 2, in test

TypeError: 'int' object is not callable

Session6.10 Using a function passed as a parameter

We can then use our test function by passing the squareIt function definition. In addition,
we will pass the integer 3. Remember, when we pass the function definition object, we do
not include the parentheses pair. Figure 6.8 shows the references immediately after test
has been called and the parameters have been received. A copy of the reference to the actual
parameter squarelt is received by funParm and n contains a reference to the object 3.

squarelt
; squarelt
definition
funParm
/

o ——

> 3

Figure6.8 Passing the method and an integer

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© W N O s W N =

[S
w N = O

6.3 Basic Image Processing 203

The statement return funParm(n) will cause the function referred to by funParm to be
invoked on the value of n. In this case, since funParm is a reference to squarelt, the
squareIt function will be invoked with the value of 3. The next example shows the result
of passing 5 instead of 3. Note the error message at the end of the session when we call the
squarelt function instead of passing the definition.

With these mechanics in place, it is now possible to create an implementation for our
general pixelMapper function (see Listing 6.5). Recall that this function will take two
parameters, an image and an RGB function. Lines 3-5 construct a new empty image that
is the same size as the original. Line 10, which is inside of our nested iteration, does most
of the work. The rgbFunction parameter is applied to each pixel from the original image
and the resulting pixel is placed in the new image. Once the nested iteration is complete,
we will return the new image.

def pixelMapper (oldimage ,rgbFunction):

width = oldimage.getWidth ()
height = oldimage.getHeight ()
newim = EmptyImage (width,height)

for row in range(height):
for col in range(width):
originalPixel = oldimage.getPixel (col,row)
newPixel = rgbFunction(originalPixel)
newim.setPixel (col,row,newPixel)

return newim

Listing6.5 A general pixel mapping method

We can complete our example by calling the pixelMapper function using one of our RGB
functions from the previous sections. Listing 6.6 shows a main function, generalTransform,
that sets up the image window and loads the original image. Line 6 invokes pixelMapper
using the grayPixel function. The result is identical to that shown in Figure 6.5.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© 0w 9 O o ks W N =

204 CHAPTER 6 Pycture Perfect Programs

def generalTransform(imageFile):
myimagewindow = ImageWin("Image Processing" ,600,200)
oldimage = FileImage (imageFile)
oldimage.draw(myimagewindow)
newimage = pixelMapper (oldimage ,grayPixel)
newimage.setPosition(oldimage.getWidth ()+1,0)
newimage .draw(myimagewindow)
myimagewindow.exitOnClick ()

Listing 6.6 Calling the general pixel mapping function

Exercises

6.12 Use a reference diagram to explain the error message in Session 6.10.

6.13 Use the generalTransform and pixelMapper functions to create a negative image
using the negativePixel function developed earlier.

6.14 Write an RGB function to remove the red from a pixel. Test this function with
pixelMapper.

6.15 Write an RGB function to convert a pixel to black and white. Test this function with
pixelMapper.

6.16 Write an RGB function of your choice. Test this function with pixelMapper.

6.17 Sepia tone is a brownish color that was used for photographs in times past. The

formula for creating a sepia tone is as follows:

newR = (R X 0.393 + G x 0.769 + B x 0.189)
newG = (R x 0.349 + G X 0.686 + B x 0.168)
newB = (R x 0.272 + G x 0.534 + B x 0.131)

Write an RGB function to convert a pixel to sepia tone. Hint: Remember that RGB
values must be integers between 0 and 255.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

W N

6.4 Parameters, Parameter Passing, and Scope 205

6.4 Parameters, Parameter Passing, and Scope

Throughout many of the previous chapters, we have used functions to implement abstrac-
tion. We have broken problems down into smaller, more manageable pieces and have
implemented functions that we can call over and over again. In the previous section we
pushed this idea one step further by passing functions as parameters to other functions.
In this section we explore in more detail the underlying mechanics of how functions and
parameter passing work.

Consider the function shown in Listing 6.7, which computes the hypotenuse of a right
triangle. Using the Pythagorean theorem, a? + b? = ¢2, this function needs the lengths
of the two sides, called a and b, and computes and returns the length of the long side, called
c. Session 6.11 shows the function in use.

import math

def hypotenuse(a,b):
¢ = math.sqrt(a**x2 + b**2)
return c

Listing6.7 A simple function to compute the hypotenuse of a triangle

>>> hypotenuse(3,4)

5.0

>>>

>>> sidel = 3

>>> side2 = 4

>>> hypotenuse(sidel,side2)

5.0

>>>

>>> hypotenuse(sidel*2, side2*2)
10.0

>>>

>>> hypotenuse

<function hypotenuse at 0x42b70>

Session6.11 A simple method

In the first example, references to the objects 3 and 4 are passed to the function. These are
known as the actual parameters as they represent the “actual” data that the function will
receive. As we have seen before, the parameter list (a,b) receives these object references

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

I 20 CHAPTER 6 Pycture Perfect Programs

one at a time, in order, from left to right. So, a receives a reference to the object 3 and b
receives a reference to the object 4. These parameters, defined in the function itself, are
known as the formal parameters.

In the second example shown, the actual parameters are not literal numbers but are instead
names that are referring to the objects 3 and 4. Prior to the function call, Python evaluates
the two names sidel and side2 in order to find the objects. Once again, a receives a
reference to the object 3 and b receives a reference to the object 4.

6.4.1 (Call by Assignment Parameter Passing

In general, the process by which a function’s formal parameter receives an actual parameter
value is known as parameter passing. There are many different ways to pass parameters
and different programming languages have chosen to use a variety of them. In Python,
however, all parameters are passed using a single mechanism known as call by assignment
parameter passing.

Call by assignment parameter passing uses a simple two-step process to pass data when
the function is called. Calling a function is also known as invocation. The first thing that
happens is that the actual parameters are evaluated. This evaluation results in an object
reference to the result. In the first case from Session 6.11, evaluating a literal number simply
returns a reference to the number itself. In the second example, evaluating a variable name
returns the object reference named by that variable.

Once the evaluation of the actual parameters is complete, the object references are passed
to and received by the formal parameters in the function. The formal parameter becomes a
new name for the reference that is passed. In a sense it is as if we executed the assignment
statement formal parameter = actual parameter.

As a final example, consider the third invocation shown in Session 6.11. Here the actual
parameters are expressions that double the lengths of the original sides. Call by assignment
parameter passing evaluates these expressions first and then assigns the references to the
resulting objects to the formal parameters a and b. The hypotenuse function has no idea
where the references came from or how complicated the original expression might have
been. The references that are received are simply the results of the evaluation.

Call by assignment parameter passing has some important ramifications that may not be
obvious to you at first. Changes to the formal parameter may or may not result in changes to
the actual parameter depending on whether the actual parameter is mutable or immutable.
If the actual parameter is immutable, then changes to the formal parameter will have no
effect outside the function. If the actual parameter is mutable, then changes to the object
referenced by the formal parameter will be visible outside the function.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

6.4 Parameters, Parameter Passing, and Scope 207 [

For example, if the actual parameter is a reference to the integer 3, then assigning a reference
to the integer 5 to the formal parameter would not be visible outside the function. If the
actual parameter is a reference to a list, then any changes to the contents of the list including
additions or deletions will be visible outside the function. However, if the formal parameter
is assigned to a different list, the behavior is consistent with the behavior for integers.

6.4.2 Namespaces

In Python, all of the names defined in a program, whether for data or for functions, are
organized into namespaces—collections of all names that are available to be accessed at a
particular point in time during the execution of a Python program. When we start Python,
we create two namespaces. The first is called the built-in namespace (see Figure 6.9),
and it includes all of the system-defined names of functions and data types that we regularly
use in Python. Names such as range, str, and float are included in this namespace. The
second is called the main namespace, and it is initially empty. Python calls these two
namespaces __builtin__ and __main__.

As we begin to create our own names in a Python session, they are added to the main
namespace. As shown in the example in Session 6.11, the variable names sidel and side2
are now added to the main namespace. The function name hypotenuse is also added to the
main namespace. Note that the names are added as a result of an assignment statement or
a method definition. The objects referred to by the names are shown as well. Figure 6.10
shows the location of the names and the objects they reference. Note that the objects exist
outside the namespace.

builtin

str

int

range

N

built-in function

Figure6.9 The builtin namespace

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

I 20 CHAPTER 6 Pycture Perfect Programs

At this point it is instructive to investigate the namespace idea interactively. Python
provides us with the function dir that allows us to see a list of the names in any name-
space. Session 6.12 shows what happens when we invoke the dir function after defining
the hypotenuse function and assigning values to the sidel and side2 variables.

In addition to the three names that we just created, there are four other names of interest
defined in our namespace. The __builtins__ refers to the built-in namespace we referred
to earlier. It is possible for you to find out the names of the objects in the built-in namespace
by calling the function dir(__builtins__). The __doc__ name is always available to hold
a reference to a string that describes the namespace. The __main__ namespace does not
have documentation but other namespaces such as math may. __name__ holds the name
of the current namespace. In Session 6.12 you can see that we evaluated __name__ to find
that we are in the __main__ namespace.

The final name in the list from dir that we have yet to discuss is math. This name appears
because we imported the math module on line 1 of the session. As you can see, the name
math refers to an object that is a module. It is important to note that a module defines
its own namespace. Just as with the built-in namespace, you can find out the names in
the math namespace by evaluating dir (math). Note that the math namespace also has its
own __name__ and __doc__ entries.

i

builtin [/
main
str
sidel

int

| _— in
side2
/////range hypotenuse
built-in function J

function
hypotenuse at

0x42b70

Figure6.10 The main namespace

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

6.4 Parameters, Parameter Passing, and Scope

200 N

>>> import math

>>> def hypotenuse(a,b):

c= math.sqrt (a*x*2+b**2)

return c
>>> sidel = 3
>>> side2 = 4
>>> dir()

['__builtins

', '__doc__', '__name__', '__package__', 'hypotenuse', 'math',

'sidel', 'side2'l]

>>> __name__

__main__
>>> math
<module 'math'
>>> dir (math)

[t | deenihg.'l
'atan2', 'ceil

from '.../lib/python3.0/1ib-dynload/math.so'>
_file__', '__name__', '__package__', 'acos', 'asin', 'atan',
', 'copysign', 'cos', 'cosh', 'degrees', 'e', 'exp', 'fabs',

'floor', 'fmod', 'frexp', 'hypot', 'isinf', 'isnan', 'ldexp', 'log', 'loglQO',

'modf', 'pi',

'pow', 'radians', 'sin', 'sinh', 'sqrt', 'tan', 'tanh', 'trunc']

>>> math.__doc__

'This module is always available. It provides access to the\nmathematical
functions defined by the C standard.'

>>>

Session6.12 Exploring the _main__ namespace

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

| 210 CHAPTER 6 Pycture Perfect Programs

We now have all the tools needed to understand the difference between the statements
import math and from math import *. Session 6.13 shows the result of calling the dir
function after importing the math module using the statement from math import *. No-
tice that all the names from the math module now appear as part of the main namespace.
This allows us to call functions such as sqrt directly without prefacing the function name
with the module name.

>>> from math import =*

>>> dir()
['__builtins__', '__doc__', '__name__', '__package__', 'acos', 'asin', 'atan',
'atan2', 'ceil', 'copysign', 'cos', 'cosh', 'degrees', 'e', 'exp', 'fabs',
'floor', 'fmod', 'frexp', 'hypot', 'isinf', 'isnan', 'ldexp', 'log', 'loglO',
'modf', 'pi', 'pow', 'radians', 'sin', 'sinh', 'sqrt', 'tan', 'tanh', 'trunc']
>>>
Session6.13 Importing the math names into the __main__ namespace
Exercises

6.18 Try calling the dir function on the __builtins__ object.
6.19 Import the turtle module and find out the names defined.
6.20 Look at the __doc__ string for the turtle module.

6.21 If you put a string at the beginning of any Python file, that string becomes the
__doc__ string for that module. Try adding a string to the beginning of one of your
Python files. Can you import that file and see the string you added? The help
function also returns this string as part of the documentation for a module.

6.4.3 (alling Functions and Finding Names

When a function is invoked, a new namespace known as the local namespace is created
corresponding to the function itself. This namespace includes those names that are created
inside the function. This includes the formal parameters as well as any names that are

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

6.4 Parameters, Parameter Passing, and Scope 211 [

used on the left-hand side of an assignment statement in the body of the function. These
names are referred to as local variables since they have been created within the function
and are part of the local namespace. When the function is completed, either due to a
return statement or simply due to running out of code statements, the local namespace is
destroyed. This means that all of the locally defined names are no longer available for use.

It is important to note the placement of these namespaces with respect to one another.
The main namespace is placed inside the built-in namespace. Likewise, local namespaces
are placed inside the namespace of the module where they are defined. For programs that
you write, the namespaces for your functions will be placed in the main namespace. The
namespaces for functions from modules that you import will be placed in the namespace
of the imported module. Figure 6.11 shows the placement of the local namespace for the
hypotenuse function when it is called. This figure also provides an illustration of the call
by assignment mechanism. Note that the formal parameters a and b are referring to the
same objects as the actual parameters sidel and side2.

@ 4
/1
builtin / \ //
main
str)
X local (hypotenuse)
sidel \ 1
—”’,—int e
side2
range hypotenuse

\

/

built-in function

function
hypotenuse at
0x42b70

o
|
|
|
©

Figure6.11 A local namespace

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

| 212 CHAPTER 6 Pycture Perfect Programs

When a name is used in a statement, Python needs a way to locate the particular occurrence
of that name among all of the names that have been introduced up to that point. In order
to find the name, Python uses the following simple rules:

1. Whenever a name is used, except on the left-hand side of an assignment statement,
Python searches through the namespaces in the following order:

(a) The current local namespace, if one exists
(b) The main or module namespace

(¢) The built-in namespace

When Python finds the first occurrence of the name, the search ends. Looking again
at Figure 6.11, you may find it helpful to think of this as searching from the “inside
out.” If the name is not found, an error is reported.

2. When you use a name on the left-hand side of an assignment statement, Python
searches only the current namespace.

(a) If the name is not found, a new name is created in the current namespace.

(b) If the name is found, then the old reference will be replaced with the object from
the right-hand side of the assignment statement.

This means that the same name may exist in many different namespaces but Python
will always use the name as governed by rule 1.

To show these rules in action, consider the code shown in Session 6.14. Here, function test1
defines one formal parameter value called a. It adds 5 to a and prints the result. Since a
is a formal parameter, it becomes part of the local namespace for the function test1.

Next, an assignment statement creates a variable called a and sets it to refer to the object
6. This occurrence of the name a is added to the main namespace. When we invoke test1
using a as the actual parameter, call by assignment parameter passing will first evaluate
a. The result is a reference to the object 6, which is passed and received by the formal
parameter a in the local namespace. When the assignment statement is performed in the
function test1, Python must search for the name a. The result of the search is that the a
from the local namespace is used in the statement a = a + 5. The a in the main namespace
is unaffected and still refers to the object 6.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

6.4 Parameters, Parameter Passing, and Scope 213 [

>>> def testi(a):
a=a+b

print(a)
>>> a = 6
>>> testl(a)
11
>>> a
6

>>> def test2(b):
print(b)
print(a)

>>> test2(14)

14

6

>>> a

6

>>> Db

Traceback (most recent call last):
File "<stdin>", line 1, in 7

NameError: name 'b' is not defined

>>>

Session6.14 Showing name lookup rules at work

In the second example in Session 6.14, test2 is defined with a formal parameter called b.
This function prints b and then prints a. However, the name a is not defined in the local
namespace for test2. When the print statements are executed, we will use the previous
rules to locate the names. The result of the search is that b is found in the local namespace
but a is found in the main namespace.

In this example, the reference to the object 14 is assigned to the formal parameter b in
test2 so that the first print statement simply prints the value 14. The second print
statement tries to find a variable called a. Since it cannot be found in the local scope,
the search proceeds outward to the main namespace where a is found with a value of 6.
Therefore, 6 is printed.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

I 214 CHAPTER 6 Pycture Perfect Programs

Note that after the call to test2 completes, a still has the value 6 since it is part of the
main namespace. Once the function test2 completes, the namespace is destroyed and b is
no longer present. Since b does not exist in the main namespace, an error is reported that
b is not defined.

6.4.4 Modules and Namespaces

The hypotenuse function defined earlier uses the sqrt function from the math library.
In order to access that function, we needed to import the math module. In Python, the
statement import math creates a name in the current namespace with a reference to a
new namespace for the module itself. In this case, the name math is added to the main
namespace. The new namespace for the math module is placed in the built-in namespace,
as is shown in Figure 6.12. The math namespace contains names of functions such as sqrt.
Note that the name sqrt refers to a function definition.

It is important to note that the namespace for the math module was placed in the built-in
namespace, not in the main namespace. The namespaces for all imported modules will be
placed at the same level within the built-in namespace. The only thing that will be placed

©

ﬂ\

builtin /
main math
sidel
str
side2
/ int
math—m— =~ |
|
range hypotenuse
/ sqgrt

built-in function J

function
hypotenuse at

built-in function

0x42b70

Figure6.12 Namespaces including imported module

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

6.4 Parameters, Parameter Passing, and Scope 215 [

directly in the main namespace is the name of the module with the corresponding reference
to the module namespace.

To take this one step further, consider the hypotenuse function at the point where the
sqrt function has been invoked. As before, the namespace for hypotenuse has been placed
as a local namespace in the main namespace. When the hypotenuse function calls the
sqrt function, a new local namespace for sqrt is created. Even though the call to sqrt
was made from the hypotenuse namespace, the sqrt namespace is placed in the math
namespace since that is where the sqrt function was defined.

The local namespace created when a function is called is always created in the namespace for
the module in which the function was defined. In our example, this is true regardless of how
the math module is imported. Even if we had imported math using from math import *
the namespace for sqrt would be placed in the math namespace.

Figure 6.13 shows all of the namespaces up to this point. According to the name lookup
rules defined earlier, searches for names used in the sqrt function will start in the local sqrt
namespace, proceed outward to the math namespace, and finally to the built-in namespace.

3
N
builtin \ / 1
main math
s A) T
str sidel local (hypotenuse)
{de2 \ \ local (sqrt)
side a b
/int
math\
>
range hypotenuse
sgrt

|
¢

function
hypotenuse at

1T T

built-in function

0x42b70

Figure 6.13 Invocation of sqrt function from math

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

I 216 CHAPTER 6 Pycture Perfect Programs

6.5 Advanced Image Processing

We now turn our attention to some image processing algorithms that require the manipu-
lation of more than one pixel either in the original or in the new image. These techniques
will require that we look for additional patterns in the way that we process the pixels of
the image.

6.5.1 Resizing

One of the most common manipulations performed on images is resizing—the process of
increasing or decreasing the dimensions (width and height) of an image. In this section we
focus on enlarging an image. In particular, we consider the process of creating a new image
that is twice the size of the original.

Figure 6.14 shows the basic idea. The original image is three pixels wide by four pixels
high. When we enlarge the image by a factor of 2, the new image will be 6 pixels wide by 8
pixels high. This presents a problem with respect to the individual pixels within the image.

The original image has 12 individual pixels. No matter what we do, we will not be able
to create any new detail in the image. This means that when we increase the number of
pixels to 48 in the new image, 36 of the pixels must use information that is already present
in the original. Our problem is to decide systematically how to “spread” the original detail
over the pixels of the new image.

Figure 6.15 shows one possible solution to this problem. Each pixel of the original will be
mapped into 4 pixels in the new image. Every 1-by-1 block of pixels in the original image

Figure6.14 Enlarging an image by a factor of 2

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

6.5 Advanced Image Processing 217 [

Figure6.15 Mapping each old pixel to 4 new pixels

is mapped into a 2-by-2 block in the new image. This results in a one-to-four mapping
that will be carried out for all of the original pixels. Our task is to discover a pattern for
mapping a pixel from the original image onto the new image.

An example of this mapping process shows that pixel (0,0) will be mapped to pixels (0, 0),
(1,0), (0,1), (1,1). Likewise, pixel (2,2) maps to pixels (4, 4), (5,4), (4,5), (5,5). Extend-
ing this pattern to the general case of a pixel with location (col,row) gives the four pixels
(2 x col, 2 x row), (2 x col + 1, 2 X row), (2 X col, 2 X row + 1), (2 X
col + 1, 2 x row + 1). Figure 6.16 illustrates the mapping equations for a particu-
lar pixel. You should check your understanding by considering other pixels in the original
image.

Listing 6.8 shows the complete function for doubling the size of an image. Since the new
image will be twice the size of the old, it will be necessary to create an empty image with
dimensions that are double those of the original (see lines 2-5).

Now we can use nested iteration to process each original pixel. As before, two for loops,
one for the columns and one for the rows, will allow us to systematically process each pixel.
Using the color components from each old pixel, we copy them to the new image. Lines
11-14 use the pattern discussed above to assign each pixel in the new image. Note that
each of the four pixels receives the same color tuple. The result can be seen in Figure 6.17.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

s

© 0w 9 O o ks W N =

e e~ e =
S ke W N = O

CHAPTER 6 Pycture Perfect Programs

L

Figure 6.16

COszft::§“\~\~\\

2*col+1l,2*row

\

I

2*col, 2*row+l

—

2*col+l,2*row+1l

Mapping for a pixel at location (col, row)

def double(oldimage):
oldw = oldimage.getWidth ()

0oldh = oldimage.getHeight ()
newim = EmptyImage (0oldw*2,0l1dh*2)
for row in range(oldh):

for col in range(oldw):

oldpixel =

newim
newim
newim
newim

return newim

oldimage.getPixel (col,row)

.setPixel (2*col ,2*row,o0ldpixel)
.setPixel (2*%col+1,2*row,oldpixel)
.setPixel (2*%col ,2*row+1l,o0ldpixel)
.setPixel (2*xcol+1,2*row+1,0ldpixel)

Listing 6.8

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

Doubling the size of an image

6.5 Advanced Image Processing 219 [

en6 Image Processing

Figure6.17 Enlarged image

6.5.2 Stretching: A Different Perspective

In the previous section we developed an algorithm for enlarging an image. That solution
required us to map each pixel in the original image to 4 pixels in the new image. In this
section we consider an alternative solution: constructing a new image by mapping pixels
from the new image to the original. Viewing problems from many different perspectives
can often provide valuable insight. Our alternative solution takes advantage of this insight
and leads to a simpler solution.

Figure 6.18 shows the same image as before. However, this time the pixel mapping is
drawn in the reverse direction. More specifically, instead of looking at the problem from
the perspective of the original image, we are turning our focus to the pixels of the new
image. As we process the pixels of the new image, we need to figure out which pixel in the
original image should be used.

Listing 6.9 shows the completed code for our new function, which will take an original image
as a parameter and return the new, enlarged image. Again, we will need a new empty image
that is twice the size of the original. This time we write our iteration to process each pixel
in the new image. The nested iteration idea will still work but the bounds will need to be
in terms of the new image, as can be seen in lines 7-8.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

2

© 0w 9 O U ks W N =

[~ S S
o Ok W N = O

CHAPTER 6 Pycture Perfect Programs

N

/

Figure6.18 Mapping each of 4 new pixels back to 1 old pixel

def double(oldimage):
oldw = oldimage.getWidth ()

oldh =

newim =

for row
for

oldimage.getHeight ()

EmptyImage (oldw#*2,01dh*2)

in range (newim.getHeight ()):
col in range(newim.getWidth ()):

originalCol col//2
originalRow = row//2
oldpixel = oldimage.getPixel(originalCol ,originalRow)

newim.setPixel (col,row,o0ldpixel)

return newim

Listing 6.9 Doubling the size of an image: Mapping new back to old

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

6.5 Advanced Image Processing 221 -

We now need to perform the pixel mapping. As we saw in the last section, the pixels at
locations (4,4), (5,4), (4,5), (5,5) will all map back to pixel (2,2) in the original. As
another example (see again Figure 6.18, pixels (4,0), (5,0), (4,1), (5,1) will all map back
to pixel (2,0)). Our task is to find the mapping pattern that will allow us to locate the
appropriate pixel in the general case.

Once again, it may appear that there are four cases since four pixels in the new image
associate to a single pixel in the original. However, upon further examination, that is not
true. Since we are considering the problem from the perspective of the new image, there
is only one pixel that is of interest in the original. This suggests that there may be a
single operation that will map each of the new pixels back to the original. Looking at the
example pixels, we can see that integer division will perform the operation that we need
(see Figure 6.19).

More specifically, in the examples given above, we need an operation that can be done to
both 4 and 5 where the result will be 2. Also, the same operation on 0 and 1 will need
to yield 0. Recall that both 4//2 and 5//2 give a result of 2 since the // operator when
working on integers gives an integer result while discarding the remainder. Likewise, 0//2
and 1//2 both give 0 as their result.

We can now use this operation to complete the function. Lines 10-11 extract the correct
pixel from the original image by using the integer division operator to compute the corre-
sponding column and row. Once the pixel has been chosen, we can assign it to the location
in the new image. Of course, the result is the same as seen in the last section (see again
Figure 6.17).

/
/ . 2%col, 2*row 2%col+l,2*row

«—2—

col, row Y\;Z

+2\\\

—

2*col, 2*row+l| 2*col+l,2*row+1l

Figure6.19 Mapping back using integer division

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

I o CHAPTER 6 Pycture Perfect Programs

As we stated earlier, enlarging an image provides no new detail. The result can therefore
look “grainy” or “blocky” due to the fact that we are mapping one pixel to many locations
in the new image. Although we cannot create any new detail to add to the image, it is
possible to “smooth” out some of the hard edges by processing each pixel with respect to
those around it.

Exercises

6.22 Write a function to quadruple the size of an image.

6.23 Write a general function for enlarging an image that accepts a scale parameter for
enlarging in the z direction and another parameter for enlarging in the y direction.

6.24 Write a function for reducing the size of an image.

6.25 Write a function that will smooth the enlarged image. Hint: You will want to replace
each pixel in the enlarged image with the average of itself and its neighbors.

6.26 Write a function to remove noise from an image. You can do this by replacing each
pixel with the median of itself and its neighbors.

6.5.3 Flipping an Image

We now consider manipulations that physically transform an image by moving pixels to
new locations. In particular, we consider a process known as flipping. Creating a flip
image requires that we decide where the flip will occur. For our purposes in this section,
we will assume that flipping happens with respect to a line that we will call the flip axis.
The basic idea is to place pixels that appear on one side of the flip axis in a new location
on the opposite side of that axis, keeping the distance from the axis the same.

As an example, consider the simple image with 16 pixels in Figure 6.20 and a flip axis
placed vertically at the center of the image. Because we are flipping on the vertical axis,
each row will maintain its position relative to every other row. However, within each row,
the pixels will move to the opposite side of the axis, as shown by the arrows. The first pixel
will be last and the last pixel will be first.

The structure of this function is similar to those we have written thus far. We build our
nested iteration such that the outer iteration will process the rows and the inner iteration
will process each pixel within the row. Listing 6.10 shows the completed function. Note
that the new image is the same height and width as the original.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

6.5 Advanced Image Processing 223 [

Vertical
Flip Axis

Flipped Image

Figure6.20 Flipping an image on the vertical axis

def verticalFlip(oldimage):
oldw = oldimage.getWidth ()
oldh oldimage.getHeight ()

newim = EmptyImage (oldw,oldh)

maxp = oldw-1
for row in range(oldh):

© 0w N O s W N

e e =
cR W N = O

for col in range(oldw):

oldpixel = oldimage.getPixel (maxp-col,row)

newim.setPixel (col,row,o0ldpixel)

return newim

Listing6.10 Creating the vertical flip of an image

We need to discover a pattern to map each pixel from its original location into a new
location with respect to the flip axis. Referring to Figure 6.20 we can see that the following
associations are needed in an image that is 4 pixels wide: column 0 will map to column 3,
column 1 will map to column 2, column 2 will map to column 1, and column 3 will map to
column 0. In general, small values map to large values and large values map to small.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

I 24 CHAPTER 6 Pycture Perfect Programs

ene Image Processing
R e e =

Figure6.21 A flipped image

The first thing we might try is to use the width and simply subtract the original column
to get the new column. If we try this with column 0, we immediately see that there is a
problem since 4 — 0 is 4, which is outside the range of valid column values. The cause of
this error is that we start counting the columns (as well as the rows) with zero.

To fix this, we can base the subtraction on the actual maximum pixel position instead
of the width. Since the pixels in this example are named with column 0 though column 3
(width of 4), we can use 3 as our base for the subtraction. In this case, the general mapping
equation will be (width-1) - column. Note that width-1 is a constant, which means that
we can perform this calculation just once, outside the loop as we do on line 7.

Since we are performing a flip using a vertical flip axis, the pixels stay in the same row.
Line 11 uses the calculation above to extract the proper pixel from the original image and
line 13 places it in its new position in the new image. Note that row is used in both
getPixel and setPixel. Figure 6.21 shows the resulting image.

Exercises

6.27 Write the function horizontalFlip to flip an image on the horizontal axis.

6.28 Rewrite the verticalFlip function so that it flips an image in place.

6.29 Mirroring is a manipulation similar to flipping. When producing a mirror, the pixels
on one side of the mirror axis are reflected back on the other side. In a mirror

operation half of the pixels are lost. Implement a mirror on the vertical axis.

6.30 Implement a mirror on the horizontal axis.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

6.5 Advanced Image Processing 225 -

6.31 Implement a mirror at a specific column or row. Note: This operation will change
the image size.

6.32 Write a function rotateImage90 that takes an image as a parameter and rotates the
image by 90 degrees.

6.33 Write a function rotateImage180 that takes an image as a parameter and rotates it
by 180 degrees.

6.34 Write a function rotate that takes an image and a number of degrees to rotate the
image. Note that this rotation may leave some empty pixels. You will also need to
size the new image so it can hold the entire rotated image.

6.5.4 Edge Detection

Our final image processing algorithm in this chapter is called edge detection—an image
processing technique that tries to extract feature information from an image by finding
places in the image that have very dramatic changes in color intensity values. For example,
assume that we have an image containing two apples, one red and one green, that are
placed next to one another. The border between a block of red pixels from the red apple
and a block of green pixels from the green apple might constitute an edge representing the
distinction between the two objects.

As another example, consider the grayscale image (actually black and white) shown in
Figure 6.22. In the left image there are three objects: a white square, a cloud, and a star.
The right image shows the edges that exist. Each black pixel in the edge image denotes
a point where there is a distinct difference in the intensity of the original grayscale pixels.
Finding these edges helps to differentiate between any features that may exist in the original
image.

Edge detection has been studied in great detail. There are many different approaches that
can be used to find edges within an image. In this section we describe one of the classic
algorithms for producing the edges. The mathematics used to derive the algorithm are
beyond the scope of this book. However, we can easily develop the ideas and techniques
necessary to implement the algorithm.

In order to find an edge, it is necessary to evaluate each pixel in relation to those that
appear around it. Since we are looking for places where intensity on one side of the pixel is
greatly different from the intensity on the other, it will help us to simplify the pixel values.
Our first step in discovering edges will be to convert the image to grayscale. This means
that the intensity of the pixel can be thought of as the common color component intensity.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

| 226 CHAPTER 6 Pycture Perfect Programs

Original Image Edges

Figure6.22 A simple edge detection

(Recall that shades of gray are made from pixels with equal quantities of red, green, and
blue.) Each pixel can then be thought to have one of 256 intensity values.

As a means of looking for these intensity differences, we use the idea of a kernel, also
known as a filter or a mask. These kernels will be used to weight the intensities of the
surrounding pixels. For example, consider the 3 by 3 kernels shown in Figure 6.23. These
“orids” of integer weights are known as the Sobel operators, named after Irwin Sobel
who developed them for use in edge detection.

The left mask, labeled XMask, will be used to look for intensity differences in the left to
right direction of the image. You can see that the leftmost column of values is negative
and the rightmost column is positive. Likewise, the YMask will look for intensity differences
in the up and down direction as can be seen by the location of the positive and negative

weights.
-1 0 1 1 2 1
-2 0 2 0 0 0
-1 0 1 -1 -2 -1
e — e —
XMask YMask

Figure6.23 Kernel masks for convolving pixels

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

6.5 Advanced Image Processing 227 [

The kernels will be used during convolution—a process in which pixels in the original
image will be mathematically combined with each mask. The result will then be used to
decide whether that pixel represents an edge.

Convolution will require a mask and a specific pixel. The mask will be “centered” on the
pixel of interest, as shown in Figure 6.24. Each weight value in the mask now associates
with one of the nine pixel intensities “under” the mask. The convolution process will
simply compute the sum of nine products where each product is the weight multiplied by
the intensity of the associated pixel. If you have a large intensity on the left side and a small
intensity on the right (indicating an edge), you will get a weighted sum with a large negative
value. If you have a small intensity on the left and a large intensity on the right, you will
get a large positive weighted sum. Either way, a large absolute value of the weighted sum
will indicate an edge. This same argument applies for the top-to-bottom split of the YMask.

To implement convolution, we will first need to consider a way to store the kernels. Since
kernels look very similar to images, rows and columns of weights, it makes sense to take
advantage of this structure. We will use a list of lists implementation for the kernel. For
example, the XMask discussed earlier will be implemented as the list [[-1,0,1],[-2,0,2],
[-1,0,1] 1. The outer list contains three items, each of which represents a row in the
kernel. Each row has three items, one for each column. Similarly, the YMask will be
[[1,2,11,[0,0,0],[-1,-2,-1] 1.

o] (o]
-1|0]1
r ® r 21012
-1]0]1
Original Grayscale Placing the XMask on Pixel ¢, r

Figure6.24 Using the XMask to convolve the pixel at c,r

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

228 CHAPTER 6 Pycture Perfect Programs

Accessing a specific weight within a kernel will require two index values, one for the outer
list and one for the inner list. Since we are implementing the outer list to be a list of three
rows, the first index will be the row value. Once we select a row list, the second index will
be used to get the specific column.

For example, XMask[1] [2] will access the item in XMask indexed by 1, which is the middle
row of the XMask. The 2 indexes the last item in the list that corresponds to the last
column. This access is for the weight stored in the middle row and last column of XMask.

We can now construct the convolve function. We said earlier that this process requires an
image, a specific pixel within the image, and a kernel. The tricky part of this function is
to align the kernel and the underlying image. An easy way to do this is to think about a
mapping. The kernel row indices will run from 0 to 2. Likewise for the column indices. For
a pixel in the image with index (column,row), the row indices for the underlying pixels
will run from row-1 to row+1 and for the columns it will be column-1 to column+1.

We will define the base index to be the starting index for the 3 x 3 grid of underlying image
pixels. The base index for the columns will be column-1 and the base index for the rows
will be row-1. As we process the pixels of the image, the difference between the current
image row value and the base index for the rows will be equal to the row index needed to
access the correct row in the kernel. Likewise, we can do the same thing for the columns.

Once we have computed the index into the kernel we can use it to compute the product of
the weight and the pixel intensity. We will first access the pixel and then extract the red
component that will be its grayscale intensity. Since we have already converted the image
to grayscale, we can use any one of the red, green, or blue components for the intensity.
Finally, that product can be added to a running sum of products for all underlying pixels.
The complete convolve function is shown in Listing 6.11. Note that the final step is to
return the value of the sum.

Now that we can perform the convolution operation for a specific pixel with a kernel, we
can complete the edge detection algorithm. The steps of the process are as follows:

1. Convert the original image to grayscale.

2. Create an empty image with the same dimension as the original.

3. Process each inner pixel of the original image by performing the following;:

(a) Convolve the pixel with the XMask; call the result gX.
(b) Convolve the pixel with the YMask; call the result gY.

(¢) Compute the square root of the sum of squares of gX and gY¥; call the result g.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© W N O s W N =

e e e =
D ks W N = O

6.5 Advanced Image Processing 229 -

def convolve (anImage ,pixelRow,pixelCol,h kernel):

kernelColumnBase = pixelCol - 1
kernelRowBase = pixelRow - 1
sum = 0

for row in range(kernelRowBase ,kernelRowBase+3):
for col in range(kernelColumnBase ,kernelColumnBase+3):

kColIndex = col-kernelColumnBase
kRowIndex = row-kernelRowBase
apixel = anlImage.getPixel (col,row)

intensity = apixel.getRed ()
sum = sum + intensity * kernel [kRowIndex][kColIndex]

return sum

Listing 6.11 Convolution for a specific pixel

(d) Based on the value of g, assign the corresponding pixel in the new image to be
either black or white.

Listing 6.12 shows the Python code that implements the steps outlined previously. We begin
by converting the original image to grayscale using the pixelMapper () function developed
earlier in the chapter. This will allow for simple intensity levels within each pixel. We will
also need an empty image that is the same size as the original. It will also be useful to
define a few data objects for use later. Since each pixel in the edge detection result will be
either black or white, we will create black and white tuples that can be assigned later in
the process. Also, we will need the list of lists implementation of the two kernels. These
initializations are done on lines 3-8.

Now it is time to process the original pixels looking for an edge. Since each pixel is required
to have eight surrounding pixels for the convolution operation, we will not process the first
and last pixel on each row and column. This means that our nested iteration will start at
one, not zero, and it will continue through height-2 and width-2 as shown on lines 10-11.

Each pixel will now participate in the convolution process using both kernels. The resulting
sums will be squared and summed together, and in the final step we will take the square
root (see lines 12-14).

The value of this square root, called g, represents a measure of how much difference exists
between the pixel and those around it. The decision as to whether the pixel should be

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© 0w 9 O o ks W N =

T e S
= O © 0 N O O bk W N = O

230 CHAPTER 6 Pycture Perfect Programs

import math
def edgeDetect(thelmage):
grayImage = pixelMapper (thelmage,bgrayPixel)

newim
black
white
XMask
YMask

for row

for

EmptyImage (grayImage.getWidth(), grayImage.getHeight ())
Pixel (0,0,0)

Pixel (255,255,255)

(t [-1,-2,-11,[0,0,0],[1,2,1]]

((1,0,-11,[2,0,-2]1,[1,0,-1] 1]

in range (1, grayImage.getHeight ()-1):
col in range(l,grayImage.getWidth()-1):
gx = convolve (grayImage ,row,col,6 XMask)
gy = convolve (grayImage ,row,col,YMask)
g = math.sqrt(gx**x2 + gy*xx*2)

if g > 175:

newim.setPixel (col,row,black)
else:

newim.setPixel (col,row,white)

return newim

Listing6.12 The edge detection method

labeled as an edge is made by comparing g to a threshold value. It turns out that when
using these kernels, 175 is a good threshold value for considering whether you have found
an edge. Using simple selection, we will just check to see if the value is greater than 175. If
it is, we will color the pixel black; otherwise we will make it white. Figure 6.25 shows the
result of executing this function.

Figure6.25 Running the edge detection algorithm

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

6.6 Summary 231 -

Exercises

6.35 Try several different threshold values in edgeDetect. What effect does changing the
threshold have on the image? Does 175 work best for all images? What would be a
way to automatically select a good threshold for an image?

6.36 Modify the convolve function so that it applies the kernel to the red, green, and blue
components separately and returns a tuple of values as a result.

6.37 Convolution has many uses. For example, a simple convolution kernel is the blurring
kernel, which looks like this:

1 2 1

2 1 2

1 2 1

In this case we simply apply the kernel and return the weighted average without doing
any thresholding. Write a blur function that uses the new convolve function to blur
an image.

6.38 The sharpen kernel looks like this:

-1 -1 -1
-1 9 -1
-1 -1 -1

You can sharpen a pixel by emphasizing its value and deemphasizing the pixels around
it. Sharpening is the opposite of blurring. Use the sharpen kernel to sharpen an image.

6.39 Write a general function that can take an image and a kernel and then return an
image with the convolution kernel applied to each pixel.

6.40 Research convolution kernels and find a new one to try.

6.6 = Summary

In this chapter we focused on cImage—a new module that contains a number of data
types that can be used to manipulate digital images. In particular, cImage includes the
following:

= ImageWin

= EmptyImage

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

;2

CHAPTER 6 Pycture Perfect Programs

= FileImage

= Pixel

To process the pixels of an image, we used a pattern called nested iteration—that is,
iteration inside iteration. Nested iteration allowed us to process all of the pixels in a given
row, column by column, before moving on to the next row. We also introduced the notion of
namespaces—collections of names available at a particular point in time. These namespaces
are organized to allow us to look up names when they are used, thereby making sure that
there are no ambiguities. This chapter concluded with a more detailed consideration of the
mechanics of parameter passing.

Key Terms
actual parameter flip image list of lists pixel
built-in namespace flipping local namespace Pythagorean theorem

call by assignment

convolution

digital image

formal parameter
gray scale
image processing

main namespace
namespace

negative

resizing
RGB color model
Sobel operators

edge detection invocation nested iteration
flip axis kernel parameter passing
Python Keywords
dir for math return
EmptyImage ImageWin Pixel
FileImage import range
Bibliography

[Par96] J. R. Parker. Algorithms for Image Processing and Computer Vision. Wiley, 1996.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

Programming Exercises 233 -

Programming Exercises

6.1 Write a program to create a collage. Your program should combine several images
with different effects applied to the images.

6.2 Write a program to blend one image with another. You can try different techniques
for combining the RGB values for two pixels, each from a different image.

6.3 Take a picture of yourself against a white background. Use the fact that you can
“filter” out all the white pixels to place your picture in an interesting scene. This
same process is used all the time by weather forecasters on television. The only
difference is that they stand in front of a solid blue or solid green background called
a chromakey.

6.4 Another way to put yourself in an interesting picture is to take a picture of yourself
against a relatively plain background, then take another picture of exactly the same
background (use a tripod here with autofocus off) without you in it. Now you can
compare the two images and remove the pixels that are exactly the same, or close to
the same. Once you have removed those pixels, you can superimpose yourself on any
background.

6.5 Using getMouse to get the coordinates of a pixel in an image, devise a way to remove
the red-eye effect from the area of the image you click on.

6.6 Using getMouse, write a program that will allow you to “cut” a rectangular region
out of an image and place it somewhere in a new image.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

