Introduction To

Exercise Physiology

Tommy Boone, PhD, MPH, MAM, MBA
Professor, Department of Exercise Physiology
The College of St. Scholastica
I dedicate this book to my family and friends, whose support and encouragement sustain me, and to my colleagues, who continue to motivate and inspire me. Their commitment to ASEP has shaped the foundational concepts of professionalism in exercise physiology. Finally, I dedicate this book to my students, undergraduate through doctoral, both past and present.
Brief Contents

PART I Scientific Aspects of Exercise Physiology

CHAPTER 1 Regulation of Ventilation
3

CHAPTER 2 Pulmonary Ventilation
17

CHAPTER 3 Cardiovascular System
39

CHAPTER 4 Maximal Oxygen Uptake
69

CHAPTER 5 Biochemistry of Exercise
85

CHAPTER 6 Neuromuscular System
95

PART II Training the Cardiorespiratory and Muscular Systems

CHAPTER 7 Training the Aerobic and Anaerobic Energy Systems
109

CHAPTER 8 Training the Muscular System
131
PART III Training and Performance

CHAPTER 9 Ethical Thinking and Sports Nutrition 155

CHAPTER 10 Agents to Enhance Physiologic Responses to Exercise 181

PART IV Exercise Is Medicine

CHAPTER 11 Electrocardiography 211

CHAPTER 12 Cardiovascular Assessment and Health Profile 251

CHAPTER 13 Exercise and Health Benefits 279

PART V Exercise Biomechanics

CHAPTER 14 Basic Concepts in Exercise Biomechanics 311

CHAPTER 15 The Science of Levers 333

CHAPTER 16 Exercise Biomechanical Calculations 347

PART VI Anatomy of Sports and Exercise

CHAPTER 17 Muscles of the Upper Extremity 371

CHAPTER 18 Muscles of the Lower Extremity 391

CHAPTER 19 Applied Anatomy and Human Movement 405
PART VII The Profession of Exercise Physiology

CHAPTER 20 Introduction to Exercise Physiology 425

CHAPTER 21 Professionalization of Exercise Physiology 437

CHAPTER 22 Legal Aspects of Exercise Physiology 455

CHAPTER 23 Exercise Physiology Research 471
Preface xxxiii
Acknowledgments xxxix
About the Author xli
About the American Society of Exercise Physiologists xliii

PART I Scientific Aspects of Exercise Physiology

CHAPTER 1 Regulation of Ventilation 3

Passive and Active Expiration 4
 Respiratory Areas in the Brain Stem 5
 Chemoreceptors 6
 Effects of Blood P_o_2 on Ventilation 7

Ventilation Control During Exercise 7
 Chemical Factors 8
 Effects of Blood $P_c_o_2$ and pH on Ventilation 9
 Proprioceptive Reflexes 9
 Other Factors 9
 Hering–Breuer Reflex 9

Copyright ©2014 Jones & Bartlett Learning, LLC, an Ascend Learning Company
Content not final. Not for sale or distribution.
Contents

<table>
<thead>
<tr>
<th>Chapter Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calculating the Work of the Heart</td>
<td>47</td>
</tr>
<tr>
<td>Myocardial Oxygen Consumption</td>
<td>47</td>
</tr>
<tr>
<td>Cardiac Output and Oxygen Consumption</td>
<td>48</td>
</tr>
<tr>
<td>Regulation of Heart Rate and Stroke Volume</td>
<td>49</td>
</tr>
<tr>
<td>Cardiovascular Training Effects</td>
<td>50</td>
</tr>
<tr>
<td>Distribution of Cardiac Output</td>
<td>52</td>
</tr>
<tr>
<td>Cardiovascular Perspective of (\dot{V}_{O_2}\text{max})</td>
<td>54</td>
</tr>
<tr>
<td>(\dot{V}_{O_2}\text{max})</td>
<td>54</td>
</tr>
<tr>
<td>Efficiency of the Heart</td>
<td>55</td>
</tr>
<tr>
<td>Understanding What Limits (\dot{V}_{O_2}\text{max})</td>
<td>55</td>
</tr>
<tr>
<td>CHAPTER 4</td>
<td></td>
</tr>
<tr>
<td>Maximal Oxygen Uptake</td>
<td>69</td>
</tr>
<tr>
<td>Maximal Oxygen Uptake</td>
<td>70</td>
</tr>
<tr>
<td>Determining (\dot{V}_{O_2}\text{max})</td>
<td>72</td>
</tr>
<tr>
<td>(\dot{V}_{O_2}\text{max}) and Adaptations to Training</td>
<td>76</td>
</tr>
<tr>
<td>Factors Affecting (\dot{V}_{O_2}\text{max})</td>
<td>78</td>
</tr>
<tr>
<td>Interval Training</td>
<td>79</td>
</tr>
<tr>
<td>Heredity</td>
<td>79</td>
</tr>
<tr>
<td>Strength Training</td>
<td>80</td>
</tr>
<tr>
<td>Gender</td>
<td>80</td>
</tr>
<tr>
<td>Age</td>
<td>81</td>
</tr>
<tr>
<td>CHAPTER 5</td>
<td></td>
</tr>
<tr>
<td>Biochemistry of Exercise</td>
<td>85</td>
</tr>
<tr>
<td>Biochemistry of Exercise</td>
<td>86</td>
</tr>
<tr>
<td>ATP–PC System</td>
<td>86</td>
</tr>
<tr>
<td>Glycolysis</td>
<td>86</td>
</tr>
</tbody>
</table>

Copyright ©2014 Jones & Bartlett Learning, LLC, an Ascend Learning Company
Content not final. Not for sale or distribution.
Krebs Cycle 90

Electron Transport Chain 92

CHAPTER 6
Neuromuscular System 95
Neurology of Movement 96
 Central Nervous System 97
 Peripheral Nervous System and Muscles 98

Skeletal Muscle 99
 Organization of Skeletal Muscle 99
 Muscle Contraction 100
 Types of Muscle Contraction 103

Muscle Fiber Types 104
 Slow-Twitch Oxidative Fibers 104
 Fast-Twitch Oxidative-Glycolytic Fibers 105
 Fast-Twitch Glycolytic Fibers 105
 Modification of Fiber Types 105

PART II Training the Cardiorespiratory and Muscular Systems

CHAPTER 7
Training the Aerobic and Anaerobic Energy Systems 109
Principles of Exercise Training 110
 Principle of Overload 110
 Principle of Specificity 112
 Principle of Individual Differences 113
 Principle of Reversibility 113
<table>
<thead>
<tr>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principle of Progression</td>
</tr>
<tr>
<td>Principle of Warm-Up and Cool-Down</td>
</tr>
<tr>
<td>Energy Transfer</td>
</tr>
<tr>
<td>Anaerobic Adaptations to Exercise Training</td>
</tr>
<tr>
<td>Aerobic Adaptations to Exercise Training</td>
</tr>
<tr>
<td>Factors Affecting Anaerobic Training</td>
</tr>
<tr>
<td>Factors Affecting Aerobic Training</td>
</tr>
<tr>
<td>Continuous Training and Lifestyle Changes</td>
</tr>
<tr>
<td>Interval Training</td>
</tr>
<tr>
<td>Genetic Considerations</td>
</tr>
<tr>
<td>Aging</td>
</tr>
<tr>
<td>Methods of Prescribing Exercise Intensity</td>
</tr>
<tr>
<td>Percentage of $\dot{V}o_{2}max$</td>
</tr>
<tr>
<td>Percentage of Heart Rate Maximum</td>
</tr>
<tr>
<td>CHAPTER 8</td>
</tr>
<tr>
<td>Training the Muscular System</td>
</tr>
<tr>
<td>Principles of Development of Muscular Strength</td>
</tr>
<tr>
<td>Concentric</td>
</tr>
<tr>
<td>Eccentric</td>
</tr>
<tr>
<td>Isometric</td>
</tr>
<tr>
<td>Measurement of Strength</td>
</tr>
<tr>
<td>Cable Tensiometer</td>
</tr>
<tr>
<td>Dynamometer</td>
</tr>
<tr>
<td>One-Repetition Maximum</td>
</tr>
<tr>
<td>Training to Develop Strength</td>
</tr>
<tr>
<td>Isometric Training</td>
</tr>
</tbody>
</table>
Progressive Resistance Exercise 139
Variable Resistance Training 139
Isokinetic Training 140
Plyometric Training 140
Periodization 141
Development of Muscular Power 141
Heavy [Explosive-Type] Resistance Training 142
Muscle Adaptations to Resistance Training 142
Neural 143
Hypertrophy 144
Hyperplasia 145
Muscle Soreness 145
Cardiovascular Adaptations to Resistance Training 146
Hemodynamic Adaptations 146
Training to Develop Flexibility 146
Static Stretch Method 147
Dynamic Stretch Method 147
Proprioceptive Neuromuscular Facilitation Method 147
Stretching Exercises 147
Common Flexibility Training Mistakes 149

PART III Training and Performance

CHAPTER 9
Ethical Thinking and Sports Nutrition 155
Introduction to Ethics 156
Recognizing an Ethical Issue 157
Getting the Facts 158
Making a Decision and Acting on It 158
Ethical Thinking 158
Ethical Dilemmas in Exercise Physiology 160

Cheating in Sports 162
Sports Supplements and Sportsmanship 163
Doping in Sports 165

Ethical Reasoning and Athletic Performance 170

Gene Doping 172
Sports Gene Tests 175
Natural Genetic Mutations and Other Considerations 177

CHAPTER 10
Agents to Enhance Physiologic Responses to Exercise 181

Healthy Eating and Physical Performance 182
Role of Nutrition in Sports 182
A Balanced Training Diet 183

Carbohydrates and Exercise 186
Before Exercise 188
During Exercise 189
After Exercise 190
Carbohydrate Loading 191

Fat Requirements for Athletes 192

Protein Requirements for Athletes 193
Athletes and Protein 194
Endurance Training Versus Resistance Training 195

Copyright ©2014 Jones & Bartlett Learning, LLC, an Ascend Learning Company
Content not final. Not for sale or distribution.
Vitamins, Minerals, and Exercise Performance 196
 Vitamins 197
 Minerals 199

Water and Electrolytes in Athletics 202
 Dehydration 202
 Preventing Dehydration During Exercise 203
 Rehydration After Exercise 204

Nutrition Needs for the Young Athlete 205

PART IV Exercise Is Medicine 209

CHAPTER 11
Electrocardiography 211
 Introduction to the Heart 213
 Electrical Conduction 213
 Electrophysiology 214
 Depolarization and Repolarization 215
 Mechanisms of Abnormal Electrical Impulse Formation 215

 Autonomic Nervous System 216
 Stimulation of the SNS 217
 Stimulation of the PsNS 217

 Electrocardiogram 217
 QRS Nomenclature 217
 Segments and Intervals 218
 Electrocardiograph Paper 218
 Planes 218
 ECG Leads 218
 Lead Placement 220
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECG Leads and Views of the Heart</td>
<td>221</td>
</tr>
<tr>
<td>Improper Placement</td>
<td>221</td>
</tr>
<tr>
<td>Normal Sinus Rhythm</td>
<td>221</td>
</tr>
<tr>
<td>Determining HR</td>
<td>222</td>
</tr>
<tr>
<td>Axis and Cardiac Vectors</td>
<td>223</td>
</tr>
<tr>
<td>QRS Complex in Leads I, II, and III</td>
<td>223</td>
</tr>
<tr>
<td>Wave Configurations</td>
<td>223</td>
</tr>
<tr>
<td>Axis [QRS] Determination: Mean Vector</td>
<td>224</td>
</tr>
<tr>
<td>Causes of Axis Deviation</td>
<td>225</td>
</tr>
<tr>
<td>Extrinsic Regulation</td>
<td>226</td>
</tr>
<tr>
<td>Chamber Enlargement</td>
<td>227</td>
</tr>
<tr>
<td>ECG and Hypertrophy</td>
<td>228</td>
</tr>
<tr>
<td>Myocardial Infarction</td>
<td>230</td>
</tr>
<tr>
<td>Layers of the Heart Wall</td>
<td>230</td>
</tr>
<tr>
<td>Circulation Specifics</td>
<td>230</td>
</tr>
<tr>
<td>Four Phases of a Myocardial Infarction</td>
<td>230</td>
</tr>
<tr>
<td>ECG Sequence of a Myocardial Infarction</td>
<td>232</td>
</tr>
<tr>
<td>Identification of a Myocardial Infarction</td>
<td>232</td>
</tr>
<tr>
<td>Coronary Arteries</td>
<td>233</td>
</tr>
<tr>
<td>Left Coronary Artery Pathology</td>
<td>233</td>
</tr>
<tr>
<td>Right Coronary Artery Pathology</td>
<td>234</td>
</tr>
<tr>
<td>Intraventricular Conduction Disturbances</td>
<td>234</td>
</tr>
<tr>
<td>Hemiblocks</td>
<td>235</td>
</tr>
<tr>
<td>Significance of BBB and Fascicular Blocks</td>
<td>237</td>
</tr>
<tr>
<td>Electrical Complications</td>
<td>237</td>
</tr>
<tr>
<td>Automaticity</td>
<td>237</td>
</tr>
<tr>
<td>Bradyarrhythmias</td>
<td>238</td>
</tr>
<tr>
<td>Supraventricular Arrhythmias</td>
<td>238</td>
</tr>
</tbody>
</table>
Contents

Sinus Arrhythmia 239
Premature Atrial Contraction 239
Paroxysmal Atrial Tachycardia 239
Atrial Flutter 240
Atrial Fibrillation 241
Junctional Arrhythmias 242
Junctional Premature Contraction 242
Ventricular Arrhythmias 242
Premature Ventricular Contractions 243
Classification of Ventricular Tachycardia 244
Ventricular Fibrillation 245
Idioventricular Rhythm/Ventricular Escape Rhythm 246
Heart Blocks 246

CHAPTER 12
Cardiovascular Assessment and Health Profile 251

Cardiovascular System Physiologic Calculations 252

Heart Rate 253
Stroke Volume 253
Cardiac Output 254
Cardiac Index 254
Stroke Volume Index 255
Arteriovenous Oxygen Difference 256
Oxygen Consumption 256
Oxygen Pulse 258
Double Product 260
Myocardial Oxygen Consumption 260
Relative Cardiac Efficiency 261
Left Ventricular Power Output 262
Cardiac Power Output 262
Contents

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exercise Cardiac Power</td>
<td>263</td>
</tr>
<tr>
<td>Myocardial Efficiency</td>
<td>263</td>
</tr>
<tr>
<td>Left Ventricular Stroke Work</td>
<td>264</td>
</tr>
<tr>
<td>Mean Arterial Pressure</td>
<td>264</td>
</tr>
<tr>
<td>Systemic Vascular Resistance</td>
<td>265</td>
</tr>
<tr>
<td>Respiratory System Physiologic Calculations</td>
<td>266</td>
</tr>
<tr>
<td>Minute Ventilation</td>
<td>266</td>
</tr>
<tr>
<td>Volume of Carbon Dioxide Produced</td>
<td>267</td>
</tr>
<tr>
<td>Respiratory Exchange Ratio</td>
<td>268</td>
</tr>
<tr>
<td>Ventilatory Equivalent for Oxygen</td>
<td>269</td>
</tr>
<tr>
<td>Alveolar Ventilation</td>
<td>270</td>
</tr>
<tr>
<td>Ventilation–Perfusion Ratio</td>
<td>272</td>
</tr>
<tr>
<td>Measurement of Cardiac Output by CO₂ Rebreathing</td>
<td>273</td>
</tr>
<tr>
<td>The Indirect Fick Method</td>
<td>273</td>
</tr>
<tr>
<td>Stroke Volume: An Important Adaptation to Exercise Training</td>
<td>275</td>
</tr>
<tr>
<td>CHAPTER 13</td>
<td></td>
</tr>
<tr>
<td>Exercise and Health Benefits</td>
<td>279</td>
</tr>
<tr>
<td>America and Inactivity</td>
<td>280</td>
</tr>
<tr>
<td>Regular Exercise and Life Expectancy</td>
<td>281</td>
</tr>
<tr>
<td>Becoming Physically Active</td>
<td>283</td>
</tr>
<tr>
<td>Exercise Prescription</td>
<td>284</td>
</tr>
<tr>
<td>Heart Disease</td>
<td>290</td>
</tr>
<tr>
<td>Risk Factors for Coronary Heart Disease</td>
<td>291</td>
</tr>
<tr>
<td>Reducing Risk Through Regular Exercise</td>
<td>292</td>
</tr>
<tr>
<td>Decreased Risk of a Myocardial Infarction</td>
<td>292</td>
</tr>
<tr>
<td>Health-Related Benefits of Muscular Fitness</td>
<td>293</td>
</tr>
<tr>
<td>Muscular Strength</td>
<td>294</td>
</tr>
</tbody>
</table>

Note: Content not final. Not for sale or distribution.
Contents

Muscular Endurance 296
Prescription for Resistance Training 296

Benefits of Individualized Exercise Prescriptions 297
Arthritis 298
Asthma 299
Cancer 299
Chronic Obstructive Pulmonary Disease 300
Coronary Heart Diseases, Dyslipidemia, and Hypertension 300
Diabetes Mellitus 301
Overweight and Obesity 302
Peripheral Vascular Disease 302
Sarcopenia 303
Spinal Cord Injury 304

Fitness and Health Status of Children 304
Trainability 305

PART V Exercise Biomechanics

CHAPTER 14
Basic Concepts in Exercise Biomechanics 311

Basic Concepts in Exercise Biomechanics 312
Biomechanical Analyses 312

Newton’s Laws of Motion 314
Newton’s First Law [Law of Inertia] 314
Newton’s Third Law [Law of Action and Reaction] 315

Principles Related to Newton’s First Law 315
Combining Translatory and Rotary Motions 315
Continuity of Motion 315
Contents

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effects of Momentum</td>
<td>316</td>
</tr>
<tr>
<td>Transfer of Momentum</td>
<td>316</td>
</tr>
<tr>
<td>Principles Related to Newton’s Second Law</td>
<td>316</td>
</tr>
<tr>
<td>Acceleration Is Proportional to the Force Causing It</td>
<td>316</td>
</tr>
<tr>
<td>Maximum Acceleration and Efficiency of Motion</td>
<td>317</td>
</tr>
<tr>
<td>Effects of the Body’s Radius on Angular Velocity</td>
<td>317</td>
</tr>
<tr>
<td>Conservation of Momentum in Swinging Movements</td>
<td>317</td>
</tr>
<tr>
<td>Principles Related to Newton’s Third Law</td>
<td>319</td>
</tr>
<tr>
<td>Surface Variation and Counterforce</td>
<td>319</td>
</tr>
<tr>
<td>Direction of the Counterforce</td>
<td>319</td>
</tr>
<tr>
<td>Counterforce in Striking Activities</td>
<td>319</td>
</tr>
<tr>
<td>Temporarily Stored Counterforce</td>
<td>320</td>
</tr>
<tr>
<td>Surface Contact While Applying Forces to External Objects</td>
<td>320</td>
</tr>
<tr>
<td>Principles Related to Force</td>
<td>320</td>
</tr>
<tr>
<td>Total Force</td>
<td>320</td>
</tr>
<tr>
<td>Constant Application of Force</td>
<td>321</td>
</tr>
<tr>
<td>Direction of Force Application</td>
<td>321</td>
</tr>
<tr>
<td>Distance of Force Application</td>
<td>321</td>
</tr>
<tr>
<td>Self-Produced and Other Forces</td>
<td>321</td>
</tr>
<tr>
<td>Muscle Selection</td>
<td>322</td>
</tr>
<tr>
<td>Stability and the Loss of Effective Force</td>
<td>322</td>
</tr>
<tr>
<td>Effect of the Angle of Application on the Force Produced</td>
<td>322</td>
</tr>
<tr>
<td>Initial Muscular Tension</td>
<td>322</td>
</tr>
<tr>
<td>Application of the Principles to the Tennis Serve</td>
<td>322</td>
</tr>
<tr>
<td>Principles of Motion</td>
<td>323</td>
</tr>
<tr>
<td>Principles of Force</td>
<td>325</td>
</tr>
<tr>
<td>Force Absorption</td>
<td>326</td>
</tr>
</tbody>
</table>
Contents

Types of Motion 327
 Linear Motion 327
 Curvilinear Motion 327
 Angular Motion 328

Pendulum Swing 329

The Effect of Gravity on the Body 330

CHAPTER 15
The Science of Levers 333

Levers 334
 First-Class Lever 334
 Second-Class Lever 334
 Third-Class Lever 334
 Basic Biomechanics and Levers 336

Vertical Versus Horizontal Components of Force 339
 Force Calculation 339

Torque 341
 Practical Applications 341

CHAPTER 16
Exercise Biomechanical Calculations 347

Introduction 348
 Motion 348
 Speed 348
 Velocity 349
 Acceleration 349
 Kinetic Energy 351
 Potential Energy 352
Momentum 353
Work 353
Work–Energy (WE) Relationship 354
Power 354
Pressure 355
Static Balance 356
Impulse Momentum 358
Segmentation Principle 358
Parabolic Flight Paths and Trajectories 359
Vertical Trajectories 359
Horizontal Trajectories 360
Angular Velocity and Related Calculations 363
Centrifugal Force 364
Angular Acceleration 365

PART VI Anatomy of Sports and Exercise

CHAPTER 17 Muscles of the Upper Extremity 371

Why Study Anatomy? 372
Anatomical Terminology 372
Terms Describing Anatomical Positions 375
Terms Describing Joint Movement 375
Muscles That Move the Scapula 376
Trapezius 376
Levator Scapulae 376
Rhomboid Minor and Rhomboid Major 377
Serratus Anterior 378
Pectoralis Minor 378

Copyright ©2014 Jones & Bartlett Learning, LLC, an Ascend Learning Company
Content not final. Not for sale or distribution.
Muscles That Move the Arm at the Shoulder Joint

- Pectoralis Major
- Deltoid
- Supraspinatus
- Infraspinatus
- Teres Minor
- Teres Major
- Subscapularis
- Latissimus Dorsi
- Coracobrachialis
- Biceps Brachii
- Triceps Brachii

Muscles That Move the Forearm at the Elbow Joint

- Biceps Brachii
- Brachialis
- Brachioradialis
- Supinator
- Pronator Teres

Muscles That Move the Forearm, Hand, and/or Fingers

- Flexor Carpi Radialis
- Palmaris Longus
- Flexor Carpi Ulnaris
- Flexor Digitorum Superficialis
- Flexor Digitorum Profundus
- Flexor Pollicis Longus
- Pronator Quadratus
Contents

Extensor Carpi Radialis Longus 385
Extensor Carpi Radialis Brevis 386
Extensor Digitorum 386
Extensor Digitii Minimi 386
Extensor Carpi Ulnaris 386
Extensor Pollicis Brevis 386
Abductor Pollicis Longus 386
Extensor Pollicis Longus 386
Extensor Indicus 387

The Brachial Plexus 387
Lateral Cord 388
Medial Cord 388
Lateral and Medial Cords 389
Posterior Cord 389

CHAPTER 18
Muscles of the Lower Extremity 391

Muscles That Move the Hip Joint 392
Psoas Major 392
Iliacus 393
Pectineus 393
Adductor Longus 393
Gracilis 393
Adductor Brevis 394
Adductor Magnus [Anterior Fibers] 394
Sartorius 394
Tensor Fasciae Latae 394
Rectus Femoris 394
Gluteus Maximus 395

Copyright ©2014 Jones & Bartlett Learning, LLC, an Ascend Learning Company
Content not final. Not for sale or distribution.
Contents

Gluteus Medius 395
Gluteus Minimus 395
Semitendinosus 395
Semimembranosus 396
Biceps Femoris 396
Adductor Magnus [Posterior Fibers] 396

Muscles That Move the Knee Joint 396
Vastus Lateralis 397
Vastus Medialis 397
Vastus Intermedius 397
Gastrocnemius 397
Plantaris 397
Soleus 398
Popliteus 398

Muscles That Move the Foot and Toes 398
Flexor Hallucis Longus 398
Tibialis Posterior 399
Flexor Digitorum Longus 399
Peroneus Longus 399
Peroneus Brevis 399
Tibialis Anterior 399
Extensor Hallucis Longus 400
Extensor Digitorum Longus 400
Peroneus Tertius 400

The Lumbosacral Plexus 400
Lower-Extremity Nerves of the Lumbar Plexus 400
Lower-Extremity Nerves of the Sacral Plexus 401
CHAPTER 19
Applied Anatomy and Human Movement 405

Anatomy of Weight-Lifting Exercises 406

Dumbbell Curl 406
Hammer Curl 406
Barbell Curl 406
Reverse Wrist Curl 406
Wrist Curl 407
Lying Triceps Extension 407
Standing Military Press 407
Lat Pull-Down 408
Lateral Dumbbell Raise 409
Front Arm Raise 409
Upright Rowing 409
Bench Press 409
Incline Bench Press 410
Decline Bench Press 411
Squat 411
Standing Calf Raise 412
Seated Barbell Calf Raise 413

Anatomy of Good Flexibility Exercises 413

Hip Flexor Stretch [Modified Split Position] 414
Sit–Straddle–Reach Stretch 414
Shoulder and Chest Stretch 415

Anatomy of Useless Flexibility Exercises 415

Hip Flexor Stretch [Standing] 415
Hip Flexor Stretch [Lying Down] 416
Contents

Hip Flexor Stretch (Standing Side Split with Shoulders Forward) 416
Cailliet Stretch 416
Inner Thigh Stretch 417
Side Stretch 417
Plantar Flexor Stretch 417

Anatomy of Dangerous Flexibility Exercises 418
Hurdler’s Stretch 418
Plough Stretch 419
Quadriiceps Stretch 419

PART VII The Profession of Exercise Physiology

CHAPTER 20
Introduction to Exercise Physiology 425
Introduction to Exercise Physiology 426
A Brief History of Exercise Physiology 426
What Is Exercise Physiology? 428

Board Certification and Professionalism 429
Healthcare and Accountability 430
Entrepreneurship 431
The New Paradigm 432

CHAPTER 21
Professionalization of Exercise Physiology 437
American Society of Exercise Physiologists 438
Professional Organization 439
Accountability 440
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Orientation</td>
<td>440</td>
</tr>
<tr>
<td>Autonomy and Self-Regulation</td>
<td>440</td>
</tr>
<tr>
<td>Ongoing Research</td>
<td>440</td>
</tr>
<tr>
<td>Body of Knowledge</td>
<td>441</td>
</tr>
<tr>
<td>Specialized Education</td>
<td>441</td>
</tr>
<tr>
<td>Socialization to Exercise Physiology</td>
<td>441</td>
</tr>
<tr>
<td>Code of Ethics</td>
<td>442</td>
</tr>
<tr>
<td>Accreditation</td>
<td>442</td>
</tr>
<tr>
<td>Purpose of Accreditation</td>
<td>443</td>
</tr>
<tr>
<td>Benefits of Accreditation</td>
<td>443</td>
</tr>
<tr>
<td>Board Certification</td>
<td>444</td>
</tr>
<tr>
<td>Mission Statement</td>
<td>444</td>
</tr>
<tr>
<td>Purpose</td>
<td>444</td>
</tr>
<tr>
<td>Goals</td>
<td>444</td>
</tr>
<tr>
<td>EPC Certificate</td>
<td>444</td>
</tr>
<tr>
<td>Eligibility</td>
<td>445</td>
</tr>
<tr>
<td>Standards of Professional Practice</td>
<td>446</td>
</tr>
<tr>
<td>Professional Practice</td>
<td>446</td>
</tr>
<tr>
<td>Measurement and Examination</td>
<td>448</td>
</tr>
<tr>
<td>Instruction</td>
<td>448</td>
</tr>
<tr>
<td>Analysis and Treatment</td>
<td>449</td>
</tr>
<tr>
<td>Professional Title</td>
<td>449</td>
</tr>
<tr>
<td>Commitment to Society</td>
<td>450</td>
</tr>
<tr>
<td>Confidentiality</td>
<td>451</td>
</tr>
<tr>
<td>Revocation of Certification</td>
<td>451</td>
</tr>
<tr>
<td>Disciplinary Committee and Review Process</td>
<td>451</td>
</tr>
<tr>
<td>Disciplinary Hearing, Appeal, and Sanctions</td>
<td>452</td>
</tr>
</tbody>
</table>
CHAPTER 22
Legal Aspects of Exercise Physiology 455

Understanding the Importance of Standards 456

The ASEP Standards of Professional Practice 456
Existing Standards and Questions 457
Malpractice (Professional Negligence) 458

Exercise as Medicine 460

Informed Consent 460
Avoid the "Oversell" 460
Personal Liability Insurance 461

Defending Against Negligence or Malpractice Claims 462

Contributory Negligence 462
Unavoidable Accidents 463
Informed Consent 463
Delegation Versus Supervision 463
Client Care 463
Medical Records 464
Knowledge of the Client 464
Suit-Prone Clients 464

Professional Liability Insurance 464

Certified Exercise Physiologists Held to a Higher Standard 465
Anticipation of Common Liability Claims 465

CHAPTER 23
Exercise Physiology Research 471

A Practical Guide to Research 472

The Scientific Method 473
Inductive and Deductive Reasoning 473

Copyright ©2014 Jones & Bartlett Learning, LLC, an Ascend Learning Company
Content not final. Not for sale or distribution.
Good Research and Its Attributes 474

Research and Integrity 474

Certified Exercise Physiologists with Integrity are Trusted Researchers 475

Types of Research 476

Descriptive Research 476

Correlational Research 476

Experimental Research and Types of Statistical Tests 477

Types of Variables 478

Dependent Variables 478

Independent Variables 478

Control Variables 478

Extraneous Variables 478

Population and Random Sampling 478

The Scientific Method 479

Step 1: Identify the Problem 480

Step 2: Literature Review 480

Step 3: The Null Hypothesis 481

Step 4: The Research Hypothesis 482

Step 5: The Research Design and the Research 482

Step 6: Data Collection and Analysis 483

Step 7: Statistical Conclusions 483

The Concept of Significance 484

Glossary 487

Index 515

Copyright ©2014 Jones & Bartlett Learning, LLC, an Ascend Learning Company
Content not final. Not for sale or distribution.
Preface

During the past several decades, exercise physiologists have emphasized the importance of regular exercise in the prevention of chronic diseases associated with a sedentary lifestyle. Obesity, type II diabetes, metabolic syndrome, cardiac dysfunction, hypertension, and osteoporosis can be helped or even reversed with properly prescribed exercise. The information in this book serves as the foundation of an evolutionary concept that “exercise is medicine.”

Introduction to Exercise Physiology is designed to educate the reader about the human body and how to care for it. This knowledge encourages critical reflection about the scientific basis of exercise physiology as a healthcare profession. This book combines scientific principles and calculations that support its use as an entry-level text to help exercise physiology students understand career options that use exercise as medicine in addition to the more traditional focus on the development of exercise training programs for enhanced athletic performance.

Exercise physiology is the identification of physiological mechanisms that facilitate positive healthcare changes in the human body. It includes the comprehensive delivery of treatment services concerned with the analysis, improvement, and maintenance of health and fitness; the rehabilitation of heart disease and other diseases and/or disabilities; and the professional guidance and counsel of athletes and others interested in athletics, sports training, and human adaptability to acute and chronic physical activity.

The text teaches exercise physiology students about the importance of accreditation, board certification, and standards of practice. Instructors are introduced to the American Society of Exercise Physiologists (ASEP), the organization that represents and promotes professionalism in exercise physiology. ASEP is committed to the professional development of exercise physiologists, their advancement, and their credibility in the healthcare field. ASEP has defined an exercise physiologist as a healthcare professional who either has an academic degree in exercise physiology or who is board certified by ASEP to practice exercise physiology. This book also discusses ASEP strategies that clarify misinformation about the profession of exercise physiology.

The chapters are designed to encourage the reader to integrate scientific content with creative, entrepreneurial thinking and opportunities to improve athletic performance, quality of life, and longevity.
The text presents an introduction to the scientific disciplines that undergird the everyday practice of exercise physiology. It encourages the reader to consider exercise physiology as a profession, understand its scientific foundation, and appreciate its healthcare connection as a service to society. Each chapter emphasizes the crucial connections between basic biochemistry, biomechanics, and anatomy that are the building blocks of exercise physiology. The book also provides current information that spans several disciplines, systematically organized to help ensure successful preparation for the Board Certified Exercise Physiologist certification exam.

The 23 chapters introduce the primary physiologic systems and the significance of exercise, electrocardiography and cardiovascular calculations, biomechanics and its connection to anatomical movement, and professional development in exercise physiology. Each chapter builds upon the previous one, so the student should start at the beginning and work through the chapters sequentially.

The book is divided into seven parts. Part I addresses the scientific aspects of exercise physiology. The reader is introduced to factors that regulate ventilation and influence the cardiovascular system and its role in maximum oxygen uptake, as well as the integrity of the neuromuscular system.

Part II describes the principles of training and adaptations that result from aerobic and anaerobic training. Part III discusses ethical thinking, sports nutrition concerns, and various agents used to enhance athletic performance. Part IV highlights complex and basic elements essential to the practice of exercise physiology.

Part V explores the role biomechanics plays in performance and its effects on well-being. Basic concepts in exercise biomechanics are examined, together with the science of levers and biomechanical calculations. This approach is critical to the reader’s grasp of the interrelationship of the variables that influence the quality of human movement. Part VI focuses on the knowledge required of the exercise physiologist. Essential to this goal is an understanding of the muscular system and the many ways in which it influences the body. The more the reader learns about the anatomy of human movement, the more relevant the study and application of the physiologic systems become in the management of athletics, health, and well-being.

Part VII considers exercise physiology from a big picture point of view. The final chapters define an exercise physiologist and examine the discipline of exercise physiology and the difficult issues that challenge the profession. Topics discussed include why exercise physiologists need their own professional organization, a code of ethics, accreditation, board certification, and standards of practice. The final chapter examines exercise physiology research, types of statistical tests, and the scientific method.

In summary, this book’s content reflects the evolution and significance of the profession of exercise physiology. Introduction to Exercise Physiology is intended for students of exercise physiology and other healthcare professionals. It is a useful reference work for studying the related disciplines of human movement. No other contemporary exercise physiology text addresses specifically the distinct disciplines of the systematic knowledge of exercise physiology.
Pedagogical Features

Introduction to Exercise Physiology incorporates a number of engaging pedagogical features to help the student understand and retain the material.

Each chapter starts with Chapter Objectives, which highlight the critical points of the chapter, followed by a Chapter Outline to guide student study.

Chapter Objectives
By studying this chapter, you should be able to do the following:
1. Describe the brain stem structures that regulate respiration.
2. Define central and peripheral chemoreceptors.
3. Explain what effect a decrease in blood pH or carbon dioxide has on respiratory rate.
4. Describe the Hering–Breuer reflex and its function.
5. Describe the chemoreceptor input to the brain stem and how it modifies the rate and depth of breathing.
6. Explain why it is that the arterial gases and pH do not significantly change during moderate exercise.
7. Discuss the respiratory muscles at rest and during exercise. How are they influenced by endurance training?
8. Describe respiratory adaptations that occur in response to athletic training.

Chapter Outline
Passive and Active Expiration
Respiratory Areas in the Brain Stem
Dorsal Respiratory Group
Ventral Respiratory Group
Arousal Center
Pneumotaxic Center
Chemoreceptors
Central Chemoreceptors
Peripheral Chemoreceptors
Effects of Blood P O₂ on Ventilation
Ventilation Control During Exercise
Chemical Factors

Key terms are defined in sidebars throughout the chapter and compiled in a Glossary at the end of the text.

Net V O₂ Oxygen consumption for only the exercise portion that is consistent with the work required of the exercise itself minus the resting component.

Gross V O₂ The total oxygen consumption either at rest or during exercise including the resting oxygen consumption.

Resting V O₂ Resting oxygen consumption is the measure of resting energy expenditure, which is the same as “resting metabolic rate” (RMR) or a slightly different term “basal metabolic rate” (BMR).

Kilogram-meters per minute The physiologic cost of work in oxygen consumption on the bicycle ergometer.
Each chapter concludes with Study Questions to test comprehension of the concepts discussed in the chapter.

Study Questions

1. Why is eating a well-balanced diet more important for athletes than consuming sports supplements, vitamins, and minerals?
2. Explain the role of carbohydrates, fats, and proteins in athletic training.
3. What specific foods should be consumed before, during, and immediately after exercise?
4. Explain what is meant by carbohydrate loading and its significance in endurance sports.
5. What is hypokalaemia and what role does the cardio-pulmonary system play in its control?
6. How critical is it for non-strength-building athletes to consume protein?
7. Is it necessary for athletes to consume certain foods and minerals beyond eating a normal diet?
8. What are the different kinds of minerals, and how do they promote athletic performance?
9. Derive a polygonal load for an athlete. How can it be avoided?
10. What are the nutrient needs of young athletes versus those of college-age athletes?

Suggested Readings provide recommendations for further student study.

Suggested Readings

References used in the chapter are also listed.

References

Copyright ©2014 Jones & Bartlett Learning, LLC, an Ascend Learning Company
Box 10-8

The Instructor’s Media CD is a comprehensive teaching resource available to adopters of the book. It includes PowerPoint Lecture Presentation Slides and an Image and Table Bank, which provides art and tables that can be imported into PowerPoint presentations and tests or used to create transparencies.

Box 10-9

Additional Instructor Resources, including a Test Bank and Instructor’s Manual, are available for download. For further information contact your representative at www.jblearning.com.

The Companion Website for Introduction to Exercise Physiology, go.jblearning.com/boone, offers students and instructors an unprecedented degree of integration between the text and the online world through many useful study tools, activities, and supplementary information. Study tools include Practice Quizzes, Web Links, Flashcards, an Interactive Glossary, and Crossword Puzzles. This interactive and informative website is accessible to students through the redeemable access code provided in every new text.
This is my first opportunity to author a text at this level and, frankly, I did not realize how many individuals would be involved. While there are numerous people to thank at Jones & Bartlett Learning, it is appropriate that I begin with Shoshanna Goldberg, who was Executive Editor at the time, for her incredible support and dedication to this book. Shoshanna’s assistance early in the project was extremely helpful. She provided unwavering support and guidance. Managing Editor, Amy L. Bloom, provided assistance with preparing the text for submission early in the process. Prima Bartlett, Editorial Assistant, reviewed individual chapters and helped with the writing and updating of the chapters.

I am deeply indebted to Megan Turner, Acquisitions Editor, who has been very enthusiastic about the text and has worked hard to ensure that the production process and publication went smoothly. Megan, Sean Coombs, and Agnes Burt kept the writing and editorial process going nonstop, including manuscript formatting, final copies of the text design and cover including the art, launching the book into production, and much more. I also want to express my sincere gratitude to Joanna Lundeen, Production Editor. She worked diligently to keep me on track with the copyeditor queries, artwork, and front matter.

I would also like to thank the following reviewers for their continuous feedback throughout the development of this manuscript: Rob Dicks, LaGrange College; Blake D. Justice, PhD, Pfeiffer University; Christopher Kist MS, ACSM, HFS, CPT, Cincinnati Children’s Hospital, Cincinnati State Technical and Community College; Dr. Diane A. Klein, Department of Exercise and Sports Sciences, Tennessee Wesleyan College; Melissa Knight-Maloney, Professor Fort Lewis College; G. William Lyerly, PhD, Coastal Carolina University; Will Peveler, Northern Kentucky University; Dr. Mark Stanbrough, Emporia State University; Brian M. Tyo, PhD, Columbus State University; Dr. Benjamin Wax, Department of Kinesiology, Mississippi State University; Dr. Frank B. Wyatt, Professor, Midwestern State University.
TOMMY BOONE was born and raised in Leesville, Louisiana. Following high school, where he participated in football, track, and baseball, he entered Northwestern State University in Natchitoches, Louisiana, to become a gymnast. Four years later, he was an All-American. After receiving his BS and MEd in Health and Physical Education from Northwestern in 1967 and 1968, respectively, he was hired as the gymnastics coach at Northeast Louisiana State University in Monroe. After one year, he accepted an instructor position at the University of Florida, Gainesville, where he stayed for three years.

During 1971 and 1972, Dr. Boone was enrolled in the doctoral program at Florida State University, Tallahassee. After completing his PhD course work in exercise physiology, he was offered an academic position at Wake Forest University in Winston-Salem, North Carolina, where he completed his dissertation and obtained his PhD in 1975. From 1973 to 1981, he taught exercise physiology courses and developed the anatomy laboratory with cadavers for the graduate students in the department. He was also the Exercise Coordinator of the WFU Cardiac Rehabilitation Program.

In 1981 and 1982, Dr. Boone was the Graduate Coordinator in the School of Human Performance and Recreation at the University of Southern Mississippi (USM) in Hattiesburg. He was responsible for updating the master’s and doctoral degree programs across five departments. He developed the gross anatomy laboratory with cadaver dissection for doctoral students. He was promoted to professor in 1985 and also served as the Director of the Anatomy Laboratory. During his 12 years of tenure at USM, he taught exercise physiology courses at the undergraduate and graduate levels and worked with master’s and doctoral students. Prior to leaving USM, Dr. Boone completed the Master of Public Health (MPH) degree in 1993 to further integrate exercise physiology with health and disease prevention strategies.

In 1993, Dr. Boone was appointed Chair of the Department of Exercise Science at The College of St. Scholastica (CSS) in Duluth, Minnesota. In 1994, he was successful in changing the name of the department to Exercise Physiology. In 1995, he developed a master’s level graduate exercise physiology program. He is currently Professor of Exercise Physiology and has served as Department Chair for 16 years.
While at CSS, he completed his Master of Arts in Management (MAM) in 1999 and his Master of Business Administration (MBA) in 2010.

Together with Dr. Robert A. Robergs, Dr. Boone co-founded the American Society of Exercise Physiologists (ASEP) in 1997. Dr. Boone served as the first ASEP President and organized the first ASEP National Meeting at CSS in October 1998. He has worked with the ASEP presidents to build the professional infrastructure for exercise physiology as a healthcare profession. He founded the Journal of Exercise Physiology-online (JEPonline) in 1998 and is currently the Editor-in-Chief. In addition to JEPonline, he is the founder and Editor of the Professionalization of Exercise Physiology-online (PEPonline), which publishes articles pertaining to the professionalization of the discipline of exercise physiology.

Since 1975, Dr. Boone has served as advisor for more than 100 MS and PhD graduate students at three academic institutions and served as a committee member of numerous other graduate students. Many of these students have become college professors, researchers, textbook writers, and entrepreneurs, and consultants to different health- and fitness-related businesses and cardiac rehabilitation settings. Dr. Boone has taught approximately 6,000 students in more than 250 academic courses. He has published 18 books, 3 content sections/chapters in two different encyclopedias, 8 book chapters, 75 print copy papers (50 were refereed journal articles), 360 articles in PEPonline, and 50 articles in the Journal of Professional Exercise Physiology. He has either presented or assisted in 88 national presentations and 22 local and/or regional presentations and published numerous abstracts with colleagues.
The American Society of Exercise Physiologists (ASEP) is a national nonprofit professional organization committed to the advancement of exercise physiologists. Founded in 1997 in the state of Minnesota, ASEP provides a forum for leadership and exchange of information to stimulate discussion and collaboration among exercise physiologists.

The ASEP Academic Accreditation Guidelines establishes standards for the exercise physiology profession and verifies the credibility, integrity, and quality of academic programs. The ASEP Board Certification for exercise physiologists (EPC) ensures that the most highly trained and qualified exercise physiologists are providing care in health and wellness programs, cardiac and other rehab settings, and athletics.

The ASEP Code of Ethics further protects the public safety as well as the profession of exercise physiology. Adherence to the code is expected, and is based on the belief that exercise physiologists are self-regulated, critical thinkers who are accountable and responsible for high-quality competence in the practice and the delivery of exercise physiology concepts, ideas, and services.

The ASEP Standards of Practice define professional competencies required for accepted and safe exercise physiology practice in the United States. The standards inform and assist EPCs in their interaction with the general public, the healthcare community, and with the fitness and athletics industry by identifying the specifics of the exercise physiology practice as a healthcare professional.

Since 1998, the American Society of Exercise Physiologists has published two electronic journals. The Journal of Exercise Physiology-online is a professional peer-reviewed, Internet-based journal devoted to original research and reviews in exercise physiology. The Professionalization of Exercise Physiology-online is a peer-reviewed journal that publishes articles about professionalism in exercise physiology and the professional development of exercise physiologists.