BIOMECHANICS
A CASE-BASED APPROACH

Sean P. Flanagan, PhD, ATC, CSCS
Department of Kinesiology
California State University, Northridge
This book is dedicated to anyone who has ever taught me anything, which is pretty much everyone I have ever met.
Brief Contents

<table>
<thead>
<tr>
<th>Lesson</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>PART I The Whole Body Level</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Describing Motion: Linear Kinematics in One Dimension</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>Describing Motion: Linear Kinematics in Two Dimensions</td>
<td>34</td>
</tr>
<tr>
<td>4</td>
<td>Describing Motion: Angular Kinematics</td>
<td>49</td>
</tr>
<tr>
<td>5</td>
<td>Describing Motion: Inertia and Momentum</td>
<td>65</td>
</tr>
<tr>
<td>6</td>
<td>Explaining Motion I: Linear Kinetics</td>
<td>79</td>
</tr>
<tr>
<td>7</td>
<td>Explaining Motion II: Angular Kinetics</td>
<td>101</td>
</tr>
<tr>
<td>8</td>
<td>Work–Energy</td>
<td>124</td>
</tr>
<tr>
<td>9</td>
<td>Collisions, Impacts, and the Conservation Laws</td>
<td>141</td>
</tr>
<tr>
<td></td>
<td>PART II Tissue Level</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Mechanics of the Human Frame</td>
<td>157</td>
</tr>
<tr>
<td>11</td>
<td>Muscle–Tendon Mechanics</td>
<td>180</td>
</tr>
<tr>
<td></td>
<td>PART III Joint Level</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Single Joint Concepts</td>
<td>211</td>
</tr>
<tr>
<td>13</td>
<td>Lower Extremity Biomechanics</td>
<td>239</td>
</tr>
</tbody>
</table>
Contents

Preface xi
Acknowledgments xvii
Reviewers xix

Lesson 1 Introduction
1.1 Biomechanics: Understanding the Rules Governing Movement 1
1.2 How to Use This Book 6

PART I The Whole Body Level

Lesson 2 Describing Motion: Linear Kinematics in One Dimension 11
2.1 Linear Kinematics in One Direction 11
2.2 Linear Kinematics in Two Directions 22
2.3 Gait 30

Lesson 3 Describing Motion: Linear Kinematics in Two Dimensions 34
3.1 Frame of Reference 34
3.2 Resultants and Components 35
3.3 Net Values 39
3.4 Projectile Motion 42

Lesson 4 Describing Motion: Angular Kinematics 49
4.1 Angular Kinematics 49
4.2 Relating Angular Kinematics to Linear Kinematics 58

Lesson 5 Describing Motion: Inertia and Momentum 65
5.1 Inertia for a Body at Rest: Mass 66
5.2 Inertia for a Body Moving Linearly: Linear Momentum 67
<table>
<thead>
<tr>
<th>PART III</th>
<th>Joint Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lesson 12</td>
<td>Single Joint Concepts</td>
</tr>
<tr>
<td>12.1</td>
<td>Clinical Reference Frames</td>
</tr>
<tr>
<td>12.2</td>
<td>Kinematics</td>
</tr>
<tr>
<td>12.3</td>
<td>Kinetics</td>
</tr>
<tr>
<td>12.4</td>
<td>Joint Stability</td>
</tr>
<tr>
<td>Lesson 13</td>
<td>Lower Extremity Biomechanics</td>
</tr>
<tr>
<td>13.1</td>
<td>The Foot and Ankle Complex</td>
</tr>
<tr>
<td>13.2</td>
<td>Knee Complex</td>
</tr>
<tr>
<td>13.3</td>
<td>Hip</td>
</tr>
<tr>
<td>Lesson 14</td>
<td>Biomechanics of the Axial Skeleton</td>
</tr>
<tr>
<td>14.1</td>
<td>Basic Function and Structure</td>
</tr>
<tr>
<td>14.2</td>
<td>Region-Specific Mechanics</td>
</tr>
<tr>
<td>14.3</td>
<td>Spinal Injuries</td>
</tr>
<tr>
<td>Lesson 15</td>
<td>Upper Extremity Biomechanics</td>
</tr>
<tr>
<td>15.1</td>
<td>The Shoulder Complex</td>
</tr>
<tr>
<td>15.2</td>
<td>The Elbow and Forearm</td>
</tr>
<tr>
<td>15.3</td>
<td>The Wrist and Hand</td>
</tr>
<tr>
<td>PART IV</td>
<td>Limb Level</td>
</tr>
<tr>
<td>Lesson 16</td>
<td>Multijoint Concepts</td>
</tr>
<tr>
<td>16.1</td>
<td>Kinematics</td>
</tr>
<tr>
<td>16.2</td>
<td>Kinetics</td>
</tr>
<tr>
<td>PART V</td>
<td>Integrating the Levels</td>
</tr>
<tr>
<td>Lesson 17</td>
<td>Putting It All Together</td>
</tr>
<tr>
<td>17.1</td>
<td>Analyzing and Improving Human Movement</td>
</tr>
<tr>
<td>17.2</td>
<td>Analyses of Select Basic Movements</td>
</tr>
<tr>
<td>Glossary</td>
<td></td>
</tr>
<tr>
<td>Index</td>
<td></td>
</tr>
</tbody>
</table>
Preface

This book is designed to be a first course in human biomechanics. Although it was written with an undergraduate kinesiology student audience in mind, I believe it is equally well suited for students in a graduate-level clinical curriculum, such as athletic training, physical therapy, and chiropractic medicine. This is more of an "ideas" book than a "methods" book, and it is written under the assumption that students have a rudimentary knowledge of anatomy and algebra. Trigonometry and geometry are used throughout the book, but "refreshers" appear at the appropriate places. I do not make use of calculus. Personally, I think many students have a hard time with biomechanics because it is taught in an intimidating manner, with an emphasis on getting the "right numbers" without an understanding of what the numbers actually mean. I have chosen to take a different approach in this book. First, I have used a conversational writing style because I believe that information presented this way is easier to understand without sacrificing rigor. Second, I have tried to make the material less daunting and more meaningful by presenting a Section Question before each major section. Tying new concepts to everyday experience and highlighting research to show how information obtained in the lab can be applied in practice allows the student to better relate to the content. Third, I have placed an emphasis on concepts over computation and expressing these concepts physically, mathematically, and graphically. My hope is that students get an intuitive feel for which way the data should "go" before ever attempting to calculate a number. It might seem that my extensive use of equations contradicts this goal, but I wanted to introduce the symbolic logic behind the equations, and then draw a link between the concepts and the equations. Graph interpretation allows students to visualize this link.

Each lesson opens with a set of Learning Objectives. Marginal Key Terms, Tables, Figures, Boxes, and Important Point boxed features are used throughout the text. Competency Checks are found after every major section and follow the first three areas of Bloom's taxonomy: remember, understand, and apply. An alphabetized Glossary has been placed at the end of the book for optimum review and study. My goal in organizing the content in such a fashion is to lead students to better comprehension and optimal retention.

As for the material itself, I have organized the book into 17 lessons that cover the three levels of biomechanical analysis: whole body, joint, and tissue (bone, cartilage, ligament, tendon, and muscle). I chose not to move sequentially from one level to the next but to use a "whole-part-whole" organization. I begin with elucidating mechanical principles using the whole body level (point-mass, center of mass, and rigid body models) and then discuss the basic material mechanics of biological tissues and unique properties of the muscle-tendon complex. Throughout my career, I have been influenced by a systems science perspective, which states that you cannot get a complete understanding of a system by examining the parts in isolation. For this reason, the muscle-tendon complex is then put into a joint system. After reviewing some mechanical properties of the individual joints of the musculoskeletal system, the mechanics of multi-joint systems is then introduced. In Lesson 17, the three levels are integrated in the context of analyzing movement to improve performance and/or reduce the risk of injury.

I hope that this book provides you with an alternative perspective for teaching and learning the science of biomechanics. Comments and criticisms are welcomed and appreciated.
Each lesson starts with **Learning Objectives**, which highlight the critical points of each lesson.

LEARNING OBJECTIVES

After finishing this lesson, you should be able to:

- Define the following terms: abscissa, absolute value, acceleration, average value, axis, body, cadence, direction, displacement, distance, frame of reference, gait, instantaneous value, kinematics, net value, ordinate, orientation, origin, point, position, relative speed, sense, scalar, slope, speed, step, stride, system, vector, and velocity.
- Explain the difference between speed and velocity.
- Write equations for the following concepts: distance, displacement, speed, velocity, and acceleration.
- Identify speed on a position–time curve.
- Identify velocity on a position–time curve.
- Identify acceleration on a velocity–time curve.
- Explain the difference between instantaneous and average kinematic measures.
- Describe situations in which velocity is more important than acceleration.
- Describe situations in which acceleration is more important than velocity.
- List the determinants of gait velocity.

Section Question

According to the Disability Statistics Center at the University of California, San Francisco,1 1.6 million Americans use wheelchairs (**Figure 4.1**). Understanding the motion of the wheel is essential in understanding the mobility of wheelchair users. Is the motion of the wheel the same as the motion of a body previously explored?

Section Question Answer

Angular motion is similar to linear motion in that there are positions, displacements, velocities, and accelerations. The relation between position, velocity, and acceleration are also the same. The main difference is that you are replacing a linear term with its angular equivalent.

Using the first three levels of Bloom’s taxonomy, **Competency Checks** ask students conceptual and quantitative questions to assist in gauging their understanding of the material.

COMPETENCY CHECK

Remember:

1. Define the following terms: work, positive work, negative work, and mechanical energy expenditure.
2. List the assumptions associated with mechanical energy expenditure.

Understand:

1. How much work is required to do the following? Is the energy entering or leaving the system?
 - a. Raise a 10 kilogram mass 0.5 meters.
 - b. Lower a 5 kilogram mass 0.1 meters.
 - c. Raise a 15 kilogram mass by 0.5 meters, and then lower it back to its original starting position.
2. How much mechanical energy expenditure is required to do the following?
 - a. Raise a 10 kilogram mass 0.5 meters.
 - b. Lower a 5 kilogram mass 0.1 meters.
 - c. Raise a 15 kilogram mass by 0.5 meters, and then lower it back to its original starting position.

Apply:

1. List several activities where:
 - a. Work would be an appropriate measure for analysis.
 - b. Mechanical energy expenditure would be an appropriate measure for analysis.
 - c. Neither work nor MEE would provide useful insights.
Preface

Essential Math boxed features provide a review of mathematical material crucial to the understanding of biomechanics.

Equations are numbered throughout the lesson for easy referral.

Applied Research boxed features provide examples that are helpful in illustrating biomechanical concepts and present evidence of the practical value of biomechanics.

Box 9.1 Applied Research: Effective Mass and Head Injuries in American Football

Head injuries in American football are a serious problem, particularly those resulting from helmet-to-helmet contact. In many cases, the injury to the offensive player receiving the impact is greater than the injury sustained by the striking, defensive player. In this investigation, the researchers provide an explanation for why this is the case. Reconstructing actual, recorded game-time head injuries using instrumented dummies in the laboratory, they found that the striking player aligned their head, neck, and torso (called sparring), increasing the effective mass of the striking player to 1.67 times that of the player being hit. In a follow-up investigation, they compared these impacts to punches to the head delivered by Olympic-caliber boxers. They found these impacts did not transfer as much linear momentum as the football head strikes due to the lower effective mass of the fist.

Key Terms are highlighted and defined in the margins throughout the lesson and compiled into a Glossary at the end of the book.

Box 2.1 Essential Math: Ratios and Rates

A ratio is simply one number divided by another number:

\[
\text{ratio} = \frac{\text{one quantity}}{\text{another quantity}}
\]

A rate is a ratio between the change in one quantity and the change in time:

\[
\text{rate} = \frac{\Delta \text{one quantity}}{\Delta \text{time}}
\]

The delta symbol (\(\Delta\)) is shorthand for “change in.” Think of the dividing line as “per,” so we can think of a rate as a change in one quantity (position, velocity, force, work) per a change in a unit of time (seconds, minutes, hours). Rates are going to be very important in biomechanics. From algebra, you should be able to recognize that the rate will be larger if the change in the quantity is increased and/or the change in time is decreased.

\[
\begin{align*}
\text{Increase this} & \quad \frac{\Delta \text{one quantity}}{\Delta \text{time}} \quad \text{or} \quad \text{Larger ratio} \\
\text{Decrease this} & \quad \frac{\Delta \text{one quantity}}{\Delta \text{time}} \quad \text{or} \quad \text{Smaller ratio}
\end{align*}
\]

Plastic deformation. A deformation in which the object does not return to its original dimensions after the deformation.

Yield point. The amount of deformation that marks the transition from elastic to plastic deformations, and deformation beyond this point results in a permanent deformation.

Original shape. With a plastic deformation, the object has been “stretched out of shape” and will not ever return to its original dimensions. Think of the little plastic thingy (the scientific term) that holds a six-pack of soda) together. Have you ever tried to put a can back in the plastic thingy after you have taken it out? Chances are you were not very successful because the thingy underwent a “plastic” deformation.

When will an object undergo a plastic versus an elastic deformation? If an object is deformed too much, there is actually a microtearing of the material. The point where it is deformed too much is called the yield point. Any deformations beyond the yield point result in permanent (plastic) deformations.
A comprehensive and instructional art package includes photographs and illustrations throughout the book to encourage learning with a unique visual appeal.

At the end of each lesson, a Summary reinforces key ideas and helps students recall and connect the concepts discussed. Key Concepts are presented in table format for review. Review Questions test comprehension of the concepts discussed within the lesson. References used in the lesson are also listed.

Table 8.1 Key Concepts

- Energy
- Work
- Mechanical energy expenditure
- Efficiency
- Power

SUMMARY

In this lesson, you learned about an alternative to Newton’s laws for analyzing human movement. This method involved the concepts of work, energy, and power (Table 8.1). Because of some issues with using these concepts with biological systems, mechanical energy expenditure was introduced. The first law of thermodynamics was compared to the center of mass equation, and efficiency and economy were introduced. Impulse–momentum and work–energy methods provide complementary information and a more complete analysis of movement for several different tasks.

REVIEW QUESTIONS

1. Define the following terms: energy, kinetic energy, potential energy, gravitational potential energy, strain potential energy, work, mechanical energy expenditure, efficiency, economy, and power.
2. State the conservation of energy and the first law of thermodynamics.
3. What is meant by the term negative work or power?

REFERENCES

Instructor Resources available for download to adopters of the book include PowerPoint Lecture Presentations, Image and Table Bank, Test Bank, and Instructor’s Manual. For access, contact your Representative at www.jblearning.com.

The Companion Website for Biomechanics: A Case-Based Approach, go.jblearning.com/biomechanics, offers students and instructors an unprecedented degree of integration between their text and the online world through many useful study tools, activities, and supplementary information. Study tools include Student Practice Problems, Weblinks, Flashcards, an Interactive Glossary, and Crossword Puzzles. This interactive and informative website is accessible to students through the redeemable access code provided in every new text.
Acknowledgments

Rarely are endeavors of this magnitude undertaken alone. There are many people who have helped shape me and my view of biomechanics, and therefore they deserve at least some acknowledgment, if not credit, for this final product. Although words cannot adequately express my gratitude, I hope they will accept my deepest and heartfelt thanks. At the risk of omitting some very important people, I would like to specifically mention a few.

First, I wish to thank my family: Jennifer, for continually pushing me outside of my comfort zone and for putting up with all of the lost nights and weekends I spent researching and writing; my mother-in-law, Sally Montelongo, for all of the support over the years; and my parents, Joe and Mary Flanagan, who made sure I did my homework (and checked it), giving me the proper foundations to become a scholar. The pyramid can be built only as high as its foundation is wide.

Next, I wish to thank some of the people who have taught, inspired, and guided me over the years: Dr. George Salem (University of Southern California), for everything; Dr. Kornelia Kulig (University of Southern California), for being a mentor, collaborator, and friend; Dr. Paul Vanderburgh (University of Dayton), for showing me how to be a scientist and ingraining in me that you must first understand what the numbers mean before you learn how to calculate them; Dr. Christopher Powers (University of Southern California), for imparting his knowledge of clinical biomechanics; Dr. James Gordon (University of Southern California), for challenging me to be “more theoretical”;

Dr. Jill McClint-Gray (University of Southern California), for some of the most enjoyable and valuable biomechanics classes ever; Dr. Lloyd Laubach (University of Dayton), for giving me the encouragement and support I needed to pursue doctoral studies; Dr. Karl Stoedefalke and Dr. Bob Christina (Pennsylvania State University), for being true inspirations; Dr. George DeMarco (University of Dayton), for showing me how to “edutaining”; Dr. Carolee Winstead, Dr. Cesar Blanco, and Dr. Lucinda Baker (University of Southern California), for teaching me how science can be used to further our understanding of normal and pathological motion; Dr. Erik Johnson and Dr. Hung Leung Wong (University of Southern California), for advancing my understanding of mechanics a thousand-fold; Dr. Bill Whiting and Dr. Shane Stecky (California State University, Northridge), for helping make my transition from student to faculty a seamless one; Dr. Paul Lee (California State University, Northridge), for explaining that whole Lagrangian thing to me; and my fellow doctoral students at the Jacqueline Perry Musculoskeletal Biomechanics Research Laboratory, for all of the thought-provoking discussions.

I also wish to thank the many professionals at Jones & Bartlett Learning for their support, encouragement, and patience: Shoshanna Goldberg, Megan Turner, Joanna Lundeen, Agnes Burt, Prima Bartlett, Kyle Hoover, and anyone else who I may not have worked with directly but who helped make this book what it is. Additionally, I wish to thank all of the reviewers whose comments strengthened this book.

Finally, I want to thank all of my students (past and present) who either directly or indirectly helped shape this book. Special thanks to: Shawn Sorensen; Stephen Cho; Shin-Di Lai; James Kohler; Josh Phillips; Lloyd Magpantay; Matt Hank; Matt McCann; Janelle Kulik; and Lulu Silveyra. This book is the culmination of the teachings, ideas, and concepts of the professors, colleagues, and students whom I have had the pleasure of associating with over the years, but any errors contained within are solely mine.
The author and publisher would like to thank the following reviewers for their feedback in the development of this textbook.

William R. Barfield
Health and Human Performance College of Charleston
and Department of Orthopaedic Surgery
Medical University of South Carolina

Elizabeth C. Davis-Berg
Columbia College, Chicago

Barry A. Frishberg
Professor of Health Sciences
South Carolina State University

John C. Garner, III, PhD, CSCS
Applied Biomechanics Laboratory
University of Mississippi

Dr. Carrie Hendrick
Lenoir-Rhyne University

Don Hoover, PT, PhD, CSCS
Rockhurst University

Chengfu Hsieh
California State University, Chico

Hsin-Yi Liu
North Carolina Central University

G. William Lyerly, PhD
Coastal Carolina University

Paula Maxwell
James Madison University

Richard Robinson
University of Indianapolis

Brian K. Schilling
University of Memphis

Jeremy D. Smith, PhD
School of Sport and Exercise Science
University of Northern Colorado

Henry Wang
School of Physical Education, Sport, and Exercise Science
Ball State University