
OBJECTIVES

129

CHAPTER 7

Design: Architecture
and Methodology

n	Understand the differences between architectural and detailed design.
n	Gain knowledge of common software architectural styles, tactics, and refer-

ence architectures.
n	Gain knowledge of basic techniques for detailed design, including func-

tional decomposition, relational database design, and object-oriented
design.

n	Understand the basic issues involved in user-interface design.

91998_CH07_Tsui.indd 129 12/7/12 2:22:09 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

7.1   Introduction to Design
Once the requirements of a project are understood, the transformation of requirements
into a design begins. This is a difficult step that involves the transformation of a set of
intangibles (the requirements) into another set of intangibles (the design). Software
design deals with how the software is to be structured—that is, what its components are
and how these components are related to each other. For large systems, it usually makes
sense to divide the design phases into two parts:

n	Architectural design phase: This is a high-level overview of the system. The main
components are listed, as well as properties external to the components and relation-
ships among components. The functional and nonfunctional requirements along with
technical considerations provide most of the drive for the architecture.

n	Detailed design phase: Components are decomposed to a much finer level of detail.
The architecture and the functional requirements drive this phase. The architecture

provides general guidance and all functional requirements have
to be addressed by at least one module in the detailed design.

Figure 7.1 illustrates the relationships among requirements,
architecture, and detailed design. Ideally there is a one-to-one
mapping between each functional requirement and a module
in the detailed design; the influence of the requirements on
the architecture is illustrated with the wide arrow; notice in this
case the most influential requirements may be nonfunctional

requirements such as performance and maintainability. The architecture drives the
detailed design, with the mapping being ideally from one architectural component
to several detailed modules.

Architectural design phase  The period
during which the high-level overview of the
system is developed.
Detailed design phase  The phase in which
the architectural components are decom-
posed to a much finer level of detail.

Figure 7.1  The relationships among requirements, architecture, and detailed design.

Requirements Architecture

R1

R2

R3

Detailed design

M1

M2

M3

130 Chapter 7  Design: Architecture and Methodology

91998_CH07_Tsui.indd 130 12/7/12 2:22:09 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

Smaller systems may get away with not having an explicit architecture, although it is
useful in almost all cases. In traditional software processes, the ideal is for the design to
be created and documented up to the lowest level of detail possible, with the program-
mers doing mainly translation of that design into actual code. Agile methodologies and
the actual processes followed in many companies, especially for smaller systems, give the
programmer a much more important role in the detailed design. In many Agile method-
ologies, the programmer ends up doing the actual detailed design.

There are many different ways of specifying a design. Given that for most people,
pictorial representations of information are useful, it is desirable for a design notation to
be graphical. Although many different notations have been proposed, in the last few
years the Unified Modeling Language (UML) has gained widespread popularity and is the
de facto standard, at least for object-oriented (OO) design. This
chapter is not dedicated to OO design, but a brief discussion of
OO and UML is presented in Section 7.3.3. Here, we will simply
state that OO design is a technique that models a design with
classes, their relationships, and the interactions among them.

7.2   Architectural Design
7.2.1   What Is Software Architecture?
The software architecture of a system specifies its basic structure. In many ways, it is
design created at a high level of abstraction. Bass, Clements, and Kazman (2003) define
software architecture as follows:

The software architecture of a program or computing system is the struc-
ture or structures of the system, which comprises software elements,
the externally visible properties of those elements, and the relationships
among them.

There are several important points to note about the architecture of a system:

n	Every system has an architecture. Whether you make it explicit or not, whether you
document it or not, the system has an architecture.

n	There could be more than one structure. For large systems, and even many small ones,
there is more than one important way the system is structured. We need to be aware
of all those structures, and document them with several views.

n	Architecture deals with properties external to each module. At the architecture level,
we should think about the important modules and how they interact with other mod-
ules. The focus is on the interfaces among modules rather than details concerning the
internals of each module.

7.2.2   Views and Viewpoints
An important concept in architectural design, and design in general, is the fact that a
system has many different structures (that is, many different ways of being structured)
and in order to get the complete picture you need to look at many of those structures.

A view is a representation of a system structure. Although in most situations we can
use view and structure interchangeably, keep in mind the structure exists whether you

Object-oriented design  A technique that
models a design with classes, their relation-
ships, and the interactions among them.

7.2   Architectural Design 131

91998_CH07_Tsui.indd 131 12/7/12 2:22:09 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

represent it or not, and the view only depicts the structure. This is a distinction similar to
the one for a photograph and its subject.

In a seminal paper that later became one of the foundations of the Rational Unified
Process (RUP), Kruchten (1995) proposed having four architectural views to represent
the requirements for a system and to unify it, plus use cases (which he called scenarios
in his paper):

n	Logical view: Represents the object-oriented decomposition of a system—that is, the
classes and the relationships among them. In OO, a class is a conceptual element
derived and conceived from the requirements. The interaction and the relationships
among the classes are often also derived from the business or workflow expressed in
the requirements. The notation used is basically that of a UML class diagram.

n	Process view: Represents the run-time components (processes) and how they commu-
nicate with each other.

n	Subsystem decomposition view: Represents the modules and subsystems, joined with
export and import relationships.

n	Physical architecture view: Represents the mapping of the software to the hardware.
This assumes a system that runs on a network of computers and depicts which pro-
cesses, tasks, and objects are mapped to which nodes.

Bass, Clements, and Kazman (2003) provide examples of more views, and classify
them into three categories:

n	Module views: Represent elements in static software modules and subsystems. Views
of these types include the following:
n	Module decomposition views, which represent a part-of hierarchy of modules and

submodules;
n	Uses view, which depicts how modules depend on each other; and
n	Class generalization views, representing the inheritance hierarchy of classes.

Information represented by UML’s class diagrams and Kruchten’s logical view will
also fall under this category.

n	Run-time views: Represent the running structure of the program; also called com-
ponent-and-connectors views. They indicate how executing modules or processes
communicate with each other. Views here could be depicted with different graphical
diagrams such as communicating process diagrams, client-server diagrams, and con-
currency diagrams.

n	Allocation views: Represent the mapping of software modules to other systems. Typical
views of this type include deployment views, which represent the mapping of mod-
ules to hardware structures; implementation views, which map the modules to actual
source files; and work assignment views, which show the person or team responsible
for each module.

An important point to realize is that different views are useful to different stake-
holders. For example, an implementation view, showing which modules are imple-
mented on which files, is useful mostly to implementors, whereas a class diagram is
useful for many more kinds of stakeholders.

132 Chapter 7  Design: Architecture and Methodology

91998_CH07_Tsui.indd 132 12/7/12 2:22:09 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

When you are designing an architecture, it is important to keep in mind that there
are many different views of it that may be useful; of course there is limited time, so
you need to think hard about which views to produce.

7.2.3  � Meta-Architectural Knowledge:  Styles, Patterns, Tactics, and Reference
Architectures

Although many systems have been developed with many different architectures, several
architectures share common characteristics at many levels. Software engineers have
been comparing system architectures and describing their similarities and differences
for quite a long time. Much of this knowledge, sometimes called meta-architectural, has
been codified in different ways to provide easier ways of comparing and choosing archi-
tectures, and to provide a starting point when creating an architecture.

The software architecture community has codified this kind of knowledge mainly in
three different ways:

n	Architectural styles or patterns
n	Architectural tactics
n	Reference architectures

Meta-architectural knowledge serves two main purposes. First, it can be used as a
starting point for a particular system’s architecture, saving some work and providing
guidance for the final architecture. Second, it is an effective communication mechanism
for providing a quick idea of the high-level structure of a system. When written in a for-
mat similar to design patterns, architectural styles are also called architectural patterns.

Architectural Styles or Patterns  Software architectural styles or patterns are akin to
styles in physical building architecture. Just as many buildings share a common style that
many people can recognize—from Gothic to Southern U.S. antebellum—many system
architectures also have a recognizable style.

Among the most common architectural styles are the following:

n	Pipes-and-filters: A style widely used for Unix scripts, and for signal processing applica-
tions. It consists of a series of processes connected by “pipes.” The output of a process
serves as the input of the next one; processes do not need to wait until the previous
process finishes but can start processing input as soon as some of the input is avail-
able. Most of the time the topology is linear, but occasionally there could be forks.
Although the most popular application of this style is in combining Unix commands,
it is also the conceptual model for many audio and video processing applications.
Figure 7.2 shows a screen shot of gst-editor, an editor for the GStreamer multimedia
framework.

n	Event driven: A style in which system components react to externally generated events
and communicate with other components through events. Modern graphical user
interface (GUI) libraries and the programs that use them are organized with this style at
some level. Many distributed systems use this style as well, as it allows for decoupling
of the components and easy reorganization of the system.

7.2   Architectural Design 133

91998_CH07_Tsui.indd 133 12/7/12 2:22:09 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

n	Client-server: A style showing a clear demarcation between clients and servers, which
reside on different nodes in a network. Components interact through basic network-
ing protocols or through remote procedure calls (RPC). Usually there will be many
clients accessing the same server. Figure 7.3(a) shows a client-server architecture,
with several clients accessing the same server; Figure 7.3(b) shows a more complicated
version, with several different kinds of servers.

	    The client-server architecture was heavily influenced by various hardware changes
and hardware cost. First, with less powerful terminals or client boxes, many of the
processing resided on the server boxes. As the client machines improved in power and
dropped in price, more functions were placed in the clients. An interesting side note
on this development of placing more functions on the clients or personal desktops is
that it created the need to support these clients. A whole profession called IT desktop
support became a necessity as a result of the powerful client desktops.

n	Model-view-controller (MVC): A popular way of organizing GUI programs that need to
display several different views of data. The main idea is to separate the data from the
display. In the original version a controller took care of translating user input, such as
mouse movements and clicks or keystrokes, into appropriate messages for the view.
Because modern GUI libraries usually do this, there is no need for a separate control-
ler class. Modern variations of this pattern use just the model and view classes. The
model is responsible for storing the data and for notifying the views whenever the
data change. The views register with the model, can modify the model, and respond
to changes in the model by redrawing themselves. Figure 7.4 shows a simplified dia-

Figure 7.2  Screen shot of the GStreamer editor. A video file is read from a file, then demultiplexed into audio and
video streams. Both streams are passed through two different filters, then combined again and saved to another
file.

134 Chapter 7  Design: Architecture and Methodology

91998_CH07_Tsui.indd 134 12/7/12 2:22:10 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

gram of an MVC architecture. MVC can be implemented with a client-server architec-
ture with both the view and part of the controller residing on the client box while the
model portion resides on the server.

n	Layered: A style in which components are grouped into layers, and the components
communicate only with other components in the layers immediately above and below
their own layer. When the layered architecture is combined with a client-server archi-
tecture and the layers may reside in different computers, they are usually called tiers
rather than layers. Figure 7.5 depicts a common layered system, with the Java API

Figure 7.3  (a) Client-server style with one server and many clients. (b) Client-server style with
several servers.

Client 1a

Client 3a

Client 2a

Server

Client 4c

(a)

(b)

Server1

Client 1b Client 2b

Server2

Client 3b Client 4b

Client A

Client 1a

Client 3a

Client 2a

Server

Client 4a

(a)

Figure 7.4  Model-view-controller style.

Model

View 1 Controller 1

Controller 2View 2

7.2   Architectural Design 135

91998_CH07_Tsui.indd 135 12/7/12 2:22:10 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

implementation calling operating system functions, which in turn communicate with
kernel functions. The Java API calls functions directly through the operating system
API, not through the kernel. While layered architecture keeps the components them-
selves focused on specific tasks and facilitates the detection of problems, it sometimes
presents a performance problem in terms of the number of layers a message may have
to travel through before being processed.

n	Database centric: A style in which a central database and separate programs access the
database. The programs communicate only through the database, not directly among
themselves. A big advantage of this style is that it introduces a layer of abstraction
for the database, which is usually called a database management system (DBMS). A
modern DBMS can guarantee many user-defined constraints on any data entered in
the database, which allows the programs to assume those constraints; this leads to a
relatively coupled system of multiple programs to the database. Rather than building
one huge system, you can build several smaller programs. By far the most popular DB
technology is that of relational databases. In fact, in most cases, database centric really
means relational database centric. Later in this chapter we discuss relational database
technologies and database design in more depth.

	    The database-centric style is commonly combined with the client-server style, as
illustrated in Figure 7.6. There is a central database server, running a database man-
agement system (DBMS) that is accessible over the network. Programs running on cli-
ent machines interact with the database server. In the traditional configuration, called
two tier, the clients interact directly with the database.

n	Three tier: A variation on the database-centric and client-server approaches that adds a
middle tier between the clients and servers, implementing much of the business logic.
The clients cannot access the database directly and have to go through the middle tier.
This way, the business logic gets implemented in one place, simplifying the system.

	    For many systems, the business logic is very hard to express with just the kinds
of constraints supported by relational DBMS. Although the basic technologies for
relational databases are standardized, some more-advanced features, such as stored

Figure 7.5  A common layered system, with the Java API implementation calling operation
system functions, which in turn communicate with kernel functions.

Java API

OS API

Kernel

136 Chapter 7  Design: Architecture and Methodology

91998_CH07_Tsui.indd 136 12/7/12 2:22:10 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

procedures and triggers, are not. These features would be needed to implement much
of the business logic required for many systems, but implementing them inside the
DBMS would mean that we have to keep using that specific DBMS or we would need
to port all those triggers and stored procedures to a new DBMS.

	    The three-tier style is often used as a model for web-based applications. The client
machines access an application server through a web browser; the application server
implements the business logic and communicates with the database. This kind of
architecture can also be viewed as a variation of the MVC architecture, with the data-
base being the model, and the application server implementing the controller and
generating the views that will be displayed by the clients with a web browser.

	    Three-tier architecture may be extended to n-tier with additional middle tier serv-
ers. Figure 7.7 illustrates the three-tier architectural style. Figure 7.8 illustrates a

Figure 7.6  The database-centric style. Typically, the clients communicate directly with the
database.

Client 1a

Client 1b

Client 2

DBMS

Figure 7.7  A three-tier style, in which clients do not connect directly to the database.

Client 1a

Client 1b

Client 2

DB
Business

tier

7.2   Architectural Design 137

91998_CH07_Tsui.indd 137 12/7/12 2:22:11 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

specific four-tier architecture, the J2EE reference architecture, which will be discussed
later in this section.

	    Notice that for simplicity, these diagrams illustrate only one application. There may
be several applications accessing the same database, in which case we can also view
each application as a separate component within the database-centric architecture of
the whole system.

Architectural Tactics  Different from styles and patterns, architectural tactics solve
smaller problems and do not directly affect the overall structure of the system. They are
designed to solve very specific problems for the various architectural styles.

For example, assume that we have a three-tier distributed system, and we want to
increase its reliability. Specifically, we are worried about the possibility of some compo-
nent failing without anybody noticing until something goes really wrong. Thus we try
to improve on fault detection. We decide on two possible tactics; in both cases we have
another component that is responsible for detecting failures.

The first tactic is to have each component send a message to the fault detector at pre-
scribed intervals. The fault detector knows when it should receive those messages and
produces a notification if it does not receive the message within the appropriate time. In
distributed systems this is commonly known as a heartbeat.

The second tactic is to have the fault detector send a message to the other component
and wait for a response. If it does not receive the response, it knows an error has occurred.
This tactic is known as a ping/echo in Internet applications.

Although each specific tactic is applicable only to a limited number of problems,
knowing the right tactics can save much time for the software architect. Bass, Clements,
and Kazman (2003) provide a small catalog of tactics in their book Software Architecture
in Practice.

Reference Architectures  A third category of meta-architectural knowledge is that of
reference architectures—full-fledged architectures that serve as templates for a whole

Figure 7.8  The J2EE reference architecture.

Client 1a

Client 1b

Client 2

DB
Web
tier

Business
tier (EJB)

138 Chapter 7  Design: Architecture and Methodology

91998_CH07_Tsui.indd 138 12/7/12 2:22:11 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

class of systems. Taylor, Medvidovic, and Dashofy (2009) define reference architecture
as “the set of principal design decisions that are simultaneously applicable to multiple
related systems, typically within an application domain, with explicitly defined points of
variation.” Design decisions include all aspects of design, including structure, functional
behavior, component interactions, nonfunctional properties, and even some implemen-
tation decisions.

7.3   Detailed Design
The architectural design of a system, together with the requirements, need to be refined
to produce a detailed design. The development process used determines the level of
detail to which the design is decomposed and the level of formality of its documenta-
tion. If the design is carried out to the finest level of detail, the implementation task is an
almost one-to-one mapping of that design to the implementation language; but often
the design is not specified to its finest level, leaving some detailed design tasks to be
done in the implementation phase.

7.3.1   Functional Decomposition

Functional decomposition is used mostly in structured programming, but some of the
ideas can be used with other programming paradigms. The basic idea is to decompose a
function or module into smaller modules, which will be composed together to form the
bigger module. Traditionally the modules are other systems or procedures that are called
from the main module.

When using object-oriented programming languages, this technique can be used to
do the initial decomposition of a system into modules by functionality, or to decompose
methods that are particularly hard to implement. Although object-oriented systems
and languages receive most of the attention today, there are still many systems that are
developed with procedural techniques. In fact, many small web-based applications can
be modeled this way, with the system decomposed into functional modules and each
module corresponding to one or a few related webpages.

We will illustrate this technique with an example. Suppose you are designing a system
for managing course registration and enrollment. The requirements specify four tasks
that need to be done: (1) modify and delete students from the database; (2) modify and
delete courses from the database; (3) add, modify, and delete sections for a given course;
and (4) register and drop students from a section.

Doing a functional decomposition of this system, you would decompose the main
module into four submodules for dealing with students, courses, sections, and registra-
tion. The first three modules would be decomposed further into modules for adding,
modifying, and deleting, while the fourth module would be decomposed into two mod-
ules for registering or dropping a student from a section.

The usual process is to produce module decomposition diagrams, where the mod-
ules are represented by rectangles, and there is some form of standardized numbering
system, with numbers assigned to each module according to their level. The important
characteristic of the numbering scheme is that each module gets assigned a unique
number, and it is easy to see the level of the module and who its parent is.

7.3   Detailed Design 139

91998_CH07_Tsui.indd 139 12/7/12 2:22:11 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

A module decomposition diagram is presented in Figure 7.9. It depicts a simple system
partitioning based on externally perceived functionality. Notice that there are usually sev-
eral different ways to partition the system. For example, we could also partition the same
system as shown in Figure 7.10, abstracting all the database operations into one specific
database module.

In Figure 7.9, the Add, Modify, and Delete functions for the three entities—Students,
Courses, and Sections—are uniquely tied to the three respective entities. In Figure 7.10,
the design focuses on potential reuse of the three functions. The Add, Modify, and Delete
functions are grouped under database common services for potential reuse and multiple

Figure 7.9  A module decomposition diagram for a student registration system.

0. Main

1. Student

1.1 Add

1.2 Modify

1.3 Delete

2. Courses 3. Sections 4. Registration

2.1 Add

2.2 Modify

2.3 Delete

3.1 Add

3.2 Modify

3.3 Delete

4.1 Register

4.2 Drop

Figure 7.10  An alternative module decomposition with database operations in its own
module.

5.1 Add

5.2 Modify

5.3 Delete

0. Main

1. Student 2. Courses 3. Sections 5. Database4. Registration

140 Chapter 7  Design: Architecture and Methodology

91998_CH07_Tsui.indd 140 12/7/12 2:22:11 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

usages. In design, we should not only be concerned with the actual structures but also
ask which one is the preferred alternative. Note that in Figure 7.9, the individual entities
and their functions serve a single purpose and individually appear very cohesive, while
in Figure 7.10 the database common services serve multiple purposes and provide some
reuse. However, with common services for reuse, there is a certain amount of coupling
introduced among the entities. Which design is a better alternative is a complex topic.
This issue of assessing “good” design will be discussed extensively in Chapter 8 where the
notion of cohesion and coupling will be better defined and clarified.

7.3.2   Relational Database Design
All reasonably sized applications must handle a large amount of information. Today, we
can assume the existence of a convenient database that can be incorporated into the
design of any system for information storage and retrieval. We will include a database
in our discussion of designing software systems, but not enter into extensive analysis of
database technologies.

Most database and business applications use relational database technologies. First
proposed by E. F. Codd of IBM in the late 1960s, relational databases are grounded on
mathematical concepts of sets and relations and are relatively simple to use and under-
stand. They are also relatively simple to implement and can be implemented efficiently,
which has led to their popularity. See the Suggested Readings section for more informa-
tion on relational databases.

In a relational database, information is stored in tables, also called relations. They are
two-dimensional sets of data, with rows (also called tuples) and columns (also called
attributes). In the simplest case, each row corresponds to an object or entity in the real
world, and columns correspond to attributes of those entities. Relational database
theory requires that a set of attributes is identified as the primary key of a table, but most
implementations do not have this requirement.

Database design concentrates only on how to represent the data required for the
program and how to store it efficiently on a relational database. It can be divided into
four phases:

n	Data modeling: This usually entails creating an entity-relationship (ER) model of the
data. The ER model may have been created in the requirements analysis step, as dis-
cussed in Chapter 6, but it may still need to be extended and refined.

n	Logical database design: Taking as input a detailed ER model, a normalized relational
schema is produced. The relational schema is a set of tables together with foreign key
relationships.

n	Physical database design: In this step, the main decisions include what data type to
use for each attribute and what indexes to create. Sometimes the logical schema is
transformed for efficiency (but this should be done with extreme care). The output
is a detailed set of structured query language (SQL) statements that implement the
logical schema. Sometimes decisions may be made about more low-level issues, such
as which relations are stored on which hard drives, although most of the time these
decisions are made during deployment and maintenance.

7.3   Detailed Design 141

91998_CH07_Tsui.indd 141 12/7/12 2:22:11 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

n	Deployment and maintenance: The final details are ironed out, including where the
relations are stored. Not only do the details of the DBMS software used need to be
known, but also the specific hardware the system is going to be deployed on needs
to be specified. As the system is used, some of these decisions, along with issues deal-
ing with physical design, such as index creation, may be modified to improve perfor-
mance, reduce space, or reflect changes in hardware or system usage.

Data Modeling  During this phase, a detailed and complete ER model is created.
Documentation for the ER model includes an ER diagram, along with annotations for
information not reflected on the diagram. The best practices suggest the creation of a
data dictionary containing all information pertaining to each attribute.

The requirements documentation may already include an ER diagram that would
need to be refined, or a diagram would need to be created from scratch if one does
not exist. An ER diagram contains three main types of objects: (1) entities (represented
by rectangles), (2) attributes (represented by ovals), and (3) relationships (represented
by diamonds). Entities represent objects or things in the real world (or, more precisely,
in our mental model of the real world). They have attributes and are related to other
entities by relationships. Relationships may also have attributes. In an ER diagram we
usually represent entity and relationship types, rather than particular instances of enti-
ties or relationships.

Entity types represent the kinds of things we are modeling. Entities have attributes
and one or more attributes are marked as the identifier, which will allow us to distinguish
among entities of the same type. Weak entities do not have an identifier and are depen-
dent on another entity for their identity.

Attributes are classified as simple or composite and as single-valued or multivalued.
Simple attributes are those that do not need to be subdivided further (that is, those that
your DBMS supports as primitives), while composite attributes are formed of several
parts. For example, if we represent the full name of a person as a string, we consider it a
simple attribute. If we divided into first, middle, and last names (as is commonly done in
the United States), then it is a composite attribute. Each of the parts (first, middle, last)
in this case would be strings, but in other cases they could be composed of several parts
themselves.

Most attributes have at most one value. For example, you have one full name (you
can divide it into pieces of course), one date of birth, and so on. However, for some other
attributes, the same entity can have several values at the same time. Prime examples are
email addresses and phone numbers; the same person can have many email addresses
or many phone numbers. We call these kinds of attributes multivalued attributes and
represent them with a double oval.

It is important to not confuse multivalued attributes with composite attributes. Composite
attributes have different parts, while multivalued attributes have a set of values for one
entity. It is also important to keep in mind that databases usually keep a snapshot in time
of the values rather than full historical information. Basically, the fact that you could change
your name does not make it a multivalued attribute; at any given time, you have only one
official full name.

142 Chapter 7  Design: Architecture and Methodology

91998_CH07_Tsui.indd 142 12/7/12 2:22:11 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

Relationships specify associations among two or more entities. Relationships are clas-
sified by their cardinality (the number of entities that participate in a relationship), and
modality. These concepts were also presented in some detail in Chapter 6.

Figure 7.11 shows an ER diagram for a portion of a course registration database. It
represents courses, sections, and students. A section is a weak entity, because it needs
the course number (which is an attribute of the course, not the section) to be uniquely
identified. A student enrolls in a section, and, at the end of the term, is assigned a grade
for the section. Notice that the grade is an attribute of the relationship, not of any of the
entities. A student gets a grade for a particular section.

Logical Database Design  Logical database design implies transforming the detailed
ER diagram into a set of tables, together with foreign key relationships. We can formalize
the process as follows:

	 1.	 Transform entities: Create a table for the entity, with all its simple and single-valued
attributes. For composite attributes, use only the simple parts, with an appropriate
naming convention. Weak entities have a primary key formed with the primary key
of the identifying relationship and their discriminator. For example, the course and
section entities would be transformed as shown in Figure 7.12.

	 2.	 Creation of new tables: For each independent multivalued attribute, create a new
table containing as attributes the primary key of the entity and the multivalued
attribute. If the attribute is composite, then use the simple parts only. The primary
key of this relation is formed with all attributes. For example, the student entity
has a multivalued attribute, email. Because the same student can have more than

Figure 7.11  An entity-relationship diagram for courses, sections, and students in a course regis-
tration database.

Title
Credit hours

Semester

ID NameGrade

Takes

Belongs

StudentSection
email

Number

Number

Term

Year

Course

7.3   Detailed Design 143

91998_CH07_Tsui.indd 143 12/7/12 2:22:12 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

one email, we need to create one table for the student, and another one for those
emails. The relational schema would resemble that of Figure 7.13.

	 3.	 Transform relationships: Notice that identifying relationships for weak entities have
already been transformed in Step 1. The transformation to be done here depends
on the kind of relationship.

a.	 One-to-many or many-to-one: You do not need to create a new table, unless
the relationship has attributes. Just add a foreign key reference on the table
corresponding to the entity next to the “many” side—that is, the entity that
can be related to just one entity. Note that this is what we did for Section in
Figure 7.12, although that was for a weak entity.

b.	 One-to-one: Follow the same process used with one-to-many, but you have
a choice now. You can put the foreign key reference on either side. As a rule
of thumb, choose the entity that always participates in the relationship to
minimize nulls or the entity that you expect will have the fewest instances.

c.	 Many-to-many: Create a new table, with foreign key references to the
participating entities, plus any attributes of the relationship. The primary
key is the union of the attributes in the primary keys of the participating
entities. For example, the Takes relationship in Figure 7.14 would need to
be mapped to a new table. Figure 7.14 shows the mapping, along with the
two tables it references, Section and Student.

Figure 7.12  A relational schema diagram for course and section.

Number

Course

Title

Credit Hours

Course Number

Section

Section Number

Semester

Year

Time

Location

Figure 7.13  A relational schema diagram for students and email.

ID

Student

Name

Gender

Student ID

Email

Email

144 Chapter 7  Design: Architecture and Methodology

91998_CH07_Tsui.indd 144 12/7/12 2:22:12 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

	 Notice that in Figure 7.14 the arrows from Takes to Section are joined, denot-
ing that the foreign key relationship is for the four attributes together rath-
er than for each attribute individually. Also, many people would prefer to
add a new identifier to the section table to avoid having composite foreign
key references; in that case, the ER diagram would need to be updated.

d.	 Ternary relationships: As with many-to-many relationships, you need to
create a new table, containing foreign key references to the participating
entities in addition to any attributes the relationship may have.

Following this process, and assuming your ER diagram was normalized, you will
always achieve normalization—a situation where each row in a table represents just
one simple fact rather than several. Alternatively, we can say that each table contains
information pertaining to only one entity or relationship. Normalization helps ensure
that information is stored only once, minimizing redundancy. There is a mathematical
theory of normalization on relational databases that, for space reasons, we cannot
cover in this text. See the Suggested Readings section at the end of the chapter or
your favorite database textbook for additional coverage of this topic.

Physical Database Design  During physical database design, the following decisions
are made:

	 n	 What data types to assign to each attribute: Depending on which data types are
supported by the DBMS, make sure that all possible data values are represented
and that an eye is kept on performance. Most relational DBMS support fixed and
varying size characters, fixed-precision numbers and dates, with possibly others
such as IEEE floating point numbers, and integers stored in binary representa-
tion. A common issue is how to encode certain attributes; for example, you could
store the gender of students in many different ways. It may be a string (“male”
or “female”), a Boolean, or an integer. A common technique is to create a smaller
encoding such as “M” or “F” and a new table that allows transforming that encod-
ing to the label we want (e.g., male/female). Other issues such as encryption or
compression of certain attributes may also arise.

Figure 7.14  A relational schema diagram representing a many-to-many relationship.

ID

Student

Name

Gender

Course Number

Takes Section

Section Number

Semester

Student ID

Year

Grade

Course Number

Section Number

Semester

Time

Year

Location

7.3   Detailed Design 145

91998_CH07_Tsui.indd 145 12/7/12 2:22:12 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

	 n	 What indexes to create: Indexes consume space, but greatly increase search perfor-
mance. By default, the primary key of each table is indexed to facilitate constraint
checking and assuming the majority of joins would use the primary key. If you
know that entities will be searched by specific fields, you may want to create other
indexes.

	 n	 Denormalization: Sometimes, usually for performance reasons, tables will be
denormalized; that is, information will be added to the table that does not really
belong there or can be obtained from other tables, introducing redundancy. This
should be done as a last resort, because it may confuse developers.

On very rare occasions, you may decide to combine the information on two tables. If
the tables have a one-to-one relationship, this may make sense. We recommend check-
ing the ER diagram. If the entities are conceptually different, keep them on separate
tables.

Deployment and Maintenance  During deployment, the final decisions are made.
Specifying the characteristics of the hardware the database will reside on and deciding
which tables go on which files or hard drives are some of the decisions that will be made.

While you are using the system, the usage profile may change or some performance
bottlenecks may become apparent. In many cases, performance can be improved by
altering the data type of some attribute or, more commonly, by adding or deleting an
index, without affecting the programs that access the database in any way. Of course, if
the changes affect the programs, then you have to do program maintenance.

7.3.3   Object-Oriented Design and UML
Many modern software systems are developed using object-oriented techniques. The
requirements are usually expressed mainly with use cases. Also, preliminary class dia-
grams may have been produced in the requirements analysis step.

Most documentation for object-oriented projects is presented in the form of UML dia-
grams. The UML is a graphic design notation, standardized by the Object Management
Group (OMG), with wide industry and academic support. We will use UML in this section,
but we will not try to cover UML in detail. For additional information on UML, see the
Suggested Readings section at the end of the chapter.

During the design step, you will decide on exactly which classes to create, documenting
each one with a class diagram. You may need to refine your use cases, and produce other
diagrams to document the behavior of your objects.

Use Cases and Use-Case Diagrams  A use-case diagram is produced during the
requirements phase, depicting the main use cases for the system, as we saw in Chapter
6 where use cases were introduced. Each individual use case is documented to some
extent.

Figure 7.15 shows a use-case diagram for a course registration system. It depicts two
actors, the Student and the Registrar. Students participate in two use cases, Register for
section and Choose section. The registrar participates in four cases, Register for section,
Add course, Add section, and Add student.

Each individual use case needs to be documented further. During the requirements
phase, essential use cases are commonly developed. During the design phase, they will

146 Chapter 7  Design: Architecture and Methodology

91998_CH07_Tsui.indd 146 12/7/12 2:22:12 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

need to be refined into system use cases. Essential use cases provide less detail and do
not provide any details about the system; they mainly describe what the actor is sup-
posed to do and what it tries to achieve. System use cases refine the essential case, add-
ing detailed information about how the system achieves those goals. The details may
be placed in a separate box as part of the use case diagram. The content of the box may
include the following:

Essential Use-Case Documentation

Name: Register for section
Preconditions: Student is registered, section exists
Postconditions: Student will be enrolled in section (if space is available, etc.)

Basic Course of Action

	 1.	 A student wants to enroll in a section (usually after having chosen the sec-
tion).

	 2.	 Student logs on to system.

	 3.	 Student specifies which sections he/she wants to register for.

	 4.	 System verifies space is available in the section, that the student has the pre-
requisites, and that there is no scheduling conflict.

	 5.	 If there is no problem, the student is enrolled in all the requested sections. If
there is any problem, the student is notified and given the chance to modify
his or her choices.

A system use case will be defined at a much finer level of detail.

Figure 7.15  A use-case diagram for a course registration system.

Register for section
Add course

Choose section

Add section

Add student

Registrar

Student

7.3   Detailed Design 147

91998_CH07_Tsui.indd 147 12/7/12 2:22:12 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

Class Design and Class Diagrams  One of the most important issues in detail design is
designing classes as well as UML class diagrams to represent the design. In this section
we will explain the basic concepts of class design and how to document them with UML.
There are several basic concepts related to object orientation:

n	Objects represent entities in the real world. This is similar to the concept of entity
instances.

n	Objects are organized into classes, which serve a similar purpose as “typing” an entity.
Classes serve to group objects with similar structure and also as a template for creat-
ing new objects. Thus, a class is an abstraction of a set of similar objects. Classes are a
central concept in most object-oriented languages. In our course registration example
Student may be a Class, with Joe Smith as a specific student instance of that Class.

n	Objects are associated with attributes, also called properties, similarly to the ER model.
Each student object, such as Joe Smith, has a set of specific attribute values or data
values associated with him or her. For instance, the values for address, gender, or age
are associated with each specific object.

n	In contrast with ER models, objects do not contain just data. They are also associated
with methods, which are modules of executable code. The class, Student, may include
functions or methods such as a set-birth-date method, which initializes a student’s
birth-date data attribute.

An important concept in class design is encapsulation. In an object, both data and
methods are included. Expressing whether both, either, or neither data/methods can
be publicly accessible is an important feature. In UML, publicly accessible methods and
attributes are sometimes marked with a plus sign, and private methods, which are those
that are only accessible to the class but not to other classes, with a minus sign.

In UML, classes are represented by rectangles divided into three areas: (1) name of the
class, (2) the attributes, and (3) the methods. When you implement the class, it is common
to never make an attribute public, but rather to create accessor methods (getX, setX); it is
also common practice to not show those on the diagram but to have a convention about
which ones get created.

In a UML diagram, a Student class with two attributes and two methods would be
represented as shown in Figure 7.16.

Another important factor is that of an association between two objects, a concept
similar to an ER relationship, with two important differences. Associations are always
binary, and they cannot have attributes of their own. In UML, associations are shown by

Figure 7.16  A UML class diagram for class Student.

Student

dateOfBirth : Date
name : String

getAgeinYears () : int
getAgeinDays () : int

148 Chapter 7  Design: Architecture and Methodology

91998_CH07_Tsui.indd 148 12/7/12 2:22:13 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

lines among classes and associations may or may not be available from both sides. We
call this property navigability; if the association is navigable from both sides, we call it
bidirectional; if it is not, we call it unidirectional.

Figure 7.17 is a simplified class diagram that shows a student being associated with a
school with the IsEnrolled association. The association is bidirectional—that is, it can be
navigated from both sides. We also show the allowed cardinalities. A student has to be
enrolled in only one school. This would be the case with elementary schools, for example.
A school can have zero or more students.}

A special kind of association is that of aggregation, which corresponds with the “part-
of” association. Notice this may be a real-world part-of (say an engine is part of a car) or
one that only makes sense in the computer (an address is part of a student). A particularly
strong version of aggregation is composition, in which the subordinate object cannot
participate in any other association and is the sole responsibility of the containing class;
basically, the contained class is just like an attribute of the containing class. In UML,
aggregation is represented as an association with a diamond, and composition has the
diamond drawn in black.

For example, assume we are modeling students and we want to represent their
addresses as complex objects rather than just as one string. We can view the address as
being part of the student object. If we know we will not share the address objects (that is,
even if two real-world students live in the same place, in our program their corresponding
objects will be assigned different address objects with the same attributes rather than the
same address object), then we can represent this as composition, as in Figure 7.18.

Another central concept to OO design is class inheritance. When a class inher-
its from another class, it automatically gets all its attributes and methods. If class A
inherits from class B, we call class A the superclass and class B the subclass. Although

Figure 7.17  A UML representation of association.

Student 0..* 1..1
IsEnrolled

School

Figure 7.18  UML representation of composition.

Student Address

streetName: String
streetNumber: int
city: String
state: String
zipCode: int

7.3   Detailed Design 149

91998_CH07_Tsui.indd 149 12/7/12 2:22:13 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

the subclass can override any method it inherits from the superclass, changing its
behavior, the intent is to mostly add additional methods. Figure 7.19 shows a sim-
plified UML class diagram illustrating inheritance. We have a Person class, with two
subclasses, Student and Employee. Inheritance relationship is an “is-a” relationship
between the subclass and the superclass. Thus, we would like to preserve as much of
the superclass as possible during inheritance.

When preparing a design, note that in this example we can discover inheritance
relationships through generalization or specialization. In generalization, we discover
the Student and Employee classes, and later realize they share some characteristics and
decide to create a common class, Person. In specialization, we first discover the Person
class and later realize there are two special subtypes, Student and Employee. But in the
diagrams only the inheritance relationship is shown. The diagram does not show how we
came to discover this relationship. Generalization is a design technique closely related to
abstraction where we simplify the design by keeping only the essentials and delaying the
considerations of detail until a later time.

We should only create subclasses when there is a need to incorporate additional
behavior or attributes. For example, although we may be tempted to create four addi-
tional subclasses for Student—namely Freshman, Sophomore, Junior, and Senior—it is
probably unnecessary, as just adding a new property will allow us to discriminate among
those, and there are no differences in the behavior or data that we model.

State Modeling  In many cases objects can be in different states, and it is important to
model those states and how they are allowed to change. This information is represented

with state transition diagrams. For example, in our student
domain, we start considering students when they are accepted
into the university. After they enroll in their first class, they become
active students. If they fail to enroll for a certain number of semes-

ters, they become inactive students. Students may be expelled or graduate and become
alumni. Figure 7.20 shows a state transition diagram representing this situation.

State transition diagram  A diagram repre-
senting information concerning the states of
an object and the allowed state transitions.

Figure 7.19  UML representation of inheritance.

Student Employee

Person

150 Chapter 7  Design: Architecture and Methodology

91998_CH07_Tsui.indd 150 12/7/12 2:22:13 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

The event-driven system mentioned earlier may be readily modeled with a state tran-
sition diagram. As external events occur, the system reacts to the events and changes
states. Even though a state transition diagram is part of UML, it has been in use for mod-
eling the system states by early computer scientists, automata theorists, and software
engineers for many years.

Interactions Among Classes  Designing classes and their relationships provides only
the static structure of the design. The interactions among the classes to collectively
accomplish some task also need to be designed. In UML these
interactions are usually illustrated through UML sequence or
communication diagrams. Communication diagrams were called
collaboration diagrams in UML 1, and are still called collaboration
diagrams by many authors.

The arrows in Figure 7.21 illustrate the flow of messages, starting from the top and
flowing from left to right. The returning messages are shown with dashed lines.

UML sequence diagrams  Diagrams that
illustrate the flow of messages from one
object to another and the sequence in which
those messages are processed.

Figure 7.20  A state transition diagram.

Accepted Active

Inactive

Alumnienroll: graduate:

enroll:

expell:

fails to
enroll:

Expelled

Figure 7.21  A UML sequence diagram.

7.3   Detailed Design 151

91998_CH07_Tsui.indd 151 12/7/12 2:22:13 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

7.3.4   User-Interface Design
The user interface (UI) is the part of the software most visible to the user and is one of
the most important to get right. In many situations a prototype of the user interface
is developed as part of the requirements analysis, as explained in Chapter 6. This pro-
totype serves as a validation test. The client or user will confirm the prototype as the
correct system or point out the defect(s). This activity also enables early testing. A big
problem with user-interface design is that it is very different from programming and is
very difficult for many software engineers. UI design is based on psychology, cognitive
science, aesthetics, and art. Most software engineers are not well trained in any of these
areas. Also, most software engineers are not typical users of software. Many software
engineers tend to be very familiar with computing systems and tend to favor certain
types of thinking that are not shared by the population at large. As assumed in the
popular stereotype, many software engineers are “geeks” who use computers in dif-
ferent ways than do “ordinary” people. That makes designing good UI for the general
population a difficult task.

It is better in most circumstances to leave UI design to specialists with training and
skills more appropriate to this task. However, it is still important for software engineers to
have a basic understanding of the issues. In many cases, it is not possible to have a sepa-
rate person do the UI design, and it falls upon software developers or systems analysts
to do the job. There are two main issues with user-interface design:

n	The flow of interactions with the program
n	The “look and feel” of the interface

The looks are not as important as the flow. We can easily design bad user interfaces
and make them look pretty. Interaction design deals with the flow of interactions with
the program.

Flow of Interactions in the Interface  The user of a system has specific goals to be
achieved in the system. These goals are directly associated with the use cases and the

sequence diagrams designed for the system. Chapter 6,
“Requirements Engineering,” shows a Shipping clerk needing to
process a shipping item list and create the shipping labels in
Figure 6.5 Use-case notation in UML. Figure 7.15 shows a use-
case diagram for a course registration system. Consider the
actor:Student needing to choose and register for the section.
These are the goals of the actor:Student in their usage of the

system. Figure 7.21 shows a UML sequence diagram for the detail design of registration
for the system. We can see the inner design of the solution for register(aStudent:
Student).

The possible registration screens are prototyped in low fidelity (hand drawn) or in
high fidelity (done with a variety of screen design software like Visual Basic). Figure
7.22 shows an example of low-fidelity prototypes for the course registration. The “look
and feel” of the interface is explored with these hand-drawn screens.

Def Low fidelity prototype  is a simple
mockup sketch of the target product.
Def High fidelity prototype  is a detailed
mockup resembling and behaving close to
the final product.

152 Chapter 7  Design: Architecture and Methodology

91998_CH07_Tsui.indd 152 12/7/12 2:22:14 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

The low-fidelity prototype activity suggested the following four screens:

	 1.	 Registration: Initial—Select term
	 2.	 Registration: Term—Select first course
	 3.	 Registration: Desired schedule—Select additional course/delete course on sched-

ule/finish registration/cost (would show a pop-up screen with all fees)
	 4.	 Registration: Confirm schedule

Figures 7.23 to 7.25 are the high-fidelity prototypes developed using Visual Basic.
The look and feel of the interface continues to develop.

The possible registration screens developed are considered with each of the use cases
for the system. The flows of interactions in the interface are shown to the client or user

Figure 7.22  Low-fidelity prototypes of registration screens.

7.3   Detailed Design 153

91998_CH07_Tsui.indd 153 12/7/12 2:22:14 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

Figure 7.23  High-fidelity prototype of registration: Initial screen.

Figure 7.24  High-fidelity prototype of registration: Term—Select first course.

Figure 7.25  High-fidelity prototype of registration: Desired schedule.

154 Chapter 7  Design: Architecture and Methodology

91998_CH07_Tsui.indd 154 12/7/12 2:22:14 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

for approval. Figure 7.26 shows navigation of the possible screens for the Student user
to select his or her initial course and then decide to add more courses, confirm schedule,
and so on. Note the three columns in Figure 7.26—the User (student) on the left, screen
outputs and user inputs in the center, and the inner system process (the sequence dia-
gram for this use case) on the right.

The flow of all possible interactions—which include the user input, the screens, and
the process—is considered and added as seen in Figure 7.27. Considerations for all

User	 Screen Output	 Process

Figure 7.26  Flow of interaction.

Figure 7.27  User input; screen output; process.

7.3   Detailed Design 155

91998_CH07_Tsui.indd 155 12/7/12 2:22:14 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

possible user expectations including the instructions, directions, feedback, confirma-
tions, and help are taken into account in the development of the user-interface design.

Cognitive Models  Humans think in specific stages. Norman (1988) studied the psychol-
ogy of everyday actions and developed a model with seven different stages. Users will
(1) form a goal; (2) form an intention; (3)specify an action; and (4) execute the action.
After the user executes the action, the feedback from the system is critical for the user’s
understanding of the system. The user will (5) perceive the system state (feedback); (6)
interpret the feedback; and (7) evaluate. If, at the last stage, the users evaluates the
mode as “intuitive,” they will continue with the next cycle toward their goal.

The GOMS (goals, operators, methods, and selection) model is a classical model of
user interaction that involves identifying, for a particular kind of users, their goals, the
basic operators your program provides, the methods, that is the sequence of operations
your user can use to achieve its goals, and Selection rules, which specify which Methods
to apply for achieving a particular goal when several are available. See Card, Moran, and
Newell in the Suggested Reading section for more on the GOMS model.

When designing a user-centered task-oriented system you need to know the goals
of your users, study their expectations about the actions in the goal, and provide the
appropriate operators and methods, making sure selection rules are clear. These goals
should roughly map into the use cases or scenarios. Feedback to each of the actions
within the user’s goals is vital to successful usage of the system. For example, a system
with a button that does not give any visibility change when pressing the button- will
have a hesitation in the user’s usage of the button.

In the interface, every button and menu option is an operator, and methods will
roughly correspond to coarser-grained UI elements, such as dialogs or wizards. The
designer needs to provide all the required operators and methods, because creating
new ones is more difficult and normal users will not be capable of combining them in
meaningful ways even though there are macros and similar facilities.

Other Issues   

n	Different kinds of users: Often the interfaces that appeal to one kind of user are not
appropriate for others. It is good practice to provide alternatives within the interface;
for example, most GUI programs also provide for keyboard shortcuts. Many times fea-
tures that make an interface easier to learn or use for the casual user will get in the way
of expert users.

n	Heuristics for good user interface design: There are many good heuristics for user inter-
face design. The main heuristic is consistency throughout your program and with your
platform and similar programs. Other heuristics include putting the user in control,
reducing user’s memory load, and making the system status visible.

n	User interface guidelines: Almost all GUI platforms, such as Apple’s operating systems,
Microsoft Windows, GNOME, and KDE, provide user interface guidelines. These are
much more detailed than the heuristics and provide information about which controls
to use, what menu items have to exist, and many other detailed issues. Following the
platform’s user interface guidelines will make all programs more consistent with each
other.

156 Chapter 7  Design: Architecture and Methodology

91998_CH07_Tsui.indd 156 12/7/12 2:22:14 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

n	Multicultural issues: Creating a program that will be usable for people in many differ-
ent countries and cultures is a great challenge. The creation of a program version for a
specific group of users based on language or country is called localization. Colors and
icons have different meanings for different cultures. Translating messages from one
language to another is a difficult task. In many cases a localized version needs to be
created not just for each language but also for each country that uses that language,
as the words and expressions used change from one to another. There are many
programming libraries available for dealing with some of the internationalization
issues. Internationalization and localization issues will only become more relevant as
world globalization continues. Designing a program that is usable by people of many
cultures and countries will open up many markets and may be required for some sys-
tems.

n	Metaphors: Many user interfaces are based on denotation to known objects. Most file
management and operating system GUIs are based on the desktop metaphor. Most
word processing programs try to utilize a paper document metaphor. An appropriate
metaphor can facilitate program learning and transfer of real-world skills. However, in
some situations, the real-world system is different from the metaphor and the users
need to be made aware of those differences.

n	Multiplatform software: Software engineers use different software platforms. Most
users are very attached to their platform and will not change it just to run other pro-
grams. In many cases, the newly developed software needs to run in several different
platforms and must integrate well with each one. The main problem with multiplat-
form software is consistency. A decision must be made about whether the software
must be consistent across all platforms or whether, instead, it must integrate fully with
each platform and follow that specific platform’s guidelines.

n	Accessibility: The software should be made as accessible as possible in order to be used
by as many people as possible. Some people cannot see well or distinguish between
certain colors, and some cannot operate a normal keyboard or mouse.

n	Multimedia interfaces: Graphics and text are not the only ways to provide information.
It is currently possible to use sound and, in some cases, tactile feedback to convey
information. There is even a device to produce smells. How to take advantage of
these output devices to make a better user interface will be a challenge in the years to
come.

7.3.5   Some Further Design Concerns
Most commercial applications have three main components: user interface, applica-
tion logic, and data. In the case of web applications, user interfaces are displayed via a
browser, the data is usually stored in a relational database, and the application logic is
written in either a programming or script language. This is the MVC architectural style.
Earlier we mentioned that design decisions may even include implementation concerns.
When object-oriented (OO) design is chosen, the entities in the graphical user interface
must be mapped to the object defined in the OO programming language. Similarly, the
object in the OO programming language needs to be mapped to the relational database

7.3   Detailed Design 157

91998_CH07_Tsui.indd 157 12/7/12 2:22:14 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

table. The constructs in the user interface, in the programming objects, and in the rela-
tional database tables are different and do not necessarily match.

Here we will briefly discuss one mapping problem called object-relational impedance
mismatch. Several issues arise when a relational database system is utilized by an OO
programming style design. Difficulties are encountered when classes are mapped onto
relational database tables and class attributes are mapped onto table columns.

One issue is that objects have an identity, and rows in a relational database are consid-
ered just values. While this is important, it can prove difficult at times. However, the issue
can be ameliorated by adding a specific field—an object id—to each row in a relational
database. One would still need to keep track of whether there is more than one copy of
the same database object in memory.

Another issue is the difference in the support of data typing. The relational model pro-
hibits the by-reference or pointer type, but an OO language supports the by-reference
type. The way string data type and collations are supported also differ between relational
database systems and OO programming languages.

Additional problems stem from the fact that relational databases deal with sets of
rows, while objects reference each other in complex structures. When bringing an object
from the database into main memory, it is not clear whether to bring the other related
objects into memory as well. In extreme situations, one can conceptually require that the
entire database be brought into memory.

While one may argue that these are implementation issues, they certainly need to be
considered at detail design time. See Heinckiens (1998) in the Suggested Readings sec-
tion for further discussions on database applications and impedance mismatch.

In the next chapter we will discuss some ways of evaluating different designs, the
parameters and metrics used for evaluation, and some guidance for good design.

7.4   HTML-Script-SQL Design Example
In this section we will delve deeper into some details of designing a web application
though a simple example utilizing HTML, PHP, and SQL. Note that this specific combina-
tion of tools may change, and one needs to make sure that the chosen tools will interact
together.

A software project that follows the Model-View-Controller (MVC) architectural style
(see Figure 7.4) can be done with three main parts for the detail design:

	 1.	 A HyperTextMarkup Language (HTML) interface design used for portraying the
“view” and the information flow for the application

	 2.	 A scripting language as the engine of the system (we will use PHP) serving as the
“controller” for the application

	 3.	 An SQL database that stores the information and acts as the “model” for the appli-
cation

The Web-based database application begins with an interactive interface composed
of HTML pages. A study of the structure of an HTML document shows that it really has
many parts. Formatting tags, hyperlinks, lists, tables, frames, and Cascading Style Sheets
(CSS) are the essential materials needed to create the interactive interface. HTML forms

158 Chapter 7  Design: Architecture and Methodology

91998_CH07_Tsui.indd 158 12/7/12 2:22:14 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

allow the web pages to have a wide variety of input fields for the user to input informa-
tion, selections, and so on. A simple example using an HTML with PHP method is shown
in Figure 7.28. The visual results shown used Firefox browser on an Apple Mac Pro
machine.

Using the GET method of PHP, data in the HTML form is appended to the URL in the
action field. Thus the data submitted is visible. We would note that this represents a secu-
rity risk, but on the other hand it allows one to bookmark the page with the submitted data,
or even write an external link to it. By copying the syntax, you can encode data to be sent to
a server page in a link, with the data coming from a database, or some other program.

Besides the URL, data sent through a GET request has some size limitation, so when
sending big amounts of data you need to use the POST method of PHP.

HTML pages are static documents, so we need a programming language that can
generate HTML pages. For this example we use PHP as that programming language. PHP
is a scripting and dynamically typed language designed for web development. A good
source for information about PHP is www.php.net. A study of variables, printing, strings,
arrays, control structures, loops, and functions is the first step if one is not familiar with
the PHP scripting language. PHP code can be embedded inside an HTML file and is saved
as a .php extension rather than a .html extension. The web server executes the PHP code
and embeds its output in the HTML file that is sent to the browser.

The next step to consider in the application design is the database model and
database access. For this example, the design and creation of the database would be
established. PHP would be used to send SQL commands to the database management
system (DBMS), specifically to PostgreSql. PHP provides an abstract layer for accessing
many DBMSs through the same interface (called PEAR DB), but for simplicity we will

Figure 7.28  Sample HTML with visual result displayed using Firefox browser on an Apple Mac
Pro machine.

<form method="GET"
action="something.php">
<p>
 Username:
<input type="text"
name="username">
</p>
<p>
 Password:
<input type="password"
name="password">
</p>
<input type="submit"
value="Login">
</form>

Sample HTML Visual result (possible)

7.4   HTML-Script-SQL Design Example 159

91998_CH07_Tsui.indd 159 12/7/12 2:22:15 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

cover only the functions that are PostgreSql specific (if you were to switch to another
DBMS you’d probably need to change the first few characters of each function’s name).
Note that if you use something such as PEAR DB for general interface, there is probably
a performance penalty.

The PHP functions we will use for accessing the database include those in Table 7.1.

Table 7.1  Sample PHP-DB Access Functionalities

Function Purpose

pg_connect Establishes a connection to the database and returns a handle to it.

pg_query,
pg_query_params

Executes a query and returns a handle to the result set; notice the query can be an
INSERT, UPDATE, or DELETE, in addition to a SELECT. pg_query_params is used for
parametrized queries; that is, those for which the final form is obtained by interpolating
strings or otherwise incorporating variables into a query string.

pg_numrows Returns the number of rows in a result set.

pg_fetch object Returns an object representing a row in a result set.

An example for retrieving all rows from the relational table named “student” in the
database named “ok” would have the following lines of PHP code (explanations given
here):

$conn = pg_connect("host=localhost user=namedbname=ok password=abc");

The above line establishes the connection and stores (a handle to) that connection in
the $conn variable.

$query_str="Select * FROM student";

This line just initializes a string variable called $query_str. Notice that the value of that
string variable is a SQL statement, which will be passed to the PostgreSql database.

$res=pg_query($conn, $query_str);

The above line actually sends the query to the DBMS (PostgreSql in this case). It uses the
connection already established ($conn) and the query stored in $query_str, and stores
(a handle to) the rows returned by the DBMS as a result of the query in $str.

The application will be conceptually organized into pages which serve as screen for
the application. It is a good idea to keep each page in its own file. To implement a piece
of functionality, one will usually need two components:

	 1.	 An HTML form.
	 2.	 A PHP page called from that form that uses the input provided by the form. The

input is used to query, obtain, save, or pass along using one or more SQL state-
ments.

These separate pages may be related through the usage of links. Many of the pages
can include links to each other, and these links may even be generated using PHP. The
number of links may be dependent on the information on the database; recall that we
can actually encode information in a link by adding a question mark (?) at the end, and
then name=value pairs. If we define a menu in a frame, that menu can link to several

160 Chapter 7  Design: Architecture and Methodology

91998_CH07_Tsui.indd 160 12/7/12 2:22:15 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

pages so that the user can keep track of the functionality, while the functionality being
currently accessed is displayed in another frame.

Notice that each PHP page will be a separate page and that each request comes as a
completely separate request. However, many times, we want to give the user the illusion
that they are accessing an application and that the pages know which other pages that
particular user has accessed recently. Within web applications, we call this idea of all the
recent interactions of a user with a website a session. PHP supports keeping track of user
sessions. Using session variables in PHP is very easy. For each page, we need to call the
function session_start(), being careful that this call occurs before any output.

Common web application exercises that have request for accounts, login form, and
then process orders can be created using this model. The detail design of each part of
the MVC architectural style involve different strengths of a software engineering team.
The database experts design the SQL database, the programming experts tackle the PHP
code, and the usability experts on the team focus on the user interactions with the HTML
pages.

7.5   Summary
In this chapter we have discussed most of the issues with design. We discussed high-
level, or architectural, design. We then discussed detailed design, and techniques for
functional decomposition, relational database design, object-oriented design, and user
interface design.

The design of your software is one of the most important issues of its development.
Whether you do a formal, complete design or an informal one, it is always advantageous
to think about how you are going to achieve your goals before doing much program-
ming.

In the next chapter we will discuss some ways of evaluating different designs, the
parameters and metrics used for evaluation, and some guidance for good design.

7.6   Review Questions
	 1.	 Explain the role of requirements in architectural design. Explain the role of

requirements in detail design.

	 2.	 What does aggregation mean in OO? Give an example.

	 3.	 When we employ the technique of generalization in design, what are we doing,
and which part of OO design is closely related to this concept?

	 4.	 List two differences between the state transition diagram and the sequence dia-
gram.

	 5.	 Describe three different views used in architectural design.

	 6.	 What is the difference between data modeling and logical database design?

	 7.	 Describe the difference between low-fidelity and high-fidelity prototyping in the
design of the interface. Choose one and give the reasons why you would show
the client this prototype.

7.6   Review Questions 161

91998_CH07_Tsui.indd 161 12/7/12 2:22:15 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

	 8.	 Explain the three columns in Figure 7.26 labeled User, Screen Output, and Process
with regard to design.

	 9.	 Choose one of the cognitive models and explain how the model impacts the
design of the user interface.

	 10.	 Visit a website that is from a different country or culture. Give an example of a
multicultural issue you found in the site. Explain how you would propose to re-
design, taking into consideration the issue found.

7.7   Exercises
	 1.	 Write a command-line program for converting different units of measurement.

Begin your program by converting kilograms and pounds and then yards and
meters. Discuss your user interface with other students.

	 2.	 Write a GUI program for converting different units of measurement. Begin your pro-
gram by converting kilograms and pounds and then yards and meters. Discuss your
user interface with other students.

	 3.	 Find a person who speaks your language but comes from a different country or
region, and discuss how the vocabulary and expressions you both use are differ-
ent. On what kinds of words do you find the most differences?

	 4.	 For each one of the architectural styles mentioned in this chapter, find one exam-
ple of a software system that uses it (not mentioned in the chapter).

	 5.	 Consider the case of a software system designed to keep track of team rosters and
scheduled games for a sports league. Create a UML class diagram representing all
the domain classes and a sequence diagram depicting one of the main interac-
tions among those classes.

	 6.	 Consider the case of a software system designed to keep track of team rosters and
scheduled games for a sports league. Create an ER diagram for this situation and
convert the diagram into a relational schema.

	 7.	 Consider the case of a software system designed to keep track of team rosters and
scheduled games for a sports league. Define the main functionality of the system
and create a module decomposition diagram for it.

7.8   Suggested Readings
S. W. Ambler, The Object Primer: The Application Developer’s Guide to Object Orientation, 2nd
ed. (New York: Cambridge University Press, 2001).

L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice, 2nd ed. (Reading,
MA: Addison-Wesley, 2003).

G. Booch, Object-Oriented Analysis and Design with Applications, 2nd ed. (Reading, MA:
Addison-Wesley, 1994).

S. K. Card, T. P. Moran, and A. Newell, The Psychology of Human-Computer Interaction
(Mahwah, NJ: Lawrence Erlbaum, 1983).

162 Chapter 7  Design: Architecture and Methodology

91998_CH07_Tsui.indd 162 12/7/12 2:22:15 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

P. Chen, “The Entity-Relationship Model—Towards a Unified View of Data,” ACM Transac-
tions on Database Systems, 1 (March 1976): 9–36.

E. F. Codd, “A Relational Model of Data for Large Shared Data Banks,” Communications of
ACM 13, no. 6 (June 1970): 377–387.

C. J. Date, An Introduction to Database Systems, 8th ed. (Reading, MA: Addison-Wesley,
2003).

M. Fowler and K. Scott, UML Distilled, 2nd ed. (Reading, MA: Addison-Wesley, 1999).

E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of Reusable Object-
Oriented Software (Reading, MA: Addison-Wesley, 1995).

P. M. Heinckiens, Building Scalable Database Applications: Object Oriented Design, Architec-
ture, and Implementation (Reading, MA: Addison-Wesley, 1998).

D. Hix and H. R. Hartson, Developing User Interfaces: Ensuring Usability Through Product and
Process (New York: Wiley, 1993).

P. Kruchten, “Architectural Blueprints—The 4+1 View Model of Software Architecture,”
IEEE Software (November 1995).

R. Malveau and T. Mowbray, Software Architecture Bootcamp (Upper Saddle River, NJ:
Prentice Hall, 2000).

D. A. Norman, The Design of Everyday Things (New York: Doubleday, 1988).

M. Shaw and D. Garlan, Software Architecture: Perspectives on an Emerging Discipline (Up-
per Saddle River, NJ: Prentice Hall, 1996).

B. Shneiderman and C. Plaisant, Designing the User Interface: Strategies for Effective Human-
Computer Interaction, 4th ed. (Reading, MA: Addison-Wesley, 2005).

A. Silberschatz, H. F. Korth, and S. Sudarshan, Database System Concepts, 4th ed. (New
York: McGraw Hill, 2002).

C. Szyperski, D. Gruntz, and S. Murer, Component Software—Beyond Object-Oriented Pro-
gramming (New York: Addison-Wesley/ACM Press, 2002).

R. N. Taylor, N. Medvidovic, and E. M. Dashofy, Software Architecture: Foundations, Theory
and Practice (Hoboken, NJ: John Wiley & Sons, 2009).

1637.8  Suggested Readings

91998_CH07_Tsui.indd 163 12/7/12 2:22:15 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

Intentional Blank 164

  

91998_CH07_Tsui.indd 164 12/7/12 2:22:15 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

