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CHAPTER 2
 First-Order Differential Equations

2.1 Solution Curves Without a Solution

2.1.1 Direction Fields

2.1.2 Autonomous First-Order DEs

2.2 Separable Equations

2.3 Linear Equations

2.4 Exact Equations

2.5 Solutions by Substitutions

2.6 A Numerical Method

2.7 Linear Models

2.8 Nonlinear Models

2.9 Modeling with Systems of First-Order DEs
Chapter 2 in Review

CHAPTER CONTENTS

We begin our study of differential equations with first-order equations. In this 
chapter we illustrate the three different ways differential equations can be 
studied: qualitatively, analytically, and numerically.

In Section 2.1 we examine DEs qualitatively. We shall see that a DE can 
often tell us information about the behavior of its solutions even if you do not 
have any solutions in hand. In Sections 2.2–2.5 we examine DEs analytically. 
This means we study specialized techniques for obtaining implicit and explicit 
solutions. In Sections 2.7 and 2.8 we apply these solution methods to some of 
the mathematical models that were discussed in Section 1.3. Then in Section 
2.6 we discuss a simple technique for “solving” a DE numerically. This means, 
in contrast to the analytical approach where solutions are equations or formulas, 
that we use the DE to construct a way of obta ining quantitative information 
about an unknown solution.

The chapter ends with an introduction to mathematical modeling with systems 
of first-order differential equations.
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2.1 Solution Curves Without a Solution

 Introduction Some differential equations do not possess any solutions. For example, 
there is no real function that satisfies (y�)2 � 1 � 0. Some differential equations possess solu-
tions that can be found analytically, that is, solutions in explicit or implicit form found by 
implementing an equation-specific method of solution. These solution methods may involve 
certain manipulations, such as a substitution, and procedures, such as integration. Some dif-
ferential equations possess solutions but the differential equation cannot be solved analyti-
cally. In other words, when we say that a solution of a DE exists, we do not mean that there 
also exists a method of solution that will produce explicit or implicit solutions. Over a time 
span of centuries, mathematicians have devised ingenious procedures for solving some very 
specialized equations, so there are, not surprisingly, a large number of differential equations 
that can be solved analytically. Although we shall study some of these methods of solution for 
first-order equations in the subsequent sections of this chapter, let us imagine for the moment 
that we have in front of us a first-order differential equation in normal form dy/dx � f (x, y), and 
let us further imagine that we can neither find nor invent a method for solving it analytically. 
This is not as bad a predicament as one might think, since the differential equation itself can 
sometimes “tell” us specifics about how its solutions “behave.” We have seen in Section 1.2 
that whenever f (x, y) and 0f/0y satisfy certain continuity conditions, qualitative questions about 
existence and uniqueness of solutions can be answered. In this section we shall see that other 
qualitative questions about properties of solutions—such as, How does a solution behave near 
a certain point? or, How does a solution behave as x S q?—can often be answered when the 
function f depends solely on the variable y.

We begin our study of first-order differential equations with two ways of analyzing a DE 
qualitatively. Both these ways enable us to determine, in an approximate sense, what a solution 
curve must look like without actually solving the equation.

2.1.1 Direction Fields

 Slope We begin with a simple concept from calculus: A derivative dy/dx of a differen-
tiable function y � y(x) gives slopes of tangent lines at points on its graph. Because a solution 
y � y(x) of a first-order differential equation dy/dx � f (x, y) is necessarily a differentiable 
function on its interval I of definition, it must also be continuous on I. Thus the corresponding 
solution curve on I must have no breaks and must possess a tangent line at each point (x, y(x)). 
The slope of the tangent line at (x, y(x)) on a solution curve is the value of the first derivative 
dy/dx at this point, and this we know from the differential equation f (x, y(x)). Now suppose 
that (x, y) represents any point in a region of the xy-plane over which the function f is defined. 
The value f (x, y) that the function f assigns to the point represents the slope of a line, or as we 
shall envision it, a line segment called a lineal element. For example, consider the equation 
dy/dx � 0.2xy, where f (x, y) � 0.2xy. At, say, the point (2, 3), the slope of a lineal element is 
f (2, 3) � 0.2(2)(3) � 1.2. FIGURE 2.1.1(a) shows a line segment with slope 1.2 passing through 
(2, 3). As shown in Figure 2.1.1(b), if a solution curve also passes through the point (2, 3), it 
does so tangent to this line segment; in other words, the lineal element is a miniature tangent 
line at that point.

 Direction Field If we systematically evaluate f over a rectangular grid of points in the 
xy-plane and draw a lineal element at each point (x, y) of the grid with slope f (x, y), then the 
collection of all these lineal elements is called a direction field or a slope field of the differen-
tial equation dy/dx � f (x, y). Visually, the direction field suggests the appearance or shape of 
a family of solution curves of the differential equation, and consequently it may be possible to 
see at a glance certain qualitative aspects of the solutions—regions in the plane, for example, 
in which a solution exhibits an unusual behavior. A single solution curve that passes through a 
direction field must follow the flow pattern of the field; it is tangent to a lineal element when it 
intersects a point in the grid.

FIGURE 2.1.1 Solution curve is tangent 
to lineal element at (2, 3)
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34 CHAPTER 2  First-Order Differential Equations

■ EXAMPLE 1 Direction Field
The direction field for the differential equation dy/dx � 0.2xy shown in FIGURE 2.1.2(a) 
was obtained using computer software in which a 5 � 5 grid of points (mh, nh), m and 
n integers, was defined by letting �5 � m � 5, �5 � n � 5 and h � 1. Notice in 
Figure 2.1.2(a) that at any point along the x-axis (y � 0) and the y-axis (x � 0) the slopes 
are f (x, 0) � 0 and f (0, y) � 0, respectively, so the lineal elements are horizontal. Moreover, 
observe in the first quadrant that for a fixed value of x, the values of f (x, y) � 0.2xy 
increase as y increases; similarly, for a fixed y, the values of f (x, y) � 0.2xy increase as 
x increases. This means that as both x and y increase, the lineal elements become almost 
vertical and have positive slope ( f (x, y) � 0.2xy � 0 for x � 0, y � 0). In the second 
quadrant, | f (x, y)| increases as |x| and y increase, and so the lineal elements again become 
almost vertical but this time have negative slope ( f (x, y) � 0.2xy 	 0 for x 	 0, y � 0). 
Reading left to right, imagine a solution curve starts at a point in the second quadrant, 
moves steeply downward, becomes flat as it passes through the y-axis, and then as it enters 
the first quadrant moves steeply upward—in other words, its shape would be concave 
upward and similar to a horseshoe. From this it could be surmised that y S q  as x S 
q . 
Now in the third and fourth quadrants, since f (x, y) � 0.2xy � 0 and f (x, y) � 0.2xy 	 0, 
respectively, the situation is reversed; a solution curve increases and then decreases as we 
move from left to right. We saw in (1) of Section 1.1 that y � e0.1x2

 is an explicit solution 
of the differential equation dy/dx � 0.2xy; you should verify that a one-parameter fam-
ily of solutions of the same equation is given by y � ce0.1x2

. For purposes of comparison 
with Fig ure 2.1.2(a) some representative graphs of members of this family are shown in 
Figure 2.1.2(b).

■ EXAMPLE 2 Direction Field
Use a direction field to sketch an approximate solution curve for the initial-value  problem 
dy/dx � sin y, y(0) � � 32.

SOLUTION Before proceeding, recall that from the continuity of f (x, y) � sin y and 
0f/0y � cos y, Theorem 1.2.1 guarantees the existence of a unique solution curve passing 
through any specified point (x0, y0) in the plane. Now we set our computer software again 
for a 5 � 5 rectangular region, and specify (because of the initial condition) points in that 
region with vertical and horizontal separation of 1

2  unit—that is, at points (mh, nh), h � 1
2 , 

m and n integers such that �10 � m � 10, �10 � n � 10. The result is shown in FIGURE 2.1.3. 
Since the right-hand side of dy/dx � sin y is 0 at y � 0 and at y � �p, the lineal elements 
are horizontal at all points whose second coordinates are y � 0 or y � �p. It makes sense 
then that a solution curve passing through the initial point (0, � 32) has the shape shown in 
color in the figure.

 Increasing/Decreasing Interpretation of the derivative dy/dx as a function that gives 
slope plays the key role in the construction of a direction field. Another telling property of the 
first derivative will be used next, namely, if dy/dx � 0 (or dy/dx 	 0) for all x in an interval I, 
then a differentiable function y � y(x) is increasing (or decreasing) on I.

Remarks
Sketching a direction field by hand is straightforward but time consuming; it is probably one 
of those tasks about which an argument can be made for doing it once or twice in a lifetime, 
but is overall most efficiently carried out by means of computer software. Prior to calcula-
tors, PCs, and software, the method of isoclines was used to facilitate sketching a direction 
field by hand. For the DE dy/dx � f (x, y), any member of the family of curves f (x, y) � c, 
c a constant, is called an isocline. Lineal elements drawn through points on a specific isocline, 
say, f (x, y) � c1, all have the same slope c1. In Problem 15 in Exercises 2.1, you have your 
two opportunities to sketch a direction field by hand.

FIGURE 2.1.2 Direction field and solution 
curves in Example 1
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 2.1 Solution Curves Without a Solution 35

2.1.2 Autonomous First-Order DEs

 DEs Free of the Independent Variable In Section 1.1 we divided the class of 
ordinary differential equations into two types: linear and nonlinear. We now consider briefly 
another kind of classification of ordinary differential equations, a classification that is of particu-
lar importance in the qualitative investigation of differential equations. An ordinary differential 
equation in which the independent variable does not appear explicitly is said to be autonomous. 
If the symbol x denotes the independent variable, then an autonomous first-order differential 
equation can be written in general form as F(y, y�) � 0 or in normal form as

  
dy

dx
� f (y). (1)

We shall assume throughout the discussion that follows that f in (1) and its derivative f � are 
continuous functions of y on some interval I. The first-order equations

 f ( y) f (x, y)

 T T

 
dy

dx
� 1 � y2 and 

dy

dx
� 0.2xy

are autonomous and nonautonomous, respectively.
Many differential equations encountered in applications, or equations that are models 

of physical laws that do not change over time, are autonomous. As we have already seen 
in Section 1.3, in an applied context, symbols other than y and x are routinely used to 
represent the dependent and independent variables. For example, if t represents time, then 
inspection of

 
dA

dt
� kA, 

dx

dt
� kx(n � 1 2 x), 

dT

dt
� k(T 2 Tm), 

dA

dt
� 6 2

1

100
 A,

where k, n, and Tm are constants, shows that each equation is time-independent. Indeed, all of 
the first-order differential equations introduced in Section 1.3 are time-independent and so are 
autonomous.

 Critical Points The zeros of the function f in (1) are of special importance. We say that 
a real number c is a critical point of the autonomous differential equation (1) if it is a zero of f  , 
that is, f (c) � 0. A critical point is also called an equilibrium point or stationary point. Now 
observe that if we substitute the constant function y(x) � c into (1), then both sides of the equation 
equal zero. This means

If c is a critical point of (1), then y (x) � c is a constant solution of the autonomous 
differential equation.

A constant solution y(x) � c of (1) is called an equilibrium solution; equilibria are the only 
constant solutions of (1).

As already mentioned, we can tell when a nonconstant solution y � y(x) of (1) is increas-
ing or decreasing by determining the algebraic sign of the derivative dy/dx; in the case of (1) 
we do this by identifying the intervals on the y-axis over which the function f (y) is positive 
or negative.

■ EXAMPLE 3 An Autonomous DE
The differential equation

 
dP

dt
� P(a 2 bP),
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36 CHAPTER 2  First-Order Differential Equations

where a and b are positive constants, has the normal form dP/dt � f (P), which is (1) with t and P 
playing the parts of x and y, respectively, and hence is autonomous. From f (P) � P(a � bP) � 0, 
we see that 0 and a/b are critical points of the equation and so the equilibrium solutions are 
P(t) � 0 and P(t) � a/b. By putting the critical points on a vertical line, we divide the line into 
three intervals defined by �q 	 P 	 0, 0 	 P 	 a/b, a/b 	 P 	 q . The arrows on the line 
shown in FIGURE 2.1.4 indicate the algebraic sign of f (P) � P(a � bP) on these intervals and 
whether a nonconstant solution P(t) is increasing or decreasing on an interval. The following 
table explains the figure.

Interval Sign of f (P) P(t) Arrow

(�q, 0) minus decreasing points down
(0, a/b) plus increasing points up
(a/b, q ) minus decreasing points down

Figure 2.1.4 is called a one-dimensional phase portrait, or simply phase portrait, of the 
differential equation dP/dt � P(a � bP). The vertical line is called a phase line.

 Solution Curves Without solving an autonomous differential equation, we can usu-
ally say a great deal about its solution curves. Since the function f in (1) is independent of the 
variable x, we can consider f defined for �q 	 x 	 q  or for 0 � x 	 q . Also, since f and 
its derivative f � are continuous functions of y on some interval I of the y-axis, the fundamental 
results of Theorem 1.2.1 hold in some horizontal strip or region R in the xy-plane correspond-
ing to I, and so through any point (x0, y0) in R there passes only one solution curve of (1). See 
FIGURE 2.1.5 (a). For the sake of discussion, let us suppose that (1) possesses exactly two critical 
points, c1 and c2, and that c1 	 c2. The graphs of the equilibrium solutions y(x) � c1 and y(x) � c2 
are horizontal lines, and these lines partition the region R into three subregions R1, R2, and R3 as 
illustrated in Figure 2.1.5(b). Without proof, here are some conclusions that we can draw about 
a nonconstant solution y(x) of (1):

•  If (x0, y0) is in a subregion Ri, i � 1, 2, 3, and y(x) is a solution whose graph passes through 
this point, then y(x) remains in the subregion Ri for all x. As illustrated in Figure 2.1.5(b), 
the solution y(x) in R2 is bounded below by c1 and above by c2; that is, c1 	 y(x) 	 c2 for 
all x. The solution curve stays within R2 for all x because the graph of a nonconstant solu-
tion of (1) cannot cross the graph of either equilibrium solution y(x) � c1 or y(x) � c2. See 
Problem 33 in Exercises 2.1.

•  By continuity of f we must then have either f (y) � 0 or f (y) 	 0 for all x in a subregion Ri, 
i � 1, 2, 3. In other words, f (y) cannot change signs in a subregion. See Problem 33 in 
Exercises 2.1.

•  Since dy/dx � f (y(x)) is either positive or negative in a subregion Ri, i � 1, 2, 3, a solution 
y(x) is strictly monotonic—that is, y(x) is either increasing or decreasing in a subregion Ri. 
Therefore y(x) cannot be oscillatory, nor can it have a relative extremum (maximum or 
minimum). See Problem 33 in Exercises 2.1.

•  If y(x) is bounded above by a critical point c1 (as in subregion R1 where y(x) 	 c1 for all x), 
then the graph of y(x) must approach the graph of the equilibrium solution y(x) � c1 either 
as x S q  or as x S �q. If y(x) is bounded—that is, bounded above and below by two 
consecutive critical points (as in subregion R2 where c1 	 y(x) 	 c2 for all x), then the 
graph of y(x) must approach the graphs of the equilibrium solutions y(x) � c1 and y(x) � c2, 
one as x S q  and the other as x S �q. If y(x) is bounded below by a critical point (as 
in subregion R3 where c2 	 y(x) for all x), then the graph of y(x) must approach the graph 
of the equilibrium solution y(x) � c2 either as x S q  or as x S �q. See Problem 34 in 
Exercises 2.1.

 With the foregoing facts in mind, let us reexamine the differential equation in Example 3.

FIGURE 2.1.4 Phase portrait for 
Example 3
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 2.1 Solution Curves Without a Solution 37

■ EXAMPLE 4 Example 3 Revisited
The three intervals determined on the P-axis or phase line by the critical points P � 0 and 
P � a/b now correspond in the tP-plane to three subregions:

 R1: �q 	 P 	 0,  R2: 0 	 P 	 a/b,  R3: a/b 	 P 	 q ,

where �q 	 t 	 q . The phase portrait in Figure 2.1.4 tells us that P(t) is decreasing in R1, 
increasing in R2, and decreasing in R3. If P(0) � P0 is an initial value, then in R1, R2, and R3, 
we have, respectively, the following:

 (i) For P0 	 0, P(t) is bounded above. Since P(t) is decreasing, P(t) decreases without 
bound for increasing t and so P(t) S 0 as t S �q. This means the negative t-axis, 
the graph of the equilibrium solution P(t) � 0, is a horizontal asymptote for a solu-
tion curve.

 (ii) For 0 	 P0 	 a/b, P(t) is bounded. Since P(t) is increasing, P(t) S a/b as t S q  
and P(t) S 0 as t S �q. The graphs of the two equilibrium solutions, P(t) � 0 and 
P(t) � a/b, are horizontal lines that are horizontal asymptotes for any solution curve 
starting in this subregion.

 (iii) For P0 � a/b, P(t) is bounded below. Since P(t) is decreasing, P(t) S a/b as t S q . 
The graph of the equilibrium solution P(t) � a/b is a horizontal  asymptote for a 
solution curve.

In FIGURE 2.1.6, the phase line is the P-axis in the tP-plane. For clarity, the original phase 
line from Figure 2.1.4 is reproduced to the left of the plane in which the subregions R1, R2, 
and R3 are shaded. The graphs of the equilibrium solutions P(t) � a/b and P(t) � 0 (the t-axis) 
are shown in the figure as blue dashed lines; the solid graphs represent typical graphs of P(t) 
illustrating the three cases just discussed.

In a subregion such as R1 in Example 4, where P(t) is decreasing and unbounded below, we 
must necessarily have P(t) S �q. Do not interpret this last statement to mean P(t) S �q as 
t S q; we could have P(t) S �q as t S T, where T � 0 is a finite number that depends on 
the initial condition P(t0) � P0. Thinking in dynamic terms, P(t) could “blow up” in finite time; 
thinking graphically, P(t) could have a vertical asymptote at t � T � 0. A similar remark holds 
for the subregion R3.

The differential equation dy/dx � sin y in Example 2 is autonomous and has an infinite number 
of critical points since sin y � 0 at y � np, n an integer. Moreover, we now know that because 
the solution y(x) that passes through (0, �3

2) is bounded above and below by two consecutive 
critical points (�p 	 y(x) 	 0) and is decreasing (sin y 	 0 for �p 	 y 	 0), the graph of y(x) 
must approach the graphs of the equilibrium solutions as horizontal asymptotes: y(x) S �p as 
x S q and y(x) S 0 as x S �q.

■ EXAMPLE 5 Solution Curves of an Autonomous DE
The autonomous equation dy/dx � (y � 1)2 possesses the single critical point 1. From the 
phase portrait in FIGURE 2.1.7(a), we conclude that a solution y(x) is an increasing function in the 
subregions defined by �q 	 y 	 1 and 1 	 y 	 q, where �q 	 x 	 q. For an initial condi-
tion y(0) � y0 	 1, a solution y(x) is increasing and bounded above by 1, and so y(x) S 1 as 
x S q; for y(0) � y0 � 1, a solution y(x) is increasing and unbounded.

Now y(x) � 1 � 1/(x � c) is a one-parameter family of solutions of the differential equa-
tion. (See Problem 4 in Exercises 2.2.) A given initial condition determines a value for c. 
For the initial conditions, say, y(0) � �1 	 1 and y(0) � 2 � 1, we find, in turn, that 
y(x) � 1 � 1/(x � 1

2) and so y(x) � 1 � 1/(x � 1). As shown in Figure 2.1.7(b) and 2.1.7(c), 
the graph of each of these rational functions possesses a vertical asymptote. But bear in mind 
that the solutions of the IVPs

 
dy

dx
� (y 2 1)2, y(0) � �1 and 

dy

dx
� (y 2 1)2, y(0) � 2

FIGURE 2.1.6 Phase portrait and solution 
curves in each of the three subregions in 
Example 4

P

a
b

0

decreasing

increasing

decreasing

phase line tP-plane

P0

P0

P0

P

R1

R2

R3
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38 CHAPTER 2  First-Order Differential Equations

are defined on special intervals. They are, respectively,

 y(x) � 1 2
1

x � 1
2

, �
1

2
, x , q  and y(x) � 1 2

1

x 2 1
, �q , x , 1.

The solution curves are the portions of the graphs in Figures 2.1.7(b) and 2.1.7(c) shown 
in blue. As predicted by the phase portrait, for the solution curve in Figure 2.1.7(b), 
y(x) S 1 as x S q ; for the solution curve in Figure 2.1.7(c), y(x) S q  as x S 1 from 
the left.

FIGURE 2.1.8 Critical point c is an 
attractor in (a), a repeller in (b), and 
semi-stable in (c) and (d)

(a) (b) (c) (d)

y0

y0y0

y0

c c c c

FIGURE 2.1.9 Direction field for an 
autonomous DE

slopes of lineal
elements on a
vertical line vary

slopes of lineal
elements on a
horizontal line
are all the same

y = 1

y

x

 Attractors and Repellers Suppose y(x) is a nonconstant solution of the autonomous 
differential equation given in (1) and that c is a critical point of the DE. There are basically 
three types of behavior y(x) can exhibit near c. In FIGURE 2.1.8 we have placed c on four verti-
cal phase lines. When both arrowheads on either side of the dot labeled c point toward c, as 
in Figure 2.1.8(a), all solutions y(x) of (1) that start from an initial point (x0, y0) sufficiently 
near c exhibit the asymptotic behavior limxSq y(x) � c. For this reason the critical point c is 
said to be asymptotically stable. Using a physical analogy, a solution that starts near c is like 
a charged particle that, over time, is drawn to a particle of opposite charge, and so c is also 
referred to as an attractor. When both arrowheads on either side of the dot labeled c point 
away from c, as in Figure 2.1.8(b), all solutions y(x) of (1) that start from an initial point 
(x0, y0) move away from c as x increases. In this case the critical point c is said to be unstable. 
An unstable critical point is also called a repeller, for obvious reasons. The critical point c 
illustrated in Figures 2.1.8(c) and 2.1.8(d) is neither an attractor nor a repeller. But since c 
exhibits characteristics of both an attractor and a repeller—that is, a solution starting from 
an initial point (x0, y0) sufficiently near c is attracted to c from one side and repelled from the 
other side—we say that the critical point c is semi-stable. In Example 3, the critical point a/b 
is asymptotically stable (an attractor) and the critical point 0 is unstable (a repeller). The criti-
cal point 1 in Example 5 is semi-stable.

 Autonomous DEs and Direction Fields If a first-order differential equation is 
autonomous, then we see from the right-hand side of its normal form dy/dx � f (y) that slopes 
of lineal elements through points in the rectangular grid used to construct a direction field 
for the DE depend solely on the y-coordinate of the points. Put another way, lineal elements 
passing through points on any horizontal line must all have the same slope and therefore are 
parallel; slopes of lineal elements along any vertical line will, of course, vary. These facts 
are apparent from inspection of the horizontal gray strip and vertical blue strip in FIGURE 2.1.9. 
The figure exhibits a direction field for the autonomous equation dy/dx � 2(y � 1). The 
red lineal elements in Figure 2.1.9 have zero slope because they lie along the graph of the 
equilibrium solution y � 1.

1

y

increasing

increasing

y

(0, 2)
y = 1 

x = 1 

y

x = –

y = 1 

(0, –1)

x x

(a) Phase line (b) xy-plane     
     y (0) < 1 

(c) xy-plane
     y (0) > 1 

1
2

FIGURE 2.1.7  Behavior of solutions near y � 1 in Example 5  
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 2.1 Solution Curves Without a Solution 39

 Translation Property  Recall from precalculus mathematics that the graph of a function 
y � f (x � k), where k is a constant, is the graph of y � f (x) rigidly translated or shifted horizontally 
along the x-axis by an amount | k |; the translation is to the right if k . 0 and to the left if k , 0.

It turns out that under the assumptions stated after equation (1), solution curves of an au-
tonomous first-order DE are related by the concept of translation. To see this, let’s consider 
the differential equation dy/dx � y(3 � y), which is a special case of the autonomous equation 
considered in Examples 3 and 4. Since y � 0 and y � 3 are equilibrium solutions of the DE, 
their graphs divide the xy-plane into subregions R1, R2, and R3, defined by the three inequalities:

 R1: �q � y � 0,  R2: 0 � y � 3,  R3: 3 � y � q .

In FIGURE 2.1.10 we have superimposed on a direction field of the DE six solutions curves. The 
figure illustrates that all solution curves of the same color, that is, solution curves lying within a 
particular subregion Ri all look alike. This is no coincidence, but is a natural consequence of the 
fact that lineal elements passing through points on any horizontal line are parallel. That said, the 
following translation property of an autonomous DE should make sense:

 If y(x) is a solution of an autonomous differential equation dy/dx � f (y), 
then y1(x) � y(x � k), k a constant, is also a solution.

Hence, if y(x) is a solution of the initial-value problem dy/dx � f (y), y(0) � y0 then 
y1(x) � y(x � x0) is a solution of the IVP dy/dx � f (y), y(x0) � y0. For example, it is easy to verify 
that y(x) � ex, �q  � x � q , is a solution of the IVP dy/dx � y, y(0) � 1 and so a solution 
y1(x) of, say, dy/dx � y, y(4) � 1 is y(x) � ex translated 4 units to the right:

 y1(x) � y(x � 4) � ex�4, �q  � x � q .

2.1.1  Direction Fields
In Problems 1–4, reproduce the given computer-generated direc-
tion field. Then sketch, by hand, an approximate solution curve 
that passes through each of the indicated points. Use different 
colored pencils for each solution curve.

 1. 
dy

dx
� x  2 2 y2

(a) y(�2) � 1 (b) y(3) � 0
(c) y(0) � 2 (d) y(0) � 0 

FIGURE 2.1.11 Direction field for Problem 1

y

x

3

2

1

–1

–2

–3

–3 –2 –1 1 2 3

 2. 
dy

dx
� e�0.01xy2

(a) y(�6) � 0 (b) y(0) � 1
(c) y(0) � �4 (d) y(8) � �4 

FIGURE 2.1.12  Direction field for Problem 2

4 8

8

4

x

y

–4

–4

–8

–8

 2.1 Exercises Answers to selected odd-numbered problems begin on page ANS-2.  

FIGURE 2.1.10 Translated solution curves 
of an autonomous DE

y = 3

y = 0

y

x
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40 CHAPTER 2  First-Order Differential Equations

 3. 
dy

dx
� 1 2 xy

(a) y(0) � 0 (b) y(�1) � 0
(c) y(2) � 2 (d) y(0) � �4 

FIGURE 2.1.13  Direction field for Problem 3

42

2

4

x

y

–2

–2

–4

–4

 4. 
dy

dx
� ( sin x) cos y

(a) y(0) � 1 (b) y(1) � 0

(c) y(3) � 3 (d) y(0) � �5
2

FIGURE 2.1.14  Direction field for Problem 4

42

2

4

x

y

–2

–2

–4

–4

In Problems 5–12, use computer software to obtain a direction 
field for the given differential equation. By hand, sketch an 
approximate solution curve passing through each of the given 
points.

 5. y� � x 6. y� � x � y

(a) y(0) � 0 (a) y(�2) � 2
(b) y(0) � �3 (b) y(1) � �3

 7. y 
dy

dx
� �x 8. 

dy

dx
�

1
y

(a) y(1) � 1 (a) y(0) � 1
(b) y(0) � 4 (b) y(�2) � �1

 9. 
dy

dx
� 0.2x2 � y 10. 

dy

dx
� xey

(a) y(0) � 
1

2
 (a) y(0) � �2

(b) y(2) � �1 (b) y(1) � 2.5

 11. y9 � y 2  cos 

p

2
x 12. 

dy

dx
� 1 2

y

x

(a) y(2) � 2 (a) y 1�1
22 � 2

(b) y(�1) � 0 (b) y 13
22 � 0

In Problems 13 and 14, the given figures represent the graph of 
f (y) and f (x), respectively. By hand, sketch a direction field over 
an appropriate grid for dy/dx � f (y) (Problem 13) and then for 
dy/dx � f (x) (Problem 14).

 13. 

y

f

1

1

FIGURE 2.1.15 Graph for Problem 13

 14. 

x

f

1

1

FIGURE 2.1.16 Graph for Problem 14

 15. In parts (a) and (b) sketch isoclines f (x, y) � c (see the Remarks 
on page 34) for the given differential equation using the in-
dicated values of c. Construct a direction field over a grid by 
carefully drawing lineal elements with the appropriate slope 
at chosen points on each isocline. In each case, use this rough 
direction field to sketch an approximate solution curve for the 
IVP consisting of the DE and the initial condition y(0) � 1.
(a) dy/dx � x � y; c an integer satisfying �5 � c � 5

(b) dy/dx � x 2 � y 2; c � 1
4 c � 1, c � 9

4, c � 4

Discussion Problems
 16. (a)  Consider the direction field of the differential equation 

dy/dx � x( y � 4)2 � 2, but do not use technology to obtain 
it. Describe the slopes of the lineal elements on the lines 
x � 0, y � 3, y � 4, and y � 5.
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 2.1 Solution Curves Without a Solution 41

(b) Consider the IVP dy/dx � x(y � 4)2 � 2, y(0) � y0, where 
y0 	 4. Can a solution y(x) S q as x S q? Based on the 
information in part (a), discuss.

 17. For a first-order DE dy/dx � f (x, y), a curve in the plane 
defined by f (x, y) � 0 is called a nullcline of the equation, 
since a lineal element at a point on the curve has zero slope. 
Use computer software to obtain a direction field over a 
rectangular grid of points for dy/dx � x 2 � 2y, and then 
superimpose the graph of the nullcline y � 1

2 x2 over the 
direction field. Discuss the behavior of solution curves in 
regions of the plane defined by y 	 1

2x 2 and by y � 1
2x 2. 

Sketch some approximate solution curves. Try to generalize 
your observations.

 18. (a)  Identify the nullclines (see Problem 17) in Prob lems 1, 3, 
and 4. With a colored pencil, circle any lineal elements 
in FIGURES 2.1.11, 2.1.13, and 2.1.14 that you think may be 
a lineal element at a point on a nullcline.

(b) What are the nullclines of an autonomous first-order DE?

2.1.2  Autonomous First-Order DEs
 19. Consider the autonomous first-order differential equation 

dy/dx � y � y3 and the initial condition y(0) � y0. By hand, 
sketch the graph of a typical solution y(x) when y0 has the 
given values.
(a) y0 � 1 (b) 0 	 y0 	 1
(c) �1 	 y0 	 0 (d) y0 	 �1

 20. Consider the autonomous first-order differential equation 
dy/dx � y2 � y4 and the initial condition y(0) � y0. By hand, 
sketch the graph of a typical solution y(x) when y0 has the 
given values.
(a) y0 � 1 (b) 0 	 y0 	 1
(c) �1 	 y0 	 0 (d) y0 	 �1

In Problems 21–28, find the critical points and phase portrait 
of the given autonomous first-order differential equation. 
Classify each critical point as asymptotically stable, unstable, 
or semi-stable. By hand, sketch typical solution curves in the 
regions in the xy-plane determined by the graphs of the equilib-
rium solutions.

 21. 
dy

dx
� y2 2 3y 22. 

dy

dx
� y2 2 y3

 23. 
dy

dx
� (y 2 2)4 24. 

dy

dx
� 10 � 3y 2 y2

 25. 
dy

dx
� y2(4 2 y2) 26. 

dy

dx
� y(2 2 y)(4 2 y)

 27. 
dy

dx
� y ln (y � 2) 28. 

dy

dx
�

yey 2 9y

ey

In Problems 29 and 30, consider the autonomous differential 
equation dy/dx � f ( y), where the graph of f is given. Use the 
graph to locate the critical points of each differential equation. 
Sketch a phase portrait of each differential equation. By hand, 
sketch typical solution curves in the subregions in the xy-plane 
determined by the graphs of the equilibrium solutions.

 29. 

FIGURE 2.1.17 Graph for Problem 29

yc

f

 30. 

FIGURE 2.1.18 Graph for Problem 30

1

f

1

y

Discussion Problems
 31. Consider the autonomous DE dy/dx � (2/p)y � sin y. 

Determine the critical points of the equation. Discuss a way 
of obtaining a phase portrait of the equation. Classify the crit-
ical points as asymptotically stable, unstable, or semi-stable.

 32. A critical point c of an autonomous first-order DE is said to be 
isolated if there exists some open interval that contains c but 
no other critical point. Discuss: Can there exist an autonomous 
DE of the form given in (1) for which every critical point is 
nonisolated? Do not think profound thoughts.

 33. Suppose that y(x) is a nonconstant solution of the autonomous 
equation dy/dx � f (y) and that c is a critical point of the DE. 
Discuss: Why can’t the graph of y(x) cross the graph of the equi-
librium solution y � c? Why can’t  f (y) change signs in one of the 
subregions discussed on page 36? Why can’t y(x) be oscillatory 
or have a relative extremum (maximum or minimum)?

 34. Suppose that y(x) is a solution of the autonomous equation 
dy/dx � f (y) and is bounded above and below by two consecu-
tive critical points c1 	 c2, as in subregion R2 of Figure 2.1.5(b). 
If f (y) � 0 in the region, then limxSq y(x) � c2. Discuss why there 
cannot exist a number L 	 c2 such that limxSq y(x) � L. As part 
of your discussion, consider what happens to y�(x) as x S q .

 35. Using the autonomous equation (1), discuss how it is possible 
to obtain information about the location of points of inflection 
of a solution curve.

 36. Consider the autonomous DE dy/dx � y2 � y � 6. Use your 
ideas from Problem 35 to find intervals on the y-axis for which 
solution curves are concave up and intervals for which solution 
curves are concave down. Discuss why each solution curve 
of an initial-value problem of the form dy/dx � y2 � y � 6, 
y(0) � y0, where �2 	 y0 	 3, has a point of inflection with the 
same y-coordinate. What is that y-coordinate? Carefully sketch 
the solution curve for which y(0) � �1. Repeat for y(2) � 2.
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42 CHAPTER 2  First-Order Differential Equations

 37. Suppose the autonomous DE in (1) has no critical points. 
Discuss the behavior of the solutions.

Mathematical Models
 38. Population Model The differential equation in Example 3 is 

a well-known population model. Suppose the DE is changed to

 
dP

dt
� P(aP 2 b),

  where a and b are positive constants. Discuss what happens 
to the population P as time t increases.

 39. Terminal Velocity  The autonomous differential equation

 m 
dv

dt
� mg 2 kv,

  where k is a positive constant of proportionality called the 
drag coefficient and g is the acceleration due to gravity, 
is a model for the velocity v of a body of mass m that is 
falling under the influence of gravity. Because the term �kv 
represents air resistance or drag, the velocity of a body falling 
from a great height does not increase without bound as time t 
increases.

(a) Use a phase portrait of the differential equation to find 
the limiting, or terminal, velocity of the body. Explain 
your reasoning.

(b) Find the terminal velocity of the body if air resistance is 
proportional to v 2. See pages 23 and 26.

 40. Chemical Reactions  When certain kinds of chemicals are 
combined, the rate at which a new compound is formed is 
governed by the differential equation

 
dX

dt
� k(a 2 X)(b 2 X),

  where k � 0 is a constant of proportionality and b � a � 0. 
Here X(t) denotes the number of grams of the new compound 
formed in time t. See page 21.
(a) Use a phase portrait of the differential equation to predict 

the behavior of X as t S q .
(b) Consider the case when a � b. Use a phase portrait of 

the differential equation to predict the behavior of X as 
t S q  when X(0) 	 a. When X(0) � a.

(c) Verify that an explicit solution of the DE in the case when 
k � 1 and a � b is X(t) � a � 1/(t � c). Find a solution 
satisfying X(0) � a/2. Find a solution satisfying X(0) � 2a. 
Graph these two solutions. Does the behavior of the solu-
tions as t S q  agree with your answers to part (b)?

2.2 Separable Equations

 Introduction Consider the first-order equations dy/dx � f (x, y). When f does not depend 
on the variable y, that is, f (x, y) � g(x), the differential equation

 
dy

dx
� g(x) (1)

can be solved by integration. If g(x) is a continuous function, then integrating both sides of (1) 
gives the solution y � � g(x) dx � G(x) � c, where G(x) is an anti derivative (indefinite integral) 
of g(x). For example, if dy/dx � 1 � e2x, then y � � (1 � e2x) dx or y � x � 1

2e
2x � c.

 A Definition Equation (1), as well as its method of solution, is just a special case when 
f in dy/dx � f (x, y) is a product of a function of x and a function of y.

Defi nition 2.2.1 Separable Equation

A first-order differential equation of the form

 
dy

dx
� g(x) h(y) 

is said to be separable or to have separable variables.
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 Method of Solution Equation (4) indicates the procedure for solving separable equa-
tions. A one-parameter family of solutions, usually given implicitly, is obtained by integrating 
both sides of the differential form p( y) dy � g(x) dx.

There is no need to use two constants in the integration of a separable equation, because if we 
write H( y) � c1 � G(x) � c2, then the difference c2 � c1 can be replaced by a single constant c, 
as in (4). In many instances throughout the chapters that follow, we will relabel constants in a 
manner convenient to a given equation. For example, multiples of constants or combinations of 
constants can sometimes be replaced by a single constant.

■ EXAMPLE 1 Solving a Separable DE
Solve (1 � x) dy � y dx � 0.

SOLUTION  Dividing by (1 � x)y, we can write dy/y � dx/(1 � x), from which it follows that

 #dy

y
� # dx

1 � x

 ln |y| � ln |1 � x| � c1

 y � e ln |1�x|�c1 � e ln |1�x| � ec1 

 � |1 � x|ec1

         � � ec1(1 � x). 

Relabeling �ec1 by c then gives y � c(1 � x).

In solving first-order DEs, 
use only one constant.

d laws of exponents

d  �  |1 � x  | � 1 � x, x 	�1

|1 � x  | � �(1 � x), x � �1

 2.2 Separable Equations 43

For example, the differential equations

 
dy

dx
� x2y4e5x23y  and  dy

dx
� y � cos x 

are separable and nonseparable, respectively. To see this, note that in the first equation we can 
factor f (x,  y) � x2y4e5x23y as

 g(x) h( y)
  

 f (x,  y) � x2y4e5x23y � (x2e5x)(y4e�3y)

but in the second there is no way writing y � cos x as a product of a function of x times a func-
tion of y.

Observe that by dividing by the function h( y), a separable equation can be written as

 p(y) 
dy

dx
� g(x), (2)

where, for convenience, we have denoted 1/h( y) by p( y). From this last form we can see im-
mediately that (2) reduces to (1) when h( y) � 1.

Now if y � f(x) represents a solution of (2), we must have p(f(x))f�(x) � g(x), and 
therefore,

 #p(f(x))f9(x) dx � #g(x) dx. (3)

But dy � f�(x) dx, and so (3) is the same as

 #p(y) dy � #g(x) dx or H(y) � G(x) � c, (4)

where H( y) and G(x) are antiderivatives of p(y) � 1/h( y) and g(x), respectively.
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44 CHAPTER 2  First-Order Differential Equations

ALTERNATIVE SOLUTION Since each integral results in a logarithm, a judicious choice for 
the constant of integration is ln | c | rather than c. Rewriting the second line of the solution as 
ln | y | � ln | 1 � x | � ln | c | enables us to combine the terms on the right-hand side by the 
properties of logarithms. From ln | y | � ln | c(1 � x) |, we immediately get y � c(1 � x). Even 
if the indefinite integrals are not all logarithms, it may still be advantageous to use ln | c |. 
However, no firm rule can be given.

In Section 1.1 we have already seen that a solution curve may be only a segment or an arc of 
the graph of an implicit solution G(x, y) � 0.

■ EXAMPLE 2 Solution Curve

Solve the initial-value problem 
dy

dx
� �

x
y

, y(4) � �3.

SOLUTION  By rewriting the equation as y dy � �x dx we get

 #y  dy � �#x  dx and 
y2

2
� �

x2

2
� c1.

We can write the result of the integration as x2 � y2 � c2 by replacing the constant 2c1 by c2. 
This solution of the differential equation represents a family of concentric circles centered 
at the origin.

Now when x � 4, y � �3, so that 16 � 9 � 25 � c2. Thus the initial-value problem de-
termines the circle x2 � y2 � 25 with radius 5. Because of its simplicity, we can solve this 
implicit solution for an explicit solution that satisfies the initial condition. We have seen this 
solution as y � f2(x) or y � �"25 2 x2, �5 , x , 5 in Example 6 of Section 1.1. A 
solution curve is the graph of a differentiable function. In this case the solution curve is the 
lower semicircle, shown in blue in FIGURE 2.2.1, that contains the point (4, �3).

 Losing a Solution Some care should be exercised when separating variables, since the vari-
able divisors could be zero at a point. Specifically, if r is a zero of the function h(y), then substituting 
y � r into dy/dx � g(x) h(y) makes both sides zero; in other words, y � r is a constant solution 
of the differential equation. But after separating variables, observe that the left side of dy/h(y) � 
g(x) dx is undefined at r. As a consequence, y � r may not show up in the family of solutions 
obtained after integration and simplification. Recall, such a solution is called a singular solution.

■ EXAMPLE 3 Losing a Solution
Solve dy/dx � y2 � 4.

SOLUTION  We put the equation in the form

 
dy

y2 2 4
� dx or c 1

4

y 2 2
2

1
4

y � 2
d  dy � dx. (5)

The second equation in (5) is the result of using partial fractions on the left side of the first 
equation. Integrating and using the laws of logarithms gives

    
1

4
 ln |y 2 2| 2

1

4
 ln |y � 2| � x � c1 or ln 2 y 2 2

y � 2
2 � 4x � c2 or 

y 2 2

y � 2
� e4x�c2.

Here we have replaced 4c1 by c2. Finally, after replacing ec2 by c and solving the last equation 
for y, we get the one-parameter family of solutions

 y � 2 
1 � ce4x

1 2 ce4x . (6)

Now if we factor the right side of the differential equation as dy/dx � (y � 2)(y � 2), we 
know from the discussion in Section 2.1 that y � 2 and y � �2 are two constant (equilibrium) 

FIGURE 2.2.1 Solution curve for IVP in 
Example 2

x

y

(4, –3)
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 2.2 Separable Equations 45

solutions. The solution y � 2 is a member of the family of solutions defined by (6) correspond-
ing to the value c � 0. However, y � �2 is a singular solution; it cannot be obtained from (6) 
for any choice of the parameter c. This latter solution was lost early on in the solution process. 
Inspection of (5) clearly indicates that we must preclude y � �2 in these steps.

■ EXAMPLE 4 An Initial-Value Problem
Solve the initial-value problem

  cos x(e2y 2 y) 
dy

dx
� ey sin 2x, y(0) � 0.

SOLUTION  Dividing the equation by e y cos x gives

 
e2y 2 y

ey  dy �
 sin 2x
 cos x

 dx.

Before integrating, we use termwise division on the left side and the trigonometric identity 
sin 2x � 2 sin x cos x on the right side. Then

  #(ey 2 ye�y) dy � 2#  sin x dx

yields    ey � ye�y � e�y � �2 cos x � c. (7)

The initial condition y � 0 when x � 0 implies c � 4. Thus a solution of the initial-value 
problem is

 ey � ye�y � e�y � 4 2 2 cos x. (8)

 Use of Computers In the Remarks at the end of Section 1.1 we mentioned that it 
may be difficult to use an implicit solution G(x, y) � 0 to find an explicit solution y � f(x). 
Equation (8) shows that the task of solving for y in terms of x may present more problems than 
just the drudgery of symbol pushing—it simply can’t be done! Implicit solutions such as (8) are 
somewhat frustrating; neither the graph of the equation nor an interval over which a solution 
satisfying y(0) � 0 is defined is apparent. The problem of “seeing” what an implicit solution 
looks like can be overcome in some cases by means of technology. One way* of proceeding is 
to use the contour plot application of a CAS. Recall from multivariate calculus that for a func-
tion of two variables z � G(x, y) the two-dimensional curves defined by G(x, y) � c, where c is 
constant, are called the level curves of the function. With the aid of a CAS we have illustrated 
in FIGURE 2.2.2 some of the level curves of the function G(x, y) � ey � ye–y � e–y � 2 cos x. 
The family of solutions defined by (7) are the level curves G(x, y) � c. FIGURE 2.2.3 illustrates, 
in blue, the level curve G(x, y) � 4, which is the particular solution (8). The red curve in 
Figure 2.2.3 is the level curve G(x, y) � 2, which is the member of the family G(x, y) � c 
that satisfies y(p/2) � 0.

If an initial condition leads to a particular solution by finding a specific value of the 
parameter c in a family of solutions for a first-order differential equation, it is a natural 
inclination for most students (and instructors) to relax and be content. However, a solution 
of an initial-value problem may not be unique. We saw in Example 4 of Section 1.2 that the 
initial-value problem

 
dy

dx
� xy1>2, y(0) � 0, (9)

has at least two solutions, y � 0 and y � 1
16 x4. We are now in a position to solve the equation. 

*In Section 2.6 we discuss several other ways of proceeding that are based on the concept of a numerical 
solver.

integration by parts S

FIGURE 2.2.2 Level curves G (x, y ) � c, 
where G (x, y ) � ey � ye�y � e�y � 2 cos x

x

y

2

1

–1

–2

–2 –1 1 2

FIGURE 2.2.3 Level curves c � 2 and 
c � 4

–1

–2

x

y

2

1

–2 –1 1 2

c = 2

c = 4

(0, 0)

(  /2, 0)π
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46 CHAPTER 2  First-Order Differential Equations

Separating variables and integrating y�1>2
 dx � x dx gives

 2y1>2 �
x  2

2
� c1 or y � ax  2

4
� cb2

, c $ 0.

When x � 0, then y � 0, and so necessarily c � 0. Therefore y � 1
16  x4. The trivial solution 

y � 0 was lost by dividing by y1>2. In addition, the initial-value problem (9) possesses infi-
nitely many more solutions, since for any choice of the parameter a � 0, the piecewise-defined 
function

 y � e 0,

(x  2 2 a2)2/16,   

x , a

x $ a

satisfies both the differential equation and initial condition. See FIGURE 2.2.4.

 Solutions Defined by Integrals If g is a function continuous on an open interval I 
containing a, then for every x in I,

 
d

dx
 #

x

a

g(t) dt � g(x).

The foregoing result is one of the two forms of the fundamental theorem of calculus. In other 
words, ex

a  g(t) dt is an antiderivative of the function g. There are times when this form is conve-
nient in solving DEs. For example, if g is continuous on an interval I containing x0 and x, then 
a solution of the simple initial-value problem dy/dx � g(x), y(x0) � y0 that is defined on I is 
given by

 y(x) � y0 � #
x

x0

 g(t) dt

You should verify that y(x) defined in this manner satisfies the initial condition. Since an antide-
rivative of a continuous function g cannot always be expressed in terms of elementary functions, 
this may be the best we can do in obtaining an explicit solution of an IVP. The next example 
illustrates this idea.

■ EXAMPLE 5  An Initial-Value Problem

Solve 
dy

dx
� e�x2

, y(2) � 6.

SOLUTION  The function g(x) � e�x2

 is continuous on the interval (�q,  q) but its antide-
rivative is not an elementary function. Using t as dummy variable of integration, we integrate 
by sides of the given differential equation:

  #
x

2

dy

dt
  dt � #

x

2
e�t2

 dt

  y(t)Tx
2

� #
x

2
e�t2

 dt

  y(x) 2 y(2) � #
x

2
e�t2

 dt

  y(x) � y(2) � #
x

2
e�t2

 dt.

y

x
(0, 0)

a = 0 a > 0 

FIGURE 2.2.4 Piecewise-defined 
solutions of (9)
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Using the initial condition y(2) � 6 we obtain the solution

 y(x) � 6 � #
x

2
e�t2

 dt.

The procedure illustrated in Example 5 works equally well on separable equations dy/dx � 
g(x) f (y) where, say, f (y) possesses an elementary antiderivative but g(x) does not possess an 
elementary antiderivative. See Problems 29 and 30 in Exercises 2.2. 

In Problems 1–22, solve the given differential equation by 
separation of variables.

 1. 
dy

dx
�  sin 5x 2. 

dy

dx
� (x � 1)2

 3. dx � e3x dy � 0 4. dy 2 (y 2 1)2 dx � 0

 5. x 
dy

dx
� 4y 6. 

dy

dx
� 2xy2 � 0

 7. 
dy

dx
� e3x�2y 8. exy 

dy

dx
� e�y � e�2x2y

 9. y  ln x 
dx

dy
� ay � 1

x
b2

 10. 
dy

dx
� a2y � 3

4x � 5
b2

 11. csc y dx � sec2x dy � 0 

 12. sin 3x dx � 2y cos 
33x dy � 0

 13. (ey � 1)2e�y dx � (ex � 1)3e�x dy � 0

 14. x (1 � y2)1>2 dx � y(1 � x2)1>2 dy

 15. 
dS

dr
� kS  16. 

dQ

dt
� k(Q 2 70)

 17. 
dP

dt
� P 2 P2 18. 

dN

dt
� N � Ntet�2

 19. 
dy

dx
�

xy � 3x 2 y 2 3

xy 2 2x � 4y 2 8

 20. 
dy

dx
�

xy � 2y 2 x 2 2

xy 2 3y � x 2 3

 21. 
dy

dx
� x"1 2 y2 22. (ex � e�x) 

dy

dx
� y2

In Problems 23–28, find an implicit and an explicit solution of 
the given initial-value problem.

 23. 
dx

dt
� 4(x  2 � 1), x(p/4) � 1

 24. 
dy

dx
�

y2 2 1

x2 2 1
, y(2) � 2

 25. x  2 
dy

dx
� y 2 xy, y(�1) � �1

 26. 
dy

dt
� 2y � 1, y(0) � 5

2

 27. "1 2 y2
 dx 2 "1 2 x  2

 dy � 0, y(0) � "3/2

 28. (1 � x 4) dy � x(1 � 4y 2) dx � 0, y(1) � 0

 2.2 Exercises Answers to selected odd-numbered problems begin on page ANS-2.  

Remarks
(i) As we have just seen in Example 5, some functions do not possess an antiderivative that is 
an elementary function. Integrals of these kinds of functions are called nonelementary. For 
example, ex

2 e�t2

dt and esinx2dx are nonelementary integrals. We will run into this concept 
again in Section 2.3.
(ii) In some of the preceding examples we saw that the constant in the one-parameter family 
of solutions for a first-order differential equation can be relabeled when convenient. Also, it 
can easily happen that two individuals solving the same equation correctly arrive at dissimi-
lar expressions for their answers. For example, by separation of variables, we can show that 
one-parameter families of solutions for the DE (1 � y 2) dx � (1 � x 2) dy � 0 are

 arctan x � arctan y � c or 
x � y

1 2 xy
� c.

As you work your way through the next several sections, keep in mind that families of 
solutions may be equivalent in the sense that one family may be obtained from another by 
either relabeling the constant or applying algebra and trigonometry. See Problems 27 and 28 
in Exercises 2.2.

 2.2 Separable Equations 47
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48 CHAPTER 2  First-Order Differential Equations

In Problems 29 and 30, proceed as in Example 5 and find an 
explicit solution of the given initial-value problem.

 29. 
dy

dx
� ye�x2

,   y(4) � 1

 30. 
dy

dx
� y2 sin x2,   y(�2) � 1

3

 31. (a)  Find a solution of the initial-value problem consisting 
of the differential equation in Example 3 and the initial 
conditions y(0) � 2, y(0) � �2, y(1

4) � 1.
(b) Find the solution of the differential equation in Example 4 

when ln c1 is used as the constant of integration on the 
left-hand side in the solution and 4 ln c1 is replaced by ln c. 
Then solve the same initial-value problems in part (a).

 32. Find a solution of x 
dy

dx
� y2 2 y that passes through the in-

dicated points.
(a) (0, 1)   (b)  (0, 0)   (c)  (1

2, 1
2)   (d)  (2, 1

4)

 33. Find a singular solution of Problem 21. Of Problem 22.
 34. Show that an implicit solution of

 2x sin2 y dx � (x2 � 10) cos y dy � 0

  is given by ln(x2 � 10) csc y � c. Find the constant solutions, 
if any, that were lost in the solution of the differential equation.

Often a radical change in the form of the solution of a differen-
tial equation corresponds to a very small change in either the 
initial condition or the equation itself. In Problems 35–38, find 
an explicit solution of the given initial-value problem. Use a 
graphing utility to plot the graph of each solution. Compare each 
solution curve in a neighborhood of (0, 1).

 35. 
dy

dx
� (y 2 1)2, y(0) � 1

 36. 
dy

dx
� (y 2 1)2, y(0) � 1.01

 37. 
dy

dx
� (y 2 1)2 � 0.01, y(0) � 1

 38. 
dy

dx
� (y 2 1)2 2 0.01, y(0) � 1

 39. Every autonomous first-order equation dy/dx � f (y) is 
separable. Find explicit solutions y1(x), y2(x), y3(x), and y4(x) 
of the differential equation dy/dx � y � y3 that satisfy, in 
turn, the initial conditions y1(0) � 2, y2(0) � 1

2, y3(0) � �1
2, 

and y4(0) � �2. Use a graphing utility to plot the graphs of 
each solution. Compare these graphs with those predicted in 
Problem 19 of Exercises 2.1. Give the exact interval of defini-
tion for each solution.

 40. (a)  The autonomous first-order differential equation dy/dx � 
1/(y � 3) has no critical points. Nevertheless, place 3 on a 
phase line and obtain a phase portrait of the equation. Com-
pute d    2y/dx   2 to determine where solution curves are concave 
up and where they are concave down (see Problems 35 and 
36 in Exercises 2.1). Use the phase portrait and concavity to 
sketch, by hand, some typical solution curves.

(b) Find explicit solutions y1(x), y2(x), y3(x), and y4(x) of the 
differential equation in part (a) that satisfy, in turn, the 
initial conditions y1(0) � 4, y2(0) � 2, y3(1) � 2, and 

y4(�1) � 4. Graph each solution and compare with your 
sketches in part (a). Give the exact interval of definition 
for each solution.

 41. (a) Find an explicit solution of the initial-value problem

 
dy

dx
�

2x � 1

2y
, y(�2) � �1.

(b) Use a graphing utility to plot the graph of the solution in 
part (a). Use the graph to estimate the interval I of defini-
tion of the solution.

(c) Determine the exact interval I of definition by analytical 
methods.

 42. Repeat parts (a)–(c) of Problem 41 for the IVP consisting of the 
differential equation in Problem 7 and the condition y(0) � 0.

Discussion Problems
 43. (a)  Explain why the interval of definition of the explicit solu-

tion y � f2(x) of the initial-value problem in Example 2 
is the open interval (�5, 5).

(b) Can any solution of the differential equation cross the 
x-axis? Do you think that x 2 � y 2 � 1 is an implicit solu-
tion of the initial-value problem dy/dx � �x/y, y(1) � 0?

 44. (a)  If a � 0, discuss the differences, if any, between the 
solutions of the initial-value problems consisting of the 
differential equation dy/dx � x/y and each of the ini-
tial conditions y(a) � a, y(a) � �a, y(�a) � a, and 
y(�a) � –a.

(b) Does the initial-value problem dy/dx � x/y, y(0) � 0 have 
a solution?

(c) Solve dy/dx � x/y, y(1) � 2, and give the exact interval 
I of definition of its solution.

 45. In Problems 39 and 40 we saw that every autonomous first-
order differential equation dy/dx � f (y) is separable. Does 
this fact help in the solution of the initial-value problem 
dy

dx
� "1 � y2

 sin 
2y, y(0) � 1

2? Discuss. Sketch, by hand, 

a plausible solution curve of the problem.

 46. Without the use of technology, how would you solve

 ("x � x) 
dy

dx
� "y � y?

  Carry out your ideas.
 47. Find a function whose square plus the square of its derivative 

is 1.
 48. (a)  The differential equation in Problem 27 is equivalent to 

the normal form

 
dy

dx
� Å

1 2 y2

1 2 x2

in the square region in the xy-plane defined by | x | 	 1, 
| y | 	 1. But the quantity under the radical is nonnegative 
also in the regions defined by | x | � 1, | y | � 1. Sketch all 
regions in the xy-plane for which this differential equation 
possesses real solutions.
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(b) Solve the DE in part (a) in the regions defined by | x | � 1, 
| y | � 1. Then find an implicit and an explicit solution of 
the differential equation subject to y(2) � 2.

Mathematical Model
 49. Suspension Bridge In (16) of Section 1.3 we saw that a 

mathematical model for the shape of a flexible cable strung 
between two vertical supports is

 
dy

dx
�

W

T1
, (10)

  where W denotes the portion of the total vertical load between 
the points P1 and P2 shown in Figure 1.3.9. The DE (10) is 
separable under the following conditions that describe a sus-
pension bridge.

     Let us assume that the x- and y-axes are as shown in 
FIGURE 2.2.5—that is, the x-axis runs along the horizontal road-
bed, and the y-axis passes through (0, a), which is the lowest 
point on one cable over the span of the bridge, coinciding with 
the interval [�L/2, L/2]. In the case of a suspension bridge, 
the usual assumption is that the vertical load in (10) is only 
a uniform roadbed distributed along the horizontal axis. In 
other words, it is assumed that the weight of all cables is 
negligible in comparison to the weight of the roadbed and 
that the weight per unit length of the roadbed (say, pounds 
per horizontal foot) is a constant r. Use this information to 
set up and solve an appropriate initial-value problem from 
which the shape (a curve with equation y � f(x)) of each of 
the two cables in a suspension bridge is determined. Express 
your solution of the IVP in terms of the sag h and span L 
shown in Figure 2.2.5.

  FIGURE 2.2.5 Shape of a cable in Problem 49

(0, a)

roadbed (load)

y

x

h (sag)

L /2 L /2
L (span)

cable

Computer Lab Assignments
 50. (a)  Use a CAS and the concept of level curves to plot repre-

sentative graphs of members of the family of solutions 

of the differential equation 
dy

dx
� �

8x � 5

3y2 � 1
. Experiment 

with different numbers of level curves as well as various 
rectangular regions defined by a � x � b, c � y � d.

(b) On separate coordinate axes plot the graphs of the par-
ticular solutions corresponding to the initial conditions: 
y(0) � �1; y(0) � 2; y(�1) � 4; y(�1) � �3.

 51. (a) Find an implicit solution of the IVP

    (2y � 2)dy 2 (4x3 � 6x)dx � 0, y(0) � �3.

(b) Use part (a) to find an explicit solution y � f(x) of 
the IVP.

(c) Consider your answer to part (b) as a function only. Use 
a graphing utility or a CAS to graph this function, and 
then use the graph to estimate its domain.

(d) With the aid of a root-finding application of a CAS, de-
termine the approximate largest interval I of definition of 
the solution y � f(x) in part (b). Use a graphing utility 
or a CAS to graph the solution curve for the IVP on this 
interval.

 52. (a)  Use a CAS and the concept of level curves to plot repre-
sentative graphs of members of the family of solutions of 

the differential equation 
dy

dx
�

x (1 2 x)

y (�2 � y) 
. Experiment 

with different numbers of level curves as well as vari-
ous rectangular regions in the xy-plane until your result 
resembles FIGURE 2.2.6.

  FIGURE 2.2.6 Level curves in Problem 52

y

x

(b) On separate coordinate axes, plot the graph of the implicit 
solution corresponding to the initial condition y(0) � 3

2. 
Use a colored pencil to mark off that segment of the graph 
that corresponds to the solution curve of a solution f that 
satisfies the initial condition. With the aid of a root-finding 
application of a CAS, determine the approximate largest 
interval I of definition of the solution f. [Hint: First find 
the points on the curve in part (a) where the tangent is 
vertical.]

(c) Repeat part (b) for the initial condition y(0) � �2.

 2.2 Separable Equations 49
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50 CHAPTER 2  First-Order Differential Equations

2.3 Linear Equations

 Introduction We continue our search for solutions of first-order DEs by next examining 
linear equations. Linear differential equations are an especially “friendly” family of differential 
equations in that, given a linear equation, whether first-order or a higher-order kin, there is always 
a good possibility that we can find some sort of solution of the equation that we can look at.

 A Definition The form of a linear first-order DE was given in (7) of Section 1.1. This 
form, the case when n � 1 in (6) of that section, is reproduced here for convenience.

Defi nition 2.3.1 Linear Equation

A first-order differential equation of the form

 a1(x) 
dy

dx
� a0(x)y � g(x) (1)

is said to be a linear equation in the dependent variable y.

When g(x) � 0, the linear equation (1) is said to be homogeneous; otherwise, it is 
nonhomogeneous.

 Standard Form By dividing both sides of (1) by the lead coefficient a1(x) we obtain a 
more useful form, the standard form, of a linear equation

 
dy

dx
� P(x)y � f (x). (2)

We seek a solution of (2) on an interval I for which both functions P and f are continuous.
In the discussion that follows, we illustrate a property and a procedure and end up with a 

formula representing the form that every solution of (2) must have. But more than the formula, 
the property and the procedure are important, because these two concepts carry over to linear 
equations of higher order.

 The Property The differential equation (2) has the property that its solution is the sum 
of the two solutions, y � yc � yp, where yc is a solution of the associated homogeneous equation

 
dy

dx
� P(x)y � 0 (3)

and yp is a particular solution of the nonhomogeneous equation (2). To see this, observe

 
d

dx
 fyc � ypg � P(x)fyc � ypg � c dyc

dx
� P(x)yc d � c dyp

dx
� P(x)yp d � f ( x).

  
 0 f (x)

 The Homogeneous DE The homogeneous equation (3) is also separable. This fact 
enables us to find yc by writing (3) as

 
dy

y
� P(x) dx � 0

and integrating. Solving for y gives yc � ce–�P(x)dx. For convenience let us write yc � cy1(x), where 
y1 � e–�P(x)dx. The fact that dy1/dx � P(x)y1 � 0 will be used next to determine yp.

 The Nonhomogeneous DE We can now find a particular solution of equation (2) by a 
procedure known as variation of parameters. The basic idea here is to find a function u so that 
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 2.3 Linear Equations 51

yp � u(x)y1(x) � u(x) e–�P(x)dx is a solution of (2). In other words, our assumption for yp is the same as 
yc � cy1(x) except that c is replaced by the “variable parameter” u. Substituting yp � uy1 into (2) gives

 Product Rule zero

 T T

 u 
dy1

dx
� y1 

du

dx
� P(x)uy1 � f ( x) or u c dy1

dx
� P(x)y1 d � y1 

du

dx
� f ( x)

so that y1 
du

dx
� f ( x).

Separating variables and integrating then gives

 du �
f (x)

y1(x)
 dx and u � # f (x)

y1(x)
 dx.

From the definition of y1(x), we see 1/y1(x) � e�P(x) dx. Therefore

 yp � uy1 � a# f (x)

y1(x)
 dxb  e�eP(x) dx � e�eP(x) dx#eeP(x) dxf (x) dx,

and  y � yc � yp � ce�eP(x) dx � e�eP(x) dx#eeP(x) dxf (x) dx. (4)

Hence if (2) has a solution, it must be of form (4). Conversely, it is a straightforward exercise in 
differentiation to verify that (4) constitutes a one-parameter family of solutions of equation (2).

You should not memorize the formula given in (4). There is an equivalent but easier way of 
solving (2). If (4) is multiplied by

 eeP(x) dx (5)

and then  eeP(x) dxy � c � #eeP(x) dxf ( x) dx (6)

is differentiated,  
d

dx
 feeP(x) dxyg � eeP(x) dxf ( x), (7)

we get  eeP(x) dx 
dy

dx
� P(x) eeP(x) dxy � eeP(x) dxf ( x). (8)

Dividing the last result by e�P(x) dx gives (2).

 Method of Solution The recommended method of solving (2) actually consists of 
(6)–(8) worked in reverse order. In other words, if (2) is multiplied by (5), we get (8). The left 
side of (8) is recognized as the derivative of the product of e�P(x) dx and y. This gets us to (7). We 
then integrate both sides of (7) to get the solution (6). Because we can solve (2) by integration 
after multiplication by eeP(x) dx, we call this function an integrating factor for the differential 
equation. For convenience we summarize these results. We again emphasize that you should not 
memorize formula (4) but work through the following procedure each time.

Guidelines for Solving a Linear First-Order Equation

 (i) Put a linear equation of form (1) into standard form (2) and then determine P(x) and the 
integrating factor e�P(x) dx.

 (ii) Multiply (2) by the integrating factor. The left side of the resulting equation is automati-
cally the derivative of the integrating factor and y. Write

 
d

dx
 feeP(x) dxyg � eeP(x) dx f ( x)

and then integrate both sides of this equation.
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52 CHAPTER 2  First-Order Differential Equations

■ EXAMPLE 1 Solving a Linear DE

Solve 
dy

dx
2 3y � 6.

SOLUTION  This linear equation can be solved by separation of variables. Alternatively, 
since the equation is already in the standard form (2), we see that the integrating factor is 
e�(–3) dx � e–3x. We multiply the equation by this factor and recognize that

 e�3x 
dy

dx
2 3e�3xy � 6e�3x is the same as 

d

dx
 fe�3xyg � 6e�3x.

Integrating both sides of the last equation gives e–3xy � �2e–3x � c. Thus a solution of the 
differential equation is y � �2 � ce3x, �q , x , q .

When a1, a0, and g in (1) are constants, the differential equation is autonomous. In Example 1, 
you can verify from the form dy/dx � 3(y � 2) that �2 is a critical point and that it is unstable 
and a repeller. Thus a solution curve with an initial point either above or below the graph of the 
equilibrium solution y � �2 pushes away from this horizontal line as x increases.

 Constant of Integration Notice in the general discussion and in Example 1 we dis-
regarded a constant of integration in the evaluation of the indefinite integral in the exponent of 
e�P(x) dx. If you think about the laws of exponents and the fact that the integrating factor multiplies 
both sides of the differential equation, you should be able to answer why writing �P(x) dx � c is 
unnecessary. See Problem 46 in Exercises 2.3.

 General Solution Suppose again that the functions P and  f  in (2) are continuous on a 
common interval I. In the steps leading to (4) we showed that if (2) has a solution on I, then it must 
be of the form given in (4). Conversely, it is a straightforward exercise in differentiation to verify 
that any function of the form given in (4) is a solution of the differential equation (2) on I. In other 
words, (4) is a one-parameter family of solutions of equation (2), and every solution of (2) defined 
on I is a member of this family. Consequently, we are justified in calling (4) the general solution 
of the differential equation on the interval I. Now by writing (2) in the normal form y� � F(x, y) 
we can identify F(x, y) � �P(x)y � f (x) and 0F/0y � �P(x). From the continuity of P and f on the 
interval I, we see that F and 0F/0y are also continuous on I. With Theorem 1.2.1 as our justification, 
we conclude that there exists one and only one solution of the initial-value problem

 
dy

dx
� P(x)y � f (x), y(x0) � y0 (9)

defined on some interval I0 containing x0. But when x0 is in I, finding a solution of (9) is just 
a matter of finding an appropriate value of c in (4); that is, for each x0 in I there corresponds a 
distinct c. In other words, the interval I0 of existence and uniqueness in Theorem 1.2.1 for the 
initial-value problem (9) is the entire interval I.

■ EXAMPLE 2 General Solution

Solve x 
dy

dx
2 4y � x6ex.

SOLUTION  By dividing by x we get the standard form

 
dy

dx
2

4
x

 y � x 5ex. (10)

From this form we identify P(x) � �4/x and f (x) � x5e x and observe that P and f are continu-
ous on the interval (0, q ). Hence the integrating factor is

 we can use ln x instead of ln | x | since x � 0

 T
 e�4edx/x � e�4 ln x � e ln x�4

� x�4.
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Here we have used the basic identity b log bN  � N, N � 0. Now we multiply (10) by x–4,

 x�4 
dy

dx
2 4x�5y � xex, and obtain 

d

dx
 fx�4yg � xe  x.

It follows from integration by parts that the general solution defined on (0, q ) is x–4y � 

xex � ex � c or y � x5e  x 2 x4e  x � cx4.

 Singular Points Except in the case when the lead coefficient is 1, the recasting of equa-
tion (1) into the standard form (2) requires division by a1(x). Values of x for which a1(x) � 0 are 
called singular points of the equation. Singular points are potentially troublesome. Specifically 
in (2), if P(x) (formed by dividing a0(x) by a1(x)) is discontinuous at a point, the discontinuity 
may carry over to functions in the general solution of the differential equation.

■ EXAMPLE 3 General Solution

Find the general solution of (x2 2 9) 
dy

dx
� xy � 0.

SOLUTION  We write the differential equation in standard form

 
dy

dx
�

x

x  2 2 9
 y � 0 (11)

and identify P(x) � x/(x2 � 9). Although P is continuous on (�q, �3), on (�3, 3), and on 
(3, q ), we shall solve the equation on the first and third intervals. On these intervals the 
integrating factor is

 e  ex dx/(x229) � e  
1
2e2x dx/(x229) � e  

1
2  ln |x229| � "x2 2 9.

After multiplying the standard form (11) by this factor, we get

 
d

dx
 f "x2 2 9 yg � 0 and integrating gives "x2 2 9 y � c.

Thus for either x � 3 or x � �3, the general solution of the equation is y � c/"x2 2 9.

Notice in the preceding example that x � 3 and x � �3 are singular points of the equation 
and that every function in the general solution y � c/"x2 2 9 is discontinuous at these points. 
On the other hand, x � 0 is a singular point of the differential equation in Example 2, but the 
general solution y � x5ex � x4ex � cx4 is noteworthy in that every function in this one-parameter 
family is continuous at x � 0 and is defined on the interval (�q, q ) and not just on (0, q ) as 
stated in the solution. However, the family y � x5ex � x4ex � cx4 defined on (�q, q ) cannot be 
considered the general solution of the DE, since the singular point x � 0 still causes a problem. 
See Problems 41 and 42 in Exercises 2.3. We will study singular points for linear differential 
equations in greater depth in Section 5.2.

■ EXAMPLE 4 An Initial-Value Problem

Solve the initial-value problem 
dy

dx
� y � x, y(0) � 4.

SOLUTION  The equation is in standard form, and P(x) � 1 and f (x) � x are continuous on 
the interval (�q, q ). The integrating factor is e�dx � ex, and so integrating

 
d

dx
 fexyg � xex

 2.3 Linear Equations 53
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54 CHAPTER 2  First-Order Differential Equations

gives exy � xex � ex � c. Solving this last equation for y yields the general solution 
y � x � 1 � ce–x. But from the initial condition we know that y � 4 when x � 0. Substituting 
these values in the general solution implies c � 5. Hence the solution of the problem is

        y � x � 1 � 5e–x,  �q � x � q . (12)

Recall that the general solution of every linear first-order differential equation is a sum of two 
special solutions: yc , the general solution of the associated homogeneous equation (3), and yp , a 
particular solution of the nonhomogeneous equation (2). In Example 4 we identify yc � ce–x and 
yp � x � 1. FIGURE 2.3.1, obtained with the aid of a graphing utility, shows (12) in blue along with 
other representative solutions in the family y � x � 1 � ce–x. It is interesting to observe that as 
x gets large, the graphs of all members of the family are close to the graph of yp � x � 1, which 
is shown in green in Figure 2.3.1. This is because the contribution of yc � ce–x to the values of a 
solution becomes negligible for increasing values of x. We say that yc � ce–x is a transient term 
since yc S 0 as x S q . While this behavior is not a characteristic of all general solutions of linear 
equations (see Example 2), the notion of a transient is often important in applied problems.

 Discontinuous Coefficients In applications the coefficients P(x) and f (x) in (2) may 
be piecewise continuous functions. Such an equation is sometimes referred to as a piecewise 
linear equation. In the next example f (x) is piecewise continuous on the interval [0, q ) with 
a single discontinuity, namely, a (finite) jump discontinuity at x � 1. We solve the problem in 
two parts corresponding to the two intervals over which f (x) is defined; each part consists of a 
linear equation solvable by the method of this section. It is then possible to piece together the 
two solutions at x � 1 so that y(x) is continuous on [0, q ).

■ EXAMPLE 5 An Initial-Value Problem

Solve 
dy

dx
� y � f (x), y(0) � 0 where f (x) � e 1, 0 # x # 1

0, x . 1.

SOLUTION  The graph of the discontinuous function f is shown in FIGURE 2.3.2. We solve the 
DE for y(x) first on the interval [0, 1] and then on the interval (1, q ). For 0 
 x 
 1 we have

 
dy

dx
� y � 1 or, equivalently, 

d

dx
 fexyg � ex.

Integrating this last equation and solving for y gives y � 1 � c1e
–x. Since y(0) � 0, we must 

have c1 � �1, and therefore y � 1 � e–x, 0 
 x 
 1. Then for x � 1, the equation

 
dy

dx
� y � 0

leads to y � c2e
– x. Hence we can write

 y � e 1 2 e�x, 0 # x # 1

c2e
�x, x . 1.

By appealing to the definition of continuity at a point it is possible to determine c2 so that the 
foregoing function is continuous at x � 1. The requirement that limxS1�  y(x) � y(1) implies 
that c2e

–1 � 1 � e–1 or c2 � e � 1. As seen in FIGURE 2.3.3, the piecewise defined function

 y � e 1 2 e�x, 0 # x # 1

(e 2 1) e�x, x . 1
 (13)

is continuous on the interval [0, q ).

It is worthwhile to think about (13) and Figure 2.3.3 a little bit; you are urged to read and 
answer Problem 44 in Exercises 2.3.

FIGURE 2.3.1 Some solutions of the DE 
in Example 4

4

2

0

0 2 4

x

c = 0

c > 0

c< 0

y

0

–2

–2

–4

–4

FIGURE 2.3.2 Discontinuous f (x) 
in Example 5

y

x

FIGURE 2.3.3 Graph of function in (13) of 
Example 5

y

x1
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 Functions Defined by Integrals As pointed out in Section 2.2, some simple func-
tions do not possess antiderivatives that are elementary functions, and integrals of these kinds 
of functions are called nonelementary. For example, you may have seen in calculus that �ex2

dx 
and �sin x2 dx are nonelementary integrals. In applied mathematics some important functions 
are defined in terms of nonelementary integrals. Two such functions are the error function and 
complementary error function:

 erf(x) �
2

"p
#

x

0
e�t2

 dt and erfc(x) �
2

"p
#
q

x

e�t2
 dt. (14)

Since (2> !p)eq0 e�t 2

dt � 1 it is seen from (14) that the error function erf(x) and the comple-
mentary error function erfc(x) are related by erfc(x) � erfc(x) � 1. Because of its importance 
in areas such as probability and statistics, the error function has been extensively tabulated. Note 
that erf(0) � 0 is one obvious functional value. Values of erf(x) can also be found using a CAS. 
Before working through the next example, you are urged to reread Example 5 and (i) of the 
Remarks in Section 2.2.

■ EXAMPLE 6 The Error Function

Solve the initial-value problem 
dy

dx
2 2xy � 2, y(0) � 1.

SOLUTION  Since the equation is already in standard form, we see that the integrating factor 

is e�x2

, and so from

 
d

dx
 fe�x2

yg � 2e�x2

 we get y � 2ex2#
x

0
e�t2

 dt � cex2

. (15)

Applying y(0) � 1 to the last expression then gives c � 1. Hence, the solution to the problem is

 y � 2ex2#
x

0
e�t 2

 dt � ex2 or y � ex2

f1 � !p erf ( x)g.

The graph of this solution, shown in blue in FIGURE 2.3.4 among other members of the family 
defined by (15), was obtained with the aid of a computer algebra system (CAS).

 Use of Computers Some computer algebra systems are capable of producing explicit 
solutions for some kinds of differential equations. For example, to solve the equation y� � 2y � x, 
we use the input commands

  DSolve[y�[x] + 2 y[x] �� x, y[x], x] (in Mathematica)
and   dsolve(diff(y(x), x) + 2*y(x) � x, y(x)); (in Maple)

Translated into standard symbols, the output of each program is y � �1
4 � 1

2x � ce�2x.

FIGURE 2.3.4 Some solutions of the DE 
in Example 6

x

y

Remarks
(i) Occasionally a first-order differential equation is not linear in one variable but is linear in 
the other variable. For example, the differential equation

 
dy

dx
�

1

x � y2

is not linear in the variable y. But its reciprocal

 
dx

dy
� x � y2 or 

dx

dy
2 x � y2
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56 CHAPTER 2  First-Order Differential Equations

is recognized as linear in the variable x. You should verify that the integrating factor 
e�(–1)dy � e–y and integration by parts yield an implicit solution of the first equation: 
x � �y2 � 2y � 2 � cey.
(ii) Because mathematicians thought they were appropriately descriptive, certain words were 
“adopted” from engineering and made their own. The word transient, used earlier, is one of 
these terms. In future discussions the words input and output will occasionally pop up. The 
function f in (2) is called the input or driving function; a solution of the differential equation 
for a given input is called the output or response.

In Problems 1–24, find the general solution of the given differ-
ential equation. Give the largest interval over which the general 
solution is defined. Determine whether there are any transient 
terms in the general solution.

 1. 
dy

dx
� 5y 2. 

dy

dx
� 2y � 0

 3. 
dy

dx
� y � e3x 4. 3 

dy

dx
� 12y � 4

 5. y9 � 3x2y � x2 6. y9 � 2xy � x3

 7. x2y9 � xy � 1 8. y9 � 2y � x2 � 5

 9. x 
dy

dx
2 y � x2

 sin x 10. x 
dy

dx
� 2y � 3

 11. x 
dy

dx
� 4y � x3 2 x

 12. (1 � x) 
dy

dx
2 xy � x � x2

 13. x2y9 � x(x � 2)y � ex

 14. xy9 � (1 � x)y � e�x
 sin 2x

 15. y dx 2 4(x � y6) dy � 0

 16. y dx � (yey 2 2x) dy

 17. cos x 
dy

dx
� ( sin x)y � 1

 18.  cos2x sin x 
dy

dx
� ( cos 

3x)y � 1

 19. (x � 1) 
dy

dx
� (x � 2)y � 2xe�x

 20. (x � 2)2 
dy

dx
� 5 2 8y 2 4xy

 21. 
dr

du
� r sec u �  cos u

 22. 
dP

dt
� 2tP � P � 4t 2 2

 23. x 
dy

dx
� (3x � 1)y � e�3x

 24. (x2 2 1) 
dy

dx
� 2y � (x � 1)2

In Problems 25–32, solve the given initial-value problem. Give 
the largest interval I over which the solution is defined.

 25. xy9 � y � ex, y(1) � 2

 26. y 
dx

dy
2 x � 2y2, y(1) � 5

 27. L 
di

dt
� Ri � E; i(0) � i0, L, R, E, and i0 constants

 28. 
dT

dt
� k(T 2 Tm); T(0) � T0, K, Tm , and T0 constants

 29. (x � 1) 
dy

dx
� y � ln x, y(1) � 10

 30. y9 � ( tan x)y �  cos 
2x, y(0) � �1

 31. ae�2"x 2 y

"x
b  

dx

dy
� 1, y(1) � 1

 32. (1 � t 
2) 

dx

dt
� x � tan 

�1t, x(0) � 4

  [Hint: In your solution let u � tan 
�1t.]

In Problems 33–36, proceed as in Example 5 to solve the 
given initial-value problem. Use a graphing utility to graph 
the continuous function y(x).

 33. 
dy

dx
� 2y � f (x), y(0) � 0, where

 f (x) � e 1, 0 # x # 3

0, x . 3

 34. 
dy

dx
� y � f (x), y(0) � 1, where

 f (x) � e 1,

�1,
   

0 # x # 1

x . 1

 35. 
dy

dx
� 2xy � f (x), y(0) � 2, where

 f (x) � e x, 0 # x , 1

0, x $ 1

 2.3 Exercises Answers to selected odd-numbered problems begin on page ANS-2.  
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 36. (1 � x2) 

dy

dx
� 2xy � f (x), y(0) � 0, where

 f (x) � e x,

�x,
   

�0 # x , 1

x $ 1

 37. Proceed in a manner analogous to Example 5 to solve the 
initial-value problem y� � P(x)y � 4x, y(0) � 3, where

 P(x) � e 2,

�2>x,
   

0 # x # 1

x . 1.

  Use a graphing utility to graph the continuous function y(x).
 38. Consider the initial-value problem y� � exy � f (x), y(0) � 1. 

Express the solution of the IVP for x � 0 as a nonelementary 
integral when f (x) � 1. What is the solution when f (x) � 0? 
When f (x) � ex?

 39. Express the solution of the initial-value problem y� � 2xy � 1, 
y(1) � 1, in terms of erf(x).

Discussion Problems
 40. Reread the discussion following Example 1. Construct a 

linear first-order differential equation for which all non-
constant solutions approach the horizontal asymptote y � 4 
as x S q .

 41. Reread Example 2 and then discuss, with reference to 
Theorem 1.2.1, the existence and uniqueness of a solution of 
the initial-value problem consisting of xy� � 4y � x6ex and 
the given initial condition.
(a) y(0) � 0
(b) y(0) � y0, y0 � 0
(c) y(x0) � y0, x0 � 0, y0 � 0

 42. Reread Example 3 and then find the general solution of the 
differential equation on the interval (�3, 3).

 43. Reread the discussion following Example 4. Construct a linear 
first-order differential equation for which all solutions are 
asymptotic to the line y � 3x � 5 as x S q .

 44. Reread Example 5 and then discuss why it is technically incor-
rect to say that the function in (13) is a solution of the IVP on 
the interval [0, q ).

 45. (a)  Construct a linear first-order differential equation of the 
form xy� � a0(x)y � g(x) for which yc � c/x3 and yp � x3. 
Give an interval on which y � x3 � c/x3 is the general 
solution of the DE.

(b) Give an initial condition y(x0) � y0 for the DE found in 
part (a) so that the solution of the IVP is y � x3 � 1/x3. 
Repeat if the solution is y � x3 � 2/x3. Give an interval I 
of definition of each of these solutions. Graph the solution 
curves. Is there an initial-value problem whose solution 
is defined on the interval (�q, q)?

(c) Is each IVP found in part (b) unique? That is, can there 
be more than one IVP for which, say, y � x3 � 1/x3, x in 
some interval I, is the solution?

 46. In determining the integrating factor (5), we did not use a 
constant of integration in the evaluation of �P(x)dx. Explain 
why using �P(x)dx � c has no effect on the solution of (2).

 47. Suppose P(x) is continuous on some interval I and a is a num-
ber in I. What can be said about the solution of the initial-value 
problem y� � P(x)y � 0, y(a) � 0?

Mathematical Models
 48. Radioactive Decay Series The following system of differ-

ential equations is encountered in the study of the decay of a 
special type of radioactive series of elements:

 

dx

dt
� �l1x,

dy

dt
� l1x 2 l2 

y,

  where 1 and 2 are constants. Discuss how to solve this system 
subject to x(0) � x0, y(0) � y0. Carry out your ideas.

 49. Heart Pacemaker  A heart pacemaker consists of a switch, 
a battery of constant voltage E0, a capacitor with constant 
capacitance C, and the heart as a resistor with constant re-
sistance R. When the switch is closed, the capacitor charges; 
when the switch is open, the capacitor discharges, sending an 
electrical stimulus to the heart. During the time the heart is 
being stimulated, the voltage E across the heart satisfies the 
linear differential equation

 
dE

dt
� �

1

RC
 E.

  Solve the DE subject to E(4) � E0.

Computer Lab Assignments
 50. (a)  Express the solution of the initial-value problem 

y� � 2xy � �1, y(0) � "p/2, in terms of erfc(x).
(b) Use tables or a CAS to find the value of y(2). Use a CAS 

to graph the solution curve for the IVP on the interval 
(�q, q ).

 51. (a)  The sine integral function is defined by Si(x) � 
ex

0  (sin t>t) dt, where the integrand is defined to be 1 at 
t � 0. Express the solution y(x) of the initial-value prob-
lem x3y� � 2x2y � 10 sin x, y(1) � 0, in terms of Si(x).

(b) Use a CAS to graph the solution curve for the IVP for 
x � 0.

(c) Use a CAS to find the value of the absolute maximum of 
the solution y(x) for x � 0.

 52. (a)  The Fresnel sine integral is defined by S(x) � 

ex
0 sin (pt 2>2) dt. Express the solution y(x) of the initial-

value problem y� � (sin x2)y � 0, y(0) � 5, in terms of 
S(x).

(b) Use a CAS to graph the solution curve for the IVP on 
(�q, q ).

(c) It is known that S(x) S 1
2  as x S q  and S(x) S �1

2 
as x S �q. What does the solution y(x) approach as 
x S q? As x S �q?

(d) Use a CAS to find the values of the absolute maximum 
and the absolute minimum of the solution y(x).

 2.3 Linear Equations 57
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58 CHAPTER 2  First-Order Differential Equations

2.4 Exact Equations

 Introduction Although the simple differential equation y dx � x dy � 0 is separable, 
we can solve it in an alternative manner by recognizing that the left-hand side is equivalent to 
the differential of the product of x and y; that is, y dx � x dy � d(xy). By integrating both sides 
of the equation we immediately obtain the implicit solution xy � c.

 Differential of a Function of Two Variables If z � f (x, y) is a function of two 
variables with continuous first partial derivatives in a region R of the xy-plane, then its differential 
(also called the total differential) is

 dz �
0f
0x

 dx �
0f
0y

 dy. (1)

Now if f (x, y) � c, it follows from (1) that

 
0f
0x

 dx �
0f
0y

 dy � 0. (2)

In other words, given a one-parameter family of curves f (x, y) � c, we can generate a first-order dif-
ferential equation by computing the differential. For example, if x2 � 5xy � y3 � c, then (2) gives

 (2x � 5y) dx � (�5x � 3y2) dy � 0. (3)

For our purposes it is more important to turn the problem around; namely, given a first-order 
DE such as (3), can we recognize that it is equivalent to the differential d(x2 � 5xy � y3) � 0?

Defi nition 2.4.1 Exact Equation

A differential expression M(x, y) dx � N(x, y) dy is an exact differential in a region R of the 
xy-plane if it corresponds to the differential of some function f (x, y). A first-order differential 
equation of the form

 M(x, y) dx � N(x, y) dy � 0

is said to be an exact equation if the expression on the left side is an exact differential.

For example, the equation x2y3 dx � x3y2 dy � 0 is exact, because the left side is d(1
3x3y3) � 

x2y3 dx � x3y2 dy. Notice that if M(x, y) � x2y3 and N(x, y) � x3y2, then 0M/0y � 3x2y2 � 0N/0x. 
Theorem 2.4.1 shows that the equality of these partial derivatives is no coincidence.

Theorem 2.4.1 Criterion for an Exact Differential

Let M(x, y) and N(x, y) be continuous and have continuous first partial derivatives in a rect-
angular region R defined by a � x � b, c � y � d. Then a necessary and sufficient condition 
that M(x, y) dx � N(x, y) dy be an exact differential is

 
0M
0y

�
0N
0x

. (4)

PROOF: (Proof of the Necessity) For simplicity let us assume that M(x, y) and N(x, y) have 
continuous first partial derivatives for all (x, y). Now if the expression M(x, y) dx � N(x, y) dy is 
exact, there exists some function f such that for all x in R,

 M(x, y) dx � N(x, y) dy �
0f
0x

 dx �
0f
0y

 dy.
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 2.4 Exact Equations 59

Therefore, M(x, y) �
0f
0x

, N(x, y) �
0f
0y

,

and 
0M
0y

�
0
0y

 a 0f
0x

b �
02f

0y 0x
�

0
0x

 a 0f
0y

b �
0N
0x

.

The equality of the mixed partials is a consequence of the continuity of the first partial deriva-
tives of M(x, y) and N(x, y).

The sufficiency part of Theorem 2.4.1 consists of showing that there exists a function f for 
which 0f/0x � M(x, y) and 0f/0y � N(x, y) whenever (4) holds. The construction of the function f 
actually reflects a basic procedure for solving exact equations.

 Method of Solution Given an equation of the form M(x, y) dx � N(x, y) dy � 0, determine 
whether the equality in (4) holds. If it does, then there exists a function f for which

 
0f
0x

� M(x, y).

We can find f by integrating M(x, y) with respect to x, while holding y constant:

 f (x, y) � #M(x, y) dx � g(y), (5)

where the arbitrary function g(y) is the “constant” of integration. Now differentiate (5) with 
respect to y and assume 0f/0y � N(x, y):

 
0f
0y

�
0
0y#M(x, y) dx � g9(y) � N(x, y).

This gives g9(y) � N(x, y) 2
0
0y#M(x, y) dx. (6)

Finally, integrate (6) with respect to y and substitute the result in (5). The implicit solution of 
the equation is f (x, y) � c.

Some observations are in order. First, it is important to realize that the expression 
N(x, y) � (0/0 y) � M(x, y) dx in (6) is independent of x, because

 
0
0x

cN(x, y) 2
0
0y#M(x, y) dx d �

0N
0x

2
0
0y

 a 0
0x#M(x, y) dxb �

0N
0x

2
0M
0y

� 0.

Second, we could just as well start the foregoing procedure with the assumption that 
0f/0y � N(x, y). After integrating N with respect to y and then differentiating that result, we would 
find the analogues of (5) and (6) to be, respectively,

 f (x, y) � #N(x, y) dy � h(x) and h9(x) � M(x, y) 2
0
0x#N(x, y) dy.

If you find that integration of 0f /0 x � M(x, y) with respect to x is difficult, then try integrating 
0f /0 y � N(x, y) with respect to y. In either case none of these formulas should be memorized.

■ EXAMPLE 1 Solving an Exact DE
Solve 2xy dx � (x2 � 1) dy � 0.

SOLUTION  With M(x, y) � 2xy and N(x, y) � x2 � 1 we have

 
0M
0y

� 2x �
0N
0x

.

Thus the equation is exact, and so, by Theorem 2.4.1, there exists a function f (x, y) such that

 
0f
0x

� 2xy and 
0f
0y

� x2 2 1.
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60 CHAPTER 2  First-Order Differential Equations

From the first of these equations we obtain, after integrating,

 f (x, y) � x2y � g(y).

Taking the partial derivative of the last expression with respect to y and setting the result 
equal to N(x, y) gives

 
0f
0y

� x2 � g9(y) � x2 2 1. 

It follows that  g�(y) � �1  and  g(y) � �y.

Hence, f (x, y) � x2y � y, and so the solution of the equation in implicit form is x2y � y � c. 
The explicit form of the solution is easily seen to be y � c/(1 � x2) and is defined on any 
interval not containing either x � 1 or x � �1.

The solution of the DE in Example 1 is not f (x, y) � x2y � y. Rather it is f (x, y) � c; or if a 
constant is used in the integration of g�(y), we can then write the solution as f (x, y) � 0. Note, 
too, that the equation could be solved by separation of variables.

■ EXAMPLE 2 Solving an Exact DE
Solve (e2y � y cos xy) dx � (2xe2y � x cos xy � 2y) dy � 0.

SOLUTION  The equation is exact because

 
0M
0y

� 2e2y � xy sin xy 2  cos xy �
0N
0x

.

Hence a function f (x, y) exists for which

 M(x, y) �
0f
0x

 and N(x, y) �
0f
0y

.

Now for variety we shall start with the assumption that 0f/0y � N(x, y);

that is,  
0f
0y

� 2xe2y 2 x cos xy � 2y

 f (x, y) � 2x#e2y
 dy 2 x#  cos xy dy � 2#y dy � h(x)

Remember, the reason x can come out in front of the symbol � is that in the integration with 
respect to y, x is treated as an ordinary constant. It follows that

 f (x,  y) � xe2y 2  sin xy � y2 � h(x)

 
0f
0x

� e2y 2 y cos xy � h9(x) � e2y 2 y cos xy d M(x, y)

and so h�(x) � 0 or h(x) � c. Hence a family of solutions is

 xe2y � sin xy � y2 � c � 0.

■ EXAMPLE 3 An Initial-Value Problem

Solve the initial-value problem 
dy

dx
�

xy2 2  cos x sin x

y(1 2 x2)
, y(0) � 2.

SOLUTION  By writing the differential equation in the form

 (cos x sin x � xy2) dx � y(1 � x2) dy � 0

we recognize that the equation is exact because

 
0M
0y

� �2xy �
0N
0x

.

d N(x, y)

Note the form of the 
solution. It is f (x, y) � c.
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 2.4 Exact Equations 61

Now 
0f
0y

� y(1 2 x2)

 f (x, y) �
y2

2
 (1 2 x2) � h(x)

 
0f
0x

� �xy2 � h9(x) �  cos x sin x 2 xy2.

The last equation implies that h�(x) � cos x sin x. Integrating gives

 h(x) � �#( cos x)(� sin x dx) � �
1

2
 cos 

2x.

Thus    
y2

2
 (1 2 x2) 2

1

2
 cos 

2x � c1 or y2(1 2 x2) 2  cos 
2x � c, (7)

where 2c1 has been replaced by c. The initial condition y � 2 when x � 0 demands that 
4(1) � cos2 (0) � c and so c � 3. An implicit solution of the problem is then 
y2(1 2 x2) 2  cos2

 x � 3.
The solution curve of the IVP is part of an interesting family of curves and is the curve drawn 

in blue in FIGURE 2.4.1. The graphs of the members of the one-parameter family of solutions given 
in (7) can be obtained in several ways, two of which are using software to graph level curves 
as discussed in the last section, or using a graphing utility and carefully graphing the explicit 
functions obtained for various values of c by solving y2 � (c � cos2 x)/(1 � x2) for y.

 Integrating Factors Recall from the last section that the left-hand side of the linear 
equation y� � P(x)y � f (x) can be transformed into a derivative when we multiply the equation 
by an integrating factor. The same basic idea sometimes works for a nonexact differential equa-
tion M(x, y) dx � N(x, y) dy � 0. That is, it is sometimes possible to find an integrating factor 
µ(x, y) so that after multiplying, the left-hand side of

 µ(x, y)M(x, y) dx � µ(x, y)N(x, y) dy � 0 (8)

is an exact differential. In an attempt to find µ we turn to the criterion (4) for exactness. Equation (8) 
is exact if and only if ( µM)y � ( µN)x, where the subscripts denote partial derivatives. By the 
Product Rule of differentiation the last equation is the same as µMy � µy M � µNx � µx N or

 µxN � µyM � (My � Nx)µ. (9)

Although M, N, My, Nx are known functions of x and y, the difficulty here in determining the 
unknown µ(x, y) from (9) is that we must solve a partial differential equation. Since we are not 
prepared to do that we make a simplifying assumption. Suppose µ is a function of one variable; 
say that µ depends only upon x. In this case µx � du/dx and (9) can be written as

 
dµ

dx
�

My 2 Nx

N
 µ. (10)

We are still at an impasse if the quotient (My � Nx)/N depends upon both x and y. However, if 
after all obvious algebraic simplifications are made the quotient (My � Nx)/N turns out to depend 
solely on the variable x then (10) is a first-order ordinary differential equation. We can finally 
determine µ because (10) is separable as well as linear. It follows from either Section 2.2 or 
Section 2.3 that µ(x) � ee((My2Nx)>N ) dx. In like manner it  follows from (9) that if µ depends only 
on the variable y, then

 
dµ

dy
�

Nx 2 My

M
 µ. (11)

In this case, if (Nx � My)/M is a function of y only then we can solve (11) for µ.
We summarize the results for the differential equation

 M(x, y) dx � N(x, y) dy � 0. (12)

FIGURE 2.4.1 Some solution curves in the 
family (7) of Example 3

y

x
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62 CHAPTER 2  First-Order Differential Equations

• If (My � Nx)/N is a function of x alone, then an integrating factor for equation (11) is

 µ(x) � ee 

My2Nx

N  dx. (13)

• If (Nx � My)/M is a function of y alone, then an integrating factor for equation (11) is

 µ( y) � e
e 

Nx2My

M  
dy

. (14)

■ EXAMPLE 4 A Nonexact DE Made Exact
The nonlinear first-order differential equation xy dx � (2x2 � 3y2 � 20) dy � 0 is not exact. 
With the identifications M � xy, N � 2x2 � 3y2 � 20 we find the partial derivatives My � x 
and Nx � 4x. The first quotient from (13) gets us nowhere since

 
My 2 Nx

N
�

x 2 4x

2x2 � 3y2 2 20
�

�3x

2x2 � 3y2 2 20

depends on x and y. However (14) yields a quotient that depends only on y:

 
Nx 2 My

M
�

4x 2 x
xy

�
3x
xy

�
3
y

.

The integrating factor is then e�3 dy/y � e3 ln y � e ln y3

 � y3. After multiplying the given DE by 
µ(y) � y3 the resulting equation is

 xy4 dx � (2x2y3 � 3y5 � 20y3) dy � 0.

You should verify that the last equation is now exact as well as show, using the method of 
this section, that a family of solutions is 12 x

2y4 � 1
2 y

6 2 5y4 � c.

Remarks
(i) When testing an equation for exactness, make sure it is of the precise form M(x, y) dx � 
N(x, y) dy � 0. Sometimes a differential equation is written G(x, y) dx � H(x, y) dy. In this 
case, first rewrite it as G(x, y) dx � H(x, y) dy � 0, and then identify M(x, y) � G(x, y) and 
N(x, y) � �H(x, y) before using (4).
(ii) In some texts on differential equations the study of exact equations precedes that of linear 
DEs. If this were so, the method for finding integrating factors just discussed can be used to 
derive an integrating factor for y� � P(x)y � f (x). By rewriting the last equation in the dif-
ferential form (P(x)y � f (x)) dx � dy � 0 we see that

 
My 2 Nx

N
� P(x).

From (13) we arrive at the already familiar integrating factor e�P(x) dx used in Section 2.3.

In Problems 1–20, determine whether the given differential 
equation is exact. If it is exact, solve it.

 1. (2x � 1) dx � (3y � 7) dy � 0

 2. (2x � y) dx � (x � 6y) dy � 0

 3. (5x � 4y) dx � (4x � 8y3) dy � 0

 4. (sin y � y sin x) dx � (cos x � x cos y � y) dy � 0

 5. (2xy2 � 3) dx � (2x2y � 4) dy � 0

 6. a2y 2
1
x

�  cos 3xb  
dy

dx
�

y

x2 2 4x3 � 3y sin 3x � 0

 7. (x 2 � y 2) dx � (x 2 � 2xy) dy � 0

 2.4 Exercises Answers to selected odd-numbered problems begin on page ANS-2.  
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 2.4 Exact Equations 63

 8. a1 � ln x �
y

x
b  dx � (1 2 ln x) dy

 9. (x � y3 � y2 sin x) dx � (3xy2 � 2y cos x) dy

 10. (x3 � y3) dx � 3xy2 dy � 0

 11. (y ln y 2 e�xy) dx � a1
y

� x ln yb  dy � 0

 12. (3x2y � ey) dx � (x3 � xey � 2y) dy � 0

 13. x 
dy

dx
� 2xex 2 y � 6x  2

 14. a1 2
3
y

� xb  
dy

dx
� y �

3
x
2 1

 15. ax  2y3 2
1

1 � 9x2 b  
dx

dy
� x  3y2 � 0

 16. (5y � 2x)y� � 2y � 0

 17. (tan x � sin x sin y) dx � cos x cos y dy � 0

 18. (2y sin x cos x � y � 2y 2exy2

) dx � (x � sin2 x � 4xyexy2

) dy

 19. (4t 3y � 15t 2 � y) dt � (t 4 � 3y 2 � t) dy � 0

 20. a1

t
�

1

t2 2
y

t2 � y2 b  dt � ayey �
1

t2 � y2 b  dy � 0

In Problems 21–26, solve the given initial-value problem.

 21. (x � y)2 dx � (2xy � x2 � 1) dy � 0, y(1) � 1

 22. (ex � y) dx � (2 � x � yey) dy � 0,  y(0) � 1

 23. (4y � 2t � 5) dt � (6y � 4t � 1) dy � 0,  y(�1) � 2

 24. a3y2 2 t2

y5 b  
dy

dt
�

t

2y4 � 0, y(1) � 1

 25. ( y2 cos x � 3x2y � 2x) dx � (2y sin x � x3 � ln y) dy � 0, 
y(0) � e

 26. a 1

1 � y2 �  cos x 2 2xyb  
dy

dx
� y(y �  sin x), y(0) � 1

In Problems 27 and 28, find the value of k so that the given 
differential equation is exact.

 27. ( y3 � kxy4 � 2x) dx � (3xy2 � 20x2y3) dy � 0

 28. (6xy3 � cos y) dx � (2kx2y2 � x sin y) dy � 0

In Problems 29 and 30, verify that the given differential 
equation is not exact. Multiply the given differential equation 
by the indicated integrating factor µ(x, y) and verify that the 
new equation is exact. Solve.

 29. (�xy sin x � 2y cos x) dx � 2x cos x dy � 0; µ(x, y) � xy

 30. (x2 � 2xy � y2) dx � (y2 � 2xy � x2) dy � 0; µ(x, y) � (x � y)–2

In Problems 31–36, solve the given differential equation by 
finding, as in Example 4, an appropriate integrating factor.

 31. (2y2 � 3x) dx � 2xy dy � 0

 32. y(x � y � 1) dx � (x � 2y) dy � 0

 33. 6xy dx � (4y � 9x2) dy � 0

 34.  cos x dx � a1 �
2
y

b  sin x dy � 0

 35. (10 � 6y � e–3x) dx � 2 dy � 0

 36. (y2 � xy3) dx � (5y2 � xy � y3 sin y) dy � 0

In Problems 37 and 38, solve the given initial-value problem by 
finding, as in Example 4, an appropriate integrating factor.

 37. x dx � (x2y � 4y) dy � 0, y(4) � 0

 38. (x2 � y2 � 5) dx � (y � xy) dy, y(0) � 1

 39. (a)  Show that a one-parameter family of solutions of the 
equation

   (4xy � 3x2) dx � (2y � 2x2) dy � 0

 is x3 � 2x2y � y2 � c.
(b) Show that the initial conditions y(0) � �2 and y(1) � 1 

determine the same implicit solution.
(c) Find explicit solutions y1(x) and y2(x) of the differential 

equation in part (a) such that y1(0) � �2 and y2(1) � 1. 
Use a graphing utility to graph y1(x) and y2(x).

Discussion Problems
 40. Consider the concept of an integrating factor used in Problems 

29–38. Are the two equations M dx � N dy � 0 and µM dx � 
µN dy � 0 necessarily equivalent in the sense that a solution 
of one is also a solution of the other? Discuss.

 41. Reread Example 3 and then discuss why we can conclude that 
the interval of definition of the explicit solution of the IVP 
(the blue curve in Figure 2.4.1) is (�1, 1).

 42. Discuss how the functions M(x, y) and N(x, y) can be found 
so that each differential equation is exact. Carry out your 
ideas.

(a) M(x, y) dx � axexy � 2xy �
1
x

b  dy � 0

(b) ax�1>2y1>2 �
x

x2 � y
b  dx � N(x, y) dy � 0

 43. Differential equations are sometimes solved by having a clever 
idea. Here is a little exercise in clever ness: Although the dif-
ferential equation 

 (x 2 "x2 � y2
 ) dx � y dy � 0

  is not exact, show how the rearrangement 

 
x dx � y dy

"x2 � y2
� dx

  and the observation 1
2d(x2 � y2) � x dx � y dy can lead to a 

solution.
 44. True or False: Every separable first-order equation 

dy/dx � g(x)h(y) is exact.
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64 CHAPTER 2  First-Order Differential Equations

Computer Lab Assignment
 45. (a) The solution of the differential equation

     
2xy

(x2 � y2)2 dx � c1 �
y2 2 x2

(x2 � y2)2 d  dy � 0

is a family of curves that can be interpreted as streamlines 
of a fluid flow around a circular object whose boundary 

is described by the equation x2 � y2 � 1. Solve this DE 
and note the solution f (x, y) � c for c � 0.

(b) Use a CAS to plot the streamlines for c � 0, �0.2, �0.4, 
�0.6, and �0.8 in three different ways. First, use the 
contourplot of a CAS. Second, solve for x in terms of 
the variable y. Plot the resulting two functions of y for the 
given values of c, and then combine the graphs. Third, 
use the CAS to solve a cubic equation for y in terms of x.

2.5 Solutions by Substitutions

 Introduction We usually solve a differential equation by recognizing it as a certain 
kind of equation (say, separable) and then carrying out a procedure, consisting of equation-
specific mathematical steps, that yields a function that satisfies the equation. Often the first 
step in solving a given differential equation consists of transforming it into another differential 
equation by means of a substitution. For example, suppose we wish to transform the first-order 
equation dy/dx � f (x, y) by the substitution y � g(x, u), where u is regarded as a function of 
the variable x.

If g possesses first-partial derivatives, then the Chain Rule gives

 
dy

dx
� gx(x, u) � gu(x, u) 

du

dx
.

By replacing dy/dx by f (x, y) and y by g(x, u) in the foregoing derivative, we get the new first-
order differential equation

 f (x, g(x, u)) � gx(x, u) � gu(x, u) 
du

dx
, 

which, after solving for du/dx, has the form du/dx � F(x, u). If we can determine a solution u � f(x) 
of this second equation, then a solution of the original differential equation is y � g(x, f(x)).

 Homogeneous Equations If a function f possesses the property f (tx, ty) � t a f (x, y) 
for some real number a, then f is said to be a homogeneous function of degree a. For example, 
f (x, y) � x3 � y3 is a homogeneous function of degree 3 since

 f (tx, ty) � (tx)3 � (ty)3 � t3(x3 � y3) � t3f (x, y),

whereas f (x, y) � x3 � y3 � 1 is seen not to be homogeneous. A first-order DE in differential form

 M(x, y) dx � N(x, y) dy � 0 (1)

is said to be homogeneous if both coefficients M and N are homogeneous functions of the same 
degree. In other words, (1) is homogeneous if

 M(tx, ty) � taM(x, y)   and   N(tx, ty) � taN(x, y).

The word homogeneous as used here does not mean the same as it does when applied to linear 
differential equations. See Sections 2.3 and 3.1.

If M and N are homogeneous functions of degree a, we can also write

 M(x, y) � xaM(1, u) and N(x, y) � xaN(1, u) where u � y/x, (2)

and M(x, y) � yaM(v, 1) and N(x, y) � yaN(v, 1) where v � x/y. (3)

See (10) on page 484. 

A linear first-order DE 
a1y� � a0 y � g(x) is 
homogeneous when 
g(x) = 0.
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 2.5 Solutions by Substitutions 65

See Problem 31 in Exercises 2.5. Properties (2) and (3) suggest the substitutions that can be used 
to solve a homogeneous differential equation. Specifically, either of the substitutions y � ux or 
x � vy, where u and v are new dependent variables, will reduce a homogeneous equation to a 
separable first-order differential equation. To show this, observe that as a consequence of (2) a 
homogeneous equation M(x, y) dx � N(x, y) dy � 0 can be rewritten as

 xa M(1, u) dx � xa N(1, u) dy � 0   or   M(1, u) dx � N(1, u) dy � 0,

where u � y/x or y � ux. By substituting the differential dy � u dx � x du into the last equation 
and gathering terms, we obtain a separable DE in the variables u and x:

    M(1, u) dx � N(1, u)[u dx � x du] � 0

 [M(1, u) � uN(1, u)] dx � xN(1, u) du � 0

or      
dx
x

�
N(1, u) du

M(1, u) � uN(1, u)
� 0.

We hasten to point out that the preceding formula should not be memorized; rather, the procedure 
should be worked through each time. The proof that the substitutions x � vy and dx � v dy � y dv 
also lead to a separable equation follows in an analogous manner from (3).

■ EXAMPLE 1 Solving a Homogeneous DE
Solve (x2 � y2) dx � (x2 � xy) dy � 0.

SOLUTION  Inspection of M(x, y) � x2 � y2 and N(x, y) � x2 � xy shows that these coef-
ficients are homogeneous functions of degree 2. If we let y � ux, then dy � u dx � x du so 
that, after substituting, the given equation becomes

 (x2 � u2x2) dx � (x2 � ux2)[u dx � x du] � 0

      x2(1 � u) dx � x3(1 � u) du � 0

              
1 2 u

1 � u
 du �

dx
x

� 0

           c�1 �
2

1 � u
d  du �

dx
x

� 0. d long division  

After integration the last line gives

        – u � 2 ln |1 � u| � ln |x| � ln |c|

 � 

y

x
� 2  ln 21 �

y

x
2 � ln |x| � ln |c|. d resubstituting u � y/x

Using the properties of logarithms, we can write the preceding solution as

 ln 2 (x � y)2

cx
2 � y

x
 or (x � y)2 � cxey>x.

Although either of the indicated substitutions can be used for every homogeneous differential 
equation, in practice we try x � vy whenever the function M(x, y) is simpler than N(x, y). Also 
it could happen that after using one substitution, we may encounter integrals that are difficult or 
impossible to evaluate in closed form; switching substitutions may result in an easier problem.

 Bernoulli’s Equation The differential equation

  
dy

dx
� P(x)y � f (x)yn, (4)
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66 CHAPTER 2  First-Order Differential Equations

where n is any real number, is called Bernoulli’s equation and is named after the Swiss math-
ematican Jacob Bernoulli (1654 –1705). Note that for n � 0 and n � 1, equation (4) is linear. For 
n � 0 and n � 1, the substitution u � y1�n reduces any equation of form (4) to a linear equation.

■ EXAMPLE 2 Solving a Bernoulli DE

Solve x 
dy

dx
� y � x2y2.

SOLUTION  We first rewrite the equation as

 
dy

dx
�

1
x

 y � xy2

by dividing by x. With n � 2, we next substitute y � u–1 and

 
dy

dx
� �u�2 

du

dx
 

into the given equation and simplify. The result is

 
du

dx
2

1
x

 u � �x.

The integrating factor for this linear equation on, say, (0, q ) is

 e–� dx/x � e–ln x � e ln x�1

 � x–1.

Integrating  
d

dx
 fx�1ug � �1

gives x–1u � �x � c or u � �x2 � cx. Since u � y–1 we have y � 1/u, and so a solution of 
the given equation is y � 1/(�x2 � cx).

Note that we have not obtained the general solution of the original nonlinear differential 
equation in Example 2, since y � 0 is a singular solution of the equation.

 Reduction to Separation of Variables A differential equation of the form

  
dy

dx
� f (Ax � By � C ) (5)

can always be reduced to an equation with separable variables by means of the substitution 
u � Ax � By � C, B � 0. Example 3 illustrates the technique.

■ EXAMPLE 3 An Initial-Value Problem

Solve the initial-value problem 
dy

dx
 � (�2x � y)2 � 7, y(0) � 0.

SOLUTION  If we let u � �2x � y, then du/dx � �2 � dy/dx, and so the differential equa-
tion is transformed into

 
du

dx
� 2 � u2 2 7  or    

du

dx
� u2 2 9.

The last equation is separable. Using partial fractions,

 
du

(u 2 3)(u � 3)
� dx or 

1

6
 c 1

u 2 3
2

1

u � 3
d  du � dx

and integrating, then yields

 
1

6
 ln 2 u 2 3

u � 3
2 � x � c1 or 

u 2 3

u � 3
� e6x�6c1 � ce6x. 

d Chain Rule

d replace e6c1 by c
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 2.5 Solutions by Substitutions 67

Solving the last equation for u and then resubstituting gives the solution

 u �
3(1 � ce6x)

1 2 ce6x  or y � 2x �
3(1 � ce6x)

1 2 ce6x . (6)

Finally, applying the initial condition y(0) � 0 to the last equation in (6) gives c � �1. 
With the aid of a graphing utility we have shown in FIGURE 2.5.1 the graph of the particular 
solution

 y � 2x �
3(1 2 e6x)

1 � e6x

in blue along with the graphs of some other members of the family solutions (6).

FIGURE 2.5.1 Some solutions of the DE 
in Example 3

x

y

Each DE in Problems 1–14 is homogeneous.

In Problems 1–10, solve the given differential equation by using 
an appropriate substitution.

 1. (x � y) dx � x dy � 0 2. (x � y) dx � x dy � 0
 3. x dx � ( y � 2x) dy � 0 4. y dx � 2(x � y) dy
 5. ( y2 � yx) dx � x2 dy � 0 6. ( y2 � yx) dx � x2 dy � 0

 7. 
dy

dx
�

y 2 x

y � x
 8. 

dy

dx
�

x � 3y

3x � y
 9. �y dx � (x � "xy) dy � 0

 10. x 
dy

dx
� y � "x  2 2 y2, x . 0

In Problems 11–14, solve the given initial-value problem.

 11. xy2 
dy

dx
� y3 2 x3, y(1) � 2

 12. (x2 � 2y2) 
dx

dy
� xy, y(�1) � 1

 13. (x � yey/x) dx � xey/x dy � 0, y(1) � 0
 14. y dx � x(ln x � ln y � 1) dy � 0, y(1) � e

Each DE in Problems 15–22 is a Bernoulli equation.

In Problems 15–20, solve the given differential equation by 
using an appropriate substitution.

 15. x 
dy

dx
� y �

1

y2  16. 
dy

dx
2 y � exy2

 17. 
dy

dx
� y(xy3 2 1) 18. x 

dy

dx
2 (1 � x)y � xy2

 19. t 
2 

dy

dt
� y2 � ty 20. 3(1 � t 

2) 
dy

dt
� 2ty (y3 2 1)

In Problems 21 and 22, solve the given initial-value problem.

 21. x2 
dy

dx
2 2xy � 3y4, y(1) �

1

2

 22. y1>2 
dy

dx
� y3>2 � 1, y(0) � 4

Each DE in Problems 23–30 is of the form given in (5).

In Problems 23–28, solve the given differential equation by 
using an appropriate substitution.

 23. 
dy

dx
� (x � y � 1)2 24. 

dy

dx
�

1 2 x 2 y

x � y

 25. 
dy

dx
�  tan 

2(x � y) 26. 
dy

dx
� sin (x � y)

 27. 
dy

dx
� 2 � "y 2 2x � 3

 28. 
dy

dx
� 1 � ey2x�5

In Problems 29 and 30, solve the given initial-value problem.

 29. 
dy

dx
�  cos (x � y), y(0) � p/4 

 30. 
dy

dx
�

3x � 2y

3x � 2y � 2
, y(�1) � �1

Discussion Problems
 31. Explain why it is always possible to express any homogeneous 

differential equation M(x, y) dx � N(x, y) dy � 0 in the form

 
dy

dx
� F ay

x
b .

  You might start by proving that 

 M(x, y) � xaM(1, y/x)  and  N(x, y) � xaN(1, y/x).

 2.5 Exercises Answers to selected odd-numbered problems begin on page ANS-3.  
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68 CHAPTER 2  First-Order Differential Equations

 32. Put the homogeneous differential equation

 (5x2 � 2y2) dx � xy dy � 0

  into the form given in Problem 31.
 33. (a)  Determine two singular solutions of the DE in Problem 10.

(b) If the initial condition y(5) � 0 is as prescribed in 
Problem 10, then what is the largest interval I over which 
the solution is defined? Use a graphing utility to plot the 
solution curve for the IVP.

 34. In Example 3, the solution y(x) becomes unbounded as 
x S 
q . Nevertheless y(x) is asymptotic to a curve as 
x S �q and to a different curve as x S q . Find the equa-
tions of these curves.

 35. The differential equation

 
dy

dx
� P(x) � Q(x)y � R(x)y2

  is known as Riccati’s equation.
(a) A Riccati equation can be solved by a succession of two 

substitutions provided we know a particular solution y1 
of the equation. Show that the substitution y � y1 � u 
reduces Riccati’s equation to a Bernoulli equation (4) 
with n � 2. The Bernoulli equation can then be reduced 
to a linear equation by the substitution w � u–1.

(b) Find a one-parameter family of solutions for the differ-
ential equation

 
dy

dx
� �

4

x2 2
1
x

 y � y2,

where y1 � 2/x is a known solution of the equation.
 36. Devise an appropriate substitution to solve

 xy� � y ln(xy).

Mathematical Model
 37. Population Growth In the study of population dynamics one 

of the most famous models for a growing but bounded popula-
tion is the logistic equation

 
dP

dt
� P(a 2 bP),

  where a and b are positive constants. Although we will come 
back to this equation and solve it by an alternative method in 
Section 2.8, solve the DE this first time using the fact that it 
is a Bernoulli equation.

2.6 A Numerical Method

 Introduction In Section 2.1 we saw that we could glean qualitative information from a 
first-order DE about its solutions even before we attempted to solve the equation. In Sections 2.2–
2.5 we examined first-order DEs analytically; that is, we developed procedures for actually ob-
taining explicit and implicit solutions. But many differential equations possess solutions and yet 
these solutions cannot be obtained analytically. In this case we “solve” the differential equation 
numerically; this means that the DE is used as the cornerstone of an algorithm for approximating 
the unknown solution. It is common practice to refer to the algorithm as a numerical method, 
the approximate solution as a numerical solution, and the graph of a numerical solution as a 
numerical solution curve.

In this section we are going to consider only the simplest of numerical methods. A more 
extensive treatment of this subject is found in Chapter 6.

 Using the Tangent Line Let us assume that the first-order initial-value problem

 y� � f (x, y), y(x0) � y0 (1)

possesses a solution. One of the simplest techniques for approximating this solution is to use 
tangent lines. For example, let y(x) denote the unknown solution of the first-order  initial-value 
problem y9 � 0.1!y � 0.4x2, y(2) � 4. The nonlinear differential equation cannot be solved 
directly by the methods considered in Sections 2.2, 2.4, and 2.5; nevertheless we can still find 
approximate numerical values of the unknown y(x). Specifically, suppose we wish to know the 
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 2.6 A Numerical Method 69

value of y(2.5). The IVP has a solution, and, as the flow of the direction field in FIGURE 2.6.1(a) 
suggests, a solution curve must have a shape similar to the curve shown in blue.

The direction field in Figure 2.6.1(a) was generated so that the lineal elements pass through 
points in a grid with integer coordinates. As the solution curve passes through the initial point (2, 4), 
the lineal element at this point is a tangent line with slope given by f (2, 4) � 0.1 !4 � 0.4(2)2 � 
1.8. As is apparent in Figure 2.6.1(a) and the “zoom in” in Figure 2.6.1(b), when x is close to 2 the 
points on the solution curve are close to the points on the tangent line (the lineal element). Using 
the point (2, 4), the slope f (2, 4) � 1.8, and the point-slope form of a line, we find that an equation 
of the tangent line is y � L(x), where L(x) � 1.8x � 0.4. This last equation, called a linearization 
of y(x) at x � 2, can be used to approximate values y(x) within a small neighborhood of x � 2. If 
y1 � L(x1) denotes the value of the y-coordinate on the tangent line and y(x1) is the y-coordinate on 
the solution curve corresponding to an x-coordinate x1 that is close to x � 2, then y(x1) � y1. If we 
choose, say, x1 � 2.1, then y1 � L(2.1) � 1.8(2.1) � 0.4 � 4.18, and so y(2.1) � 4.18.

 Euler’s Method To generalize the procedure just illustrated, we use the linearization of 
the unknown solution y(x) of (1) at x � x0:

 L(x) � f (x0, y0)(x � x0) � y0. (2)

The graph of this linearization is a straight line tangent to the graph of y � y(x) at the point 
(x0, y0). We now let h be a positive increment of the x-axis, as shown in FIGURE 2.6.2. Then by 
replacing x by x1 � x0 � h in (2) we get

 L(x1) � f (x0, y0)(x0 � h � x0) � y0   or   y1 � y0 � hf (x0, y0),

where y1 � L(x1). The point (x1, y1) on the tangent line is an approximation to the point (x1, y(x1)) 
on the solution curve. Of course the accuracy of the approximation y1 � y(x1) depends heavily 
on the size of the increment h. Usually we must choose this step size to be “reasonably small.” 
We now repeat the process using a second “tangent line” at (x1, y1).* By replacing (x0, y0) in the 
above discussion with the new starting point (x1, y1), we obtain an approximation y2 � y(x2) cor-
responding to two steps of length h from x0, that is, x2 � x1 � h � x0 � 2h and

 y(x2) � y(x0 � 2h) � y(x1 � h) � y2 � y1 � hf (x1, y1).

Continuing in this manner, we see that y1, y2, y3, . . . , can be defined recursively by the general 
formula

 yn � 1 � yn � hf (xn, yn), (3)

where xn � x0 � nh, n � 0, 1, 2, . . . . This procedure of using successive “tangent lines” is called 
Euler’s method.

*This is not an actual tangent line since (x1, y1) lies on the first tangent and not on the solution curve.

FIGURE 2.6.1 Magnification of a neighborhood about the point (2, 4)
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FIGURE 2.6.2 Approximating y(x1) 
using a tangent line
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70 CHAPTER 2  First-Order Differential Equations

xn yn

2.00 4.0000
2.10 4.1800
2.20 4.3768
2.30 4.5914
2.40 4.8244
2.50 5.0768

TABLE 2.6.1 h � 0.1

xn yn

2.00 4.0000
2.05 4.0900
2.10 4.1842
2.15 4.2826
2.20 4.3854
2.25 4.4927
2.30 4.6045
2.35 4.7210
2.40 4.8423
2.45 4.9686
2.50 5.0997

TABLE 2.6.2 h � 0.05

xn yn Actual Absolute % Rel.
  Value Error Error

1.00 1.0000 1.0000 0.0000 0.00
1.10 1.0200 1.0212 0.0012 0.12
1.20 1.0424 1.0450 0.0025 0.24
1.30 1.0675 1.0714 0.0040 0.37
1.40 1.0952 1.1008 0.0055 0.50
1.50 1.1259 1.1331 0.0073 0.64

TABLE 2.6.3 h � 0.1

xn yn Actual Absolute % Rel.
  Value Error Error

1.00 1.0000 1.0000 0.0000 0.00
1.05 1.0100 1.0103 0.0003 0.03
1.10 1.0206 1.0212 0.0006 0.06
1.15 1.0318 1.0328 0.0009 0.09
1.20 1.0437 1.0450 0.0013 0.12
1.25 1.0562 1.0579 0.0016 0.16
1.30 1.0694 1.0714 0.0020 0.19
1.35 1.0833 1.0857 0.0024 0.22
1.40 1.0980 1.1008 0.0028 0.25
1.45 1.1133 1.1166 0.0032 0.29
1.50 1.1295 1.1331 0.0037 0.32

TABLE 2.6.4 h � 0.05

■ EXAMPLE 1 Euler’s Method
Consider the initial-value problem y� � 0.1 !y � 0.4x2, y(2) � 4. Use Euler’s method to 
obtain an approximation to y(2.5) using first h � 0.1 and then h � 0.05.

SOLUTION  With the identification f (x, y) � 0.1 !y � 0.4x2, (3) becomes

yn�1 � yn � h(0.1"yn � 0.4x2
n).

Then for h � 0.1, x0 � 2, y0 � 4, and n � 0, we find

y1 � y0 � h(0.1"y0 � 0.4x2
0) � 4 � 0.1(0.1"4 � 0.4(2)2) � 4.18,

which, as we have already seen, is an estimate to the value of y(2.1). However, if we use the 
smaller step size h � 0.05, it takes two steps to reach x � 2.1. From

 y1 � 4 � 0.05(0.1 !4 � 0.4(2)2) � 4.09

 y2 � 4.09 � 0.05(0.1 !4.09 � 0.4(2.05)2) � 4.18416187

we have y1 � y(2.05) and y2 � y(2.1). The remainder of the calculations were carried out 
using software; the results are summarized in Tables 2.6.1 and 2.6.2. We see in Tables 2.6.1 
and 2.6.2 that it takes five steps with h � 0.1 and ten steps with h � 0.05, respectively, to get 
to x � 2.5. Also, each entry has been rounded to four decimal places.

In Example 2 we apply Euler’s method to a differential equation for which we have already 
found a solution. We do this to compare the values of the approximations yn at each step with 
the true values of the solution y(xn) of the initial-value problem.

■ EXAMPLE 2 Comparison of Approximate and Exact Values
Consider the initial-value problem y� � 0.2xy, y(1) � 1. Use Euler’s method to obtain an 
approximation to y(1.5) using first h � 0.1 and then h � 0.05.

SOLUTION  With the identification f (x, y) � 0.2xy, (3) becomes

 yn � 1 � yn � h(0.2xn  yn),

where x0 � 1 and y0 � 1. Again with the aid of computer software we obtain the values in 
Tables 2.6.3 and 2.6.4. 

In Example 1, the true values were calculated from the known solution y � e0.1(x221) (verify). 
Also, the absolute error is defined to be

| true value � approximation |.
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 2.6 A Numerical Method 71

The relative error and percentage relative error are, in turn,

 
absolute error

|true value|
 and 

absolute error

|true value|
3 100.

By comparing the last two columns in Tables 2.6.3 and 2.6.4, it is clear that the accuracy of the 
approximations improve as the step size h decreases. Also, we see that even though the percent-
age relative error is growing with each step, it does not appear to be that bad. But you should not 
be deceived by one example. If we simply change the coefficient of the right side of the DE in 
Example 2 from 0.2 to 2, then at xn � 1.5 the percentage relative errors increase dramatically. 
See Problem 4 in Exercises 2.6.

Euler’s method is just one of many different ways a solution of a differential equation can be 
approximated. Although attractive for its simplicity, Euler’s method is seldom used in serious 
calculations. We have introduced this topic simply to give you a first taste of numerical methods. 
We will go into greater detail and discuss methods that give significantly greater accuracy, no-
tably the fourth-order Runge–Kutta method, in Chapter 6. We shall refer to this important 
numerical method as the RK4 method.

 Numerical Solvers Regardless of whether we can actually find an explicit or implicit 
solution, if a solution of a differential equation exists, it represents a smooth curve in the 
Cartesian plane. The basic idea behind any numerical method for ordinary differential equations 
is to somehow approximate the y-values of a solution for preselected values of x. We start at 
a specified initial point (x0, y0) on a solution curve and proceed to calculate in a step-by-step 
fashion a sequence of points (x1, y1), (x2, y2), . . . , (xn, yn) whose y-coordinates yi approximate 
the y-coordinates y(xi) of points (x1, y(x1)), (x2, y(x2)), . . . , (xn, y(xn)) that lie on the graph of 
the usually unknown solution y(x). By taking the x-coordinates close together (that is, for small 
values of h) and by joining the points (x1, y1), (x2, y2), . . . , (xn, yn) with short line segments, we 
obtain a polygonal curve that appears smooth and whose qualitative characteristics we hope 
are close to those of an actual solution curve. Drawing curves is something well suited to a 
computer. A computer program written to either implement a numerical method or to render 
a visual representation of an approximate solution curve fitting the numerical data produced 
by this method is referred to as a numerical solver. There are many different numerical solv-
ers commercially available, either embedded in a larger software package such as a computer 
algebra system or as a stand-alone package. Some software packages simply plot the generated 
numerical approximations, whereas others generate both hard numerical data as well as the 
corresponding approximate or numerical solution curves. As an illustration of the connect-
the-dots nature of the graphs produced by a numerical solver, the two red polygonal graphs in 
FIGURE 2.6.3 are numerical solution curves for the initial-value problem y� � 0.2xy, y(0) � 1, 
on the interval [0, 4] obtained from Euler’s method and the RK4 method using the step size 
h � 1. The blue smooth curve is the graph of the exact solution y � e0.1x2

 of the IVP. Notice in 
Figure 2.6.3 that even with the ridiculously large step size of h � 1, the RK4 method produces 
the more believable “solution curve.” The numerical solution curve obtained from the RK4 
method is indistinguishable from the actual solution curve on the interval [0, 4] when a more 
typical step size of h � 0.1 is used.

 Using a Numerical Solver Knowledge of the various numerical methods is not 
necessary in order to use a numerical solver. A solver usually requires that the differential 
equation be expressed in normal form dy/dx � f (x, y). Numerical solvers that generate only 
curves usually require that you supply f (x, y) and the initial data x0 and y0 and specify the 
desired numerical method. If the idea is to approximate the numerical value of y(a), then 
a solver may additionally require that you state a value for h, or, equivalently, require the 
number of steps that you want to take to get from x � x0 to x � a. For example, if we want to 
approximate y(4) for the IVP illustrated in Figure 2.6.3, then, starting at x � 0, it takes four 
steps to reach x � 4 with a step size of h � 1; 40 steps is equivalent to a step size of h � 0.1. 
Although it is not our intention here to delve into the many problems that one can encounter 
when attempting to approximate mathematical quantities, you should be at least aware of 
the fact that a numerical solver may break down near certain points or give an incomplete or 
misleading picture when applied to some first-order differential equations in the normal form. 
FIGURE 2.6.4 illustrates the numerical solution curve obtained by applying Euler’s method to 

A caveat.

FIGURE 2.6.3 Comparison of numerical 
methods

exact
solution

Runge–
Kutta
method

(0, 1)

Euler’s
method

x

y

FIGURE 2.6.4 A not very helpful 
numerical solution curve

x

y
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72 CHAPTER 2  First-Order Differential Equations

In Problems 1 and 2, use Euler’s method to obtain a four-decimal 
approximation of the indicated value. Carry out the recursion of 
(3) by hand, first using h � 0.1 and then using h � 0.05.

 1. y� � 2x � 3y � 1, y(1) � 5; y(1.2)
 2. y� � x � y2, y(0) � 0; y(0.2)

In Problems 3 and 4, use Euler’s method to obtain a four-decimal 
approximation of the indicated value. First use h � 0.1 and then 
use h � 0.05. Find an explicit solution for each initial-value 
problem and then construct tables similar to Tables 2.6.3 
and 2.6.4.

 3. y� � y, y(0) � 1; y(1.0)
 4. y� � 2xy, y(1) � 1; y(1.5)

In Problems 5–10, use a numerical solver and Euler’s method to 
obtain a four-decimal approximation of the indicated value. First 
use h � 0.1 and then use h � 0.05.

 5. y� � e–y, y(0) � 0; y(0.5)
 6. y� � x2 � y2, y(0) � 1; y(0.5)
 7. y� � (x � y)2, y(0) � 0.5; y(0.5)

 8. y� � xy � !y, y(0) � 1; y(0.5)

 9. y� � xy2 � 
y

x
, y(1) � 1; y(1.5)

 10. y� � y � y2, y(0) � 0.5; y(0.5)

In Problems 11 and 12, use a numerical solver to obtain a nu-
merical solution curve for the given initial-value problem. First 
use Euler’s method and then the RK4 method. Use h � 0.25 in 
each case. Superimpose both solution curves on the same co-
ordinate axes. If possible, use a different color for each curve. 
Repeat, using h � 0.1 and h � 0.05.

 11. y� � 2(cos x)y, y(0) � 1

 12. y� � y(10 � 2y), y(0) � 1

Discussion Problem
 13. Use a numerical solver and Euler’s method to approximate y(1.0), 

where y(x) is the solution to y� � 2xy2, y(0) � 1. First use h � 0.1 
and then h � 0.05. Repeat using the RK4 method. Discuss what 
might cause the approximations of y(1.0) to differ so greatly.

 2.6 Exercises Answers to selected odd-numbered problems begin on page ANS-3.  

a certain first-order initial value problem dy/dx � f (x, y), y(0) � 1. Equivalent results were 
obtained using three different commercial numerical solvers, yet the graph is hardly a plau-
sible solution curve. (Why?) There are several avenues of recourse when a numerical solver 
has difficulties; three of the more obvious are decrease the step size, use another numerical 
method, or try a different numerical solver.

2.7 Linear Models

 Introduction In this section we solve some of the linear first-order models that were 
introduced in Section 1.3.

 Growth and Decay The initial-value problem

 
dx

dt
� kx, x(t0) � x0, (1)

where k is the constant of proportionality, serves as a model for diverse phenomena involv-
ing either growth or decay. We have seen in Section 1.3 that in biology, over short periods 
of time, the rate of growth of certain populations (bacteria, small animals) is observed to be 
proportional to the population present at time t. If a population at some arbitrary initial time t0 
is known, then the solution of (1) can be used to predict the population in the future—that is, 
at times t � t0. The constant of proportionality k in (1) can be determined from the solution of 
the initial-value problem using a subsequent measurement of x at some time t1 � t0. In physics
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 2.7 Linear Models 73

and chemistry, (1) is seen in the form of a first-order reaction, that is, a reaction whose rate or 
velocity dx/dt is directly proportional to the first power of the reactant concentration x at time t. 
The decomposition or decay of U-238 (uranium) by radioactivity into Th-234 (thorium) is a 
first-order reaction.

■ EXAMPLE 1 Bacterial Growth
A culture initially has P0 number of bacteria. At t � 1 h the number of bacteria is measured 
to be 3

2  P0. If the rate of growth is proportional to the number of bacteria P(t) present at 
time t, determine the time necessary for the number of bacteria to triple.

SOLUTION  We first solve the differential equation in (1) with the symbol x replaced by P. 
With t0 � 0 the initial condition is P(0) � P0. We then use the empirical observation that 
P(1) � 3

2 P0 to determine the constant of proportionality k.
Notice that the differential equation dP/dt � kP is both separable and linear. When it is 

put in the standard form of a linear first-order DE,

 
dP

dt
2 kP � 0,

we can see by inspection that the integrating factor is e–kt. Multiplying both sides of the equa-
tion by this term immediately gives

 
d

dt
 fe�ktPg � 0.

Integrating both sides of the last equation yields e–ktP � c or P(t) � cekt. At t � 0 it follows 
that P0 � ce0 � c, and so P(t) � P0e

kt. At t � 1 we have 3
2 P0 � P0e

k or ek � 3
2 . From the 

last equation we get k � ln 3
2  � 0.4055. Thus P(t) � P0e

0.4055t. To find the time at which the 
number of bacteria has tripled, we solve 3P0 � P0e

0.4055t for t. It follows that 0.4055t � ln 3, 
and so

 t �
ln 3

0.4055
< 2.71 h.

See FIGURE 2.7.1.

Notice in Example 1 that the actual number P0 of bacteria present at time t � 0 played no 
part in determining the time required for the number in the culture to triple. The time neces-
sary for an initial population of, say, 100 or 1,000,000 bacteria to triple is still approximately 
2.71 hours.

As shown in FIGURE 2.7.2, the exponential function ekt increases as t increases for k � 0 and 
decreases as t increases for k � 0. Thus problems describing growth (whether of populations, 
bacteria, or even capital) are characterized by a positive value of k, whereas problems involving 
decay (as in radioactive disintegration) yield a negative k value. Accordingly, we say that k is 
either a growth constant (k � 0) or a decay constant (k � 0).

 Half-Life In physics the half-life is a measure of the stability of a radioactive substance. 
The half-life is simply the time it takes for one-half of the atoms in an initial amount A0 to disin-
tegrate, or transmute, into the atoms of another element. The longer the half-life of a substance, 
the more stable it is. For example, the half-life of highly radioactive radium, Ra-226, is about 
1700 years. In 1700 years one-half of a given quantity of Ra-226 is transmuted into radon, 
Rn-222. The most commonly occurring uranium isotope, U-238, has a half-life of approximately 
4,500,000,000 years. In about 4.5 billion years, one-half of a quantity of U-238 is transmuted 
into lead, Pb-206.

FIGURE 2.7.1 Time in which initial 
population triples in Example 1

t = 2.71 
t

P

P0

3P0

P(t) = P0e0.4055t

FIGURE 2.7.2 Growth (k � 0) and 
decay (k � 0)

t

y
ekt, k > 0
growth

ekt, k < 0
decay
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74 CHAPTER 2  First-Order Differential Equations

■ EXAMPLE 2 Half-Life of Plutonium
A breeder reactor converts relatively stable uranium-238 into the isotope plutonium-239. 
After 15 years it is determined that 0.043% of the initial amount A0 of the plutonium has 
disintegrated. Find the half-life of this isotope if the rate of disintegration is proportional to 
the amount remaining.

SOLUTION  Let A(t) denote the amount of plutonium remaining at any time. As in Example 1, 
the solution of the initial-value problem

 
dA

dt
� kA, A(0) � A0, (2)

is A(t) � A0e
kt. If 0.043% of the atoms of A0 have disintegrated, then 99.957% of the substance 

remains. To find the decay constant k, we use 0.99957A0 � A(15); that is, 0.99957A0 � A0e
15k. 

Solving for k then gives k � 1
15  ln 0.99957 � �0.00002867. Hence A(t) � A0e

�0.00002867t. 
Now the half-life is the corresponding value of time at which A(t) � 1

2 A0. Solving for t gives 
1
2 A0 � A0e

–0.00002867t or 1
2 � e–0.00002867t. The last equation yields

    t �
ln 2

0.00002867
< 24,180 years.

 Carbon Dating About 1950, a team of scientists at the University of Chicago led by 
the chemist Willard Libby devised a method using a radioactive isotope of carbon as a means 
of determining the approximate ages of carbonaceous fossilized matter. The theory of carbon 
dating is based on the fact that the radioisotope carbon-14 is produced in the atmosphere by the 
action of cosmic radiation on nitrogen-14. The ratio of the amount of C-14 to the stable C-12 
in the atmosphere appears to be a constant, and as a consequence the proportionate amount 
of the isotope present in all living organisms is the same as that in the atmosphere. When a 
living organism dies, the absorption of C-14, by breathing, eating, or photosynthesis, ceases. 
Thus by comparing the proportionate amount of C-14, say, in a fossil with the constant amount 
ratio found in the atmosphere, it is possible to obtain a reasonable estimation of its age. The 
method is based on the knowledge of the half-life of C-14. Libby’s calculated value for the
half-life of C-14 was approximately 5600 years and is called the Libby half-life. Today 
the commonly accepted value for the half-life of C-14 is the Cambridge half-life that is close to 
5730 years. For his work, Libby was award the Nobel Prize for chemistry in 1960. Libby’s method 
has been used to date wooden furniture in Egyptian tombs, the woven flax wrappings of the Dead 
Sea Scrolls, and the cloth of the enigmatic Shroud of Turin. See Problem 12 in Exercises 2.7.

■ EXAMPLE 3 Age of a Fossil
A fossilized bone is found to contain 0.1% of its original amount of C-14. Determine the age 
of the fossil.

SOLUTION  The starting point is again A(t) � A0e
kt. To determine the value of the decay con-

stant k we use the fact that 12A0 � A(5730) or 12A0 � A0e
5730k. The last equation implies 5730k � 

ln 12 � �ln 2 and so we get k � �(ln 2)/5730 � �0.00012097. Therefore A(t) � A0e
�0.00012097t. 

With A(t) � 0.001A0 we have 0.001A0 � A0e
–0.00012097t and �0.00012097t � ln (0.001) � 

�ln 1000. Thus

    t �
ln 1000

0.00012097
< 57,103 years.

The date found in Example 3 is really at the border of accuracy of this method. The usual 
carbon-14 technique is limited to about 10 half-lives of the isotope, or roughly 60,000 years. One 
fundamental reason for this limitation is the relatively short half-life of C-14. There are other 
problems as well; the chemical analysis needed to obtain an accurate measurement of the remain-
ing C-14 becomes somewhat formidable around the point 0.001A0. Moreover, this analysis requires 
the destruction of a rather large sample of the specimen. If this measurement is accomplished 
indirectly, based on the actual radioactivity of the specimen, then it is very difficult to distinguish 

The size and location of the sample 
caused major difficulties when a team of 
scientists were invited to use carbon-14 
dating on the Shroud of Turin in 1988. 
See Problem 12 in Exercises 2.7.
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 2.7 Linear Models 75

between the radiation from the specimen and the normal background radiation. But recently the 
use of a particle accelerator has enabled scientists to separate the C-14 from the stable C-12 
directly. When the precise value of the ratio of C-14 to C-12 is computed, the accuracy can be 
extended to 70,000–100,000 years. For these reasons and the fact that the C-14 dating is restricted 
to organic materials this method is used mainly by archaeologists. On the other hand, geologists 
who are interested in questions about the age of rocks or the age of the Earth use radiometric 
dating techniques. Radiometric dating, invented by the physicist/chemist Ernest Rutherford 
(1871–1937) around 1905, is based on the radioactive decay of a naturally occurring radioactive 
isotope with a very long half-life and a comparison between a measured quantity of this decay-
ing isotope and one of its decay products, using known decay rates. Radiometric methods using 
potassium-argon, rubidium-strontium, or uranium-lead can give dates of certain kinds of rocks 
of several billion years. See Problems 5 and 6 in Exercises 2.9 for a discussion of the potassium-
argon method of dating.

 Newton’s Law of Cooling / Warming In equation (3) of Section 1.3 we saw that 
the mathematical formulation of Newton’s empirical law of cooling of an object is given by the 
linear first-order differential equation

 
dT

dt
� k(T 2 Tm), (3)

where k is a constant of proportionality, T(t) is the temperature of the object for t � 0, and Tm is 
the ambient temperature—that is, the temperature of the medium around the object. In Example 4 
we assume that Tm is constant.

■ EXAMPLE 4 Cooling of a Cake
When a cake is removed from an oven, its temperature is measured at 300�F. Three minutes 
later its temperature is 200�F. How long will it take for the cake to cool off to a room tem-
perature of 70�F?

SOLUTION  In (3) we make the identification Tm � 70. We must then solve the initial-value 
problem

 
dT

dt
� k(T 2 70), T(0) � 300 (4)

and determine the value of k so that T(3) � 200.
Equation (4) is both linear and separable. Separating variables,

 
dT

T 2 70
� k dt,

yields ln | T � 70 | � kt � c1, and so T � 70 � c2e
kt. When t � 0, T � 300, so that 300 � 70 � c2 

gives c2 � 230, and, therefore, T � 70 � 230ekt. Finally, the measurement T(3) � 200 leads 
to e3k � 13

23 or k � 1
3 ln 13

23 � �0.19018. Thus

 T(t) � 70 � 230e–0.19018t. (5)

We note that (5) furnishes no finite solution to T(t) � 70 since limtSq T(t) � 70. Yet intuitively 
we expect the cake to reach the room temperature after a reasonably long period of time. How 
long is “long”? Of course, we should not be disturbed by the fact that the model (4) does not 
quite live up to our physical intuition. Parts (a) and (b) of FIGURE 2.7.3 clearly show that the 
cake will be approximately at room temperature in about one-half hour.

 Mixtures The mixing of two fluids sometimes gives rise to a linear first-order differential 
equation. When we discussed the mixing of two brine solutions in Section 1.3, we assumed that 
the rate x�(t) at which the amount of salt in the mixing tank changes was a net rate:

 
dx

dt
� ainput rate

of salt
b 2 aoutput rate

of salt
b � Rin 2 Rout. (6)

The half-life of uranium-238 
is 4.47 billion years.

FIGURE 2.7.3 Temperature of cooling 
cake in Example 4

T

t
15 30

(a)

T =70

300

150

T(t) t  (in min.)

(b)

75°
74°
73°
72°
71°
70.5°

20.1
21.3
22.8
24.9
28.6
32.3
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76 CHAPTER 2  First-Order Differential Equations

FIGURE 2.7.4  Pounds of salt in tank as 
a function of time in Example 5

x

t
500

(a)

x = 600

x (lb)t  (min.)

(b)

50
100
150
200
300
400

266.41
397.67
477.27
525.57
572.62
589.93

In Example 5 we solve equation (8) of Section 1.3.

■ EXAMPLE 5 Mixture of Two Salt Solutions
Recall that the large tank considered in Section 1.3 held 300 gallons of a brine solution. Salt 
was entering and leaving the tank; a brine solution was being pumped into the tank at the rate 
of 3 gal/min, mixed with the solution there, and then the mixture was pumped out at the rate of 
3 gal/min. The concentration of the salt in the inflow, or solution entering, was 2 lb/gal, and so 
salt was entering the tank at the rate Rin � (2 lb/gal) 	 (3 gal/min) � 6 lb/min and leaving the 
tank at the rate Rout � (x/300 lb/gal) 	 (3 gal/min) � x/100 lb/min. From this data and (6) we 
get equation (8) of Section 1.3. Let us pose the question: If there were 50 lb of salt dissolved 
initially in the 300 gallons, how much salt is in the tank after a long time?

SOLUTION  To find the amount of salt x(t) in the tank at time t, we solve the initial-value 
problem

 
dx

dt
�

1

100
 x � 6, x(0) � 50.

Note here that the side condition is the initial amount of salt, x(0) � 50 in the tank, and not the 
initial amount of liquid in the tank. Now since the integrating factor of the linear differential 
equation is et/100, we can write the equation as

 
d

dt
fet>100xg � 6et>100.

Integrating the last equation and solving for x gives the general solution x(t) � 600 � ce–t/100. 
When t � 0, x � 50, so we find that c � �550. Thus the amount of salt in the tank at any 
time t is given by

 x(t) � 600 � 550e–t/100. (7)

The solution (7) was used to construct the table in FIGURE 2.7.4 (b). Also, it can be seen from 
(7) and Figure 2.7.4(a) that x(t) S 600 as t S q . Of course, this is what we would ex-
pect in this case; over a long time the number of pounds of salt in the solution must be 
(300 gal)(2 lb/gal) � 600 lb.

In Example 5 we assumed that the rate at which the solution was pumped in was the same 
as the rate at which the solution was pumped out. However, this need not be the situation; the 
mixed brine solution could be pumped out at a rate rout faster or slower than the rate rin at which 
the other brine solution was pumped in. 

■ EXAMPLE 6 Example 5 Revisited
If the well-stirred solution in Example 5 is pumped out at the slower rate of rout � 2 gallons 
per minute, then liquid accumulates in the tank at a rate of rin 2 rout � (3 2 2) gal/min = 
1 gal/min. After t minutes there are 300 � t gallons of brine in the tank and so the concentra-
tion of the outflow is c(t) � x/(300 � t). The output rate of salt is then Rout � c(t) 	 rout or

 Rout � a x

300 � t
 lb>galb  	 (2 gal>min) �

2x

300 � t
 lb>min.

Hence equation (6) becomes

 
dx

dt
� 6 2

2x

300 � t
  or  

dx

dt
�

2

300 � t
 x � 6.
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 2.7 Linear Models 77

Multiplying the last equation by the integrating factor 

 ee 2
300 � t  dt � e ln(300� t)2

� (300 � t)2

yields

 
d

dt
 f(300 � t)2xg � 6(300 � t)2.

By integrating and applying the initial condition x(0) � 50 we obtain the solution 
x(t) � 600 � 2t 2 (4.95 3 107)(300 � t)�2. See the discussion following (8) of Section 1.3, 
Problem 12 in Exercises 1.3, and Problems 22–27 in Exercises 2.7.

 Series Circuits For a series circuit containing only a resistor and an inductor, Kirchhoff’s 
second law states that the sum of the voltage drop across the inductor (L(di/dt)) and the voltage drop 
across the resistor (iR) is the same as the impressed voltage (E(t)) on the circuit. See FIGURE 2.7.5.

Thus we obtain the linear differential equation for the current i(t),

 L 
di

dt
� Ri � E(t), (8)

where L and R are constants known as the inductance and the resistance, respectively. The current 
i(t) is also called the response of the system.

The voltage drop across a capacitor with capacitance C is given by q(t)/C, where q is the charge 
on the capacitor. Hence, for the series circuit shown in FIGURE 2.7.6, Kirchhoff’s second law gives

 Ri �
1

C
 q � E(t). (9)

But current i and charge q are related by i � dq/dt, so (9) becomes the linear differential equation

 R 
dq

dt
�

1

C
 q � E(t). (10)

■ EXAMPLE 7 Series Circuit
A 12-volt battery is connected to an LR-series circuit in which the inductance is 1

2 henry and 
the resistance is 10 ohms. Determine the current i if the initial current is zero.

SOLUTION  From (8) we see that we must solve

 
1

2
 
di

dt
� 10i � 12

subject to i(0) � 0. First, we multiply the differential equation by 2 and read off the integrating 
factor e20t. We then obtain

 
d

dt
fe20tig � 24e20t.

Integrating each side of the last equation and solving for i gives i(t) � 65  � ce–20t. Now i(0) � 0 
implies 0 � 6

5  � c or c � �6
5. Therefore the response is i(t) � 6

5 2
6
5e

�20t.

FIGURE 2.7.5 LR-series circuit

L

R

E

FIGURE 2.7.6 RC-series circuit

R

C

E
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78 CHAPTER 2  First-Order Differential Equations

Growth and Decay
 1. The population of a community is known to increase at a rate 

proportional to the number of people present at time t. If an 
initial population P0 has doubled in 5 years, how long will it 
take to triple? To quadruple?

 2. Suppose it is known that the population of the community in 
Problem 1 is 10,000 after 3 years. What was the initial popu-
lation P0? What will the population be in 10 years? How fast 
is the population growing at t � 10?

 3. The population of a town grows at a rate proportional to the 
population present at time t. The initial population of 500 
increases by 15% in 10 years. What will the population be in 
30 years? How fast is the population growing at t � 30?

 4. The population of bacteria in a culture grows at a rate propor-
tional to the number of bacteria present at time t. After 3 hours 
it is observed that 400 bacteria are present. After 10 hours 

2000 bacteria are present. What was the initial number of 
bacteria?

 5. The radioactive isotope of lead, Pb-209, decays at a rate pro-
portional to the amount present at time t and has a half-life of 
3.3 hours. If 1 gram of this isotope is present initially, how 
long will it take for 90% of the lead to decay?

 6. Initially, 100 milligrams of a radioactive substance was pres-
ent. After 6 hours the mass had decreased by 3%. If the rate of 
decay is proportional to the amount of the substance present 
at time t, find the amount remaining after 24 hours.

 7. Determine the half-life of the radioactive substance described 
in Problem 6.

 8. (a)  Consider the initial-value problem dA/dt � kA, A(0) � A0, 
as the model for the decay of a radio active substance. 
Show that, in general, the half-life T of the substance is 
T � �(ln 2)/k.

 2.7 Exercises Answers to selected odd-numbered problems begin on page ANS-3.  

From (4) of Section 2.3 we can write a general solution of (8):

 i(t) �
e�(R>L)t

L #e (R>L)t E(t) dt � ce�(R>L)t. (11)

In particular, when E(t) � E0 is a constant, (11) becomes

 i(t) �
E0

R
� ce�(R>L)t. (12)

Note that as t S q , the second term in (12) approaches zero. Such a term is usually called a 
transient term; any remaining terms are called the steady-state part of the solution. In this case 
E0   /R is also called the steady-state current; for large values of time it then appears that the 
current in the circuit is simply governed by Ohm’s law (E � iR).

Remarks
The solution P(t) � P0e

0.4055t of the initial-value problem in Example 1 described the popula-
tion of a colony of bacteria at any time t � 0. Of course, P(t) is a continuous function that 
takes on all real numbers in the interval defined by P0 � P � q . But since we are talking 
about a population, common sense dictates that P can take on only positive integer values. 
Moreover, we would not expect the population to grow continuously—that is, every second, 
every microsecond, and so on—as predicted by our solution; there may be intervals of time 
[t1, t2] over which there is no growth at all. Perhaps, then, the graph shown in FIGURE 2.7.7(a) 
is a more realistic description of P than is the graph of an exponential function. Using a con-
tinuous function to describe a discrete phenomenon is often more a matter of convenience 
than of accuracy. However, for some purposes we may be satisfied if our model describes 
the system fairly closely when viewed macroscopically in time, as in Figures 2.7.7(b) and 
2.7.7(c), rather than microscopically, as in Figure 2.7.7(a). Keep firmly in mind, a mathemati-
cal model is not reality. FIGURE 2.7.7 Population growth is a 

discrete process

(b)

P

1
t

(c)

P

1
t

P

t
1t2t1

(a)

P0

P0
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 2.7 Linear Models 79

(b) Show that the solution of the initial-value problem in part 
(a) can be written A(t) � A02

–t/T.
(c) If a radioactive substance has a half-life T given in part (a), 

how long will it take an initial amount A0 of the substance 
to decay to 1

8 A0?
 9. When a vertical beam of light passes through a transparent 

medium, the rate at which its intensity I decreases is proportional 
to I(t), where t represents the thickness of the medium (in feet). 
In clear seawater, the intensity 3 feet below the surface is 
25% of the initial intensity I0 of the incident beam. What is 
the intensity of the beam 15 feet below the surface?

 10. When interest is compounded continuously, the amount of 
money increases at a rate proportional to the amount S pres-
ent at time t, that is, dS/dt � rS, where r is the annual rate of 
interest.
(a) Find the amount of money accrued at the end of 5 years 

when $5000 is deposited in a savings account drawing 
5 34% annual interest compounded continuously.

(b) In how many years will the initial sum deposited have 
doubled?

(c) Use a calculator to compare the amount obtained in 
part (a) with the amount S � 5000(1 � 1

4(0.0575))5(4) 
that is accrued when interest is compounded quarterly.

Carbon Dating
 11. Archaeologists used pieces of burned wood, or charcoal, found 

at the site to date prehistoric paintings and drawings on walls 
and ceilings in a cave in Lascaux, France. See FIGURE 2.7.8. 
Use the information on page 74 to determine the approximate 
age of a piece of burned wood, if it was found that 85.5% of 
the C-14 found in living trees of the same type had decayed.

  FIGURE 2.7.8 Cave wall painting in Problem 11

 12. The Shroud of Turin, which shows the negative image of the 
body of a man who appears to have been crucified, is believed 
by many to be the burial shroud of Jesus of Nazareth. See 
FIGURE 2.7.9. In 1988 the Vatican granted permission to have 
the shroud carbon dated. Three independent scientific labora-
tories analyzed the cloth and concluded that the shroud was ap-
proximately 660 years old,* an age consistent with its historical 
appearance. Using this age, determine what percentage of the 
original amount of C-14 remained in the cloth as of 1988. 

 *Some scholars have disagreed with the finding. For more information 
on this fascinating mystery, see the Shroud of Turin website home page 
at http://www.shroud.com.

  FIGURE 2.7.9 Shroud image in Problem 12

Newton’s Law of Cooling/Warming
 13. A thermometer is removed from a room where the temperature 

is 70�F and is taken outside, where the air temperature is 10�F. 
After one-half minute the thermometer reads 50�F. What is 
the reading of the thermometer at t � 1 min? How long will 
it take for the thermometer to reach 15�F?

 14. A thermometer is taken from an inside room to the outside, 
where the air temperature is 5�F. After 1 minute the thermo-
meter reads 55�F, and after 5 minutes it reads 30�F. What is 
the initial temperature of the inside room?

 15. A small metal bar, whose initial temperature was 20�C, is dropped 
into a large container of boiling water. How long will it take the 
bar to reach 90�C if it is known that its temperature increased 2� 
in 1 second? How long will it take the bar to reach 98�C?

 16. Two large containers A and B of the same size are filled with 
different fluids. The fluids in containers A and B are maintained 
at 0�C and 100�C, respectively. A small metal bar, whose ini-
tial temperature is 100�C, is lowered into container A. After 
1 minute the temperature of the bar is 90�C. After 2 minutes the 
bar is removed and instantly transferred to the other container. 
After 1 minute in container B the temperature of the bar rises 
10�. How long, measured from the start of the entire process, 
will it take the bar to reach 99.9�C?

 17. A thermometer reading 70�F is placed in an oven preheated to 
a constant temperature. Through a glass window in the oven 
door, an observer records that the thermometer read 110�F after 
1
2 minute and 145�F after 1 minute. How hot is the oven?

 18. At t � 0 a sealed test tube containing a chemical is immersed 
in a liquid bath. The initial temperature of the chemical in the 
test tube is 80�F. The liquid bath has a controlled temperature 
(measured in degrees Fahrenheit) given by Tm(t) � 100 � 
40e–0.1t, t � 0, where t is measured in minutes.
(a) Assume that k � �0.1 in (2). Before solving the IVP, 

describe in words what you expect the temperature T(t) of 
the chemical to be like in the short term. In the long term.

(b) Solve the initial-value problem. Use a graphing utility to 
plot the graph of T(t) on time intervals of various lengths. 
Do the graphs agree with your predictions in part (a)?

 19. A dead body was found within a closed room of a house where 
the temperature was a constant 70�F. At the time of discovery, 
the core temperature of the body was determined to be 85�F. 
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80 CHAPTER 2  First-Order Differential Equations

One hour later a second measurement showed that the core 
temperature of the body was 80�F. Assume that the time of 
death corresponds to t � 0 and that the core temperature at 
that time was 98.6�F. Determine how many hours elapsed 
before the body was found.

 20. Repeat Problem 19 if evidence indicated that the dead person 
was running a fever of 102�F at the time of death.

Mixtures
 21. A tank contains 200 liters of fluid in which 30 grams of salt 

is dissolved. Brine containing 1 gram of salt per liter is then 
pumped into the tank at a rate of 4 L /min; the well-mixed 
solution is pumped out at the same rate. Find the number A(t) 
of grams of salt in the tank at time t.

 22. Solve Problem 21 assuming that pure water is pumped into 
the tank.

 23. A large tank is filled to capacity with 500 gallons of pure 
water. Brine containing 2 pounds of salt per gallon is pumped 
into the tank at a rate of 5 gal/min. The well-mixed solution is 
pumped out at the same rate. Find the number A(t) of pounds 
of salt in the tank at time t.

 24. In Problem 23, what is the concentration c(t) of the salt in the 
tank at time t? At t � 5 min? What is the concentration of the 
salt in the tank after a long time; that is, as  t S q? At what 
time is the concentration of the salt in the tank equal to one-
half this limiting value?

 25. Solve Problem 23 under the assumption that the solution is 
pumped out at a faster rate of 10 gal/min. When is the tank 
empty?

 26. Determine the amount of salt in the tank at time t in Example 5 
if the concentration of salt in the inflow is variable and given 
by cin(t) � 2 � sin(t/4) lb/gal. Without actually graphing, 
conjecture what the solution curve of the IVP should look like. 
Then use a graphing utility to plot the graph of the solution 
on the interval [0, 300]. Repeat for the interval [0, 600] and 
compare your graph with that in Figure 2.7.4(a).

 27. A large tank is partially filled with 100 gallons of fluid in which 
10 pounds of salt is dissolved. Brine containing 1

2 pound of 
salt per gallon is pumped into the tank at a rate of 6 gal/min. 
The well-mixed solution is then pumped out at a slower rate 
of 4 gal/min. Find the number of pounds of salt in the tank 
after 30 minutes.

 28. In Example 5 the size of the tank containing the salt mix-
ture was not given. Suppose, as in the discussion following 
Example 5, that the rate at which brine is pumped into the 
tank is 3 gal/min but that the well-stirred solution is pumped 
out at a rate of 2 gal/min. It stands to reason that since 
brine is accumulating in the tank at the rate of 1 gal/min, 
any finite tank must eventually overflow. Now suppose 
that the tank has an open top and has a total capacity of 
400 gallons.
(a) When will the tank overflow?
(b) What will be the number of pounds of salt in the tank at 

the instant it overflows?
(c) Assume that although the tank is overflowing, the brine 

solution continues to be pumped in at a rate of 3 gal/min 
and the well-stirred solution continues to be pumped out 

at a rate of 2 gal/min. Devise a method for determining 
the number of pounds of salt in the tank at t � 150 min.

(d) Determine the number of pounds of salt in the tank as 
t S q . Does your answer agree with your intuition?

(e) Use a graphing utility to plot the graph A(t) on the interval 
[0, 500).

Series Circuits
 29. A 30-volt electromotive force is applied to an LR-series cir-

cuit in which the inductance is 0.1 henry and the resistance 
is 50 ohms. Find the current i(t) if i(0) � 0. Determine the 
current as t S q .

 30. Solve equation (8) under the assumption that E(t) � E0 sin vt 
and i(0) � i0.

 31. A 100-volt electromotive force is applied to an RC-series cir-
cuit in which the resistance is 200 ohms and the capacitance 
is 10–4 farad. Find the charge q(t) on the capacitor if q(0) � 0. 
Find the current i(t).

 32. A 200-volt electromotive force is applied to an RC-series cir-
cuit in which the resistance is 1000 ohms and the capacitance 
is 5 � 10–6 farad. Find the charge q(t) on the capacitor if 
i(0) � 0.4. Determine the charge and current at t � 0.005 s. 
Determine the charge as t S q .

 33. An electromotive force

 E(t) � e 120, 0 # t # 20

0, t . 20

  is applied to an LR-series circuit in which the inductance is 
20 henries and the resistance is 2 ohms. Find the current i(t) 
if i(0) � 0.

 34. Suppose an RC-series circuit has a variable resistor. If the 
resistance at time t is given by R � k1 � k2t, where k1 and k2 
are known positive constants, then (9) becomes

 (k1 � k2t) 
dq

dt
�

1

C
 q � E(t).

  If E(t) � E0 and q(0) � q0, where E0 and q0 are constants, 
show that

 q(t) � E0C � (q0 2 E0C) a k1

k1 � k2t
b1>Ck2

.

Miscellaneous Linear Models
 35. Air Resistance In (14) of Section 1.3 we saw that a differen-

tial equation describing the velocity v of a falling mass subject 
to air resistance proportional to the instantaneous velocity is

 m 
dv

dt
� mg 2 kv,

  where k � 0 is a constant of proportionality called the drag 
coefficient. The positive direction is downward.
(a) Solve the equation subject to the initial condition 

v(0) � v0.
(b) Use the solution in part (a) to determine the limiting, 

or terminal, velocity of the mass. We saw how to de-
termine the terminal velocity without solving the DE in 
Problem 39 in Exercises 2.1.
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 2.7 Linear Models 81

(c) If the distance s, measured from the point where the 
mass was released above ground, is related to veloc-
ity v by ds/dt � v, find an explicit expression for s(t) if 
s(0) � 0.

 36. How High?—No Air Resistance Suppose a small cannonball 
weighing 16 lb is shot vertically upward with an initial velocity 
v0 � 300 ft/s. The answer to the question, “How high does the 
cannonball go?” depends on whether we take air resistance 
into account.
(a) Suppose air resistance is ignored. If the positive direction 

is upward, then a model for the state of the cannonball 
is given by d 2s/dt 2 � �g (equation (12) of Section 1.3). 
Since ds/dt � v(t) the last differential equation is the 
same as dv/dt � �g, where we take g � 32 ft  /s2. Find 
the velocity v(t) of the cannonball at time t.

(b) Use the result obtained in part (a) to determine the height 
s(t) of the cannonball measured from ground level. Find 
the maximum height attained by the cannonball.

 37. How High?—Linear Air Resistance Repeat Problem 36, 
but this time assume that air resistance is proportional to 
instantaneous velocity. It stands to reason that the maximum 
height attained by the cannonball must be less than that in 
part (b) of Problem 36. Show this by supposing that the drag 
coefficient is k � 0.0025. [Hint: Slightly modify the DE in 
Problem 35.]

 38. Skydiving A skydiver weighs 125 pounds, and her parachute 
and equipment combined weigh another 35 pounds. After 
exiting from a plane at an altitude of 15,000 feet, she waits 
15 seconds and opens her parachute. Assume the constant 
of proportionality in the model in Problem 35 has the value 
k � 0.5 during free fall and k � 10 after the parachute is 
opened. Assume that her initial velocity on leaving the plane 
is zero. What is her velocity and how far has she traveled 
20 seconds after leaving the plane? How does her velocity 
at 20 seconds compare with her terminal velocity? How long 
does it take her to reach the ground? [Hint: Think in terms of 
two distinct IVPs.]

 39. Evaporating Raindrop As a raindrop falls, it evaporates while 
retaining its spherical shape. If we make the further assump-
tions that the rate at which the raindrop evaporates is propor-
tional to its surface area and that air resistance is negligible, 
then a model for the velocity v(t) of the raindrop is

 
dv

dt
�

3(k/r)

(k/r)t � r0
 v � g.

  Here r is the density of water, r0 is the radius of the raindrop 
at t � 0, k � 0 is the constant of proportionality, and the 
downward direction is taken to be the positive direction.
(a) Solve for v(t) if the raindrop falls from rest.
(b) Reread Problem 36 of Exercises 1.3 and then show that 

the radius of the raindrop at time t is r(t) � (k/r)t � r0.
(c) If r0 � 0.01 ft and r � 0.007 ft 10 seconds after the rain-

drop falls from a cloud, determine the time at which the 
raindrop has evaporated completely.

 40. Fluctuating Population The differential equation dP/dt � 
(k cos t)P, where k is a positive constant, is a mathematical 
model for a population P(t) that undergoes yearly seasonal 
fluctuations. Solve the equation subject to P(0) � P0. Use a 

graphing utility to obtain the graph of the solution for different 
choices of P0.

 41. Population Model In one model of the changing population 
P(t) of a community, it is assumed that

 
dP

dt
�

dB

dt
2

dD

dt
,

  where dB/dt and dD/dt are the birth and death rates, 
respectively.
(a) Solve for P(t) if dB/dt � k1P and dD/dt � k2P.
(b) Analyze the cases k1 � k2, k1 � k2, and k1 � k2.

 42. Memorization When forgetfulness is taken into account, the 
rate of memorization of a subject is given by

 
dA

dt
� k1(M 2 A) 2 k2A,

  where k1 � 0, k2 � 0, A(t) is the amount to be memorized in 
time t, M is the total amount to be memorized, and M � A is 
the amount remaining to be memorized. See Problems 25 and 
26 in Exercises 1.3.
(a) Since the DE is autonomous, use the phase portrait con-

cept of Section 2.1 to find the limiting value of A(t) as 
t S q . Interpret the result.

(b) Solve for A(t) subject to A(0) � 0. Sketch the graph of 
A(t) and verify your prediction in part (a).

 43. Drug Dissemination A mathematical model for the rate at 
which a drug disseminates into the bloodstream is given by 
dx/dt � r � kx, where r and k are positive constants. The 
function x(t) describes the concentration of the drug in the 
bloodstream at time t.
(a) Since the DE is autonomous, use the phase portrait con-

cept of Section 2.1 to find the limiting value of x(t) as 
t S q .

(b) Solve the DE subject to x(0) � 0. Sketch the graph of x(t) 
and verify your prediction in part (a). At what time is the 
concentration one-half this limiting value?

 44. Rocket Motion Suppose a small single-stage rocket of total 
mass m(t) is launched vertically and that the rocket consumes 
its fuel at a constant rate. If the positive direction is upward 
and if we take air resistance to be linear, then a differential 
equation for its velocity v(t) is given by

 
dv

dt
�

k 2 l

m0 2 lt
 v � �g �

R

m0 2 lt
,

  where k is the drag coefficient, l is the rate at which fuel is 
consumed, R is the thrust of the rocket, m0 is the total mass of 
the rocket at t � 0, and g is the acceleration due to gravity.

See Problem 21 in Exercises 1.3.
(a) Find the velocity v(t) of the rocket if m0 � 200 kg, 

R � 2000 N, l � 1 kg/s, g � 9.8 m/s2, k � 3 kg/s, and 
v(0) � 0.

(b) Use ds/dt � v and the result in part (a) to find the height 
s(t) of the rocket at time t.

 45. Rocket Motion—Continued In Problem 44, suppose that of 
the rocket’s initial mass, 50 kg is the mass of the fuel.
(a) What is the burnout time tb, or the time at which all the 

fuel is consumed? See Problem 22 in Exercises 1.3.
(b) What is the velocity of the rocket at burnout?
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82 CHAPTER 2  First-Order Differential Equations

(c) What is the height of the rocket at burnout?
(d) Why would you expect the rocket to attain an altitude 

higher than the number in part (b)?
(e) After burnout what is a mathematical model for the veloc-

ity of the rocket?

Discussion Problems
 46. Cooling and Warming A small metal bar is removed from 

an oven whose temperature is a constant 300�F into a room 
whose temperature is a constant 70�F. Simultaneously, an 
identical metal bar is removed from the room and placed into 
the oven. Assume that time t is measured in minutes. Discuss: 
Why is there a future value of time, call it t* � 0, at which the 
temperature of each bar is the same?

 47. Heart Pacemaker A heart pacemaker, shown in FIGURE 2.7.10, 
consists of a switch, a battery, a capacitor, and the heart as 
a resistor. When the switch S is at P, the capacitor charges; 
when S is at Q, the capacitor discharges, sending an electrical 
stimulus to the heart. In Problem 49 in Exercises 2.3, we saw 
that during the time the electrical stimulus is being applied to 
the heart, the voltage E across the heart satisfies the linear DE

 
dE

dt
� �

1

RC
 E.

(a) Let us assume that over the time interval of length t1, (0, t1), 
the switch S is at position P shown in Figure 2.7.10 and the 
capacitor is being charged. When the switch is moved to 
position Q at time t1 the capacitor discharges, sending 
an impulse to the heart over the time interval of length 
t2: [t1, t1 � t2). Thus, over the initial charging/discharging 
interval (0, t1 � t2) the voltage to the heart is actually mod-
eled by the piecewise-defined differential equation

 
dE

dt
� •

0, 0 # t , t1

�
1

RC
 E, t1 # t , t1 � t2.

By moving S between P and Q, the charging and discharg-
ing over time intervals of lengths t1 and t2 is repeated 
indefinitely. Suppose t1 � 4 s, t2 � 2 s, E0 � 12 V, and 
E(0) � 0, E(4) � 12, E(6) � 0, E(10) � 12, E(12) � 0, 
and so on. Solve for E(t) for 0 
 t 
 24.

(b) Suppose for the sake of illustration that R � C � 1. Use 
a graphing utility to graph the solution for the IVP in 
part (a) for 0 
 t 
 24. 

FIGURE 2.7.10 Model of a pacemaker in Problem 47

heart

switch
Q

P S
C

R

E0

 48. Sliding Box (a)  A box of mass m slides down an inclined
plane that makes an angle u with the horizontal as shown 
in FIGURE 2.7.11. Find a differential equation for the velocity 
v(t) of the box at time t in each of the following three cases:

 (i) No sliding friction and no air resistance
 (ii) With sliding friction and no air resistance
 (iii) With sliding friction and air resistance

 In cases (ii) and (iii), use the fact that the force of friction 
opposing the motion of the box is µN, where µ is the coef-
ficient of sliding friction and N is the normal component 
of the weight of the box. In case (iii) assume that air 
resistance is proportional to the instantaneous velocity.

(b) In part (a), suppose that the box weighs 96 pounds, that 
the angle of inclination of the plane is u � 30�, that the 
coefficient of sliding friction is µ � !3/4, and that the 
additional retarding force due to air resistance is numeri-
cally equal to 1

4v. Solve the differential equation in each 
of the three cases, assuming that the box starts from rest 
from the highest point 50 ft above ground. 

FIGURE 2.7.11 Box sliding down inclined plane in 
Problem 48

friction

motion
W = mg

θ

50 ft

Contibuted Problem

 49. Air Exchange A large room has a volume of 2000 m3. The 
air in this room contains 0.25% by volume of carbon dioxide 
(CO2). Starting at 9:00 A.M. fresh air containing 0.04% by vol-
ume of CO2 is circulated into the room at the rate of 400 m3/
min. Assume that the stale air leaves the room at the same 
rate as the incoming fresh air and that the stale air and fresh 
air mix immediately in the room. See FIGURE 2.7.12.
(a) If v(t) denotes the volume of CO2 in the room at time t, 

what is v(0)? Find v(t) for t � 0. What is the percentage 
of CO2 in the air of the room at 9:05 A.M? 

(b) When does the air in the room contain 0.06% by volume 
of CO2?

(c) What should be the flow rate of the incoming fresh air 
if it is required to reduce the level of CO2 in the room to 
0.08% in 4 minutes?

FIGURE 2.7.12 Air exchange in Problem 49

in m3/min

Fresh air
2000 m3

Stale
air

Pierre Gharghouri, Professor Emeritus
Jean-Paul Pascal, Associate Professor
Department of Mathematics
Ryerson University, Toronto, Canada
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 2.8 Nonlinear Models 83

Computer Lab Assignments
 50. Sliding Box—Continued (a)  In Problem 48, let s(t) be the

distance measured down the inclined plane from the high-
est point. Use ds/dt � v(t) and the solution for each of the 
three cases in part (b) of Problem 48 to find the time that it 
takes the box to slide completely down the inclined plane. 
A root-finding application of a CAS may be useful here.

(b) In the case in which there is friction ( µ � 0) but no 
air resistance, explain why the box will not slide down 
the plane starting from rest from the highest point 
above ground when the inclination angle u satisfies 
tan u � µ.

(c) The box will slide downward on the plane when tan u � µ 
if it is given an initial velocity v(0) � v0 � 0. Suppose 
that µ � !3/4 and u � 23�. Verify that tan u � µ. How 
far will the box slide down the plane if v0 � 1 ft  /s?

(d) Using the values µ � !3/4 and u � 23�, approximate the 
smallest initial velocity v0 that can be given to the box so 
that, starting at the highest point 50 ft above ground, it 
will slide completely down the inclined plane. Then find 
the corresponding time it takes to slide down the plane.

 51. What Goes Up (a)  It is well-known that the model in which
air resistance is ignored, part (a) of Problem 36, predicts 
that the time ta it takes the cannonball to attain its maximum 
height is the same as the time td it takes the cannonball to fall 
from the maximum height to the ground. Moreover, the mag-
nitude of the impact velocity vi will be the same as the initial 
velocity v0 of the cannonball. Verify both of these results.

(b)  Then, using the model in Problem 37 that takes linear air 
resistance into account, compare the value of ta with td and 
the value of the magnitude of vi with v0. A root-finding ap-
plication of a CAS (or graphic calculator) may be useful here.

2.8 Nonlinear Models

 Introduction We finish our discussion of single first-order differential equations by 
examining some nonlinear mathematical models.

 Population Dynamics If P(t) denotes the size of a population at time t, the model for 
exponential growth begins with the assumption that dP/dt � kP for some k � 0. In this model 
the relative, or specific, growth rate defined by

 
dP>dt

P
 (1)

is assumed to be a constant k. True cases of exponential growth over long periods of time are 
hard to find, because the limited resources of the environment will at some time exert restric-
tions on the growth of a population. Thus (1) can be expected to decrease as P increases in size.

The assumption that the rate at which a population grows (or declines) is dependent only on 
the number present and not on any time-dependent mechanisms such as seasonal phenomena 
(see Problem 33 in Exercises 1.3) can be stated as

 
dP>dt

P
� f (P) or 

dP

dt
� Pf (P). (2)

The differential equation in (2), which is widely assumed in models of animal populations, is 
called the density-dependent hypothesis.

 Logistic Equation Suppose an environment is capable of sustaining no more than a 
fixed number of K individuals in its population. The quantity K is called the carrying capacity 
of the environment. Hence, for the function f in (2) we have f (K) � 0, and we simply let f (0) � r. 
FIGURE 2.8.1 shows three functions f that satisfy these two conditions. The simplest assumption 
that we can make is that f (P) is linear—that is, f (P) � c1P � c2. If we use the conditions f (0) � r 
and f (K) � 0, we find, in turn, c2 � r, c1 � �r/K, and so f takes on the form f (P) � r � (r/K)P. 
Equation (2) becomes

 
dP

dt
� P ar 2

r

K
 Pb . (3)

Relabeling constants a � r and b � r/K, the nonlinear equation (3) is the same as

 
dP

dt
� P (a 2 bP). (4)

r

K P

f (P)

FIGURE 2.8.1 Simplest assumption 
for f (P ) is a straight line
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84 CHAPTER 2  First-Order Differential Equations

Around 1840 the Belgian mathematician/biologist P. F. Verhulst (1804–1849) was concerned 
with mathematical models for predicting the human population of various countries. One of the 
equations he studied was (4), where a � 0, b � 0. Equation (4) came to be known as the logis-
tic equation, and its solution is called the logistic function. The graph of a logistic function is 
called a logistic curve.

The linear differential equation dP/dt � kP does not provide a very accurate model for popu-
lation when the population itself is very large. Overcrowded conditions, with the resulting det-
rimental effects on the environment, such as pollution and excessive and competitive demands 
for food and fuel, can have an inhibiting effect on population growth. As we shall now see, a 
solution of (4) that satisfies an initial condition P(0) � P0, where 0 � P0 � a/b, is bounded as 
t S q . If we rewrite (4) as dP/dt � aP � bP2, the nonlinear term �bP 2, b � 0, can be interpreted 
as an “inhibition” or “competition” term. Also, in most applications, the positive constant a is 
much larger than the constant b.

Logistic curves have proved to be quite accurate in predicting the growth patterns, in a limited 
space, of certain types of bacteria, protozoa, water fleas (Daphnia), and fruit flies (Drosophila).

 Solution of the Logistic Equation One method of solving (4) is by separation of 
variables. Decomposing the left side of dP/P(a � bP) � dt into partial fractions and integrating 
gives

 a1>a

P
�

b>a

a 2 bP
b  dP � dt

1
a

 ln |P| 2
1
a

 ln |a 2 bP| � t � c

 ln 2 P

a 2 bP
2 � at � ac

 
P

a 2 bP
� c1e

at.

It follows from the last equation that

 P(t) �
ac1e

at

1 � bc1e
at �

ac1

bc1 � e�at.

If P(0) � P0, P0  a/b, we find c1 � P0 /(a � bP0), and so, after substituting and simplifying, 
the solution becomes

 P(t) �
aP0

bP0 � (a 2 bP0)e
�at. (5)

 Graphs of P (t ) The basic shape of the graph of the logistic function P(t) can be obtained 
without too much effort. Although the variable t usually represents time and we are seldom con-
cerned with applications in which t � 0, it is nonetheless of some interest to include this interval 
when displaying the various graphs of P. From (5) we see that

 P(t) S
aP0

bP0
�

a

b
 as t Sq  and P(t) S 0 as t S�q.

The dashed line P � a/2b shown in FIGURE 2.8.2 corresponds to the y-coordinate of a point of 
inflection of the logistic curve. To show this, we differentiate (4) by the Product Rule:

  
d 2P

dt2 � P a�b 
dP

dt
b � (a 2 bP) 

dP

dt
�

dP

dt
 (a 2 2bP)

   � P (a 2 bP)(a 2 2bP)

   � 2b2P aP 2
a

b
b  aP 2

a

2b
b .

P0

P0

P

(b)

t

P

(c)

t

a/b

a/2b

P0

P

(a)

t

a/b

a/2b

a/b

a/2b

FIGURE 2.8.2 Logistic curves for 
different initial conditions
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From calculus, recall that the points where d2P/dt2 � 0 are possible points of inflection, but 
P � 0 and P � a/b can obviously be ruled out. Hence P � a/2b is the only possible ordinate 
value at which the concavity of the graph can change. For 0 � P � a/2b it follows that P� � 0, 
and a/2b � P � a/b implies P� � 0. Thus, as we read from left to right, the graph changes from 
concave up to concave down at the point corresponding to P � a/2b. When the initial value 
satisfies 0 � P0 � a/2b, the graph of P(t) assumes the shape of an S, as we see in Figure 2.8.2(b). 
For a/2b � P0 � a/b the graph is still S-shaped, but the point of inflection occurs at a negative 
value of t, as shown in Figure 2.8.2(c).

We have already seen equation (4) above in (5) of Section 1.3 in the form dx/dt � kx(n � 1 � x), 
k � 0. This differential equation provides a reasonable model for describing the spread of an 
epidemic brought about initially by introducing an infected individual into a static population. 
The solution x(t) represents the number of individuals infected with the disease at time t.

■ EXAMPLE 1 Logistic Growth
Suppose a student carrying a flu virus returns to an isolated college campus of 1000 students. 
If it is assumed that the rate at which the virus spreads is proportional not only to the number x 
of infected students but also to the number of students not infected, determine the number of 
infected students after 6 days if it is further observed that after 4 days x(4) � 50.

SOLUTION  Assuming that no one leaves the campus throughout the duration of the disease, 
we must solve the initial-value problem

 
dx

dt
� kx(1000 2 x), x(0) � 1.

By making the identifications a � 1000k and b � k, we have immediately from (5) that

 x(t) �
1000k

k � 999ke�1000kt �
1000

1 � 999e�1000kt.

Now, using the information x(4) � 50, we determine k from

 50 �
1000

1 � 999e�4000k.

We find �1000k � 1
4 ln 19

999  � �0.9906. Thus

 x(t) �
1000

1 � 999e�0.9906t.

Finally, x (6) �
1000

1 � 999e�5.9436 � 276 students.

Additional calculated values of x(t) are given in the table in FIGURE 2.8.3(b).

 Modifications of the Logistic Equation There are many variations of the logistic 
equation. For example, the differential equations

 
dP

dt
� P(a 2 bP) 2 h  and  

dP

dt
� P(a 2 bP) � h (6)

could serve, in turn, as models for the population in a fishery where fish are harvested or are 
restocked at rate h. When h � 0 is a constant, the DEs in (6) can be readily analyzed qualitatively 
or solved by separation of variables. The equations in (6) could also serve as models of a human 
population either increased by immigration or decreased by emigration. The rate h in (6) could 
be a function of time t or may be population dependent; for example, harvesting might be done 
periodically over time or may be done at a rate pro portional to the population P at time t. In the 
latter instance, the model would look like P� � P(a � bP) � cP, c � 0. A human population of 
a community might change due to immigration in such a manner that the contribution due to im-
migration is large when the population P of the community is itself small, but then the immigration 

FIGURE 2.8.3 Number of infected 
students in Example 1

(b)

t (days) x (number infected)

4
5
6
7
8
9

10

  50 (observed)
124
276
507
735
882
953

t

(a)

x x = 1000 

500

5 10
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86 CHAPTER 2  First-Order Differential Equations

contribution might be small when P is large; a reasonable model for the population of the com-
munity is then P� � P(a � bP) � ce–kP, c � 0, k � 0. Another equation of the form given in (2),

 
dP

dt
� P(a 2 b ln P), (7)

is a modification of the logistic equation known as the Gompertz differential equation. 
This DE is sometimes used as a model in the study of the growth or decline of population, in 
the growth of solid tumors, and in certain kinds of actuarial predictions. See Problems 5–8 in 
Exercises 2.8.

 Chemical Reactions Suppose that a grams of chemical A are combined with b grams 
of chemical B. If there are M parts of A and N parts of B formed in the compound and X(t) is 
the number of grams of chemical C formed, then the numbers of grams of chemicals A and B 
remaining at any time are, respectively,

 a 2
M

M � N
 X   and  b 2

N

M � N
 X.

By the law of mass action, the rate of the reaction satisfies

 
dX

dt
r aa 2 M

M � N
 Xb  ab 2 N

M � N
 Xb . (8)

If we factor out M/(M � N) from the first factor and N/(M � N) from the second and introduce 
a constant k � 0 of proportionality, (8) has the form

 
dX

dt
� k(a 2 X)(b 2 X), (9)

where a � a(M � N)/M and b � b(M � N)/N. Recall from (6) of Section 1.3 that a chemical 
reaction governed by the nonlinear differential equation (9) is said to be a second-order 
reaction.

■ EXAMPLE 2 Second-Order Chemical Reaction
A compound C is formed when two chemicals A and B are combined. The resulting reaction 
between the two chemicals is such that for each gram of A, 4 grams of B is used. It is observed 
that 30 grams of the compound C is formed in 10 minutes. Determine the amount of C at 
time t if the rate of the reaction is proportional to the amounts of A and B remaining and if 
initially there are 50 grams of A and 32 grams of B. How much of the compound C is present 
at 15 minutes? Interpret the solution as t S q .

SOLUTION  Let X(t) denote the number of grams of the compound C present at time t. Clearly 
X(0) � 0 g and X(10) � 30 g.

If, for example, 2 grams of compound C is present, we must have used, say, a grams of A 
and b grams of B so that a � b � 2 and b � 4a. Thus we must use a � 25  � 2(1

5) g of chemical 
A and b � 8

5  � 2(4
5) g of B. In general, for X grams of C we must use

 
1

5
 X grams of A   and   

4

5
 X grams of B.

The amounts of A and B remaining at any time are then

 50 � 
1

5
 X and 32 2

4

5
 X ,

respectively.
Now we know that the rate at which compound C is formed satisfies

 
dX

dt
r a50 2

1

5
 Xb  a32 2

4

5
 Xb .
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To simplify the subsequent algebra, we factor 15 from the first term and 45 from the second and 
then introduce the constant of proportionality:

 
dX

dt
� k(250 2 X)(40 2 X).

By separation of variables and partial fractions we can write

 2
1

210

250 2 X
 dX �

1
210

40 2 X
 dX � k dt.

Integrating gives

 ln 2 250 2 X

40 2 X
2 � 210kt � c1 or 

250 2 X

40 2 X
� c2e

210kt. (10)

When t � 0, X � 0, so it follows at this point that c2 � 25
4 . Using X � 30 g at t � 10, we find 

210k � 1
10 ln 88

25  � 0.1258. With this information we solve the last equation in (10) for X:

 X(t) � 1000 
1 2 e�0.1258t

25 2 4e�0.1258t. (11)

The behavior of X as a function of time is displayed in FIGURE 2.8.4. It is clear from the ac-
companying table and (11) that X S 40 as t S q . This means that 40 grams of compound C 
is formed, leaving

 50 � 
1

5
 (40) � 42 g of A and 32 � 

4

5
 (40) � 0 g of B.

FIGURE 2.8.4 Amount of compound 
C in Example 2

X

t
40

(a)

X= 40

t (min)

10
15
20
25
30
35

30 (measured)
34.78
37.25
38.54
39.22
39.59

302010

X (g)

(b)

Remarks

The indefinite integral # du

a2 2 u2  can be evaluated in terms of logarithms, the inverse  hyperbolic 

tangent, or the inverse hyperbolic cotangent. For example, of the two results,

  # du

a2 2 u2 �
1
a

 tanh�1u
a

� c,  |u| , a (12)

 # du

a2 2 u2 �
1

2a
 ln 2 a � u

a 2 u
2 � c,  |u| � a (13)

(12) may be convenient for Problems 17 and 26 in Exercises 2.8, whereas (13) may be prefer-
able in Problem 27.

Logistic Equation
 1. The number N(t) of supermarkets throughout the country that 

are using a computerized checkout system is described by the 
initial-value problem

 
dN

dt
� N(1 2 0.0005N), N(0) � 1.

(a) Use the phase portrait concept of Section 2.1 to predict 
how many supermarkets are expected to adopt the new 
procedure over a long period of time. By hand, sketch a 
solution curve of the given initial-value problem.

(b) Solve the initial-value problem and then use a graphing 
utility to verify the solution curve in part (a). How many 
companies are expected to adopt the new technology 
when t � 10?

 2.8 Exercises Answers to selected odd-numbered problems begin on page ANS-3.  

 2.8 Nonlinear Models 87

79774_CH02_073-102.indd Page 87  23/08/12  4:46 PM f-447

© Jones & Bartlett Learning, LLC.  NOT FOR SALE OR DISTRIBUTION. 9260

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION



88 CHAPTER 2  First-Order Differential Equations

 2. The number N(t) of people in a community who are exposed 
to a particular advertisement is governed by the logistic equa-
tion. Initially N(0) � 500, and it is observed that N(1) � 1000. 
Solve for N(t) if it is predicted that the limiting number of 
people in the community who will see the advertisement 
is 50,000.

 3. A model for the population P(t) in a suburb of a large city is 
given by the initial-value problem

 
dP

dt
� P(10�1 2 10�7P), P(0) � 5000,

  where t is measured in months. What is the limiting value of 
the population? At what time will the population be equal to 
one-half of this limiting value?

 4. (a)  Census data for the United States between 1790 and 1950 
is given in the following table. Construct a logistic popula-
tion model using the data from 1790, 1850, and 1910.

Year Population (in millions)

1790   3.929
1800   5.308
1810   7.240
1820   9.638
1830  12.866
1840  17.069
1850  23.192
1860  31.433
1870  38.558
1880  50.156
1890  62.948
1900  75.996
1910  91.972
1920 105.711
1930 122.775
1940 131.669
1950 150.697

(b) Construct a table comparing actual census population 
with the population predicted by the model in part (a). 
Compute the error and the percentage error for each 
entry pair.

Modifi cations of the Logistic Equation
 5. (a)  If a constant number h of fish are harvested from a fishery 

per unit time, then a model for the population P(t) of the 
fishery at time t is given by

 
dP

dt
� P(a 2 bP) 2 h, P(0) � P0,

where a, b, h, and P0 are positive constants. Suppose 
a � 5, b � 1, and h � 4. Since the DE is autonomous, 
use the phase portrait concept of Section 2.1 to sketch 
representative solution curves  corresponding to the 
cases P0 � 4, 1 � P0 � 4, and 0 � P0 � 1. Determine 
the long-term behavior of the population in each case.

(b) Solve the IVP in part (a). Verify the results of your phase 
portrait in part (a) by using a graphing utility to plot the 
graph of P(t) with an initial condition taken from each of 
the three intervals given.

(c) Use the information in parts (a) and (b) to determine 
whether the fishery population becomes extinct in finite 
time. If so, find that time.

 6. Investigate the harvesting model in Problem 5 both quali-
tatively and analytically in the case a � 5, b � 1, h � 25

4 . 
Determine whether the population becomes extinct in finite 
time. If so, find that time.

 7. Repeat Problem 6 in the case a � 5, b � 1, h � 7.

 8. (a)  Suppose a � b � 1 in the Gompertz differential equa-
tion (7). Since the DE is autonomous, use the phase 
portrait concept of Section 2.1 to sketch representative 
solution curves corresponding to the cases P0 � e and 
0 � P0 � e.

(b) Suppose a � 1, b � �1 in (7). Use a new phase portrait 
to sketch representative solution curves corresponding to 
the cases P0 � e–1 and 0 � P0 � e–1.

 9. Find an explicit solution of equation (7) subject to P(0) � P0.
 10. The Allee Effect  For an initial population P0, where P0 � K 

the logistic population model (3) predicts that population can-
not sustain itself over time so it decreases but yet never falls 
below the carrying capacity K of the ecosystem. Moreover, for 
0 � P0 � K, the same model predicts that regardless of how 
small P0 is the population increases over time and does not sur-
pass the carrying capacity K. See Figure 2.8.2, where a/b � K. 
But the American ecologist Warder Clyde Allee (1885–1955) 
showed that by depleting certain fisheries beyond a certain 
level, the fishery population never recovers.  How would you 
modify the differential equation (3) to describe a population P 
that has these same two characteristics of (3) but additionally 
has a threshold level A, 0 � A � K, below which the popula-
tion cannot sustain itself and becomes extinct. [Hint: Construct 
a phase portrait of what you want and then form a DE.]

Chemical Reactions
 11. Two chemicals A and B are combined to form a chemical C. 

The rate, or velocity, of the reaction is proportional to the 
product of the instantaneous amounts of A and B not converted 
to chemical C. Initially there are 40 grams of A and 50 grams 
of B, and for each gram of B, 2 grams of A is used. It is ob-
served that 10 grams of C is formed in 5 minutes. How much 
is formed in 20 minutes? What is the limiting amount of C 
after a long time? How much of chemicals A and B remains 
after a long time?

 12. Solve Problem 11 if 100 grams of chemical A is present ini-
tially. At what time is chemical C half-formed?

Miscellaneous Nonlinear Models
 13. Leaking Cylindrical Tank A tank in the form of a right-

circular cylinder standing on end is leaking water through a 
circular hole in its bottom. As we saw in (10) of Section 1.3, 
when friction and contraction of water at the hole are ignored, 
the height h of water in the tank is described by

 
dh

dt
� �

Ah

Aw

"2gh,
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  where Aw and Ah are the cross-sectional areas of the water and 
the hole, respectively.
(a) Solve for h(t) if the initial height of the water is H. By 

hand, sketch the graph of h(t) and give its interval I of 
definition in terms of the symbols Aw, Ah, and H. Use 
g � 32 ft/s2.

(b) Suppose the tank is 10 ft high and has radius 2 ft and the 
circular hole has radius 1

2 in. If the tank is initially full, 
how long will it take to empty?

 14. Leaking Cylindrical Tank—Continued When friction and 
contraction of the water at the hole are taken into account, 
the model in Problem 13 becomes

 
dh

dt
� �c 

Ah

Aw

"2gh,

  where 0 � c � 1. How long will it take the tank in Problem 13(b) 
to empty if c � 0.6? See Problem 13 in Exercises 1.3.

 15. Leaking Conical Tank A tank in the form of a right-circular 
cone standing on end, vertex down, is leaking water through 
a circular hole in its bottom.
(a) Suppose the tank is 20 feet high and has radius 8 feet and 

the circular hole has radius 2 inches. In Problem 14 in 
Exercises 1.3 you were asked to show that the differential 
equation governing the height h of water leaking from a 
tank is

 
dh

dt
� �

5

6h3>2
.

In this model, friction and contraction of the water at the 
hole were taken into account with c � 0.6, and g was taken 
to be 32 ft/s2. See Figure 1.3.13. If the tank is initially 
full, how long will it take the tank to empty?

(b) Suppose the tank has a vertex angle of 60�, and the cir-
cular hole has radius 2 inches. Determine the differential 
equation governing the height h of water. Use c � 0.6 and 
g � 32 ft/s2. If the height of the water is initially 9 feet, 
how long will it take the tank to empty?

 16. Inverted Conical Tank Suppose that the conical tank in 
Problem 15(a) is inverted, as shown in FIGURE 2.8.5, and that 
water leaks out a circular hole of radius 2 inches in the center 
of the circular base. Is the time it takes to empty a full tank 
the same as for the tank with vertex down in Problem 15? 
Take the friction/contraction coefficient to be c � 0.6 and 
g � 32 ft/s2. 

  FIGURE 2.8.5 Inverted conical tank in Problem 16

8 ft

h

20 ft

Aw

 17. Air Resistance A differential equation governing the veloc-
ity v of a falling mass m subjected to air resistance proportional 
to the square of the instantaneous velocity is

 m 
dv

dt
� mg 2 kv2,

  where k � 0 is the drag coefficient. The positive direction is 
downward.
(a) Solve this equation subject to the initial condition 

v(0) � v0.
(b) Use the solution in part (a) to determine the limiting, 

or terminal, velocity of the mass. We saw how to de-
termine the terminal velocity without solving the DE in 
Problem 39 in Exercises 2.1.

(c) If distance s, measured from the point where the mass 
was released above ground, is related to velocity v by 
ds/dt � v(t), find an explicit expression for s(t) if s(0) � 0.

 18. How High?—Nonlinear Air Resistance Consider the 
16-pound cannonball shot vertically upward in Problems 36 
and 37 in Exercises 2.7 with an initial velocity v0 � 300 ft/s. 
Determine the maximum height attained by the cannonball if 
air resistance is assumed to be proportional to the square of 
the instantaneous velocity. Assume the positive direction is 
upward and take the drag coefficient to be k � 0.0003. [Hint: 
Slightly modify the DE in Problem 17.]

 19. That  Sinking Feeling (a)  Determine a differential equa-
tion for the velocity v(t) of a mass m sinking in water 
that imparts a resistance proportional to the square of the 
instantaneous velocity and also exerts an upward buoyant 
force whose magnitude is given by Archimedes’ principle. 
See Problem 18 in Exercises 1.3. Assume that the positive 
direction is downward.

(b) Solve the differential equation in part (a).
(c) Determine the limiting, or terminal, velocity of the sinking 

mass.

 20. Solar Collector The differential equation

 
dy

dx
�

�x � "x2 � y2

y

  describes the shape of a plane curve C that will reflect all 
incoming light beams to the same point and could be a model 
for the mirror of a reflecting telescope, a satellite antenna, or 
a solar collector. See Problem 29 in Exercises 1.3. There are 
several ways of solving this DE.
(a) Verify that the differential equation is homogeneous (see 

Section 2.5). Show that the substitution y � ux yields

 
u du

"1 � u2(1 2 "1 � u2)
�

dx
x

.

Use a CAS (or another judicious substitution) to integrate 
the left-hand side of the equation. Show that the curve C 
must be a parabola with focus at the origin and is sym-
metric with respect to the x-axis.

(b) Show that the first differential equation can also be solved 
by means of the substitution u � x2 � y2.

 2.8 Nonlinear Models 89
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90 CHAPTER 2  First-Order Differential Equations

 21. Tsunami (a)  A simple model for the shape of a tsunami is
given by

 
dW

dx
� W"4 2 2W,

where W(x) � 0 is the height of the wave expressed as 
a function of its position relative to a point offshore. By 
inspection, find all constant solutions of the DE.

(b) Solve the differential equation in part (a). A CAS may be 
useful for integration.

(c) Use a graphing utility to obtain the graphs of all solutions 
that satisfy the initial condition W(0) � 2.

 22. Evaporation An outdoor decorative pond in the shape of a 
hemispherical tank is to be filled with water pumped into the 
tank through an inlet in its bottom. Suppose that the radius 
of the tank is R � 10 ft, that water is pumped in at a rate of 
p ft3/min, and that the tank is initially empty. See FIGURE 2.8.6. 
As the tank fills, it loses water through evaporation. Assume 
that the rate of evaporation is proportional to the area A of the 
surface of the water and that the constant of proportionality is 
k � 0.01.
(a) The rate of change dV/dt of the volume of the water at 

time t is a net rate. Use this net rate to determine a differen-
tial equation for the height h of the water at time t. The vol-
ume of the water shown in the figure is V � pRh2 � 13 ph3, 
where R � 10. Express the area of the surface of the water 
A � pr2 in terms of h.

(b) Solve the differential equation in part (a). Graph the 
solution.

(c) If there were no evaporation, how long would it take the 
tank to fill?

(d) With evaporation, what is the depth of the water at the 
time found in part (c)? Will the tank ever be filled? Prove 
your assertion. 

FIGURE 2.8.6 Pond in Problem 22

(a) Hemispherical tank

A

V R

r

h

(b) Cross section of tank

π

Output: water evaporates          
             at rate proportional             
             to area A of surface

Input: water pumped in           
           at rate of    ft3/min

Computer Lab Assignments
 23. Regression Line Read the documentation for your CAS on 

scatter plots (or scatter diagrams) and least-squares linear 
fit. The straight line that best fits a set of data points is called a 
regression line or a least squares line. Your task is to construct 

a logistic model for the population of the United States, defin-
ing f (P) in (2) as an equation of a regression line based on 
the population data in the table in Problem 4. One way of

doing this is to approximate the left-hand side 
1

P
 
dP

dt
 of the 

first equation in (2) using the forward difference quotient in 
place of dP/dt:

 Q(t) �
1

P(t)
  

P(t � h) 2 P(t)

h
.

(a) Make a table of the values t, P(t), and Q(t) using t � 0, 
10, 20, . . . , 160, and h � 10. For example, the first line 
of the table should contain t � 0, P(0), and Q(0). With 
P(0) � 3.929 and P(10) � 5.308,

      Q(0) �
1

P(0)
  

P(10) 2 P(0)

10
� 0.035.

Note that Q(160) depends on the 1960 census population 
P(170). Look up this value.

(b) Use a CAS to obtain a scatter plot of the data (P(t), Q(t)) 
computed in part (a). Also use a CAS to find an equation 
of the regression line and to superimpose its graph on the 
scatter plot.

(c) Construct a logistic model dP/dt � Pf (P), where f (P) is 
the equation of the regression line found in part (b).

(d) Solve the model in part (c) using the initial condition 
P(0) � 3.929.

(e) Use a CAS to obtain another scatter plot, this time of the 
ordered pairs (t, P(t)) from your table in part (a). Use your 
CAS to superimpose the graph of the solution in part (d) 
on the scatter plot.

(f  ) Look up the U.S. census data for 1970, 1980, and 1990. 
What population does the logistic model in part (c) predict 
for these years? What does the model predict for the U.S. 
population P(t) as t S q?

 24. Immigration Model (a)  In Examples 3 and 4 of Section 2.1,
  we saw that any solution P(t) of (4) possesses the asymp-

totic behavior P(t) S a/b as t S q  for P0 � a/b and for 
0 � P0 � a/b; as a consequence, the equilibrium solution 
P � a/b is called an attractor. Use a root-finding applica-
tion of a CAS (or a graphic calculator) to approximate 
the equilibrium solution of the immigration model

 
dP

dt
� P(1 2 P) � 0.3e�P.

(b) Use a graphing utility to graph the function F(P) � 
P(1 � P) � 0.3e–P. Explain how this graph can be used 
to determine whether the number found in part (a) is an 
attractor.

(c) Use a numerical solver to compare the solution curves 
for the IVPs

    
dP

dt
� P(1 2 P), P(0) � P0
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for P0 � 0.2 and P0 � 1.2 with the solution curves for 
the IVPs

    
dP

dt
� P(1 2 P) � 0.3e�P, P(0) � P0

for P0 � 0.2 and P0 � 1.2. Superimpose all curves on the 
same coordinate axes but, if possible, use a different color 
for the curves of the second initial-value problem. Over 
a long period of time, what percentage increase does the 
immigration model predict in the population compared 
to the logistic model?

 25. What Goes Up . . . . In Problem 18 let ta be the time it takes 
the cannonball to attain its maximum height and let td be 
the time it takes the cannonball to fall from the maximum 
height to the ground. Compare the value of ta with the value 
of td and compare the magnitude of the impact velocity vi 
with the initial velocity v0. See Problem 51 in Exercises 2.7. 
A root-finding application of a CAS may be useful here. 
[Hint: Use the model in Problem 17 when the cannonball 
is falling.]

 26. Skydiving A skydiver is equipped with a stopwatch and an 
altimeter. She opens her parachute 25 seconds after exit-
ing a plane flying at an altitude of 20,000 ft and observes 
that her altitude is 14,800 ft. Assume that air resistance is 
proportional to the square of the instantaneous velocity, 

her initial velocity upon leaving the plane is zero, and 
g � 32 ft/s2.
(a) Find the distance s(t), measured from the plane, that the 

skydiver has traveled during free fall in time t. [Hint: 
The constant of proportionality k in the model given in 
Problem 17 is not specified. Use the expression for ter-
minal velocity vt obtained in part (b) of Problem 17 to 
eliminate k from the IVP. Then eventually solve for vt.]

(b) How far does the skydiver fall and what is her velocity 
at t � 15 s?

 27. Hitting Bottom A helicopter hovers 500 feet above a large 
open tank full of liquid (not water). A dense compact object 
weighing 160 pounds is dropped (released from rest) from the 
helicopter into the liquid. Assume that air resistance is propor-
tional to instantaneous velocity v while the object is in the air 
and that viscous damping is proportional to v2 after the object 
has entered the liquid. For air, take k � 1

4, and for the liquid, 
k � 0.1. Assume that the positive direction is downward. If 
the tank is 75 feet high, determine the time and the impact 
velocity when the object hits the bottom of the tank. [Hint: 
Think in terms of two distinct IVPs. If you use (13), be careful 
in removing the absolute value sign. You might compare the 
velocity when the object hits the liquid—the initial velocity 
for the second problem—with the terminal velocity vt of the 
object falling through the liquid.]

 2.9 Modeling with Systems of First-Order DEs 91

2.9 Modeling with Systems of First-Order DEs

 Introduction In this section we are going to discuss mathematical models based on 
some of the topics that we have already discussed in the preceding two sections. This section 
will be similar to Section 1.3 in that we are only going to discuss systems of first-order dif-
ferential equations as mathematical models and we are not going to solve any of these models. 
There are two good reasons for not solving systems at this point: First, we do not as yet possess 
the necessary mathematical tools for solving systems, and second, some of the systems that we 
discuss cannot be solved analytically. We shall examine solution methods for systems of linear 
first-order DEs in Chapter 10 and for systems of linear higher-order DEs in Chapters 3 and 4.

 Systems Up to now all the mathematical models that we have considered were single 
differential equations. A single differential equation could describe a single population in an 
environment; but if there are, say, two interacting and perhaps competing species living in the 
same environment (for example, rabbits and foxes), then a model for their populations x(t) and 
y(t) might be a system of two first-order differential equations such as

 

dx

dt
� g1(t, x, y)

dy

dt
� g2(t, x, y).

 (1)

When g1 and g2 are linear in the variables x and y; that is,

 g1(t, x, y) � c1x � c2 y � f1(t)  and  g2(t, x, y) � c3x � c4 y � f2(t),

then (1) is said to be a linear system. A system of differential equations that is not linear is said 
to be nonlinear.
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92 CHAPTER 2  First-Order Differential Equations

 Radioactive Series In the discussion of radioactive decay in Sections 1.3 and 2.7, we 
assumed that the rate of decay was proportional to the number A(t) of nuclei of the substance 
present at time t. When a substance decays by radioactivity, it usually doesn’t just transmute into 
one stable substance and then the process stops. Rather, the first substance decays into another 
radioactive substance, this substance in turn decays into yet a third substance, and so on. This 
process, called a radioactive decay series, continues until a stable element is reached. For ex-
ample, the uranium decay series is U-238 S Th-234 S . . . S Pb-206, where Pb-206 is a stable 
isotope of lead. The half-lives of the various elements in a radioactive series can range from bil-
lions of years (4.5 � 109 years for U-238) to a fraction of a second. Suppose a radioactive series 
is described schematically by X h

�l1  Y h
�l2  Z, where k1 � �l1 � 0 and k2 � �l2 � 0 are 

the decay constants for substances X and Y, respectively, and Z is a stable element. Suppose too, 
that x(t), y(t), and z(t) denote amounts of substances X, Y, and Z, respectively, remaining at time t. 
The decay of element X is described by

  
dx

dt
� �l1x,

whereas the rate at which the second element Y decays is the net rate,

     
dy

dt
� l1x 2 l2 y,

since it is gaining atoms from the decay of X and at the same time losing atoms due to its own 
decay. Since Z is a stable element, it is simply gaining atoms from the decay of element Y:

   
dz

dt
� l2y.

In other words, a model of the radioactive decay series for three elements is the linear system of 
three first-order differential equations

  
dx

dt
� �l1x

  
dy

dt
� l1x 2 l2y (2)

  
dz

dt
� l2y.

 Mixtures Consider the two tanks shown in FIGURE 2.9.1. Let us suppose for the sake of dis-
cussion that tank A contains 50 gallons of water in which 25 pounds of salt is dissolved. Suppose 
tank B contains 50 gallons of pure water. Liquid is pumped in and out of the tanks as indicated in 
the figure; the mixture exchanged between the two tanks and the liquid pumped out of tank B is 
assumed to be well stirred. We wish to construct a mathematical model that describes the number 
of pounds x1(t) and x2(t) of salt in tanks A and B, respectively, at time t.

By an analysis similar to that on page 21 in Section 1.3 and Example 5 of Section 2.7, we see 
for tank A that the net rate of change of x1(t) is

 input rate of salt output rate of salt
  

 
dx1

dt
 � (3 gal/min) 	 (0 lb/gal) � (1 gal/min) 	 a x2

50
 lb>galb  � (4 gal/min) 	 a x1

50
 lb>galb

    � �
2

25
 x1 �

1

50
 x2.

Similarly, for tank B, the net rate of change of x2(t) is

 
dx2

dt
� 4 	 

x1

50
2 3 	 

x2

50
2 1 	 

x2

50
�

2

25
 x1 2

2

25
 x2.

A B

pure water
3 gal/min

mixture
1 gal/min

mixture
4 gal/min

mixture
3 gal/min

FIGURE 2.9.1 Connected mixing tanks
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 2.9 Modeling with Systems of First-Order DEs 93

Thus we obtain the linear system

 

dx1

dt
� �

2

25
 x1 �

1

50
 x2

dx2

dt
�

2

25
x1 2

2

25
 x2.

 (3)

Observe that the foregoing system is accompanied by the initial conditions x1(0) � 25, x2(0) � 0.

 A Predator–Prey Model Suppose that two different species of animals interact within 
the same environment or ecosystem, and suppose further that the first species eats only vegetation 
and the second eats only the first species. In other words, one species is a predator and the other 
is a prey. For example, wolves hunt grass-eating caribou, sharks devour little fish, and the snowy 
owl pursues an arctic rodent called the lemming. For the sake of discussion, let us imagine that 
the predators are foxes and the prey are rabbits.

Let x(t) and y(t) denote, respectively, the fox and rabbit populations at time t. If there were 
no rabbits, then one might expect that the foxes, lacking an adequate food supply, would decline 
in number according to

 
dx

dt
� �ax, a � 0. (4)

When rabbits are present in the environment, however, it seems reasonable that the number of 
encounters or interactions between these two species per unit time is jointly proportional to their 
populations x and y; that is, proportional to the product xy. Thus when rabbits are present there is 
a supply of food, and so foxes are added to the system at a rate bxy, b � 0. Adding this last rate 
to (4) gives a model for the fox population:

 
dx

dt
� �ax � bxy. (5)

On the other hand, were there no foxes, then the rabbits would, with an added assumption of un-
limited food supply, grow at a rate that is proportional to the number of rabbits present at time t:

 
dy

dt
� dy, d � 0. (6)

But when foxes are present, a model for the rabbit population is (6) decreased by cxy, c � 0; that 
is, decreased by the rate at which the rabbits are eaten during their encounters with the foxes:

 
dy

dt
� dy 2 cxy. (7)

Equations (5) and (7) constitute a system of nonlinear differential equations

 

dx

dt
� �ax � bxy � x(�a � by)

dy

dt
� dy 2 cxy � y(d 2 cx),

 (8)

where a, b, c, and d are positive constants. This famous system of equations is known as the 
Lotka–Volterra predator–prey model.

Except for two constant solutions, x(t) � 0, y(t) � 0 and x(t) � d/c, y(t) � a/b, the nonlinear 
system (8) cannot be solved in terms of elementary functions. However, we can analyze such 
systems quantitatively and qualitatively. See Chapters 6 and 11.

■ EXAMPLE 1 Predator–Prey Model
Suppose

 

dx

dt
� �0.16x � 0.08xy

dy

dt
� 4.5y 2 0.9xy
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94 CHAPTER 2  First-Order Differential Equations

represents a predator–prey model. Since we are dealing with populations, we have x(t) � 0, 
y(t) � 0. FIGURE 2.9.2, obtained with the aid of a numerical solver, shows typical popula-
tion curves of the predators and prey for this model superimposed on the same coordinate 
axes. The initial conditions used were x(0) � 4, y(0) � 4. The curve in red represents the 
population x(t) of the predator (foxes), and the blue curve is the population y(t) of the prey 
(rabbits). Observe that the model seems to predict that both populations x(t) and y(t) are 
periodic in time. This makes intuitive sense since, as the number of prey decreases, the 
predator population eventually decreases because of a diminished food supply; but atten-
dant to a decrease in the number of predators is an increase in the number of prey; this in 
turn gives rise to an increased number of predators, which ultimately brings about another 
decrease in the number of prey.

 Competition Models Now suppose two different species of animals occupy the same 
ecosystem, not as predator and prey but rather as competitors for the same resources (such as 
food and living space) in the system. In the absence of the other, let us assume that the rate at 
which each population grows is given by

 
dx

dt
� ax and 

dy

dt
� cy, (9)

respectively.
Since the two species compete, another assumption might be that each of these rates is dimin-

ished simply by the influence, or existence, of the other population. Thus a model for the two 
populations is given by the linear system

 

dx

dt
� ax 2 by

dy

dt
� cy 2 dx,

 (10)

where a, b, c, and d are positive constants.
On the other hand, we might assume, as we did in (5), that each growth rate in (9) should be 

reduced by a rate proportional to the number of interactions between the two species:

 

dx

dt
� ax 2 bxy

dy

dt
� cy 2 dxy.

 (11)

Inspection shows that this nonlinear system is similar to the Lotka–Volterra predator–prey model. 
Lastly, it might be more realistic to replace the rates in (9), which indicate that the population of 
each species in isolation grows exponentially, with rates indicating that each population grows 
logistically (that is, over a long time the population is bounded):

 
dx

dt
� a1x 2 b1x

2 and 
dy

dt
� a2y 2 b2 y2. (12)

When these new rates are decreased by rates proportional to the number of interactions, we obtain 
another nonlinear model

 

dx

dt
� a1x 2 b1x

2 2 c1xy � x (a1 2 b1x 2 c1y)

dy

dt
� a2y 2 b2y

2 2 c2xy � y (a2 2 b2y 2 c2x),

 (13)

where all coefficients are positive. The linear system (10) and the nonlinear systems (11) and 
(13) are, of course, called competition models.

FIGURE 2.9.2 Population of predators 
(red) and prey (blue) appear to be 
periodic in Example 1

po
pu
la
tio

n predators

y

t
prey

time
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 2.9 Modeling with Systems of First-Order DEs 95

 Networks An electrical network having more than one loop also gives rise to simultaneous 
differential equations. As shown in FIGURE 2.9.3, the current i1(t) splits in the directions shown at 
point B1, called a branch point of the network. By Kirchhoff’s first law we can write

 i1(t) � i2(t) � i3(t). (14)

In addition, we can also apply Kirchhoff’s second law to each loop. For loop A1B1B2A2A1, sum-
ming the voltage drops across each part of the loop gives

 E(t) � i1R1 � L 1 
di2

dt
� i2R2. (15)

Similarly, for loop A1B1C1C2B2A2A1 we find

 E(t) � i1R1 � L 2 
di3

dt
. (16)

Using (14) to eliminate i1 in (15) and (16) yields two linear first-order equations for the currents 
i2(t) and i3(t):

 

L 1 
di2

dt
� (R1 � R2)i2 � R1i3 � E(t).

L 2 
di3

dt
� R1i2 � R1i3 � E(t).

 (17)

We leave it as an exercise (see Problem 14 in Exercises 2.9) to show that the system of dif-
ferential equations describing the currents i1(t) and i2(t) in the network containing a resistor, an 
inductor, and a capacitor shown in FIGURE 2.9.4 is

        L 
di1

dt
� Ri2 � E(t)

 (18)
  RC 

di2

dt
� i2 2 i1 � 0.

FIGURE 2.9.3 Network whose model 
is given in (17)

E

A1

R1

R2

i1 i2

i3

B1 C1

A2 B2 C2

L2L1

FIGURE 2.9.4 Network whose model 
is given in (18)

RE

L

C

i1 i2
i3

Radioactive Series

 1. We have not discussed methods by which systems of first-
order differential equations can be solved. Nevertheless, sys-
tems such as (2) can be solved with no knowledge other than 
how to solve a single linear first-order equation. Find a solu-
tion of (2) subject to the initial conditions x(0) � x0, y(0) � 0, 
z(0) � 0.

 2. In Problem 1, suppose that time is measured in days, that the 
decay constants are k1 � �0.138629 and k2 � �0.004951, and 
that x0 � 20. Use a graphing utility to obtain the graphs of the 
solutions x(t), y(t), and z(t) on the same set of coordinate axes. 
Use the graphs to approximate the half-lives of substances 
X and Y.

 3. Use the graphs in Problem 2 to approximate the times when 
the amounts x(t) and y(t) are the same, the times when the 
amounts x(t) and z(t) are the same, and the times when 

the amounts y(t) and z(t) are the same. Why does the time 
determined when the amounts y(t) and z(t) are the same make 
intuitive sense?

 4. Construct a mathematical model for a radioactive series of 
four elements W, X, Y, and Z, where Z is a stable element.

Contibuted Problems

 5. Potassium-40 Decay The mineral potassium, whose chemi-
cal symbol is K, is the eighth most abundant element in 
the Earth’s crust, making up about 2% of it by weight, and 
one of its naturally occurring isotopes, K-40, is radioactive. 
The radioactive decay of K-40 is more complex than that 
of carbon-14 because each of its atoms decays through one 
of two different nuclear decay reactions into one of two 
different substances: the mineral calcium-40 (Ca-40) or the 
gas argon-40 (Ar-40). Dating methods have been developed 

Jeff Dodd, Professor
Department of Mathematical Sciences
Jacksonville State University

 2.9 Exercises Answers to selected odd-numbered problems begin on page ANS-4.  
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96 CHAPTER 2  First-Order Differential Equations

using both of these decay products. In each case, the age 
of a sample is calculated using the ratio of two numbers: 
the amount of the parent isotope K-40 in the sample and 
the amount of the daughter isotope (Ca-40 or Ar-40) in the 
sample that is radiogenic, in other words, the substance 
which originates from the decay of the parent isotope after 
the formation of the rock.

   An igneous rock is solidified magma

     The amount of K-40 in a sample is easy to calculate. K-40 
comprises 1.17% of naturally occurring potassium, and this 
small percentage is distributed quite uniformly, so that the 
mass of K-40 in the sample is just 1.17% of the total mass of 
potassium in the sample, which can be measured. But for sev-
eral reasons it is complicated, and sometimes problematic, to 
determine how much of the Ca-40 in a sample is radiogenic. 
In contrast, when an igneous rock is formed by volcanic ac-
tivity, all of the argon (and other) gas previously trapped in 
the rock is driven away by the intense heat. At the moment 
when the rock cools and solidifies, the gas trapped inside the 
rock has the same composition as the atmosphere. There are 
three stable isotopes of argon, and in the atmosphere they 
occur in the following relative abundances: 0.063% Ar-38, 
0.337% Ar-36, and 99.60% Ar-40. Of these, just one, Ar-36, 
is not created radiogenically by the decay of any element, 
so any Ar-40 in excess of 99.60/(0.337) � 295.5 times the 
amount of Ar-36 must be radiogenic. So the amount of ra-
diogenic Ar-40 in the sample can be determined from the 
amounts of Ar-38 and Ar-36 in the sample, which can be 
measured.

     Assuming that we have a sample of rock for which the 
amount of K-40 and the amount of radiogenic Ar-40 have 
been determined, how can we calculate the age of the rock? 
Let P(t) be the amount of K-40, A(t) the amount of radiogenic 
Ar-40, and C(t) the amount of radiogenic Ca-40 in the sample 
as functions of time t in years since the formation of the rock. 
Then a mathematical model for the decay of K-40 is the system 
of linear first-order differential equations 

 

dA

dt
� lAP

dC

dt
� lCP

dP

dt
� �(lA � lC)P,

  where lA � 0.581 3 10�1 0
  and  lC � 4.962 3 10�1 0.

(a) From the system of differential equations find P(t) if 
P(0) � P0.

(b) Determine the half-life of K-40. 
(c) Use P(t) from part (a) to find A(t)  and C(t) if A(0) � 0 

and C(0) � 0.
(d) Use your solution forA(t) in part (c) to determine the per-

centage of an initial amount P0 of K-40 that decays into 
Ar-40 over a very long period of time (that is, t Sq). 
What percentage of P0 decays into Ca-40?

 6. Potassium–Argon Dating (a)  Use the solutions in parts (a)
 and (c) of Problem 5 to show that

 
A(t)

P(t)
�

lA

lA � lC

 fe (lA�lC)t 2 1g.

(b) Solve the expression in part (a) for t in terms A(t), P(t), 
lA,  and lC. 

(c) Suppose it is found that each gram of a rock sample 
contains 8.6 3 10�7 grams of radiogenic Ar-40 and 
5.3 3 10�6 grams of K-40. Use the equation obtained 
in part (b) to determine the approximate age of the rock.

Mixtures
 7. Consider two tanks A and B, with liquid being pumped in and 

out at the same rates, as described by the system of equations 
(3). What is the system of differential equations if, instead of 
pure water, a brine solution containing 2 pounds of salt per 
gallon is pumped into tank A?

 8. Use the information given in FIGURE 2.9.5 to construct a math-
ematical model for the number of pounds of salt x1(t), x2(t), 
and x3(t) at time t in tanks A, B, and C, respectively.

  FIGURE 2.9.5 Mixing tanks in Problem 8

A
100 gal

B
100 gal

C
100 gal

mixture
2 gal/min

pure water
4  gal/min

mixture
1 gal/min

mixture
6 gal/min

mixture
5 gal/min

mixture
4 gal/min

 9. Two very large tanks A and B are each partially filled with 
100 gallons of brine. Initially, 100 pounds of salt is dissolved 
in the solution in tank A and 50 pounds of salt is dissolved in 
the solution in tank B. The system is closed in that the well-
stirred liquid is pumped only between the tanks, as shown in 
FIGURE 2.9.6.
(a) Use the information given in the figure to construct a 

mathematical model for the number of pounds of salt 
x1(t) and x2(t) at time t in tanks A and B, respectively.
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 2.9 Modeling with Systems of First-Order DEs 97

(b) Find a relationship between the variables x1(t) and x2(t) 
that holds at time t. Explain why this relationship makes 
intuitive sense. Use this relationship to help find the 
amount of salt in tank B at t � 30 min. 

FIGURE 2.9.6 Mixing tanks in Problem 9

mixture
3 gal/min

mixture
2 gal/min

A
100 gal

B
100 gal

 10. Three large tanks contain brine, as shown in FIGURE 2.9.7. Use 
the information in the figure to construct a mathematical model 
for the number of pounds of salt x1(t), x2(t), and x3(t) at time t 
in tanks A, B, and C, respectively. Without solving the system, 
predict limiting values of x1(t), x2(t), and x3(t) as t S q . 

  FIGURE 2.9.7 Mixing tanks in Problem 10

pure water
4 gal/min

mixture
4 gal/min

mixture
4 gal/min

mixture
4 gal/min

B
150 gal

A
200 gal

C
100 gal

Predator–Prey Models
 11. Consider the Lotka–Volterra predator–prey model defined by

 

dx

dt
� �0.1x � 0.02xy

dy

dt
� 0.2y 2 0.025xy,

  where the populations x(t) (predators) and y(t) (prey) are mea-
sured in the thousands. Suppose x(0) � 6 and y(0) � 6. Use a 
numerical solver to graph x(t) and y(t). Use the graphs to approxi-
mate the time t  �  0 when the two populations are first equal. 
Use the graphs to approximate the period of each population.

Competition Models
 12. Consider the competition model defined by

 

dx

dt
� x(2 2 0.4x 2 0.3y)

dy

dt
� y(1 2 0.1y 2 0.3x),

  where the populations x(t) and y(t) are measured in the thou-
sands and t in years. Use a numerical solver to analyze the 
populations over a long period of time for each of the cases:
(a) x(0) � 1.5, y(0) � 3.5
(b) x(0) � 1, y(0) � 1
(c) x(0) � 2, y(0) � 7
(d) x(0) � 4.5, y(0) � 0.5

 13. Consider the competition model defined by

 

dx

dt
� x(1 2 0.1x 2 0.05y)

dy

dt
� y(1.7 2 0.1y 2 0.15x),

  where the populations x(t) and y(t) are measured in the thou-
sands and t in years. Use a numerical solver to analyze the 
populations over a long period of time for each of the cases:
(a) x(0) � 1, y(0) � 1
(b) x(0) � 4, y(0) � 10
(c) x(0) � 9, y(0) � 4
(d) x(0) � 5.5, y(0) � 3.5

Networks
 14. Show that a system of differential equations that describes 

the currents i2(t) and i3(t) in the electrical network shown in 
FIGURE 2.9.8 is

  L 
di2

dt
� L 

di3

dt
� R1i2 � E(t)

  2 R1 
di2

dt
� R2 

di3

dt
�

1

C
 i3 � 0.

  FIGURE 2.9.8 Network in Problem 14

E

L

C

i1 i2

i3 R2

R1

 15. Determine a system of first-order differential equations that 
describe the currents i2(t) and i3(t) in the electrical network 
shown in FIGURE 2.9.9. 

  FIGURE 2.9.9 Network in Problem 15

E

i3

i2i1

R2

L2L1

R1

R3
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98 CHAPTER 2  First-Order Differential Equations

 2  Chapter in Review Answers to selected odd-numbered problems begin on page ANS-4.

In Problems 1 and 2, fill in the blanks.

 1. The DE y	 � ky � A, where k and A are constants, is autono-
mous. The critical point _____ of the equation is a(n) _____ 
(attractor or repeller) for k � 0 and a(n) _____ (attractor or 
repeller) for k � 0.

 2. The initial-value problem x 
dy

dx
2 4y � 0, y(0) � k, has an 

infinite number of solutions for k � _____ and no solution 
for k � _____.

In Problems 3 and 4, construct an autonomous first-order differ-
ential equation dy/dx � f (y) whose phase portrait is consistent 
with the given figure.

 3. 

FIGURE 2.R.1 Phase portrait 
in Problem 3

y

3

1

 4. 

FIGURE 2.R.2 Phase portrait 
in Problem 4

y

4

0

2

 5. The number 0 is a critical point of the autonomous differential 
equation dx/dt � xn, where n is a positive integer. For what 
values of n is 0 asymptotically stable? Semi-stable? Unstable? 
Repeat for the equation dx/dt � �xn.

 6. Consider the differential equation

 
dP

dt
� f (P), where f (P) � �0.5P3 2 1.7P � 3.4.

  The function f (P) has one real zero, as shown in FIGURE 2.R.3. 
Without attempting to solve the differential equation, estimate 
the value of lim t Sq P(t). 

  FIGURE 2.R.3 Graph for Problem 6

f

1

P1

 16. Show that the linear system given in (18) describes the 
currents i1(t) and i2(t) in the network shown in Figure 2.9.4. 
[Hint: dq/dt � i3.]

Miscellaneous Mathematical Models
 17. SIR Model A communicable disease is spread throughout a 

small community, with a fixed population of n people, by con-
tact between infected individuals and people who are susceptible 
to the disease. Suppose initially that everyone is susceptible to 
the disease and that no one leaves the community while the 
epidemic is spreading. At time t, let s(t), i(t), and r(t) denote, 
in turn, the number of people in the community (measured in 
hundreds) who are susceptible to the disease but not yet infected 
with it, the number of people who are infected with the disease, 
and the number of people who have recovered from the disease. 
Explain why the system of differential equations

 

ds

dt
� �k1si

di

dt
� �k2i � k1si

dr

dt
� k2i,

  where k1 (called the infection rate) and k2 (called the  removal 
rate) are positive constants, is a reasonable mathematical 
model, commonly called a SIR model, for the spread of the 
epidemic throughout the community. Give plausible initial 
conditions associated with this system of equations. Show 
that the system implies that

 
d

dt
 (s � i � r) � 0.

  Why is this consistent with the assumptions?

 18. (a)  In Problem 17 explain why it is sufficient to analyze only

 

ds

dt
� �k1si

di

dt
� �k2i � k1si.

(b) Suppose k1 � 0.2, k2 � 0.7, and n � 10. Choose various 
values of i(0) � i0, 0 � i0 � 10. Use a numerical solver 
to determine what the model predicts about the epidemic 
in the two cases s0 � k2/k1 and s0 � k2/k1. In the case of an 
epidemic, estimate the number of people who are eventu-
ally infected.
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 CHAPTER 2 in Review 99

 7. FIGURE 2.R.4 is a portion of the direction field of a differen-
tial equation dy/dx � f (x, y). By hand, sketch two different 
solution curves, one that is tangent to the lineal element 
shown in black and the other tangent to the lineal element 
shown in red. 

  FIGURE 2.R.4 Direction field for Problem 7

 8. Classify each differential equation as separable, exact, linear, 
homogeneous, or Bernoulli. Some equations may be more than 
one kind. Do not solve.

(a) 
dy

dx
�

x 2 y

x
 (b) 

dy

dx
�

1
y 2 x

(c) (x � 1) 
dy

dx
� �y � 10 (d) 

dy

dx
�

1

x(x 2 y)

(e) 
dy

dx
�

y2 � y

x2 � x
 (f  ) 

dy

dx
� 5y � y2

(g) y dx � (y 2 xy2) dy (h) x 
dy

dx
� yexy 2 x

(i) xy y9 � y2 � 2x (  j) 2xy y9 � y2 � 2x2

(k) y dx � x dy � 0

(l) ax2 �
2y

x
b  dx � (3 2 ln x2) dy

(m) 
dy

dx
�

x
y

�
y

x
� 1 (n) 

y

x2  

dy

dx
� e2x3�y2

� 0

In Problems 9–16, solve the given differential equation.

 9. (y2 � 1) dx � ysec2x dy
 10. y(ln x 2 ln y) dx � (x ln x 2 x ln y 2 y) dy

 11. (6x � 1)y2 
dy

dx
� 3x2 � 2y3 � 0

 12. 
dx

dy
� �

4y2 � 6xy

3y2 � 2x

 13. t 
dQ

dt
� Q � t 4

 ln t

 14. (2x � y � 1)y9 � 1
 15. (x2 � 4) dy � (2x 2 8xy) dx

 16. (2r 2cos u sin u � r cos u)   du � (4r � sin u � 2r cos 2u)   dr � 0

In Problems 17 and 18, solve the given initial-value problem 
and give the largest interval I on which the solution is defined.

 17.  sin x 
dy

dx
� ( cos x) y � 0, y (7p>6) � �2

 18. 
dy

dt
� 2(t � 1)y2 � 0, y(0) � �1

8

 19. (a)  Without solving, explain why the initial-value problem

 
dy

dx
� "y, y(x0) � y0,

 has no solution for y0 � 0.
(b) Solve the initial-value problem in part (a) for y0 � 0 

and find the largest interval I on which the solution is 
defined.

 20. (a) Find an implicit solution of the initial-value problem

 
dy

dx
�

y2 2 x2

xy
, y(1) � �"2.

(b) Find an explicit solution of the problem in part (a) and give 
the largest interval I over which the solution is defined. 
A graphing utility may be helpful here.

 21. Graphs of some members of a family of solutions for a 
first-order differential equation dy/dx � f (x, y) are shown 
in FIGURE 2.R.5. The graph of an implicit solution G(x, y) � 0 
that passes through the points (1, �1) and (�1, 3) is shown 
in red. With colored pencils, trace out the solution curves of 
the solutions y � y1(x) and y � y2(x) defined by the implicit 
solution such that y1(1) � �1 and y2(�1) � 3. Estimate the 
interval I on which each solution is defined. 

  FIGURE 2.R.5 Graph for Problem 21

y

x

 22. Use Euler’s method with step size h � 0.1 to approximate 
y(1.2) where y(x) is a solution of the initial-value problem 
y� � 1 � x!y, y(1) � 9.

 23. In March 1976, the world population reached 4 billion. A 
popular news magazine predicted that with an average yearly 
growth rate of 1.8%, the world population would be 8 billion 
in 45 years. How does this value compare with that predicted 
by the model that says the rate of increase is proportional to 
the population at any time t?

 24. Iodine-131 is a radioactive liquid used in the treatment of 
cancer of the thyroid. After one day in storage, analysis shows 
that initial amount of iodine-131 in a sample has decreased 
by 8.3%.
(a) Find the amount of iodine-131 remaining in the sample 

after 8 days.
(b) What is the significance of your answer in part (a)?
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100 CHAPTER 2  First-Order Differential Equations

 25. In 1991 hikers found a preserved body of a man partially fro-
zen in a glacier in the Austrian Alps. Through carbon-dating 
techniques it was found that the body of Ötzi—the iceman as 
he came to be called—contained 53% as much C-14 as found 
in a living person.
(a) Using the Cambridge half-life of C-14, give an 

educated guess of the date of his death (relative to the 
year 2011).

(b) Then use the technique illustrated in Example 3 of 
Section 2.7 to calculate the approximate date of his death. 
Assume that the iceman was carbon dated in 1991.

 The iceman in Problem 25
 © South Tyrol Museum of Archaeology–www.iceman.it

 26. Air containing 0.06% carbon dioxide is pumped into a room 
whose volume is 8000 ft3. The air is pumped in at a rate of 
2000 ft3/min, and the circulated air is then pumped out at the 
same rate. If there is an initial concentration of 0.2% carbon 
dioxide, determine the subsequent amount in the room at any 
time. What is the concentration at 10 minutes? What is the 
steady-state, or equilibrium, concentration of carbon dioxide?

 27. Solve the differential equation

 
dy

dx
� � 

y

"s2 2 y2

  of the tractrix. See Problem 28 in Exercises 1.3. Assume that 
the initial point on the y-axis is (0, 10) and that the length of 
the rope is x � 10 ft.

 28. Suppose a cell is suspended in a solution containing a solute 
of constant concentration Cs. Suppose further that the cell has 
constant volume V and that the area of its permeable mem-
brane is the constant A. By Fick’s law the rate of change of its 
mass m is directly proportional to the area A and the difference 
Cs � C(t), where C(t) is the concentration of the solute inside 
the cell at any time t. Find C(t) if m � V 	 C(t) and C(0) � C0. 
See FIGURE 2.R.6.

  FIGURE 2.R.6 Cell in Problem 28

concentration
Cs

concentration
C (t)

molecules of solute
diffusing through

cell membrane

 29. Suppose that as a body cools, the temperature of the surround-
ing medium increases because it completely absorbs the heat 
being lost by the body. Let T(t) and Tm(t) be the temperatures 
of the body and the medium at time t, respectively. If the initial 
temperature of the body is T1 and the initial temperature of 
the medium is T2, then it can be shown in this case that 
Newton’s law of cooling is dT/dt � k(T � Tm), k � 0, where 
Tm � T2 � B(T1 � T), B � 0 is a constant.
(a) The foregoing DE is autonomous. Use the phase portrait 

concept of Section 2.1 to determine the limiting value of 
the temperature T(t) as t S q . What is the limiting value 
of Tm(t) as t S q?

(b) Verify your answers in part (a) by actually solving the 
differential equation.

(c) Discuss a physical interpretation of your answers in 
part (a).

 30. According to Stefan’s law of radiation, the absolute tempera-
ture T of a body cooling in a medium at constant temperature 
Tm is given by

 
dT

dt
� k(T  4 2 T 4

m),

  where k is a constant. Stefan’s law can be used over a greater 
temperature range than Newton’s law of cooling.
(a) Solve the differential equation.
(b) Show that when T � Tm is small compared to Tm then 

Newton’s law of cooling approximates Stefan’s law. 
[Hint: Think binomial series of the right-hand side of 
the DE.]

 31. An LR-series circuit has a variable inductor with the inductance 
defined by

 L(t) � • 1 2
1

10
 t, 0 # t , 10

0, t $ 10.

  Find the current i(t) if the resistance is 0.2 ohm, the impressed 
voltage is E(t) � 4, and i(0) � 0. Graph i(t).

 32. A classical problem in the calculus of variations is to find 
the shape of a curve � such that a bead, under the influence 
of gravity, will slide from point A(0, 0) to point B(x1, y1) in 
the least time. See FIGURE 2.R.7. It can be shown that a non-
linear differential equation for the shape y(x) of the path is 
y[1 � (y�)2] � k, where k is a constant. First solve for dx in 
terms of y and dy, and then use the substitution y � k sin2u to 
obtain a parametric form of the solution. The curve � turns 
out to be a cycloid.

  FIGURE 2.R.7 Sliding bead in Problem 32

bead

mg

y

x

B(x1, y1)

A(0, 0)

  The clepsydra, or water clock, was a device used by the an-
cient Egyptians, Greeks, Romans, and Chinese to measure the 
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 CHAPTER 2 in Review 101

passage of time by observing the change in the height of water 
that was permitted to flow out of a small hole in the bottom 
of a container or tank. In Problems 33–36, use the differential 
equation (see Problems 13–16 in Exercises 2.8)

 
dh

dt
� �c 

Ah

Aw

 "2gh

  as a model for the height h of water in a tank at time t. Assume 
in each of these problems that h(0) � 2 ft corresponds to water 
filled to the top of the tank, the hole in the bottom is circular 
with radius 1

32 in, g � 32 ft/s2, and that c � 0.6.

 33. Suppose that a tank is made of glass and has the shape of a 
right-circular cylinder of radius 1 ft. Find the height h(t) of 
the water.

 34. For the tank in Problem 33, how far up from its bottom should 
a mark be made on its side, as shown in FIGURE 2.R.8 that cor-
responds to the passage of 1 hour? Continue and determine 
where to place the marks corresponding to the passage of 
2 h, 3 h, … , 12 h. Explain why these marks are not evenly 
spaced. 

  FIGURE 2.R.8 Clepsydra in Problem 34

1 hour

2 hours

2

1

 35. Suppose that the glass tank has the shape of a cone with circular 
cross sections as shown in FIGURE 2.R.9. Can this water clock 
measure 12 time intervals of length equal to 1 hour? Explain 
using sound mathematics. 

  FIGURE 2.R.9 Clepsydra in Problem 35

2

1

 36. Suppose that r � f (h) defines the shape of a water clock for 
which the time marks are equally spaced. Use the above dif-
ferential equation to find f (h) and sketch a typical graph of 
h as a function of r. Assume that the cross-sectional area Ah 
of the hole is constant. [Hint: In this situation, dh/dt � �a, 
where a � 0 is a constant.]

 37. A model for the populations of two interacting species of 
animals is

  
dx

dt
� k1x(a 2 x)

  
dy

dt
� k2xy.

  Solve for x and y in terms of t.

 38. Initially, two large tanks A and B each hold 100 gallons of 
brine. The well-stirred liquid is pumped between the tanks 
as shown in FIGURE 2.R.10. Use the information given in the 
figure to construct a mathematical model for the number 
of pounds of salt x1(t) and x2(t) at time t in tanks A and B, 
respectively.

   FIGURE 2.R.10 Mixing tanks in Problem 38

A
100 gal

B
100 gal

2 lb/gal
7 gal/min

mixture
5 gal/min

mixture
1 gal/min

mixture
3 gal/min

mixture
4 gal/min

When all the curves in a family G(x, y, c1) � 0 intersect orthogonally, 
all the curves in another family H(x, y, c2) � 0, the families are said 
to be orthogonal trajectories of each other. See FIGURE 2.R.11. If 
dy/dx � f (x, y) is the differential equation of one family, then the 
differential equation for the orthogonal trajectories of this family 
is dy/dx � �1/f (x, y). In Problems 39 and 40, find the differential 
equation of the given family. Find the orthogonal trajectories of 
this family. Use a graphing utility to graph both families on the 
same set of coordinate axes. 

FIGURE 2.R.11 Orthogonal trajectories

tangents

G(x, y, c1) = 0

H(x, y, c2) = 0

 39. y � �x 2 1 � c1e
x 40. y �

1

x � c1
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102 CHAPTER 2  First-Order Differential Equations

Contibuted Problems 

 41. Invasion of the Marine Toads* In 1935, the poisonous 
American marine toad (Bufo marinus) was introduced, against 
the advice of ecologists, into some of the coastal sugar cane 
districts in Queensland, Australia, as a means of controlling 
sugar cane beetles. Due to lack of natural predators and the 
existence of an abundant food supply, the toad population 
grew and spread into regions far from the original districts. 
The survey data given in the accompanying table indicate how 
the toads expanded their territorial bounds within a 40-year 
period. Our goal in this problem is to find a population model 
of the form P(ti) but we want to construct the model that best 
fits the given data. Note that the data are not given as number of 
toads at 5-year intervals since this kind of information would 
be virtually impossible to obtain.

   Marine toad (Bufo marinus)

Year Area Occupied

1939 32,800
1944 55,800
1949 73,600
1954 138,000
1959 202,000
1964 257,000
1969 301,000
1974 584,000

(a) For ease of computation, let’s assume that, on the aver-
age, there is one toad per square kilometer. We will also 
count the toads in units of thousands and measure time 
in years with t � 0 corresponding to 1939. One way to 
model the data in the table is to use the initial condition 
P0 � 32.8 and to search for a value of k so that the graph 
of P0e

kt appears to fit the data points. Experiment, using 
a graphic calculator or a CAS, by varying the birth rate 
k until the graph of P0e

kt appears to fit the data well over 
the time period 0 # t # 35. 
   Alternatively, it is also possible to solve analytically 
for a value of k that will guarantee that the curve passes 
through exactly two of the data points. Find a value of k 
so that P(5) � 55.8. Find a different value of k so that 
P(35) � 584. 

(b) In practice, a mathematical model rarely passes through 
every experimentally obtained data point, and so statisti-

*This problem is based on the article Teaching Differential Equations 
with a Dynamical Systems Viewpoint by Paul Blanchard, The College 
Mathematics Journal 25 (1994) 385–395.

cal methods must be used to find values of the model’s 
parameters that best fit experimental data. Specifically, 
we will use linear regression to find a value of k that 
describes the given data points:

•  Use the table to obtain a new data set of the form 
(ti,  ln P(ti)), where P(ti) is the given population at the 
times t1 � 0,  t2 � 5,  p .

•  Most graphic calculators have a built-in routine to find 
the line of least squares that fits this data. The routine 
gives an equation of the form ln P(t) � mt � b, where 
m and b are, respectively, the slope and intercept cor-
responding to the line of best fit. (Most calculators 
also give the value of the correlation coefficient that 
indicates how well the data is approximated by a line; 
a correlation coefficient of 1 or �1 means perfect cor-
relation. A correlation coefficient near 0 may mean 
that the data do not appear to be fit by an exponential 
model.)

•  Solving ln P(t) � mt � b gives P(t) � emt�b or P(t) � 
ebemt. Matching the last form with P0e

kt, we see that eb 
is an approximate initial population, and m is the value 
of the birth rate that best fits the given data.

(c) So far you have produced four different values of the birth 
rate k. Do your four values of k agree closely with each 
other? Should they? Which of the four values do you think 
is the best model for the growth of the toad population 
during the years for which we have data? Use this birth 
rate to predict the toad’s range in the year 2039. Given 
that the area of Australia is 7,619,000 km2, how confident 
are you of this prediction? Explain your reasoning.

 42. Invasion of the Marine Toads—Continued In part (a) of 
Problem 41, we made the assumption that there was an average 
of one toad per square kilometer. But suppose we are wrong 
and there were actually an average of two toads per square 
kilometer. As before, solve analytically for a value of k that 
will guarantee that the curve passes through exactly two of the 
data points. In particular, if we now assume that P(0) � 65.6, 
find a value of k so that P(5) � 111.6, and a different value 
of k so that P(35) � 1168. How do these values of k compare 
with the values you found previously? What does this tell us? 
Discuss the importance of knowing the exact average density 
of the toad population.

Rick Wicklin, PhD
Senior Researcher in Computational Statistics
SAS Institute Inc.
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