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1.5 	 Watson-Crick Model   15
Rosalind Franklin and Maurice Wilkins obtained x-ray 

diffraction patterns of extended DNA fibers.   15
James Watson and Francis Crick proposed that DNA is a 

double-stranded helix.   15

1.6 	 Central Dogma   19   
The central dogma provides the theoretical framework for 

molecular biology.   19
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