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check off when you’ve  
  completed an objective

•• Know the scientific method.

•• Learn units of distance and angular measure for celestial objects.

•• Use the small-angle formula.

•• Know the planetary systems of Ptolemy and Copernicus.

•• Know and apply Kepler’s three laws of planetary motion.

•• Understand the concepts of velocity, acceleration, mass, weight, and force.

•• Use the functions for the distance and velocity of a dropped object.

•• Learn about the lives of Galileo and Isaac Newton.

•• Apply the inverse-square law.

•• Learn the importance of the Principia and the law of universal gravitation.

•• Find the velocity and acceleration of a body in a circular orbit.
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Philosophy is written in this grand book, the universe, which stands continually open to 
our gaze. But the book cannot be understood unless one first learns to comprehend 
the language. . . . It is written in the language of mathematics. . . . Without these one 
wanders about in a dark labyrinth.

—Galileo Galilei, The Philosophy of the Sixteenth and Seventeenth Centuries, translated by Richard Henry Popkin, p. 65. 

Copyright (c) 1966, Free Press.

4 Astronomy and the Methods 
of Science

4.1  Ancient Milestones

4.2  The Two Great Systems

4.3  The Defense of Copernicanism

4.4  And All Was Light
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Few activities have enjoyed such universal appeal 
through the ages as gazing up at a starry sky on a 
pleasant summer’s night (see Figure 4.1.1). We 
have all spent an idle evening wistfully musing 
as those faraway diamonds sparkled against the 
magnificent black backdrop of the cosmos. Some 
evenings we have taken the next step and pondered 
the inevitable cascade of questions that seem to 
hang in the air right next to the stars and planets. 
What are they made of? How long have they been 
there? How far away are they? Along what path 
do they move, and how fast? The search for the 
answers to such curiosities comprises the beauti-
ful subject of astronomy. See Figure 4.1.2.

A brief look at the history of humankind’s 
search to understand its place in the universe pro-
vides us with a classic example of the interweav-
ing of the development of mathematics with the 
genesis of modern science and of its impact on the 

evolution of human culture. We shall see that mathematics is not just numbers 
and equations, but rather an extremely effective language for deductive reasoning 
and for defining the terms and concepts with which to debate the great questions 
of the world. Indeed, mathematics often has to be created to explain newly dis-
covered relationships and to sort and separate facts. It has been very successful 
in rendering the tenets of natural philosophy, a phrase from an earlier era that 
today we would call science.

Science can be reasonably defined as systemized knowledge logically 
deduced from observations. Certainly a claim can be made declaring astronomy 
to be the first science; the quest to understand the celestial theater that surrounds 

us began several millennia ago (and continues vigorously today). This amazing odyssey 
provides us a rich tapestry of lives and achievements well worth our effort to examine. 

FIGURE 4.1.2 The astronomer reaches for truth. (Camille Flammarion, L’atmosphère: météorologie populaire, Paris, 1888.)

astronomy  The 
science of the observation 
and study of the universe.
natural philosophy  
A set of principles or ideas 
concerning the workings 
of nature. The addition of 
mathematics to formalize 
such ideas led to the 
recasting of this phrase 
as science.

FIGURE 4.1.1 The night sky.
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Replete with more failures than successes, the history of astronomy is fraught with the full 
range of emotions and hardships that are always the handmaidens to any human experience. 
Therefore, the style and tone of this chapter will be slightly different than found elsewhere 
in the text. A story is going to be told, and as it unfolds, we will intersperse our study of 
specific mathematical and  astronomical principles with important events in the lives of the 
key contributors.

4.1  Ancient Milestones
We begin by realizing that the nocturnal scenes witnessed in the evening skies by  people 
2,500 years ago are pretty much the same ones you can see today in your own backyard on 
any clear night. Back in the days before indoor distractions such as televisions,  people used 
to regularly gather outside to while away the evening in pleasant conversation. Attentive 
individuals would notice over a period of months that there were some things in the arrange-
ment of the swarm of sparkling lights above them that stayed the same and others that 
changed. For example, compare the two pictures shown in Figure 4.1.3, giving the same 
view in the same direction but separated chronologically by several weeks (or possibly 
months).

We note that, except for the brighter object, all the stars have remained in the same 
locations relative to one another. In the right-hand picture, however, the apparent motion 
of the bright object through the background stars marks it as different somehow, and any 
model of the universe we might propose must account for the meanderings of this so-called 
“ wanderer.” Indeed, planet is the Greek word for wanderer, and the ancient Greeks 
observed five such planets (Mercury, Venus, Mars, Jupiter, and Saturn) gallivanting across 
the  heavens.

These are observations of occurrences happening over a period of time. Likewise, no 
one can escape noticing the daily movements of the sun and moon rising in the east and 
setting in the west. Most of the stars also follow this same pattern, although if we direct our 
gaze to the north, we see that one particular star (Polaris) seems to not move much at all 
during the night while nearby stars follow circular paths around it, never dipping below the 
horizon. Such a stable beacon of the night has been observed for centuries both by sailors, 

FIGURE 4.1.3 The view on the right is of the same group of stars but several weeks later.

1774.1 Ancient Milestones

9780763781163_CH04_Pass2.indd   177 07/06/14   1:15 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION



If I could pray to move, prayers would move me;
But I am constant as the northern star,
Of whose true-fix’d and resting quality
There is no fellow in the firmament.

who used it for navigating, and by bards, who sang of its permanence. In Julius Caesar, 
Shakespeare wrote:

What model of the sun, moon, planets, and stars might you invent that would fit these 
facts? Incidentally, that’s quite important—“fitting the facts.” One key to understanding a 

history of the important discoveries in any scientific arena is an examination of 
the development and refinement of the scientific method, a process involving 
three main steps:
 1.  Careful observation of a phenomenon and the recording of data
 2.   Objective analysis of the data and the creation of a model to fit 

the data
 3.   Use of the model to make predictions that can be tested against 

new  observations
Inherent in the construction of any model of a natural phenomenon is the con-

cept of the underlying axioms. Essentially, axioms are simply stated assumptions 
whose truth seems so self-evident that most people accept them as true  without proof. 
Just as any sturdy edifice needs cornerstones laid as a foundation for building, so 
does every field of science or mathematics adopt a set of axioms as a starting point 
from which to proceed. The Greeks of the classical Athenian period (c. 600–350 bc)  

felt that such basic principles were so primordial that the knowledge of them resided within 
everyone, and so their realization needed no further explanation. This is akin to the notion 
that you need not prove the existence of your own soul—you just feel it. The problem with 
this approach is that the history of science and mathematics is full of instances where one 
or more of the foundational axioms of a particular theory have been shown to be unreliable. 
This can then lead to a dramatic change in the consequences of those axioms, perhaps to 

the point of completely abandoning the entire theory. Such a happening is called a 
paradigm shift—an altering of the standard model for a particular phenomenon; 
in fact, our study of astronomy will highlight one of the classic paradigm shifts in 
the history of science. The lesson of these revisions has led to a modern attitude in 
which we adopt our axioms with a bit less certainty and a bit more flexibility.

We begin our exploration of the development of our current model of the planetary sys-
tem with that ancient, mysterious character Pythagoras (c. 580–500 bc) (see Figure 4.1.4) and 
his school of followers. To the Pythagoreans, numbers were very important tools to solving the 
riddles of the natural world around them, an idea that grew increasingly strong as these thinkers 
discovered the roles that numbers played in establishing relationships in geometry and music. 
Furthermore, because the universe was a pure and harmonious place, they believed that these 

relationships extended to the movement of the planets. The “music of the spheres” 
was that perfect blend of tones produced by the planets moving in cosmic harmony in 
the same way as the proper strings of the right lengths vibrate on a musical instrument.

Establishing connections between such seemingly unrelated disciplines led 
to the famous set of grouped studies historically known as the quadrivium of 

scientific method  
A formalized procedure 
for exploring natural 
phenomena involving:
1. Careful observation and 

the recording of data.
2. Objective analysis of the 

data and the creation of 
a model to fit the data.

3. Use of the model to 
make predictions that 
can be tested against 
new observations.

axioms A statement 
universally accepted 
as true.

quadrivium A group 
of studies in medieval 
universities consisting 
of arithmetic, music, 
geometry, and astronomy.

paradigm shift An 
altering of the standard 
model for a phenomenon.
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knowledge, consisting of arithmetic, music, geometry, 
and astronomy. The study of these subjects led to a 
degree in many medieval universities, and they were 
all considered to be branches of the same field, math-
ematics.

Although the so-called music of the spheres 
was pure fantasy, Pythagoras and his followers also 
believed that because circles and spheres were the 
perfect forms of geometry, they must be the paths 
and shapes that the gods had supplied to the universe. 
These ideas tilled the soil for the growth of the concept 
of the sun, planets, and stars moving in continuous cir-
cular paths around a spherical Earth. In fact, these two 
primary axioms influenced most of the planetary mod-
els produced from 500 bc to the 1500s:
 1.   Earth is the stationary center of the uni-

verse (called a  geocentric universe).
 2.      Every celestial body travels in a circular 

path.
In light of the state of knowledge of the natu-

ral world at that time, such axioms are quite reason-
able. Surely, thought the ancients, if Earth were  sailing 
through empty space, wouldn’t we all be sent hurtling 
off its surface, much like ants off a thrown apple? 
Circles, in fact, have had such a special place in the 
geometry of the world—the most graceful curve in 

nature—that their use remained ingrained in any depiction of the planetary orbits 
well into the sixteenth century, as seen in Figure 4.1.5 in the illustration of the 
geocentric system done by Portuguese cosmographer Bartolomeu Velho in 1568 
(Bibliothèque Nationale, Paris).

Although we know today that the planets do not move in circles centered 
on Earth, the notions of a round Earth and planets in repeating orbits were giant 
steps in the right direction. Bent on using mathematics to provide answers to 

philosophical questions, the Pythagoreans dispensed with many previous mythologies 
and planted the seed for the growth of the scientific method by attempting to describe the 

phenomena of nature based on observation.
For example, the lack of observational parallax 

supports the notion of a stationary Earth. You already 
are familiar with this optical notion: Close one eye, 
extend your arm with your thumb held vertically, and 
use your other eye to line up your thumb with some 
object  several meters distant. Now close your open 
eye and open the closed one. What happens? Your 
thumb appears to have moved with respect to the dis-
tant object. This is known as  parallax. Well, the same 
should be true for our view from Earth if it is truly a 
vehicle that is carrying us through space. Why do the 
closer stars not change their orientation with respect 
to the more distant stars over time? The answer, of 

FIGURE 4.1.4 Bust of Pythagoras.
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FIGURE 4.1.5 The geocentric system.

geocentric Earth-
centered.
parallax The change 
of position of a close object 
with respect to a more 
distant background when 
viewed from two different 
locations.
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January July

FIGURE 4.1.6 Fictitious scenario for how stars in the Big Dipper constellation might change as a result of Earth’s motion if they were 
closer to us.

course, is that they do! It’s just that they are all so far away (the closest star after the sun, 
Alpha Centuri, is more than 41  trillion kilometers (km) from Earth) that stellar parallax is 
not observable with the naked eye. See Figure 4.1.6.

 Example 1
Miles and kilometers are units of distance that are useful for terrestrial measure-
ment but quickly become cumbersome when used to describe the vastness of space. 
Modern-day astronomers use the astronomical unit (abbreviated as AU) in com-

puting distances among the planets, asteroids, comets, and other members 
of our solar system. One astronomical unit (1 AU) is equal to the mean dis-
tance of Earth from the sun—93,000,000 miles (mi) or 150,000,000 km. 
Incredibly, stars and galaxies are so much farther away that even astro-
nomical units become unwieldy, and light-years have become the standard 
unit of measurement. One light-year (ly) is the distance light travels in 
1 year (yr) at its speed of 300,000 kilometers per second (km/s). If we 
multiply this speed by the number of seconds in a year, we get the distance:

( )





 


 












 ≈ ×300,000

km

s
3,600

s

h
24

h

day
365 days 9.5 10 km.12

So 1 ly is equal to about 9.5 trillion km. Because Alpha Centauri is 41 trillion km 
away, this translates to 41/9.5 ≈ 4.3 ly. ♦

Modern literature contains many references to the great distances that all celestial 
objects are from Earth. The following poetic passage is from The Risk Pool by Richard 
Russo.

Here was a wish from another lifetime, granted twenty-five years too late, as if God were in a place so distant 
that it took almost forever for wishes to travel there, like pale starlight from a distant galaxy, eons old and all 
worn out even as we look at it.

The only reasonable way to gauge the separation between celestial objects as seen 
from Earth is by measuring an angle. We say, for example, that star A and star B have 

astronomical unit  
The mean distance from 
Earth to the sun, equal 
to about 93 million mi 
or 150 million km. 
Abbreviated AU.
light-year Distance 
traveled by light in 
1 yr, equal to about 
9.5 trillion km.

180 Chapter 4 Astronomy and the Methods of Science

9780763781163_CH04_Pass2.indd   180 07/06/14   1:16 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION



an angular separation of 12° if the two lines of sight 
from the observer to those stars form an angle of 12°. 
See Figure 4.1.7. Note that this tells us nothing about 
the actual distance in space between the two stars 
because their separate distances from Earth could be very 
 different. It follows that the motion of an object is often 
given in a certain number of degrees or radians per unit of 
time. Smaller units are often needed, and so 1 degree (1°) 

is defined to be 60 arcminutes ( abbreviated by 60′) while 1 minute (1′) of arc is 
equal to 60 arcseconds (abbreviated by 60″).

In the following passage from Cold Mountain by Charles Frazier, refer-
ences are made to the motion of stars in the night sky. Knowing basic astronomy 
can augment your enjoyment of literature.

128

A

Your Eye

B

FIGURE 4.1.7 Angular separation.

Orion had fully risen and stood at the eastern horizon, and from that Inman made 
the time to be long past midnight. Orion was girded about tight, his weapon ready 
to strike. Traveling due west every night and making unfailing good time.

 Example 2
As the sun moves across the sky each day, you could easily compute that it moves 
at a rate of 15° per hour. The ancients thought the sun was circling Earth, but of 
course today we know that Earth rotates on its axis once every 24 h (360° divided by 
24 h yields the required rate). Naturally, the stars at night display this same apparent 
motion and at the same angular rate, but you will notice that the path each individ-
ual star appears to follow is actually along a circle centered at Polaris, which itself 
never moves. This is so because the northern end of our planet’s rotational axis points 
(almost) directly at Polaris (the end star in the handle of the Little Dipper). Stars in 
the northern part of the sky, such as those in the constellations Cassiopeia and the 
Big Dipper, move in tighter circles. Stars that have a greater angular separation from 
Polaris, such as those in Orion, move in circles large enough to give the appearance 
of rising in the east and setting in the west. (In the southern hemisphere, an analogous 
arrangement prevails with circles of apparent motion centered at a spot in the south-
ern part of the sky.) ♦

 Example 3
If you were to look directly east at whatever group of stars is peeking over the horizon 
every night at suppertime, you would easily ascertain after a few weeks that those 
stars were appearing about 1° higher each night. (Looking at the stars at the same 
time every night eliminates the problem of accounting for the daily rotation of Earth.) 
Six months from now, that same group is setting in the west at suppertime, and in 

arcminutes  
One-sixtieth of a degree. 
Used as a unit for angular 
separation.
arcseconds  
One-sixtieth of an 
arcminute. Used as a unit 
for angular separation.

angular     separation  
The measure of the angle 
formed at the observer’s 
position by the two lines 
of sight to two separate 
objects.

1814.1 Ancient Milestones
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a year’s time, it has returned to its original position. This type of motion is physically 
distinct from that described in Example 2, but as in that example, the movements 
are along Polaris-centered circles. Earth’s annual revolution around the sun accounts 
for this transport through 360° over a period of 365 days, yielding a star “marching 
speed” of about 1° per day toward the west. Careful measurement of any constella-
tion would show a movement of about 30° over a 1-month period. ♦

As we mentioned earlier, the mysterious travels of the five visible planets had inspired 
the wonder of habitual stargazers for centuries. Why do these five orbs appear to move 
among the background of an ocean of stars? Well, for one thing, they must be much closer 
than the stars. Moreover, there was little argument as to their relative proximities because of 
the assumption that the more slowly the planet moved, the farther it must be from Earth. So 
observations of the planets’ relative speeds put them in the order of Mercury, Venus, Mars, 
Jupiter, and Saturn.

However, two major problems could not be explained by simple circular motion 
around the Earth. The motions of all the planets are restricted to a rather narrow ribbon of 

the sky called the zodiac that also contains the apparent path of the sun. (We 
know today that this is the result of all the planets orbiting the sun in pretty 
much the same plane.) Although Mars, Jupiter, and Saturn typically travel in 
eastward paths through the zodiac, one of them occasionally slows to a complete 
stop, reverses its motion, and goes westward for a few weeks or months until 
it stops and reverses again to resume its original direction (Figure 4.1.8). This 
reversal is referred to as retrograde motion, and it was a mystery that all the 
early cosmologists struggled to resolve. Accounting for retrograde motion under 
the axiom system described earlier eventually led to the Ptolemaic system, a 
model we will examine closely in the next section.

The other big question concerned the fact that something altogether dif-
ferent was going on with Mercury and Venus. These two planets could be seen 
only in the early morning just before sunrise or in the evening just after sunset, 

but never in the middle of the night. They stuck close to the sun with Venus never separated 
by more than 48° and Mercury never by more than 28°. It was this riddle that Heracleides 
(c. 388 bc) solved by being the first to suggest the incredibly novel idea of having Mercury 
and Venus in orbit around the sun. (See Figure 4.1.9.)

FIGURE 4.1.8 The position of Mars taken at 10-day  intervals. 
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FIGURE 4.1.9 The model of Heracleides.

zodiac A narrow, 
beltlike region around the 
sky containing the apparent 
paths of the sun and 
planets.
retrograde motion  
The apparent reversal of the 
movement of a planet.
Ptolemaic system  
Model of the planetary 
system with Earth at the 
center and employing 
epicycles and deferents 
to explain retrograde 
motion of the planets.
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Now here was a thought of far-reaching significance indeed! True, he still had the sun 
circling the Earth, but no one had ever offered up the possibility of anything moving around 
the sun. We now use this revised picture to compute some relative distances.

Although undetectable by the naked eye, the width of the planetary disks varies as 
their distance from us changes. Modern telescopes can determine the angular width of the 

visible disk of a celestial body with great precision. The angular diameter α of 
any object (as opposed to its actual or linear diameter) is defined as the angular 
separation from one side of the object to the other side. By measuring the angular 
diameter, you can find the distance to the object if you know the linear diameter, 
or vice versa. The distance to most celestial objects is great enough to allow us to 

think of the linear diameter pictured in Figure 4.1.10 as a portion of a large circle whose 
radius is the distance. If we use radians to measure α, then geometry tells us that

α =
linear diameter

distance
.

However, α is generally measured more conveniently in arcseconds because of its 
small size, and so we may utilize the fact that 1 radian (rad) consists of 206,265 arcseconds 
to obtain the proportion

α
=

206,265

linear diameter

distance
,

where α is now measured in arcseconds. The above relationship is often referred to by 
astronomers as the small-angle formula.

Angular
diameter α

Distance

Linear
diameter

FIGURE 4.1.10 Angular and linear diameters.

 Example 4
The moon’s diameter is 3,500 km. We can sometimes assume a constant Earth–moon 
distance, even though, in reality, it is continuously changing. If the distance varies in 
one month from a minimum of 363,000 km to a maximum of 405,000 km, what are 
its minimum and maximum angular diameters that month?

angular diameter  
The angular separation 
of opposite sides of an 
observed object.

1834.1 Ancient Milestones
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 Solution
Substituting the appropriate numbers from above into the small-angle formula, we get

α
=

206,265

3,500

363,000
,

and this gives us

α )(=

= ″
= ′

0.00964 206,265

1,990

33

for the maximum angular diameter. Likewise,

α

α )(

=

=
= ″
= ′

206,265

3,500

405,000

0.00864 206,265

1,780

30 for the minimum.

Although this fluctuation of 3′ is probably not noticeable to the casual observer, it is 
apparent in the differences it causes in total solar eclipses. At maximum distance, the 
smaller lunar disk fails to cover the entire sun, producing a thin brilliant ring of fire 
surrounding the disk. It is known as an annular eclipse. ♦

The Egyptian city of Alexandria, established by the warrior-king Alexander the Great 
in 322 bc, was the cultural and intellectual capital of the western world for several hundred 
years. One of the giants of this era was unquestionably the brilliant Aristarchus of Samos, 
who was born around 310 bc. Although only a single book of his writings survived to the 
present—On the Sizes and Distances of the Sun and the Moon—his fame is secured by 
the respect he was accorded in the scientific literature produced by his contemporaries. 
Aristarchus combined sharp mathematical reasoning with keen fact gathering to formulate 
answers to difficult questions.

 Example 5
Aristarchus invented an ingenious method for determining the ratio of the Earth–sun 
distance to the Earth–moon distance and, in the process, greatly enlarged the Greek 
estimates of the size of the universe. His technique rested on examining the right 
 triangle formed by the sun, moon, and Earth when the moon is at the position in 
its orbit that yields the view of a half-illuminated disk (first-quarter or third-quarter 
phase).

Somehow Aristarchus estimated the angle θ in Figure 4.1.11 to be about 87°, 
and this then implies that the small angle must be 3°. Because each degree equals 
3,600″, the small-angle formula can be applied to give us

184 Chapter 4 Astronomy and the Methods of Science

9780763781163_CH04_Pass2.indd   184 07/06/14   1:16 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION



Earth

Moon

U

Sun

FIGURE 4.1.11 The method used by Aristarchus to compare the distances to the sun and moon.

=
10,800

206,265

EM

ES
,

where EM = the Earth–moon distance and ES = Earth–sun distance. Therefore,

=

=

=

0.0524
EM

ES

ES
EM

0.0524
19EM

Note that a small change in the measurement of the angle induces a large change in 
this factor (see the exercises). Although the actual ratio of the Earth–sun distance to 
the Earth–moon distance is about 390, this was nonetheless a truly astounding dis-
covery for that era. ♦

Among his many accomplishments, Aristarchus is commonly credited with being 
the first man to place the sun at the center of the planetary system with all the planets, 

including Earth, in circular orbits around it. This is known as a heliocentric 
system (the Greek word Helios means sun god). He felt the scale of the universe 
to be so grand and the stars so enormously distant that any parallax caused by 
the movement of our planet would not be measurable. These ideas gained little 

acceptance in Aristarchus’s lifetime. Perhaps Aristarchus himself was not fully convinced 
of the truth of his conjecture because there existed no strong observational evidence to favor 
this scheme over any other. It was simply a philosophical alternative that seemed, somehow, 
less secure than that of a geocentric universe. In fact, it would be almost 1,800 years before 
a sun- centered planetary model would be seriously considered again.

The scanty conceptions to which we can attain of celestial things give us, from their excellence, more pleasure 
than all our knowledge of the world in which we live.

—Aristotle (Parts of Animals I, 5)

heliocentric  
Sun-centered.

= 19 EM.
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1. These figures show two simulated views of the same area of the sky taken 6 h apart. The 
star labeled P is Polaris, commonly called the North Star because the North Pole of Earth’s 
rotational axis points almost directly at it. Polaris is the end star in the handle of the Little Dipper 
constellation, which has been sketched in for easy reference. Note how the location of Polaris is 
unchanged in the second picture, while the rest of the stars in the constellation appear to have 
rotated around Polaris in circular paths. What phenomenon regarding the daily motion of Earth 
actually accounts for this observation? The entire constellation has rotated counterclockwise about 
90°. Thus, we see that each star moves at an angular rate of 90° every 6 h, or 15° per hour. Is this 
consistent with your answer to the above question? Why?

2. Suppose you go out tonight at 9:00 p.m. and pick out a nice bright star on the eastern horizon. 
If you view that same star 1 month from now at 9:00 p.m., what angular displacement (on a large 
circle centered at Polaris) will that star have undergone?

3. Explain why the assumption of a stationary Earth was so prevalent for such a long time.

4. What observational facts led Heracleides to propose that Mercury and Venus orbited the sun 
instead of Earth?

5. Name the two axioms for building any planetary model that were believed by most of the Greek 
astronomers of antiquity.

6. How many degrees does the sun move across the sky between 10:00 a.m. and 3:00 p.m. due to the 
rotation of the Earth?

7. What is the angular rate at which the stars rotate around Polaris in units of degrees per hour? 
Arcminutes per minute? Arcseconds per second?

8. One light-second is the distance light travels in 1 s. What is the mean distance of Earth from the 
sun in light-seconds? In light-minutes? [Recall that the speed of light is 3 × 105 km/s and the 
distance from Earth to the sun is 1.5 × 108 km.]

9. The mean distance of Pluto from the sun is about 39 AU. What is that distance in light-seconds?

10. How many astronomical units are in 1 ly?

11. The moon takes roughly 30 days to complete one trip around Earth. Compute the angular rate (in 
degrees per hour) at which the moon moves through its orbital path.

Exercise Set 4.1

P
P

Name _________________
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12. Phobos, one of the two moons of Mars, orbits the planet at a distance of about 5,980 km. It 
is considerably smaller than our own moon, having a diameter of only 20 km. What angular 
diameter would Phobos present to an observer on Mars? Would Phobos appear larger or smaller 
in the Martian sky than our moon appears to us here on Earth?

13. The maximum angular diameter of Jupiter as seen from Earth is about 50″ (arcseconds). If the 
linear diameter of Jupiter is 144,000 km, determine the minimum distance (in kilometers) of 
Jupiter from Earth.

14. The planet Saturn is well known for its colorful rings. The diameter across the outermost 
ring is 340,000 km. When Saturn is 9.0 AU from Earth, what is the angular diameter of the 
outermost ring?

15. In the previous exercise, what is the angular diameter of the outermost ring of Saturn when the 
planet is 10.0 AU from Earth?

16. If d and α are the linear and angular diameters, respectively, of a celestial object and r is the 
distance to the object, then, for any particular object (cf. Example 5), α clearly changes as r 
changes. Write α as a function of r. Does α achieve a maximum or a minimum when r is a 
minimum? Does α achieve a maximum or a 
minimum when r is a maximum?

17. If the angular separation between two objects 
is less than 5°, for our purposes we may 
continue to assume that the triangle formed by 
those two objects and Earth is a long, narrow 
right triangle. Megrez and Phad are two of 
the stars forming the bowl of the constellation 
commonly called the Big Dipper. Both of these 
stars happen to be about 80 ly from Earth and 
have an angular separation of 4.5°. How far 
apart are they in space? (1° = 3,600″.)

18. Many of the points of light in the night sky that appear to be single stars are actually composed 
of two stars revolving around a common point between them. These are called binary systems. 
A binary system appears to be a single star because it is too far away for the human eye to resolve 
into two separate light sources. About the closest star separation that the eye can distinguish is 4′. 
Mizar, a binary system in the crook of the handle of the Big Dipper (see above picture), is about 
73 ly from Earth and can only be resolved by the keenest human eye. What must be the maximum 
distance between the two stars this system?

19. Alpha Centauri, our sun’s closest stellar neighbor at 4.3 ly, is actually a triple star system. The 
two biggest, brightest stars are known as Alpha Centauri A and B. They orbit each other every 
80 yr, having minimum and maximum separations of 11 and 35 AU, respectively. What are the 
corresponding minimum and maximum angular separations of these two stars as seen from Earth? 
Would you need a telescope to identify these as two different stars? (From the previous exercise, 
we see that the answer is yes if the angular separation is always less than 4′.)
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20. Aristarchus computed a distance to the moon of about 80 Earth radii (the actual figure is closer 
to 60) by using an ingenious technique that involved clocking the time it took the moon to pass 
through Earth’s shadow during a lunar eclipse. Refer to Example 5 to determine what Aristarchus 
concluded must be the distance to the sun.

21. A more accurate measurement of the sun–Earth–moon angle θ in the Aristarchus triangle in 
Figure 4.1.11 is 89.853°. If the mean distance to the moon is about 384,000 km, what is the mean 
distance to the sun?

22. A solar eclipse occurs when the moon interposes itself between the sun and Earth. It is a dynamic 
demonstration that the moon is closer to us than the sun and also reveals that the average angular 
diameters of these two bodies are the same—about 30′. Similar triangles then allow us to conclude 
that the ratio of the diameters of the sun and moon is the same as the ratio of their distances from 
Earth:

=Distance to sun

Distance to moon

diameter of sun

diameter of moon
.

The work of Aristarchus in Example 5 gave a value of 19 for the ratio on the left-hand side of the 
equation in the figure. If the diameter of the moon is given to be 3,500 km, what would be the 
diameter of the sun?

Earth Moon

Sun
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23. In Exercise 21, you computed a different value for the ratio of the Earth–sun distance to the  
Earth–moon distance than the one computed by Aristarchus. Use this value to answer the same 
question as in Exercise 22: If the diameter of the moon is given to be 3,500 km, what is the 
diameter of the sun?

24. One of the greatest scholars of the Alexandrian Greek world was Eratosthenes (275–194 bc). 
He was the first to compute an extremely good estimate of the circumference of Earth. 
Eratosthenes noticed that at summer solstice, the sun was directly overhead in the city of Syene 
(S in the accompanying picture) and at an angle of 7.5° from straight overhead in Alexandria 
(A), which was located 500 mi to the north. The angle at the center E of Earth is formed by 
radii extended through both points. Because we can think of sunlight rays as parallel, the measure 
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of this angle must also be 7.5°. Because =
7.5

360

1

48
, this means that the portion of the circle from 

A to S is 
1

48
 of the circumference. What is the circumference?

25. Suppose Eratosthenes measured the angle at E in the accompanying picture 
to be 6°. What would have been his value for the circumference of Earth?

26. If you were to travel to an exotic land and wished to 
locate the North Star some evening, there is a wonderful 
little fact you should know. The elevation angle from 
the horizon to Polaris is related to the latitude of your 
location. For instance, where would Polaris be in the sky 
if you were situated at the North Pole? At the equator? 
Your latitude angle L is defined to be the angle between 
radii drawn to the equator and to your location. In the 
picture here, your line of sight to Polaris and the line from 
Earth’s center to the North Pole are parallel. Therefore, 
the two angles marked by θ are equal. Prove that the 
angle of elevation α is equal to L.

27. In the previous exercise, would Polaris appear higher in the sky as viewed from Dallas, Texas, or 
Chicago, Illinois?

28. Elongation of a planet is the angular separation of the planet from the sun as seen from Earth. The 
angle SEM in the figure here is the angle of elongation of the planet Mercury for two different 
positions of Mercury in its orbit. The maximum elongation angle for Mercury is about 28°, giving 

the configuration in the diagram on 
the right. We see that the line EM is 
tangent to the orbit of Mercury and 
therefore is perpendicular to the 

radius MS of the orbit. Hence, the three bodies form a 
right triangle with hypotenuse equal to the Earth–sun 
distance ES. Estimate the distance from Mercury to 
the sun and the minimum distance to Mercury from 
Earth in astronomical units. (Trigonometry is needed.)

29. The maximum elongation angle for Venus is about 48°. As in the previous exercise, find the 
distance from Venus to the sun in both astronomical units and kilometers. At 
this elongation, how far apart are Earth and Venus? If the linear diameter of 
Venus is about 12,000 km, what would be its angular diameter at this point in 
its orbit?

30. Use the results of the previous exercise to find the minimum distance Venus 
can ever be from Earth. Give your answer in both astronomical units and 
kilometers. If the linear diameter of Venus is about 12,000 km, what would 
be its angular diameter at this point in its orbit?

Sun

Earth

Venus

E
S

500 Sun

A 7.5˚

7.5˚

To Polaris

Horizon
You Are Here

L

North (to Polaris)
θ

α

θ

Equator

Earth

Mercury

Sun

Mercury

28°

Earth

Sunelongation The 
angular separation between 
the sun and a planet.

1894.1 Ancient Milestones

9780763781163_CH04_Pass2.indd   189 07/06/14   1:16 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION



4.2  The Two Great Systems

The creative thinking of people like Heracleides and Aristarchus drives the progression of sci-
ence, but a recurring problem in those olden days was the lack of sophisticated  instrumentation 
to provide the data to test a new model. Without hard numerical data to corroborate a pro-
posed scheme, debates about the best model of the universe continued unabated, and the 

set of axioms used to build any theory played a large 
role. Of course, in the fourth century bc, one large bar-
rier to real knowledge was a lack of physical concepts 
that could be measured. Notions such as weight, mass, 
force, velocity,  acceleration, and so on were either par-
tially or wholly undeveloped quantitatively. One might 
speak of heavy or light, but never of 175 pounds (lb). In 
such an  environment, the people who became revered 
authorities of learning were those who could articulate 
their philosophies about the nature of the world with the 
best rhetorical polish. Chief among these were Plato  
(429–348 bc) and his esteemed pupil Aristotle  
(384–322 bc), a man whose clarity of insight empowered 
his writings on philosophy, economics, history, politics, 
poetry, drama, and the sciences (see Figure 4.2.1). His 
main work detailing his thoughts about the structure of 
the cosmos is On the Heavens. The high esteem awarded 
to the circle and sphere is evident in this book. He wrote:

To be accepted as a paradigm, a theory must seem better than its competitors, but it need not, and in fact never 
does, explain all the facts with which it can be confronted.

—Thomas S. Kuhn

Let us consider generally which shape is primary among planes and solids alike. Every plane figure must be either 
rectilinear or curvilinear. Now the rectilinear is bounded by more than one line, the curvilinear by one only. But 
since in any kind the one is naturally prior to the many and the simple to the complex, the circle will be the first of 
plane figures. . . . And the sphere holds the same position among the solids. For it alone is embraced by a single 
surface, while rectilinear solids have several. The sphere is among solids what the circle is among plane figures. . . . 
The shape of the heaven is of necessity spherical; for that is the shape most appropriate to its substance and 
also by nature primary.

FIGURE 4.2.1 Aristotle on a 5 drachma coin.
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We see these arguments as favoring not only the axiom of circular motion, but also the 
axiom of a spherical Earth. In fact, in a departure from the approach of Plato, who disdained 
experimentation, Aristotle included some observations in his studies on this point, stating:

190 Chapter 4 Astronomy and the Methods of Science

9780763781163_CH04_Pass2.indd   190 07/06/14   1:16 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION



See Figure 4.2.2.

Plato was convinced that God had designed a  perfect 
mathematical pattern for the motions of all the celestial bod-
ies. Aristotle’s view of the planetary model was one that 
wholeheartedly endorsed Platonic geocentricity but labored 
to explain retrograde motion. Aristotle elaborated on a model 
proposed by the mathematician Eudoxus (408–355 bc)—one 
that accounted for the strange reversals of the planets by having 
them attached to a complicated nest of interlocking  ethereal 
spheres, each turning around Earth at a different yet uniform 
speed. These teachings of Aristotle led the mainstream of Greek 
astronomy to later embrace a geocentric, or Earth-centered, 
model that was to become known as the Ptolemaic system. 
See Figure 4.2.3.

Preserving both geocentricity and circular motion while 
simultaneously accounting for observed retrograde was accom-
plished through a mathematical creation inspired originally by 
Hipparchus (c. 150 bc). His idea allowed for an object in orbit 

around Earth to follow a path that was a  geometric combination of two circles and 
still yielded observations of apparent back-and-forth motion. Further refinements 
and applications of this scheme to all the planets were made 300 years later by the 
last of the renowned Alexandrian astronomers, Claudius Ptolemy (c. 150 ad), 
for whom the entire model is named. The essential element is that each planet P 
travels in a small circle (see Figure 4.2.4(a)) called an epicycle at the same time 
as the center Q of the epicycle moves along another larger (imaginary) circle sur-
rounding Earth called a deferent. Imagine a small ball (the planet) attached to a 
string 1 foot (ft) long that is tied to the end of a 5-ft stick, which you are holding. 
If you (Earth) turn in place while you gyrate the stick so as to twirl the ball in the 

same plane as the stick, the resulting motion of the ball is what Hipparchus had in mind. It 
moves in a curve that mathematicians call a cycloid, shown in Figure 4.2.4(b).

Sun
Earth

Moon

FIGURE 4.2.2 Observations of lunar eclipses led Aristotle to believe Earth was a sphere.

The evidence of the senses further corroborates this. How else would eclipses of the moon show segments 
shaped as we see them? . . . In eclipses the outline is always curved: and, since it is the interposition of the earth 
that makes the eclipse, the form of this line will be caused by the form of the earth’s surface, which is therefore 
spherical. Indeed there are some stars seen in Egypt and in the neighborhood of Cyprus which are not seen in 
the northerly regions . . . all of which goes to show not only that the earth is circular in shape, but also that it is a 
sphere of no great size. . . .

FIGURE 4.2.3 A medieval painting of Ptolemy.
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epicycle Imaginary 
circle around which a 
planet moved in the 
Ptolemaic system. The 
center of the epicycle 
moved along the deferent.
deferent Imaginary 
circle centered on Earth, 
invented by Hipparchus, 
around which the center of 
a planet’s epicycle moved.
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Although the complete plan of Ptolemy contained some other modifications to this 
basic framework, note how beautifully it accounts for the retrograde problem. Each loop in the 
cycloid is viewed as retrograde motion from Earth. It is produced by choosing a speed for P 
greater than that for Q, along with appropriate radii for the epicycle and deferent. By tinkering 
with the sizes and angular rates of the pair of circles associated with a particular planet, you 
could predict its position with enough accuracy to match the observations available in that era.

The entire model and the accompanying mathematics are contained in Ptolemy’s 
Almagest, one of the most significant books of antiquity. In the final configuration  
(Figure 4.2.5), Ptolemy ignored the suggestion of Heracleides concerning Mercury and 
Venus (as Aristotle had) and placed the centers of the epicycles containing these two bodies 
on an imaginary line connecting Earth to the sun, whose own orbit was placed beyond that 
of Venus. This very neatly explained the perpetual proximity of the two innermost planets 
to the sun within the constructs of the model.

So here we have a geocentric model of the universe in which all bodies moved in 
circles yet gave fairly good matches of their positions with observational data. It was an 
achievement of monumental proportions. If the primary criterion by which to judge the suc-
cess of a model is the duration of acceptance by the learned community, then the Ptolemaic 
system—which remained the standard for more than 1,500 years—is among the most suc-
cessful in the history of science. Morris Kline, one of the most respected mathematics 
writers of the twentieth century, called the Ptolemaic system the “supreme achievement of 
all Greek efforts” and wrote in his book Mathematics and the Search for Knowledge that

Moon

Earth

Venus

Sun

Saturn

Mars

Mercury

Jupiter

FIGURE 4.2.5 The Ptolemaic system.

No other product of the entire Greek era rivals the Almagest in the profound influence it exerted on the 
conceptions of the universe.

(a) (b)

Earth

Q

P
Epicycle

Deferent

FIGURE 4.2.4 An epicycle combined with a deferent gives a geocentric explanation of retrograde motion.
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During the next 15 centuries, the development of new mathematics in the West and the 
associated inquiries of natural philosophy came to a stop. The penetration to Mediterranean 
lands by fierce barbarian tribes from the north, culminating in the sack of Rome in 410 ad, 
began a lengthy period of chaos and suffering. The teachings of Aristotle were considered 
the foundations of education, and because religious doctrine also endorsed a geocentric 
view of the universe, no serious disagreement with the Ptolemaic system emerged for quite  
some time.

Then a series of events in the late medieval period began to create a new atmosphere for 
learning. The compass; the printing press; easier access to books; lenses, corrective glasses, 
and improved vision; and later the invention of the microscope and telescope all fueled an 
invigorating spirit of investigation. A new guiding principle of observation combined with 
reason began to replace a reliance on authority. As the accuracy of the data increased, the 

errors inherent in the geocentric model became more noticeable 
and prompted a reexamination of the grand system of Ptolemy.

Nicholas Copernicus (1473–1543) (see Figure 4.2.6) 
never had any intention of discrediting the astronomy of 
Ptolemy, for whom he had the utmost respect. Born in Poland, 
Copernicus was adopted and raised by a wealthy and powerful 
uncle, a bishop who valued science and education as highly as 
religion. He sent his nephew to study in Italy, where the young 
man probably first hatched his seminal ideas that led to a new 
view of the cosmos. However, cautious by nature and fearful 
of condemnation by the Church as well as scorn from contem-
porary scientists, Copernicus did not publish his classic astro-
nomical work, De Revolutionibus Orbium Caelestium (meaning 
On the Revolutions of the Celestial Orbs), until just prior to his 
death. (It is interesting to note that this book led to the meaning 
of revolutionary as being radically new.)

The two main claims of his treatise were that Earth was 
just one of six planets in circular orbit around a stationary sun 
(Figure 4.2.7) and that the daily passages of the sun, moon, and 
stars across the sky were an illusion created by Earth’s rotation 
on its axis. De Revolutionibus began the reevaluation process 
that eventually dethroned the Ptolemaic system. In particular, it 
lent such momentum to the heliocentric model of the planets that 

the entire theory is often referred to as the Copernican system. It is unknown 
whether Copernicus obtained his ideas from Aristarchus of ancient Greece, but in 
the preliminary version of his manuscript, he wrote:

FIGURE 4.2.6 Nicholas Copernicus. This 1973 
stamp was issued in honor of the 500th anniversary of his 
birth.
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Copernican 
system Model of the 
planetary system with the 
sun at the center and Earth 
rotating on its own axis.

Philolaus believed in the mobility of the Earth, and some even say that Aristarchus of Samos was of 
that opinion.

We saw how to estimate the solar distances of Mercury and Venus in the last section. 
Copernicus devised a clever geometric technique to also compute the distances (relative 
to Earth’s distance) of the planets lying beyond Earth’s orbit. These distances are given in 
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As we mentioned earlier, even in ancient times, the order of the planets was well 
established and was based on the assumption that the more distant the planet, the slower 
it moved. By computing each planet’s solar distance, Copernicus was now in a position to 
estimate its velocity.

 Example 1
If we suppose each planet to move at a constant rate in a perfect circle of radius a 
 centered at the sun, then it travels a distance 2πa (the circumference of the circle) 

during one period p. Therefore, its velocity must be 
a

p
ν π

=
2

AU/yr . These units are 

not very meaningful to us because we are more accustomed to terrestrial terms, and so 
we convert it to kilometers per second (km/s). There are 1.5 × 108 km in 1 AU and  

365 × 24 × 60 × 60 = 3.1536 × 107 s in 1 year. So, 1 AU/yr = 
×

×
≈1.5 10

3.1536 10
km/s 4.76 km/s

8

7
.  

Multiplying the above formula by 4.76 gives

a

p
ν π

=
9.52

.

For instance, the orbital speed of Mercury would be ν
π ( )= ≈

9.52 0.38

0.24
47.4 km/s. 

Today, we know the planets move along near-circular orbits at nonconstant 
speeds. Hence, this is only a good estimate of the average speed of Mercury, 
which we shall call the Copernican velocity. ♦

Copernican 
velocity Speed of a 
planet assuming it traveled 
in a circular orbit.

FIGURE 4.2.8 Distances and periods of the planets known at the time of Copernicus.

Planet Copernicus (AU) Modern (AU) Period (yr)
Mercury 0.38 0.387 0.24
Venus 0.72 0.723 0.62
Earth 1.00 1.00 1.00
Mars 1.52 1.52 1.88
Jupiter 5.22 5.20 11.87
Saturn 9.17 9.54 29.46

Earth

Venus

Sun

Saturn

Jupiter
Mars

Moon

Mercury

FIGURE 4.2.7 The Copernican system.

Figure 4.2.8, along with the modern astronomical unit value and the orbital period (time of 
1 revolution around the sun).
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What prompted Copernicus to  examine the 
time-honored Ptolemaic system? One  primary reason 
was that putting Earth in motion around an immobile 
sun provided a much simpler and more elegant explana-
tion of retrograde motion. Imagine two horses  running 
at the same speed on a racetrack. Although they may 
be racing dead-even on the straightaway, the one on 
the inside lane will edge ahead on the curve. To the 
jockey on the inside horse, the outside horse appears 
to be going backward in spite of its forward motion. 
Now consider the six known planets as the horses, with 
Earth in the third lane from the inside. In the helio-
centric system, this phenomenon, in combination with 
the different speeds of the planets, produces the optical 
illusion of retrograde motion. Figure 4.2.9 displays the 
geometry of the situation for the planet Mars. Note that 
the reversals do not occur along exactly the same path, 
resulting in an S shape. This is so because the planetary 
orbits lie in slightly different planes.

Recall that the Ptolemaic system had been the 
paradigm, or standard model, of the planets for 1½ 
millennia. By replacing the first axiom (geocentricity) 
with a new one (heliocentricity), Copernicus pulled out 
the cornerstone on which the system of Ptolemy had 
been erected. Such an extreme change in an  axiomatic 
system and resultant model is called a paradigm shift. 
At the same time, we see that he retained the second 

axiom and continued to use circles to describe the paths of the planets. As we shall see, each 
planet actually travels in an elliptical path.

One problem with the Copernican system was that the concept of a moving Earth 
reintroduced the mystery of a lack of visible stellar parallax. The stars appeared to be per-
manently attached to some rigid unchanging latticework—an impossibility for close stars 
unless Earth was forever immobile. Copernicus claimed, correctly as it turned out, that the 
stars were too distant to exhibit parallax. Determining distances to celestial objects con-
tinues to be one of the prime challenges in astronomy. In fact, parallax caused by Earth’s 
motion is so subtle that even 200 years after Galileo first turned a telescope skyward, the 
first reliable stellar distance was still a mystery. Finally, in 1838, Friedrich Wilhelm Bessel 
determined a stellar parallax angle of a star. From this angle, we can then obtain a distance 
in the following manner.

 Example 2
Because Earth does, in fact, move in orbit around the sun, two pictures can be taken 
of a nearby star 6 months apart, and an angle of a right triangle can sometimes be 
inferred from the pictures by measuring the parallax shift of the star in question 
among the background stars. (Recall the analogous situation, discussed in the last 
section, created by extending your arm and siting your thumb against a more distant 
object with each eye separately. A picture is being taken by your brain from two 

FIGURE 4.2.9 Retrograde motion explained by the Copernican 
 system.
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vantage points, and each one displays your thumb differently among the 
background objects.) The actual angle that astronomers call stellar par-

allax is the angle p in Figure 4.2.10.

Earth

Earth (6 months later)

Sun
Star Background

Stars

a

r p

FIGURE 4.2.10 Finding the parallax angle.

The distance r to the star under consideration is quite large in comparison to 
the Earth–sun distance a, and therefore p is extremely small. For instance, the nearest 
star, Alpha Centauri, has a stellar parallax of only 0.76″, much less than the angle 
subtended by the thickness of a piece of paper held at arm’s length. Convenience 
thus dictates that we measure p by using seconds of arc. Therefore, we can use the 
small-angle formula from the last section to write

p a

r
=

206,265
.

Because a = 1 AU, we can isolate r in the above equation to get distance as a function 
of parallax:

r
p

=
206,265

.

This computes distance in terms of astronomical units and yields large, 
unwieldly values for r. Instead, astronomers define 1 parsec as the dis-
tance at which a star possesses a parallax of 1 second of arc. This forces 1 
parsec (abbreviated pc) to be equal to 206,265 AU. With these convenient 
units, we may determine the distance to a star in parsecs simply by inverting 
its stellar parallax, measured in arcseconds:

r
p

=
1

.

The above-mentioned Alpha Centauri, for example, is located at a distance

r = =1

0.76
1.31 pc.

Because 1 pc = 3.26 ly, this translates to 1.31(3.26) = 4.3 ly. The insertion of the 
Hubble Telescope into Earth’s orbit increased the number of stars with measurable 
parallax and so extended the utility of this once rather limited method. ♦

parsec The distance 
to an object at which 
the stellar parallax has a 
measure of 1 arcsecond 
(1″). It is equal to 3.26 
light-years (ly).

stellar parallax  
One-half of the angular 
displacement in the 
apparent position of a star 
when observed from points 
on Earth’s orbit that are 
separated by 180°.
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We pause at this point to observe that one of the driving forces behind the lifelong 
motivation of Copernicus was the further glorification of God. He felt that the establish-
ment of a simpler system for the universe was, in fact, bold evidence of a divine creation. 
It is interesting at this point to note that neither Ptolemy nor Copernicus made any defi-
nite claims in their defining works—the Almagest and De Revolutionibus—concerning the 
physical reality of the systems they set forth. Each of these books reveals a mathematical 
structure for simulating the planetary motions and making predictions, but does not address 
whether these structures, in truth, describe the nature and arrangement of celestial spheres. 
It is an example of a long-standing debate that continues today: Does every piece of math-
ematics have an existent representation somewhere in the universe, or is most of it simply 
the creation of the human mind? One person who was very much a realist—a believer that 
his mathematics provided an accurate description of a real situation—was born shortly after 
Copernicus died.

Few are the people who persevere in the face of constant tragedy to achieve signifi-
cant accomplishments, but Johannes Kepler (1571–1630) is an example of Shakespearean 
proportions. (See Figure 4.2.11.) Kepler was born into poverty in southwestern Germany. 
His father was a brutal man who disappeared entirely while Johannes was still quite young. 
Kepler’s mother was no jewel either. By his own account, she was “swarthy, gossiping, and 
quarrelsome, of a bad disposition.” Later in her life, she required a defense by her son in a 
3-year trial on charges of witchcraft. She barely escaped being burned at the stake.

FIGURE 4.2.11 Johannes Kepler on a Polish stamp.
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Kepler himself was a frail and sickly child whose life was fraught with health problems. 
His intellectual prowess at the local public school, however, led to young Johannes being 
sent to the seminary in 1584 and to the University of Tübingen 4 years later. It was during 
his time at this famous school that Kepler began to resonate with an energy and a curiosity 
to understand the universe. He became convinced that the world and its attendant mysteries 
were knowable in a form intricately woven in mathematics by the hand of God. He wrote:

Geometry existed before the Creation. It is co-eternal with the mind of God. . . . Geometry provided God with 
a model for the Creation. . . . Geometry is God Himself.
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At Tübingen, the astronomer Michael Maestlin privately introduced his 
eager star pupil to the principles of Copernicism. Although Kepler was reluctant 
to leave his theological studies, his immersion into mathematics and astronomy 
qualified him for a mathematics teaching position at Graz in Austria in 1594, 
which he accepted out of financial need. Six years later, he was hired as the assis-
tant to the Imperial Mathematician at the court of Emperor Rudolf II in Prague. 
Kepler’s first assignment was to analyze a large set of observational data of the 
planets and to determine, once and for all, the elusive orbit of Mars. It was during 
his 4-year effort to accomplish this task that he made two of the three great dis-
coveries later to be known as Kepler’s laws of planetary motion.

The path of nearby Mars had always invoked speculation, partly because 
it displayed a relatively large deviation from circular motion. From the data at 

Prague, Kepler determined a shape for Mars’s orbit that indicated it to be noncircular. 
Additionally, as both a mystic and a realist, Kepler had long felt that the sun played a key 
role in causing the movements of all the planets through some type of attraction. This firm 
belief, along with the approximate curve he had produced, prodded him into the even-
tual realization that Mars orbited the sun not along a circle but along another of the conic 
 sections—an ellipse. This startling conclusion is now known as Kepler’s first law:

The orbit of each planet is an ellipse with the sun at one focus.

Led by his intuition, Kepler had replaced one noble curve of geometry with another 
of equal standing. He had discovered a true law of nature and, in the process, had accom-
plished a most cherished goal. The significance of this event is hard to overestimate. Owen 
Gingerich, the renowned historian of astronomy at the Harvard-Smithsonian Institute for 
Astrophysics, said in Circle of the Gods: Copernicus, Kepler, and the Ellipse that

Kepler’s laws of 
planetary motion

1. The orbit of each planet 
is an ellipse, with the 
sun at one focus.

2. The line joining a planet 
and the sun sweeps out 
equal areas in equal 
amounts of time.

3. The square of the period 
of a planet’s revolution is 
proportional to the cube 
of its mean distance 
from the sun.

Center
Planet

Sun

F1 F2

Perihelion
P

A

c

Empty
Focus

Aphelion

FIGURE 4.2.12 Kepler’s first law.

As Newton later claimed, Kepler had guessed—but it surely was an inspired guess based on the latest 
observations of previously unavailable quality and quantity. The circles of the gods had finally failed.

Ellipses and their beautiful properties had been known since the days of 
Hipparchus. Any school child can draw one by simply taking up the slack with a 
pencil in a piece of string whose endpoints F

1
 and F

2
 have been fixed. One then 

keeps the string tight while tracing out a closed curve with the pencil. The result-
ing curve is called an ellipse, and each of the points F

1
 and F

2
 is called a focus. 

(See Figure 4.2.12.) Note that this implies that we can define an ellipse as the 
set of all points whose sum of distances from two fixed foci is constant (i.e., the 
length of the string).

ellipse The set of 
all points whose sum of 
distances from two fixed 
foci is constant.
focus One of the two 
fixed points inside an 
ellipse, from which the 
distances to any point on 
the ellipse total a constant 
value.
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 Example 3
The extent to which an ellipse deviates from being a true circle is measured 
by a parameter known as its eccentricity. (I’m sure you all know someone 
who deviates enough from normal to be labeled an eccentric.) The center 
of an ellipse is the midpoint of the line that goes through the two foci, 
known as the major axis. If c represents the distance from the center to 
either focus and a represents one-half the length of the major axis, then the 

eccentricity e is defined by the ratio e
c

a
= . Note immediately that it must 

be true that 0 ≤ e < 1 and also that the closer the foci are to each other, the 
smaller the values of c and e. An ellipse having e = 0 is a circle. On the other 
hand, values for e close to 1 are indicative of stretched out, cigar-shaped 
ellipses. Because all the planets travel in near-circular paths, their orbits 

have  relatively low eccentricity, and this contributed to the cosmic mystery for some 
time. (On the other hand, many comets, such as Halley’s comet, have quite elongated 
elliptical orbits around the sun, with eccentricities typically greater than 0.9.)

It turns out that eccentricity is more easily determined by using the distances P 
and A to the points in a planet’s orbit that are closest to the sun (labeled the  perihelion 
by Kepler) and farthest from the sun (aphelion). Considering Figure 4.2.12,  
we see that

e
c

a

c

a

A P

A P
= = =

−
+

2

2
.

The often-quoted figure of 150 million km for the distance from Earth to the sun is 
really the value of the parameter a, referred to as the mean distance. In reality, Earth 
achieves aphelion 152 million km from the sun and perihelion at 147 million km, 
yielding an eccentricity for our home planet’s orbit of

e =
−
+

= =
152 147

152 147

5

299
0.0167. ♦

Kepler was not finished with his contributions. In 1609, he published his results in 
a book called Astronomia Nova (The New Astronomy), which gives highly mathematical 
demonstrations for his claim of elliptical orbits. One famous result is now referred to as 
Kepler’s second law.

The line joining a planet and the sun sweeps out equal areas in equal 
amounts of time.

Most astronomers up to this point in history had always felt 
that the speed of each planet was uniform. (Ptolemy was a nota-
ble exception. He used varying speeds for his deferents.) Note how 
Kepler’s second law implies that the speed of any planet is continu-
ously changing. In Figure 4.2.13, each of the shaded regions has the 
same area, and each of the arclengths AB, CD, and EF are traveled 
by the planet in the same amount of time. The planet travels slowest 
along the path AB because that has the shortest of the three lengths; 
it goes faster along CD and faster still along EF. I think you can 

eccentricity Numerical 
value between 0 and 1 
indicating the extent to 
which an ellipse departs 
from a circle.
perihelion The point 
in the orbit of an object 
in our solar system where 
the object is at a minimum 
distance from the sun.
aphelion The point 
in the orbit of an object 
in our solar system where 
the object is at a maximum 
distance from the sun.

D C

B

ASun
F

E

FIGURE 4.2.13 Kepler’s second law.
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 imagine the body accelerating from aphelion to perihelion, achieving a maximum speed 
there, and then slowing down after it rounds the curve and returns to aphelion, where it 
achieves its minimum speed before starting the whole trip over again.

Kepler was not quite done. In his final hurrah, he published Harmonice Mundi (The 
Harmony of the World) in 1619, a grand monument to the labors of his life in which he 
attempted to unify astronomy, astrology, music, and geometry in the ultimate explanation 
of the universe. Although most of it was fantastical musings, one final major planetary rule, 
Kepler’s third law, was revealed.

The square of the period of a planet’s revolution is proportional to the 
cube of its mean distance from the sun.

In equation form, this is written.

p ka= ,2 3

where p is the period and a represents the same value as in our definition of eccentricity—
one-half the length of the major axis of the planet’s orbit. If we choose years for our time 
measurement and astronomical units for distance, our constant of proportionality has a 
convenient value of 1. So we get simply

p a= .2 3

 Example 4
Consulting Figure 4.2.8, we find that the mean distance a of Mercury from the sun is 
0.387 AU. Thus,

p p( )= = ⇒ = ≈0.387 0.0580 0.0580 0.24 yr2 3 .

This value matches up with that in the table. Also, because it is true that p = a3/2 
and a = p3/2, note that we can now write the Copernican velocity ν as a function of a.

v
a

p

a

a
a

2 2 2
AU/yr.

3

2

π π π= = =

Recall that this formula is based on the assumptions of the planet moving at a 
constant speed in a circular motion. Because Kepler revealed both of these assump-
tions to be false, the Copernican velocity now becomes simply a good estimate of 
the average velocity of the planet. If we wish to convert the units to kilometers per 
second, recall that we need to multiply by the conversion factor of 4.76.

v
a a

π π)(= =
2

4.76
9.52

km/s  ♦.
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With this symphony of voices man can play through the eternity of time in less than an hour, and can taste in 
small measure the delight of God, the Supreme Artist. . . . I yield freely to the sacred frenzy. . . the die is cast, 
and I am writing the book—to be read either now or by posterity, it matters not.

So the penetrating insight and imagination of Johannes Kepler had arrived at three of 
the most famous results in the search to understand our universe. In so doing, he provided 
substantial momentum to the revolution begun by Copernicus. Kepler himself, never one 
to shy away from the dramatic statement, proclaimed in The Harmonies of the World that
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Note: Answers should be given using the appropriate number of significant digits (cf. Appendix).

1. What student of Plato used lunar eclipses to demonstrate that Earth was a sphere?

2. The epicycles and deferents used by Ptolemy in his model accounted for what type of unusual 
motion displayed by the planets?

3. Approximately how long was the Ptolemaic system used as a model for our planetary system?

4. What major paradigm shift was achieved by Nicholas Copernicus in his book De Revolutionibus?

5. Kepler correctly postulated in his first law that each planet travels around the sun according to 
what type of orbital curve? What position does the sun occupy relative to this curve?

6. What is Kepler’s second law?

Use the following table for computing the Copernican velocities (in kilometers per second) of 
the following four planets.

Planet Mean Distance (AU) Period (yr)
Venus 0.723 0.62
Earth 1.00 1.00
Jupiter 5.20 11.87
Saturn 9.54 29.46

7.  Earth

8.  Venus

9.  Jupiter

10. Saturn

11. Altair is the brightest star in the constellation Aquila. If it has a parallax of 0.20″, what is its 
distance in parsecs? In light-years? In astronomical units?

12. The brightest star in the sky is Sirius, and it is easily located in the early evenings of January 
and February. If it has a parallax of 0.38″, what is its distance in parsecs? In light-years? In 
astronomical units?

13. If a star is located 23 ly from Earth, what is its parallax angle?

14. If a star is located 48.5 ly from Earth, what is its parallax angle?

15. How many kilometers equal the distance of 1 pc?

16. The Andromeda galaxy is about 2 million ly from Earth. Do you think this distance estimate was 
found by the parallax method? Explain.

17. Take a piece of string 8 inches (in.) long, and use it to draw three ellipses. First, fix the endpoints 
of the string 6 in. apart, and call those points A and B. Take up the slack in the string with your 

Exercise Set 4.2
Name _________________

202 Chapter 4 Astronomy and the Methods of Science

9780763781163_CH04_Pass2.indd   202 07/06/14   1:16 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION



pencil and, keeping the string tight, let it guide your hand as you sketch an ellipse. Repeat this 
procedure with A and B only 4 in. apart and then again with a 1-in. spread. Which ellipse most 
closely resembles a circle? Which one has the smallest eccentricity? The greatest? Which would 
be most likely to represent the path of a planet orbiting the sun?

Use the following table for computing the eccentricities of the following four planets.

Planet Perihelion (AU) Aphelion (AU)
Mercury 0.3060 0.4670
Venus 0.7184 0.7282
Mars 1.381 1.666
Jupiter 4.951 5.455

18. Mercury

19. Venus

20. Mars

21. Jupiter

22. Neptune has an orbital eccentricity of 0.0100. If its aphelion distance from the sun is 30.4 AU, 
determine its perihelion distance.

23. One of the reasons Pluto lost its classification as a planet is that its orbital eccentricity of 0.2484 
is larger than that of all the remaining eight planets. (Pluto is now called a dwarf planet.) If its 
aphelion distance from the sun is 49.2 AU, determine its perihelion distance. Compare these 
values to those of Neptune in the previous exercise. What conclusion do you reach?

24. Many comets orbit the sun in a highly eccentric elliptical path, revealing themselves only 
periodically to observation from Earth. Comet Halley has perihelion and aphelion distances of 
0.587 and 35.3 AU, respectively. Find the eccentricity of its orbit.

25. Comet Encke has a perihelion distance of 0.332 AU and an eccentricity of 0.8499. Find its 
aphelion distance.

26. Explain why we may conclude from Kepler’s second law that the speed of each planet varies, 
reaching a maximum at perihelion and a minimum at aphelion.

27. Assuming that the mass of a moon revolving around a planet is significantly less than that of the 
planet, the moon’s orbital path is an ellipse with the center of the planet at one focus. In this  
case, the point of greatest distance is known as the apogee, and the point of least distance is 
called the perigee, usually measured from the center of the planet to the center of its moon. The 

eccentricity of the orbit is again given by e
A P

A P
=

−
+

, where A and P are the apogee and perigee 

distances, respectively. In Example 5 from the first section, the distances to perigee and apogee of 

our moon were 363,000 and 405,000 km, respectively. What is the eccentricity of our  
moon’s orbit?
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28. Kepler’s laws of planetary motion apply to any body in our solar system—all the asteroids, 
comets, and planets discovered since Kepler’s time. Use the third law to fill in the blanks below. 
Do the values for Jupiter and Saturn match up with Figure 4.2.8?

Planet Mean Distance (AU) Period (yr)
Jupiter 5.20
Saturn 29.5
Uranus 19.19
Neptune 164.8
Pluto 39.44
Comet Halley 76.0
Comet Encke 2.21

29. Express the Copernican velocity (in kilometers per second) as a function of the period p (yr) of a 
planet. Use this function and the periods computed in the previous problem to find the velocities 
for Uranus, Neptune, and the dwarf planet Pluto.

30. In Figure 4.2.12, we can see that the sum of the distances to aphelion and perihelion must be  
equal to twice the mean distance. Symbolically, 2a = A + P. If the mean distance to Uranus is 
19.2 AU and the perihelion distance is 18.3 AU, find the aphelion distance and the eccentricity  
of its orbit.

31. The comet Hyakutake was sighted for the first time in January 1996 and was bright enough in the 
evening sky by March to be seen with the naked eye. In fact, this brightness caused it to  
receive a great deal of media attention even though about a dozen comets are sighted each  
year. Its period was determined to be about 9,100 yr. Use Kepler’s third law to find its mean  
solar distance.

32. Perihelion distance P to Comet Hyakutake was observed to be about 0.20 AU. Use the mean 
distance a computed in the previous exercise to find the aphelion distance. (Hint: From 
Exercise 30, we know that 2a = A + P.)

33. Although each planet varies in brightness over time as a result of its changing distance from Earth, 
this is a phenomenon that cannot be perceived by the naked eye, and so pretelescopic astronomers 
were unaware of it. Modern telescopes reveal that the angular diameters of Mercury range from 
a minimum of 4.7″ to a maximum of 13″. Given that Mercury has a linear diameter of 4,900 km 
and approximating its orbit by a circle, we can estimate the (mean) diameter of the orbit. Find the 
minimum distance r

min
 (corresponding to 13″) and the maximum distance r

max
 (corresponding to 

4.7″) from Earth to Mercury as in the accompanying figure, and subtract them to get the orbital 

diameter. (Recall that the angular the diameter α and distance r are related by 
r

α
=

206,265

4,900
 

when α is measured in arcseconds.)
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34. The angular diameter of Mars ranges from a minimum of 4″ to a maximum of 24″. If Mars has a 
linear diameter of 6,800 km, estimate the mean diameter of its orbit.

35. Venus presents a disk of 10″ at full phase up to 60″ at crescent phase. If it has a linear diameter of 
12,000 km, estimate the mean orbital diameter of Venus.

36. The minimum and maximum angular diameters of Jupiter are about 30″ and 50″, respectively. If 
Jupiter has a linear diameter of 144,000 km, estimate the mean orbital diameter.

37. The Titius–Bode rule is an algorithm for producing a sequence of numbers that eerily coincide 
with the average distances from the sun of the first seven planets (but not for Neptune). The 
sequence is generated by first writing 0, 3, 6, 12, 24, and so on, doubling each successive number. 
Next, 4 is added to each number, and then the result is divided by 10. This gives a predicted 
distance in astronomical units that matches up with the actual distance with remarkable accuracy. 
The dwarf planet Pluto and the asteroids are also included in the following list.

Planet Titius–Bode Prediction (AU) Actual (AU)
Mercury (0 + 4)/10 = 0.4 0.387
Venus (3 + 4)/10 = 0.7 0.723
Earth (6 + 4)/10 = 1.0 1
Mars (12 + 4)/10 = 1.6 1.524
Asteroid belt (24 + 4)/10 = 2.8 2.77 average
Jupiter (48 + 4)/10 = 5.2 5.203
Saturn (96 + 4)/10 = 10.0 9.539
Uranus (192 + 4)/10 = 19.6 19.18
Neptune 30.06
Pluto (384 + 4)/10 = 38.8 39.44

Earth Earth

Earth

Sun

4.7˝

4,9004,900

13˝

rmin

rmin

rmax

rmax

Mercury
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Nobody really knows whether these two lists match so closely by coincidence or if there is really 
a physical reason for the connection. Evidence against would be that Neptune does not follow 
suit. However, it is worth noting that the rule was first devised by Johann Titius in 1766 before 
the discovery of either the asteroid belt or Uranus. (Jupiter’s tremendous gravity probably kept 
the thousand or so asteroids occupying the orbit between Mars and Jupiter from coalescing into a 
planet.) If you were to suggest a solar distance to look for another planet, what would it be? If you 
use Kepler’s third law, what would be the period of this planet?

38. For satellites in orbit close to Earth’s surface, information is often given in terms of heights above 

the surface. One can find eccentricity by using e
A P

A P
=

−
+

 by remembering to add Earth’s radius 

to determine the apogee and perigee. Sputnik I, orbited by the Russians in October 1957, had 583 
and 132 mi above Earth’s surface as the highest and lowest points of its elliptical orbit. What is 
the eccentricity of this orbit? (Use 4,000 mi as the radius of Earth.)

39. This graph approximately represents the elongation angles of Mercury as a function of the day of 
the year. Note that the values of the local maxima and minima differ. This is so because the orbit 
of Mercury has an eccentricity of 0.2056, the largest of the eight planets. Mercury is 0.47 AU 
from the sun at aphelion and 0.31 AU at perihelion. If Mercury happened to be at aphelion 
coincidentally with maximum elongation as seen from Earth, what would be the elongation angle? 
What would be the angle at perihelion? (See Section 4.1, Exercise 28.)

90˚

90˚

Jan Sep NovMar JulMay

40. Kepler needed to know the formula for the area of an ellipse when studying the data that led to his 
second law. In his book Calculus Gems, George F. Simmons points out that a procedure similar to 
that of Kepler was used by his contemporary Bonaventura Cavalieri (1598–1647). When 
centered at the origin of a Cartesian coordinate system, an ellipse with semi-axes a and b and a 
circle of radius a have the respective equations

x

a

y

b
x y+ = + =1 and 1.

2

2

2

2
2 2

Solving both of these equations for y, we obtain

y
b

a
a x y a x= ± − = ± −and .2 2 2 2
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So we see that the y-coordinate on any point of the ellipse is b/a times the corresponding 
y-coordinate of the point on the circle having the same x-coordinate.

a

b

a

x2 1y2 5a2

x2

a2
y2

b2 1  5 1

If we think of the areas as being approximated by a set of thin rectangles, then each rectangle 
used to compute the area of the ellipse has length b/a times the corresponding rectangle used to 
compute the area of the circle. Hence

b

a

b

a
a abπ π)()(= = =Area of ellipse area of circle .2

What is the area of the ellipse with semi-axes of lengths 8 and 12? What is the area of an ellipse 
with semi-axes of lengths 15 and 28?

41. If the orbit of a planet has eccentricity e and mean distance (major semi-axis length) a, then the 

length of the minor semi-axis is b a e= −1 2 . Use the formula in the previous excercise to find an 
expression for the area of the ellipse in terms of a and e. For orbits with low eccentricity, does this 
differ much from the area of a circle of radius a?
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4.3  The Defense of Copernicanism

On February 17, 1600, after eight years of imprisonment, the Dominican monk Giordano 
Bruno (b. 1548) was burned at the stake in Rome for heresy, a victim of the Roman 
Inquisition. Although he was charged with several other religious offenses, his advocacy of 
Copernicanism has often been used to proclaim Bruno the first martyr of the new astronomy. 
His execution and the subsequent persecution of Galileo Galilei have been commonly cited 
as prime examples of the stubborn resistance of organized religion to the noble advance of 
science. A closer examination, however, reveals a more balanced perspective.

Bruno was not a scientist; he endorsed the heliocentric theory only as one of many 
arguments to be used in his efforts to reconcile Protestants and Catholics in a time of vio-
lent religious warfare. He had a poor technical understanding of De Revolutionibus, yet he 
seized its ideas as a grand philosophical metaphor. The important thing to Bruno was that 
Earth had been shown not to be at the center of the universe. This centerless universe not 
only must be of infinite extent, but also must contain an infinite number of other worlds 
because Earth now had no claim to uniqueness.

Unfortunately, the condemnation of Bruno set the stage for the persecution of 
Galileo Galilei (1564–1642), one of the first true scientists and the valiant champion of 
Copernicanism. (See Figure 4.3.1.) His goals in life were completely different. Galileo 
vigorously supported the heliocentric theory based solely on years of scientific investiga-
tion and attached to it no religious implications. Bruno’s shadowy rhetorical arguments 
lacked what Galileo accrued in abundance—conclusions based on solid experimental evi-
dence. Historians of science credit Galileo and his contemporary, Réné Déscartes, with 
the  reformulation of the composition of scientific activity. By molding a new methodol-
ogy of experimentation and analysis, they forged a permanent bond between science and 
mathematics, one begun by Copernicus and Kepler. Galileo, in particular, insisted that 

In medicine it was sufficient to quote Galen, as to quote Aristotle in practically everything else. For Galileo, to 
quote was not sufficient; he turned to mathematics.

—George Polya

FIGURE 4.3.1 Galileo on an Italian banknote.
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 mathematical relationships, derived from experimentation and embodied by equations and 
functions, were the cornerstone to any theory worth postulating. His work paved the way 
for the astonishing successes of modern science in the last three centuries.

Prior to the seventeenth century, the approach to understanding nature had never 
 varied much from that taken by the ancient Aristotle and his disciples—one in which expla-
nations for natural phenomena were qualitative rather than quantitative. Actual experimen-
tation either to initiate exploration of a new process or to corroborate the predictions of an 
existing theory was never seriously done. Aristotle claimed, for example, that a body twice 
as heavy as a second body must fall twice as fast, a conjecture no one ever bothered to check 
prior to Galileo.

By 1609, Galileo had been teaching mathematics at the University of Padua for 
18 years. During this time, his research of the properties of pendulums and his important 
discoveries in mechanics—the physics of motion—had already earned him a glowing repu-
tation. From his experiments, he formulated two laws giving the velocity and distance of a 
dropped object as functions of time alone, regardless of the size or mass of the object.

Strictly speaking, the velocity of a moving object is specified by both the speed at 
which it is moving and the direction of movement. Going 30 miles per hour (mi/h) east 

on Main Street is a different velocity than going 30 mi/h west on Main Street. 
Acceleration of a moving object measures how the velocity changes per unit of 
time. This can be a change in speed, a change in direction, or both. If a moving 
object is subject to no acceleration, then the velocity is a constant value V, and 
the distance traveled in time T is just the product VT. Let v = V be the horizontal 
line in the coordinate system on the left in Figure 4.3.2. Then the distance trav-
eled in time T is equal to the area of the rectangle under that line and over the  
interval [0, T].

V

T
t

Area = VTv

T
t

v
Area =     gT21

2
v = gt

gT

FIGURE 4.3.2 Distances traveled by a moving object can be represented as areas. The area on the left corresponds to an object moving at 
 constant speed ν = V. The area on the right corresponds to an object moving at speed ν = gt.

velocity The rate of 
change of position of a 
moving body, i.e., its speed 
and its direction of motion.
acceleration Rate 
of change of velocity with 
respect to time. It has both 
a numerical value and a 
direction.

Galileo observed that falling bodies gain speed as they fall. He speculated that the 
acceleration of a body dropped from rest was constant in both numerical value and direc-
tion (toward the center of Earth). He then experimented to verify this relationship by rolling 
balls down inclined planes—a related phenomenon of motion that facilitated the necessary 
measurements. Today, we represent this constant by the letter g for acceleration due to grav-
ity near the surface of Earth (or whatever planet where you may be). If v is the velocity of 
a dropped object after a time t from the moment of release, then

v gt= .

The graph of this linear function is shown on the coordinate system on the right in 
Figure 4.3.2. Because the velocity is continuously changing, we cannot just multiply a 
velocity by a time to obtain a distance. But notice that after a specific elapsed time T, the 
velocity is v = gT. By again equating the distance d traveled as the area under the curve as 

2094.3 The Defense of Copernicanism

9780763781163_CH04_Pass2.indd   209 07/06/14   1:16 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION



before, we compute d as the area gT
1

2
2  of the right triangle with legs T and gT. Writing d 

as function of any arbitrary time t, we have

d gt=
1

2
.2

These two functions give the velocity and distance of a dropped object as a function of 
time after release near the surface of any planet (neglecting the effects of air resistance). 
Of course, the constant g (sometimes referred to simply as surface gravity) depends on the 
planet. A complete list of values is given in Figure 4.3.3.

3

2

1
0
t (s) d (m)w (m/s)

4

29.4

19.6

9.8
0

39.2

44.1

19.6

4.9
0

78.4

FIGURE 4.3.4 Velocity and distance of a falling object. ♦

FIGURE 4.3.3 Acceleration due to gravity near the surfaces of the eight planets plus Pluto.

Planet Acceleration g (m/s2)
Mercury 3.8
Venus 8.9
Earth 9.8
Mars 3.7
Jupiter 24.9
Saturn 10.4
Uranus 8.8
Neptune 12.0
Pluto 0.7

 Example 1
The value of g for Earth has been determined to be about 9.8 meters per second (m/s) 
every second. (These units are abbreviated as m/s2.) If a baseball takes 4 s to drop 
from the top of a building, how tall is the building, and how fast is the ball traveling 
when it hits the ground? (This is referred to as the impact velocity.)

 Solution
The ball will have an impact velocity directed straight down of ν = 9.8(4) = 39.2 m/s. 
The height of the building must be equal to the distance traveled by the ball:  
d = ½(9.8)(4)2 = 78.4 m. Note the intermediate values for ν and d in Figure 4.3.4.
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It is important to note that neither of Galileo’s functions for velocity or 
distance incorporate the mass of the falling body. The mass of an object is the 
measure of the amount of matter of which it is composed. This value never varies 
with respect to the location of the object—it is the same on Earth, on the moon, 
or in the vacuum of space. Mass is measured in grams (g) in the metric system. 
One kilogram (1 kg) is 1,000 g.

We must be careful to never confuse mass with the separate concept of 
weight. An object’s weight is the force with which it is attracted to the body on 
which it is resting. You weigh less on the moon, for example, because it attracts 
you with less force than Earth does. Force (to be discussed further in the next 
section) is measured using pounds in the English system or newtons in the metric 
system. One pound is the equivalent of about 4.45 newtons (N). One newton is 
defined as the amount of force required to give an acceleration of 1 m/s2 to a mass 

of 1 kg. Because gravity on the surface of Earth is 9.8 m/s2, it gives a weight (force) of 9.8 
N to any object having a mass of 1 kg, a weight of 19.6 N to a mass of 2 kg, and so on. In 
general, we can write the relationship between the mass m and weight W of any object on a 
planet with surface gravity constant g as

W mg= .

 Example 2
If you weigh 160 lb on Earth, what is your mass? What would your weight be on Mars?

 Solution
Because mass is almost always expressed with metric units, we first determine 
your metric weight to be (160 lb)(4.45 N/lb) = 712 N. We substitute this for  
W in W = m(9.8) to obtain

m

m

)(=

= =

712 9.8

712

9.8
72.7kg.

(Note that this says that a 160-lb object has a mass of 72.7 kg. Pounds are often 
mistakenly used as units of mass with a so-called conversion factor of 2.2 lb/kg. 
See Exercise 10.)

Your mass, of course, remains the same everywhere (assuming you’ve laid off 
the pasta), but the acceleration due to gravity on the smaller Mars is 3.7 m/s2. Thus, 
your weight there would be W = mg = 72.7(3.7) = 269.0 N. Converting back to English 
units, we divide 269.0 N by 4.45 N/lb to get the equivalent weight of 60.4 lb. ♦

Because the surface gravity on Mars exerts just 
3.7

9.8
 of the pull that it exerts on Earth, we 

also could have found your Martian weight in the above example by simply multiplying: 





 =

3.7

9.8
160 60.4 lb. In general, if your weight is W

E
 on Earth and W

P
 on planet P with sur-

face gravitational acceleration g, then

mass Property of an 
object that is a measure of 
the amount of matter in the 
object. It can be thought of 
as a measure of its inertia.
grams The basic 
measure of mass in the 
metric system.
kilogram 1,000 grams.
weight Amount of force 
that a body exerts on the 
surface of a planet or moon 
as a result of gravity.
newton Unit of force in 
the metric system.
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 Example 3
Garfield weighs 28 lb. What would he weigh on Venus? On Jupiter?

 Solution
Consulting Figure 4.3.3, we see that Garfield would weigh

W )(= 



 =

8.9

9.8
28 25 lbon VenusVenus

and

W )(= 



 =

24.9

9.8
28 71 lbon Jupiter.Jupiter  ♦

As significant as his achievements were in the field of physics, Galileo acquired his 
greatest fame (and got into the most trouble) for his defense of the Copernican system. At 
the stately age of 45, his rather orderly life as a university professor took a dramatic turn 
when he learned of a wondrous new invention, the telescope. Immediately, he constructed 
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. . . we certainly see the surface of the Moon to be not smooth, even, and perfectly spherical, as the great crowd 
of philosophers have believed about this and other heavenly bodies, but, on the contrary, to be uneven, rough, and 
crowded with depressions and bulges. And it is like the face of the Earth itself. . . .

one of his own and began a systematic study of the night skies, which was the first use of 
this scientific instrument in astronomy. The impact was dramatic. Everything in the heav-
ens upon which Galileo turned his scope was being observed for the first time. In 1610, 
Galileo published a book of his studies, Sidereus Nuncius, which rocked the scientific and 
religious worlds. As a title, he wrote

ASTRONOMICAL MESSAGE
Containing and Explaining Observations Recently Made,

With the Benefit of a New Spyglass, About the
Face of the Moon, the Milky Way, and Nebulous

Stars, about Innumerable Fixed Stars and also Four
Planets hitherto never seen, and named

MEDICEAN STARS

Galileo continued to give more detailed descriptions of these findings, two of which 
are of particular interest to us here. Early in the book he commented on the craggy surface 
of the moon:

This description flew in the face of the standard Aristotelean view that all the heav-
enly bodies must, by nature and God, be perfectly round and smooth. To Galileo, the moon 
offered convincing evidence that Earth was not unique but rather just one of the collection of 
rocky orbs that circled the sun. His newly discovered objects supported that notion as well. 
On January 7, 1610, he had noticed three peculiar stars along a straight line through Jupiter, 
two near to the planet on the east and one on the west. When he looked again the next night, 
he noticed the same three stars but in a different arrangement. Intrigued, he began making 
nightly sketches of this mysterious behavior and soon realized from their varying patterns 
that these were not stars at all, but four new bodies (he later sighted a fourth) in orbit around 
Jupiter. This conclusion was a stunning discovery, for it proved the existence of a second 
center of motion, thereby providing a disclaimer to Earth’s special status in that role. This 
belief was falsified by the finding of a planet that clearly retained its satellites as it traveled 
through space.

Galileo had privately long believed in the heliocentric theory, but now, as the evi-
dence piled up, he became a fervent torchbearer for its validity. Any lingering doubts were 
forever banished when he turned his telescope on Venus and observed that the planet went 
through a full series of phases just as our own moon does each month. This is possible in 
a Copernican scheme, because Venus would appear more than half-illuminated (called a 
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 gibbous phase) when it was farther from us than the sun. It is impossible if 
Venus is riding on an epicycle between the sun and Earth, because most of the 
side illuminated by the sun would always face away from Earth, revealing only 
a crescent phase. (See Figure 4.3.5.) It dealt the Ptolemaic system another 
shattering blow.

gibbous A phase of an 
illuminated body in which 
more than one-half of the 
illuminated side is visible 
from Earth.
crescent A phase 
of an illuminated body in 
which less than one-half 
of the illuminated side is 
visible from Earth.

Earth

(a) (b)

Gibbous Gibbous

CrescentCrescent

Earth

FIGURE 4.3.5 The phases of Venus as they would appear in (a) the Ptolemaic  system and (b) the Copernican system.

 Example 4
We must stop for a moment and consider the logic involved with using these observa-
tions in support of a particular planetary system. Galileo offered them as “proof ” of 
the Copernican model. But is this a valid conclusion? An analogous situation would 
be the following syllogism.

Fact: If a car is a Porsche, then it is fast.
Hypothesis: Sabrina owns a Porsche.
Conclusion: Therefore, Sabrina owns a fast car.

In other words, being fast is a necessary consequence of being a Porsche. Is the 
reverse true, however? Is being fast sufficient to ensure being a Porsche?

Hypothesis: Rusty owns a fast car.
Conclusion(?): Therefore, Rusty owns a Porsche.

Any student of logic (and cars) will tell you that this is a false conclusion. 
A logician would say that the converse to a given true statement need not 
also be true. The converse to a statement such as “if P, then Q” is “if Q, then 
P.” The converse to our above fact is false:

Converse: If a car is fast, then it is a Porsche.

For our present purposes, we are concerned with the validity of a planetary model. 
So we examine this statement:

Fact:  If the model is heliocentric, then Venus will show many phases.

Galileo has observed the phases of Venus. Can he justifiably conclude that the system 
is heliocentric? No, he cannot. The converse to this fact is not true. Just as other types 

converse For the 
conditional statement “if P, 
then Q,” the converse is “if 
Q, then P.” Its truth value 
is not related to that of the 
original statement.
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of cars may also be fast, there were other postulated schemes for the plane-
tary structure that also predicted Venusian phases.

On the other hand, the contrapositive of a given fact must always 
be true. The contrapositive of the statement “if P, then Q” is “if not Q, then 
not P.” In the above example, this would take the following form.

 Contrapositive:  If a car is not fast, then it is not a Porsche.

Galileo was quite correct in using the phases of Venus to eliminate the 
Ptolemaic system as a candidate, for it is the contrapositive of this true 
statement:

 Fact:  If the system is Ptolemaic, then Venus cannot show many 
phases. ♦

Hermann Weyl, the famous twentieth-century mathematician and physicist, once said, 
“Logic is the hygiene the mathematician practices to keep his ideas healthy and strong.” 
Galileo was much too good a mathematician to not realize that his observations did not 
allow him to definitively conclude that Earth moves around a centralized sun; yet he was 
convinced this was the case. He was using what is now referred to as the hypothetico- 

deductive method—one in which a given hypothesis gains steadily increasing acceptance 
as it continues to pass a sequence of tests. Although Galileo was convinced of the truth of 
Copernicanism, the science of today usually does not profess to discover such absolutes. 
The phrase current model is the typical claim, that is, a mathematical framework that can be 
used for predictive purposes. A model is pronounced good if it gives accurate predictions. 
(Recall that neither Ptolemy nor Copernicus made any claims in their main astronomical 
works that their models represented the real structure of the cosmos.) The irony of Galileo’s 
celebrated troubles with the Catholic Church is that it made only one substantial request 
that he declare his beliefs to be just that—a hypothetical model, convenient for use by math-
ematicians but not a description of physical reality. In 1616, the powerful Cardinal Roberto 
Bellarmino evaluated one of Galileo’s analytical treatises in a letter to a friend:

For to say that assuming the earth moves and the sun stands still saves all the appearances better than 
eccentrics and epicycles is to speak well. This has no danger in it, and it suffices for mathematicians.

But to wish to affirm that the sun is really fixed in the center of the heavens and that the earth is situated 
in the third sphere and revolves very swiftly around the sun is a very dangerous thing, not only by irritating all the 
theologians and scholastic philosophers, but also by injuring our holy faith and making the sacred Scripture false.

contrapositive For 
the conditional statement 
“if P, then Q,” the 
contrapositive is “if not Q, 
then not P.” Its truth value 
is the same as that of the 
original statement.
hypothetico-
deductive 
method A method of 
inquiry in which a theory 
gains increasing acceptance 
as more evidence for its 
validity is observed. This is 
not the same as a deductive 
method, by which a 
definitive conclusion is 
reached.

This passage is indicative of the sympathies accorded Galileo by many leading theo-
logians of the day, including Cardinal Maffeo Barberini, with whom he had many friendly 
and enlightening cosmological discussions. However, as in Example 3, they had legitimate 
doubts stemming from the potential fallacies in Galileo’s logic. His results were simply not 
conclusive enough to force a reinterpretation of a centuries-old belief system. The stubborn 
Galileo did not agree. Even though he was a devout Roman Catholic, he was always fond of 
saying, “The Bible teaches how to go to heaven, not how the heavens go.”

Unlike his shy predecessor Copernicus, Galileo was an egotistical and, at times, abra-
sive individual who loved to be at the center of controversy. As evidenced by the fate of 

2154.3 The Defense of Copernicanism

9780763781163_CH04_Pass2.indd   215 07/06/14   1:16 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION



The author claims to discuss a mathematical hypothesis, but he gives it physical reality, which mathematicians 
never do. Moreover, if defendant had not adhered firmly to the Copernican opinion and believed it physically 
true, he would not have fought for it with such asperity, nor . . . would he have held up to ridicule those who 
maintain the accepted opinion, and as if they were dumb mooncalves [hebetes et pene stolidos] described them 
as hardly deserving to be called human beings.

Indeed, if he had attacked some individual thinker for his inadequate arguments in favor of the 
stability of the Earth, we might still put a favorable construction on his text; but, as he holds all to be 
mental pygmies [homunciones] who are not Pythagorean or Copernican, it is clear enough what he has in 
mind. . . .

FIGURE 4.3.6 Frontispiece and first page of the Dialogue.
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Bruno, however, the  religious 
upheavals of the 1600s had 
created a tense atmosphere 
for the debate of the heliocen-
tric theory in Italy. In 1616, 
De Revolutionibus was placed 
on the Index of Forbidden 
Books, and Galileo was for-
mally warned by Cardinal 
Bellarmino against publicly 
defending the Copernican 
system. However, in 1623, 
his friend Cardinal Barberini 
was elected Pope Urban VIII. 
Filled with an increased sense 
of security, the headstrong 
Galileo overplayed his hand 
in 1632 when he published his 
most famous work, Dialogue 

Concerning the Two Chief World Systems. (See Figure 4.3.6.) Although it was billed by the 
author as an objective debate of the Copernican and Ptolemaic models, even the most casual 
reader realized the Dialogue to be an extensive argument in favor of Copericanism. Even 

worse, the enemies of Galileo seized upon the fact that one of the main charac-
ters, Simplicio, whom every reader knew also meant “simpleton,” had essentially 
espoused the opinions of the pope  himself. Such clear disrespect forced the hand 
of Pope Urban VIII, and in February 1633, Galileo was summoned to Rome at the 
age of 70 to face the Inquisition. Fourth among the stated charges listed against 
him was the following:

Dialogue The book 
written by Galileo, that 
defends the Copernican 
system through an 
extended conversation 
among three men.

This leads us to believe that the trial was probably motivated primarily by the desire 
for public submission by the arrogant Galileo. Extreme punishment was not necessary, and 
Galileo probably understood from the beginning that a complete admission of his error was 
the inevitable conclusion. At the final point in the proceedings, the head of the inquisitors 
refrained from putting specific passages of the Dialogue, one at a time, to Galileo and 
demanding a refutation. This could have forced the issue of heresy back to the forefront, 
leading to a far more dangerous situation and a potentially crueler punishment. As it was, 
the next day his sentence read, in part,
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We pronounce . . . the said Galileo . . . have rendered yourself in the judgment of this Holy Office vehemently 
suspected of heresy, namely, of having believed and held the doctrine—which is false and contrary to the sacred 
and divine Scriptures—that the Sun is the center of the world and does not move from east to west and that 
the Earth moves and is not the center of the world. . . .

And, in order that this your grave and pernicious error and transgression may not altogether go 
unpunished . . . we ordain that the book of the “Dialogue of Galileo Galilei” be prohibited by public edict.

We condemn you to the formal prison of this Holy Office during our pleasure. . . .

According to historic record, the segno was revealed in a mode the Illuminati called lingua pura.

The pure language?

Yes.

Mathematics?

That’s my guess. Galileo was a scientist after all, and he was writing for scientists. Math would be a 
logical language in which to lay out the clue.

—Dan Brown, Angels & Demons

FIGURE 4.3.7 Statue of Galileo in Florence, Italy.
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Upon hearing his sentence, Galileo dutifully knelt before the 10 judges and recanted 
his sin of promoting the Copernican system. One intriguing legend among the tales of sci-
entific lore holds that, on rising from this humbling experience, the feisty old man flashed 
his still unbroken spirit by whispering, “Eppur si muove” (“Still it moves”), meaning, of 
course, Earth. It seems doubtful that one would take such a risk under the circumstances, but 
it certainly would have been in character for Italy’s most famous pioneer of mathematics, 
physics, and astronomy.
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1. A ball dropped from a tall building takes 6.0 s to reach the ground (on Earth). What is the impact 
velocity of the ball, and how tall is the building?

2. A B1 bomber drops a bomb from a height of 6,000 m. Neglecting the effects of air resistance, how 
long does it take for the bomb to hit the ground, and what is its impact velocity?

3. Using Galileo’s formulas for the velocity and distance of a dropped object on Earth, write the 
impact velocity ν of the object as a function of the distance d it drops. (Hint: Solve the distance 
formula for t in terms of d, and substitute into the velocity formula.) What is the impact velocity 
of an object dropped from 100, 500, 1,000, and 4,000 m? Is this an increasing function?

Use these values to answer Exercises 4–9.

Acceleration g (m/s2)
Mercury 3.8
Venus 8.9
Earth 9.8
Mars 3.7
Jupiter 24.9
Saturn 10.4
Uranus 8.8
Neptune 12.0
Pluto 0.7
Moon 1.6

4. In 10 s, how fast would an object dropped from rest be traveling on Venus? Mars? Neptune? How 
far would it drop on those three planets?

5. How long would it take a body to drop from a height of 500 m on Mercury? Earth? Saturn? What 
would the impact velocity be on those three planets? On which of these three planets would it take 
the least time to fall a specific distance? The greatest time?

6. Write the velocity ν of the object as a function of the dropped distance d and the acceleration g. 
What is the impact velocity of a rock dropped from 100 m on Venus? Jupiter? Pluto?

7. Estimate a height from which you feel you could safely jump on Earth, and determine your impact 
velocity for that height. If you use that value as a safe impact velocity, from what height could you 
jump on Pluto and not be injured?

8. Lars weighs 890 N on Earth. What is his weight in pounds? What would he weigh (in pounds) on 
Venus? Mars? On which of the eight planets would his weight be a maximum?

9. Maria has a weight on Earth of 120 lb. What is her mass? What would her weight be (in pounds) 
on Mercury? Jupiter? Uranus?

10. Pounds are sometimes mistakenly used as units of mass. Use W = 9.8m to show why the so-called 
conversion factor from kilograms to pounds is 2.2 lb/kg. Remember that first you must change 
pounds to newtons before you use this formula.

Exercise Set 4.3
Name _________________
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11. Luke Skywalker lands on the planet Xantok and measures the weight of a large igneous rock 
to be 533 N. Luke drops his light saber from the top of a cliff and determines the gravitational 
acceleration to be 6.5 m/s2. What is the mass of the rock? What would it weigh on Earth in 
newtons? In pounds?

Assume each of the following statements is true. Write the converse and contrapositive of each 
statement, and classify each one as true or false.

12. If it is a cloudy day, then you do not catch fish on Fence Lake.

13. If someone is watching television, then the television is on.

14. If the light switch is up, then the light is on.

15. If a polygon is a square, then it is a rhombus.

16. If the wind is blowing, then the windmill is turning.

17. If a house is on Paradise Lane, then it costs at least $180,000.

18. If x = 10, then x2 = 100.

19. If x = 12, then 2x + 15 = 39.

20. If it does not rain, then we do not cancel soccer practice.

21. If my shirt is solid red, then it is not blue.

22. If the temperature is above 45°F, then it does not snow.

Determine whether each of the following five statements is true or false. Write the converse and 
contrapositive of each statement, and identify each one as true or false.

23. If f (x) is an increasing function over [a, b], then f (a) < f (b).

24. If f (x) is a decreasing function over [a, b], then f (a) < f (b).

25. If f (x) is an increasing function, then f (x) is a linear function with positive slope.

26. If f (θ ) = sin θ, then f (30°) = 0.5.

27. If f (x) = 5x + 13, then f (x) = 23.

28. Explain why Venus can be viewed going through a set of phases in the Copernican system but 
not in the Ptolemaic system. Do you think an outer planet (such as Mars) would exhibit two 
identifiably different sets of phases in the two systems? Explain.

29. Why didn’t the observation of the phases of Venus prove the validity of the Copernican system? 
Why did it falsify the Ptolemaic system?
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30. Galileo openly held a stronger opinion of the heliocentric model than did Copernicus. In what 
way? How did this position lead to conflict with the Catholic Church?

31. What book written by Galileo led to his being summoned to Rome to face the Inquisition?

32. According to legend, what did Galileo say upon recantation of his beliefs to the judges of the 
Inquisition?

33. Galileo offered a clever argument for why his formulas for the velocity and distance of a falling 
object were independent of mass. Suppose two objects x and y have different masses, with x being 
the lighter one. Aristotle claimed that y must fall faster than x. Galileo proposed, “What if we tie 
the two objects together and drop them?” Then the lighter object should retard the velocity of 
the combined x + y, and so the velocity of x + y should be less than that of y alone. On the other 
hand, x + y is more massive than y and so should fall faster, according to Aristotle. What is your 
conclusion to this thought experiment?
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4.4  And All Was Light

Galileo’s sentence of life imprisonment was com-
muted to permanent confinement to his villa, 
where he spent the last nine years of his life 
studying physics and writing his finest book on 
the subject. As befits a good drama, 1642 saw 
both the death of Galileo and the birth of the man 
whom many declare to have possessed the most 
profound intellect in the history of humankind. 
Sir Isaac Newton (1642–1727) was a towering 
icon to the conquest of the mind over the mysteri-
ous universe (see Figure 4.4.1). He was described 
by biographer Gale E. Christianson as “a mutant, 
seeming more a phenomenon than a man . . . the 
incarnation of the abstracted thinking machine” 
and one who, in the words of Albert Einstein, 
“stands before us, strong, certain, and alone.” An 
only child, born shortly after his father’s death on 
a farm at Woolsthorpe, England, Newton experi-
enced an unusually lonely childhood. By his third 
birthday, his mother had remarried an elderly 
rector to better her financial position, leaving 
young Isaac in the care of his aged grandmother at 
Woolsthorpe. As a youth, he spent many solitary 
hours constructing an array of mechanical devices 
such as water clocks, sundials, and various types 

of kites. He was not reunited with his mother until the age of 11, and the acute sense of 
abandonment felt by the young Isaac had a profound effect on his adult personality. A life-
long bachelor and recluse, he was penurious and sternly disciplined in his personal habits. 
Shunning the usual entertainments of civilized society, Newton was always happiest when 
left to himself to indulge his relentless curiosity. When asked later in life by one of his few 
friends, the astronomer Edmond Halley (1656–1743), how he had made his great discov-
eries, he responded, “By thinking about the problem unceasingly.”

In 1665, Newton received his B.A. from Trinity College, Cambridge, where he had 
studied mathematics and physics. That same summer, the college was evacuated due to the 
spread of the bubonic plague that was devastating England and Europe, and so Newton 
returned to Woolsthorpe, where he spent two years in solitary contemplation of mathe-
matics, optics, astronomy, and mechanics. This was a period in his life often referred to by 

Nature and Nature’s laws lay hid in night:
God said, “Let Newton be!” and all was light.

—Alexander Pope

FIGURE 4.4.1 Isaac Newton.
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historians as the miracle years because of the many discoveries he made at that time. In a 
1718 letter, Newton wrote:

In the beginning of the year 1665 I found the Method of approximating series . . . in May I found the method 
of Tangents . . . & in November had the direct method of fluxions . . . in January the Theory of Colours. . . . 
I began to think of gravity extending to ye orb of the Moon & . . . from Kepler’s rule . . . I deduced that the forces 
[which] keep the Planets in their Orbs must [be] reciprocally as the squares of their distances from the centers 
about [which] they revolve: & thereby compared the force requisite to keep the Moon in her orb with the force 
of gravity at the surface of the earth, & found them answer pretty nearly. All this was in the two plague years of 
1665 & 1666. For in those days I was in the prime of my age for invention & minded Mathematics & Philosophy 
[science] more then at any time since.

Here we see a mind overflowing with ideas. His “method of fluxions” led directly to 
his later development of the calculus, his “theory of colours” was the first comprehensive 
treatment of the properties of light, and his deductions about the force of gravity were 
the roots of the monumental treatise on the physics of motion he produced 20 years later. 
Newton states that the forces that “keep the Planets in their Orbs must [be] reciprocally as 
the squares of their distances from the centers about which they revolve.” This means that 
the gravitational force of the sun on any planet varies inversely as the square of the distance 
of the planet from the sun. Recall that if x and y are two variables and y varies inversely as 
x, or y is inversely proportional to x, then y = k/x, where k is a constant. Therefore, in this 
case, we may write F = k/r 2, where F is the force of gravity due to the sun and r is the planet– 

sun distance. Several other natural phenomena that involve varying quantities are 
known to behave according to this famous inverse-square law.

Think of a slowly inflating blue balloon. The dye giving the balloon its color 
keeps fading to lighter shades of blue as the balloon gets bigger. (See Figure 
4.4.2.) This is so because a fixed amount of the dye keeps getting spread over a 
steadily increasing surface area. The surface area of a sphere of radius r is 4πr 2.  
Assume the balloon to be a sphere painted evenly with b units of blue dye. There 

would be a concentration C
b

Rπ
=

40 2
 units per square inch (in.2) on the balloon’s surface 

when it is inflated to a radius of r = R in. If you blow up the balloon and double its radius 

to r = 2R, the concentration must decrease to 
b

R

b

R
C

π π)(
= 



 =

4 2

1

4 4

1

42 2 0, or one-fourth 

the original concentration. Similarly, if you tripled the original radius to r = 3R, the con-

centration would decrease to 
b

R

b

R
C

π π)(
= 



 =

4 3

1

9 4

1

92 2 0, and so on. We see that b and 

4π are constants that play no part in the basic relationship between the concentration C and 
the radius r, which we can express as C = k/r 2, where k = b/4π.

If we think of light from a star as radiating from a single point source, we may imag-
ine it to be traveling in spherical waves much as the ripples in a pond caused by a thrown 
stone emanate in circular waves from the point where the stone entered the water. Other 
phenomena such as gravity or radio waves can be visualized in the same way. As the light 

inverse-square 
law A general principle 
by which the effect of a 
phenomenon on an object 
varies inversely as the 
square of its distance to the 
source.
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gets farther from its source, it is spread out over a larger sphere. Hence its intensity I, like 
the concentration of dye on the balloon, also decreases inversely as the square of its dis-
tance r from the star. We may write

I
k

r
= .

2

 Example 1
Suppose two stars, call them A and B, each have the same intrinsic brightness (like 
two lightbulbs of the same wattage). If star A is 20 pc away and the light intensity 
from star A is 25 times greater than that from star B, then how distant is star B? As 
with the balloon analogy, the sphere of light reaching us from B must have a larger 
radius than that of the sphere of light from A. The question is, by what factor? If I

A
 

and I
B
 are the intensities of light from stars A and B, respectively, then I

A
 = 25I

B
 and so

I

I

k

k r

k r

k

r r
= = = 











= = 



25

/ 20

/ 20 20 20
.A

B

2

2 2

2 2

2

2

The constant k cancels, and we equate the first and last terms to get

r

r

r )(





 =

=

= =

20
25

20
5

5 20 100 pc.

2

Note that the desired factor turned out to be =25 5. If, instead, we had received 
25 times more light from star B than star A, then it would have to be closer by a factor 

of 5. This is so because I
B
 = 25I

A
 in this case, and so 

I

I
= 1

25
A

B

. Then the distance to 

star B would be found by





 =

=

=

r

r

r

20

1

25

20

1

5
4 pc.

2

 ♦

R
2R

3R

FIGURE 4.4.2 Demonstration of the inverse-square law.
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It is worth stating the proportion discovered in this example involving the ratio of the 
distances of two stars and the ratio of their intensities. If I

A
 and I

B
 are the intensities of two 

stars A and B at distances r
A
 and r

B
 from Earth, respectively, then

I

I

r

r
A

B

=






.B

A

2

It was at Woolsthorpe where the famous tale of the falling apple allegedly occurred. 
In his old age, Newton was fond of reminiscing about it, yet no one is sure whether it 
actually happened or was a bit of mischief he concocted for the sake of a good story. 
Supposedly, he was musing in his garden one day, thinking deeply about the force that held 
the moon in its orbit, when he saw an apple fall from a tree. In a creative flash, he linked 
these two seemingly unrelated occurrences—the same power of gravity attracted the apple 
and kept the moon in its orbit—and unified the theories of terrestrial and celestial motion 
(See Figure 4.4.3.). Furthermore, he realized that any body exerts a gravitational force on 
any other body, which is a function of the distance between their centers, according to the 
inverse-square law. Key to this understanding was his formulation of the central force law. 
(See Exercise 26.)

FIGURE 4.4.3 Newton under the apple tree.
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Suppose you are holding a rope with a tether ball attached to the end, and you 
are rotating in a circle. You are providing a central force on the ball that imparts 
an acceleration on the ball that is directed toward you, the center. (Remember that 
acceleration has a directional component as well as a numerical component.) This 
force is necessary to keep the ball in a circular orbit around you. If the rope were 
to break, for example, the ball would go flying off in a straight line tangent to its 
previous circle of motion. Newton’s central force law states that the acceleration 
a directed toward the center—known as centripetal acceleration—needed to 
keep an object in a circular orbit is

central force The 
force on a moving body 
directed toward a central 
fixed point.
centripetal 
acceleration  
The acceleration on a 
moving body directed 
toward the center of its path 
of motion that results from 
a central force.
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a
v

r
= ,

2

where ν is the velocity of the object and r is its distance from the center. Note that this 
indicates that the acceleration increases as the distance decreases. You are familiar with 
this from riding in the passenger side of a car. If you are making a gentle left turn (large r) 
on the freeway, then little force (hence acceleration) is exerted by the seat and side of the 
car to keep you from going straight forward. However, if you try a very sharp turn (small r) 
at the same speed, you experience a much greater force—and you hope your car door is 
shut tight!

 Example 2
Like the planets, the orbit of the moon has a low eccentricity, and so we may assume 
that it is circular for the sake of approximation. The radius of its orbit is r = 3.84 × 108 m,  
and its period is p = 27.3 days = (27.3 days)(24 h/day)(60 min/h)(60 s/min) = 2.36 × 106 s. 
Recall that the Copernican velocity v is the circumference of its orbit divided by its 
period:

π π )(
= =

×
×

=
2 2 3.84 10 m

2.36 10 s
1,020 m/s.

8

6v
r

p

The moon is under the influence of a central force—Earth’s gravity. Its centripetal 
acceleration is

)(
= =

×
=

2
1,020 m/s

3.84 10 m
0.0027 m/s .

2

3
2a

v

r  
♦

When Newton returned to Trinity at the age of 26, the results of his independent 
studies earned him the appointment to the prestigious position of Lucasian Professor of 
Mathematics at Cambridge. This position afforded Newton the freedom necessary for a 
life devoted to investigation and discovery. We can learn much from his methods. True, his 
genius is undeniable, but the many successes of Isaac Newton can also be attributed to his 
unwavering devotion to learning, his respect for the works of his predecessors, and, most 
importantly, his ability to learn from his mistakes.

Interestingly enough, Newton’s greatest contribution may never have surfaced if 
not for a chance visit from a friend. In 1684, Edmond Halley came to Cambridge to see 
Newton and to pose a question that had been plaguing many of London’s scientists: If the 
sun attracted each planet with a force inversely proportional to the square of the distance, 
what type of path would be traced out by the planet? Newton immediately replied that 
he had solved the problem long ago—it must be an ellipse. Astonished, Halley urged 
his friend to overcome his reluctance to publish and share this grand discovery with the 
rest of the world! So for the next 18 months, Newton brought his prodigious powers of 
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He then states his famous three laws of motion (Figure 4.4.5), axioms that 
establish the foundations for a wealth of results concerning mathematics, physics, 
and astronomy. The second law is a means of recognizing when a force has been 
applied to an object: either the speed or the direction of motion changes (i.e., an 
acceleration has been added). Inertia is the natural resistance to such changes, and 
so this rule is often referred to as the law of inertia. The path of a thrown baseball 
is a long, graceful arc because the force of gravity continuously acts on the ball to 
overcome its inertia, serving to decrease its speed and pull it downward. If it were 
thrown in the negligible gravity of outer space, the ball would continue in a straight 
line forever. This explains why a space vehicle launched from Earth can travel such 
long distances with so little fuel. Once free of the gravitational field of Earth, it 
travels in a near-linear path (affected only by the sun’s gravity) until the firing of a 
small steering rocket redirects it or it enters the gravitational field of another planet.

 reasoning and insight to bear on finishing his greatest masterpiece, Philosophiae 
Naturalis Principia Mathematica (The Mathematical Principles of Natural 
Philosophy). The magnificent Principia, as it is known, is considered to be 
one of the supreme achievements of the human mind (see Figure 4.4.4). In the 
beginning, he states his goal:

For the whole burden of philosophy seems to consist of this—from the phenomena of motions to investigate the 
forces of nature and then from these forces to demonstrate all other phenomena.

FIGURE 4.4.4 The Principia.
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laws of motion The 
three basic principles of 
motion, which Newton 
states in the beginning of 
the Principia, and from 
which he derives the causes 
for many celestial and 
terrestrial phenomena. See 
Figure 4.4.5.
force An entity applied 
to an object, that changes 
its velocity. It is equal to the 
product of the mass of the 
object and its acceleration.
inertia The ability of a 
body to resist a change in 
its state of motion.

Principia The grand 
treatise of Isaac Newton 
that established the 
foundations of physics and 
astronomy. Its explanations 
for natural phenomena are 
mathematically derived 
from a core set of three laws 
of motion.
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The first law allowed Newton to understand how Earth’s 
gravity keeps the moon in orbit around it and, similarly, how 
the sun’s gravity is responsible for the orbits of the planets. He 
compared the process to the firing of a cannonball off the top of 
a tall mountain (see Figure 4.4.6). As with a thrown baseball, 
Earth’s gravitational force imparts an acceleration that contin-
uously pulls the cannonball toward the surface. The greater its 
initial velocity, the farther it travels before impact. Surely, then, 
if it is endowed with a large enough initial velocity, its curved 
path keeps “missing” Earth, and so it enters a perpetual orbit as 
the pull of gravity and the inertia of the cannonball achieve a 
sort of balance.

In Example 2, we saw that the centripetal acceleration of 
the moon is 0.0027 m/s2. Just as the twirling tetherball is pulled 
by the rope toward you, the moon is pulled by Earth’s grav-
ity with enough force every second to impart to it a speed of 

0.00271 m/s toward Earth’s center. Combined with its existing inertial velocity, this is just 
enough pull to keep it in orbit, as we see in Figure 4.4.7(a). A schematic diagram in part (b) 
of the figure shows how the moon moves to the corner of the rectangle formed by the iner-
tial velocity and the velocity change induced each second by the centripetal acceleration 
toward Earth. We hasten to add that because this is a continuous process, the end result is a 
smooth curve, not a sequence of jumps.

1. The Law of Inertia
    A body remains at rest or continues in a straight line at a
    constant speed unless acted upon by an external force.

NEWTON’S LAWS OF MOTION

2. The Law of Force
    The total force on a body is equal to the product of the mass
    of the body and its acceleration.

3. The Law of Equilibrium
    If one body exerts a force on a second body, then second
    body must exert an equal and opposite force on the �rst body.

FIGURE 4.4.5 The simplicity of these natural laws is beautiful.

FIGURE 4.4.6  Newton’s idea for putting a cannonball 
into orbit.

(b)(a)

Moon
Inertial
Velocity

Resultant
Path

Earth

Change in velocity due to
gravitational force

FIGURE 4.4.7 The orbit of the moon.

Newton was now in a position to test his theory from Woolsthorpe concerning gravi-
tational force. Galileo had shown the value of acceleration due to gravity at Earth’s surface 
(1 radius from its center) to be 9.8 m/s2. The distance to the moon had been refined since 
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Le Shrimp

Goliath

FIGURE 4.4.8 The second and third laws of motion. The small boat receives an equal and opposite force to the large boat but with a greater 
acceleration because of its smaller mass.

the days of Aristarchus to be about 60 Earth radii. If the force of gravity (and its imparted 
acceleration to an object) did reach out into space as far as the moon and was inversely  

proportional to the square of the distance, its value there should be 



 =

1

60

1

3,600

2

 of that 

at the surface. Lo and behold, =9.8

3,600
0.0027 m/s2, beautifully matching his previous com-

putation or, in Newton’s words, “found them answer pretty nearly.” This was the validation 
he needed to confirm the inverse-square relationship.

Newton’s second law of motion is formulated simply as

F ma= .

Perhaps an easier way to grasp its meaning is to write it as a
F

m
= . If we deliver a push 

to a tennis ball on a flat table with the same force as to a bowling ball, we know that the 
bowling ball will acquire less acceleration than the tennis ball because the bowling ball 
has the greater mass. Recall our previous examination of the relationship between mass 
and weight. This is seen now simply as a special case of this law, with force F replaced by 
weight W and a replaced by the acceleration g induced on the surface of a planet by gravity.

The third law can best be illustrated by imagining yourself in Le Shrimp, the smaller 
of two boats next to each other on a lake. If you give a forceful shove to Goliath, the larger 
boat, you will simultaneously experience a force of equal value returned to you. Both boats 
will accelerate—but in opposite directions. Again by applying the second law, Le Shrimp 
will achieve a greater velocity a few seconds later than Goliath because of its smaller mass. 
(See Figure 4.4.8.)

These two laws led Newton to his final formulation of the crown jewel of 
his Principia, the Law of Universal Gravitation. If the force of body A on 
body B is to be equal (but in the opposite direction) to the force of body B on body 
A (third law) and each of these forces must include the mass of the corresponding 
body as a factor (second law), then the following statement must be true:

Every body in the universe attracts every other body with a force 
directed along the line joining their centers, which is propor-
tional to the product of the masses of the bodies and inversely 
proportional to the square of the distance between them.

Law of Universal 
Gravitation Any body 
attracts another body with 
a force directed along the 
line joining their centers, 
which is proportional to 
the product of the masses 
of the bodies and inversely 
proportional to the square 
of the distance between 
them.
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In symbols, the force F is computed by

F
GMm

r
= ,

2

where M and m are the masses of the two bodies, r is the distance between their centers, 
and G is the constant of variation known as the gravitational constant. In 1798, English 
physicist Henry Cavendish made the first fairly accurate determination of this constant. In 
the metric system, its value is G = 6.67 × 10−11 newton-square meters per square kilogram 
(N·m2/kg2).

Note that the force of gravity is a decreasing function of distance and an increasing 
function of mass. Although a space vehicle leaving our home planet frees itself of Earth’s 
gravity after a relatively short distance, it continues to be under the influence of the sun for 
a considerably longer interval because the mass of the sun is about 330,000 times the mass 
of Earth.

So both mass and distance are important when computing the force of gravity of 
one body on another. If the mass of the moon were to somehow double, for instance, the 
resulting force between the moon and Earth would also double. On the other hand, because 
gravity follows the inverse-square law, if the distance from Earth’s center to the moon or to 
any other orbiting satellite were to double, the gravitational force would decrease to one-
fourth of the original value.

Next we observe that although gravitational force depends on mass, Galileo demon-
strated that all bodies, regardless of mass, are attracted with the same acceleration to the 
surface of Earth. Newton’s laws bear this out. Let M be the mass of Earth; m, the mass 
of any other body; and r, the distance between their centers. Because the force felt by the 
other body must be given by both of the force laws, we may equate the two expressions 
for F to get

ma
GMm

r

a
GM

r

=

= .

2

2

This formula for the acceleration of the body depends not on its own mass, but only on the 
mass of Earth and the other body’s distance from Earth’s center. Recall that this was pre-
cisely as Galileo had originally asserted!

 Example 3
The previous argument shows us that the acceleration imparted by any central mass 
M to any body at a distance r is dependent only on r, according to the inverse-square 
relationship. Moreover, we need not know the value of M to compare the accelera-
tions imparted at different distances. We proceed with the same method we used in 
comparing the intensity of light from two sources. For example, let a

E
 and a

J
 be the 

mean accelerations imparted by the sun to Earth and Jupiter, respectively, at their 
mean distances r

E
 and r

J
 from the sun. Then we have

= =












= =






a

a

GM r

GM r

GM

r

r

GM

r

r

r

r

/

/
.J

E

J
2

E
2

J
2

E
2

E
2

J
2

E

J

2
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Notice the similarity to our previous formula for the ratio of light intensities 
from two different stars. Because Jupiter is about 5.2 AU from the sun, r

J
 = 5.2r

E
 

and so

a

a

r

r
=







= 



 =

5.2

1

5.2
0.037.J

E

E

E

2 2

Thus,

a a= 0.037 .1 E

So the mean acceleration imparted by the sun to Jupiter is 0.037 of that which it 
gives to Earth. If we conveniently define one gravitational unit (GU) to be the mean 
acceleration allotted to Earth by the sun, then Jupiter receives 0.037 GU. By the same 
token, at the closer mean distance of 0.39 AU, Mercury feels a greater pull from the 
sun than Earth by a factor of 1/(0.39)2 ≈ 6.6. So we say that Mercury receives 6.6 GU 
from the sun. ♦

 Example 4
When rocket scientists plan the launch of a satellite to orbit Earth, they make use of 
the relationship for acceleration a as a decreasing function of distance r from Earth’s 
center in order to compute a at increasing distances. They already know by experi-
ment that gravitational acceleration must equal 9.8 m/s2 on the surface of Earth. This 
must therefore be the value for a at a distance from Earth’s center equal to its radius, 
call it R. In other words, a = 9.8 for r = R. So we have

GM

R
=9.8 .

2

Without substituting for any other letters, we can determine the acceleration induced 
by Earth at a distance of 2, 3, or 10 Earth radii. We simply let r = 2R to get

a
GM

R

GM

R
)(= = 









 = 



 =

(2 )

1

2

1

4
9.8 2.45m/s .2 2 2

2

Similarly, for r = 3R,

a
GM

R

GM

R

GM

R
)

)
(

(
= = 









 = 



 =

(3 )

1

3

1

9
9.8

3
1.09m/s ,2 2 2 2

2

and for r = 10R,

a
GM

R

GM

R
)(= = 









 = 



 =

(10 )

1

10

1

100
9.8 0.098m/s .2 2 2

2

 

♦

a
GM

R

GM

R

GM

R
)

)
(

(
= = 









 = 



 =

(3 )

1

3

1

9
9.8

3
1.09m/s ,2 2 2 2

2
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 Example 5
If we fix the distance in the prior formula, acceleration now becomes a function of 
mass. By substituting the radius of Earth (6,400 km), for r, 9.8 m/s2 for a, and the 
value given earlier for the gravitational constant G, we can actually determine the 
mass of the Earth!

)
)

(
(

) )( (

=
×

×

=
×

×
≈ × = ×

−

−

M

M

9.8
6.67 10

6.4 10

9.8 6.4 10

6.67 10

60.2 10 kg 6.02 10 kg.

11

6 2

2 12

11

23 24

(Note: Because the units for G are in terms of meters rather than kilometers, we 
needed to express the radius in terms of meters. Likewise, the units of mass are nec-
essarily kilograms.) ♦

Because the acceleration induced by the sun is a decreasing function of distance, we 
must also note that this is consistent with our knowledge from a prior section that the max-
imum velocity of a planet occurs at perihelion and the minimum velocity at aphelion. And 
finally we consider how the special case of a circular orbit (constant r) of an object around 
the sun or any central body of mass M leads to the velocity function well known to every 
aerospace engineer. We have seen that the centripetal acceleration that causes the object to 

move in a circular motion of constant velocity ν at a distance r is given by 
r

ν 2

. Equating 
this to the acceleration that the central body induces on the object, we get

r

GM

r
cν =
2

2

or

GM

rcν = .

This value is often referred to as the circular velocity and is denoted by ν
c
.

 Example 6
The first human-made satellite to be successfully placed in orbit around our planet 
was Sputnik I, launched by the Soviet Union on October 4, 1957. With what velocity 
did it move through its circular orbit? Because its orbit only carried it a few hundred 
miles above the surface, we use a value for r that is approximately equal to Earth’s 
radius. Using a slightly more accurate value for the mass of Earth than computed in 
Example 5, we get

circular velocity  
Constant speed at which a 
body under the influence of 
a central gravitational force 
must move to maintain a 
circular path.
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cν
( )( )

=
× ×

×
= =

−6.67 10 5.98 10

6.4 10

7,900 m/s 7.9 km/s.

11 24

6

(Getting beat into space by our cold war opponents had an electrifying effect on the 
United States. Fear of being “bombed from above” by Soviet space vehicles triggered 
a funneling of funds into space research and spurred reforms in  mathematics and 
science education.) ♦

 Example 7
Because the mass of the sun is 2.0 × 1030 kg, the speed of any object in a circular orbit 
at a distance of 1.5 × 1011 m (Earth’s distance) is

cν
( )( )

=
× ×

×
= × =

−6.67 10 2.0 10

1.5 10
3.0 10 m/s 30 km/s.

11 30

11
4

You should compare this to the Copernican velocity you computed for Earth 
in Exercise Set 4.3. They match to two significant figures. The difference is that 
you need to have observed the movement of a known body in order to compute the 
Copernican velocity. For a given central mass, ν

c
 is a function of r only. ♦

It is difficult to overestimate the impact of Newton and his Principia on the 
development of science and on the shape of modern times. His laws of motion 
and gravitation were the first set of natural laws—underpinning principles that 
provide a basis for the derivation of a host of other relationships. Following the 
statement of the laws in the book, he demonstrates how all three of Kepler’s laws 
are immediate mathematical consequences. He then goes on to give the first math-
ematical treatment of wave motion; explains the orbits of comets; calculates the 

masses of the sun, Earth, and the planets with satellites; accounts for the equatorial bulge of 
Earth and how it causes the precession of the equinoxes; and shows how the gravitational 
pulls of the moon and sun are responsible for the daily high and low tides. Kepler and 
Galileo had obtained formulas in an empirical fashion; that is, they noticed mathematical 
patterns in the data that they encoded in equations. Although these equations were far better 
descriptions of nature than those that had been rendered by Aristotle, they failed to provide 
reasons for why they were true. Newton supplied this crucial missing piece of the puzzle. 
His laws were important because

1. They unified the laws of terrestrial and celestial motion.
2. They threw out the wordy, dead-end descriptions favored by Aristotelians 

and replaced them with crisp, simple axioms from which many observable 
phenomena could be deduced.

3. They were predictive. Positions of planets (and the paths of future space vehi-
cles) could be calculated with great precision for the first time.

natural laws  
Foundational principles 
that provide a basis of 
explanation of other 
relationships found in 
nature.

232 Chapter 4 Astronomy and the Methods of Science

9780763781163_CH04_Pass2.indd   232 07/06/14   1:17 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION



Newton was lionized in his day in recognition of his accomplishments. He reigned as 
president of the Royal Society for 20 years and was given the lucrative position of Master 
of the Mint of England, a service he performed so admirably that he was knighted by the 
queen. He did, however, suffer his share of personal misfortune. In 1693, he had an acute 
mental breakdown, probably due to the poisoning of his system from the chemicals he rou-
tinely tasted in his alchemy experiments. He recovered from this episode, but he was never 
able to master his lifelong paranoia and eccentric, reclusive behavior, as evidenced by his 
bitter 25-year quarrel with the great German mathematician Gottfried Leibniz over who 
first created the calculus.

So yes, Newton was a strange bird to be sure, but we can be sure of one thing—he 
revealed a grand order in the universe. Every time one of America’s splendid space vehicles 
is launched or a new space communications satellite is put into orbit, the memories of Isaac 
Newton and those who preceded him are recalled. While reflecting on his career late in life, 
he credited his predecessors by remarking that

The last statement deserves a special mention. The predictive power of any new 
 theory is one of the key tests of its acceptance by the scientific community. The many 
dramatic successes of Newton’s calculus and natural laws brought quick and unanimous 
acknowledgment of the brilliance of his work. Mathematics became the new tool for the 
study of nature. Edmond Halley, for example, was able to employ the new mathematics to 
accurately forecast the return of the comet that bears his name. (See Figure 4.4.9.) It was 
not long before all serious doubters of the heliocentric theory disappeared. The revolution 
begun by Copernicus was complete.

If I have seen farther than other men,
it is because I stood on the shoulders of giants.

FIGURE 4.4.9 Halley’s Comet on a 1986 stamp from Laos.
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The stories of these giants—Copernicus, Kepler, Galileo, and Newton—offer a rich 
historical lesson. Cosmological conjecturing has occupied, and always will occupy, a spe-
cial niche in the human quest for intellectual fulfillment. Although the search for solutions 
to the many puzzles offered up by Nature cannot be wholly separated from the surrounding 
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social structure, it is, at its core, an individual endeavor. Any absolute truth as to the fabric 
of the universe can never be fully realized, only glimpsed from afar. It is those glimpses, 
those momentary clear visions in the mind of a single person—of you—that add an essen-
tial element to your life. It is incumbent upon you, therefore, to garner as much information 
as you can in order to experience the sharpest glimpses possible. 

Where the statue stood
Of Newton with his prism and silent face,
The marble index of a mind for ever
Voyaging through strange seas of Thought, alone.

—William Wordsworth
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1. Where was Isaac Newton born? What prolonged event prompted him to return there in 1665 for 
two years of isolated study?

2. Who prompted Newton to publish his results in what eventually became the masterpiece, 
Philosophiae Naturalis Principia Mathematica?

3. Star A and star B have the same intrinsic brightness. If star A is 15 pc away and we receive 9 
times as much light from A as from B, then how far away is star B? If we instead receive 9 times 
as much light from star B as from star A, how far away is it?

4. Neptune lies at an average distance from the sun of 30 AU. What is the intensity of light from the 
sun on Neptune as a portion of the intensity on Earth? Mercury lies at an average distance from 
the sun of 0.4 AU. By what factor is the intensity of light from the sun on Mercury greater than 
the intensity on Earth?

5. Stars A
1
 and A

2
 have the same intrinsic brightness and lie at distances of 14 and 56 ly, 

respectively. How much more light do we receive from A
1
 than from A

2
?

6. Which of the following is representative of the graph of gravitational force F between two given 
bodies as a function of distance r? Note that specific units are not necessary. Just think of one 
force unit existing at one distance unit. Is F an increasing or a decreasing function of r?

Exercise Set 4.4

4

3

2

1

0.25

0.5 1 2 3 r

F
4

3

2

1

0.25

0.5 1 2 3 r

F
4

3

2

1

0.25

0.5 1 2 3 r

F

7. If the mass of Earth were magically doubled, how would the resulting gravitational force on any 
orbiting satellite change?

8. If the distance between Earth and the moon were doubled, what fraction of the original 
gravitational force between them would remain in effect?

9. If we define 1 gravitational unit (1 GU) to be the mean acceleration due to gravity that the sun 
imparts to Earth, how many gravitational units does the sun exert on Venus? Mars? Uranus? 
Pluto? The asteroids in the asteroid belt?

Body Mean Distance from Sun (AU)
Venus 0.723
Mars 1.524
Asteroids 2.77 average
Uranus 19.18
Pluto 39.44

Name _________________
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10. The diameters of Venus and Earth are almost identical. What must account for the fact that the 
surface gravity acceleration of Venus is less than that of Earth?

11. The acceleration on the surface of Mars is 3.7 m/s2. What acceleration does it induce at a distance 
from its center of 2 Mars radii? 5 radii? 8 radii?

The gravitational constant G = 6.67 × 10−11 N·m2/kg2 will be needed for Exercises 12–17.

12. You land on the moon and you wish to determine its mass. You already know its radius is 
1,740 km, and you measure the gravitational acceleration near its surface to be 1.6 m/s2. What 
is the mass (in kilograms) of the moon?

13. The mass of Uranus is 8.68 × 1025 kg, about 20 times greater than the mass of Venus at 
4.87 × 1024 kg. However, the gravitational accelerations at the surface of both planets are about 
the same. Why? Compute the radius of each planet, given the surface accelerations of Venus  
and Uranus of 8.9 and 8.8 m/s2, respectively. Are the values for the radii consistent with your 
response?

14. A comet is a mixture of ice and carbonaceous dust often referred to as a dirty snowball. Comets 
in our solar system typically have very eccentric orbits. Halley’s comet achieves perihelion at 
0.53 AU from the sun and aphelion at 35.1 AU. Determine the acceleration (in meters per square 
second) of Halley’s comet toward the sun at perihelion and aphelion. (The mass of the sun is 
1.99 × 1030 kg.)

15. The mean distance of the moon from Earth is r = 3.84 × 108 m. At that distance, we saw in 

Example 2 that the centripetal acceleration needed to keep the moon in orbit is a = 0.0027 m/s2. 

Determine the mass of Earth by using these values in the relationship a
GM

r
=

2
, which gives the 

acceleration imparted by Earth at that distance. Does this value match our previously computed 
value of M = 6.02 × 1024 kg?

16. We can determine the mass M of the sun in a manner similar to the previous exercise. We equate 
the centripetal acceleration needed to keep Earth in its orbit (r = 1.5 × 1011 m) to the acceleration 
imparted by the sun at that distance and solve for M.

r

GM

r

M
r

G

ν

ν

=

=

,

.

2

2

2

Use the Copernican velocity of Earth ν = 3.0 × 104 m/s, which we already computed in problem 7 
of Exercise Set 4.3 to find the mass of the sun.
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17. The immense gravitational hold of the massive Jupiter (1.9 × 1027 kg) on the four Galilean moons 
has forced them into almost perfect circular orbits. Because any satellite of a planet must also 
behave according to Newton’s laws, use this table to answer the following questions.

Moon Distance from Jupiter (km)
Io 422,000
Europa 671,000
Ganymede 1,070,000
Callisto 1,883,000

(a)  Which moon must have the greatest circular speed?
(b)  Which moon must have the smallest circular speed?
(c)  What is the circular speed of Europa? (Remember to use meters as the units for r.)

18. When M stands for the mass of Earth, GM = 4.0 × 1014 and so the circular velocity ν
c
 of a satellite 

orbiting Earth reduces to

GM

r r
rcν )(= =

×2.0 10
. Remember, must be in meters.

7

How fast must a satellite travel to remain in a circular orbit around Earth with an orbital radius of 
9,000 km from Earth’s center?

19. One of the most practical applications of Newton’s discoveries in modern times is the use of 
communication satellites. These satellites are placed in strategic orbits to relay radio signals 
between two distant locations on Earth. A geostationary satellite is one that always remains 
above the same place on Earth’s surface, and so its orbital period must be 24 h. The previous 
exercise gives the velocity ν

c
 necessary for a circular orbit around Earth as a function of r alone. 

Determine the radius r necessary for the orbit of a geostationary satellite by equating this formula 

to 
rπ

( )( )
2

24 60 60
 and solving for r.

20. The electrostatic force acting between two charges also follows the inverse-square law. In 1780, 
Charles Augustin de Coulomb showed that the force is proportional to the product of the two 
charges and inversely proportional to the square of the distance between them. Letting E stand for 
the electrostatic force, Q and q for the two charges, and r for the distance, write the function for E 
in symbols. (See the statement of the Law of Universal Gravitation.)

21. The force between two charges is 0.0045 N. Using the function for E given in the previous exercise, 
what is the new force if the distance between these two charges is increased by a factor of 3?

22. Suppose an object is at a distance r from the center of a body of mass M. The speed required for 
that object to escape from that central body’s gravitational hold is called the escape velocity ν

e
 and 

is given by the function

GM

reν =
2

.
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Note the similarity to the function that gives the circular velocity ν
c
. If an object were already in a 

circular orbit around a central mass, by what factor would it have to increase its velocity in order 
to escape?

23. What are the advantages of Newton’s laws of motion as a set of axioms to describe nature over the 
explanations offered by Aristotle?

24. For a body in a circular orbit around the sun, we have two algebraic expressions that give us the 

speed of the body: 
GM

rcν =  and the Copernican velocity 
a

p
ν π= 2

 from the last section.

Replace r with a, equate these two expressions, and deduce Kepler’s third law.

25. In Example 5, we determined the mass of Earth by knowing the value of the acceleration it 
produced on a body near its surface. In other words, we knew the value of acceleration that Earth 
imparts to an object at a specific distance. Describe a procedure by which we could determine the 
mass of a planet possessing moons by observing the radius and period of the orbit of one moon.

26. Kepler’s third law was the key to Newton’s realization that the gravitational force of the sun on the 
planets followed an inverse-square law. The central force law states that the centripetal 
acceleration a imparted by the sun on a body in a circular orbit of radius r moving with velocity ν 
is given by

a
r

ν= .
2

According to Kepler, p2 = kr3, where p is the period of revolution of a body. This means that the 

ratio r

p

3

2
 is always constant. Substitute the Copernican velocity 

r

p
ν π= 2

 for ν to show that the 

acceleration a (and hence the force) varies inversely as the square of the distance r.

27. We think of the orbit of the moon as resulting solely from Earth’s gravitational pull, but in fact the 
sun also exerts a significant influence because of its enormous mass. This is true for a satellite of 
any planet. In the May 1963 issue of The Magazine of Fantasy and Science Fiction, Isaac Azimov 
computed what he called the “tug-of-war” value. For any satellite of mass m, he defined this to be 
the ratio of F

p
, the gravitational force of the planet, to F

s
, the force due to the sun. Specifically,

= =












F

F

GM m r

GM m r

M

M

r

r
p

s

p p

s s

p

s

s

p

/

/
,

2

2

2

where M
p
 and M

s
 are the masses of the central planet and sun, respectively, and r

p
 and r

s
 are the 

distances of the satellite from the planet and sun, respectively. The Galilean moons of Jupiter, 
for instance, have ratios ranging from a high of 3,260 for nearby Io to a low of 160 for the more 
distant Callisto. It turns out that our moon is the only major satellite in the solar system with a 
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tug-of-war ratio less than 1. What does this mean? Rather than a satellite circling Earth, what 
might be a better description of the orbital path of the moon? Compute the tug-of-war ratio for the 
moon. (Recall from the first section that the sun is 390 times as far from Earth as the moon. Also, 
the mass of Earth is 0.000003 of the sun’s mass.)

28. A black hole is an object in space containing a very large amount of mass in a volume so small 
that the resulting gravitational field is strong enough to prevent even light from escaping. Explain 
how this is consistent with the roles of force F and distance r as they are related in Newton’s Law 
of Universal Gravitation.
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use the extra space 
   to show your work

1. What new idea was introduced by Heracleides to the planetary model concerning the orbits of 
Mercury and Venus?

2. Define an axiom, and explain the role of a set of axioms in creating a model of a natural 
phenomenon.

3. What star in the sky remains practically motionless throughout the night? Does it appear higher 
above the horizon as viewed from Scranton, Pennsylvania, or Atlanta, Georgia?

4. What is the mean distance of Earth from the sun, measured in light-seconds?

5. If you go outside and look at the constellation Orion at 10 p.m. one winter night and then again a 
month later at 10 p.m., about how many degrees has Orion shifted across the sky?

Chapter Review Test 4
Name _________________
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6. Saturn has an orbital period of 29.5 yr. Compute its mean distance (in astronomical units) from 
the sun and its Copernican velocity (in kilometers per second).

7. How far away is a star having a parallax angle of 0.28″? Give your answer in parsecs and light-
years.

8. Halley’s comet orbits the sun in an elliptical orbit, with a perihelion distance of 0.53 AU and an 
aphelion distance of 35.1 AU. Compute the eccentricity of its orbit. Would you say the shape of 
this orbit resembles a circle or a cigar?

9. Given that the eccentricity of Mercury is 0.2056 and its maximum distance from the sun is  
0.467 AU, find its minimum distance from the sun.

10. Consider the statement “If it is a July day in Phoenix, then the temperature is over 100°.” Write 
the converse and contrapositive of this statement. Assuming the original statement is true, is the 
converse necessarily true? Is the contrapostive necessarily true?

2414.4 Chapter Review Test

9780763781163_CH04_Pass2.indd   241 07/06/14   1:17 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION



11. List two observations made by Galileo that convinced him of the validity of the Copernican 
system.

12. The acceleration due to gravity near the surface of Mars is 3.7 m/s2. How much time would it take 
for an object to drop from 1,250.6 m on Mars? What would be the impact velocity?

13. Stars Alpha and Beta have the same intrinsic brightness. If Alpha lies at a distance of 50 pc from 

Earth and we receive 
1

49
 as much light from Beta as from Alpha, then how far away is Beta?

14. Mercury and Mars have about the same surface acceleration due to gravity, yet Mars has a 
greater radius than Mercury. Use the law of universal gravitation to explain what must account 
for this fact.

15. The planet Uranus lies at a mean distance of about 19 AU from the sun. If 1 GU is the 
gravitational acceleration exerted by the sun on Earth, how many gravitational units does the sun 
exert on Uranus?
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16. The asteroid belt is a region between the orbits of Mars and Jupiter in which thousands of chunks 
of rock known as asteroids revolve around the sun at an average distance of about 2.77 AU. Even 
though they have many different masses, is the acceleration imparted to them by the sun about the 
same for all of them? Why? What is it? (The mass of the sun is 1.99 × 1030 kg.)

17. You land on the moon, and you wish to determine its mass. You already know its radius is 
1,740 km, and you measure the gravitational acceleration near its surface to be 1.6 m/s2. 
What is the mass (in kilograms) of the moon?
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