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LEARNING OBJECTIVES

After reading this chapter, the reader should be able to:

1.

10.

11.

12.

13.

14.

Identify appropriate descriptive and summary statistics for
a given data type.

. Categorize data according to type (i.e., continuous,

parametric vs. nonparametric, categorical, and ordinal).

. |dentify outcomes from a clinical trial and differentiate between

surrogate and clinical outcomes.

. Describe the values generated from the statistical evaluation

of clinical trial results and explain what they mean.

. Explain what p-values are, how they are interpreted, and what

they do not mean.

. Recognize the appropriate statistical tests to interpret the

data resulting from clinical trials.

. Differentiate between clinical and statistical differences with

regard to the results of comparative study endpoints.

. Interpret 95% confidence intervals for absolute data and ratio data.
. Differentiate between types of clinical trial designs (e.g.,

parallel, crossover, and pre-post), and describe how their
statistical assessments differ.

Differentiate between types of observational trial designs (e.g.,
cohort and case-control), and identify the strengths and limitations
of each.

Differentiate between and recognize study methods influencing
the internal and external validity of a study.

Define type I and type Il error, and describe the methods used
to estimate the likelihood of error (e.g., power, alpha, beta).
Analyze a dataset by selecting the appropriate statistical tests
(e.g., chi-square, ttest, ANOVA, ANCOVA).

Critically evaluate the primary literature with regard to the
qualitative assessment of an experiment’s study design, methods,
results, and validity and the applicability of a given conclusion.
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INTRODUCTION

As a young pharmacy student, I served my internship
in a moderately sized and relatively progressive hos-
pital in the suburbs of Philadelphia. It was there that
I had the pleasure of working alongside one of the
most pleasant, experienced, and elderly pharmacists
that I had known at that stage of my life. One day,
while our pharmacists were discussing therapeutic
options for a patient who was showing resistance
to diuretic therapy, a low and raspy voice from the
background kept repeating, “watermelon seeds.” Our
noted octogenarian pharmacist went on to recom-
mend a “time-honored” practice of administering an
infusion of watermelon seeds as a diuretic.

I bring up this story to illustrate our need to
approach the therapy of our patients with an eye
toward evidence-based medicine (EBM). This case
is a little unique; however, recent history has shown
that many therapies that the medical community
has relied upon for years have now been shown in
controlled trials and meta-analyses to be less than
effective and sometimes less than safe. The heart of
this chapter deals with the importance of EBM and
the skills needed to identify and use it. To summarize
with a quote, “EBM is the integration of the best
available evidence with our clinical expertise and
our patient’s unique values and circumstances.”!
Pharmacists must have the skills to appropriately
evaluate and understand information obtained
from the primary literature. This charge requires a
working understanding of study designs, research
endpoints, and biostatistical evaluation. This chapter
will therefore provide an overview of the components
of published clinical trials, focusing on research
methods, experimental designs, and study results.
Of course, no chapter dealing with clinical trial
evaluation would be worthwhile without an attempt
to clearly explain the significance of study results at
a biostatistical level in order to aid students in their
understanding of these concepts.

STUDY DESIGN

The more common experimental designs and design
components are presented in Table 2-1. The table
is divided into three sections that correspond to the
major types of study designs:

1. Experimental studies: The investigator
actively provides an intervention that is then
evaluated for its associated outcomes.

2. Observational studies: The investigator does
not provide an active intervention but sim-
ply prospectively or retrospectively observes
relationships between exposures (potential
causes) and outcomes (potential effects).

3. Descriptive studies: Clinical cases, survey
data, or epidemiologic data are described.

Randomized controlled trials (RCTs) are
experimental studies and are considered to be at the
top of the experimental research design hierarchy
in the healthcare research and medical literature,
especially for the purpose of proving hypotheses.
In a traditional, parallel design RCT, each patient
is randomly assigned to one of two or more inde-
pendent study groups (study arms) and receives a
unique active intervention or a placebo (inactive)
intervention. Do not confuse random with arbitrary.
Several acceptable procedures for true randomiza-
tion are available, including the use of random num-
ber tables. An RCT is, by definition, controlled or,
more specifically, placebo-controlled. The outcomes
of active experimental interventions are compared to
those of a placebo, or sham, intervention for a very
important reason.

Consider the following: An investigator studied
and compared the efficacy of two different antiemetic
regimens for the prevention of postoperative nausea
and vomiting (PONV). The study recruited and ran-
domized patients scheduled for surgical procedures
under various forms of anesthesia. The results of the
study showed no difference in efficacy between the
two regimens. Few patients receiving either regimen
experienced significant PONV. Many hospital
pharmacy directors were quite pleased with the re-
sults of this trial. One of the “equally efficacious” reg-
imens was associated with an impressively low cost
compared to the standard therapy and represented
the potential for hospital savings approaching a mil-
lion dollars a year. When something seems too good
to be true, it probably is. Because this study was not
controlled (did not include a placebo group), critics
doubted the validity of the study and suggested
the very real possibility that the risk for PONV
without prophylaxis was very low for all of this
study’s postoperative subjects. If a placebo control
group had been studied and a significantly higher
incidence of PONV had been associated with the
placebo compared to the active regimens, then this
trial may have been valid. As designed, the results
were not valid.
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Type of Study Common Features

Randomized controlled trials Comparison of different interventions provided to two or more independent subject
(RCTs) vs. clinical trials (CTs) groups (arms). Subjects are randomly assigned to a study group. One of the study
groups receives a sham, or placebo, intervention as a control. Some clinical trials
are not randomized and/or may not be placebo-controlled. In fact, some trials are
not comparative at all. Although these are not at the top of the trial hierarchy, they
are valid and often are important.

Superiority vs. noninferiority Although the majority of studies traditionally have been designed to determine if one
intervention is superior to another active intervention (or placebo), noninferiority
studies are becoming more common and are designed to determine if one active
intervention is not inferior to another active intervention.

Parallel studies A typical parallel study evaluates the outcomes of different interventions provided
to different (independent) subject groups over the same prospective period of
time or “in parallel” (e.g., while some subjects are being studied on intervention A,
other subjects are studied on intervention B). Crossover and pre-post studies are
examples of nonparallel studies.

Crossover trials All of the enrolled subjects receive, in a sequential manner, all of the interventions
being compared in the study. The outcomes of the interventions are compared
even though the patients receiving these interventions are in common. The order
of the interventions with which subjects are studied is usually randomized, and
washout periods between different interventions are usually included.

Pre-post trials Study subjects receive a therapeutic intervention and their baseline (preintervention)
condition is compared to their interventiontreated condition.

Cohort studies Usually, the researcher prospectively observes but does not intervene. A cohort
study follows a sample of subjects with a common exposure to determine if this
exposure is associated with an outcome to a greater degree than a cohort of
subjects without that exposure. A cohort study starts with a known exposure and
looks for an effect or outcome.

Case-control studies The researcher retrospectively observes but does not intervene. A case-control
study looks at the history of a sample of subjects with a common outcome
or condition to determine if this condition is associated with an exposure
more frequently than what is seen in a sample of patients without the condition.
A case-control study starts with a known outcome and looks for a possible cause.

Cases and case-series reports  Describe or report an interesting clinical case or a collection of similar cases.
Although case reports are not valuable for hypothesis validation, they sometimes
are very valuable for hypothesis generation.

Cross-sectional studies Describes a sample, or cross-section, of a population at a point in time. Also called
survey studies or epidemiologic studies. Do not confuse with crossover trials.

Clinical trials of medication therapies are frequently Noninferiority studies have some unique features.
designed to show a medication’s superiority What constitutes “inferiority” is prospectively defined
over another medication or a placebo treatment. by the investigator in each noninferiority study. For
Noninferiority trials, however, are becoming example, for antibiotic A to be considered inferior to

more and more common in the medical literature.? antibiotic B, an investigator would have to determine
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that antibiotic A fails to provide an anti-infective
response at least X% more often than antibiotic B
(e.g., a —10% threshold for inferiority). The size of the
threshold varies between studies and is based on sta-
tistical, clinical, and regulatory considerations. A con-
cern that I hear occasionally from students preparing
for journal club or seminar is that the noninferior-
ity study that they are evaluating does not include a
biostatistical test. When comparing the responses of
two interventions, noninferiority trial investigators
calculate a 95% confidence interval (CI) of the mean
difference between the two therapies. The threshold
for inferiority is not compared to the mean difference
in response rate between the two drugs; it is com-
pared to the lower (or sometimes upper) bound of
the mean response difference’s 95% CI. For example,
a study showed that antibiotic A resulted in a 75%
clinical cure rate while antibiotic B resulted in an 80%
cure rate. In this instance, the mean difference in cure
rate and its 95% CI was reported as: mean = —5%; 95%
CI (—8% to +2%) for antibiotic A. Therefore, antibiotic
A is noninferior to antibiotic B because the —8% in the
lower bound of the 95% CI was not worse than the
threshold for inferiority pre-specified above as —10%.

The majority of studies in the primary literature
have a parallel design. Between the time of active
recruitment and completion of the clinical trial, pa-
tients are continually randomized into independent
groups and studied in a prospective fashion. At any
given time during the study, some patients will be
receiving one intervention while others are receiving
the comparative intervention.

Nonparallel studies include crossover trials and
pre-post trials. In a crossover trial, all of the patients
enrolled in the study will sequentially receive all of
the interventions to be compared. Appropriate wash-
out periods are usually included between different
interventions. Randomization is used in crossover
studies only to determine the sequence of interven-
tions for each patient. Similar to parallel studies, the
outcomes of the different interventions are evaluated
and compared, but all of the interventions are evalu-
ated in the same subjects. In essence, the potential for
the dissimilarity of subjects between interventions
affecting the results is no longer a concern. In other
words, in crossover trials, the outcomes of the inter-
ventions are not influenced by between-group patient
variability. Because of this, crossover studies require
fewer subjects. Crossover studies require more strin-
gent “paired” statistical methods for the evaluation
of their results. If an outcome of a crossover study is

evaluated using a standard statistical test, such as the
Student’s ¢-test, instead of the more stringent paired
t-test, there is a risk of overestimating the result’s
statistical significance.

Pre-post trials do not compare the difference be-
tween interventions but simply study the change in
subjects’ baseline (prestudy) parameters or condition
due to the intervention being investigated. Because
these patients serve as their own control, similar to
the crossover trial, “paired” statistical methods are
used for the evaluation of these results. Some words
of caution: You may occasionally come across a trial
that appears to be a comparative parallel study, but
it only compares baseline parameters (pre) to on-
therapy endpoints (post) for each intervention.?
Don’t be fooled. The clue is that these studies will
report a separate p-value for each intervention result.

In observational studies, including cohort stud-
ies and case-control studies, the investigator does
not actively intervene or prescribe therapies. Cohort
studies are usually prospective in design. The inves-
tigator identifies subjects having a common exposure
and follows them to uncover a potentially associated
outcome. An example of a cohort study is one that
identified a large sample of female subjects (nurses)
who reported the routine use of aspirin. The investi-
gators then followed these patients over an extended
period of time and compared their cardiovascular
outcomes to a cohort, or sample, of similar subjects
who were not aspirin users.*

Case-control studies, in contrast to cohort studies,
identify patients with a common outcome or condi-
tion and then retrospectively evaluate past exposures
as a potential cause of the condition. An example
is a case-control study that identified a group of
patients with a diagnosis of pulmonary hyperten-
sion. The investigators then reviewed the patients’
medical histories and found that the use of stimulant
anorexic weight-control agents was more common
than in control cases of patients without pulmonary

hypertension.”
In the two CLINICAL PEARL
observational Because observational studies

study exam-
ples discussed,
note that other
unknown fac-
tors may have

generally lack a control, they are
not reliable for answering ques-
tions definitively or for proving
existing hypotheses or proving
causal relationships. However,
they can be quite valuable for

significantly .

influenced the generating new hypotheses and
areas for further study.

outcomes.



Descriptive studies include case and case series re-
ports as well as cross-sectional studies. Case reports
and case series reports simply describe and discuss
individual clinical cases or a series of cases. A case
report or even a series of cases reporting that a par-
ticular drug treatment was successful does not offer
strong or reliable evidence of the efficacy of that treat-
ment. Although this type of publication is ranked
rather low on the hierarchy list of primary literature,
the importance of case reports is still significant. In
fact, the medical community’s awareness of HIV and
AIDS was first brought to light by case and case series
reports describing patients with unusual tumors and
immunologic deficiencies.®

Cross-sectional studies are, essentially, snapshots
of data collected from a cross-section, or sample in
time, of a population. They include survey studies and
epidemiological research. Although this type of re-
search seems simplistic on the surface, epidemiologists
apply scientific principles and a study design in order
to obtain meaningful and valid results. A commonly
cited example of a poorly constructed survey recounts

Component
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the telephone-based survey of potential voters prior to
the 1948 U.S. presidential election between Thomas
Dewey and Harry Truman.” This survey, and other
similar ones, predicted that Dewey, the Republican,
would be the likely winner of the election. However,
Truman won the election. The fact that three times
as many Republicans owned telephones compared to
their Democratic counterparts may have been over-
looked and may have introduced a serious sampling
bias, leading to the faulty study.

Note that there are many look-a-like, sound-a-like
terms in the literature. Do not confuse the terms
cross-sectional and cross-over. These terms are great
fodder for trick exam questions.

COMPONENTS OF A PRIMARY
LITERATURE PUBLICATION

Table 2-2 lists the eight common components of
published clinical trials. Experienced practitioners
are generally more effective and more efficient at
reading and comprehending the primary literature

Title Avoid making clinical conclusions and decisions based on a title of a trial even when the title
reads something like, “Drug X is highly effective for the treatment of Y disease.”

Authors

The list of authors can provide a wealth of information regarding the investigators’ expertise

and authority and the potential quality of the study. Likewise, it can suggest the presence or
absence of potential study bias or conflicts of interest.

Abstract

Avoid making clinical conclusions from a study abstract. Abstracts do not adequately describe

potential experimental weaknesses. They are provided to give the reader an idea of content
relevance and a reason to critically read the study.

Introduction

A valuable section of the publication that provides background information, the study’s general

objectives, and, often, the rational for the study's specific uniqueness or importance.

Methods and results

This chapter will discuss and put into perspective a number of types of study methods and

endpoints and how they influence the applicability of the study’s findings and the type of
statistical assessment most appropriate for the study results. See Tables 2-3 and 2-4 for
detailed information on the methods and results sections of a publication.

Discussion/conclusion  Avoid making clinical decisions based solely on a study’s discussion or conclusion section. The
discussion/conclusion is a valuable source of insight from the investigators and commonly
points out the strengths and weaknesses of the investigation and the importance of the
results. However, this section is occasionally a place where investigator bias emerges.

References

In addition to the obvious purposes of a reference list following any publication, references in

a clinical trial can provide the reader with a rich source of information detailing background
information about disease and therapy. Additionally, investigators occasionally reference
standards or previously used methodologies rather than detailing those methods used in their

investigation.
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because they know what to look for and where to
find it in published studies. In this section, we will
lightly touch on the most important characteristics
of some of the components of clinical trials. Later in
the chapter we will examine experimental methods
and results in more depth.

One important recommendation with regard to
the title, abstract, and conclusion sections of the
clinical trial is that the reader should never base a
clinical decision based solely on the information con-
tained in these sections. The purpose of the abstract
is to give the reader sufficient information to decide
whether reading the entire study is appropriate to
the reader’s question.® When a publication’s title, ab-
stract, or conclusion suggests efficacy or superiority
of a drug therapy, the reader must fully assess the
study’s internal and external validity prior to apply-
ing its conclusion to a specific patient or group of
patients. Readers of a published investigation must
ask themselves the following four questions before
applying the findings of a clinical trial:

Internal validity:

1. Are the study design and methods appropriate?
2. Are the study results interpreted correctly?

External validity:

3. Are the study’s subjects similar to my
patients?

4. Is the disease treated in this study the same
disease that I will be treating?

Study results are not always accurately reflected by
the investigators in the discussion/conclusion section
in the last pages or paragraphs of a clinical trial. This is
where biases often show themselves. The above ques-
tions can only be answered through a thorough exam-
ination of the study’s design and outcome assessment.

RESEARCH METHODS

Table 2-3 provides an overview of the most important
and most common experimental methods utilized in
clinical trials. Inclusion and exclusion criteria serve
as the primary basis for one’s judgment of a trial’s
external validity. These criteria help to ensure that the
enrolled subjects represent the appropriate disease
and prognosis, are able to adhere to the protocol,
tolerate the study’s interventions, and be accurately
assessed on the study’s outcomes. An investigator
whose specialty practice focuses on women athletes

conducts a large, well-designed RCT, which primar-
ily enrolls middle-aged females with a diagnosis of
osteoarthritis, to study a newly developed medication
for arthritis. Is this a poor study due to its narrow
external validity? No, it’s not at all poor. However, it
would certainly be inappropriate to apply the results
of this study to young, male Veteran’s Administration
patients with rheumatoid arthritis. The above issues
relate to the external validity of the study relative to
the clinician’s needs.

Randomization is discussed in several sections
of this chapter and, for now, is adequately defined
in Table 2-3. Stratification is a method for clas-
sifying subjects into secondary groups, or strata.
Stratification is used to prospectively identify po-
tential subject characteristics that may influence
outcomes so that the effects of these “nuisance”
characteristics can later be assessed. We will discuss
these “nuisance” variables throughout this chapter
and will frequently refer to them as confounders or
covariates. Let’s discuss an example: A multicenter
study’s primary objective might be to investigate the
superiority of one antidepressant medication over
another. The investigators also want to further eval-
uate differences in efficacy between males and fe-
males. In this case, subjects are first stratified as male
or female and then randomly assigned to treatment
with antidepressant A or antidepressant B. Now, the
study will not only assess the overall difference in ef-
ficacy between drugs, it also can assess how gender
affects the outcome of either drug therapy. But wait,
that’s not all! In multicenter trials, center stratifica-
tion is usually identified so the investigators will be
able to detect unexpected outlier outcomes from one
or more centers. In fact, in a multicenter clinical trial,
a commonly used stratification, or confounder, is
the site or center at which patients are treated and
evaluated.

The use of blinding and placebos in clinical trials are
related techniques that reduce the potential for bias
and add experimental control, respectively. Blinding
is used to prevent the patient and/or the investigator
from knowing which intervention a patient is receiv-
ing—active or placebo. A patient or an investigator
with a preconceived (and sometimes subconscious)
notion that one intervention is superior to another
may falsely perceive or interpret an outcome in a
biased fashion. Blinding takes on a more important
role when an endpoint is subjective, such as pain, nau-
sea, or various “global impressions of improvement.”
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Table 2-3 Experimental Methods

Method Description

Inclusion/exclusion Inclusion and exclusion criteria directly impact the external validity of the study.
criteria Common inclusion criteria:

« Subjects with signs, symptoms, or documentation of diagnosis of the relevant
disease or condition being studied.

* Subjects who are available and able to adhere to the study protocol.
Common exclusion criteria:

« Subjects at undue risk, such as subjects with a history of allergy to the study
drug and subjects who might not tolerate the intervention.

« Subjects with comorbidities potentially complicating the responsiveness of the
disease or the investigator's ability to assess the treatment response.

Randomization and Randomization is a structured procedure for assigning subjects in a balanced and
stratification random fashion to the different interventions the study is comparing. Stratification is
frequently used to prospectively identify subject characteristics that might influence
the response to the intervention.

Blinding To prevent inadvertent bias, investigators and subjects (double blinding) or subjects
(single blinding) often are kept from knowing what intervention a subject is receiving.

Power and power analysis A study must enroll and evaluate the outcomes of a sufficient number of subjects to
ensure study validity, specifically when the results of the study indicate that no statis-
tically significant difference could be found between the different interventions. An
inadequately powered study might not be able to show superiority of an intervention
when a superiority does, in fact, exist. The number of subjects needed for a study
should not be confused with the number needed to treat (NNT). NNT is a pharmaco-
economic term unrelated to study requirements or study power.

Placebo control A placebo is an inert dosage form or a sham treatment designed to look like an
active therapy. Placebos are necessary for blinding and for bias control. Blinding
sometimes involves a more complex use of placebos. An example would be when an
investigator is comparing an intravenously administered medication to an orally ad-
ministered medication. In this case, patients might receive an active oral medication
and a placebo intravenous medication, or vice-versa. This is termed a double-dummy.

Intent to treat When a patient is randomized and assigned to a treatment group, that patient’s out-
come data is included in the results of the treatment group, regardless of whether
the patient adheres with the medication plan, whether the patient shows up for all
of the assessment visits or misses several, or even drops out of the study.

Per-protocol When a patient is randomized and assigned to a treatment group, that patient’s out-
come data might be discarded if the patient misses key assessments or drops out
of the study.

Data interpolation, LOCF When an intent-to-treat method is used and a patient misses one or more of a series of
response evaluations, investigators are faced with the challenge of how to deal with
the missing data. Many different approaches are used, including just leaving the miss-
ing data out. Another approach would be to reuse the same data from the patient’s
last evaluation. This is referred to as last observation carried forward (LOCF).
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A placebo effect is a common component of many
therapeutic outcomes. A patient being treated for
pain may respond well to a investigational analgesic,
but some portion of this favorable outcome often is
due to the caring and empathic attention that the
caregiver provides. Symptoms of many conditions
wax and wane over time and some conditions spon-
taneously resolve on their own. A study group re-
ceiving a nonpharmacologically active placebo and
the same caring, empathy, attention, and patterns of
waxing, waning, and spontaneous remission serves
as a control for these as well as other phenomena.
How many patients are needed in a clinical trial?
This issue presents itself most often when the results
of a trial have failed to show a statistical difference
in effect between interventions. Does this failure to
show a difference mean that there is no difference, or
does it mean that the study was not powerful enough
to statistically demonstrate a real difference? When a
study concludes that there is no difference between
two interventions, a type II error is being commit-
ted if there is, in fact, a difference. These issues are
related to the study’s power. When a study is being
designed, an investigator will frequently conduct
a power analysis. Students are most familiar with
a study’s n, which is the number of subjects studied, as
determining a study’s power. Note that other factors
affect power, sometimes to a greater degree than just
the n. These factors include, but are not limited to, the
investigator’s estimate of the variability of the results
that will be found, the smallness of the difference that
the study wishes to detect, and the planned alpha ()
value of the study (see the alpha in Table 2-7).
Consider the following example of power: An
investigator calculates that a minimum of 100 pa-
tients must be enrolled, studied, and assessed for a
study power of 80%. A power of 80% indicates that if
no statistically significant difference is found between
interventions for the primary endpoint, then there is
only a 20% chance that a difference really does exist but
that the study did not have a sufficient power to detect
this difference. In other words, this study has a beta (3)
of 0.2, or a 20% chance of a type II error. A commonly
accepted power for studies is 80%; however, many
studies are designed to attain a 90% or better power.
When a study has been conducted and the results
are being evaluated, how does one handle data from
patients who have either dropped out of the study or
who have not adhered to the study’s requirements?
This is a decision that must be made prospectively

prior to the initiation of the study. Data evalua-
tion based on an intent-to-treat (ITT) population
requires that the data on all of the patients who are
randomized and initiated on a particular intervention
will be included in the evaluation of that intervention,
regardless of whether the patients adhered to the
protocol or whether they dropped out of the study
prematurely. In other words, patients intended to be
evaluated within an intervention are evaluated within
that intervention even if they have not adhered to
the intervention. Hollis and Campbell® provide an
explanation of ITT and examine a survey of published
literature. The ways in which ITT methods are de-
scribed and applied and the ways in which missing
data is handled vary considerably between studies.
The reader should not merely take the claim of ITT
use at face value but must critically evaluate the ap-
plication of ITT in each study.

When performing a study, it is realistic to expect
that some patients will miss one or more visits in a
series of assessments. When this occurs, how does
the investigator deal with missing pieces of data?
Many methods of data interpolation are available.
With the last observation carried forward (LOCF)
method, the data from the patient’s last evaluation
is reused to populate the current missing data item.
The assumption in this case is that the patient’s pa-
rameters did not change since the last time he or she
was evaluated. Alternative approaches include inter-
polating with other estimation methods, leaving the
data blank, or assuming the worst evaluation.

An alternative to ITT, study data are evaluated
based on a per-protocol population. With this
method, data from patients who have missed key
assessments or who have dropped out of the study
prematurely are not included in the final evaluation
of the intervention’s efficacy.

Which of the two methods—ITT or per-protocol
—is better? The answer is that both methods have ad-
vantages as well as disadvantages. The ITT method-
ology may underestimate treatment efficacy and the
per-protocol methodology may underestimate treat-
ment failures. Additionally, when patients are dropped
from the evaluation under a per-protocol method,
the lower number of patients might jeopardize the
anticipated power of a study. Let’s face it. It would
not be appropriate to consider only the outcomes of
patients completing a trial when many patients may
have dropped out of the trial because of death, lack of
relief, or intolerable adverse effects.



EVALUATION OF RESEARCH RESULTS

Although not always appreciated, a study’s
demographics table appears in the results section
of the paper. This table is the result of the study’s
inclusion and exclusion criteria and the randomiza-
tion procedure. It is important to review this table for
both potential internal and external validity issues.

A well-designed and executed process of
randomization should result in an equal distribu-
tion of patient characteristics between all of the
study arms; however, the reader should confirm this.
Characteristics such as gender, race, nationality, and
so on are nominal data. Characteristics such as mean
age, duration of illness, and mean blood pressure are
continuous data. Statistical tests often are, but not
always, used to assess the “likeness” of characteristics
between study arms.

Evaluation of Research Results

The most important subject characteristics will
depend on the study’s objectives and endpoints. If a
trial is designed to investigate the efficacy of an anti-
biotic, it might not do well to have an imbalance of
patients infected with resistant organisms between
study arms. These are issues of internal validity, or
the overall reliability of the study itself and its conclu-
sions. Regarding external validity, the reader must un-
derstand the patient types and disease characteristics
being studied to determine if the results and conclu-
sions of the study are applicable to his or her patients.

To appreciate the meaning of the research results,
it is imperative to be able to distinguish between the
study objectives and the endpoints. Further, it is im-
portant to appreciate the differences between different
types of endpoints, including clinical endpoints, sur-
rogate endpoints, and composite endpoints. Table 2-4
includes a brief description of some of these terms.

Table 2-4 Study Results: Types of Outcomes and Endpoints

Type of Outcome

or Endpoint Description

Study objectives A relatively nonspecific description of what a study is designed to find out. Example: “The
objective of this study is to investigate the efficacy, safety, and tolerability of supercillin com-
pared to placebo.” The primary objective here might be the drug’s efficacy, but this state-
ment does not specifically define efficacy, nor does it state how efficacy will be described.

Endpoints Endpoints are very specific and tell the reader precisely what the measure is. For example, for a

lipid-lowering medication, the endpoint might be the mean reduction in LDL cholesterol attained
with therapy, the proportion of patients who attain a normal LDL cholesterol blood level while on
the drug, or the proportion of patients who do not have a cardiovascular event after long-term
therapy with the investigated agent. Endpoints also are designated as primary or secondary. In
most cases, a study has one primary endpoint and multiple secondary endpoints. Occasionally,
a study will designate two endpoints as being co-primary. The primary endpoint is usually the
most important and is the endpoint that the study’s power analysis is usually based upon.

Clinical endpoints

In the above examples of endpoints, “the proportion of patients who do not have a cardio-
vascular event” is a clinical endpoint. As another example, a clinical endpoint might be the
reduction in pain as measured by a visual analog scale, cure rate, or duration of remission.
These endpoints have a common thread in that they measure a direct and clinical outcome,
which represents a “bottom-ine” purpose for the therapy.

Surrogate endpoints

Oftentimes the measurement of clinical endpoints is difficult or requires a long follow-up period.
In the example above, investigators might have to follow their patients on an investigational
lipid-lowering drug for many years before they could determine if the drug prevents subjects
from having heart attacks. In such cases, surrogate endpoints are used instead. In this case,
reduction or normalization of serum LDL cholesterol levels is a surrogate marker. Some sur-
rogate markers have a better correlation to a clinical endpoint than others.

Composite endpoints

Oftentimes an endpoint used in a clinical trial is actually a combination of several endpoints. For
example, consider the following endpoint: “Patients having a myocardial infarction, being ad-
mitted to a hospital for a cardiovascular event, or dying from a cardiovascular cause.” In this
case, a patient having one or more of these endpoint components is counted as one endpoint.
Endpoints combined into a composite endpoint should be of similar severity and importance.
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A clinical trial will describe its objectives within the
paper’s introduction. Study objectives are relatively
nonspecific descriptions of the aims of the research;
for example, “The main objective of this trial is to
study the efficacy of drug X in the treatment of
disease Y.” Endpoints, in contrast, should be very
specific and should clearly denote the detail of the
measurable result; for example, “The primary end-
point of this study is to determine the proportion of
patients treated with drug X who attain adequate pain
control as defined by an 80% or greater reduction in
their visual analog pain scale scores.”

The majority of clinical trials will identify a single
primary endpoint. Occasionally a study will identify
a dual primary endpoint. The primary endpoint is the
most important endpoint of the trial and is usually
the endpoint that is included in a study’s power
analysis. Therefore, the predetermined estimate of
a type Il error risk in studies having a power analysis
applies only to the primary endpoint. Clinical trials
usually have multiple secondary endpoints. Officially,
there is no such thing as a tertiary point, but you may
occasionally see one identified in a clinical study. It’s
a reasonably good bet that the investigator of such a
study did not read this chapter.

Some endpoints are termed clinical and others
surrogate. Clinical endpoints directly measure
outcomes related to a patient’s symptoms, morbidity,
and mortality. Examples include cure rates, symptom
improvement, speed of response, duration of remis-
sion, death rates, and so on. Surrogate endpoints
are indirect measures of a clinical outcome and are
generally easier and quicker to assess.!” Surrogate
endpoints include laboratory values, physiologic
changes, and other values that relate, to varying
degrees, to an actual desired clinical outcome for a
patient. For example, when patients are treated for
hyperlipidemia, a true clinical goal is the avoidance of
long-term cardiovascular events. However, measur-
ing this outcome requires lengthy trials and a large
number of study subjects. A surrogate endpoint, such
as the reduction of serum low-density lipoprotein
(LDL) levels, requires smaller and less lengthy trials.
In this case, reduction of LDL levels in patients is
considered to be a reasonably good surrogate that
corresponds reasonably well with clinical long-term
cardiovascular risk.

In the above clinical endpoint example, cardio-
vascular events may include acute coronary events,
acute cerebrovascular events, hospitalization for

a cardiovascular event, death from any cardiovas-
cular cause, and so on. A cardiovascular study’s
composite endpoint would typically include sev-
eral specific endpoints. Any single patient can be
counted as having reached the composite endpoint
only once. For example, a patient who suffers an
acute coronary event, is hospitalized, and then
subsequently dies would be counted as only one
endpoint incident. Combining endpoints into a
composite has the advantage of requiring shorter
clinical trials and fewer study subjects compared to
trials with only a single endpoint, such as an acute
coronary event. It is mandatory that each compo-
nent of the composite endpoint be similarly impor-
tant, similarly severe, and clinically related to the
composite.!!

The four basic types of data are listed and de-
scribed in Table 2-5. Continuous data have a pre-
dictable mathematical relationship between data
points. Blood pressure, distance walked, and weight
gained or lost are examples of continuous data. A
patient with peripheral artery disease who can walk
20 meters without pain is able to walk twice as far as
a patient who could only walk 10 meters. A patient
who has lost 30 pounds on a weight-reducing diet
has lost twice as much weight compared to a patient
who has lost only 15 pounds. Continuous data can be
parametric or nonparametric. The term parametric
denotes that the data points are evenly distributed
around a mean, or average. Data that are skewed,
containing significant outliers, are considered to
be nonparametric. An example of nonparametric,
or skewed, data might be a set of final examination
scores taken by a small class of 10 students. Nine
of these students received an examination grade
ranging from 89 to 94 percentage points. The 10th
student had a very bad day and received a score of
zero. Here, a very small proportion of the subjects
introduced a value that was so much different from
the majority that it significantly altered, or skewed,
the average. In general, the class did very well as a
whole; however, the average class score of 80% would
inappropriately give the impression of a mediocre
class result. It is inappropriate to describe nonpara-
metric continuous data with statistical terms, such as
the mean, and it is equally inappropriate to assess it
with parametric statistical tests, such as the Student’s
t-test and others. In this example, it would be bet-
ter to describe the class performance in terms of a
median score of 90% rather than the mean of 80%.



Evaluation of Research Results

Data Type Description

Continuous, parametric
uted around a mean.

A set of numeric data points that have a mathematical relationship and are evenly distrib-

Example: Class grades on an examination where the average grade (85) is close to the
center of all grades, which range from 80 to 90 points. A student earning an 88 has
done about 10% better than a student earning an 80.

Continuous, nonparametric A set of numeric data points that are skewed (i.e., not normally distributed around the

(skewed)
of the data as a whole.

mean). Either abnormally high or low outliers cause the mean to be a poor descriptor

Example: The same examination results as above, but in this case a small number of
students earned 0, causing the mean to underestimate the overall good performance

of the class as a whole.

Examples of commonly skewed clinical data: length of hospital stay (LOHS), serum

triglyceride levels

Ordinal

An ordered set of data where there is no mathematical relationship between the values.

Example: Results of a Likert-type scale evaluating a course instructor. Each student
could rank the instructor as: 1 = terrible, 2 = OK, 3 = pretty good, or 4 = wonderful.
It would be inappropriate to report the results as a mean score because there is no
mathematical relationship between the numbers 1 through 4. A mean score of 4 does
not mean that the instructor is twice as good as another faculty member with a mean
score of 2. This is where medians are appropriately used.

Examples of ordinal clinical data: Likert scales measuring pain intensity, depression, or

anxiety.

Nominal (categorical)

Simply descriptive categories or names. Most commonly reported as proportions.

Examples of nominal clinical outcomes: proportion of patients cured, improved,
worsened; dead, alive; and in remission vs. stabilization vs. progression.

In clinical trials, length of hospital stay® and
serum triglyceride levels!® often are skewed. There
almost always seems to be a small number of pa-
tients who have unusually long hospital stays and
unusually high serum triglyceride concentrations.
In both of these examples, you will find that sta-
tistical tests used to assess these data are designed
for nonparametric data. Skewed continuous data
is transformed into ordinal data and assessed as
ordinal data.

With ordi-
nal data, the
data are ranked
but there is
no consistent
quantitative re-
lationship be-
tween the data
points. Likert
scales generate
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A number of outcomes seen

in clinical trials are frequently
skewed and therefore nonpara-
metric. Statistical tests for
assessing nonparametric

data must be used to analyze
such data.

ordinal data. Several Likert scales measure the sever-
ity of conditions such as anxiety and depression. An
11-point scale is commonly used clinically to quan-
tify pain severity. It assigns a point value from 0 to
10, with each value having a pain severity description
(e.g., 0 points for “no pain” and up to 10 points for “the
worst pain imaginable”). This data is ordinal and not
continuous because
there is not a consistent
quantitative relation-
ship between scores;
that is, a pain score of
4 cannot be assumed to
be twice as severe as a
pain score of 2.

Consider the following regarding ordinal
endpoints:

CLINICAL PEARL

Few clinical trials use ordinal
data for their outcomes. If you
think that an outcome repre-

correct but think again.

1. Relatively few clinical trials use ordinal data
for their outcomes.
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2. Oftentimes in clinical research the results
of ordinal and Likert scales, such as those
used to assess pain, depression, and anxiety,
will be assessed statistically as though they
were continuous data. This practice, right or
wrong, is a little more acceptable in robust
trials evaluating large numbers of patients.

3. The pain scale commonly referred to as VAS,
or the visual analog scale, uses a continuous
horizontal strip that does not have pain sever-
ity descriptions or rating numbers. Patients
are told to indicate their pain severity from
left-most (no pain) to right-most (worst pain).
A clinician then measures the point’s position
in millimeters and rates the patient’s pain
severity on a continuous scale. VAS data are
usually considered to be continuous rather
than ordinal data.

The word nominal is derived from the Latin word
nominum, meaning “name.” Nominal data, also
known as categorical data, do not have a mathemati-
cal value. Nominal data can be dichotomous (dead ver-
sus alive, cured versus not cured), but more than two
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Normal distribution curve and standard deviation.

the exam. The mean score of 85% +1 SD represents
all of the grades between 83% and 87%. Because the
mean *1 SD includes approximately 68% of the re-
sults, you can assume that 68% of the class earned an
exam grade between 83% and 87%. Likewise, the mean
+2 SD represents grades between 81% and 89%, which
describes 95% of the students in the class. Virtually all
of the student grades are included in the mean +3 SD,

CLINICAL PEARL possible outcomes are

possible (cured ver-
When a study defines its sus improved versus
endpoint as “the proportion of worsened). The key to
patients who” or “the percentage recognizing nominal
of patients who,” you can be

fi hat th data is that it is re-
E(r)?rtlti)r/] E;:Ion ident that the data are ported as a proportion

so all of the exam grades probably fell between 79%
and 91%. When a standard deviation is large rela-
tive to its mean, one can assume that the results are
either skewed and/or excessively variable. Say that the
students took a poorly written examination and the
mean grade was 80% and the S.D. was 40%. If you go
through the math, you see that we run into trouble.

or a percentage.

Descriptive and summary statistics are listed and
described in Table 2-6. As a general statement, only
parametric and continuous data should be reported
as a mean. Skewed continuous data and ordinal data
are most appropriately described using the median,
range, interquartile ranges, and percentiles.

Figure 2-1 illustrates the meaning and utility of a
standard deviation (SD). When a mean is reported,
it is common practice to report a standard deviation.
The standard deviation describes how the results are
distributed around the mean. For example, say that
exam results in a course are equally, or normally, dis-
tributed around the average grade for the exam. The
median grade on the exam is generally very close to
the mean grade for that exam. The results are reported
as a class mean, say 85%, with a standard deviation of
2%. These two summary statistics offer a good bit of
information on how the class as a whole performed on

You would estimate that 68% of the students earned
an exam grade between 40% and 120% and 95% of the
students earned a grade between 0% and 160%. This
doesn’t make a lot deal of sense. If this were to happen,
the examination was either not valid or the wrong
Scantron® examination key was used.

CONFIDENCE INTERVALS

Confidence intervals reveal important information
regarding the statistical significance of results and
often are used in published reports.!>!3 A commonly
used explanation of what a 95% confidence interval
(95% CI) is: “If you repeat a clinical trial 100 times,
the mean result of 95 of these studies will fall within
the 95% confident interval.” Well, this explanation is
correct, but who would waste their time and money
repeating a trial that many times? Let’s try to approach
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Table 2-6 Descriptive Statistics

Statistic Description

Mean The most commonly used descriptive statistic. Also called the average or
arithmetic mean, it is calculated by simply totaling all the values of the dataset
and dividing this value by the number of data points. The mean is used only
for continuous data and is best used as a descriptor of nonskewed continuous
data. The standard deviation is a statistic that describes the dispersion
or spread of data around the mean of the sample (see Figure 2-1).

The median is the centermost value of a dataset. The median is a better
descriptor of ordinal or significantly skewed continuous data.

Example: Housing values in a small neighborhood of seven houses are as
follows: $100,000, $120,000, $125,000, $150,000, $180,000, $190,000,
$600,000. The median value of $150,000 better describes the value of the
houses in this neighborhood than the mean of $210,000.

The mode is the value that occurs most frequently in a dataset. It often is not
reported but it is useful when describing things such as the incidences of an
occurrence related to time, age, or season.

Examples: The incidence of snowstorms in this area is highest in February. Or,
seizure disorders are most frequently diagnosed during two age ranges, less
than 6 years and over 65 years. The seizure example is bimodal.

A simple ratio describing the likelihood of an event.

Example: The risk of a developing cervical cancer in a certain population of un-
vaccinated women is approximately 1 in 30 over 5 years, a risk ratio of 0.033,
or 3.3%. In a similar population that received a series of HPV vaccines, the risk
ratio is 0.016, or 1.6%.

In the example above, one can estimate, simply by subtraction, that being
vaccinated would reduce the absolute risk of developing cervical cancer by
0.017, or 1.7%.

Using the same above example, the relative risk for cervical cancer with

Median

Modes

Risk/hazard ratio

Absolute risk reduction

Relative risk and relative risk

reduction vaccination is estimated, by simple division, to be only 0.48, or 48%, of the
unvaccinated population's risk, a relative risk reduction of 0.52, or 52%.
Odds ratio We will not go into detail about odds ratios, but the odds ratio will usually be

similar to the risk ratio in similar situations. However, because odds are not
the same as risks, the odds ratio can deviate from the risk ratio and be much
higher as the risks of an event becomes greater.

this from a very slightly different angle using the fol-
lowing fictitious clinical trial.

A very well-designed and executed clinical trial
compared the lipid-lowering effect of a new agent,
Newlip, to an older agent, Olelip, in a sample of
200 hyperlipidemia patients. The primary endpoint
was the mean difference in mean LDL reduction after

Based on this information, consider the following
questions:

1. Is the apparent superiority of Newlip statisti-
cally significant at a p value of 0.05 or less?

2. Should I expect that when Newlip is available
for widespread use that it will outperform

6 months of therapy with Newlip versus Olelip. An
LDL reduction of 35% was found with Newlip and
a 30% reduction with Olelip. The mean difference
was 5%, and the 95% CI for this mean difference was
determined to be 1% to 7%.

Olelip by 5%, on average?

This 5% superiority for Newlip is the mean result
of this single study based only on a sample of patients
selected from potentially millions of patients with
hyperlipidemia. Therefore, the 5% result can only be, at
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best, an estimate of its real effect. If the study included
millions of patients, then one could be relatively secure
that the 5% better response is precise and reproducible.

The following are the answers to the above
questions:

1. Newlip was shown to be statistically
significantly better than Olelip. The 95% CI
tells us that the possible differences (with 95%
confidence) between the drugs is somewhere
between 1% better (the worst case) and
7% better (the best case). The worst case of
being 1% better is still better, and therefore
the drug is statistically superior with a p value
of 0.05 (i.e., 5%) or less.

2. The 95% CI suggests that the probable
real superiority of Newlip may be as little
as 1% or as high as 7% when used in the
larger population. Which is more likely to
be correct? The 1% estimate is exactly as
probable and valid as the 7% estimate, or, for
that matter, any result between 1% and 7%.

But what if the mean difference was 5% and the
95% CI was —1% to 7%? In this case, the difference
between the two drugs is not statistically significant.
In fact, the possibility exists that Newlip is actually
1% worse than Olelip. This possibility of inferiority is
no less likely than the possibility that it is 7% better.

Note that the 95% CI (—1% to 7%) suggests nonsig-
nificance because a zero is found within the interval.
This is true when the data being assessed are absolute
data or nonratio data. In other words, zero superior-
ity is a valid possibility.

If we were looking at ratios (hazard ratios, odds
ratios, or risk ratios) in a 95% CI, then finding the
value of 1.0 in the interval would suggest statistical
nonsignificance. In other words, a ratio of 1.0 within
the confidence interval suggests that no change in
the risk, odds, or hazard is a valid possibility.

When using 95% Cls for determining noninferior-
ity, the investigator looks within the confidence in-
terval for the worst case (usually the lower bound of
the CI) and compares this value to a predetermined
threshold for inferiority. For example, imagine that
this fictitious lipid study was designed as a nonin-
feriority trial. To determine if Newlip is noninfe-
rior to Olelip, the investigator set a —5% inferiority
threshold for Newlip. The mean difference in lipid
reduction with Newlip (35% reduction) compared to

Olelip (30% reduction) was +5% better reduction if
the 95% CI was found to be —=7% to +11%. Based on
these results, Newlip was not found to be noninferior
to Olelip because it might be more inferior than the
inferiority threshold of —-5% (i.e., possibly inferior by
as much as —7%).

STATISTICAL TESTS AND
APPLICATION

The key to mastering this chapter’s elusive skill of
applying the appropriate statistical tests to study
data is Table 2-8, the “Application of Statistical
Tests.” The effective use of this table depends on
your having a good understanding of the data types
just discussed and a working understanding of the
study designs and confounder types listed. Before
discussing the application of statistical tests, how-
ever, let’s use Table 2-7 to review some fundamen-
tal statistical concepts and definitions.

When reviewing published studies, you will fre-
quently encounter the term variable. The two types
of variables are independent variables and dependent
variables. An independent variable is a causative
variable and is either the primary intervention that
is being studied in a trial or a secondary factor that
has the potential for influencing the research results.
The primary independent variable in a drug study is
simply the administration of the study drug to study
subjects. Dependent variables are the outcomes
caused by the independent variables. In plain English,
the independent variable, the drug, is expected to
cause outcomes, or dependent variables, such as
therapeutic effects and adverse effects.

In most clinical situations, a variety of conditions
can influence the expected results of an intervention,
or independent variable. For example, say that an
antihypertensive drug therapy (the independent vari-
able) is expected to result in a mean blood pressure
lowering (the
dependent vari-
able) in a group
of patients with
hypertension.
A number of
subjects in the
trial, however,
might have
characteristics

CLINICAL PEARL

It is important to remember
that type | errors are only
possible when the results are
determined to be statistically
different and that type Il errors
are only possible when no
statistical difference is found
between the results.



Term/Concept Description

Variables are simply a fancy way of saying things that are done or things that result when a
study is performed. Independent variables are interventions that are not affected by other

Independent vs. de-
pendent variables

Statistical Tests and Application

things in the study. Simply put, the main independent variables are the interventions that are
being studied (e.g., administration of drug X and a placebo in a trial comparing the efficacy
of drug X to placebo). Dependent variables are affects that are influenced by the independent
variables and are measurable and variable. Simply put, dependent variables are the outcome

measurements of the study.

Example: The independent variable, administration of antihypertensive drug A, results in a
dependent variable, the mean blood pressure change of the subjects.

Confounders and
covariates

Confounders and covariates also are independent variables. They might affect the outcome of
the study results, but they are usually not the main intervention being studied. Confounders

often are categorical or nominal in nature, as the example illustrates. Covariates, in contrast,
are continuous data confounders that might possibly alter the outcome, such as baseline

(pretreatment) blood pressure.

Example: Drug X is expected to reduce the subjects’ blood pressure, but confounders such as
obesity, the clinic in which the patient is being treated and studied, race/ethnicity, and so on,
might alter the degree of blood pressure lowering.

Type | error and
alpha (o)

If an investigator looks at the results of a clinical trial and concludes that one treatment is better
than (or different than) another and the difference in apparent efficacy was due to chance

rather than the differences in the efficacy of the drugs, the investigator has made a type |
error. The risk of a type | error is almost never zero. Researchers generally accept up to,
but not greater than, a 5% risk of making a type | error. When a study is being designed, an
investigator will prospectively choose the level of type | error risk he or she will accept once
the study is completed. This is called the alpha, or o, and it will always be 5% (0.05) or less.

Type Il error, beta
(B), and power

If an investigator looks at the results of a clinical trial and concludes that one treatment is no
better than (or is not different than) another and the apparent lack of difference is false and

was due to chance or a weakly powered study, the investigator has made a type Il error.
Beta, or B, is the risk of erroneously concluding “no difference” when a difference really
exists. Generally, a beta, or chance of a type Il error, of 20% (0.2) or less is acceptable.
The corresponding power value in this case is 80% (0.8) or more.

pvalues

A pvalue is generated from the result of a statistical test of outcome data, and it simply pro-

vides the chance that a type | error has occurred.

Example: The results of a trial report that 60% of patients treated with “supercillin” for a skin
infection are cured while 65% of patients treated with “super-duper-cillin” are cured. The result
of a Chi-square statistical analysis of the data is reported as a p-value of 0.06. A p-value of
0.06 means that there is a 6% chance that a type | error would occur if the investigator con-
cluded that “super-duper-cillin” was statistically superior to “supercillin.”

such as obesity or might be members of a racial or
cultural group that has a different response to blood
pressure medications. As discussed previously, these
secondary, or nuisance, independent variables are
confounders. When a confounder represents a con-
tinuous data type, such as baseline blood pressure or
body mass index, it is called a covariate.

Type I and type II errors are relatively easy to un-
derstand and are described in Table 2-7. Remember

which type of error is which and that type I errors
are only possible when results are concluded as being
statistically different and type II errors are only pos-
sible when no statistical difference is found between
results. Two of the most important concepts regard-
ing p-values are what they tell us and what they don’t
tell us. Note that p-values simply provide a measure
of the risk of a type I error if it is concluded that two
results are different. When a statistical test indicates
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that the mean result of one intervention is statisti-
cally significantly different from the mean result of
another intervention with the p-value of 0.02, then
there is a 2% chance that concluding such a differ-
ence is incorrect and that the difference was a result
of chance rather than the studied intervention (a type
I error). Likewise, a p-value of 0.06 would suggest a
type L error risk of 6%, which is above the universally
accepted limit of alpha of 5% and is generally thought
of as being statistically nonsignificant.!*

It is important to note that statistical significance
is quite different from clinical significance. A statisti-
cally highly significant difference between two results
is not evidence for a clinically significant difference. A
statistical significance defined with a p-value of 0.001
compared to a p-value of 0.04 does not indicate a dif-
ference in superiority or effect size of either result.
It only indicates that in the first case the chance of
a type I error is only 0.1% and the chance of a type I
error in the second case is 4%. When reporting results
in a drug information response, and stating that an
intervention produced a statistically significant bet-
ter result than another intervention, nothing has been
said about how superior
one intervention is com-

and subrow. The statistical test found at the intersec-
tion of a column and row of the table is generally
the most appropriate statistical test designed for that
result.

Let’s work through a couple of examples.

o Example 1: A clinical trial compares the abil-
ity of an inhaled long-acting beta-adrenergic
agonist to reduce nighttime awakenings due
to shortness of breath compared to the use of
a placebo inhaler. Eighty patients are recruited
and randomized in a 1:1 ratio to receive active
therapy or placebo. The primary endpoint is
defined as the difference between the mean
number of nighttime awakenings per week in
the active versus the placebo study groups. The
investigators are not interested in assessing the
effects of any potential confounders or covari-
ates in this study. The trial results indicate that
the use of the active beta-adrenergic agent is
associated with a mean frequency of one night-
time awakening per week, and the placebo
therapy is associated with a mean frequency of
three nighttime awakenings per week. Which
statistical test is most appropriate to determine
if this difference is statistically significant?

pared to the other. This
is still true even when
the p-value is given. It is
necessary to include the
actual difference in the
results, such as drug A o Example 2: This study is practically identical
resulted in a mean blood to that described in Example 1, but in this trial
pressure reduction that the results of three interventions are compared:
was 10 mm Hg greater weekly nighttime awakenings on beta-adrener-
than that produced by gic agonist A versus beta-adrenergic agonist B

Statistical significance is not the
same as clinical significance.

A statistically highly significant
difference between two results
is not evidence for a clinically
significant difference. A statisti-
cal significance defined with a
pvalue of 0.001 compared to
a pvalue of 0.04 does not indi-
cate a difference in superiority
or effect size of either result.

Answer: The correct statistical test is Student’s
t-test. The study features two independent
groups, parallel design arms, no cofounders,
and continuous parametric data.

drug B.
Let’s now move on to Table 2-8. The steps involved
in utilizing this table are as follows:

1. Identify the study’s design. (column 1)

2. Determine if the investigators intend to
evaluate confounders or covariates. (column 2)

3. Identify the data type of the results being
statistically assessed. (row 1)

4. See the appropriate statistical test provided
for that study design, confounder(s), and
data type. (intersection of column 2 and row 1)

Depending on the answers to these questions the
user would select the most appropriate column, row,

versus inhaled placebo. Which statistical test
is now the most appropriate to determine if
there is a statistical difference between any of
the three results?

Answer: The correct statistical test is
ANOVA (one-way analysis of variance). The
study features more than 2 independent groups,
parallel design, no cofounder, and continuous
parametric data.

I will offer a few general pearls about data types
and study design and then will comment on a few
special considerations related to selected statistical
tests discussed in Table 2-8.
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Table 2-8 Application of Statistical Tests

Nominal or
Ordinal or Skewed Categorical
Continuous Data Data

Continuous
Parametric Data

Confounder

Study Design

(Data Type)

Parallel design,

No confounder

Student's ttest

Wilcoxon rank

Chi-square or Fisher's

2 arms sum¢d exact test
1 confounder 2-way ANOVA 2-way ANOVA Mantel-Haenszel
(categorical) ranks chi-square¢ or
Cochran-Mantel-
Haenszel chi-square
> 2 confounders ANCOVA ANCOVA ranks Logistic regression
(categorical) or
> 1 covariates
(continuous)
Parallel design, No confounder 1-way ANOVA Kruskal-Wallis? Chi-square
> 2 arms
1 confounder 2-way ANOVA? 2-way ANOVA Mantel-Haenszel
(categorical) ranks? chi-square or
Cochran-Mantel-
Haenszel chi-square
> 2 confounders ~ ANCOVA? ANCOVA ranks?2 Logistic regression

(categorical)/
> 1 covariates
(continuous)

Crossover, 2 arms

Not applicable

Paired (Student’s)
ttest

Wilcoxon signed
rank

McNemar chi-square

Crossover, > 2 arms

Not applicable

Repeated measures
ANOVA2b

Friedman
ANOVAa

Cochran Q

Pre-post

No confounder

1 confounder
(categorical)

> 2 confounders
(categorical)/
> 1 covariates
(continuous)

Paired (Student's)
test

Repeated ANOVA

Repeated measures
regression

Wilcoxon signed
rankd

2-way ANOVA
repeated
ranks

Repeated
measures
regression

McNemar chi-squared

aANOVA and ANCOVA tests, when used to assess more than two comparisons, will only indicate that at least one result is statistically dif-
ferent. A multicomparison procedure (MCP) is then performed to determine which result is different.

bRepeated measures ANOVA also can be used in independent group trials when repeated measurements are taken from the same subject.
Example: Blood pressure measurements at 1, 2, and 3 hours following treatment.

¢Mantel-Haenszel chi-square or Cochran-Mantel-Haenszel tests are commonly used when the study uses stratification in the methodology.
Example: The center in multicenter studies.

dDo not confuse Wilcoxon rank sum, Wilcoxon signed rank, and Wilcoxon tests. They are not the same. The Wilcoxon test is used to evalu-
ate time to an event (e.g., survival).
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The statistical tests in column 4, “Ordinal or
Skewed Continuous Data,” are specifically designed
to assess ordinal data. Clinical trial readers will find
that these tests are frequently employed when data
are continuous but not parametric. As noted earlier,
skewed continuous data cannot be adequately de-
scribed using the statistical terms meant for paramet-
ric data and means of results. Likewise, statistical tests
designed for parametric data are inappropriate when
the data being evaluated are skewed and nonparamet-
ric. When an investigator is faced with the need to
assess skewed continuous data, it might be necessary
to convert the data from continuous to ordinal data
and then assess the “ordinalized” data using statistical
tests found in the ordinal statistical column.

Regarding the influence of confounders or covari-
ates on the appropriateness of a statistical test, the
reader should appreciate that investigators are not
required to consider them when statistically assess-
ing their data, but failure to do so might constitute a
study limitation in some instances.

The Student’s ¢-test is the simplest and most
straightforward statistical test for continuous para-
metric data. When an investigator uses more com-
plex statistical assessments such as ANOVA or
ANCOVA, there is usually a good reason to do so.
Likewise, the same holds true when investigators
use statistical tests that are more complex than the
Wilcoxon rank sum for ordinal data or the chi-square
(x?) test for nominal data.

There are two reasons to use ANOVA tests. The
first is that the two-way ANOVA is utilized similarly
to the Student’s ¢-test (continuous data, comparing
two mean results) except that in this case the effect
of a confounder needs to be controlled within the sta-
tistical assessment. In essence, a two-way ANOVA

evaluates the effects

CLINICAL PEARL

The student’s ttest is the sim-
plest and most straightforward
statistical test for continuous
parametric data. If a more
complex test is used, such as
ANOVA or ANCOVA, there is
usually a good reason why. The
same is true when investiga-
tors use statistical tests that
are more complex than the
Wilcoxon rank sum for ordinal
data or the chi-square (X test
for nominal data.

of two independent
variables: the primary
variable (the drug)
and the nuisance vari-
able (the confounder)
and thus can control
for the effects of such
nuisances and allow a
more selective assess-
ment of the effect of
the primary variable
being studied. The
second reason for
using an ANOVA test

is when a comparison involves more than two study
arms. In such cases, the one-way ANOVA is used to
avoid “multiple-measurement bias.”1> If a Student’s
t-test was used multiple times to evaluate the differ-
ences among three or more treatments, each repeated
comparison would accumulate additive risks for mak-
ing a type I error. The result of a one-way ANOVA will
only tell us that either no difference exists between
any of the interventions results or that at least one
result of the three or more interventions is statistically
different from the others. It will not identify which
result is the different one. In order to identify which
result is different, an additional post-hoc statistical
test or multicomparison procedure (MCP) is required.
There are several MCP procedures, including Tukey,
Scheffe, Duncan, and the Bonferroni correction.

Although ANCOVA is used in situations with mul-
tiple confounders, its main purpose is to assess data
that includes a covariate (a continuous data confounder
such as baseline blood pressure or baseline depression
scores). Just like the ANOVA, when evaluating the dif-
ferences between three or more results with ANCOVA
an additional post-hoc statistical test or MCP will be
required to identify which result is statistically different.

Paired and repeated-measurement statistical tests
are used when data are obtained from nonindepen-
dent groups of subjects, such as those used in cross-
over and pre-post study designs. Additionally, they
are used when studies repeatedly take and evaluate
measurements from an individual subject. The terms
paired and repeated often are part of these statistical
tests’ names; however, you need to recognize that
statistical tests such as the Wilcoxon signed rank,
McNemar, Friedman ANOVA, and Cochran Q tests
also are designed to evaluate data derived from non-
independent sources.

Regarding statistical tests for nominal (categori-
cal) data, many of the statistical tests in column 5
of Table 2-8 are only variations of the chi-square
(Xz) test. The Fisher’s exact test is one example. The
Fisher’s exact test is, essentially, a chi-square test de-
signed to handle smaller data values. If you needed
to statistically evaluate the difference in adverse reac-
tion frequencies between two medication therapies,
you might find that one or more types of adverse re-
action occurs infrequently (e.g., fewer than four or
five incidences). The Fisher’s exact test is designed
to handle smaller nominal values with more preci-
sion. Some investigators always use the Fisher’s exact
test instead of chi-square regardless of the size of the
values in the data. This practice is fine.



Be careful with look-a-like, sound-a-like statistical
names. The Wilcoxon rank sum test, the Wilcoxon
signed rank test, and Wilcoxon test are three differ-
ent statistical tests used for entirely different reasons.
The Wilcoxon test is not included in Table 2-8, but it
is one of several tests used to assess time to an event
or survival.

Table 2-9 lists the major categories of regres-
sion analyses used in clinical research. This table
describes the type and number of explanatory or
causal variables and the type of outcome or result
variables associated with each type of regression test.
Additionally, the common ways in which the results
of regression analyses are reported also are included.
In general, regression analyses explore, model, and
quantify the predictive ability or the contribution of
one or more explanatory variables on an outcome.
An example of a simple linear regression analysis
might be a study investigating the impact of patients’
daily dosing frequency on medication adherence.
In this fictitious regression analysis, it was found
that a higher frequency of doses required each day
correlated with a greater degree of poor medica-
tion adherence (e.g., QID dosing results in poorer
compliance than TID dosing; TID dosing results
in poorer compliance than BID dosing). The study

Table 2-9 Regression Analyses

Predicting Number of Explanatory

Variables (Data Type):

Responses
from Variables

Statistical Tests and Application

reports an 12 statistic of 0.5, which means that 50%
of a patient’s nonadherence can be explained by the
number of dosing intervals that a patient is expected
to take daily.

Previously, we discussed statistical tests that are re-
lated to regression analysis, such as 2-way ANOVA,
ANCOVA, and logistic regression. These tests are
used to control secondary variables (confounders
and covariates) to more specifically focus on the ef-
fects of the primary causative variable being studied
(e.g., the effect of the drug therapy). Multiple regres-
sion analyses, on the other hand, serve to quantitate
the influence of confounders and covariates on the
outcome. We are familiar with and have used the
Cockcroft-Gault equation to estimate a patient’s cre-
atinine clearance given his or her age, weight, gender,
and serum creatinine. From where did this equation
come? Yes, you guessed it, a multiple linear regres-
sion analysis that quantified the influences of age,
weight, gender, and serum creatinine relative to a
patient’s measured renal function.

The Cox proportional-hazard regression and the
log rank regression are two of the more commonly
used regression analyses used for comparing two
or more “survival” curves, such as a Kaplan-Meier
Curve, and for performing time-to-event analyses.

Number of Outcome
Variables (Data Type):
Confounders and Covariates Result Data

Reporting of Statistical
Assessment

Simple linear 1 (continuous) 1 (continuous) Regression coefficient and its 95%
regression Cl, r?, test statistic, p-value

Multiple linear > 1 (continuous or categorical) 1 (continuous) Regression coefficients and their 95%
regression Cl, r2, test statistic, p-value

Simple logistic 1 (continuous or categorical) 1 (categorical) Regression coefficient, OR, and its
regression 95% Cl, test statistic, p-value

Multiple logistic > 1 (continuous or categorical)

regression

1 (categorical)

Regression coefficients, ORs, and
their 95% Cls, test statistic, p-value

Cox proportional- > 1 (continuous or categorical)

1 (continuous time to

Regression coefficients, HRs, and

hazard regres- event) their 95% Cl, test statistic, p-value,
sion (CPHR)* “time-to-event” analysis
Log rank” Compares the time to event 1 (continuous time to  Proportion of event-free patients at a

from 2 or more groups; it
does not evaluate multiple
explanatory variables

event)

given time; test-statistic; p-value

*Both the Cox proportional-hazard regression test and the log rank test are used to compare survival or time-to-event data from Kaplan-

Meier curves.

Abbreviations: HR, hazard ratio; OR, odds ratio; r2, coefficient of determination, R2, coefficient of multiple determination for multiple
regression models; test statistic, t or x2 statistic used to determine the pvalue.
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DISCUSSION QUESTIONS

1. What are some of the limitations of observa-
tional studies as compared to interventional
studies? What are the advantages or ratio-
nales to utilize data from this type of design?
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