
Chapter Objectives

The material in this chapter is previewed in the following list of objectives. AfterTh t i l i thi h t i i d i th f ll i li t f bj ti AftTh t i l i thi h t i
completing this chapter, review this list again, and complete the self-test.

2.1 2.1 In your own words, explain the process of problem solving, and describe
mathematical modeling.

 2.2 State the substitution property.
 2.3 Define similar triangles.
 2.4 State the proportional property of similar triangles.
 2.5 Solve applied problems.
2.2 2.6 Define a function. Describe a function by rule, table, equation, graph,

mapping, or set of ordered pairs. Use the vertical line test.
 2.7 Be able to classify examples as one-to-one. Use the horizontal line test.
 2.8 Distinguish between f and f (x ) notation. Use functional notation.
 2.9 Find the difference quotient for a given function fff
 2.10 Classify functions.
 2.11 Use functions to model problems.
2.3 2.12 Know the graphs of the standard functions in Table 2.1, page 104.
 2.13 Find the domain and range for a curve whose equation is given.
 2.14 Determine when functions are equal.
 2.15 Be able to find the x- and y-intercepts for a curve whose equation is

given.
 2.16 Find points satisfying specified conditions.
 2.17 Determine where a function is increasing (graph rising), where it is

decreasing (graph falling), where it is constant (graph horizontal),
and locate the turning points.

 2.18 Classify functions as even, odd, or neither.
2.4 2.19 Find the shift (h, k ) when given an equation y − k = f (x − h ).
 2.20 Given y = f (x ) and (h, k ), write y − k = f (x − h ).

 2.21 2 21 Given a function defined byGi f ti d fi d b y = f f ((x )), draw the graph of d th h f
y − k = f (x − h ).

 2.22 Given a function defined by y = f (x ), draw the graph’s reflections, 
compressions, and dilations.

2.5 2.23 Define a piecewise function.
2.24 Graph a piecewise function.

 2.25 Graph an absolute value function; translate an absolute value function.
 2.26 Graph a greatest integer function; translate a greatest integer function. 

Graph a rounding up function.
 2.27 Model problems using piecewise functions.
2.6 2.28 Find the composition of functions.
 2.29 Express a given function as the composite of two functions using an 

inner and an outer function.
 2.30 Find the sum, difference, product, and quotient functions.
 2.31 Use composition to write functional iteration.
2.7 2.32 Given two functions, decide whether they are inverses.
 2.33 Given a one-to-one function, find its inverse.

2.34 Graph a function, its inverse, and the line y = x on the same coordinate 
axes.

 2.35 Evaluate a function and its inverse by looking at a graph.
2.8 2.36 State the informal definition of the limit of a function.
 2.37 Estimate limits by graphing (geometrical method).
 2.38 Estimate limits by table (numerical method).
 2.39 Evaluate limits of polynomials (analytic method).
 2.40 Define continuity, and describe the concept in your own words.

2.41 Find suspicious points.
 2.42 State and use the root location property.

© Planetpix/Alamy Images

51774_CH02_FINAL.indd   7651774_CH02_FINAL.indd   76 9/5/11   2:49:15 PM9/5/11   2:49:15 PM



2Functions with Problem Solving

Solving problems is a practical art, like swimming, or skiing, or playing the piano; SS
you can learn it only by imitation and practice . . . if you wish to learn swimming 
you have to go into the water, and if you wish to become a problem solver you have 
to solve problems.

—George Pólya
Mathematical Discovery, Vol. 1

New York: John Wiley and Sons, 1962, p. v
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2 1 P bl S l i

Chapter Sections

CALCULUS PERSPECTIVE
In this chapter, we introduce a concept that is not only basic to this course but also basic to a major 

portion of a calculus course, namely, the concept of a function. In the calculus perspective from 

Chapter 1, we mentioned that the concept of a limit is central to the study of calculus. In this chapter, 

we present an intuitive introduction to limits in a particularly easy-to-understand setting. In this chap-

ter, we introduce the notions of problem solving, functions, properties of functions, as well as limits 

and continuity.
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78 CHAPTER 2 Functions with Problem Solving

2.1 Problem Solving

Pólya’s Problem-Solving Procedure
We begin this study of problem solving by looking at the process of problem solving. As a mathe-

matics teacher, I often hear the comment, “I can do mathematics, but I can’t solve word problems.” 

There is a great fear and avoidance of “real-life” problems because they do not fit into the same 

mold as the “examples in the book.” It is easier for instructors to teach “word problems” when they 

fit into some mold, but by definition, that does not constitute genuine problem solving. Few practi-

cal problems from everyday life come in the same form as those you study in school. All the mean-

ingful problems in calculus involve problem-solving skills. To compound the difficulty, learning to 

solve problems takes time. All too often, the mathematics curriculum is so packed with content that 

the real process of problem solving is slighted and because of time limitations becomes an exercise 

in mimicking the instructor’s steps, instead of developing an approach that can be used long after 

the final examination is over.

The model for problem solving that we will use was first published in 1945 by the great, char-

ismatic mathematician George Pólya. His book How to Solve It (Princeton University Press, 1971)

has become a classic and has been reprinted several times since 1945.

In Pólya’s book, you will find this problem-solving model as well as a treasure trove of strat-

egy, know-how rules of thumb, good advice, anecdotes, history, and problems at all levels of math-

ematics. His problem-solving model is as follows:

PROBLEM-SOLVING GUIDE

Pólya’s problem-solving guideline for problem solving:

Step 1 You have to understand the problem.

Step 2 Devise a plan. Find the connection between the data and the unknown. Look for 

patterns, relate to a previously solved problem or a known formula, or simplify the 

given information to obtain an easier problem.

Step 3 Carry out the plan.

Step 4 Look back. Examine the solution obtained.

Pólya’s original statement of this procedure is reprinted on the inside front cover of this book.

Problem solving is a difficult task to master, and you are not expected to master it after one 

section of this book (or even after one mathematics course). Don’t think you can avoid problem 

solving by skipping this section. Problem solving is one of the major threads with which this course 

is woven. You will be challenged to solve problems in nearly every section of this book.

One of the most important aspects of problem solving is to relate new problems to old ones. 

The problem-solving techniques outlined here should be applied when you are faced with a new 

problem. When you are faced with a question similar to one you have already worked, you can apply 

previously developed techniques.

We begin our journey toward problem solving by briefly introducing the two principal types of 

reasoning used in mathematics.

Inductive Reasoning
The type of reasoning—first observing patterns and then predicting answers for more complicated 

problems—is called inductive reasoning. It is a very important method of reasoning in problem 

solving and in using Pólya’s method. With inductive reasoning, the results are not certain, only 

probable. These predictions can be checked or otherwise verified. One method of proving such con-

jectures is called mathematical induction, which we will discuss in Appendix C.

George Pólya (1887–1985)

Pólya was born in Hungary, attended the
universities of Budapest, Vienna, Göt-
tingen, and Paris, and was a professor
of mathematics at Stanford University.
Pólya’s research and winning personal-
ity earned him a place of honor not only
among mathematicians but also among
students and teachers. His discoveries
spanned an impressive range of mathe-
matics: real and complex analysis, prob-
ability, combinatorics, number theory,
and geometry. His book How to Solve It
has been translated into 15 languages.
His books have a clarity and elegance
seldom seen in mathematics, making
them a joy to read. For example, here
is his explanation of why he became a
mathematician: “It is a little shortened
but not quite wrong to say: I thought I
am not good enough for physics and I
am too good for philosophy. Mathemat-
ics is in between.”

Historical Note
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2.1 Problem Solving 79

E X A M P L E  1  Using patterns MODELING APPLICATION

What is the sum of the first 100 positive consecutive odd numbers?

Solution

Step 1: Understand the problem. Do you know what the words mean?

Odd numbers are 1, 3, 5, . . . , and sum means to add:

1 3 5+ + +3 5 +
↑

… ?

1 + 3 is two terms.

1 + 3 + 5 is three terms.

1 + 3 + 5 + 7 is four terms.

It seems as if the last term is always one less than twice the number of terms. Thus, the 

sum of the first 100 consecutive terms is

1 3 5 195 197 199+ + +3 5 + +195 +
↑

…

Step 2: Devise a plan. The plan we will use is to look for a pattern:

1 = 1 One term

1 + 3 = 4 Sum of two terms

1 + 3 + 5 = 9 Sum of three terms

 Do you see a pattern yet? If not, continue:

1 + 3 + 5 + 7 = 16
1 + 3 + 5 + 7 + 9 = 25

Step 3: Carry out the plan. It looks like the sum of two terms is 22; of three terms, 32; of four 

terms, 42; and so on. The sum of the fi rst 100 consecutive odd numbers therefore seems 

to be 1002.

Step 4: Look back. Does 1002 = 10,000 seem correct?

Deductive Reasoning
Another method of reasoning used in mathematics is called deductive reasoning. This method

of reasoning produces results that are certain within the logical system being developed. That is,

deductive reasoning involves reaching a conclusion by using a formal structure based on a set of 

undefined terms and a set of accepted, unproved axioms or premises. The conclusions are said to

be proved and are called theorems.

The most useful axiom in problem solving is the principle of substitution.

SUBSTITUTION PROPERTY

If a = b, then a may be substituted for b in any mathematical statement without affecting the truth 

or falsity of the given mathematical statement.

» IN OTHER WORDS If two quantities are equal, you can remove one of the quantities and

replace it with the other.

The simplest way to illustrate the substitution property is to use it in evaluating a formula.

The fi rst thing you need to understand is what the last 

term will be, so you will know when you have reached 100

consecutive odd numbers.

This is one less than 2(100).
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80 CHAPTER 2 Functions with Problem Solving

E X A M P L E  2  Evaluating a formula

A water tank is in the shape of an inverted circular cone resting on top of a cylinder. The water is 

stored in the cylindrical part with base radius 2 m and height 4 m. How much water is in the tank 

when the water is 3 m deep?

Solution Sometimes some outside information from a previous course is required when solving 

problems. For this example, you need the formula for the volume of a cone:

V r h1
3

2

Substitute the known values into the formula:

V

r

h

=

=
↓

↑
=

1
3

2

2

3

π( )22 ( )3

= 4π

The volume is 4π m3. Notice that we state our answer in sentence form (with units). Also notice that 

we do not round our answer unless a rounded answer is somehow indicated in the statement of the 

problem, or our only alternative is to work with a calculator or rounded results.

The formal study of deductive reasoning is beyond the scope of this course. However, there are 

certain principles and terminology associated with proof and deductive reasoning that you will 

encounter in calculus. For example, in Chapter 1 we discussed the meaning of the words if and only
if, and how a mathematical statementff

p if and only if q

requires two proofs:

(1) if p, then q (2) if q, then p

There is some associated terminology. If p and q are any propositions, then the statement “if q p, then

q,” written p → q, is called a conditional and is translated several (equivalent) ways:

Conditional TranslationTT Example

If p, then q. If you are 18, then you can vote.

q, if p. You can vYY ote, if you are 18.

p, only if q. You are 18 only if you can vYY ote.

All p are q. All 18-year-olds can vote.

In addition to these translations for the conditional, there are related statements.

LOGICAL STATEMENT

Given the conditional p → q, we define

the converse is: q → p;

the inverse is: not p → not q;

the contrapositive is: not q → not p.

In this book, we will use arrows to show 

substitution.
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2.1 Problem Solving 81

E X A M P L E  3  Logical statements

Let p be the proposition: “It is a 300ZX” and q be the proposition: “It is a car.” The given state-

ment, symbolized by p → q, is “If it is a 300ZX, then it is a car.” State the converse, inverse, and

contrapositive.

Solution  Converse: q → p If it is a car, then it is a 300ZX.

 Inverse: not p → not q  If it is not a 300ZX, then it is not a car.q
 Contrapositive: not q → not p If it is not a car, then it is not a 300ZX.

As you can see from Example 3, not all these statements are equivalent in meaning. The con-

trapositive and the original statement always have the same truth values, as do the converse and 

the inverse. We accept the following law, which is frequently used not only in calculus but in all of 

mathematics.

LAW OF CONTRAPOSITION

A conditional may always be replaced by its contrapositive without having its truth value 

affected.

Mathematical Modeling
Problem solving depends not only on the substitution property but also on translating statements 

from English to mathematical symbols. On a much more advanced level, this process is called 

mathematical modeling and involves matching mathematical skills with knowledge about the real 

world. A characteristic of mathematical modeling is that it is iterative (requires assumptions, feed-

back, and revision). It often involves solving problems with either too little information (some fur-

ther research is needed) or too much information (you have information that is not needed to solve 

the problem).*

Mathematical models are formed, modified by experimentation and the accumulation of data, 

and are then used to predict some future occurrence in the real world. Such mathematical models 

are continually being revised and modified as additional relevant information becomes known.

Some mathematical models are quite accurate—particularly those used in the physical sci-

ences. For example, one of the first models we consider in calculus is the path of a projectile. Other 

models predict the time of sunrise and sunset or the distance that an object falls in a vacuum. Other 

modeling, however, is less accurate—in particular when examples from the life sciences and social 

sciences are chosen. Only recently has modeling in these disciplines become precise enough to be 

included in a mathematics course.

What, precisely, is a mathematical model? At the low end of the spectrum, mathematical 

modeling can mean nothing more than real-life word problems. At the high end of the spectrum, 

mathematical modeling can mean choosing appropriate mathematics to solve a problem that has 

previously been unsolved.

The first step of what we call mathematical modeling involves abstraction.

Real-WorlWW d
Problem

Mathematical
Model

Abstraction

With the method of abstraction, certain assumptions about the real world are made, variables are 

defined, and appropriate mathematics is developed. The next step is to simplify the mathematics or 

derive related mathematical facts from the mathematical model.

*In a classroom setting, it is not practical to give too little information in a problem (unless it is designated as a research problem). However, in the real world, it is 

common to need additional information to fi nd a solution. Since problem solving involves a long learning process, we will only occasionally give you “extra” informa-

tion. Our goal in this book is to build your problem-solving skills to bring you to a level of competency that will allow you to know when you have too much or too 

little information.

Mathematical modeling plays an impor-
tant role in sporting events. For exam-
ple, in 1992, preparing for the America’s 
Cup competition included the following 
mathematical models:
• Race Modeling Programs

• Computational Fluid

• Computer-Aided Design

• Experimental Design

• Dynamic Modeling Program

Scientifi c American, May 1992

Historical Note
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82 CHAPTER 2 Functions with Problem Solving

Real-WorlWW d
Problem

Mathematical
Model

Predictions

Abstraction

Derive
Results

The results derived from the mathematical model should lead us to some predictions about the 

real world. The next step is to gather data from the situation being modeled and then to compare 

those data with the predictions. If the two do not agree, then the gathered data are used to modify 

the assumptions used in the model.

Real-WorlWW d
Problem

Mathematical
Model

Predictions

Abstraction

Derive
Results

Compare and Interpret

Mathematical modeling is an ongoing process. As long as the predictions match the real world, 

the assumptions made about the real world are regarded as correct, as are the defined variables. On 

the other hand, as discrepancies are noticed, it is necessary to construct a closer and a more depend-

able mathematical model.

Throughout this book, we will designate certain problems MODELING APPLICATION to desig-

nate problem-solving or mathematical modeling examples. You may have noticed Example 1 of 

this section was so designated. Mathematical modeling necessarily involves abstraction from the 

real world, deriving results, making predictions, and then comparing and interpreting in the real 

world. As an example, consider a problem we have adapted from calculus.

E X A M P L E  4  A volume problem from calculus MODELING APPLICATION

A container is to be constructed from an 11 in. by 16 in. sheet of cardboard. Squares will be cut 

from the corners of the sheet and discarded as waste. The domain for the variable must be restricted 

so that the area of the base of the container exceeds (or is equal to) the area of wasted cardboard. 

We will revisit this problem in Chapter 3 when we consider optimization problems to ask for the 

maximum volume.

Solution

Step 1: Understand the problem. Let s be the length of the side of a square that is cut from the

cardboard.

16 in.

11 – 2s 16 – 2s
11 in.

s
s

V = lwh

s
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2.1 Problem Solving 83

The domain requires that all sides be nonnegative. That is,

s ≥ 0 16 2 0− ≥2 11 2 0− ≥2

s ≤ 8 s ≤ 5 5

Step 2: Devise a plan. We will do a numerical, algebraic, and if we have a graphing calculator,

geometrical analysis.

Step 3: Carry out the plan.

Numerical (tabular) approach: To get some idea about the problem, a numerical 

approach is often helpful. For this approach, let us assume that the dimensions must 

be integers. With this modeling assumption, there are few values for s, and we can

easily calculate the domain conditions (as well as the volume) of the six possible 

boxes. This is particularly easy to do if you use a calculator or computer.

Value of
s

Length
16 − 2s

Width
11 − 2s

Height
s

Area of Base
(LENGTH)(WIDTH)

Area of Waste
4s2

Conditions
Satisfi ed

Volume

0 16 11 0 176 0 Yes 0

1 14 9 1 126 4 Yes 126

2 12 7 2 84 16 Yes 168

3 10 5 3 50 36 Yes 150

4 8 3 4 24 64 No 96

5 6 1 5 6 100 No 30

It looks like the domain for integer values s is 0 ≤ s ≤ 3. We also note that for inte-

ger values the maximum volume is 168 in.3, which occurs for a box with dimensions

12 in. × 7 in. × 2 in.

Algebraic approach: We note from the question that the area of the base of the con-

tainer should exceed (or be equal to) the area of the wasted cardboard. Thus:

 AREA OF BASE ≥ AREA OF WASTE

(LENGTH OF BASE)(WIDTH OF BASE) ≥ 4(AREA OF CORNER)

( )( ))( 4

176 54 4 4

54 176

2

2 24

≥

− +54 ≥

− ≥54 −

)()()( s

s4+ s

s ≤ =≤≤
176
54

88
27

This means the domain for this problem is 0 ≤ s ≤ 88/27. By the way, the volume of the box at 

the endpoint s = 0 is 0, and at the endpoint s = 88/27 it is:

VOLUME = (WIDTH)(LENGTH)(HEIGHT)
=

≈

( )− ( )( )

.

)(

138 4894579

)()( −

We will see in calculus that the maximum value of this box occurs at a value where the 

derivative is zero or at one of the endpoints of the domain. This means the maximum 

value could possibly be between s = 0 and s = 88/27. We will need to wait until we

will consider optimization problems in Chapter 3 to know for sure if this is the case.
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84 CHAPTER 2 Functions with Problem Solving

Geometrical approach: You can use a graphing calculator for the inequality:

 AREA OF BASE ≥ AREA OF WASTE

( )( ))( 4 2≥)()()( s

Since calculators use the variables x and y, you will input Y1 = (16 − 2X)(11 − 2X)
and Y2 = 4X∧2. Then, look for the intersection of these curves, which is found using

the intersection capabilities of the calculator. These steps can be illustrated:

We see that the intersection is at s ≈ 3.2592592593.

Step 4: Look back. The algebraic solution yields an exact answer (88/27), and the graphical 

method an approximate answer (3.2592592593). These values are both approximately 

equal to 3.26, so we say they agree. This seems to agree with the intuitively appealing 

numerical solution for integral values.

Word Problems
Not all word problems are modeling applications, and not all modeling applications are word prob-

lems. To do problem solving outside of a classroom setting, you need to have a great deal of prac-

tice, sometimes with rather mundane or even trivial questions. The reason for this procedure is to 

allow you to gain confidence and to build your problem-solving skills as you progress through the 

course. You might say, “I want to learn how to become a problem solver, and textbook problems 

are not what I have in mind; I want to do real problem solving.” But to become a problem solver, 

you must first learn the basics, and word problems are part of a textbook for good reason. We start 

with these problems to build a problem-solving procedure that can be expanded to apply to prob-
lem solving in general. As we do this, however, we will firmly focus on our goal: to build the skills 

you need to succeed in calculus.

We will now rephrase Pólya’s problem-solving guidelines in a setting that is appropriate to 

solving word problems. This procedure is summarized in the following box.

PROBLEM SOLVING WITH WORD PROBLEMS

Pólya’s problem-solving guideline for problem solving can be amplified to solve word problems.

Step 1 Understand the problem. This means read the problem. Note what it is all about. Focus 

on processes rather than numbers. You cannot work a problem you do not understand. 

A sketch may help in understanding the problem.

Step 2 Devise a plan. Write down a verbal description of the problem using operation signs 

and an equal or inequality sign. Note the following common translations.
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2.1 Problem Solving 85

PROBLEM SOLVING WITH WORD PROBLEMS (continued)

Symbol Verbal Description

= is equal to; equals; are equal to; is the same as; is; was, becomes; will be;
results in

+ plus; the sum of; added to; more than; greater than; increased by

− minus; the difference of; the difference between; is subtracted from; less
than; smaller than; decreased by; is diminished by

3 times; product; is multiplied by; twice (2×); triple (3×)

4 divided by; quotient of

Step 3 Carry out the plan. In the context of word problems, we need to proceed deductively 

by carrying out the following steps.

 Choose a variable. If there is a single unknown, choose a variable. If there are several 

unknowns, you can use the substitution property to reduce the number of unknowns 

to a single variable. Later, we will consider word problems with more than one 

variable.

 Substitute. Replace the verbal phrase for the unknown with the variable.

 Solve the equation. This is generally the easiest step. Translate the symbolic statement 

(such as x = 3) into a verbal statement. Probably no variables were given as part of the 

word problem, so x = 3 is not an answer. Generally, word problems require an answer 

stated in words. Pay attention to units of measure and other details of the problem.

Step 4 Look back. Be sure your answer makes sense by checking it with the original question 

in the problem. Remember to answer the question that was asked.

E X A M P L E  5  Area problem

Two rectangles have the same width, but one is 40 ft2 larger in area. The larger rectangle is 6 ft lon-

ger than it is wide. The other is only 1 ft longer than its width. What are the dimensions of the larger 

rectangle?

Solution

Numerical analysis: If one rectangle is 40 ft2 larger in area than the other, then the difference of their 

areas must be 40. Also, the larger rectangle is 6 ft longer than it is wide. For example, if we start 

with a width (which must be the same for both rectangles) of 1, then 2, then 3, . . . , we find

First (Larger) Rectangle Second (Smaller) Rectangle

Length Width Area Length Width Area Difference of Areas

7 1 7 2 1 2 5

8 2 16 3 2 6 10

9 3 27 4 3 12 15

10 4 40 5 4 20 20

12 6 72 7 6 42 30

13 7 91 8 7 56 35

14 8 112 9 8 72 40

We have apparently found the solution numerically, but it was a great deal of work, and we would 

have had more difficulty with this method if the answer had not been integral. The larger rectangle 

is 8 ft wide by 14 ft long.
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86 CHAPTER 2 Functions with Problem Solving

Algebraic analysis: The areas differ by 40, and each area is the product of length and width. We also

note that the widths of both rectangles are the same.

 AREA OF LARGER − AREA OF SMALLER = 40

(LENGTH OF LARGER)(WIDTH) − (LENGTH OF SMALLER)(WIDTH) = 40

(WIDTH + 6)(WIDTH) − (WIDTH + 1)(WIDTH) = 40

Let W be the width of each rectangle. Then,W

(W + 6)(W ) − (W + 1)(W ) = 40

W 2 + 6W − W 2 − W = 40

5W = 40

 W = 8, W + 6 = 14

The larger rectangle is 8 ft wide by 14 ft long.

Geometrical analysis: A sketch will frequently simplify a problem. In this case, since the widths are the 

same, the difference in area can be seen in the larger rectangle.

WIDTH + 1 ft

1 1

WIDTH + 6 ft

WIDTH

W
ID

TH

WIDT

40 ft2 larger
than smaller
rectangle

W
ID

TH

5

W
ID

TH

The difference is shown as the shaded region. The area of this region is stated in the problem:

 DIFFERENCE IN AREAS = 40

(5)(WIDTH) = 40

Let W be the width of each rectangle. ThenW

5W = 40

 W = 8 and W + 6 = 14

The larger rectangle is 8 ft wide by 14 ft long.

Rate Problems
There are two applications of word problems that are particularly important in calculus. One type of 

application involves rates, and the other type of application involves similar triangles. A dictionary 

definition of rate is “the quantity of a thing in relation to the units of something else.” This defini-

tion is quite general; yet, rate is too often limited to rate–time–distance relationships. A typing rate 

is the number of words typed per unit of time, most prices are based on cost per unit, and interest 

earned is a part of the principal invested. In calculus, you will find rates to be a frequent application. 

In everyday usage, we might speak of miles per hour, or mph, but in scientific and mathematical 

applications, we write this as “mi/h.” If it is included as part of the problem calculation, it is written 

as a fraction

milemm s
hour
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interpreted as a division of miles by hours. Similarly, feet per second in everyday usage is abbrevi-

ated as fps; in mathematics it is abbreviated as ft/s and if used as part of the problem calculation 

is thought of as the fraction feet divided by seconds. However, most elementary applied problems 

do not require that we include the units of measurement as part of the calculations, but rather are 

used only in the statement of the solution to the problem. This usage is illustrated in the following 

example.

E X A M P L E  6  Rate–time–distance application MODELING APPLICATION

An office worker takes 55 minutes to return from the job each day. This person rides a bus that 

averages 30 mi/hr and walks the rest of the way at 4 mi/h. If the total distance is 21 miles from

office to home, what is the distance walked home each day?

Solution

Step 1: Understand the problem. The total trip is composed of two distinct distances. These

distances are the product of rate and time. This is the familiar formula d = rt.

Total distance

Distance
walking Distance by bus

Step 2: Devise a plan. Don’t be too eager to choose a variable. Sometimes forcing an incorrect 

or poorly defi ned variable at the beginning of a problem often results in disaster. We 

will use

BUS DISTANCE + WALK DISTANCE = TOTAL DISTANCE

We know that the total distance is 21 mi, but we do not know the other two distances, 

so we use the principle of substitution for

BUS DISTANCE = (BUS RATE)(BUS TIME)

WALK DISTANCE = (WALK RATE)(WALK TIME)

Step 3: Carry out the plan. By substitution, we have:

(BUS RATE)(BUS TIME) + (WALK RATE)(WALK TIME) = 21

30
55
60

−
⎛

⎝
⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎝⎝⎜⎜

⎞

⎠
⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎠⎠
⎟⎟+WALK TIME ( )4 ( )WALK TIME = 21

Let W be the time walked, in hours. Thus,W

We know that BUS TIME + WALK TIME =
55

60
hr

We write 55 min as 55/60 hr. This means we can

substitute BUS TIME =
55

60
– WALK TIME

↑
30

↑
4
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30
55
60

21−
⎛

⎝
⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎝⎝⎜⎜

⎞

⎠
⎟⎞⎞
⎟⎟⎠⎠
⎟⎟ + W4W ⎟⎟⎟⎟⎟⎟⎟ + 4

55
2

30 21− +30W W4+ Distributive property

27 5 26 21. 26W Similar terms

− = −26 6 5W Subtract 27.5 from both sides.

W = 0 25 Divide both sides by –26.

The worker walks 0.25 hr, but the question asks for distance, so

 WALK DISTANCE = 4(0.25) = 1

The worker walks 1 mile daily.

Step 4: Look back. If the walker walks 1 mi, then the bus ride is 20 mi and lasts (55 min − 15
min) = 40 min or 2/3 hr. (2/3)(30) = 20 mi, so the solution checks.

Similar Triangles
You will need the idea of similar triangles for some calculus and trigonometry problems. Two tri-

angles are similar if they have the same shape (but not necessarily the same size, or area), as shown 

in Figure 2.1.

SIMILAR TRIANGLES

ΔABC is similar to Δ ′ ′ ′A B′ C  if the corresponding angles are congruent (have the same mea-

sure), and we write

Δ ΔC AΔ B C′ ′B ′

» IN OTHER WORDS Since the sum of the measures of any triangle is 180 °, it follows that 

two triangles are similar if two angles of one are equal to two angles of the other.

You will also need to remember the proportional property of similar triangles;

namely, if two triangles are similar, then the corresponding sides are proportional.

SIMILAR TRIANGLE PROPERTY

If ΔABC  is similar to Δ ′ ′ ′A B′ C  with sides of lengths as shown in Figure 2.1, then

a
c

a
c

a
b

a
b

b
c

b
c

c
a

c
a

b
a

b
a

c
b

c
b

=
′
′

=
′
′

=
′
′

=
′
′

=
′
′

=
′
′

The similar triangle property has a wide variety of applications, some of which are provided in the 

problem set. We conclude this section with two applications adapted from calculus problems.

E X A M P L E 7 Streetlight problem from calculus

A person 6 ft tall is standing 7 ft from the base of a streetlight. If the light is 20 ft above ground, 

how long is the person’s shadow due to the streetlight?

Solution Let x denote the length (in feet) of the person’s shadow, as shown in Figure 2.2. (Note: 

x > 0.)

Figure 2.1 Similar triangles

A

A�

C�

B�

a�

c�

b�

B

C
c

a

b
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20

7

B

A D7 x
C

E

Figure 2.2  Streetlight calculus problem

Note that ∠A and ∠D are right angles, and ∠C is common to both ΔABC and ΔDEC, so we have CC
two angles of one triangle congruent to two angles of the other triangle, thus ΔABC ∼ ΔDEC.CC
Since the triangles are similar, we have proportional sides, namely:

6 20
7

6 20
42 6 20

42 14
3

x x7
x20
x20
x

x

=
+

=
+ =6

=
=

( )7 + x

The shadow’s length is 3 ft.

The last example of this section, which is the famous inverted cone problem from calculus, 

uses similar triangles.

E X A M P L E  8  Inverted cone problem from calculus

A water tank is in the shape of an inverted cone 20 ft high with a circular base whose radius is 5 ft.

How much water is in the tank when the water is 8 ft deep?

Solution The volume of a cone is V r h1
3

2 . We are given h = 8 and need to find r. Once again, 

we use similar triangles as shown in Figure 2.3.

Δ ΔC DΔ EC (can you see why?); thus,

5
20 8

=
r

    40 = 20r
2 = r

The desired volume isV = 1
3

2 32
3

2 π= 322π( )( )22 ( )88 . That is, the desired volume is about 33.5 ft3.

Figure 2.3  Inverted cone problem from calculus

A
A

r ft 20 ft

5 ft
5

8
D E

C

r
h

B
B
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PROBLEM SET 2.1

1LEVEL
 1. IN YOUR OWN WORDS Describe Pólya’s problem-solving procedure.

 2. IN YOUR OWN WORDS Compare and contrast inductive and deductive rea-

soning.

 3. IN YOUR OWN WORDS State the substitution property.

 4. IN YOUR OWN WORDS What is meant by mathematical modeling?

 5. IN YOUR OWN WORDS Describe a process for solving word problems.

 6. IN YOUR OWN WORDS What is the proportion property of similar trian-

gles?

Write the converse, inverse, and contrapositive of the statements in 
Problems 7–12.

 7. If you break the law, then you will go to jail.

 8. I will go Saturday, if I get paid.

 9. If a polygon has three sides, then it is a triangle.

 10. If a 2 + b 2 = c 2, then the triangle with sides a, b, and c is a right tri-

angle.

 11. If 5 + 10 = 15, then 15 − 10 = 2.

 12. If 8x = 16, then x = 2.

Problems 13–20 give a verbal description of some of the formulas 
you will need to use in a calculus course. Write each formula in 
symbolic form.

 13. The area A of a parallelogram is the product of the base b and the 

height h.

 14. The area A of a triangle is one-half the product of the base b and the 

height h.

 15. The area A of a rhombus is one-half the product of the diagonals p 
and q.

 16. The area A of a trapezoid is the product of one-half the height h and 

the sum of the bases a and b.

 17. The volume V of a cube is the cube of the length s of an edge.

 18. The volume V of a rectangular solid is the product of the length l, the 

width w, and the height h.

 19. The volume V of a cone is one-third the product of pi, the square of 

the radius r, and the height rr h.

 20. The volume V of a sphere is the product of four-thirds pi and the cube 

of the radius r.

Solve Problems 21–26. Because you are practicing a procedure, 
you must show all of your work.

 21. What is the sum of the first 20 positive consecutive odd numbers?

 22. What is the sum of the first 1,000 positive consecutive odd numbers?

 23. The sum of two consecutive odd integers is 48. What is the smaller 

integer?

 24. The sum of two consecutive even integers is 30. What is the larger 

number?

 25. The sum of four consecutive integers is 74. What are the integers?

 26. What is the sum of the first 1,000 positive consecutive even num-

bers?

PROBLEMS FROM CALCULUS Problems 27–36 use formulas you will need 
for calculus. State the formula you need, and then use that formula 
to answer the question.

 27. A rectangular field is 100 ft long and 75 ft wide. What length of fenc-

ing is necessary to enclose its perimeter?

 28. How much carpeting is necessary to cover an area that is 6 yd wide 

and 12 yd long?

 29. A square field is 540 ft on each side. What is the distance around the 

field, and what is its area?

 30. An automotive tire has a radius of 15 in. What is the circumference of 

the tire?

 31. If the radius of a circular region is 15 in., what is the area of the 

region?

 32. An airplane maintains a constant speed of 670 mi/h for a 3-hr flight.

How far does the plane travel?

 33. Air is being pumped into a spherical balloon. What is its volume when 

the diameter is 50 cm?

 34. A 10-ft ladder rests against a vertical wall. If the bottom of the ladder 

is 3 ft from the wall, how high up the building (to the nearest foot) 

does the ladder reach?

 35. 

©
 Dianne M

aire/Shutter Stock Inc.

Sand is being dumped from a conveyor belt so that it forms a pile in 

the shape of a cone whose base diameter and height are always equal. 

What is the volume of the pile when it is 10 ft high?

 36. A boat is pulled into a dock by a rope attached to the bow of the boat 

and passing through a pulley on the dock that is 1 m higher than the 

bow of the boat. How much rope is necessary to connect the pulley 

and the bow of the boat when the boat is 8 m from the dock?

2LEVEL 

Solve Problems 37–44. Because you are practicing a procedure, 
you must show all of your work.

 37. Two rectangles have the same width, but one is 20 ft2 larger in area.

The larger rectangle is 6 ft longer than it is wide. The other is only 

2 ft longer than its width. What are the dimensions of the larger rect-

angle?

 38. Two triangles have the same height. The base of the larger one is 3 cm 

greater than its height. The base of the other is 1 cm greater than its

height. If the areas differ by 3 cm2, find the dimensions of the smaller 

figure.
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2.1 Problem Solving 91

 39. A rectangle is 2 ft longer than it is wide. If you increase the length by 

a foot and reduce the width the same, the area is reduced by 3 ft2. Find 

the width of the new figure.

 40. The length of a rectangle is 3 m more than its width. The width is 

increased by 2 m, and the length is shortened by a meter. If the two 

figures have the same perimeter, what is it?

 41. A businesswoman logs time in an airliner and a rental car to reach her 

destination. The total trip is 1,100 mi, the plane averaging 600 mi/h 

and the car 50 mi/h. How long is spent in the automobile if the trip 

took a total of 5 hr 30 min?

 42. Barry hitchhikes back to campus from home, which is 82 mi away. 

He makes 4 mi/h walking, until he gets a ride. In the car, he makes 48
mi/h. If the trip took 4 hours, how far did Barry walk?

 43. Two joggers set out at the same time from their homes 21 mi apart. 

They agree to meet at a point in between in an hour and a half. If the 

rate of one is 2 mi/h faster than the other, find the rate of each.

 44. Two joggers set out at the same time but in opposite directions. If 

they were to maintain their normal rates for 4 hr, they could be 68 mi 

apart. If the rate of one is 1.5 mi/h faster than the other, find the rate 

of each.

PROBLEMS FROM CALCULUS Problems 45–55 are modeled from prob-
lems taken from a variety of calculus textbooks.

 45. A rectangular area is to be fenced. If the space is twice as long as it 

is wide, for what dimensions is the area numerically greater than the 

perimeter?

 46. A rectangular area three times as long as it is wide is to be fenced. For 

what dimensions is the perimeter numerically greater than the area?

 47. A small manufacturer of high-gaming computers determines that the 

price of each item is related to the number of items, x, produced per xx
day. The manufacturer knows that (1) the maximum number that can 

be produced is 10 items; (2) the price should be 400 − 25x dollars; (3) x
the overhead (the cost of producing x items) is 5x 2 + 40x + 600 dol-

lars; and (4) the daily profit is then found by subtracting the overhead 

from the revenue:

PROFIT = REVENUE − COST

= (NUMBER OF ITEMS)(PRICE/ITEM) − COST

= −

= −

x

x x− x

( )x− ( )+ +x++

400 25 5 4x − 0

2

2 25x −−

= − + −

600

30 360 6002x +2

What is the number of items produced if the profit is zero?

 48. Current postal regulations do not permit a package to be mailed if 

the combined length, width, and height exceeds 72 in. What are the 

dimensions of the largest permissible package with length twice the 

length of its square end?

 49. Suppose you throw a rock at 48 ft/s from the top of the Sears Tower in 

Chicago and the height in feet, h, from the ground after t sec is given 

by

h t t+ +t6 482 1 454,

 a. What is the height of the Sears Tower?

 b. How long will it take (to the nearest tenth of a second) for the rock 

to hit the ground?

 50. If an object is shot up from the ground with an initial velocity of 256
ft/s, its distance in feet above the ground at the end of t sec is given by 

d = 256t − 16t 2 (neglecting air resistance). Find the length of time 

for which d ≥ 240.

 51. Find the length of time the projectile described in Problem 50 will be 

in the air.

 52. Many materials, such as brick, steel, aluminum, and concrete, expand 

because of increases in temperature. This is why fillers are placed 

between the cement slabs in sidewalks. Suppose you have a 100-ft 

roof truss securely fastened at both ends, and assume that the buckle 

is linear. (It is not, but this assumption will serve as a worthwhile ap-

proximation.) Let the height of the buckle be x ft. If the percentage of 

swelling is y, then, for each half of the truss,

NEW LENGTH = OLD LENGTH + CHANGE IN LENGTH

= 50 + (PERCENTAGE)(LENGTH)

= +
⎛

⎝
⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎝⎝⎜⎜

⎞

⎠
⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎠⎠
⎟⎟50

100
y

( )50

= +50
2
y

These relationships are shown in Figure 2.4.

Figure 2.4 Buckling and expansion

50 ft

50 +   ft

50 ft

x ftx

y–
2
 50 +   fty–

2
 

By the Pythagorean theorem,

x y

x

x

2 2

2

2 2
2

50
2

4
4

+ =250 +
⎛

⎝
⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎝⎝⎜⎜

⎞

⎠
⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎠⎠
⎟⎟

+ =250
( )y100 +

2 222 2 2

2 2

50 100 200

4 200 0

+ ⋅4 = +2100

− =

y y+

x y2 − y

Solve this equation for x and then calculate the amount of buckling (to 

the nearest half-inch) for the following materials:

 a. brick; y = 0.03
 b. steel; y = 0.06
 c. aluminum; y = 0.12
 d. concrete; y = 0.05
 53. A 1-mi length of pipeline connects two pumping stations.
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92 CHAPTER 2 Functions with Problem Solving

 Special joints must be used along the line to provide for expansion 

and contraction due to changes in temperature. However, if the pipe-

line were actually one continuous length of pipe fixed at each end by 

the stations, then expansion would cause the pipe to bow. Approxi-

mately how high would the middle of the pipe rise if the expansion 

was just 1 in. over the mile? (You may make the same assumption as 

we did in Problem 52, namely, that the buckle is linear.)

 54. Consider the following pattern:

9 1 1 8
9 21 1 188

9 321 1 2 888
9 4 321 1 38

−1
21 =

× −321
−4 321

,
, ,321 1 38321 88888

 a. Use this pattern and inductive reasoning to specify the next equa-

tion in the sequence.

 b. Predict the answer to

9 987 654 321 1× −987 654 321, ,654654

 c. Predict the answer to

9 10 987 654 321 1−10 987 654 321, , ,987 654987 654

 55. Consider the following pattern:

123 456 789 9 111 111 101
123 456 789 18 2

, ,456 , , ,111 111
, ,456

× =9
× =18

1
, , ,,,

, , , , ,
222 222 202

123 456 789 27 3 333 333 303× =27

 a. Use this pattern and inductive reasoning to specify the next equa-

tion in the sequence.

 b. Predict the answer to

123 456 789 63, ,456 ×

 c. Predict the answer to

123 456 789 81, ,456 ×

3LEVEL 

Problems 56–60 were in the May 1989 issue of The Mathematics 

Teacher.

 56. Historical Quest (From Bhaskara, ca. A.D. 1120.) “In a lake the bud 

of a water lily was observed, one cubit above the water, and when 

moved by the gentle breeze, it sunk in the water at two cubits’ dis-

tance.” Find the depth of the water.

WaterWW
level

WaterWW
depth

1

2

 57. Historical Quest (From Bhaskara, ca. A.D. 1120.) “One third of a

collection of beautiful water lilies is offered to Mahadev, one fifth 

to Huri, one sixth to the Sun, one fourth to Devi, and the six which 

remain are presented to the spiritual teacher.” Find the total number 

of lilies.

 58. Historical Quest (From Bhaskara, ca. A.D. 1120.) “One fifth of a 

hive of bees flew to the Kadamba flower; one third flew to the Si-

landhara; three times the difference of these two numbers flew to an 

arbor, and one bee continued flying about, attracted on each side by 

the fragrant Keteki and the Malati.” Find the number of bees.

 59. Historical Quest (From Brahmagupta, ca. A.D. 630.) “A tree one

hundred cubits high is distant from a well two hundred cubits; from 

this tree one monkey climbs down the tree and goes to the well, but 

the other leaps in the air and descends by the hypotenuse from the 

high point of the leap, and both pass over an equal space.” Find the 

height of the leap.

 60. Historical Quest “Ten times the square root of a flock of geese,

seeing the clouds collect, flew to the Manus lake; one eighth of the 

whole flew from the edge of the water amongst a multitude of water 

lilies; and three couples were observed playing in the water.” Find the 

number of geese.

2.2  Introduction to Functions

Definitions
In the previous chapter, we considered a Cartesian coordinate system to easily see the relationship 

between two variables. We now introduce an algebraic characterization for certain relationships.

Suppose we drop an object from a tall structure (such as the Leaning Tower of Pisa). The 

distance the object falls is dependent (among other things) on the length of time it falls. If we let the 

variable d be the distance the object has fallen (in feet) and t the time it has fallen (in seconds), and

if we disregard air resistance, the formula (from physics and calculus) is

d = 16t 2

where 16 is a constant determined by the force of gravity acting on the object. Using the formula, 

we can calculate the height of the tower by timing the number of seconds it takes for the object to 

hit the ground. If it takes 3 seconds for the object to hit the ground, then the height of the tower (in 

feet) is

Tower of Pisa

©
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2.2 Introduction to Functions 93

 d = 16t 2

= 16(3)2

= 144

The formula d = 16t 2 gives rise to a set of data for 0 ≤ t ≤ 15:

Time (in sec) 0 1 2 3 4 . . . 14 15

Distance (in ft) 0 16 64 144 256 . . . 3,136 3,600

For every nonnegative value of t, there is a corresponding value for d. We can represent the 

data in the table as a set of ordered pairs in which the first component represents a value for t and 

the second component represents a corresponding value for d:

(x, y)

The determined value (distance in this example) is called the dependent variable, and the

specified variable is the independent variable. For this example (see preceding table), we have a 

set of ordered pairs: (0, 0), (1, 16), (2, 64), . . . , (14, 3136), (15, 3600). The domain of a func-

tion is the set of values of the independent variable for which it is defined. For this example, the 

domain is defined as 0 ≤ t ≤ 15, which means that t is any value between 0 and 15 (including the

endpoints). Thus, other ordered pairs (not shown in the table) are (0.5, 4), (12.75, 2601), . . . . The

set of all corresponding values of the dependent variable (second components) is called the range.

A visual representation of a function is shown in Figure 2.5.

Figure 2.5 A function as a mapping

Domain Range f (x)

x
fX Yf

FUNCTION

A function is a rule that assigns to each element of the domain a single element in its range.

» IN OTHER WORDS To each x in the domain, there corresponds exactly one x y in the

range.

The pairs of corresponding values assigned in the definition of a function may be viewed as 

ordered pairs (x, y). This allows a rewording of the definition: A function is a set of ordered pairs 
(x, y) in which no two different ordered pairs have the same first element x.xx

It is customary to give functions letter names, such as f , g, f1ff , or F. If y is the value of the func-FF
tion f corresponding tof x, it is writtenxx y = f (x ) and is read “y is equal to the value of the functiony f
at x,” or, more briefly, “xx y equalsy f at f x,” or “xx y equalsy f of f x.”

Let D = {1, 2, 3, 4} be the domain of a function called f. Think of the functionff f as a machine 

(a function machine as shown in Figure 2.6) that accepts an input x from D and produces an output 

f (x ), pronounced “f of f x.”

↑
Second component (values for d)

First component (values for t)
↓

Input value x

Output value f (x)

Add 2

Multiplylti l
byy 5

Square

Figure 2.6 Function machine

Gottfried Leibniz (1646–1716)

We first met Leibniz in Chapter 1 as 
one of the inventors of calculus. How-
ever, as you might guess, he is one of 
the giants in the history of mathemat-
ics. For example, the word function was n
used as early as 1694 by Leibniz to 
denote any quantity connected with 
a curve. Leibniz was one of the most 
universal geniuses of all time, and as 
a teenager, he came up with many of 
the great ideas in mathematics. How-
ever, his ideas were not fully accepted 
at the time because teenagers did not 
command much attention in intellectual 
circles. He was refused a doctorate at 
the University of Leipzig because of his 
youth, even though he had completed all 
the requirements. Among other things, 
Leibniz invented the calculus, exhib-
ited an early calculating machine that 
he invented, and distinguished himself 
in law, philosophy, and linguistics. His 
ideas on functions were generalized by 
other mathematicians, including P. G. 
Lejeune-Dirichlet (1805–1859).

Historical Note
©

 Karl Sm
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The function machine description has the advantage of being easy to understand, but it is awk-

ward to use. We might also describe this function in a variety of ways, as shown in Example 1.

E X A M P L E  1  Alternate descriptions for a function

Describe the function machine in Figure 2.6 for the domain D = {1, 2, 3, 4} using a rule, stating 

an equation, showing a mapping, using a set of ordered pairs, writing a table, and drawing a graph.

Solution
 RULE For each input value, add two, then multiply by five, and finally square the result to find 
the output. The function in this example would probably not be defined by such a verbal rule; 

never theless, a verbal rule is often the best way we have to describe a certain function.

EQUATION f ( )x [ ( )]= +[ ( 2( +x( 2 MAPPING

TABLE x f(x)

1 225

2 400

3 625

4 900

1
225
400

625

900

2

3
4

f

SET OF ORDERED PAIRS {(1, 225), (2, 400), (3, 625), (4, 900)}

E X A M P L E  2  Domain, range, and outputs

Given a mapping from X to Y, name the domain and range, and use functional notation to name the YY
outputs for each input.

a.  b.

a
b c

d

1
23 4
56

fX Y

X =X {a, b, c, d}; Y = {1, 2, 3, 4, 5, 6}Y

a
b

c

3
56

1

X Y

2
4

g

X = X {a, b, c}; Y = {1, 2, 3, 4, 5, 6}Y

c. 

6
4

11
–1

0

2
–2

X YF

2
3

5

X = {1, –1, 0, 2, –2};X Y = {1, 2, 3, 4, 5, 6}Y

The symbol f (x ) does NOT mean 

multiplication; it is a single symbol 

representing the second component 

of the ordered pair (x, y). 

GRAPH

x

y

444–111 555111 222 333

1001000

2002000

3003000

4004000

5005000

6006000

7007000

8000800

9000900

1,000,001 000
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2.2 Introduction to Functions 95

Solution

a. Domain = {a, b, c, d }; Range = {1, 2, 3, 4};

The range consists only of those elements of Y that are actually used as outputs. However, the

domain and X must be the same.

f b f d( )a , (f ) , ( )c , (f (f )= =1 b, f )bf ) 4d3 d3, ff ) =df )
b. Domain = {a, b, c }; Range = {3, 5, 6};

g b g( )a , (g ) , ( )c= =3 b,g )bg ) 6
c. Domain = {1, −1, 0, 2, −2}; Range = {1, 4, 6};

F F F( ) , (F ) , ( ) , (F ) , ( )6) 1) 2) 4)(F 1) F(
Different elements in the domain may have the same value in the range.

Notice that Example 2c showed some repeated outputs. The ultimate example of repeated out-

puts is a function defined by f (x ) = c for all values of x. Such a function is called a constant func-
tion. If the outputs are always different (that is, if there are no repeated outputs), then the function 

is called one-to-one.

ONE-TO-ONE FUNCTIONS

If a function f maps X into Y so that for any distinct (different) elements x1xx and x2xx  in X,XX
f f( )x ( )x1 2f) (x≠ then f is said to be a one-to-one function of X into Y.YY

E X A M P L E  3  A mapping that is not a function

Draw a picture of a mapping that is not one-to-one.

Solution

Do not use f (x ) notation unless f is a function. f
This is not a function because 1 and 4 are associated

with more than one image; because it is not a function,

it follows that the mapping is not one-to-one.1

0
1

4

–10

2
–2

X Y

Horizontal and Vertical Line Tests
There are two tests that involve sweeping a line across a graph. The first tells us whether a graph 

represents a function, and the second tells us whether a graph represents a one-to-one function.

VERTICAL LINE TEST

Every vertical line passes through the graph of a function in at most one point. This means if you 

sweep a vertical line across a graph and it simultaneously intersects the curve at more than one 

point, then the curve is not the graph of a function.

HORIZONTAL LINE TEST

Every horizontal line passes through the graph of a one-to-one function in at most one point. 

This means that if you sweep a horizontal line across the graph of a function and it simultane-

ously intersects the curve at more than one point, then the curve is not the graph of a one-to-one 

function.
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96 CHAPTER 2 Functions with Problem Solving

E X A M P L E  4  Horizontal and vertical line tests

Use the vertical line test to determine whether the given curve is the graph of a function, and if it is 

the graph of a function, use the horizontal line test to determine whether it is one-to-one. Name the 

probable domain and range by looking at the graphs.

a.

x

y

–8

4–4

8

b.

x

y

–4

4–4

4

c.

x

y

–4

4–4

4

d.

x

y

–8

8–8

e.

x

y

4–4

6

Solution   

a. y

–8

44

8

Passes the vertical line test; it is a function.

 Does not pass the horizontal line test; it is not one-to-one.8
 Domain: �
 Range:x4–4 y ≥ 0

b.

x

y

–4

4–4

4

Does not pass the vertical line test; it is not a function.

  If it is not a function, then the horizontal line test is not needed 4
because if it is not a function, then it cannot be a one-to-one function.

 Domain: x x ≥ 0
 Range: �

c. y

–4

44

4

Passes the vertical line test; it is a function.

 Passes the horizontal line test; it is one-to-one.4
 Domain: �
 Range:x4–4 �

d.

x

y

–8

8–8

Does not pass the vertical line test; it is not a function.

  If it is not a function, then the horizontal line test is not needed because 

if it is not a function, then it cannot be a one-to-one function.

 Domain: − ≤ ≤1 2≤ ≤x
 Range:

8–8 − ≤ ≤4 4≤ ≤y
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2.2 Introduction to Functions 97

e. 

x

y

4–4

6

Passes the vertical line test; it is a function.

 Does not pass the horizontal line test; it is not one-to-one.6
 Domain: �,x ≠ ±2
 Range: y ≤ 3

4
 or y > 1

Functional Notation
One of the most useful inventions in all the history of mathematics is the notation f (x ), called func-
tional notation. Remember

f ( )x

Sometimes functions are defined by expressions such as

f ( )x = +x 2 1 or g( )x ( )= (x 2

To emphasize the difference between f and f (x ), some books use f x → +x 2 1. In this book,

however, we write “f ( )x = +x 2 1” to mean, “let f be the function defined by f ( )x = +x 2 1; this 

denotes the set of all ordered pairs (x, y) so that y x= +x 2 1.”

E X A M P L E  5  Evaluating functions

Let f ( )x = +x 2 1 and g( )x ( ) .= (x 2

Find a. f (1) b. g (1) c. f (−3) d. g (−3) e. f (w ) f. g (w )

g. f (w + h ) h. g (w + h )

Solution

a. f ( ) 1) 1 22= +12 b. g( ) ( )) ( 2) 42 22(( =2
c. f ( ) ( ) +) = +) (=) 1 9= 1 1= 02 d. g( ) ( ) ( ) =) (=) ) (= ( 42 2( )(
e. f ( )w = +w 2 1 f. g w( )w ( )= (w +w +2) +w 12 2w
g. f

wh
( )w h ( )w h)h +)h

= +w + +h

2

2 2h h+
1

1wh +h2wh hh
h. g

wh wh h w h
w

( )w h ( )w h)h h
= +w + +w + +h + +w +
= +w

1
2

2

2 2wh w wh h+ +w +h
2 h hhh w h+ +h + +h2 2w 1

In calculus, functional notation is used in the definition of derivative. The value

f f
h

( )x h ( )xh

is called a difference quotient.

E X A M P L E  6  Difference quotient

Let f x( )x .= 3  Find the difference quotient 
f f

h
( )x h ( )x

.
h

A function is denoted by f ; f (x ) is a num-
ber associated with x. 

x is a member of the domain.x
↓

↑
f(x) is a number.

}
Note that f ≠ g since g

x 2 + 1 ≠ (x + 1)x 2.
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98 CHAPTER 2 Functions with Problem Solving

Solution

f f
h

x
h

x h xh x
h

( )x h ( )x ( )x hh
=

−)h

=
+ + + −h

3 3x

3 2+ 2 3hh 33h +x h2x

==
+ +

= + +

3 +

3 3+

2 23+ 3

2 23+

2 h
h
x3+ 3+ h h++

E X A M P L E 7 Difference quotient of a polynomial function

Let f ( )x .= +x +2 2 3x +  Find 
f f

h
( )x h ( )x

.
h

Solution

f f
h

x h
h

x

( )x h ( )x [( ) ( ) ] [ ]h
=

+h) + ) −[x

=

2 2h( ) ] [[xx( +h)x h( )h) x

2 222 2

2

2 2 3

2

2

+ +2 + + + 3 −2

=
+ +

= +2 +

h x2 22 + 2 h x3 −3
h

xh h h2 22 +2

h
x h+ 22

Using Functional Notation in Problem Solving
Functional notation can be used to work a wide variety of applied problems.

E X A M P L E  8  Falling object problem revisited

At the beginning of this section, we used the formula d = 16t 2 to represent the distance (in ft) that 

an object falls (neglecting air resistance) after t seconds. This relationship can be represented by 

f (t ) = 16t 2. Use functional notation to represent each of the given ideas.

a. The distance the object will fall in one second.

b. The distance the object will fall in the next two seconds.

c. The distance the object will fall during the h seconds following the second second.

d. The average distance the object will fall in the first 5 seconds.

e. The average distance the object will fall in the next 5 seconds (after the first 5 seconds).

f. The average distance the object will fall in h seconds after the first x seconds.

Solution

a. f ( ) ( )1) 6( 162 =)16( ; the object will fall 16 ft.

b. f ( ) ( )1) 6( 1442 =)16( ft is the distance the object will fall in the first 3 seconds; f f( ) ( )f (  is the

distance the object will fall in the next 2 seconds (after the first second). That is,

f f( ) ( )f ( 144 16 128=)f ( − =16

In the next two seconds, the object falls 128 ft.

When fi nding a difference quotient, do not 

start with f (x ). Find f (f x + h ) fi rst, then sub-

tract f (x ) and simplify; fi nally, divide by h . 
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2.2 Introduction to Functions 99

c. f ( ) ( )1) 6( 642 =)16( ft is the distance the object will fall in the first two seconds. f ( )h  is 

the distance the object will fall in the next h seconds, so the distance in the h seconds following

the second second is

f f( )h ( ) ( )h

( )h h

f)h 6)h 4

16 64

64 6

2

2

)h)h

= (16 −)h

= +64 444 64

16 6

2

2

h h16

h64h2

+ 616

= +16h2

Thus, the object will fall (16h2hh + 64h ) ft.
d. f ( ) ( )1) 6( 4002 =)16(  ft is the distance the object will fall in the first 5 seconds. Thus, the aver-

age distance for the first 5 seconds is

f ( )
5

ft
sec

400 ft
5 sec

80 ft/s= =

e. The distance the object travels in the next 5 seconds is

f f( ) ( ) ( ) ( )
,
,

1) 6( 1) 6(
1 600 400
1 200

2 2( )16(16( )
= −1 600
=

The average distance is

f f( ) ( ) ,
10 5

1 200
5

240
−

= = ft/s

f. In the first x seconds the object travels f ( )x ft; in the next h seconds, the object travels 

f ( )x h − f ( )x . The average distance for the h seconds is

Recognize the difference quotient.
f f

x
x

h

x xh

( )x h ( )x
( )x h

( )x h

(

h
−)h

=
−)h

=
+

16 16

16 2

2 2x16

2 + −++

=
+ + −

=
+

h x−
h

x + h+ x
h

xh h
h

2 2x

2 2++ h h+ 2

2

6

16 6 16

32 16

)

= +== 32 6x h+16

E X A M P L E  9  Calculus example, writing a function

Suppose you need to fence a rectangular play zone for children, to fit into a right-triangular plot 

with sides measuring 4 m and 12 m, as shown in Figure 2.7.

Write the area of the play zone as a function of the length of the play zone. We will continue 

with this example in Section 3.3.

Solution  Let x and x y denote the length and width of the inscribed rectangle. The appropriate for-y
mula for the area is A = lw = xy. We wish to find a formula for this area. To write this as a single 

variable, x in this example, we note that Δ ΔC AΔ DF , which means that corresponding sides

of these triangles are proportional; therefore,

Figure 2.7 Play Zone

A
Cx

y
ED

B
F

4 m

12 m
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100 CHAPTER 2 Functions with Problem Solving

4
4 12

4
1
3

4
1
3

−
=

−

y x

y x=

y x4= −4

We now write A as a function of x alone:

A xy x x x x( )x = =xy
⎛

⎝
⎜⎛⎛⎜⎜⎜⎜⎜⎝⎝⎜⎜

⎞

⎠
⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎠⎠
⎟⎟ x=4

1
3

4
1
3

2

Classification of Functions
If you have looked at the table of contents for this book, you will see that one of the unifying con-

cepts of this book is that of a function. As a preview of what is to follow, we will define many of the 

functions you will encounter in this course and in your calculus course.

POLYNOMIAL FUNCTION

A polynomial function is a function of the form

f a x a x an
n

n
n( )x = +a xn + + + +a x−

−
1

1
2

2
1 0a+x

where n is a nonnegative integer and an, . . . , a2, a1, a0a  are constants. If an ≠ 0, the integer 

n is called the degree of the polynomial. The constant an is called the leading coefficient and 

the constant a0a  is called the constant term of the polynomial function. In particular,

A constant function is zero degree: f a( )x =

A linear function is first degree: f b( )x = +ax

A quadratic function is second degree: f bx c( )x = +ax +2

A cubic function is third degree: f bx d( )x = +ax + +cx3 2bx+

A quartic function is fourth degree: f bx dx e( )x = +ax + +cx +4 3bx+ 2

We will consider polynomial functions in Chapter 3.We ill consider pol nomial f nctions in Chapter 3

A second important algebraic function is a rational function.

RATIONAL FUNCTION

A rational function is the quotient of two polynomial functions, p(x ) and d(x ):

f p
d

x( )x ( )x
( )x

, (d(d ) ≠x=
p( )

, d ) 0

When we writeWh i dd( )( )x ≠ 00 we mean that all values h ll l c for whichf hi h dd((c) ) = 00 are excluded from the l d d f h

domain of d. Here are some examples of rational functions, written in different ways.

f x( )x = −1 f x
x

( )x =
−

+ −
5

2 3−x2
f x( )x = +x 3 2

We will consider rational functions in Chapter 4.

If r is any nonzero real number, the function f xr( )x = is called a power function with expo-

nent r. You should be familiar with the following cases:

Integral powers (r = n, a positive integer): f x x x xn

n

( )x = x ⋅ x� ��� ����� ��
factors

Reciprocal powers (r is a negative integer): f x
x

n
n

( )x = =x− 1
 for x ≠ 0
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2.2 Introduction to Functions 101

Roots (r m
n

= is a positive rational number): f x xx xm n mn m
m

( )x /= x = ( )xn
for x ≥ 0 if n even,n

n ≠ 0 (m
n

is reduced)

Power functions can also have irrational exponents (such as 2 or π), but such functions must 

be defined in a special way and are not introduced until Chapter 4.

A function is called algebraic if it can be constructed using algebraic operations (such as add-

ing, subtracting, multiplying, dividing, or taking roots) starting with polynomials. Any rational func-

tion is an algebraic function.

Functions that are not algebraic are called transcendental. The following functions are tran-

scendental functions:

Exponential functions are functions of the form f bx( )x = , where b is a positive constant. We 

will study these functions in Chapter 4.

Logarithmic functions are functions of the form f xb( )x log= , where b is a positive constant.

We will also study these functions in Chapter 4.

Trigonometric functions are the functions sine, cosine, tangent, secant, cosecant, and cotan-

gent. We will define these functions in Chapter 5.

PROBLEM SET 2.2

1LEVEL 

Determine whether the sets given in Problems 1–4 are functions. If 
it is a function, state its domain.

 1. a. {(6, 3), (9, 4), (7, −1), (5, 4)}
 b. {6, 9, 7, 5}
 c. y = 5x + 2
 d. y = −1 if x is a rational number, and x y = 1 if x is an irrational 

number.

 2. a. {(3, 6), (4, 9), (−1, 7), (4, 5)}
 b. {10, 20, 30, 40}
 c. y ≤ 5x + 2
 d. y = −1 if x is a positive integer, and y = 1 if x is a negative inte-

ger.

 3. a. {(x, y)|y = closing price of Xerox stock on July 1 of year x}
 b. {(x, y)|x = closing price of Xerox stock on July 1 of year y}
 4. a. (x, y) is a point on a circle with center (2, 3) and radius 4.

 b. (x, y) is a point on a line passing through (2, 3) and (4, 5).

For each verbal description in Problems 5–8, write a rule in the 
form of an equation and then state the domain.

 5. For each number x in the domain, the corresponding range value y is 

found by multiplying by three and then subtracting five.

 6. For each number x in the domain, the corresponding range value y is 

found by squaring and then subtracting five times the domain value.

 7. For each number x in the domain, the corresponding range value y is 

found by taking the square root of the difference of the domain value 

subtracted from five.

 8. For each number x in the domain, the corresponding range value y is 

found by adding one to the domain value and then dividing that result 

into five added to five times the domain value.

 9. Let P(x ) be the number of prime numbers less than x. Find

 a. P(10) b. P(−10) c. P(100)

 10. Let S(x ) be the exponent on a base 2 that gives the result x. Find

 a. S( ) b. S ( )1
8

 c. S 2( )2

In Problems 11–18, let f ( )x = 5 1x −x  and g( )x .= +3 1+x 2 Find the 
requested values.

 11. a. f (0) b. f (2)

 c. f (−3) d. f 5( )5
 12. a. f (w ) b. g(w )
 c. g(t ) d. g(v )
 13. a. f (t ) b. f (p )
 c. f (t + 1) d. g(t + 1)
 14. a. f (x + 2) b. g(x + 2)
 c. f (t + h ) d. g(t + h )
 15. a. f g( )t ( )2 g)t (tt
 b. f g( )t t ( )t2 ttt g(t

 16. a.
f f( )t ( )t−)

3
b. 

g g( )t ( )t−)
2

 17. a.
f f

h
( )t h ( )th

b. 
g g

h
( )t h ( )th

 18. a.
f f

h
( )x h ( )xh

b. 
g g

h
( )x h ( )xh

In Problems 19–24, use the vertical line test to determine whether 
the curve is a function and if it is the graph of a function, use the 
horizontal line test to determine whether it is one-to-one. Also state 
the probable domain and range.
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102 CHAPTER 2 Functions with Problem Solving

 19. 20.

 21. 22.

 23. 24.

WHAT IS WRONG, if anything, with each statement in Problems 25–34? 
Explain your reasoning.

 25. f f f( )x ( )x ( )) +f f) )x (=) + 26. f f( )x ( )x2)x
 27. If f ( )x = +3 5+x 2 , then f ( ) is a function.

 28. If f ( )x = +3 5+x 2 , then f ( )x is a function.

 29. If f ( )x = +3 5+x 2 , then f is a function.

 30. The horizontal line test is used to determine whether a graph repre-

sents a function.

 31. The horizontal line test is used to determine whether a graph repre-

sents a one-to-one function.

 32. The vertical line test is used to determine whether a graph represents 

a function.

 33. The vertical line test is used to determine whether a graph represents 

a one-to-one function.

 34. If f x( )x = 3 2 , then
f f

h
x

h
( )x h ( )xh

=
+3 3x + −h2 2h x3hh

2LEVEL 

In Problems 35–40, find the difference quotient for the given func-
tion fff
 35. f x( )x = 4 2 36. f x( )x = 6 2

 37. f ( )x = +x 2 3 38. f x( )x = + 26 +x 2

 39. f x x( )x = x +2 3 40. f ( )x = +x 2 2 3x −

 41. If S
x

( )x =
+3 2x +

4 1x −
,  find S ( )x

1 .

 42. Let R x x x( )x .= + −x −3 3+x 2 2x−3+ 1 Show R R( )x
1 ( )x .

 43. Let f b a( )x , .a= +ax ≠ 0  Find a and b so that

f f f( )x y ( )x ( )yy

 44. Let f bx( )x , .= +ax + ≠c a,a 0  Find a, b, and c so that

f f f( )x y ( )x ( )yy

 45. If f b a( )x = +ax ≠, ,a ≠ 0  evaluate f ( )b
a

− .

 46. Let g(x ) = ax 2 + bx + c, a ≠ 0. Find

g b b ac
a

− +b −⎛

⎝
⎜⎛⎛⎜⎜⎜⎜⎜⎜⎝⎝⎜⎜⎝⎝⎝⎝

⎞

⎠
⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎠⎠⎟⎟

2 4
2

 47. a. Let Q x a
x a

( )x .=
+

 Does

Q Q Q( )a a ( )a ( )a ?a Qa (a

 b. Give an example of a function E for which

E E E( )a ( ) ( )aa E)a ()a +

 48. a. Let T(x ) = 2x. Does

T T T( )a b ( )a ( )b ?)b

 b. Give an example of a function D for which D(a + b ) ≠ D(a ) ·D(b ).
 49. Let d be a function that represents the distance an object falls (neglect-d

ing air resistance) from rest in the first t seconds. Find the distance the t
object falls for the given intervals of time if d t( )t .= 16 2

 a. From t = 2 to t = 6. Hint: This is d(6) −d(2).
 b. From t = 2 to t = 4.

 c. From t = 2 to t = 3.

 d. From t = 2 to t = 2 + h.

 e. From t = x to x t = x + h.

 f. Give a physical interpretation for

d d
h

( )t h ( )t)h

 50. Suppose the total cost (in dollars) of manufacturing q units of a cer-

tain item is given by

C q q q( )q = q + +q3 30 400 500

on [0, 30].
 a. What is the cost of manufacturing 20 units?

 b. Compute the cost of manufacturing the 21st unit.

 51. An efficiency study of the morning shift at a certain factory indicates 

that an average worker who arrives on the job at 8:00 A.M. will have 

assembled

f x x( )x = − + +3 2x+ 1+x +x 5

units x hours later ( ).
 a. How many units will such a worker have assembled by 10:00 

A.M.?

 b. How many units will such a worker assemble between 9:00 A.M.

and 10:00 A.M.?

 52. It is estimated that t years from now the population of a certain sub-

urban community will be

P
t

( )t = −
+

20
6

1
thousand people.
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2.3 Graph of a Function 103

 a. What will the population of the community be nine years from 

now?

 b. By how much will the population increase during the ninth year?

 c. What will happen to the size of the population in the “long run”?

 53. Find the area of a square as a function of its perimeter.

 54. Find the area of a circle as a function of its circumference.

PROBLEMS FROM CALCULUS Functions are, of course, central to the 
study of calculus. Problems 55–60 are adapted from a leading cal-
culus textbook.*

 55. A manufacturer wants to design an open box having a square base 

(length x ) and a surface area of 108 square inches. Write the volume 

as a function of the length of a side of the base.

 56. Write the distance between a point (x, y) on the graph of y = 4 − x  2
and the point (0, 2) as a function of x.

 57. A rectangular page is to contain 24 square inches of print where x is x
the height of the printed portion. The margins at the top and bottom 

of the page are each 11
2

 inches. The margins on each side are 1 inch. 

Write the area of the paper as a function of x.

 58. Two posts, one 12 feet high and the other 28 feet high, stand 30 feet 

apart. The top of each post is fastened by wire to a single stake, run-

ning from ground level to the top of each post. Write the length of the 

wire as a function of the distance, x, the stake is located from the xx 12-ft 

post.

 59. Four feet of wire is to be used to form a square and a circle. Write the 

total area (sum of the area of the square and the area of the circle) as 

a function of the length, x, of the side of the square.xx
 60. A hospital patient receives an intravenous glucose solution from a 

cylindrical bottle of radius 8 cm with height 20 cm. Suppose the fluid

level drops 0.25 cm/min. (Note: The volume of a right circular cylin-

der of radius r and height h is πr h2 .)

 a. Write a formula for the amount S of solution in cubic centimeters

(cm3) that has entered the patient’s vein when the height of the 

removed fluid is h cm.

 b. Write a formula for the height of the fluid (in cm) t minutes after 

the full bottle is hooked up to a patient.

 c. Write a formula for S as a function of t.
 d. How long does it take for all the fluid to enter the patient’s vein?

2.3  Graph of a Function

Graphs have visual impact. They also reveal information that may not be evident from verbal or 

algebraic descriptions. To represent a function y f ( )x  geometrically as a graph, it is traditional to 

use a Cartesian coordinate system on which units for the independent variable x are marked on the x
horizontal axis and units for the dependent variable y are marked on the vertical axis.y

GRAPH OF A FUNCTION

The graph of a function f consists of all points whose coordinatesf (x, y) satisfy y f ( )x , for 

all x in the domain of x f.ff

One of the principal tasks of this book is to discuss efficient techniques involving calculus that you 

can use to draw accurate graphs of functions. In beginning algebra, you began sketching lines by 

plotting points, but you quickly found out that this is not a very efficient way to draw more compli-

cated graphs, especially without the aid of a graphing calculator or computer. Table 2.1 includes a 

few common graphs you have probably encountered in previous courses. We will assume that you 

are familiar with their general shape and know how to sketch each of them.

We will use the functions in Table 2.1 as a basis for discussion in this chapter as we look at 

properties of functions, and then in subsequent chapters of the book, we will use the properties of 

this chapter to help us graph functions in general.

Even if you do not now have access to a graphing calculator or computer software that graphs, 

you will no doubt be using this technology in the future. Many have a misconception that if they 

only had this technology they would not need to study graphing in a mathematics course. Quite the 

contrary is true. Even the best software will often come up with a blank screen when an equation 

or a curve is input. Graphing calculators require input in the form Y = , which means that you are

expected to input equations that are functions.

Domain and Range
In this book, unless otherwise specified, the domain of a function is the set of real numbers for 

which the function is defined. We call this the domain convention.
If a function f is f undefined at x, it means that xx x is not in the domain of x f. The most frequent ff

exclusions from the domain are those values that cause division by 0 and negative values under a 

*From Section 3.7, pp 213–216, of CALCULUS, Fifth Edition, by Larson, Hostetler, and Edwards.

Notice this agreement about the domain

of a function that will be used throughout 

the book.
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104 CHAPTER 2 Functions with Problem Solving

square root. In applications, the domain is often specified by the context. For example, if x is thex
number of people on an elevator, the context requires that negative numbers and nonintegers be 

excluded from the domain; therefore, x must be an integer such that x 0 ≤ ≤c≤ , where c is the maxi-c
mum capacity of the elevator.

E X A M P L E  1  Domain of a function

Find the domain for the given functions.

a. f x( )x = 2 1x −x
b. g x x( )x ,= ≠ −2 1xx 3

c. h
x

( )x ( )x ( )
=

)(x
+

x
3

d. F x x( )x = +12 2

Identity Function 
y = x

Standard Quadratic Function
y = x2

Standard Cubic Function
y = x3

x

y

555–5–55

555

–5–5–5

x

y

555–5–55

555

–5–5–5

x

y

555–5–55

555

–55–5–––

Absolute Value FunctionVV

y = |x | = √x√√ 2

Square Root Function

y = √x√√
Cube Root Function 

y = √√√x√√

x

y

555–5–55

555

–5–5–5

x

y

555–5–55

555

–5–5–5

x

y

–5–55 555

555

–5–5–5

Standard Reciprocal

y =
1
x

Standard Reciprocal Squared 

y = 1
x2

Standard Square Root Reciprocal 

y =
1

√x√√

x

y

888–4–44–8–88 444

222

444

–2–2–22

–4–4–4

x

y

888–4–44–8–88 444

222

444

–2–2–2

–4–4–4

x

y

–5–55 555

555

–5–5–5

TABLE 2.1TT Directory of Curves
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2.3 Graph of a Function 105

Solution

a. All real numbers; D = ( , ).∞
b. All real numbers except −3.

c. Because the expression is meaningful for all x ≠ −3, the domain is all real numbers 

except −3.

d. F is defined whenever F 12 + x − x  2 is nonnegative:

12 0
0

2+ − ≥
≥

x−
( )4 ( )3 +3 +3 x+3

–6 –4 –2 0 2 4 6

4 – x:
3 + x:

x

+++++++++++
++++++

+++++
– – – – – 

– – – – – – 
+++++++++++

neg negp s

We see that x is nonnegative whenx − ≤ ≤3 4≤ ≤ , so D = [−3, 4].

EQUAL FUNCTIONS

Two functions and f and f g are g equal if and only if

 1. f and f g have the same domain.g
 2. f g( )x ( )x=  for all x in the domain.x

In Example 1, the functions g andg h are equal, but the functions h f and f h are not. A common mistake h
is to “reduce” the function h to the function h f :

WRONG: h
x

x f( )x ( )x ( )
( )x=

)(x
+

=
x

3
2xx

 RIGHT: h
x

x x( )x ( )x ( )
,=

)(x
+

= ≠ −
x

3
2 1xx 3; therefore, h g( )x ( )x .=

Even though the usual graphing procedure is to find the domain, draw the graph, and then use 

the graph to determine the range, it is sometimes necessary to find both the domain and the range. 

We summarize these procedures:

FINDING THE DOMAIN

To find the domain, solve for y and look for exclusions for y x.

FINDING THE RANGE

To find the range, solve for x and look for exclusions for x y.

With this procedure, it is not necessary that the given relation be a function.

E X A M P L E  2  Finding the domain and range of a relation

Find the domain and range for:

a. x y2 2 3=y 2y

b. y x3 2

c. xy y2 2y 1 0− −y
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106 CHAPTER 2 Functions with Problem Solving

Solution

a. Domain: Solve for y and look for exclusions for y x.

x y

y x

y x

2 2

2 2x
2

3

3

=y 2y

±

Solve the inequality 3 02 ≥ to find critical values ± 3. From a number line, we find

D = ( )− ,

Range: Solve for x and look for exclusions for x y. The range is the same as the domain (the steps

are identical), namely,

D = ( )− ,

b. Domain: Solve for y and look for exclusions for y x. The radicand must be nonnegative, so

3 02 ≥

Critical values are x = ± 3, and from a number line we find D = −⎡⎣⎡⎡ ⎤⎦⎤⎤3 3, .⎦3
Range: Solve for x and look for exclusions for x y.

y x

y x

x y

x y

3

3

2

2 2x3
2 2y3

2
Positive only because y ≥ 0.

Compare this step in part b with the similar step in part a. These steps are often confused. Do 

you see why the “±” is needed in part a but is not needed here in part b? 

Critical values are y = ± 3, and from a number line, we find R = ⎡⎣⎡⎡ ⎤⎦⎤⎤0 3, .

c. Domain: Solve for y and look for exclusions for y x.

xy y

y

y
x

y
x

2 2y
2

2

1 0

1

1
1
1

1

− −y

=
−

=
±

−

( )x 1−1

By inspection, D = ∞( , ) .

Range: Solve for x and look for exclusions for x y.

xy y

xy y

x y
y

2 2y
2 2

2

2

1 0

1

1

− −y

= +y 2y

=
+

For this equation, we see that x is real for all x y except y y = 0. Thus, R = (−∞, 0) ∪ (0, ∞).

Intercepts
As we discussed in Section 1.3, the points where a graph intersects the coordinate axes are called 

intercepts. We restate the definition here in functional notation.
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2.3 Graph of a Function 107

INTERCEPTS

If the number zero is in the domain of f andf f b( ) , then the point (0, b) is called the 

y-intercept of the graph of fff If a is a real number in the domain of f such that f f ( )a = 0, then

(a, 0) is an x-interceptxx of f. Any number ff x such that x f ( )x = 0 is called a zero of the func-
tion.

Functions can have several x-intercepts (or noxx x-intercepts) but can have at most one xx y-intercept.

(Do you see why?)

E X A M P L E  3  Finding the intercepts

Find the intercepts and determine whether each is a function.

a. yx y2 1 0+ −y b. x y y2 2 24 1y 2 0− +xy 2xy =1

c. x y+ =y 4 d. x y2 3 16/ /3 2 =y 3/y 2

e. f x( )x = − + +x2 2

Solution

a. If we solve for y, we see that this is a function because for each x there is exactly one x y-value.

y-intercept: Let x = 0: yx y
y

y

2 1 0
0 1 0

1

+ −y
+yy =

=

The y-intercept is (0, 1). Functions can have at most one y-intercept.

x-intercept(s): xx Let y = 0:  yx y2 1 0+ −y
0 0 1 0+ −0 False

A false equation means that there is no point; in this example, there are no x-intercepts.xx
b. If we solve for y, we see that for each x there are two possible values of x y. Thus, this is not a

function.

y-intercept(s): Let x = 0: x y y
y

y

y

2 2 2

2 2

2

4 1y 2 0
02 4 1y 2y 0

1
4

1
2

− +xy 2xy =1
− +0 =1

=

= ±

The y-intercepts are 0
1
2

,
⎛

⎝
⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎝⎝⎜⎜

⎞

⎠
⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎠⎠
⎟⎟, 0, −

1
2

⎛

⎝
⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎝⎝⎜⎜

⎞

⎠
⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎠⎠
⎟⎟

x-intercept(s)xx : Let y = 0: x y y
x

x

2 2 2

2

4 1y 2 0
0 0 1 0

1

− +xy 2xy =1
− +0 −1

= ±

The x-intercepts arexx (1, 0), (−1, 0).
c. This is not a function.

y-intercept(s): Let x = 0: | | | |
| | | |

| |+ =| ||
+ | |

4
4| | |+ =| |

y = ±4

The y-intercepts are (0, 4), (0, −4).
x-intercept(s)xx : Let y = 0; the x-intercepts are found similarly to bexx (4, 0), (−4, 0).
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108 CHAPTER 2 Functions with Problem Solving

d. This is not a function.

y-intercept(s): Let x = 0: x y
y

y

2 3

2 3

2 2 2 3 2

16
0 12 3 6

/ /3 2

/ /3 23 2

/ /3 3 /( )y 2/3 ( )24
|

=y 3/y 2

+yy 3y 2

=
||=
= ±

4
64

3

y

The y-intercepts are (0, 64), (0, −64).
x-intercept(s)xx : Let y = 0; by symmetry, the x-intercepts arexx (64, 0), (−64, 0).

e. This is given in function notation, so it is obviously a function.

y-intercept: Let x = 0: f x
f
( )x
( )

= − + +x
+ +

=

2

2

2
0) = − 0 2+

2
The y-intercept is ( , ( )) ( , )(, 0,f .

x-intercept(s)xx : Let y f =f ( )xx 0; factoring, we find that

− + + =
−

=

x+
x x−

x x= −

2

2

2 0=
2 0=

0
1 2=x

( )+x +1 ( )2−

The x-intercepts arexx (−1, 0) and (2, 0).

Sometimes when you are graphing a curve, you want to find a point other than an intercept so that 

the point is in a certain region or with certain properties. For example, if you want to know one 

point on the line defined by the equation 2x + 3y − 4 = 0, where x > 5, then you can choose any 

x-value satisfying x > 5 and find the corresponding y-value. Consider the following example.

E X A M P L E 4 Finding points satisfying specified conditions

Find a point on the curve defined by the equation y
x

=
− +x

−
2 3x − 5

3

2

that also satisfies the specified 

conditions, if it exists.

a. x > 5
b. passes through the line y = −4
c. passes through the line y = 2x + 1

Solution

a. Choose any value of x > 5, say, x =10:

y =
− +

−
= =

2 3− 5
10 3

175
7

25
2( )10 ( )10

One possible point is (10, 25).
b. Solve

− =
− +

−
− + ≠

4
2 3− 5

3
4 2 3− 5 3≠

2

2

2

2

−
x

= 2 x +

x

( )33−

+ −++

=
− ± −

=
− ±

≈ −

x

7 0=

1 1± 4
2

1 5± 7
4

1 6 2 1

( )2 ( )−7
( )2

. ,6
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2.3 Graph of a Function 109

The given curve passes through the line y = −4 at approximately the points (1.6, −4) and 

(−2.1, −4).
c. Solve

2 1
2 3 5

3
2 3 5

2

2

x
x

x 32

+ =1
− +3x3

−
2x +( )2 1x +11 ( )3−x xx

x x

x

≠

−x x +

−

= −

3

2 5x 3 2= 3 5x +

2 8x =x
4

2 2x x5 3 2

The curve intersects the line y = 2x + 1 when x = −4 and when y = 2(−4) + 1 = −7. That 

is at the point (−4, −7).

Properties of Functions
Several different properties of functions are useful in a variety of ways.

PROPERTIES OF FUNCTIONS

Let S be a subset of the domain of a functionS f. Then:ff

f isf increasing on S if S f f( )x ( )x1 2f) (x<  whenever x x1 2x< in S;

f isf decreasing on S if S f f( )x ( )x1 2f) (x>  whenever x x1 2x<  in S;

f isf constant on S if S f f( )x ( )x1 2f) (x= for every x1xx and x2xx  in S.SS

If the value a separates an interval over whicha f is increasing from an interval over whichf f is f
decreasing, then ( , ( ))f, is a turning point.

Note the terminology; we say that the function is increasing and the graph is rising. We say that 

the function is decreasing and the graph is falling. 

These properties are illustrated with the following example.

E X A M P L E  5  Properties of a function

Let y x= − +x( )x −x 4−) 10 212 2x4  with the graph as shown in Figure 2.8.

a. Where are the intercepts?

b. Where is the turning point?

c. Where is the function increasing?

d. Where is the function decreasing?

Solution Note: We state the intervals over which f is increasing, decreasing, or constant in terms f
of x, that is, thexx S that is a subset of the domain of S f.ff

a. y-intercepts:  If x = 0, then y = 02 − 10(0) + 21 = 21
x-intercepts: If xx y = 0, then

x

x

2 10 21 0
0
3 7

− +x10 =
=
=

( )x 7 ( )3xx
,

The intercepts are (0, 21), (3, 0), and (7, 0).
b. By inspection from the equation y + 4 = (x − 5)2, we note the turning point is the point 

(5, −4).

Figure 2.8  Graph of y = (x − 5)2 − 4
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110 CHAPTER 2 Functions with Problem Solving

c. We see the graph is rising to the right of the turning point, so we say the function is increasing 

on (5, ∞).
d. We see the graph is falling to the left of the turning point, so we say the function is decreasing 

on (−∞, 5).

The information in Example 5 is frequently used in calculus, so we have superimposed the cor-

rect terminology on the graph in Figure 2.9.

Figure 2.9 Terminology associated with the properties of functions

Function decreasing Function increasing
Positive PositiveNegativ

y

x

Turning pointTT

8 2 4 6 8

8 2 4 6 8

– – – – – – – – –

– – – – – – – – – – – – – – – – – – 

+++++++++++++ +++++++

+++++++++++

Function:

y = x2 – 18x + 21x

Vertex

8

4

–2 42 86

–4

–8

G
raph

faff lling Gr
ap

h
ris

in
g

In the last section, we defined a difference quotient. There are several applications of difference 

quotient, and you might recall that this was the average distance we found in Example 8, Section 

2.2. Another application involves the notion of an average rate of change.

AVERAGE RATE OF CHANGE

Let f be a function defined on some intervalf [a, b ]. Then the average rate of change from 

(a, f (a )) to (b, f (b )) is the difference quotient

Δ
Δ

y
x

f f
b a

=
−( )b ( )a

You might note that the average rate of change of a function f between two points is the slope of thef
line (called the secant line) connecting these points. That is, in calculus this is often stated in terms 

of a starting point x, and an incremental change xx h so that h a = x  and x b = x + h , so that

Δ
Δ

y
x

f f
h

=
( )x h+h ( )x

E X A M P L E  6  Average rate of change of a function

Consider the function (from Example 5) defined by f ( )x ( )x= (x 4) −2

a. Find the average rate of change over the interval [2, 6].
b. What is the equation of the secant line passing through (2, f (2)) and (6, f (6))?
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2.3 Graph of a Function 111

Solution

a. f
f
( ) ( )
( ) ( )

) ( 4) 5
) ( 4) 3

2

2

( =4
( =4 −

The average rate of change is:
Δ
Δ

y
x

f f
=

=
−

= −

( ) ( )f (
6 2−

3 5−
4

2
b. The slope of the secant line is m = −2 (part a). We can use either one of the given points. We

choose (2, 5):
y k m=k ( )x h− Point-slope form

y 5 2( )x −x 2 Substitute known values.

y x +x5 2 4 Simplify.

2 9 0yy = Standard form

Another classification of functions is related to the symmetry of its graph. A function whose 

graph is symmetric with respect to the y-axis is called even. A function whose graph is symmetric 

with respect to the origin is called odd. If the function is found to be even or odd, then the symme-

try of its graph helps in the graphing of the function. This concept can be used to reduce (by half) 

the amount of work necessary on many problems.

EVEN AND ODD FUNCTIONS

A function f is calledf

even if f f( )x ( )x=)x  and

odd if f f( )x ( )x=)x −

for all x in the domain of x f.ff

Just as not every real number is even or odd (2 is even, 3 is odd, but 2.5 is neither), not every func-

tion is even or odd.

E X A M P L E 7 Even and odd functions

Classify the given functions as even, odd, or neither.

a. f x( )x = 2

b. g(x ) = x 3

c. h(x ) = x 2 + 5x

Solution   

a. f x( )x = 2 is even because

f x f( )x ( )x ( )x=)x x =2 2x
The graph at the right shows that the graph 

of the even function f (x ) = x  2 is symmetric

with respect to the y-axis.

b. g x( )x = 3 is odd becaused
g x g( )x ( )x ( )x=)x x =x −3 3x
The graph at the right shows that the graph 

of the odd function g x( )x = 3 is symmetric 

with respect to the origin.
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112 CHAPTER 2 Functions with Problem Solving

c. h x( )x = +x 2 5  is neither becauser
h x( )x ( ) ( )=)x +)x 2 2( )+ 5 5x( )x =)x 2x( )x
Note that h h( )x ( )x≠)x  and h h( )x ( )x .≠)x −

PROBLEM SET 2.3

1LEVEL

Sketch each of the functions in Problems 1–2, and classify each as 
odd, even, or neither.

 1. a. identity function

 b. absolute value function

 c. standard reciprocal function

 d. standard square root reciprocal function

 2. a. standard quadratic function

 b. square root function

 c. standard reciprocal squared function

 d. standard cubic function

 3. IN YOUR OWN WORDS What is the graph of a function?

 4. IN YOUR OWN WORDS How do you find the domain and range of a func-

tion?

 5. IN YOUR OWN WORDS Distinguish between an x-intercept and a zero of a xx
function.

 6. IN YOUR OWN WORDS In the book we state that “functions can have sev-

eral x-intercepts (or no x-intercepts) but can have at most onexx y-inter-

cept. Explain why this is true.

State whether the functions f and g defined in Problems 7–10 are 
equal.

 7. a. f x x
x

g

( )x

( )x

=
+

= +

3

3 1+x

2

;

 b. f x
x

( )x =
−x

−
2 7x 4

4

2

;

g x( )x ,= +x ≠2 1+x 4

 8. a. f
x

( )x ( )( )
=

)(x
−

x
4

;

g( )x = +3 1+x

 b. f x
( )x =

−x
+

3 5x 2
3 1x +

2

;

g x( )x = −x 2

 9. a. f
x

( )x =
−

2 6x x −x
2

2

;

g x( )x ,= + ≠2 3+x 2

 b. f x
x

x( )x ,=
−x

−
≠

3 5x 2
2

2
2

;

g( )x = +3 1+x

 10. a. f
x

x( )x ( )( )
,=

)(x
−

≠
x

2
6

g
x

x( )x ( )( )
,=

)(x
−

≠
x

6
2

 b. f
x

x( )x ( )( )
,=

)(x
+

≠ −
x

4
4

g
x

x( )x ( )( )x
,=

x
−

≠
x

2
2

Find the domain for the functions defined by the equations in Prob-
lems 11–16.

 11. a. f ( )x = 2 3x −x
 b. g x( )x ,= ≠2 3xx 1

 12. a. f
x

( )x ( )x ( )
=

)(x
−

x
1

 b. g( )x = +x2 1+x

 13. a. f
x

( )x ( )( )
=

)(x
+

x
22

 b. g( )x = +x 2 3 5x −

 14. a. f ( )x = +3 9+x
 b. g x( )x = −x 2 4

 15. f x x( )x = −2 2

 16. g x x( )x = +2 2

PROBLEMS FROM CALCULUS Graphs similar to those shown in Problems 17 
and 18 are common in calculus. Specify the coordinates of the re-
quested points by looking at the given graphs.

 17. a. Point R
  b. Point S

x

y

S

x0

x0 + h
3

G

B
R

Graph of G
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2.3 Graph of a Function 113

 18. a. Point T
 b. Point U

x

y

C
U K

T

x0

x0 + h1

Graph of K

2LEVEL 

Find the domain, intercepts, and turning points of the functions 
defined by the graphs indicated in Problems 19–30. Also give the 
intervals for which the function is constant, where it is increasing, 
and where it is decreasing.

 19.

x

y

555–555

–5––5

20.

x

y

555–555

–5––5

 21.

x

y

555–555

–5––5

55

22.

x

y

555–555

–5–5––

55

 23.

x

y

555–555

–5––5

24.

x

y

555–555

55

 25. 26.

 27. 28.

 29. 30.

PROBLEMS FROM CALCULUS In calculus, the average rate of change of a
function f between x andx x + h is defined to be the quantityh

f f
h

( )x h ( )xh

Find the average rate of change from 2 to 2 + h for the functionsh
in Problems 31–34.

 31. Identity function, f x( )x = .

 32. Standard quadratic function, f x( )x = 2.

 33. Standard reciprocal function, f x( )x = 1/ .

 34. Consider the average rate of change for the standard quadratic func-

tion, f x( )x = 2.

 a. Which is larger, the average rate of change from 2 to 3 or from 10
to 11?

 b. What is the average rate of change from 2 to 2.1?

 c. What is the average rate of change from 2 to 2.01?

 d. What is the average rate of change from 2 to 2.001?

 e. What value does the sequence of calculation seem to be approach-

ing?

  In calculus, this value is called the instantaneous rate of change.
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114 CHAPTER 2 Functions with Problem Solving

Find the domain and range for the graphs defined by the equations 
in Problems 35–52. If the equation does not represent a function, so 
state, and if it does, classify it as even, odd, or neither.

 35. y = x + 4 36. y x −x 4
 37. y x 3 38. y x
 39. y x8 3 40. y x3

 41. xy = 1 42. y x= +x 2 4
 43. y x −x 2 8 44. y x −x 2 9
 45. y x −x 2 4 46. y x x−x 3 9

 47. y x x= +x −2 12 48. y
x

=
+
3

12

 49. xy + =6 0= 50. y x
x

=
−
+

2 4
1

 51. 2 5| | | || | 52. | | | || |+ =||3 5| | =| ||
 53. Find the points (if any) where the curve defined by the equation

y x
x

=
+

5 8x
2 1x +

2

crosses the horizontal line y = 3.
 54. Find the points (if any) where the curve defined by the equation

y x
x

=
+

5 8x
2 1x +

2

crosses the vertical line x = −4.

 55. Find the points (if any) where the curve defined by the equation

y x x
x

=
+
−

2 2x +
2

3

2

crosses the vertical line x = −1.
 56. Find the points (if any) where the curve defined by the equation

y x
x

=
5 8x
2 1x −

2

crosses the horizontal line y = −4.
 57. Find the points (if any) where the curve defined by the equation

y x x
x

=
+ x

−

3 2+
2

2−x 2x
2

  crosses the line y = x + 1.

 58. Find the points (if any) where the curve defined by the equation

y =
+ +

+
3 4 3x + +x

3 1x +

3 244+ x
2

crosses the horizontal line y = x + 2.

3LEVEL 
 59. If f is increasing throughout its domain, prove that f f is one-to-one.f
 60. If a function f is decreasing throughout its domain, prove that f f is one-f

to-one.

2.4 Transformations of Functions

Sometimes the graph of a function can be sketched by translating or reflecting the graph of a related 

function. We call these translations and reflections transformations of a function.

Translations
We begin by considering two examples. Graph the functions y = x 2 and y − 2 = (x − 6)2 by plot-

ting points, as shown in Figure 2.10.

Figure 2.10 Graphing by plotting points

x y = x 2

0 0

1 1

−1 1

2 4

−2 4

3 9

−3 9

x

y

–5––5

555–555

55

a. Graph of y = x2

x y = (x − 6)2 + 2

0 38

1 27

2 10

3 11

4 6

5 3

6 2

7 3

8 6

9 11

x

y

555

55

10010

10010

b. Graph of y – 2 = (x – 6)2

Notice that the graphs in Figure 2.10 are identical, except they are in different locations. You 

also should have noticed (if you did the arithmetic) that the first table of values was much easier to 

calculate than the second. When two curves are congruent (have the same size and shape) and have 

the same orientation, we say that one can be found from the other by a shift or translation.
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2.4 Transformations of Functions 115

TRANSLATION

The graph defined by the equation

y k f=k ( )x h−

is said to be a translation of the graph defined by y = f (x ). The translation (shift, as shown

in Figure 2.10) is

to the right if h > 0

to the left if h < 0

up if k > 0

down if k < 0

» IN OTHER WORDS The procedure for graphing a translated graph is a two-step process:

 (1) Plot (h, k ). The numbers h and h k are directed distances.k
Horizontal translation |h | units; to the right if h is positive and to the left if h h ish
negative.

Similarly, the vertical translation is |k | units; up if k is positive and down if k k isk
negative.

 (2) Graph the curve y = f (x ) using (h, k ) as the starting point.

E X A M P L E  1  Translations of a standard curve

Given the standard quadratic function y = x 2 (see Table 2.1). Graph the given curves by transla-

tion.

a. y x4 2  b. y x+ 6 2 c. y ( )x −x 2 d. y ( )+x 2

Solution  Begin with the graph of y x 2, as shown in Figure 2.11. The vertex of this standard

quadratic function is (0, 0). We call this the starting point.

a. Write y x4 2 as y k =k ( )x h 2, and 

compare it to y x 2 to see that (h, k ) = 
(0, 4). Draw the curve shown in Figure 

2.11 with the starting point shifted up 

4 units.

x

y

–4

–2
4 62–2 8–6 –4–8

–6

–8

4

2

6

8

Shift up

b. Write y x+ 6 2 as y k =k ( )x h 2, and 

compare it to y x 2 to see that (h, k ) = 
(0, −6) Draw the curve shown in Figure 

2.11 with the starting point shifted down 

6 units.

x

y

–4

–2
4 62–2 8–6 –4–8

–6

–8

4

2

6

8

Shift down

Compare the equations in parts a and b with the shift up and shift down directions of the graph.

Figure 2.11  Graph of y = x 2

x

y

–4

–2
4 62–2 8–6 –4–8

–6

–8

4

2

6

8 y = x2
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116 CHAPTER 2 Functions with Problem Solving

c. Write y ( )x −x 2 as y k =k ( )x h 2, and 

compare it to y x 2 to see that (h, k ) = 
(5, 0). Draw the curve shown in Figure 

2.11 with the starting point shifted to the 

right 5 units.

x

y

–4

–2
4 62–2 8–6 –4–8

–6

–8

4

2

6

8

Shift right

d. Write y ( )+x 2 as y k =k ( )x h 2,   and

compare it to y x 2 to see that (h, k ) = 
(−5, 0). Draw the curve shown in Figure 

2.11 with the starting point shifted to the 

left 5 units.

x

y

–4

–2
4 62–2 8–6 –4–8

–6

–8

4

2

6

8

Shift leftff

Compare the equations in parts c and d with the shift right and shift left directions of the graph.
  

E X A M P L E 2 Translations of different standard curves

Graph: a. y ( )x −1
2

2
b. f ( )x | |x= |x +2|+ c. y x −x 2 3−

Solution We begin by looking at Table 2.1.

x

y

555–5–55

555

–5–5–5

x

y

555–5–55

555

–5–5–5

x

y

555–5–55

555

–5–5–5

a. y = x 2 b. y = |x | c. y x

a. First, plot 
3
2

1
2

, .
⎛

⎝
⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎝⎝⎜⎜

⎞

⎠
⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎠⎠

 Translate the standard quad-

ratic function to this point, as shown at the

right.

Translate the graph, do NOT calculate values.

b. This equation can be written as y − 2 = |x −3|, 
which is identical to the graph of the function 

y = |x  | from Table 2.1. Identify and plot the 

point (h, k )= (3, 2). The graph is shown at 

the right.

x

y

2 31–1 4–2

2

1

3

4

1–
2(    (3–

2
1–
2

, ))

x

y

5–5

5

10

10
(3, 2)
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2.4 Transformations of Functions 117

c. Rewrite as y x+ 3 2x − . This graph is the 

same as the square root function y x  trans-

lated to the point (h, k ) = (2, −3). The graph 

is shown at the right.

Reflections
In Chapter 1, we introduced the notion of symmetry. In terms of functions and functional notation, 

we restate those notions of symmetry with respect to the coordinate axes as reflections.

REFLECTION

A reflection in the x-axis xx of the graph of y = f (f x ) is the graph of

y = −f (f x )

A reflection in the y-axis of the graph of y = f (f x ) is the graph of

y = f (f −x )

» IN OTHER WORDS The graph is refl ected in the x-axis if we replace xx y byy −y in its equa-y
tion; it is refl ected in the y-axis if we replace x byx −x.

This procedure is illustrated in Figure 2.12, in which we have sketched the graph of y = x 2 and then 

reflected that graph.

Figure 2.12  Reflection of y = x 2

x

y

555–5–55

555

–5–5–5

Given curve

x

y

–4

–2
4 62–2 8–6 –4–8

–6

–8

4

2

6

8

Reflection

Reflection

E X A M P L E  3  Graphing with a reflection

Graph y x .

Solution  The graph of this function is a reflection in the x-axis of the graph of xx y =y x , as shown 

in Figure 2.13.

Figure 2.13 Reflection in the x-axis of xx y x

x

y

–2

–1
4 81 32 5 76

–3

–4

2

1

3

4

y = √x√√

y = – √x√√

x

y

5

2

10

(2, –3)
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118 CHAPTER 2 Functions with Problem Solving

E X A M P L E  4  Reflections of the absolute value function

Graph a. y = −|x  | and b. y = |−x  |.

Solution

a. Recall the graph of y = |x  | from Table 2.1.

Replacing y byy −y reflects the graph of y y = |x  | in

the x-axis, as shown at the right.xx

b. Because x has been replaced by x −x, the graph of xx
y = |−x  | will be a reflection of y = |x  | in the 

y-axis. Note, too, that the graphs of these func-

tions are identical. This is because (see Table 1.2, 

property 2) |−a  | = |a  | for any real number a.

An application of this reflection property helps us to graph curves such as

y x −x|( ) |3) −2

If y = f ( )x , where

f ( )x ( )x= (x 2) −2

the graph we seek is of the form y x| (f )|. We begin by graphing

f ( )x ( )x= (x 2) −2

which is the standard quadratic function shown in Table 2.1 translated to the point (3, −2) as 

shown in Figure 2.14.

Notice that part of the graph is above the x-axis and part is below thexx x-axis. Since the absolute xx
value of a positive value leaves the positive value unchanged, the absolute value on y = |f (x )|
will leave the graph unchanged above the x-axis. However, the portion below thexx x-axis will be xx
reflected above the x-axis because of the definition of absolute value. The desired graph is shownxx
in Figure 2.15.

Contrast the graph shown in Figure 2.15 with the graph of the function

y xx(| | )− 2−)2

For this curve, we also begin with the standard quadratic function shown in Table 2.1 and translate 

to the point (3,t −2). In this case, we note that for each value of x there is a corresponding valuex −x, xx
which also satisfies the equation. Thus, we see that this curve is simply a reflection about the y-axis 

as shown in Figure 2.16.

We summarize our findings involving the graph of an absolute value of a function.

ABSOLUTE VALUE GRAPHS

The graph of y = |f (x )| is found by graphing y = f (x ) and then reflecting all points of the graph 

that are below the x-axis through thexx x-axis.xx

The graph of y = |f (x )| is an even function, so the graph is found by graphing y = f (x ) and then 

in addition to those points drawing all points reflected through the y-axis.

Figure 2.14 Graph of y = x 2 translated to
(3, −2)

2 4 x

y

–4

–2
6–2 8–4

4

2

6

8

(3, –2)

x

y

–4

–2
42–2–4

Graph of y = –|x|

x

y

–2
42–2–4

2

4

Graph of y = |–x|

Figure 2.15 Graph of y = |(y x − 3)2 − 2|

x

y

–4

–2
642–2 8–4

4

2

6

8

Figure 2.16 Graph of y = (|y x | x − 3)2 − 2

x

y

–4

–2
6–6

4

2

6

8
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2.4 Transformations of Functions 119

Dilations and Compressions
You may be familiar with the dilation of an eye or a compression fracture in your spine. To under-

stand these concepts, we begin by observing that a curve can be compressed or dilated in either the 

x-direction, the xx y-direction, or both, as shown in Figure 2.17.

Figure 2.17 Dilations and contractions of a given curve

x

y

Given curve

x

y

x

y

in the x-direction in the y-direction
a. Dilations

x

y

x

y

in the x-direction in the y-direction
b. Contractions

DILATIONS AND CONTRACTIONS

To sketch the graph of y = af (f x ), replace each point (x, y) with (x, ay)

If a > 1, then we call the transformation a y-dilation.

If 0 < a < 1, then we call the transformation a y-yy compression.

To sketch the graph of y = f (f bx ), replace each point (x, y) with ( )1
b
x y

If 0 < b < 1, then we call the transformation an x-dilation.xx

If b > 1, then we call the transformation an x-xx compression.

Dilations and Compressions in the y-directionyy
We are interested in modifications of a known function, which we call f. Consider the graph of ff
y = f (x ) as shown in Figure 2.18a. The graph of y = 2f(x ) has the same shape except that each

y-value is double the corresponding y-value of f. On the other hand, the graph of ff y f1
2

( )x  has the

same shape except that each y-value is one-half the corresponding y-value of f. These graphs are ff
shown in Figures 2.18b and c.

Figure 2.18  Dilations and compressions in the y-direction for a given function

4

y

x

2

–2

4

– pp 2p

(x1, y1)

x1

y1

a. Graph of y = f(ff x)

4

y

x

2

–2

4

– pp 2p

(x1, 2y1)

x1

2y1

a = 2

b. Graph of y = 2f2 (ff x)

4

y

x

2

–2

4

– pp 2p

(x1, y1)
x1

y1

a = 1–
2

1–
2

1–
2

1–
2

c. Graph of y = – f(ff x)

51774_CH02_FINAL.indd   11951774_CH02_FINAL.indd   119 9/5/11   2:52:26 PM9/5/11   2:52:26 PM



120 CHAPTER 2 Functions with Problem Solving

Dilations and Compressions in the x-directionxx
To describe a dilation and compression in the x-direction, we will consider the function xx y = f(f x ) and 

examine the effect of y = f(f bx ). If we take a particular value of y, then it follows that the value bx isx
plotted in the same y-value as the x-value in the original curve. This means that to graph xx y = f(f bx ), 
replace each point (x, y) on the graph of y = f (f x ) with the point ( )1

b
x y See Figure 2.19.

Figure 2.19  Dilations and compressions in the x-direction for a given functionxx

4

y

x

2

–2

4

– pp 2p

(x1, y1)

x1

y1

a. Graph of y = f(ff x)

1–
2

1–
2

4

y

x

2

–2

4

– pp 2p

(2x22 1, y1)2x22 1

y1

b =

b. Graph of y = f ( x)

1–
2

1–
2

4

y

x

2

–2

4

– pp 2p

( x1, y1)x1

y1

b = 2

c. Graph of y = f(2ff x22 )

E X A M P L E  5  Compressions and dilations

Graph each function and describe each as a dilation or compression.

a. y x5 b. y x5  c. y x1
5

d. y x1
10

2

14

12

10

8

6

4

2

1 2 3 4 5 6 7 8 9

y

x

(1, 1)
(9, 3)y = √x√√

Solution  Compare parts a and b with the standard square root curve from Table 2.1, which we 

repeat here in the margin. Note that we have plotted two points in particular, namely, (1, 1) and

(9, 3).

a. y x5 is a y-dilation when compared 

with f x( )x = . We see a = 5 > 1; (x, y)
is replaced by (x, 5y).

14

12

10

8

6

4

2

1 2 3 4 5 6 7 8 9

y

x

(1, 5)

(9, 15)y = 5 √x√√y-dilation

(x, y) replaced by (x, 5y)

b. y x5 is an x-compression when com-xx
pared with f x( )x = . We see b = 5, so 
1 1

5b
= ; (x, y) is replaced by ( )1

5
x y .

14

12

10

8

6

4

2

1 2 3 4 5 6 7 8 9

y

x

y = √5x

x-compression

(x, y) replaced by ( x, y)

( , 1)1–
5

1–
5

( , 3)9–
5
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2.4 Transformations of Functions 121

c. y = 1
5
x  is an x-dilation when compared withxx f (x ) = |x|. We see b = 1

5, so 0 < b < 1; (x, y)
is replaced by (5x, y) because 1 5

b
= .

x

y

1 2 3–1 4 5–2–3–4–5

2

1

3

4

5
y = |x|

(1, 1)
1–
2(    1–

2
–
2)

Graph of y = |x| from Table 2.1

x

y

1 2 3–1 4 5–2–3–4–5

2

1

3

4

5

(5, 1)y = | x| 1–
2(   5–

2
–
2)1–

5

1–
5

(x, y) replaced
by (5x, y)

x-dilation

Graph of y = | x| as a dilation

d. y = 1
10

2x  is a y-compression when compared with f x( )x = 2. We see a = 1
10

, so 0 < a < 1; (x, y)
is replaced by ( )x y1

10
.

x

y

1 2 3–1 4 5–2–3–4–5

2

1

3

4

5

y = x2

(1, 1)

(2, 4)

Graph of y = x2 from Table 2.1

x

y

1 2 3–1 4 5–2–3–4–5

2

1

3

4

5

y =    x21––
10

1
10( 10 )y))

(x, y) replaced
by              1––

10(x,    
10

y
y-compression

1––
10

1–
10

(  10)1, 4––
10( 10)2,

Graph of y =    –– x2 as a compression

PROBLEM SET 2.4

1LEVEL 

Each of the graphs in Problems 1–10 is a translation of one of the 
curves from Table 2.1. Write the equation of the curves illustrated 
in Problems 1–10.

 1.

x

y

–5–5

555–555

55

2.

x

y

–5––5

555–555

55

 3.

x

y

–5––5

555–555

555

4.

x

y

–5––5

555–555–

55

 5. 

x

y

–55–5–

555–555

55

6.

x

y

–5––5

55555–555

55

 7. 

x

y

–5––5

555–555

55

8.

x

y

–5––5

555–555

55
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122 CHAPTER 2 Functions with Problem Solving

 9.

x

y

–5––5

555–555

55

10.

x

y

–5––5

555–555

55

Let f , ff g , and s be the functions whose graphs are shown in Figure s
2.20. Graph the functions indicated by the equations in Problems 
11–20.

x

y

–8–8

4 84 84 8 12212–444–888–1212–12

–1212

88

44

1212

fff

Graph of f

x

y

–1––1
1 21 21 2 333–111–222–3–3

22

11

33

44

55

ggg

 Graph of g

x

y

pp 22ppppp

–1.01 0–1.

–0.5–0 5–0.

–1.5–1.5

1.01 0.

0.50 5.

1.51 5.

sss

 Graph of s

Figure 2.20  Graphs of curves for Problems 11–20

 11. y x4 (f ) 12. y x4 (g )
 13. y s+ 1

2
( )x 14. y f ( )x

 15. y gg( )x −x 16. y s= s( )+x
 17. y ff ( )+x 18. y g4 g( )3x −
 19. y s( )x +1 20. y f ( )x +

Let y =y c(x ) be the function whose graph is given in Figure 2.21. 
Graph the curves indicated by the equations in Problems 21–30.

Figure 2.21 Graph of c

x

y

ppp 222pp–ppp–222pp

–1–1

11
ccc

 21. y x3 (c ) 22. y c1
2

( )x
 23. y c( )x 24. y x2 (c )
 25. y c( )x 26. y c( )x

 27. y cc( )x −x 28. y c+ ( )x −1

 29. y c= c2c( )+x 1+x 30. y cc +3
2

2+( )x −x 2

2LEVEL 

Graph the curves defined by the equations given in Problems 31–
48. Do not plot points to graph these equations, but treat them as 
transformations of graphs from Table 2.1.

 31. y 3 2( )2x − 32. y ( )+x 2

 33. y x −x 2 1 34. y 1 | |7x −

 35. y x= +x 4 36. y x= +x 4

 37. y | |+x 38. y −| |x| |xx 6

 39. y π
4

2( )x + π 40. y + ( )+2 (x +
2

 41. y x+ −3 42. y 3| |+ 5x +

 43. y x4 2xx −x 44. y 2 2( )x + 4x +

 45. y x+ 3 2x − 46. y ( )+2 (x +
2

 47. y x +2 5x + 48. y 3 1
2

2( )+ 2+x

3LEVEL 

Graph the equations in Problems 49–60. Do not graph these by 
plotting points.

 49. y x −x|( ) |4) −2 50. y x −x|( ) |2) −2

 51. y xx(| | )− 4−)2 52. y xx(| | )− 9−)2

 53. y + 9 2( )+ 8x + , such that − ≤ < −14 8x
 54. y 2 2( )+ 3x + , such that − < ≤7 2< ≤ −
 55. y + ( )x +12

2
, such that y > −10

 56. y + 3 2( )+ 3x + , such that y < 6
 57. y +12 2( )x −8 , such that y < 4

 58. y 5 2| |x −1 , such that − ≤ ≤4 2≤ ≤x

 59. y − =2
1

2( )x −3
, such that y < 5

 60. y x4 1
10

2, such that − ≤ ≤2 2≤ ≤x
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2.5 Piecewise Functions 123

2.5  Piecewise Functions

Definition
There are many everyday examples of functions that cannot be defined in terms of a single equa-

tion. For example, suppose electricity is $0.325/kwh for the first 1,000 kwh and then drops to 

$0.088/kwh for usage between 1,000 and 3,000 kwh (including 3,000 kwh). A graph of this func-

tion is shown in Figure 2.22.

We see that the graph passes the vertical line test, so it is a function. To write an equation for 

the electric charges, C, we need to break up the domain into “pieces.” If CC x is the kilowatt hoursx
(kwh) and y is the price charged for the electric usage, then we find the domain: We see that y x ≥ 0.

Two equations must be written, one for 0 ≤ x ≤ 1,000 and another for 1,000 < x ≤ 3,000:

y = 0.325x for x 0 ≤ x ≤ 1,000

y = 0.088x + 325 for 1,000 < x ≤ 3,000

Such a function is called a piecewise function and is usually defined using a brace:

C
x

( )x
. ,x

=
0 325 0 1≤ ≤xx 0if 0000
0 088 325 1 000 3 000. ,088 ,x x<000,3 5 <1 000+ 325325 1 000,325 1 ≤

⎧
⎨
⎪⎧⎧

if

⎪⎪⎨⎨⎨⎨
⎪⎪⎪⎪

⎩⎪
⎨⎨
⎪⎩⎩⎪⎪

PIECEWISE FUNCTION

A function whose domain D can be separated into a finite number of pieces such that theD
function has a different definition for each piece of the domain is called a piecewise func-
tion.

E X A M P L E 1 Graphing a piecewise function

Graph: f
x x

( )x =
≤ <x

− ≤ ≤

⎧
⎨
⎪⎧⎧3 5x−x 2

2 2 5
if

if

⎪⎪⎨⎨⎨⎨
⎪⎪⎪⎪

⎩⎪
⎨⎨
⎪⎩⎩⎪⎪

Solution  The domain is [−5, 5], and we graph the line segments for each of the separate parts:

Graph y = 3 − x onx [−5, 2].
Graph y = x − 2 on [2, 5].

The graph is shown in Figure 2.23.

E X A M P L E 2 Example from calculus

Graph: g
x

x
x

( )x =
+ −

−
≠

2 3 1−x 0
2

2

4

if

if x =

⎧

⎨
⎪⎧⎧⎪⎪⎪⎪⎪⎪⎨⎨⎪⎪⎨⎨⎨⎨

⎩
⎪⎨⎨⎪⎪⎪⎪⎪⎪⎩⎩⎪⎪⎩⎩⎩⎩ 2

Solution  The first piece is a rational function with a deleted point. We see (if x ≠ 2)

g x
x x

( )x ( )x ( )
=

+ −
−

=
)(
−

= +x
2 3 1−x 0

2
)()(x

2
5

The second piece is a single point, namely, (2, 4). The graph is shown in Figure 2.24.

Consider an example very much like Example 2.

G
x

x
x

( )x =
+ −

−
≠

2 3 1−x 0
2

2

7

if

if x =

⎧

⎨
⎪⎧⎧⎪⎪⎪⎪⎪⎪⎨⎨⎪⎪⎨⎨⎨⎨

⎩
⎪⎨⎨⎪⎪⎪⎪⎪⎪⎩⎩⎪⎪⎩⎩⎩⎩ 2

By looking at Figure 2.24, we see that the point (2, 7) for G “plugs the hole” in the deleted point G
from the first piece of the curve. This concept will be used in calculus when you study the topic of 

continuity.

Figure 2.22  Electric charges function
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Figure 2.23  Graph of f
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Figure 2.24 Graph of g
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x

10

8
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4

2

642–2–4–6–8

(2, 4)
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124 CHAPTER 2 Functions with Problem Solving

Absolute Value Function
In Section 1.1, we defined absolute value as

| |
x x

=
≥

− <x x

⎧
⎨
⎪⎧⎧⎪⎨⎨
⎪⎪

⎩⎪
⎨⎨
⎪⎩⎩⎪⎪

if
if

0
0

The absolute value function is defined by f (x ) = |x|. In Section 1.3, Example 1, we graphed 

y x −x1
2

2 by comparing it with a standard absolute value function. We now can treat the absolute 

value function as a piecewise function. That is, for y x −x1
2

2 , we note that if 1
2

2 0x − ≥2 , then

x ≥ 4 graph

f
x

( )x
1
2

2 4− ≥x2 x
−( )x1

2
2−x

if

if xx <

⎧
⎨
⎪⎧⎧⎪⎨⎨
⎪⎪

⎩
⎪⎨⎨⎪⎩⎩
⎪⎪ 4

The graph is shown in Figure 2.25.

You might also notice that if we write

= =
1
2

2
1
2

1
2

x − =2 ( )− 4x | |− 4x

we can consider the graph of y as a translation of y f ( )x | |x= 1
2

where (h, k ) = (4, 0).

Greatest Integer Function
The Price Is Right (t 1972–present) is one of several games dubbed pricing games where the contes-

tants guess the price of an item, and the contestant coming the closest without exceeding the true
value wins the item. This, basically, is the idea of another function, the greatest integer function, or 

step function. This rule provides a means by which to assign an integral value to the function.

Consider the following:

G( )x =

≤ <
≤ <x

0 if

1 if

2 i

0 1≤ <x
1 2≤ <x

ff

3 if

4 if

2 3
3 4
4 5

≤ <
≤ <
≤ <

⎧

⎨

⎪⎧⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨⎨
⎪⎪
⎨⎨⎨⎨

⎩

⎪⎨⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎩⎪⎪

Note that the domain for this function is [0, 5) and the range is {0, 1, 2, 3, 4}. Here is the evalua-

tion of some specific values:

G( ) 3) , G 10
3

3
⎛

⎝
⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎝⎝⎜⎜

⎞

⎠
⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎠⎠
⎟⎟ = , G 3( )10 = , G( ) = 3, G( , )9999 3= , G( ) 4)

The graph is shown in Figure 2.26.

Figure 2.26 Graph of G

y

x

8

6

4

2

0 2 4 6 8

Notice that each part of the graph is simply a constant function and that the result looks some-

what like the steps in a stairway. As can be seen, the function is easy enough to understand, but if 

the domain were very large, it would be cumbersome to write, so the following notation is used.

Figure 2.25 Graph of y x −x1

2
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 CBS/Landov
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2.5 Piecewise Functions 125

GREATEST INTEGER FUNCTION

The greatest integer function, denoted by f ( )x = � 	x , is defined by

� 	 n	  if n n≤ <x +1

where n is an integer.n

E X A M P L E  3  Evaluating a greatest integer function

Let f x g x( )x , (F(F ) , ( )x , (G(G ) ,x(F= x(G� 	x� 	xx x � 	xx x2g, ( )x =x 2 anaa d ( )h( = � 	x 2 .

Evaluate these functions for x = 5, 5.6, −5.6, π, and 3
4
.

Solution We arrange the answer in tabular form; make sure you see how to find each value 

listed.

x �x 	 � 2x 	 2�x 	 � x 	2 � x 2 	

5 5 10 10 25 25

5.6 5 11 10 25 31

−5.6 −6 −12 −12 36 31

π 3 6 6 9 9
3
4

0 1 0 0 0

E X A M P L E 4 Graphing a greatest integer function

Graph: f (x ) = x + � x 	 on [−3, 3)

Solution  Use the definition of the greatest integer function:

f

x

( )x

;

=

≤ <x −3 3 2 3;2; =; −if h i on� 	xx [ , )
;≤ < =;− −

2,
2 2 1x − ≤2−2 if that is � 	x 222 1
1 1 0

[ ,2 )
;

on

if that is

−2
≤ < −x 1 1−1 ≤ � 	��

x
= −

≤ <
1 0

0 1≤ <x
[ ,1− )

;
on

if thataa is

if th

[ , )
;

� 	

x x
=

+ ≤ <
0 on [ 1

1 1ififif 2 ataa is on

if th

[ , )
;

� 	

x x
=

+ ≤ <
1 on [ 2

2 2ififif 3 ataa is on [ , )� 	=

⎧

⎨

⎪⎧⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎨
⎪⎪

⎩

⎪⎨⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎩⎪⎪ 2 on [ 3

Each of these linear functions is graphed for its respective domain, as shown by the solid line seg-

ments in Figure 2.27.

E X A M P L E  5  Rounding up instead of rounding down

The greatest integer function y = �x 	 “rounds down” because

y = 0 on [0, 1)

y = 1 on [1, 2)

y = 2 on [2, 3)




Write an expression using the greatest integer function that “rounds up”:

y = 1 on (0, 1]

y = 2 on (1, 2]

y = 3 on (2, 3]




Figure 2.27  Graph of f
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126 CHAPTER 2 Functions with Problem Solving

Solution We begin by comparing the graphs of the “rounding down—greatest integer function”—

and the “rounding up” function as shown in Figure 2.28.

Figure 2.28 Comparison of rounding down and rounding up functions

y

x

4

2

–2

–4

2–2–4 4

Flip over
each segment

a. Greatest integer function
    Rounding down function

y

x

4

2

–2

–4

2–2–4 4

b. Rounding up function

We find that if we replace y byy −y and y x by x −x in the equation x y = � x 	, we obtain

−y = � 	x−

y � 	x

In graphing this function, we find that it matches the graph shown in Figure 2.28b.

The “rounding down” function is called the greatest integer function, and we give the name 

ceiling function to the “rounding up” function. Why would we want to consider a “rounding up”

function? Most real-life situations require rounding up. Also, most calculations in business today 

are done by using computer programs, and the means of translating rounding problems for com-

puter use is to use “rounding up” or “rounding down” functions.

E X A M P L E  6  Rental charges MODELING APPLICATION

The Rental Store charge for a special drill is $10 for 4 hours or less usage. Additional charges

are $3.00 for each additional hour or fraction thereof. Write a function that expresses the rental

charge, and graph the function for a person who rents the drill for 10 hours or less.

Solution

Step 1: Understand the problem. “Let’s see; if I rent the drill for 2 hours, my charge is $10. If 

I rent it for 5 hours, my charge is $10 + $3 = $13; if I rent the drill for 10 hours my

charge is $10 + $3(6) = $28 because I have used 6 hours additional to my fl at fee for 

4 hours.”

Step 2: Devise a plan. We will write a function to represent the charges, and we expect this 

function to be a step function. Then we will complete the problem by graphing the 

function.

Step 3: Carry out the plan. Let x be the number of hours the drill is rented, and let x C be a C
function representing the cost (in dollars).

 On [0, 4], C (x ) = 10
 On (4, ∞), the cost is dependent on the time.

    If x is an integer greater than x 4, then the cost for these hours is $3 times

(x − 4). The reason we subtract 4 is that the first 4 hours are covered in 

the flat charge.
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2.5 Piecewise Functions 127

We consider

   C (x )  = FLAT FEE + HOURLY FEE (in excess of 4 hours)

    = 10 + 3(x − 4)

For example, for x = 5, the charge is

C (5) = 10 + 3(5 − 4) = 13

If x is not an integer, then we must use a greatest integer function, andx
this is a rounding up function, so the desired function is

C (x ) = 10 − 3�−(x − 4)	 From Example 5

= 10 − 3�4 − x 	

For example, if x = 4.5 (4 hours 30 minutes) we have

C(4.5) = 10 − 3�4 − 4.5	

  = 10 − 3�−0.5	

 = 10 − 3(−1)

= 13

The desired function is a piecewise function

C( )x =
< ≤

−
10 0 4< ≤x
10 3

if

�4 444 10<<4 ≤

⎧
⎨
⎪⎧⎧⎪⎨⎨
⎪⎪

⎩⎪
⎨⎨
⎪⎩⎩⎪⎪ x<4		 if

The graph of y C( )x is shown in Figure 2.29.

Step 4: Look back. We can try several examples to see whether the charges seem to be cor-

rect.

If I use the drill 4 hours or less, the cost is $10.

If I use the drill 8 hours 15 minutes, the cost is

C( . ) .

( )

2. 5)
10 3
10 3(
2

= −10
= −10
=

� 	.25
� 	.4 25

55

These amounts seem correct, and the function makes sense.

PROBLEM SET 2.5

1LEVEL 

In Problems 1–16, find:

 a. f (1) b. f (5.3) c. f (π)
 d. f ( )− e. f (−5.3)
 1. f (

((
x ) = |x| 2. f (x ) = −|x|

 3. f (x ) = |x + 2| 4. f (x ) = |x| − 2
 5. f (x ) = |x| + x 6. f (x ) = |x| − x

 7. f ( )x =
− <1 0<x
0 0x =
1

if

if

ifff x >

⎧

⎨

⎪⎧⎧⎪⎪⎪⎪⎪⎪⎪⎨⎨
⎪⎪

⎩
⎪⎨⎨⎪⎪⎪⎪⎪⎪⎪⎩⎩⎪⎪ 0

 8. f
x

( )x =
<

>
1
2 0x = >x
3

if

if

π

if x >

⎧

⎨

⎪⎧⎧⎪⎪⎪⎪⎪⎪⎪⎨⎨
⎪⎪

⎩
⎪⎨⎨⎪⎪⎪⎪⎪⎪⎪⎩⎩⎪⎪ π

 9. f x
x

( )x =
− <x x −

− ≤ ≤
if

if

3
2 3x −if 3

2 if x ≥

⎧

⎨

⎪⎧⎧⎪⎪⎪⎪⎪⎪⎪⎨⎨
⎪⎪

⎩
⎪⎨⎨⎪⎪⎪⎪⎪⎪⎪⎩⎩⎪⎪ 3

 10. f
x x

x( )x =
≤
< <

10 0
0 3< <x

0

3

if

if

if x ≥

⎧

⎨

⎪⎧⎧⎪⎪⎪⎪⎪⎪⎪⎨⎨
⎪⎪

⎩
⎪⎨⎨⎪⎪⎪⎪⎪⎪⎪⎩⎩⎪⎪ 3

Figure 2.29 Rental charges
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128 CHAPTER 2 Functions with Problem Solving

 11. f
x

( )x =
− ≥x

− +x <

⎧
⎨
⎪⎧⎧⎪⎨⎨
⎪⎪ 2≥x1

3 2x <
if

if⎩⎩⎪
⎨⎨
⎪⎩⎩⎩⎩⎪⎪

 12. f
x

x
( )x =

− ≥x
−x <

⎧
⎨

1≥x −1
3 1x < −

if

if

⎪⎪⎧⎧⎧⎧⎪⎨⎨
⎪⎪⎪⎪

⎩⎪
⎨⎨
⎪⎩⎩⎪⎪

 13. f (x ) = �x	 14. f (x ) = �x	 + 1
 15. f (x ) = �x	 + x 16. f (x ) = 2�x	

WHAT IS WRONG, if anything, with each statement in Problems 17–24? 
Explain your reasoning.

 17. If f (x ) = |x|, then f is a positive function.f
 18. If f (x ) = �x	, then f is a positive function.f
 19. If f (x ) = �x	, then x is an integer.x
 20. �8	 = 8 and �8.1	 = 8
 21. �−8	 = −8 and �−8.1	 = −8
 22. |�x	| = �|x|	
 23. |x|2 = |x 2|
 24. �x	2 = �x 2	

2LEVEL 

Graph the functions given in Problems 25–40.

 25. f
x

( )x =
− ≥x

<x x

⎧
⎨
⎪⎧⎧⎪⎨⎨
⎪⎪

⎩⎪
⎨⎨
⎪⎩⎩⎪⎪

2 2≥x
2<x2 −x

if

if

 26. f
x

x
( )x =

+ ≥
−x <

⎧
⎨

1 3≥x −
3 3x < −

if

if

⎪⎪⎧⎧⎧⎧⎪⎨⎨
⎪⎪⎪⎪

⎩⎪
⎨⎨
⎪⎩⎩⎪⎪

 27. g x( )x =
− ≤x

− < <
2≤x −2

0 2− 2
2

if

if

if x ≥

⎧

⎨

⎪⎧⎧⎪⎪⎪⎪⎪⎪⎪⎨⎨
⎪⎪

⎩
⎪⎨⎨⎪⎪⎪⎪⎪⎪⎪⎩⎩⎪⎪ 2

 28. r( )x =
− <x

−

1<x4
3 1x =

2

if

if

if x >

⎧

⎨

⎪⎧⎧⎪⎪⎪⎪⎪⎪⎪⎨⎨
⎪⎪

⎩
⎪⎨⎨⎪⎪⎪⎪⎪⎪⎪⎩⎩⎪⎪ 1

 29. f
x

( )x =
− ≥x

− +x <

⎧
⎨
⎪⎧⎧⎪⎨⎨
⎪⎪ 2≥x1

3 2x <
if

if⎩⎩⎪
⎨⎨
⎪⎩⎩⎩⎩⎪⎪

 30. g
x

x
( )x =

− ≥x
−x <

⎧
⎨

1≥x −1
3 1x < −

if

if

⎪⎪⎧⎧⎧⎧⎪⎨⎨
⎪⎪⎪⎪

⎩⎪
⎨⎨
⎪⎩⎩⎪⎪

 31. f (x ) = |x| + 2
 32. g (x ) = 3 − |x|
 33. h (x ) = |x + 3|
 34. k (x ) = |x − 2|
 35. f (x ) = |2x| − 3
 36. G (x ) = |3x| + 2
 37. m (x ) = |x|2

 38. n(x ) = |x 2|
 39. f (x ) = |x − 2| + 1
 40. g(x ) = |x + 1| − 2

PROBLEMS FROM CALCULUS Problems 41–50 are found in calculus.

 41. If f (x ) = |x|, find
f f

h
( )x h ( )xh

, where x ≥ 0, h ≥ 0.

 42. If f (x ) = |x|, find
f f

h
( )x h ( )xh

, where x < 0, h < 0.

 43. If f (x ) = |x + 2|, find
f f

h
( )x h ( )xh

, where x < −2, h < 0.

 44. If f (x ) = |x + 2|, find
f f

h
( )x h ( )xh

, where x ≥ −2, h ≥ 0.

 45. A national fraternity allows one delegate for each 500 state members 

(or fraction thereof) of the fraternity. Suppose a state has n members.n
How many state representatives are allowed?

 46. A salesperson receives a $500 bonus for each $10,000 worth of sales 

over an established base. What is the bonus for d dollars in sales over d
the base?

 47. If the charges for a taxi are $2.50 plus 25¢ per each 1
2 mile or fraction 

thereof, write a function that gives the cost of a taxi ride of x miles.x
 48. The charge for a certain telephone call is 75¢ for the first 3 minutes 

and 25¢ for each additional minute or fraction thereof. Write a func-

tion that gives the cost of a call lasting x minutes.x
 49. The telephone company charges $1.00 for the first 3 minutes for a 

certain call and 35¢ for each additional minute or fraction thereof. 

Write a function that gives the cost of a call lasting x minutes.x
 50. A measure of the disorder or randomness in a physical system is called 

entropy and is measured in calories per Kelvin. (Note: To convert 

from degree Celsius to Kelvin add 273.15.) An approximate model 

for the entropy of one mole of water under one atmosphere pressure is 

given by

S T T=
+ ≤
+ < <

10 0 04 0T T ≤T T
10 0 05TT

if

if 10011
12 0 03 100+ ≥0 03

⎧

⎨

⎪⎧⎧⎪⎪⎪⎪⎪⎪⎪⎨⎨
⎪⎪

⎩
⎪⎨⎨⎪⎪⎪⎪⎪⎪⎪⎩⎩⎪⎪ TT if

where T is the temperature in degrees Celsius andT S is in calories per S
Kelvin. Graph S.SS

3LEVEL 

Graph the functions given in Problems 51–60.

 51. b (x ) = �x	 + 2 52. d (x ) = �x + 2	
 53. f (x ) = 2�x	 + 1 54. g (x ) = �x	 − 2
 55. h (x ) = �x	 − x 56. j (x ) = �x	 + |x|
 57. r (x ) = |x − 2| + |x| 58. s (x ) = |x + 1| − |x|
 59. F (x ) = |x| − |x − 1| 60. G (x ) = |x| − |x + 2|
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2.6 Composition and Operations of Functions 129

2.6  Composition and Operations of Functions

There are many situations in which a quantity is given as a function of one variable that, in turn, can 

be written as a function of a second variable. This is known as functional composition.

Composition
Suppose, for example, that your job is to ship x packages of a product via Federal Express to a vari-x
ety of addresses. Let x be the number of packages to ship, let x f  be the weight of thef x objects, and x
let g be the cost of shipping. Theng

The weight is a function of the number of objects: f (x ).

The cost is a function of the weight: g [f (x )].

This process of evaluating a function of a function illustrates the idea of composition of functions.ff

COMPOSITION

The composite function f g is defined by

( )( ) [ ( )]f) x(

for each x in the domain of x g for which g g (x ) is in the domain of f.ff

» IN OTHER WORDS To visualize how functional composition works, think of f � g in termsg
of an “assembly line” in which g and f are arranged in series, with output f g (x ) becoming

the input of f, as illustrated in Figure 2.30.ff

Figure 2.30 Composition of functions

Mapping diagram of composition
showing domains

Assembly line interpretation
of composite functions

in

out

f(g(x))

f(g(x))

f (g(x))
g

machine

f
machinex

x

x

in

out
g(x)

g(x)

Range of f

f (g(x))

g

omain of Dom f
gg((x)

Domain of g

Range of gg

x

f

E X A M P L E  1  Finding the composition of functions

If f ( )x = +3 5+x and g x( )x = , find the composite functions f � g and g � f.ff

Solution  The function f � g is defined byg f [g (x )]:

( )( ) [ ( )]f) x( f=[ )]f x( ( )x = +3 5+x

The function g � f is defined byf g[ f (x )]:

( )( ) [ ( )] ( )g) x(x( g(=)][g x( =) +3 5x +

 Example 1 illustrates that functional composition is not commutative. That is, f � g is not, ing
general, the same as g � f. ff

Some attention must be paid to the domain of g � f. Let ff X be the domain of a function X f, and ff
let Y be the range of Y f. The situation can be viewed as shown in Figure 2.31.ff
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130 CHAPTER 2 Functions with Problem Solving

Figure 2.31  Two functions f andf g viewed as mappings

f f g

X Y X Y

Domain of f

Domain of g
(shaded portion)

Range of g

Range of f Domain of f Range of f

x1 f(ff x1)

f(ff x2)x2

x1 f(ff x1) g[ f (x2)]

f(ff x2)x2

a. Function f b. Function g

If part of f maps into the shaded portion of f Y and part of Y f maps into the portion that is not f
shaded, as indicated in Figure 2.31b, then, as shown in Figure 2.32, the domain of g � f is just the f
part of X that maps into the shaded portion of X Y.YY

Figure 2.32 Composition of two functions g � f . Notice that 
the domain of g � f is the subset of f X for which X g � f is f
defined (shaded portion of Y ).

g

X
Domain of g° f

Y
Domain of g

(shaded portion)
Range of g

Range of g ° f

Domain of f Range of f

f g° f (x)((

x

E X A M P L E  2  Composition with focus on domains

Let f = {(0, 0), (−1, 1), (−2, 4), (−3, 9), (5, 25)};
g = {(0, −5), (−1, 0), (2, −3), (4, −2), (5, −1)}

a. What are the domains of f andf g ?
b. Find g � f  and state its domain.f
c. Find f � g  and state its domain.g

Solution   

a. D Df gD −{ } { , , , , }DD = { 1 2 4, ,
b. f g g � f

0 0 �  0 5 0 5
−1 1→ �   not defined, exclude −1 from the domain of g � f.ff
−2 4→ � 4 2 −2 2→ −
−3 9→ � not defined, exclude −3 from the domain of g � f.ff

5 25 �   not defined, exclude 5 from the domain of g � f.ff

Thus, g � f = {(0, −5), (−2, −2)}. The domain of the composite function g � f is f {0, −2}. 

Notice that −1, −3, and 5 are excluded from the domain of g � f  even though they are in thef
domain of f.ff
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2.6 Composition and Operations of Functions 131

c. g f f � g
0 5 � not defined

−1 0→ � 0 0 −1 0→
2 3 � −3 9→ 2 9
4 2 � −2 4→ 4 4
5 1 � −1 1→ 5 1

Thus, f � g = {(−1, 0), (2, 9), (4, 4), (5, 1)}. The domain of the composite function f � g is g
{−1, 2, 4, 5}.

E X A M P L E  3  An application of composite functions

Air pollution is a problem for many metropolitan areas.

Suppose that carbon monoxide is measured as a function of the number of people according to 

the information shown in Table 2.2.

100,000 1.41

200,000 1.83

300,000 2.43

400,000 3.05

500,000 3.72

TABLE 2.2TT Carbon Monoxide Pollution

Number of People Daily Level (ppm)

Studies show that a refined formula for the average daily level of carbon monoxide in the air is

L p( )p = +p0 7. 32

Further assume that the population of a given metropolitan area is growing according to the formula 

p (t ) = 1 + 0.02t 3, where t is the time from now (in years) andt p is the population (in hundred thou-p
sands). Based on these assumptions, what level of air pollution should be expected in four years?

Solution  The level of pollution is L p( )p = +p0 7. 32 , where p (t ) = 1 + 0.02t 3. Thus, the pollu-

tion level at time t is given by the composite functiont

( )( ) [ ( )] ( . ) . ( . )L) t(t( L t( . t=)][L t( )t. 7. 02 3( t3)) 7 02 2 ++ 3

In particular, when t = 4, we have

( )( ) . [ . ( ) ] .0) 1[ 0. 4( 3 2 003 2]= +. [0 1[ + ≈3 ppm

In calculus, it is frequently necessary to express a function as the composite of two simpler 

functions.

E X A M P L E 4 Separating a function into two composite functions

Express each of the following functions as the composite of two functions u and u g so that g
f (x ) = g[u(x )].

a. f ( )x ( )x(= (x 2 2)x

b. f ( )x = +x 2 1

c. f ( )x ( )(= (x 2 5)xx

d. f x x( )x = x5 2

©
 Lane V. Erickson/ShutterStock, Inc.

 Consider Example 4 and the 

following paragraph carefully.
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132 CHAPTER 2 Functions with Problem Solving

Solution  We call f the f given function, u theu inner function, and g the g outer function.

 Given Function Inner Function Outer Function

f g x( )x [ (u )]= u (x ) g [u (x )]

a.  f ( )x ( )x(= (x 2 2)x u x( )x = +x 2 2 g x x[ (u )] [ (u )]2

b.  f ( )x = +x 2 1 u( )x = +x 2 1 g x u[ (u )] ( )x
c.  f ( )x ( )(= (x 2 5)xx u( )x = +x +2 5 1x + g x x[ (u )] [ (u )]5

d.  f x x( )x = x5 2 u x x( )x x= 5 2 g x u[ (u )] ( )x

There are often other ways to express a composite function, but the most common procedure is 

to choose the function u to be the “inside” portion of the given functionu f. Notice that in parts ff a and 

c the “inside” portion is the portion inside the parentheses.

Operations with Functions
In algebra, you spend a great deal of time learning the algebra of real numbers. Operations with 

functions follows similar straightforward definitions.

FUNCTIONAL OPERATIONS

Let f and f g be functions with domainsg DfD  and f Dg , respectively. Then, f +f g, f − g, fg, and f / g
are defined for the domain D Df gD D :

( )( ) ( ) ( )f) g))( ) +

( )( ) ( ) ( )f) g))( )

( )( ) ( ) ( )f) g)

( / )( )
( )
( )

g/ x f (
g(

=   provided g( )x ≠ 0

» IN OTHER WORDS Remember the operation symbols on the left of the equations, namely,

f g, f g, fg, and f g/  are operations on functions that are being defi ned; the operation

on the right is defi ned for operations on numbers.

E X A M P L E  5  Operations with functions

If f and f g are defined by g f x( )x = 2 and g (x ) = x + 3, find f + g, f − g, fg, and f / g. Evaluate these

functions for x = −1 and x = 5, and state the domain for each.

Solution  The domain of both f and f g is the set of real numbers, so the domains of g f + g, f − g, 

and fg are also the set of real numbers. The domain of g f / g is the intersection of the domains of g
f  and g for which values causing g g (x ) = 0 are excluded. These are the usual domains for functions 

we consider in precalculus and calculus.

( )( ) ( ) ( ) ( )
( )( )

f) g) x)( ) + =( )g ) + ( + +
)(

2 2( )+ ( 3x)) = +x +2)) x
=== + + =
= + + =

( )− ( )
( )( )

+) (− 3 3=
5=) 5 3+ 33

2

2+

D:(−∞, ∞)

Nicole Oresme (1323–1382) was a Pari-
sian scholar who was also the Bishop
of Lisieux. He was the first to hint at
the possibility of irrational powers (the
historian Carl Boyer refers to this as his
“most brilliant idea”). He expressed the
exponential rules of

x x xm nx m n= +  and ( ) x)n)) mn

He was also one of the first mathema-
ticians to comprehend the notion of a
function. He interested himself in some
of the great problems in mathematics,
including the foundational idea from
calculus, namely, the notion of the area
under a curve, and the idea of using two
independent variables to picture a vol-
ume. The historian Boyer traces inter-
est in the graphical representation of a
function (known as the latitude of forms)
from Oresme to Galileo (1564–1643).

Historical Note

51774_CH02_FINAL.indd   13251774_CH02_FINAL.indd   132 9/5/11   2:53:42 PM9/5/11   2:53:42 PM



2.6 Composition and Operations of Functions 133

( )( ) ( ) ( ) ( )
( )( )

f) g) x))( ) (g ) −(
)(

2 2( )( 3) x) x−x −2) x)
=== −

− =
( )− ( )

( )( )
−) (− 3 1= −

5=) 5 3− 17

2

2−

D:(−∞, ∞)

( )( ) ( ) ( ) ( )
( )( ) (

f) g) ) x(f ) = (x +2 3( )( 23)) = +x 3)) x
1) (=) −111 1 2

5 3 200

3 21
3 23

) (3 3 )
( )( )5 ( )55

−(33
= +53 =

D:(−∞, ∞)

( )( )
( )
( )

( )( )
( )

( )

f (
g(

x
x

/

/

= =
+

=)
+)

3

2

3

33
1
2

5
5 3

3 125
2

=

=
+

=( )( )5 ./

D:(−∞, −3) ∪ (−3, ∞)

Functional Iteration
In calculus, you will use a process in which the result of one step is used in the following step. This 

process, called iteration, is easy to describe in terms of composition. For example, if f x( )x = , then 

f ( ) 4) 2=4 . If we now take this answer and again evaluate f to find f f ( ) 2) , we have carried 

out an iterative step, which we could describe as f ( f  (x )) or as f � f.ff
Suppose we consider a problem from The American Mathematical Monthly (Vol. 92, Jan. 1985, 

pp. 3–23).* Define a function f, with domain the positive integers as follows:ff

f
x

x x
( )x =

+3 1x +
2

if is odd

if i/ s ess ven

⎧
⎨
⎪⎧⎧⎪⎨⎨
⎪⎪

⎩⎪
⎨⎨
⎪⎩⎩⎪⎪

Let x0xx be some number in the domain of a function f. The ff iterates of x0xx are the numbers f  (x0xx ),
f  ( f  (x0xx )), f  ( f  ( f  (x0xx ))), . . . . We can write this using composition: f,ff f � f,ff f � f � f, . . . . The article 

asserts that for every positive integer, the iterates eventually return to 1.

E X A M P L E  6  Iteration conjecture MODELING APPLICATION

Show that the iterates return to 1 for the case x = 3.

Solution   

Step 1: Understand the problem. Let’s see if we can understand what this problem is about.

We calculate the fi rst few values of f: (Remember the domain is the set of positive ff
integers.)

f ( ) ( )3) 1) 4= +( )3 ) = f ( )
2
2

1= =

f ( ) ( )3) 1) 10= +( )3 ) = f ( )
4
2

2= =


 


f ( ) ( )3( 1) 298= +( )3( ) = f ( )
100
2

50= =

*“The 3x + 1 Problem and Its Generalizations,” by Jeffrey C. Lagarias.
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134 CHAPTER 2 Functions with Problem Solving

Step 2: Devise a plan. Calculate the iterates for the smallest member of the domain.

The first iterate of x0xx = 1: f (1) = 3(1) + 1 = 4
the second iterate of x0xx = 1: f f( (f )) ( )f1)) ( 24

2
=)f ( =

the third iterate of x0xx = 1: f f f( ( (f ff ))) ( (f )) ( )1 4f))) (f 1)=))4f (f

We see for the first member, the iterates return to 1. The second number, x = 2, iter-

ates to 1 in the first step (since 2 is even).

Step 3: Carry out the plan. Calculate the iterates for the number x = 3.

f (3) = 10; f ( ) 510
2

= =10 ; f ( ) ( )3) 1) 16= +( )3 ) = ; f ( ) 816
2

= =16 ;
f ( ) 4) 8

2
; f ( ) 2) 4

2
; f ( ) 1) 2

2
. Ah ha, we ended back at 1! Thus, 

f ( ( ( ( ( ( (f f f f f ff f f f f )))))))3 1))))))) .

Step 4: Look back. The hypothesis that all values return to 1 is hardly proved. We showed it true

for 1, 2, 3; you are asked to show it true for 4 and 5 in the problem set (Problem 55)

and then asked to present an argument that it is always true.

PROBLEM SET 2.6

1LEVEL

In Problems 1–4 find the indicated values where f ( )x = 3 2x −x  and 
g( )x = +x2 1+x 2 .

 1. a. ( f + g )(4) b. ( fg )(2)
 2. a. ( f − g )(3) b. ( f/ff g )(1)
 3. a. ( f � g )(2) b. (g � f  )(2)
 4. What is the domain of ( f + g ), ( f − g ), ( fg ), and ( f /g )?

In Problems 5–8, find the indicated values, where f x
x

( )x =
−
+

2
1
 and 

g x x( )x = x −2 2.

 5. a. ( f + g )(2) b. ( fg )(102)
 6. a. ( f − g )(5) b. ( f /g )(99)
 7. a. ( f � g )(1) b. (g � f  )(1)
 8. What is the domain of ( f + g ), ( f − g ), ( fg ), and ( f /g )?

In Problems 9–12, find the indicated values, where f (x ) = 2 3
2

2

x −and g x x( )x = x −2 2.

 9. a. ( f + g )(−2) b. ( f /g )(2)
 10. a. ( f − g )(2) b. ( f /g )(102)
 11. a. ( f � g )(0) b. (g � f  )(0)
 12. What is the domain of ( f + g ), ( f − g ), ( fg ), and ( f /g )?

In Problems 13–16, find the indicated values, where

f = {( , ), ( , ), ( , ), ( , )}0, 1, 2, 3,

and

g = {( , ), ( , ), ( , )( , )}0, 1,− 2, 3,

13. a. ( f + g )(1) b. ( fg )(2)
14. a. ( f − g )(3) b. ( f /g )(0)
15. a. ( f � g )(2) b. (g � f  )(2)
16. What is the domain of ( f + g ), ( f − g ), ( fg ), and ( f /g )?

2LEVEL

WHAT IS WRONG, if anything, with each statement in Problems 17–20? 
Explain your reasoning.

 17. If f x( )x = 3
 and u( )x = +x2 1+x 2 , then f x[ (u )] = +x 12 +x3

.

 18. If f
x

( )x =
+

1
2 1x +2

 and u x( )x = −x 1 , then f x
x

[ (u )] =
1

2 1x −
.

 19. If f x( )x = + +3 5+x 12  and u x( )x = 3, then f x[ (u )] ( )x= ( x 2 3)x .

 20. If f x
x

( )x =
−
+

1
2

 and g x
x

( )x =
+

−
2 1x +

3
, then ( f � g ) is the function

  defined by
x
x

x
x

−
+

⎛

⎝
⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎝⎝⎜⎜

⎞

⎠
⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎠⎠
⎟⎟

+
−

⎛

⎝
⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎝⎝⎜⎜

⎞

⎠
⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎠⎠
⎟⎟

1
2

2 1x +
3

.

 21. Given f (x ) = x 2 − 1 and ( f − g )(x ) = 2x + 1. Find g (x ).
 22. Given f (x ) = x 3 + 2 and ( f + g )(x ) = 4x − 6. Find g (x ).
 23. Given f (x ) = x −1 and ( fg )(x ) = x (x ≠ 0). Find g (x ).

 24. Given f x
x

( )x =
−
+

2
3

and ( )( )
x
x

=
+
+

1
2

. Find g (x ).

 25. Given f x( )x =  and ( f � g )(x ) = x 3 1+ . Find g (x ).
 26. Given f (x ) = x 4 and ( f � g )(x ) = ( )4. Find g (x ).

PROBLEMS FROM CALCULUS In Problems 27–38, express f as a composi-f
tion of two functions u and u g so that g f (x ) = g [u (x )].

 27. f ( )x ( )= (x 2 2) 28. f ( )x ( )x= (x 2 3)
 29. f ( )x ( )x(= ( xx 2 4) 30. f ( )x ( ) /= (x 2 3) 2

 31. f ( )x ( )x(= ( x 2 3)x 32. f ( )x ( )x x= ( x xx 2 2)x

 33. f ( )x = 5 1x −x 34. f x( )x = −x 2 1

 35. f x( )x = −x 23 4 36. f x x( )x = x +34 1
 37. f ( )x ( )x= (x + x +2 3) 2 1+ −x3) 2 5
 38. f ( )x | |= |x + 6| +2
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2.6 Composition and Operations of Functions 135

In Problems 39–42, find the sum, difference, product, and quotient 
of the given functions. Also state the domain for each.

 39. f ( )x = 2 3x −x and g( )x = +x 2 1

 40. f x
x

( )x =
−
+

2
1

and g x x( )x = x −2 2

 41. f
x

( )x =
−

2 3x x −x
2

2

 and g x x( )x = x −2 2

 42. f ( )x = +x4 2+x  and g( )x = +x 3 3

In Problems 43–46, find f g  and g f  for the given functions.

 43. f ( )x = 2 3x −x  and g( )x = +x 2 1

 44. f x
x

( )x =
−
+

2
1

and g x x( )x = x −2 2

 45. f
x

( )x =
+

2 3x x −x
1

2

 and g x x( )x = x −2 2

 46. f ( )x = +x4 2+x  and g( )x = +x 3 3
 47. If f x g( )x ( )x( )x= x g(x2 2 1x − ,g x( )x 1x and h( )x = +3 2+x , find:

 a. ( ) h�) b. f ( )g h�g
 48. If f x( )x = 2, g( )x = 3 2x −x , and h( )x = +x 2 1, find:

 a. ( ) h�) b. f ( )g h�g
 49. If f x( )x = , g x( )x = 2 , and h( )x = +x 2 all within domain (0, ∞), 

find

 a. ( ) h�) b. f ( )g h�g
 50. If f x( )x = − , g x( )x = 2 , and h x( )x =  all with domain (−∞, 0), 

find:

 a. ( ) h�) b. f ( )g h�g
 51. Consider the volume of a particular cone as a function of its height by 

the formula

V h
( )h =

π 3

12

Suppose the height is expressed as a function of time by letting 

h(t ) = 2t.
 a. Find the volume for t = 2.

 b. Express the volume as a function of time by finding V h .

 c. If the domain of V is V (0, 6], find the domain of h; that is, what are 

the permissible values for t?
 52. The surface area of a spherical balloon is given by S r( )r = 4 2π . Sup-

pose the radius is expressed as a function of time by r (t ) = 3t.
 a. Find the surface area for t = 2.

 b. Express the surface area as a function of time by finding S r .

 c. If the domain of S isS (0, 8), find the domain of r ; that is, what are 

the permissible values for t?
 53. If f x( )x = 2, then

f
x x x f
1 1 1 1

2

2

⎛

⎝
⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎝⎝⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟⎟⎟⎠⎠
⎟⎟ =

⎛

⎝
⎜⎜⎜⎜⎜⎜⎜⎜⎝⎝⎜⎜

⎞

⎠
⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎠⎠
⎟⎟ = =

( )x

Give an example of a function for which

f
x f
1 1⎛

⎝
⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎝⎝⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟⎟⎟⎟⎟ ≠

( )x

 54. If f x( )x = , then f x( )x [ (f )]2 2x) [ (f )]= . Give an example of a function for 

which

f x( )x [ (f )]2 2x) [ (f )]≠

 55. In Example 6, an unproved conjecture was checked for x = 1, 2, and 

3. Check this conjecture for x = 4 and x = 5. Make a statement about 

values for which x is even.x

 56. PROBLEM FROM CALCULUS * A buffalo herd at Yellowstone has popula-

tion P, which is a function of the amount of grass cover available for 

the herd.

©
 Tony Cam

pbell/ShutterStock, Inc.

Grass yield is estimated in lb/ft2 by weighing the harvest from a 20
ft2 test plot. The number of grasshoppers affects this yield, Y. An ap-YY
proximation for Y is given byY

g N N( )N = − −
⎛

⎝
⎜⎛⎛
⎜⎜⎝⎝⎜⎜

⎞

⎠
⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎠⎠
⎟⎟1

1
20

1
20

1

where N is the number of grasshoppers contained on the test plot on N
July 1. An approximation for the population of the buffalo herd on 

October 1 is

P f Y Yf + +( )YY ,000 3 1Y +Y2

Find a formula for P as a function of P N.NN

3LEVEL 

 57. Let f
x

( )x = +1
1

, find:

 a. ( )( ) b. ( )( )
 c. ( )( )
 d. Can you predict the output for further iterations of compositions?

 58. Choose any positive x. Find a numerical value for ( )( ),
( )( ), and ( )( ). If you continue this iterative 

procedure, predict the outcome for any x for each of the given func-x
tions.

 a. f x( )x = b. f x( )x = 2
 c. f x( )x = 3 d. f k x( )x =

 59. PROBLEMS FROM CALCULUS A process in calculus called the Newton-
Raphson method uses an iterative process for approximating roots of d
a given equation. A leading calculus book shows that the solution to 

the equation x 2 5=  (which we know has a solution x = 5) can be 

found iteratively by evaluating the function

f x
x

( )x =
+2 5

2
Compute the iterates of this function for x0x = 2 and compare with a

calculator approximation of 5 .

 60. Journal Problem From School Science and Mathematics, Vol. 83,

No. 1, Jan. 1983. Let f
x

( )x ( )x
=

2 2)
22

 and g t t( )t = ±t −1,

where t is a positive integer. Findt f t[ (g )].

* From Calculus, James F. Hurley. Belmont, CA: Wadsworth, Inc., 1987, p. 61
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136 CHAPTER 2 Functions with Problem Solving

2.7  Inverse Functions

The Idea of an Inverse
In mathematics, the ideas of “opposite operations” and “inverse properties” are very important. The 

basic notion of an opposite operation or an inverse property is to “undo” a previously performed 

operation. For example, pick a number, and call it x ; then:

x Think:x  I pick 8.

Add 5: x + 5 Think: Now, I have 8 + 5 = 13.

The next operation returns you to x:  Think: I want to find an operation to get back to my original 

number

Subtract 5: x + 5 − 5 = x Think:x 13 − 5 = 8, my original number.

We now want to apply this idea to functions. Pick a number in the domain of a function f ; call

this number a:

a Think:a I’ll pick 4 this time.

Now, evaluate f  for the number you picked; suppose we let f f  be defined byf f (x ) = 2x + 7:

Evaluate f : f (a ) = 2a + 7 Think: f (4) + 7 = 15.

The next operation returns us back to x:  Think: I want to find a function, called the inverse func-
tion, denoted by f −1 if it exists, so that f −1(a ) = a.

Let f =1 1
2

( )x ( )x −x 7  Think: Where did this come from? This is the topic of 

this section!

Evaluate f −1: f a=1( )a + 7a + Think: ff =1 1
2

( )a + 7a + ( )+ −2 7a + 7

=

=

1
2
( )2

a

Of course, for f −1 to be an inverse function, it must “undo” the effect of f for f each and every
member of the domain. This may be impossible if r f is a function such that twof x values give the 

same y value. For example, if g (x ) = x 2, then g (2) = 4 and g (−2) = 4, so we cannot find a func-

tion g −1 such that g −1(4) equals both 2 and −2 because that would violate the very definition of a 

function. We see it is necessary to limit the given function so that it is one-to-one. Recall the hori-
zontal line test from Section 2.2 to determine whether a function is one-to-one.t

Inverse Functions
For a given function f , we write b = b f (a ) to indicate that f maps the number f a in its domain intoa
the corresponding number b in the range. If b f has an inversef f −1, it is the function that reverses the 

inverse of f  and does not affect f f  in the sense thatf

f a=1( )b

This means that

( )( ) a)1

Furthermore, for every b in the domain of b f −1,

( )( ) b)1

The symbol f −1 means the inverse of f
and does not mean 1

f
. 

51774_CH02_FINAL.indd   13651774_CH02_FINAL.indd   136 9/5/11   2:54:28 PM9/5/11   2:54:28 PM



2.7 Inverse Functions 137

INVERSE FUNCTION

Let f be a function with domainf D and rangeD R. Then the function f −1 with domain R and 

range D is the D inverse of f iff

f −1[ f (a )] = a for alla a ina D

f [ f −1(b )] = b for all b b inb R

» IN OTHER WORDS Start with some x value in the domain of a functionx f . You can think 

of this in terms of a function machine.

E X A M P L E  1  Showing that two given functions are inverses

Show that f and f g defined byg f (x ) = 5x + 4 and g (x ) =
x − 4

5
are inverse functions.

Solution  We must show that f  and f g are inverse functions in two parts:g

( )( ) ( ) ( )( )g) ) () ( )( f b
) ()( )) (g((g =

− 4
55

5
5

4
5

⎛

⎝
⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎝⎝⎜⎜

⎞

⎠
⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎠⎠
⎟⎟

= =
−⎛

⎝
⎜⎜⎜⎜⎜⎜⎜⎜⎝⎝⎜⎜

⎞

⎠
⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎠⎠
⎟⎟ +

( )5 + b4
5

− ⎛⎜⎛⎛)44
44

5
5

4= = +

=

a

a b=

( )4− 4b

Thus, ( )( ) a)  and ( )( ) b) , so f and f g are inverse functions.g

Once you are certain that a function g is the inverse of a functiong f , you can denote it by f −1.

This relationship is shown in Figure 2.33. Note that the range of f  is the domain of f f −1.

Figure 2.33  Inverse functions

Y
X

Domain of f

Range of f
Domain of f –1

f

f –1

x
y = f (x)

Even though the definition of inverse functions shows us how to check to see whether two 

functions are inverses, it does not tell us how to find the inverse of a given function. To find the d
inverse, it is helpful to visualize a function as a set of ordered pairs. Suppose we pick a number, say 

4, and evaluate a function f  at f 4 to find f (4) = 15. Then (4, 15) is an element of f . Now the inverse 

function f −1 requires 15 to be changed back into 4; that is, f −1(15) = 4 so that (15, 4) is an element 

of f −1. Thus, if a function f has an element (a, b), then the inverse function f −1 must have element
(b, a).

The output is x.

This machine is an
inverse machine if it
“undoes” the effect of ff
the f machine; that is,f
it allows us to ‘get back”
to the answer x.

Input x – value
10,000

10,000

18

18

Output f (x) from f machinef
is now input into another g machine

Square
root

Subtract 10

Divide by 5

Multiply by 5

Add 10

Square
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138 CHAPTER 2 Functions with Problem Solving

E X A M P L E  2  Inverse of a given function defined as a set of ordered pairs

Let f = {(0, 3), (1, 5), (3, 9), (5, 13)}; find f −1, if it exists.

Solution  The inverse simply reverses the ordered pairs:

f −1 = {(3, 0), (5, 1), (9, 3), (13, 5)}

The inverse of a function may not exist. For example,

f = {(0, 0), (1, 1), (−1, 1), (2, 4), (−2, 4)}

and

g (x ) = x 2

do not have inverses because if we attempt to find the inverses, we obtain relations that are not 

functions. In the first case, we find

Possible inverse of f : {(0, 0), (1, 1), (1, −1), (4, 2), (4, −2)}

This is not a function because not every member of the domain is associated with a single member 

in the range: (1, 1) and (1, −1), for example.

In the second case, if we interchange the x andx y in the equation for the function y g where g y = x 2
and then solve for y, we find:

x = y 2 or y = ± x for x ≥ 0

But this is not a function of x, because for any positive value of xx x, there are two corresponding val-xx
ues of y, namely, x  and − x . These examples show why we impose the one-to-one condition.

Let us summarize the procedure for finding an inverse as illustrated in Example 3.

FINDING AN INVERSE

The procedure for finding an equation for a given inverse function, f .
Step 1 Let y =y f (x ) be a given one-to-one function.

Step 2 Replace all x’s and all y’s (that is, interchange x andx y) in the given equation.yy

Step 3 Solve for y. The resulting function defi ned by the equation y =y f  −1(x ) is the 

inverse of f .

The domain of f and the range of f f  −1 must be equal as well as the domain of f  −1 and the range of f .
This property is evident in the following example (part c).

E X A M P L E  3  Finding the inverse using functional notation

a. If s (x ) = x 3 + 3, find s−1, if it exists.

b. If u (x ) = x 2, find u−1, if it exists.

c. If t (x ) = x 2 on (−∞, 0] find t −1, if it exists.

Solution

a. Note that s is a one-to-one function and thus will have an inverse.s

y x= +x 3 3 Step 1: Given function.

x y= +y 3 3 Step 2: Interchange x andx y.

y x3 3−x  Step 3: Solve for y.

y ( )x −x /1 3/ Thus, s− =1 1 3( )xx ( )x −xx 3 /
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2.7 Inverse Functions 139

b. Since u is not a one-to-one function, we say it has no inverse function.u
c. With the given restriction on the domain, t is a one-to-one function, so the inverse exists.t

y x 2 for −∞ < x ≤ 0 Step 1: Given function

x y 2 for −∞ < y ≤ 0 Step 2: Interchange x and y.

y x  Step 3: Solve for y.

 Thus, t x= −1( )x
Note that y is negative, and y x  is positive, so the opposite 

is necessary. The implied domain here is (0, ∞].
  

Graph of f −1

The graphs of f and its inversef f  −1 are closely related. In particular, if (a, b ) is a point on the graph 

of f , then b = f (a ) and a = f  −1(b ), so (b, a ) is on the graph of f  −1. It can be shown that (a, b ) and 

(b, a ) are reflections of one another in the line y = x. (See Figure 2.34.)

These observations yield the following procedure for sketching the graph of an inverse func-

tion.

INVERSE GRAPHS

If f  −1 exists, its graph may be obtained by reflecting the graph of f in the linef y = x.

E X A M P L E 4 Graphing an inverse

Show that t (x ) = x 2 on (−∞, 0] and t −1(x ) = − x (inverse functions from Example 3c) are sym-

metric with respect to the line y = x by graphing each.x

Solution  The graphs are shown in Figure 2.35.

Figure 2.35  Graphs of t , t –1, and y = x

y

x

8

6

4

2

8642–2–4
–2

–4

y =
 x

t

t – 1

E X A M P L E  5  Function and inverses from graph

Consider the function f defined by the graph in Figure 2.36. f a. Find f (5) b. Find f  −1(6).

Solution  Use the graph as shown in Figure 2.36.

a. f ( ) 3)

b. f −1 9=( )6

This is a member of the domain of f ; locate this on the ff x-axis.
↓

This is found by following the dots in Figure 2.36.

↑

This is a member of the domain of f −1; locate this on the y-axis.

↓

↑
This is found by following the dashes in Figure 2.36.

Figure 2.34  The graphs of f  andf f  −1 are 
reflections in the line y = x

y

x

8

6

4

2

8642–2–4–6–8
–2

–4

–6

–8

f

f – 1

y = x

Figure 2.36  Graph of f

Start on
y-axis
for f –1

Start on x-axis for f

6

5 9

3

y
f

x

(5, 3)

(9, 6)
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PROBLEM SET 2.7

1LEVEL 

WHAT IS WRONG, if anything, with each statement in Problems 1–4? 
Explain your reasoning.

 1. If f ( )x ,= +x 1 then f
x

=
+

1 1
1

( )x .

 2. a. If f ( ) ,5) then f −1 3=( )5 .
 b. If f ( ) ,3) then f − =1 1

3
( )5 .

 3. Every function has an inverse because f x x[ (f )]1 for all x.

 4. If f a a1[ (f )] , then f and f −1 are inverse functions.

Determine which pairs of functions defined by the equations in 
Problems 5–6 are inverses.

 5. a. f x xx( )x ; (g )x x(g= 3 1
3

 b. f x x x
( )x ; (g )= =

−
5 3+x 3

5
 c. f

x
x

x
( )x ; (g; (g ) =x= ; g )

1 1
( )

 d. f g( )x , ; ( )( ) ,= <x x, x >,2 00 g; ( )x = >x x,
 6. a. f x xx( )x ; (g )= −5 1

5

 b. f x( )x ; (g )= +x +2
3

3
2

2 3x; (g ) = +x3

 c. f
x

x
x

( )x ; (g )=
+

=
−

1
1

1
1

 d. f g( )x , ; ( )( ) ,= ≥x x, x ≥,2 00 g; ( )x = ≥x x,

Find the inverse function, if it exists, of each function given in 
Problems 7–12.

 7. a. f = {( , ),( , ),( , ),( , )}4, 6, 7, 2,
 b. f ( )x = +x 3
 c. f x( )x = 5
 d. f ( )x = 5
 8. a. g = {( , ),( , ),( , ),( , )}1, 6, 4, 3,
 b. g( )x = +2 3+x
 c. g x( )x = 1

5
d. g( )x = −3

 9. a. f x( )x = −x 2 4 b. f
x

( )x =
−

1
3

 10. a. g( )x = +x 4 b. g x
x

( )x =
+2 1x +

 11. f ( )x =
+

2 6x −

3 3x +
12. g( )x =

+3 1x +

2 3x −

2LEVEL 

If s and s c are defined by the graphs in Figure 2.37, find the values c
requested in Problems 13–16.

 13. a. s( ) b. s( )
 c. s( ) d. s( )
 14. a. s−1( )2 b. s−1( )−2
 c. s−1( )0 d. s−1( )1
 15. a. c( ) b. c−1( )1
 c. c−1( )0 d. c( )
 16. a. c−1( )−1 b. c( )
 c. c( ) d. c−1( )−2

Figure 2.37 Graphs for Problems 13–16

x

y

222–222 444 666–444–666

–1.0–1.–1 0––

–1.5–1.–1 5

–2.0–2.–2 0

0.5.0 5

1.0.1 0

1.5.1 5

2.0.2 0

a. Graph of s

x

y

222 444 6666 888 101010 12212

–1.0.–1 0–

–0.5.–0 5–

–1.5.–1.5

–2.0.–2.0

0.5.0 5

1.0.1 0

1.5.1 5

2.0.2 0

b. Graph of c

The functions s and s c in Problems 17–24 are defined by the graphs c
in Figure 2.37.

 17. What are the domain and range of the function s?

 18. What are the domain and range of the function c?

 19. Graph y s= s( )+x . 20. Graph y cc( )x −x .
 21. Graph y s= +s( )x .2 22. Graph y c −c( )xx .2
 23. Graph y s−1( )x . 24. Graph y c−1( )x .

In problems 25–26, use the function defined in Figure 2.38 to graph 
the requested functions.

Figure 2.38  Graph of f

x

y

555–555

–5––5

55

 25. a. y f −1( )x b. y ff −1( )x−
 26. a. y ff −1( )x −x 2 b. y f −f −1 2( )xx

For each of the Problems 27–38, graph the defined function and its 
inverse on the same coordinate axes, and use the graphs to decide 
whether the functions are inverses.

 27. f x x x( )x ; (f )= x 2x x(f ) −x1

 28. f x x x
( )x ; (f )= =

+
5xx 2

5
1

 29. f f x( )x , ; ( )x= x , x =2 1f;≥xx
 30. f f x( )x , ; ( )x= x , x = −2 1f;≤xx
 31. f x f x( )x , ; ( )( )= x =f; )x +2 1ff;, xxx ≥ 2
 32. f f( )x | |x , ;x ( )( ) | |x ,=| x =f; )x ≥|,1x| x ≥ 0| ≥x|,1

 33. f x( )x = −x1
4

2

 34. f ( )x = +x1
3

1
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2.8 Limits and Continuity 141

 35. f x( )x = −x1
3

5
3

 36. f x( )x = − +1
4

3
4

 37. f x( )x = 4 2x −x
 38. f ( )x = +3 6+x
 39. If f ( )x = +x +3 5 3x + , find:

 a. f [ (f )]1 5 b. f −1 2[ (f )]
 c. ( )( )1 d. ( )( )1

 40. If f ( )x = +5 1+x
 a. Find f 1( )x . b. Find f −1( )3 .

 c. Find
1

f ( )3
. d. Does f

f
− =1 1

( )3
( )3

?

 41. If f x( )x = x +4 23 6x +2x , find f −1( )6 .

 42. If F ax b
cx d

( )x =
+
+

, find:

 a. F 1( )x b. F x[ (F )]1

 c. F[ (F )]0 d. F 1 0[ (F )]

 43. Show that f ( )x =
+5 3x +

8 5x −
is its own inverse.

 44. The function

C( )F ( )F= (F5
9

gives the temperature in Celsius when the Fahrenheit temperature (F )
is known. Find the inverse function and give a verbal description.

 45. The function

C x( )x = 2 5. 4

gives the approximate number of centimeters when the length is x
inches. Find the inverse function and give a verbal description.

 46. Let f
x

( )x
,
,

=
− ≤x,
− >x,

⎧
⎨
⎪⎧⎧⎪⎨⎨
⎪⎪

⎩⎪
⎨⎨
⎪⎩⎩⎪⎪
2 3x − 1

2 1>x
Sketch the graphs of f  and f −1.

 47. Let f
x
x

( )x
,

,
=

− ≤x,
− >x,

⎧
⎨
⎪⎧⎧⎪⎨⎨
⎪⎪

⎩⎪
⎨⎨
⎪⎩⎩⎪⎪

1
2

4 1≤x
2 1>x

Sketch the graphs of f  and f −1.
 48. Let f x( )x .= 10
 a. Graph f , f −1, and the line y x on the same coordinate axes.

 b. Show that f f f( )x y ( )x ( )y .y

 49. Let f x( )x .= 2
 a. Graph f,ff f −1,  and the line y x on the same coordinate axes.

 b. Show that f f
f

( )x y ( )x
( )y

.=)y

 50. Find the coordinates of A, B, C, andCC D in Figure 2.39.D

Figure 2.39  Graphs of f and f f –1ff

A
C

y = x

y = f(x)

y = f –1(x)D

B

x0
x

y

3LEVEL 

Determine which pairs of functions defined by the equations in 
Problems 51–56 are inverses.

 51. f x( )x , ;x= +x ≥2 1+x 02 g x x( )x ,= ≥1
2

2 2xx 1
 52. f x( )x , ;x= +x ≤2 1+x 02 g x( )x ,= − − ≥x,1

2
2 2x 1

 53. f ( )x ( ) , ;x= (x 1x) x ≥2 g( )x ,= − ≥,1 0− ≥x x,
 54. f ( )x ( ) , ;x= (x 1x) x ≥2 g( )x ,= − + ≥,1 0+ ≥x x,
 55. f ( )x | |, ;x= | x 1x| x ≥ g x( )x | |x ,= | x ≥ 1x| ≥
 56. f ( )x | |, ;x= | x 1x| x ≥ g x( )x ,= x ≥1 0x, ≥

Find the inverse for each function defined by the equations in Prob-
lems 57–59.

 57. a. f x( )x = 2  on [ , )∞)) b. f x( )x = 2 on ( , ]0
 58. a. f ( )x = +x 2 1 on ( , ]0 b. f ( )x = +x 2 1 on [ , )∞))
 59. a. f x( )x = 2 2  on [2, 10] b. f x( )x = 2 2 on [−10, −1]

 60. If f x
x

( )x =
+
−

1
3

, find:

 a. f 1( )x b. f ( )x 1 c. [ ( )]x( −1

2.8  Limits and Continuity

Two essential ideas in understanding the nature of functions are limits and continuity. You will 

investigate these ideas at length in calculus, but because of their importance, we introduce them in 

this section as a foretaste of things to come.

Intuitive Notion of a Limit
The limit of a function f  is a tool for investigating the behavior of f f (x ) as x gets closer and closer x
to a particular number c. To visualize this concept, we return to the falling object example of 

Section 2.2.

E X A M P L E 1 Velocity as a limit MODELING APPLICATION

A freely falling body experiencing no air resistance falls s (t ) = 16t 2 feet in t seconds. Express thet
body’s velocity at time t = 2 as a limit.

Solution
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142 CHAPTER 2 Functions with Problem Solving

Step 1: Understand the problem. We know how to fi nd the average velocity over a period of 

time, but here we need to defi ne some sort of “mathematical speedometer” for measur-

ing the instantaneous velocity of the body at time t = 2.

Step 2: Devise a plan. We fi rst compute the average velocity v( )t of the body between time 

t = 2 and any other time t by the formula t AVERAGE VELOCITY =
DISTANCE TRAVERR LED

ELAPSED TIMEMM
.

Step 3: Carry out the plan. v ( )t =
DISTANCE TRAVERR LED

ELAPSED TIMEMM

=
−
−

s s
t

( )t ( )
2

=
−
−

16 16
2

2 216t
t

( )22

=
−

−
16 64

2

2t
t

As t gets closer and closer to t 2, it is reasonable to expect the average velocity v( )t  to

approach the value of the required instantaneous velocity at time t = 2.

lim ( ) lim
t t

v(
t
t

=
−

−2 2
( )

t→t

216 64
2� ��� ��� ����

 This is the instantaneous velocity at t = 2.

Step 4: Look back. Notice that we cannot fi nd the instantaneous velocity at time t = 2 by sim-

ply substituting t = 2 into the average velocity formula because this would yield the 

meaningless form 0/0.
  

We now devote the remainder of this section to an intuitive introduction of how we can find the 

value of limits such as the one that appears in Example 1.

LIMIT OF A FUNCTION (informal definition)

The notation
lim ( )
x c

f ( L=

is read “the limit of f (x ) as x approaches x c is c L” and means that the functional value f (x ) can 

be made arbitrarily close to L by choosing x sufficiently close tox c (but not equal toc c).

» IN OTHER WORDS If f (x ) becomes arbitrarily close to a single number L as x approachesx
c from either side, then we say that c L is the limit of f (x ) as x approaches x c.

Limits by Graphing or by Table
Figure 2.40 shows the graph of a function f and the number f c = 3.

The arrowheads are used to illustrate possible sequences of numbers along the x-axis, approach-xx
ing from both the left and the right. As x approachesx c = 3, f(x ) gets closer and closer to 5. We 

write this as

lim ( )
x

f (
→

=
3

5

The Diné (also known as the Navajo) are
a Native American people who, despite
considerable interchange and assimila-
tion with the surrounding dominant cul-
ture, maintain a worldview that remains
vital and distinctive. The Navajo believe
in a dynamic universe. Rather than
consisting of objects and situations,
the universe is made up of processes.
Central to our Western mode of thought
is the idea that things are separable
entities that can be subdivided into
smaller, discrete units. For us, things
that change through time do so by going
from one specific state to another spe-
cific state. Although we believe time
to be continuous, we often even break
it into discrete units or freeze it and
talk about an instant or point in time.
Among the Navajo, where the focus is on
process, change is ever present; inter-
relationship and motion are of primary
significance. These incorporate and
subsume space and time.

*From Ethnomathematics by Marcia Ascher, pp.

128–129.

Historical Note*

Figure 2.40  Limit as x → c

y

x

This is the value ofhis i the valu fThi i h l f
fff that is approachedthat s approach dthat is approachedff
ass x x   3.33

xxx == 3333

55

x x 333–– x x 333++

555
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2.8 Limits and Continuity 143

As x approachesx 3 from the left, we write x → 3 ,− and as x approaches x 3 from the right, we write

x → +3 .+  We say that the limit at x = 3 exists only if the value approached from the left is the same

as the value approached from the right.

E X A M P L E  2  Estimating limits by graphing

Given the functions f, ff g, and h defined by the graphs in Figure 2.41, find the following limits by h
inspection, if they exist: a. lim ( )

x
f (

→0
 b. lim ( )

x
g(

→1
  c. lim ( )

x
h(

→1

Figure 2.41 Limits from a graph

x

y

555–555

55

–5–5

yyy === fff((ffff xxx))

x

y

111 222 333–111–222

11

–1–1

22

y yy === ggg(((xxx))
x

y

111 222 333 444–111

11

–1–1

22 y y = hh ((xx))

Solution

a. Take a good look at the given graph; notice the open circles on the graph at x = 0 and x = −2;
also notice that f (0) = 5. To find lim ( )

x
f (

→0
, we need to look at both the left-hand and right-hand

limits. Look at Figure 2.41 (left graph) to find

lim ( )
x

f (
→ −

=
0

1  and lim ( )
x

f (
→ +

=
0

1

so lim ( )
x

f (
→0

 exists and lim ( ) .
x

f (
→

=
0

1 Notice here that the value of the limit as x approaches x 0

is not the same as the value of the function at x = 0.
b. Look at the center graph in Figure 2.41 to find

lim ( )
x

g(
→ −

= −
1

2   and lim ( )
x

g(
→ +

=
1

2

so the limit as x approachesx 1 does not exist.

c. Look at the graph at the right to find

lim ( )
x

h(
→ −

= −
1

2   and  lim ( )
x

h(
→ +

= −
1

2

so lim ( ) .
x

h(
→

= −
1

2

E X A M P L E  3  Velocity limit

In Example 1, we found the velocity of a falling object at time t = 2 as a limit:

lim
t

t
t→

−
−2

216 64
2

Find this limit using the graphical approach and the numerical approach (tabular).

Solution Graphical approach

v t
t t t

( )t ( )t ( )t ( )
=

−
−

=
−

=
)(t

−
16 64

2
16

2
16 )(tt

2

2 2(t64 16
=== 16( )+ 2 t ≠ 2

The graph of v( )t  is a line with a deleted point, as shown in Figure 2.42. Figure 2.42 Graph of v ( )t

t

y

0.5. 1.0. 1.5. 2.0.

22

2.5.

10110
20220
303030330
40440
50550
60660
70770644
80880
90990

yyy = 16166t22 – 6464– 64–––––––––––– –
t –– 2

(((t 22–))) (((t t 22++))

v((ttt))

vv((ttt))

Pay attention to this notation.
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144 CHAPTER 2 Functions with Problem Solving

The limit can now be seen:

lim ( )
t

v (
→

=
2

64

That is, the instantaneous velocity of the falling body at time t = 2 is 64 ft/s.

Numerical (tabular) approach
We begin by selecting sequences of numbers for t → −2 and t → +2 :

t approaches from the leftt

t → −2

t v( )t

1.950 63.200

1.995 63.920

1.999 63.984

2 undefined

t approaches from the rightt

t → +2

t v( )t

2.100 65.600

2.015 64.240

2.001 64.016

2 undefined

That is, the pattern of numbers suggests

lim
t

t
t→

−
−

=
2

216 64
2

64

This tabular approach agrees with what we found with the graphical approach.

Example 3 clearly shows that we cannot evaluate limits by substitution because if we attempt 

to substitute t = 2 into the velocity function 16 64
2

2t
t

−
−

we find that it does not exist (because we

cannot divide by zero). However, the limit does exist and is 64. However, in calculus, you will prove 

that you may find the limit of a polynomial by direct substitution.

LIMIT OF A POLYNOMIAL

If P is a polynomial function, thenP
lim ( ) ( )
x c

P( P(=

E X A M P L E 4 Limit of a polynomial function

Evaluate a. lim( )
x→2

5 3 2 b. lim
x

x
x→−

+ −x
+3

2 6
3

Solution

a. It would be difficult to graph this function, and a table of values would be lengthy. However, 

because this is a polynomial function, we can find the limit by direct substitution.

lim( ) ( ) ( ) ( )
x→

− +( )
2

5 3 2 5) ( ) 3 2( )2) =)) 9) −5) 3) +)3 + 1) −2) 1 = −== 7

b. lim lim
( )( )

x x

x
x x→−

+ −x
+

=
)(
+3

2

3

6
3

)()()(
3

=
→−
lim( )−
x 3

= 3 2−

= 1

Note that direct substitution gives 

an undefi ned expression (can’t divide

by 0).

Because x – 2 is a polynomial, evaluate by substitution.x
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2.8 Limits and Continuity 145

Notice from the preceding examples that when we write

lim ( )
x c

f ( L=

we do not require c itself to be in the domain of c f, nor do we requireff f ( )c , if it is defined, to be equal to

the limit. Functions with the special property that lim ( ) ( )
x c

f ( f (=  are said to be continuous at x = c.

Intuitive Notion of Continuity
Continuity may be thought of informally as the quality of having parts that are in immediate con-

nection with one another. This idea evolved from the vague or intuitive notion of a curve “without 

breaks or jumps” to a rigorous definition first given toward the end of the 19th century.

We begin with a discussion of continuity at a point. It may seem strange to talk about continu-

ity at a point, but it should seem natural to talk about a curve being “discontinuous at a point,” as 

illustrated by Figure 2.43.

Figure 2.43  Holes, poles, and jumps

x

y

555

55

10110

a. Continuous at x = x 1

x

y

55

55

10110

holholholee

b. Discontinuous at x =x 1

x

y

55

55

10110

jumpjumpjump

c. Continuous at x = x 1

x

y

55

55

10110

holoholeee

d. Discontinuous at x = x 1

x

y

22

55

10110110

pppolp lp e

e. Discontinuous at x =x 1
(Sometimes a pole is called

a vertical asymptote.)

x

y

22–11–22

–1–1

–2––2

11

22

jumpumjump

f. Discontinuous at x = x 1

Definition of Continuity
Let us consider the conditions that must be satisfied for a function f to be continuous at a point f c.

First, f (c ) must be defined. For example, the curves in Figures 2.43b and e are not continuous at 

x = 1 because they are not defined for x = 1. (An open dot indicates an excluded point.) A second

condition for continuity at a point x = c is that the function makes no jumps there. This means that c
if “x is close to x c,” then “f (x ) must be close to f (c ).” This condition is satisfied if lim ( )

x c
f ( exists.

Looking at Figure 2.43, we see that the graphs in parts c, d, and f have a jump at the point f x = 1.

A third condition for continuity at point x = c is that c lim ( )
x c

f ( = f (c ). Note that in the curve in 

Figure  2.43d, lim ( )
x

f (
→1

exists but is not equal to f (1). These considerations lead us to a formal

definition of  continuity of a function at a point.

The idea of continuity evolved from the 
notion of a curve “without breaks or 
jumps” to a rigorous definition given 
by Karl Weierstraß. Our definition of 
continuity is a refinement of a defini-
tion first given by Bernhard Bolzano 
(1781–1848). Galileo and Leibniz had 
thought of continuity in terms of the 
density of points on a curve, but using 
today’s standards, we would say they 
were in error because the rational num-
bers have this property, yet do not form 
a continuous curve. However, this was a 
difficult concept, which evolved over a 
period of time. Another mathematician, 
J. W. R. Dedekind (1831–1916), took an 
entirely different approach to conclude 
that continuity is due to the division of 
a segment into two parts by a point on 
the segment. As Dedekind wrote, “By 
this commonplace remark, the secret of 
continuity is to be revealed.”
*From Carl Boyer, A History of Mathematics
(New York, John Wiley & Sons, Inc., 1968), p. 607.

Historical Note*
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146 CHAPTER 2 Functions with Problem Solving

CONTINUITY AT A POINT

A function f is f continuous at a point x = c ifc

 1. f (c ) is defined;

 2. lim ( )
x c

f ( exists;

 3. lim ( ) ( )
x c

f ( f (= .

A function that is not continuous at c is said to have a c discontinuity at that point.

» IN OTHER WORDS Step 1 refers to the domain of the function and ignores what happens

at points x ≠ c, whereas step 2 refers to points close to c but ignores the point x = c.

Continuity looks at the whole picture: at x = c and at points close to c x = c and checks toc
see whether they are somehow “alike.”

If f  is continuous at x = c, the difference between f (x ) and f (c ) is small whenever x
is close to c becausec lim ( ) ( )

x c
f ( f (= Geometrically, this means that the points (x, f (x ))

on the graph of f converge to the point (c, f (c )) as x c and this is what guarantees that 

the graph is unbroken at (c, f (c )) with no “gap” or “hole.”

E X A M P L E  5  Testing the definition of continuity with a given function

Test the continuity of each of the following functions at x = 1. If it is not continuous at x = 1, 

explain.

a. f x
x

( )x =
+ −

−

2 2 3−x
1

b. g x
x

( )x =
+ −

−

2 2 3−x
1

if x ≠ 1, and g( )x = 6 if x = 1

c. h x
x

( )x =
+ −

−

2 2 3−x
1

if x ≠ 1, and h( )x = 4 if x = 1

d. F x
x

( )x =
+
−

3
1

if x ≠ 1, and F( )x = 4 if x = 1

e. G x( )x = + −7 3+x 23 2x3+

Solution  We verify that the three criteria for continuity are satisfied for c = 1.

a. The function f is not continuous at f x = 1 (hole; f (c ) not defined) because it is not defined at 

this point.

b. 1. g (1) is defined; g (1) = 6.

2. lim ( ) lim

lim
( )(

x x

x

g( x
x

→

=
+ −

−

=
+)(

1 1
( )

x→x

2

1

2 3−x
1

3)( +)(x)( ))

li ( )

x

x

−

= lim(

=

→

1

4

1

3. lim ( ) ( )
x

g( g
→

≠
1

, so g is not continuous at g = 1 (hole; g (c ) defined).

c. Compare h withh g of part g b. We see that all three conditions of continuity are satisfied, so h ish
continuous at x = 1.
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2.8 Limits and Continuity 147

d. 1. F(1) is defined; F(1) = 4.

2. lim ( ) lim
x x

F(
x
x

=
+
−1 1

( )
x→x

3
1

; the limit does not exist.

 The function F is not continuous at F x = 1 (pole; F(c ) defined).

e. 1. G(1) is defined; G(1) = 8.

2. lim ( ) ( ) ( )
x

G(
→

= +( ) −

=
1

3 2( )+7(( 3(( 2

8

G is a polynomial functionG

3. lim ( ) ( ).
x

G( G
→

=
1

Because the three conditions of continuity are satisfied, G is continuous at G x = 1.

Continuity on an Interval
The function f is said to be f continuous on the open interval (a, b ) if it is continuous at each

number in this interval. If f  is also continuous from the right at f a, we say it is continuous on the 
half-open interval [a, b ). Similarly, f  isf continuous on the half-open interval (a, b ] if it is con-

tinuous at each number between a anda b and is continuous from the left at the endpoint b b. Finally, f
is continuous on the closed interval [a, b ] if it is continuous at each number between a and a b and b
is both continuous from the right at a and continuous from the left at a b.

E X A M P L E  6  Testing for continuity on an interval

Find the intervals on which each of the given functions is continuous.

a. f x
x1ff

2

2

1
4

( )x =
−
−

b. f2ff
2( )x | |x 2 4= |x

x

y

222111 333 444–111––222–333–444
–1–1

–2––2

–3––3

22

11

33

x

y

222111 33 44–222 –111–3–3–4–4
–1–1

22

11

33

Solution

a. Function f1ff  is not defined when x 2 4 0− 4 or when x = 2 or x = −2. The curve is continuous

on (−∞, −2) ∪ (−2, 2) ∪ (2, ∞).
b. Function f2ff  is continuous on (−∞, ∞).

Because we do not always have the graph of a function readily available, as we did in Example 

6, and because the task of checking for continuity will focus on certain values, we consider a pro-

cedure involving identifying and then checking those values of concern. To help us describe the 

situation, we define a suspicious point as a point having an x value for which the definition of the

function changes, or a value that causes division by zero for the given function.

For Example 6, the suspicious points can be listed:

a. 
x
x

2

2

1
4

−
−

has suspicious points for division by zero when and x = 2 and x = −2.

b. | | x|2 2| 4x| 2| x||  when x 2 4 0− ≥4 , and | | x|2 2| x|||| when x 2 4 0− <4 . This means the 

definition of the function changes when x 2 4 0− 4 , namely, x = 2 and x = −2 are suspicious

points.
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148 CHAPTER 2 Functions with Problem Solving

E X A M P L E  7  Checking continuity at suspicious points

Let f
x x

( )x =
≤ <x

− ≤ <

⎧
⎨
⎪⎧⎧⎪⎨⎨
⎪⎪

⎩⎪
⎨⎨
⎪⎩⎩⎪⎪
3 5x−x 2

22 5
if

if
and g

x x
( )x =

≤ <x
− ≤ <

⎧
⎨
⎪⎧⎧⎪⎨⎨
⎪⎪

⎩⎪
⎨⎨
⎪⎩⎩⎪⎪
2 5x−x 2

22 5
if

if

Find the intervals on which f and f g are continuous.g

Solution  The domain for both functions is [−5, 5); the functions are continuous everywhere on 

that interval except possibly at the suspicious points.

Examining f , we see f x( )x = −3 on [−5, 2), which is a polynomial function and thus is

continuous; f x( )x = −x 2 on [2, 5), which is a polynomial function and thus is continuous. The 

suspicious point on the real number line is the x value for which the definition of f changes—in this f
case, x = 2.

For g, we likewise see that the function is continuous except possibly at the suspicious point 

x = 2, the value where the definition of the function changes.

Function f Function g
Suspicious point(s): x = 2 x = 2

1. f (2) = 2 − 2 = 0 g(2) = 2 − 2 = 0

f   is defined at x = 2. g is defined at x = 2.

2. lim ( ) lim( )
x x

f (
−

= lim(
2 2

( )
x→x−

lim ( ) lim( )
x x

g(
−

= lim(
2 2

( )
x→x−

= 1 = 0

lim ( ) lim( )
x x

f (
+ +

( )f ( = lim(
2x2 →x+

( )
x→x

lim ( ) lim( )
x x

g(
+ +

( )g( = lim(
2x2 →x+

( )
x→x

= 0 = 0

Thus, lim ( )
x

f (
→ −2

 does not exist because the

left- and right-hand limits are not equal.

Thus, lim ( )
x

g(
→

=
2

0

3. The third condition of continuity cannot 

hold at x = 2 because the limit does not 

exist.

lim ( ) ( )
x

g( g
→ −

=
2

Conclusion: Continuous on [−5, 2) and on [2, 5) but 

not on [−5, 5).
Continuous on [−5, 5).

Root Location and Limits That Do Not Exist
In calculus, you will use continuity to prove an important result that we will need to approximate 

the roots of equations in algebra. This result asserts that if a function is continuous on a closed 

interval and has opposite signs someplace on that interval, then there is a root somewhere between 

its positive and negative values.

ROOT LOCATION THEOREM

If f is continuous on the closed intervalf [a, b ] and if f (a ) and f (b ) have opposite algebraic signs 

(one positive and the other negative), then f (c ) = 0 for at least one number c on the open interval 

(a, b ).

E X A M P L E  8  Using the root location theorem

Show that x 4 5 1xxx = 0 for at least one number c on c [0, 2].
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2.8 Limits and Continuity 149

Solution  Notice that the function f x( )x = x 4 5 1x − is continuous on [0, 2]. Also notice that 

f ( ) 1) (it is negative) and f ( ) 1) 5 5 215 (it is positive), so the conditions of the root location

theorem apply.

Therefore, there is at least one number c on c (0, 2) for which f (c ) = 0. This means that on 

(0, 2), c 4 5 1ccc = 0, as required.

It may happen that a function f does not have a (finite) limit asf xx →c. When lim ( )
x c

f ( fails to

exist, we say that f (x ) diverges as x approaches x c. The following examples illustrate how diver-

gence may occur.

E X A M P L E  9  A function that diverges

Evaluate lim
x x→0 2

1
.

Solution  As x → 0, the corresponding functional values of f
x

( )x = 1
2 grow arbitrarily large, as

indicated in the table below:

x approaches from the left

x → 0−

x f (x )

−0.1 100 = 1 × 102

−0.05 400 = 4 × 102

−0.001 1 × 106

0 undefined

x approaches from the right

x → 0+

x f (x )

0.01 1 × 102

0.05 4 × 102

0.001 1 × 106

0 undefined

The graph of f  from Table 2.1 is shown in Figure 2.44.f

Figure 2.44  Graph of y
x

=
1

2

x

y

888–4–44–8–88 444

222

444

–2–2–2

–4–4–4

Geometrically, the graph of y f ( )x  rises without bound as x → 0. Thus, lim
x x→0 2

1
does not exist, so 

we say f  diverges as x → 0.
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150 CHAPTER 2 Functions with Problem Solving

PROBLEM SET 2.8

1LEVEL 

Describe each illustration in Problems 1–4 using a limit state-
ment.

1.

444222–2–22–4–44

444
888

12212

fff

x

y

–444
–888

–12–1212

2.

ggg

444222–2–22–4–44

444
888

12212

x

y

–444
–888

–12–1212

 3.

FFF

222111 333 444

111

222

x

y 4.

ss

2222pppppppp–––ppppp22–2––2ppp

0.50.50 5

–0.5–0.50 5
–1.0–1.01 011
–1.5–1.51 5

1.01.01 0
1.51.51 5

x

y

 5. State the domain of each function, if possible, and determine whether 

it represents a continuous function.

 a. The temperature on a specific day at a given location considered as 

a function of time

 b. The humidity on a specific day at a given location considered as a 

function of time

 c. The selling price of AT&T stock on a specific day considered as a 

function of time

 d. The number of unemployed people in the United States during 

January 2007 considered as a function of time

 e. The charges for a taxi ride across town considered as a function of 

mileage

 f. The charges to mail a package as a function of its weight

 6. Let f
x x
x

( )x =
>

+ ≤x

⎧
⎨
⎪⎧⎧⎪⎨⎨
⎪⎪

⎩⎪
⎨⎨
⎪⎩⎩⎪⎪

2 2
2≤x1

if

if

Show that f is continuous from the left at f 2 but not from the right.

Given the functions defined by the graphs in Problems 7–8, find 
the limits.

fff

555–55–5

555

10010

x

y

Graph of f

ggg

555–55–5

555

10010

x

y

Graph of g

tt

555–55–5

555

10010

x

y

Graph of t

 7. a. lim ( )
x

f (
→3

b. lim ( )
x

f (
→2

8. a. lim ( )
x

f (
→0

b. lim ( )
x

f (
→−1

 c. lim ( )
x

g(
→−3

d. lim ( )
x

g(
→−1

c. lim ( )
x

g(
→2

d. lim ( )
x

g(
→ +3

 e. lim ( )
x

t(
→ −2

f. lim ( )
x

t(
→ +2

e. lim ( )
x

t(
→4

   f. lim ( )
x

t(
→−4

PROBLEMS FROM CALCULUS Evaluate the limits in Problems 9–18. You 
may use the numerical, graphical, or algebraic method of solution. 
If the limit does not exist, explain why.

 9. lim( )
x→ −2

2 10. lim( )
x→ +3

2

 11. lim( )
x→−2

2 12. lim( )
x→0

3 2

 13. lim
x

x
x→

+ −
−3

2 3 1−x 0
2

14. lim
x

x
x→

+ −
−2

2 3 1−x 0
2

 15. lim
x x→− + −3

1
3

16. lim
x x→ − −3

1
3

 17. lim
x

x

x→

+
−

0

1
3

1
3 18. lim

x

x

x→

−

−0

1 1
3

3

Which of the functions defined in Problems 19–24 are continuous? 
If it is not continuous, explain why.

 19. 20.

 21. 22.

 23. 24.
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PROBLEMS FROM CALCULUS In Problems 25–28, compute the one-sided 
limit.

 25. lim( )
x→ −2

2

 26. lim ( )
x

f (
→ −2

, where f
x

( )x =
− ≤x x
− >

⎧
⎨
⎪⎧⎧⎪⎨⎨
⎪⎪

⎩⎪
⎨⎨
⎪⎩⎩⎪⎪
3 2− 2

5 2>x2

if

if

 27. lim ( )
s

g(
→ −1

, where g
s s
s

s
( )x = −

<

≥s s

⎧

⎨

⎪⎧⎧⎪⎪⎪⎪⎪⎪⎪⎨⎨
⎪⎪

⎩
⎪⎨⎨⎪⎪⎪

2

1
1

1≥s1−s

if

if⎪⎪⎪⎪⎪⎪⎪⎩⎩⎪⎪⎪⎪

 28. lim ( )
s

g(
→ +1

, where g
s s
s

s
( )x = −

<

≥s s

⎧

⎨

⎪⎧⎧⎪⎪⎪⎪⎪⎪⎪⎨⎨
⎪⎪

⎩
⎪⎨⎨⎪⎪⎪

2

1
1

1≥s1−s

if

if⎪⎪⎪⎪⎪⎪⎪⎩⎩⎪⎪⎪⎪

PROBLEMS FROM CALCULUS Identify all suspicious points and determine 
all points of discontinuity in Problems 29–38.

 29. f x( )x = x +3 3 5x + 30. f x
x

( )x =
+
−

2 4x +
6

 31. f x
x x

( )x =
2 32. f ( )x ( )x= 3 (− 3

 33. f
x

( )x = +x 5
34. f x( )x = −x 23 1

 35. f
x x

( )x = −
+

1 3
1

36. f x
x

( )x =
−

+ −x

2

2

1
2

 37. f
x

( )x =
− >x
− ≤x

⎧
⎨
⎪⎧⎧⎪⎨⎨
⎪⎪

⎩⎪
⎨⎨
⎪⎩⎩⎪⎪

2 1>x2
2 3x − 1

if

if

 38. f ( )x =
− >x

<
3 2x − 3
5 1

2 if

if xx ≤
+ ≤x

⎧

⎨

⎪⎧⎧⎪⎪⎪⎪⎪⎪⎪⎨⎨
⎪⎪

⎩
⎪⎨⎨⎪⎪⎪⎪⎪⎪⎪⎩⎩⎪⎪

3
3 2x + 1if

PROBLEMS FROM CALCULUS In Problems 39–42, determine whether or 
not the given function is continuous on the prescribed interval.

 39. f
x

( )x =
1

 a. on [1, 2] b. on [0, 1] c. on [−3, 0)

 40. f
x

( )x =
−
1

5
 a. on [0, 7) b. on [0, 5] c. on [−1, 1]

 41. f
x

( )x =
≤ <

+ ≤ <

⎧
⎨
⎪⎧⎧⎪⎨⎨
⎪⎪ 2 0 2≤ <x
3 1x + 2 5x≤ <

if

if⎩⎩⎪
⎨⎨
⎪⎩⎩⎩⎩⎪⎪

 42. g
t

( )t =
< ≤t

−t ≤ ≤

⎧2 0t 3
15 3 0≤ ≤t2

if

if
⎨⎨
⎪⎧⎧⎪⎨⎨⎨⎨
⎪⎪

⎩⎪
⎨⎨⎨⎨
⎪⎩⎩⎪⎪

2LEVEL 

PROBLEMS FROM CALCULUS In Problems 43–50, either evaluate the limit 
or explain why it does not exist.

 43. lim
x x→ −1

1
1

44. lim
x

x
x→

−
− +x2

2

2

4
4 4+x

 45. lim ( )
x

f (
→1

, where f
x

( )x =
≥

− <

⎧
⎨
⎪⎧⎧⎪⎨⎨
⎪⎪

⎩⎪
⎨⎨
⎪⎩⎩⎪⎪

1x ≥2
5 1<x

if

if

 46. lim ( )
t

g(
→−1

, where g
t

( )t =
+ ≥t −

<

⎧
⎨
⎪⎧⎧⎪⎨⎨
⎪⎪

⎩⎪
⎨⎨
⎪⎩⎩⎪⎪
2 1t 1
5 1t t < −2

if

if

 47. lim ( )
t

f (
→5

, where f
t

( )t =
+⎧

⎨
⎪⎧⎧⎪⎨⎨
⎪⎪

⎩⎪
⎨⎨
⎪⎩⎩⎪⎪

3 5t ≠t
4 5t =

if

if

 48. lim ( )
t

g(
→2

, where g
t t

( )t =
≠⎧

⎨
⎪⎧⎧⎪⎨⎨
⎪⎪

⎩⎪
⎨⎨
⎪⎩⎩⎪⎪

2 2
5 2t =

if

if

 49. lim ( )
x

F(
→2

, where F x( )x
( )x

=
<x)
=

2(x 2
4

if

if 22
1 22x 2 − >1 x1

⎧

⎨

⎪⎧⎧⎪⎪⎪⎪⎪⎪⎪⎨⎨
⎪⎪

⎩
⎪⎨⎨⎪⎪⎪⎪⎪⎪⎪⎩⎩⎪⎪ if

 50. lim ( )
x

G(
→3

, where G x( )x
( )x

=
<x)
=

2(x 3
4

if

if 33
1 32x 2 − >11

⎧

⎨

⎪⎧⎧⎪⎪⎪⎪⎪⎪⎪⎨⎨
⎪⎪

⎩
⎪⎨⎨⎪⎪⎪⎪⎪⎪⎪⎩⎩⎪⎪ if

In Problems 51–56, show that the given equation has at least one 
solution on the indicated interval.

 51. x 3 4 5x 0x = on [−5, 5]
 52. x 5 4 6 0− +4x = on [−5, 5]
 53. x 4 24 0x 2xx  on [−5, 5]
 54. x 3 24 0x 2xx  on [−5, 5]
 55. x x3 2 188 465 0− +x 2x − =465  on [−10, 10]
 56. x x3 2 424 1 657 0+ +x 2x36 + =1 657,  on [−20, 20]
 57. A ball is thrown directly upward from the edge of a cliff and travels in 

such a way that t seconds later, its height above the ground at the baset
of the cliff (in feet) is

s t t( )t = − + +t16 40 242

 a. Compute the limit

v s s
x tx t

( )t lim
( )x ( )t

=
−

 to find the instantaneous velocity of the ball at time t.
 b. What is the ball’s initial velocity?

 c. When does the ball hit the ground, and what is its impact veloc-

ity?

 d. When does the ball have velocity 0? What physical interpretation 

should be given to this time?

 58. Tom and Sue are driving along a straight, level road in a car whose 

speedometer needle is broken but which has a trip odometer that can 

measure the distance traveled from an arbitrary starting point in tenths 

of a mile. At 2:50 P.M., Tom says he would like to know how fast they

are traveling at 3:00 P.M., so Sue takes down the odometer readings

listed in the table below, makes a few calculations, and announces the 

desired velocity. What is her result?

Time, t 2:50 2:55 2:59

Odometer reading 33.9 38.2 41.5

Time, t 3:00 3:01 3:03 3:06

Odometer reading 42.4 43.2 44.9 47.4
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3LEVEL 

In Problems 59–60, find constants a and b so that the given func-
tion will be continuous for all x throughout its domain.

 59. f
ax

( )x =
+ >x12 2

20
if

if

if

x
x b

=
+ +bx <

⎧

⎨

⎪⎧⎧⎪⎪⎪⎪⎪⎪⎪⎨⎨
⎪⎪

⎩
⎪⎨⎨⎪⎪⎪⎪⎪⎪⎪⎩⎩⎪⎪

2
5 2if xif <2

CHAPTER 2 SUMMARY AND REVIEW

The business of concrete mathematics is to discover the equations which express the TT
mathematical laws of the phenomenon under consideration; and these equations are 
the starting-point of the calculus.

Auguste Compte

Take some time getting ready to work the review problems in this section. First, look back at the 

definition and property boxes. You will maximize your understanding of this chapter by working 

the problems in this section only after you have studied the material.

 1. If f
x

( )x ,=
+6 2x + −x

2 1x −

2

 find:

 a. f ( )x b. 2f ( )x
 c. f ( )

3 d. | ( ) ( )|( ) 2()
 e. f 1( )x
 2. Let f x( )x .= −34 2 2

 a. What is the domain? b. What is the range?

 c. If f g x( )x [ (u )]= , find g andg u.
 d. What is f ( )? e. Find lim ( ).

x
f (

→−3
 3. If 16 1 02 2 2 2x 2 y y− 2 2x y 2 − 1
 a. What is the domain? b. What is the range?

 c. What are the x-intercepts?xx d. What are the y-intercepts?

 e. Does this equation represent a function? What or why not?

 4. If f ( )x ( )x= (x1
2

2

 a. Describe f by comparing it to f y x 2; classify it and then specify 

the shift, compression, or dilation, as appropriate.

 b. Graph f.ff c. Find lim ( ).
x

f (
→0

 d. Find
f f

h
( )x h ( )x

.
h

e. Find lim
( ) ( )

.
h

f ( f)
h→

)
0

 5. If f
x

( )x
| |x

=
+ >x

≤x|

⎧
⎨
⎪⎧⎧⎪⎨⎨
⎪⎪

⎩⎪
⎨⎨
⎪⎩⎩⎪⎪

2 1>x1
1≤x||

if

if

 a. What is the domain of this function?

 b. What are the intercepts? c. Graph f.ff
 d. Is f continuous at f x = 1?
 e. If y f ( )x , graph y ff ( )x + 2x + .

 6. Suppose f  is defined by the graph shown in Figure 2.45.

Figure 2.45 Graph of f

x

y

111–111 222 333
–4–4–4

–8––8

–12–12–12

444

88

 a. Is f  a function?

 b. If f one-to-one? Does it have an inverse?

 c. What are the domain and range of f ?

 d. If y f ( )x , draw the graph of y f1
2

( )x .
 e. Graph y ff ( )x 1x − .

 60. g
ax

( )x =
+ >3 5>x

8
if

if

if

x
x b

=
+ +bx <

⎧

⎨

⎪⎧⎧⎪⎪⎪⎪⎪⎪⎪⎨⎨
⎪⎪

⎩
⎪⎨⎨⎪⎪⎪⎪⎪⎪⎪⎩⎩⎪⎪

5
1 5if xif <2

SELF TEST All of the answers for this self test are given in the back of the book.
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 7. Consider the function defined by the graph in Figure 2.46.

Figure 2.46  Function of f defined by a graphf

 a. Is f continuous on [−6, 6]?
 b. Is f  one-to-one?

 c. What are the intercepts?

 d. What are the approximate coordinates of the turning points for 

x ≥ 0?
 e. What is lim ( )?

x
f (

→0

 8. Let f x( )x = −5 2 , and g x
x

( )x .=
−
+

5
2

 a. Find g−1, if it exists. b. Find f f .
 c. Find g f .
 d. Classify f  and g as even, odd, or neither.g
 e. For which values is f ( )x ?≥ −20
 9. a.  An efficiency expert found that at a particular company that em-

ploys x workers x ( ), it takes

H =
+3 4x +

2 5x −
 hours to complete a certain task. How many hours will the 

task take for 3 workers? How many hours will the task take for 

10 workers? For 20 workers? If the task must be completed in 

2 hours, how many workers are required? If each worker earns 

$25/hr, express the total labor cost, C, as a function of CC x.

 b. If f  and g are defined byg

f ( )x =
6 2x x −x

3 2x −

2

  and g( )x = +x2 1+x

is it true that f g ? Why or why not?

 10. An open box with a square base is to be built for $96. The sides of the 

box will cost $3/ft2 and the base will cost $8/ft2. Express the volume 

of the box as a function of the length of its base.

STUDY HINTS Compare your solutions and answers to the 
self test.

Practice for Calculus—Supplementary Problems: Cumulative Review Chapters 1–2

Simplify each expression in Problems 1–4.

 1. Find | ( ) |x( , where f x( )x = −x 2 2 and L = 2.
 2. Find | ( ) |x( ,  where f ( )x = +x 2 2 and L = 6.

 3. Find | ( ) |x( , where f x
x

( )x =
−x

−
2 3x 2

2

2

 and L = 6.

 4. Find | ( ) |,x(  where f x
x

( )x =
− +x

−

2 2 2+x
4

 and L = −1.

Solve each inequality in Problems 5–12.

 5. − ≤ + ≤0 001 0≤2 0≤ 001.≤ + 0≤x 6. − ≤ + ≤0 001 2 5+ 0 001.≤+ 0≤ 2
 7. | | 0 2. 5<| 8. | | .<| 0| <| 01
 9. | | .0 001<| 10. | | .0 001<|
 11. | | .0 0001<| 12. | | .0 0001<|

Solve each equation for x in Problems 13–24.x
 13. x 2 5 3 0− +5x = 14. 2 5 3 02 x5 −x5
 15. x 2 9 20 0+ +9x 16. x 2 3 1 0− +3x =
 17. | | 8=| 18. | | 10=|
 19. | | 11=| 20. | | 20=|
 21. x cy2 4 22. x y2 2 9=y 2y
 23. 4 12 23y =23y33 24. 3 122 24x y44 =y4

Factor the expressions in Problems 25–32.

 25. 1 6−x 26. x 6 64−

 27. ( )x 2 1
9 ( )x 2 1

25
− 28. x 4 2 400− +x 2x

 29. −4 2 5−( )3 22 2 ( )−6 4−22 2 30. −2 3 3−( )2 83 8 ( )−6 8−83 8

 31. 2 2 3 3 23 2 3 2 2( )2 2 3 ( )4 ( )13 ( )322 ( )13 ( )3 232 1 13 33)33 ( )4 ( 333 44 3 + 33(2233(22
 32. 4 32 3 2 3 2 4 2( )82 8 ( )2 ( )5 2 1 ( )82 8 ( )5 12 ( )103)88 (2 12 1 )12 (105)8 (2 + 3( 23(

In Problems 33–38, find 
f f

h
( )x h ( )x

.
h

 33. f ( )x = +x 5 34. f x( )x = 6 3−
 35. f x( )x = 5 2 36. f ( )x = 6
 37. f x( )x = 1 38. f x( )x = +x2 2

In the graphs in Problems 39–44, assume the dashed lines are par-
allel to the coordinate axes.

 39. What are the coordinates of P andP Q ?

x

QQQ
PPP

y

0.1.0.1 0.2.0.2 0.40.4 0.50.5.0.3.0.3

0.1.0 1

0.2.20 2

0.3.0 3

0.4.40 4

0.5.50 5

0.6.0 6

yy == x

yyy === 555xx – 10– 1010xx xxx22

 40. What are the coordinates of P, Q, and R?

x

QQQ

RRR

PPP

y

0.1.0.1 0.2.0.2 0.40.4 0.50.5.0.3.0.3

0.1.0 1

0.2.20 2

0.3.0 3

0.4.40 4

0.5.50 5

0.6.0 6

yyy === xxx

yyy == 555x – 10– 1010x xx22

11–
222
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 41. What are the coordinates of P and P Q?

x

QQQ

PPP

y

aaa

hh

yyy = = xx

yyy === fff((xxx))

 42. What are the coordinates of P and P Q?

x

QQQQ

PPP

y

aaa

hhh

yyy ==  fff(((xxx)))

yyy === xxx11––
22

 43. What are the coordinates of R?

 

x

QQQ RR

PPP

y

aa

hh

y = ff(((x)))

yy = xx

 44. What is the second component of R?

x

QQQQ

RRR

PPP

y

aa

yyy = = fff((xx))

yyy === xxx1––
22

Evaluate the limits in Problems 45–52.

 45. lim( )
x→3

2 46. lim
x

x x
x→ +3

22 1x x −x2 0
2

 47. lim( )
x→2

2 48. lim
x

x x
x→ +2

22 1x x −x2 0
2

 49. lim
[( ) ] ( )

h

x h
h→

+ )h (
0

] (− (

 50. lim
[ ( )] ( )

h

x h
h→

+(x − (
0

 51. lim
( )

h

x
h→

−)
0

2 2x

 52. lim
| | | |

h h→ −

|
0

| |−|

In Problems 53–58, express each function as the composite of two 
functions. That is, express the given function f as f g x( )x [ (u )]= ,

and then state the inner function u and the outer functionu g.gg
 53. f ( )x ( )x(= ( xx 2 2)x
 54. f ( )x = +x 2 9
 55. f ( )x ( ) /= ( xx 4 3) 2

 56. f ( )x | |=|x 2

 57. f ( )x ( ) ( ) /= (x (2 4) 2 5) 2) (− (x4)
 58. f ( )x = +x +25 3 1x +

 59. To study the rate at which animals learn, a psychology student per-

formed an experiment in which a rat was sent repeatedly through a 

laboratory maze. Suppose that the time (in minutes) required for the 

rat to traverse the maze on the nth trial was approximatelynn

f
n

( )n = +3
12

 a. What is the domain of the function f ?

 b. For what values of n doesn f ( )n  have meaning in the context of the 

psychology experiment?

 c. How long did it take the rat to traverse the maze on the third 

trial?

 d. On which trial did the rat first traverse the maze in 4 minutes or 

less?

 e. According to the function f , what will happen to the time required 

for the rat to traverse the maze as the number of trials increases?

 60. Biologists have found that the speed of blood in an artery is a function 

of the distance of the blood from the artery’s central axis. According 

to Poiseuille’s law, the speed (cm/sec) of blood that is r cm from ther
central axis of an artery is given by the function

S C( )r ( )R r=C R2 2r

where C is a constant and C R is the radius of the artery.* Suppose that 

for a certain artery, C = 1.76 × 105 cm/sec2 and R = 1.2 × 10−2 cm.

 a. Compute the speed of the blood at the central axis of this artery.

 b. Compute the speed of the blood midway between the artery’s wall 

and central axis.

*The law and the unit poise, a unit of viscosity, are both named for the French physician Jean Louis Poiseuille 

(1799–1869).
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CHAPTER 2 Group Research Projects

Working in small groups is typical of most work environments, and this book seeks to develop skills 
with group activities. At the end of each chapter, we present a list of suggested projects, and even 
though they could be done as individual projects, we suggest that these projects be done in groups 
of three or four students.

G2.1 Let S
x

( )x =
4 4x −

2
 and C

x

( )x .=
+4 4x +
2

 Show that

[ ( )] [ ( )]x( x(2 2[ ( )]x( 1− =[ )]x(

G2.2 Suppose f
x

( )x .=
−
1

1
Defi ne f f f1ff ( )x ;= f f f f2ff ( )x ;= ff f f f f f3ff ( )x ;= f ff f . . . .

Find f100ff ( )x .

G2.3 Use functional iteration to fi nd ( )( ) when:

a. f x( )x = +1 b. f
x

( )x =
+
1

1
c. f ( )x | |x| |x= −| |x 1

G2.4 Historical Quest Write a paper on George Pólya. Include, as part of this paper, a report on his

book How to Solve It (Princeton University Press, 1971).t

G2.5 Journal Problem (From Fourth U.S.A. Olympiad, May 6, 1975.) Prove that

� 	 � 	 � 	 � 		 � 	 �	 �	 ≥	��� +		

G2.6 Journal Problem (From The Mathematics Teacher, December 1995, pp. 734–737, “Precalculus

Explorations of Function Composition with a Graphing Calculator,” by Lewis Lum.) This article 

describes a process called carom paths, as follows. Let

y f1 2 3xf x( )x( )xx , y x2 , y g x3 33 2g( )x( )xx

We describe the “carom path” as follows. Start at some value of x in the domain of x g f , say 

x = 6. Move vertically to the point on y1 (point A), and bounce off horizontally to point B on B
y2yy . Carom vertically to the point on y3y (point C ), and fi nally rebound horizontally to the point 

D on the graph of D y2yy . The graphs are shown in Figure 2.47.

We can calculate the coordinates of the indicated points.

A: ( )6 2 3,  since f ( ) 2) 6 3 2 3=3 −

B: ( )− − since y = x

C: CC ( )− − since g( )− = −( )−3 2−

D: ( )3 2 3 2 3 2 33 2 3 2− −2 3 2 3,  since y = x
a. What are the points A, B, C, andCC D for the starting point D x = 12?

b. Attempt to plot the carom path of x = 2. Explain why the path cannot be completed. Find 

other points with the same problem as x = 2.

c. Attempt to plot the carom path of x = 3.5. Explain why the path cannot be completed. 

Find other points with the same problem as x = 3.5.

d. What is the domain for x that assures that the carom path exists?x

G2.7 Historical Quest The notion of a function is not only central for this book but also fundamental 

to the study of calculus. In the article “The Mathematical Way of Thinking,” Hermann Weyl

begins by saying, “By the mathematical way of thinking I mean fi rst that form of reasoning

Figure 2.47  Carom path for f and f g
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through which mathematics penetrates into the sciences of the external world.” He goes on to 

say that the average education of every person should include mathematics to teach everyone 

to think in terms of variables and functions. Do some research into the history of the idea of a 

function. Write a report of your research, and include a statement about whether you agree or 

disagree with Weyl’s theses.

G2.8 “There are, in every culture, groups or individuals who think more about some ideas than do 

others. For other cultures, we know about the ideas of some professional groups or some ideas 

of the culture at large. We know little, however, about the mathematical thoughts of individuals 

in those cultures who are specially inclined toward mathematical ideas. In Western culture, on 

the other hand, we focus on, and record much about, those special individuals while including 

little about everyone else. Realization of this difference should make us particularly wary of 

any comparisons across cultures. Even more important, it should encourage fi nding out more 

about the ideas of mathematically oriented innovators in other cultures and, simultaneously, 

encourage expanding the scope of Western history to recognize and include mathematical ideas 

held by different groups within our culture or by our culture as a whole.”*

Write a paper discussing this quotation.

G2.9 Journal Problem (From The American Mathematical Monthly, Vol. 92, January 1985, pp. 3–23.) 

Write a paper on the 3 1+ conjecture. See Example 6 on page 80 of “The 3 1+ Problem

and Its Generalizations,” by Jeffrey C. Lagarias.

G2.10 We introduced problem solving in this chapter. Here is an excerpt of a poem followed by three 

questions.

Yes, weekly from Southampton,

Great steamers, white and gold,

Go rolling down to Rio

(Roll down—roll down to Rio!),

And I’d like to roll to Rio

Some day before I’m old!

Rudyard Kipling

Just So Stories

a. How many steamers wending their way home will I see on this ocean?

b. On what days of the week will I see them?

c. How far from Southampton will I meet them?

Build a mathematical model to answer these questions. Not enough information is given, so here 

is a start. “Well, so weekly (say each Thursday) from Southampton great steamers go rolling 

down to Rio . . . It takes 14 days for a great white and gold steamer to cover the entire distance

of 9,800 km (700 km per day) and arrive at Rio de Janeiro exactly at noon on Thursday. After 

a four-day stopover, the ship sets off on the return trip, and in a fortnight, at noon on Monday, 

it arrives at Southampton. Three days later—again on a Thursday—it leaves on its next voyage 

to Brazil . . . I wanted to roll to Rio, too, so I stepped onto an ocean liner at Southampton on 

Thursday and my voyage began.”†

* From Ethnomathematics by Marcia Ascher (Pacifi c Grove: Brooks/Cole, 1991), pp. 188–189.

† From “Atlantic Crossings,” by A. Rozental, Quantum, July/Aug 1993, pp. 46–47.
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