MAINTENANCE OF OVERALL CALCIUM BALANCE

- Calcium is an essential dietary element with critical roles in normal physiology
 - Extracellular calcium functions in bone mineralization, blood coagulation, membrane excitability, enzyme kinetics
 - Intracellular calcium functions in neuronal activation, muscle contraction, hormone secretion
- Human body contains about 1000 g of calcium, the majority of which (99%) resides in bone and teeth as calcium hydroxypatite
- Dietary intake of calcium
 - 75% lost in feces
 - 25% absorbed in the proximal small intestine
 - By passive diffusion
 - By hormonally regulated active transport (stimulated by vitamin D)
- Renal excretion normally results in 100–250 mg of calcium loss per day (with adequate intake)
- Plasma calcium divided into three fractions
 - 50% ionized calcium
 - 40% protein-bound calcium (albumin, globulins)
 - 10% complexed to anions (including citrate, phosphate, sulfate, bicarbonate)
- Calcium-sensing receptor (CaSR)
 - Located in the parathyroid glands and kidney
 - Regulates PTH secretion
 - Regulates renal excretion of calcium
 - Responds to fluctuations in ionized calcium on minute-to-minute basis
- Approximately 1 g of calcium is recommended per day (Table 27.1)
 - Dietary sources of calcium (1 dairy serving size = 250–300 mg calcium)
 - Dairy products including milk, cheeses, yogurts, calcium-fortified soy milk, and calcium-fortified tofu
 - Canned salmon with bones
 - Green vegetables such as turnips, collard greens, kale, and broccoli
 - Supplemental calcium intake (i.e., multivitamin and calcium supplements)
TABLE 27.1 Recommended Intakes for Calcium

<table>
<thead>
<tr>
<th>Age Group</th>
<th>Estimated Average Requirement (mg/day)</th>
<th>Recommended Dietary Allowance* (mg/day)</th>
<th>Upper Level Intake (mg/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9–18 years old</td>
<td>1100</td>
<td>1300</td>
<td>3000</td>
</tr>
<tr>
<td>19–50 years old</td>
<td>800</td>
<td>1000</td>
<td>2500</td>
</tr>
<tr>
<td>51–70-year-old males</td>
<td>800</td>
<td>1000</td>
<td>2000</td>
</tr>
<tr>
<td>51–70-year-old females</td>
<td>1000</td>
<td>1200</td>
<td>2000</td>
</tr>
<tr>
<td>>70 years old</td>
<td>1000</td>
<td>1200</td>
<td>2000</td>
</tr>
</tbody>
</table>

*RDA includes total dietary + supplemental calcium intake.

PTH

- Parathyroid gland anatomy
 - 4 small ovoid glands located on the dorsal aspect of left and right lobes of the thyroid
 - Inferior parathyroid glands derived from third branchial pouches
 - Superior parathyroid glands derived from fourth branchial pouches
 - Approximately 10–20% of humans have fifth parathyroid gland, often located in mediastinum
 - 2 cell types
 - Chief (or principal) cells: predominant epithelial cell type with clear cytoplasm
 - Oxyphil cells: larger, mitochondria-rich cell type with granular eosinophilic cytoplasm
- Structure and synthesis of PTH
 - 84-amino acid polypeptide synthesized as a pre-prohormone by the chief cells of the parathyroid
 - PTH proteolytically cleaved by liver and kidney (half-life of circulating PTH <5 minutes)
 - Normal range for serum intact PTH is approximately 10–65 pg/mL
- Secretion of PTH
 - Regulated by serum ionized calcium (iCa^{2+})
 - ↑ iCa^{2+} can activate CaSR and suppress PTH secretion
 - ↓ iCa^{2+} stimulates PTH secretion
 - Regulated by serum magnesium Mg^{2+}
 - ↓ Mg^{2+} can inhibit PTH secretion and action
 - ↑ Mg^{2+} can activate CaSR and thus suppress PTH secretion
- PTH 1-receptor (PTH-1R)
 - 7-transmembrane G-protein–coupled receptor (Gs/Gq) expressed on osteoblasts and proximal and distal tubules of the kidney
 - PTH-1R binds PTH and PTH-related protein (PTHrP) with equal affinity
Vitamin D

- Actions of PTH
 - Bone
 - ↑ bone resorption of calcium by directly stimulating osteoblasts and indirectly stimulating osteoclasts via Macrophage-Colony Stimulating Factor (M-CSF), receptor activator of nuclear factor kappa-B ligand (RANKL), Osteoprotegrin (OPG) (decoy receptor for RANKL)
 - Kidney
 - ↑ renal reabsorption of calcium by ↑ insertion of apical Ca^{2+} channels in the distal tubule
 - ↑ renal 1α-hydroxylase activity to ↑ 1,25-(OH)_{2} vitamin D production in the proximal tubule, to increase both calcium and phosphate absorption in gut

VITAMIN D

- Structure and synthesis of vitamin D
 - Inactive prohormones
 - Vitamin D\textsubscript{2}: ergocalciferol
 - Produced by photolysis (UVB) from ergosterol (in plants)
 - Vitamin D\textsubscript{3}: cholecalciferol
 - Produced by UVB from 7-dehydrocholesterol
 - Formed in the skin, mainly in the deepest layers of the epidermis
 - 25-hydroxyvitamin D: calcidiol (or calcifediol)
 - Vitamin D\textsubscript{2}/D\textsubscript{3} rapidly converted in the liver to 25-hydroxyvitamin D by hepatic 25-hydroxylase (constitutively active)
 - >85% of vitamin D metabolites carried in the blood bound to vitamin D–binding protein (VDBP)
 - Regulation of vitamin D
 - Activation to 1,25-(OH)_{2} vitamin D\textsubscript{3} (calcitriol) occurs via 1α-hydroxylase cytochrome P-450 1-alpha (CYP1α) in the mitochondria of renal proximal tubule
 - ↓ [Ca^{2+}] stimulates 1,25-(OH)_{2} vitamin D via CaSR to ↑ 1α-hydroxylase production
 - ↑ PTH stimulates 1,25-(OH)_{2} vitamin D via PTH-1R to ↑ 1α-hydroxylase production
 - ↑ 1,25-(OH)_{2} vitamin D causes ↓ 1α-hydroxylase activity (feedback inhibition)
 - ↓ [phosphate] stimulates 1,25-(OH)_{2} vitamin D generation