27 ■ CALCIUM METABOLISM ESSENTIALS

Chad D. Sagnella. MD and Pam Taxel. MD

MAINTENANCE OF OVERALL CALCIUM BALANCE

- Calcium is an essential dietary element with critical roles in normal physiology
 - Extracellular calcium functions in bone mineralization, blood coagulation, membrane excitability, enzyme kinetics
 - Intracellular calcium functions in neuronal activation, muscle contraction, hormone secretion
- Human body contains about 1000 g of calcium, the majority of which (99%) resides in bone and teeth as calcium hydroxyapatite
- . Dietary intake of calcium
 - 75% lost in feces
 - o 25% absorbed in the proximal small intestine
 - By passive diffusion
 - By hormonally regulated active transport (stimulated by vitamin D)
- Renal excretion normally results in 100–250 mg of calcium loss per day (with adequate intake)
- · Plasma calcium divided into three fractions
 - 50% ionized calcium
 - 40% protein-bound calcium (albumin, globulins)
 - 10% complexed to anions (including citrate, phosphate, sulfate, bicarbonate)
- · Calcium-sensing receptor (CaSR)
 - Located in the parathyroid glands and kidney
 - Regulates PTH secretion
 - Regulates renal excretion of calcium
 - Responds to fluctuations in ionized calcium on minute-to-minute basis
- Approximately 1 g of calcium is recommended per day (Table 27.1)
 - Dietary sources of calcium (1 dairy serving size = 250-300 mg calcium)
 - Dairy products including milk, cheeses, yogurts, calciumfortified sov milk, and calcium-fortified tofu
 - Canned salmon with bones
 - Green vegetables such as turnips, collard greens, kale, and broccoli
 - Supplemental calcium intake (i.e., multivitamin and calcium supplements)

TABLE 27.1 Recommended Intakes for Calcium

	Estimated Average Requirement (mg/day)	Recommended Dietary Allowance* (mg/day)	Upper Level Intake (mg/day)
9-18 years old	1100	1300	3000
19-50 years old	800	1000	2500
51–70-year-old males	800	1000	2000
51–70-year-old females	1000	1200	2000
>70 years old	1000	1200	2000

^{*}RDA includes total dietary + supplemental calcium intake.

PTH

- · Parathyroid gland anatomy
 - 4 small ovoid glands located on the dorsal aspect of left and right lobes of the thyroid
 - Inferior parathyroid glands derived from third branchial pouches
 - Superior parathyroid glands derived from fourth branchial pouches
 - Approximately 10–20% of humans have fifth parathyroid gland, often located in mediastinum
 - 2 cell types
 - Chief (or principal) cells: predominant epithelial cell type with clear cytoplasm
 - Oxyphil cells: larger, mitochondria-rich cell type with granular eosinophilic cytoplasm
- Structure and synthesis of PTH
 - 84-amino acid polypeptide synthesized as a pre-prohormone by the chief cells of the parathyroid
 - PTH proteolytically cleaved by liver and kidney (half-life of circulating PTH <5 minutes)
 - Normal range for serum intact PTH is approximately 10–65 pg/mL
- Secretion of PTH
 - Regulated by serum ionized calcium (iCa²⁺)
 - ↑ iCa²⁺ can activate CaSR and suppress PTH secretion
 - ↓ iCa²⁺ stimulates PTH secretion
 - Regulated by serum magnesium Mg²⁺
 - ↓ Mg²⁺ can inhibit PTH secretion and action
 - ↑ Mg²⁺ can activate CaSR and thus suppress PTH secretion
- PTH 1-receptor (PTH-1R)
 - 7-transmembrane G-protein—coupled receptor (Gs/Gq) expressed on osteoblasts and proximal and distal tubules of the kidney
 - PTH-1R binds PTH and PTH-related protein (PTHrP) with equal affinity

- Actions of PTH
 - Bone
 - ↑ bone resorption of calcium by directly stimulating osteoblasts. and indirectly stimulating osteoclasts via Macrophage-Colony Stinulatin Factor (M-CSF), receptor activator of nuclear factor kappa-B ligand (RANKL), Osteoprotegrin (OPG) (decoy receptor for RANKL)
 - Kidney
 - ↑ renal reabsorption of calcium by ↑ insertion of apical Ca²⁺ channels in the distal tubule
 - ↑ renal 1α-hydroxylase activity to ↑ 1,25-(OH)₂ vitamin D production in the proximal tubule, to increase both calcium and phosphate absorption in gut

VITAMIN D

- Structure and synthesis of vitamin D
 - Inactive prohormones
 - Vitamin D₂: ergocalciferol.
 - Produced by photolysis (UVB) from ergosterol (in plants)
 - Vitamin D₂: cholecalciferol
 - Produced by UVB from 7-dehydrocholesterol
 - Formed in the skin, mainly in the deepest layers of the epidermis
 - 25-hydroxyvitamin D: calcidiol (or calcifediol)
 - Vitamin D₂/D₃ rapidly converted in the liver to 25-hydroxyvitamin D by hepatic 25-hydroxylase (constitutively active)
 - >85% of vitamin D metabolites carried in the blood bound to vitamin D-binding protein (VDBP)
 - Regulation of vitamin D
 - Activation to 1,25-(OH)₂ vitamin D₃ (calcitriol) occurs via 1α -hydroxylase cytochrome P-450 1-alpha (CYP1 α) in the mitochondria of renal proximal tubule
 - ↓ [iCa²⁺] stimulates 1,25-(OH)₂ vitamin D via CaSR to ↑ 1α -hydroxylase production
 - ↑ PTH stimulates 1,25-(OH)₂ vitamin D via PTH-1R to ↑ 1α -hydroxylase production
 - $\uparrow 1,25$ -(OH)₂ vitamin D causes $\downarrow 1\alpha$ -hydroxylase activity (feedback inhibition)
 - ↓ [phosphate] stimulates 1.25-(OH)₂ vitamin D generation