Introduction to Classes and Objects

2.1
2%
2203
2.4
B6

Thinking Objectively
Creating Objects
How Methods Work
The Computer Screen

Creating a Rectangle Object

2.6
2.7

2.8
2.9

The DrawingKit Class

Creating and Displaying Graphics
Objects

Writing to the Console

Summary

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

W 18

CHAPTER2 Introduction to Classes and Objects

The world is made up of objects, and Java programs are no different. In this
chapter, you learn how to create objects from existing classes. We use Java
2D classes to create shapes such as rectangles, ellipses, curves, and lines. In
subsequent chapters, you learn how to write your own classes.

Early on in this chapter, we will use a class called DrawingKit to create a win-
dow and display graphics on this window. The Drawingkit class has been
provided for you to make it easy to display graphics on the screen as you
start learning Java and is not a part of Java’s standard class libraries. By the
time you have completed Chapter 9, on GUI (Graphical User Interface)
programming, you will be able to write code to display graphics without
needing to use this class. So let’s dive in, starting with the basics.

2.1 Thinking Objectivel

Java is an object-oriented language. An object-oriented language allows a
programmer to create and use objects. This, naturally, brings up the follow-
ing question: What are objects?

An object is something that is real or exists—it has characteristics called
states, and things it can do called behaviors. Each behavior changes the
object’s state. If you look around your room, what are some of the things
that you see? Your list might include computers, books, cups, lamps, pen-
cils—all of these are objects. A ball can have states such as its shape, color,
and current position. It can have behavior, such as bouncing and rolling. A
lamp can have certain states such as height, wattage, type, and whether it is
lighted. It can possess behaviors such as turning on or off. Figure 2—1 gives
more examples of states and behaviors.

In Java, objects exist while the program is running. As the program runs, an
object can change state depending on its behavior. In addition, objects can
interact with each other to do useful work.

2.2 (reating Objects

A class contains information that is needed to create an object. Suppose
that you are working on a project. First, you will need to write down the
project specifications—this is similar to writing a class. Next, you will use
these specifications to build the project. Similarly, the class can be used to

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

2.2 (reating Objects

chip the Golfer
score = 0 +— State
swing - Behaviors
putt
bo the Chicken
cross the road ~—— Behavior
Golfer Chicken

score —+—— Field crossTheRoad ()

swing () —+— Methods

putt()

create an object. Figure 2—2 shows two classes: Golfer and Chicken. Java
refers to states and behaviors as fields and methods respectively. A pair of
parentheses () is added at the end of each method name in Figure 2-2 to
indicate that this is a method.

There is an important difference between the classes in Figure 2-2 and the
objects in Figure 2—1: A class does not have specific values assigned to its
fields, whereas an object does. Therefore, the object chip has a value assigned
to its score field. Different objects of the same class can have different field
values. Figure 2-3 shows several objects created from the Golfer class.

The following statement creates an object (called chip) of the Golfer class:

Object reference
Class name variable Constructor

\ ! v

Golfer chip = new Golfer();

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

19 [

Figure 2-1

State and behaviors of
two objects—chip and
bo.

Figure 2-2
Two classes—Golfer and
Chicken.

CHAPTER2 Introduction to C

N 20

lasses and Objects

Figure 2-3
Creating three objects cotfer [Class
(chip, sally, and phil) from score
dass Golfer.
swing()
putt()

/

Golfer chip = new Golfer();

chip the Golfer

Create objects

Golfer sally = new Golfer();

T~

Golfer phil = new Golfer();

phil the Golfer

score = — sally the Golfer score = —
swing () score = -5 swing()
putt() putt()
swing()
putt()

The keyword new is reserved in Java and is used along with a constructor to
create a new object. The constructor is a special method that knows how to
create an object. The name of the constructor is the same as the name of
the class and is followed by a pair of parentheses. The new object is put in a
part of the computer’s memory known as the heap.

The heap is an area in the computer’s memory that can be used by a program when it exe-
cutes. A program creates an object and stores it on the heap using the new operator. A special
program called “garbage collector” runs periodically to remove objects that are no longer
needed by the program.

You cannot see the object named chip because it is stored inside the com-
puter; however, you can interact with this object by printing some informa-
tion about it or sending it some data through the console. Later in this
chapter, you will learn how to use the DrawingKit class to draw graphics
objects on the screen so that you can view them. Here, chip is called an
object reference variable (or more simply, a reference variable) because it
refers to a particular object. An object of a class is also called an instance of

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

2.4 The Computer Screen

that class. Figure 2-3 shows three instances of the Golfer class that are
assigned to the reference variables chip, sally, and phil. Fields are also
known as instance variables because each instance keeps a separate copy of
its field values.

2.3 How Methods Work

An object calls its methods to do some work. For example, the object chip
calls its swing method, and bo calls its crossTheRoad method, as shown here:
chip.swing();
bo.crossTheRoad();

Objects can call their methods as follows:

dot
obj ectName*methodName();

The names of the object and the method are separated by a dot. When a
method is called, some data might be displayed on the screen, or changes
might be made to the object’s fields. For example, after chip calls the
method swing, its score field is updated.

Java 2D is a Java toolkit that is used for drawing two-dimensional graphical
shapes. It has several classes, a few of which are Rectangle2D.Float, RoundRec-
tangle2D.Float, Line2D.Float, E11ipse2D.Float, BasicStroke, and Font. In the fol-
lowing sections, you will learn how to use these classes to create graphical
objects such as rectangles and lines. We start by discussing some basics
about how graphics are drawn.

2.4 The Computer Screen

The screen on a computer monitor contains millions of pixels. A pixel is a
tiny, colored dot that is used to display a point in an image. The pixels are
arranged very closely together in the form of a grid. Although a single pixel
is hardly visible, groups of these can be combined to form images and text
on the computer screen. In Figure 2—4, suppose that each square represents

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

Figure 2-4
An enlarged view of

pixels on a computer
screen,

. 2

Figure 2-5
Window coordinates.

CHAPTER2 Introduction to Classes and Objects

a pixel. The squares that are colored blue form the letter “T.” Colored pixels
form graphics and text similarly on the screen.

Graphics are drawn inside a window on the screen. Later in the chapter, you
will learn how to draw a window using the class Drawingkit. To draw a
graphical shape, you must specify the location and size of this shape inside
the window. We discuss window coordinates next.

2.4.1 Window Coordinates

The window uses the Cartesian coordinate system, in which the x- and y-
coordinates of points must be specified. A point in the window is repre-
sented by its x- and y-coordinates as (x, y). The top-left corner of the
window is the origin (0, 0). The values of the x-coordinates increase from
left to right as in a typical graph, whereas the values of the y-coordinates
increase from top to bottom. Figure 2—5 represents a window 300 pixels
wide and 300 pixels high. The bottom-right corner of this window is the
point (300, 300). Using this coordinate system, you can calculate the coor-
dinates of the points in the window where you want to draw the graphics.

This leads to an important question: How large is this window on the
screen in inches? This depends on the screen resolution, which is the num-
ber of pixels in a given area on the screen. For example, 300 pixels will be
displayed as 12 inches on a 25 pixels/inch screen, but only 3 inches on a 100
pixels/inch screen. This means that a window that is 500 pixels high and

x increases

along this direction
(x,y)=(0,0) > (300,0)

y increases
along this direction

(0, 300) (300, 300)

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

2.4 The Computer Screen

500 pixels wide will have a height and width of 5 inches on a 100
pixels/inch screen.

In the examples in this chapter, we draw objects in a square window with a
width and height of 500 pixels. Later, you will see how to create a window
of a specific size.

Example 1

Find the (x, y) coordinates of the points labeled A, B, and C in Figure 2—6.
How many inches long is a line joining the points A and B on a screen with
a resolution of 72 pixels/inch?

Solution: Apply basic graph theory. For each point, check its x- and y-
coordinates. For example, the x- and y-coordinates of point A are 100 and
200, respectively. Similarly, read the values of the coordinates of points B
and C from the grid. The coordinates are A (100, 200), B (100, 400), and C

X
(x %) = (0,0) (100,0) (200,0) (300,0) (400,0) (500,0)

i i i o}

(0,100) ¢---------- ERRREEEEE R bommmmmeee- IRREEEEEEE B REEEEEEEED ¢ (500, 100)
2N 5 ! 5

(0,200) ¢---------- &oooeene R Aemeoenenee R E ¢ (500,200)

(0,300) ¢---------- demerrooers bampenes-e- R o bomemnenes ¢ (500, 300)
B! : . :

(0,400) @---------- L R Fomomeeeee- SRREEEEEEEED: e ¢ (500, 400)
y ! ! ! !

(0, 500) 2 : s 3 (500, 500)

(100, 500) (200,500) (300,500) (400, 500)

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

Figure 2-6
Points 4, B,and Cona
grid.

4

Rectangle2D.Float

width
height

(a)

Figure 2-7

CHAPTER2 Introduction to Classes and Objects

(400, 100). The line joining A and B is 200 pixels, and there are 72 pixels in
one inch; thus its length is 200/72, or about 2.78 inches. n

2.5 (reating a Rectangle Object

Java 2D’s Rectangle2D.Float class is used to create rectangles. Figure 2—7(a)
shows the fields in this class. Figure 2-7(b) shows how an instance can be
created using a constructor in this class. (This class also has several meth-
ods, which are not shown here.)

The fields x and y are the (x, y) coordinates of the rectangle’s top-left corner
inside the window. For example, to create a rectangle called rect with its
top-left corner at the point (50, 100), and a width and height of 200 and
300, respectively, we can write:

Rectangle2D.Float rect = new Rectangle2D.Float(50, 100, 200, 300);

This is similar to how we created the objects named chip and bo, except that
we are also assigning some values to rect’s fields when creating it. The Rec-
tangle2D.Float constructor takes four numbers as input, called arguments.
Using arguments, we can create objects with different values for their
instance variables. By changing the arguments 50, 100, 200, and 300 of the
constructor, you can create a rectangle of a different size at another posi-
tion in the window.

Rectangle2D.Float rect = new Rectangle2D.Float(5, 10, 400, 300);

() rect the Rectangle2D.Float
Height % =5
l y =10
. width = 400
TR b one height = 300
(b)

(a) Fields in the Rectangle2D. Float class, and (b) creating an instance of this class.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

2.6 TheDrawingKit Class

The order in which the arguments appear is very important! The first argu-
ment is the value of x, the second argument is the value of y, and the
remaining two arguments are the values of width and height, in that order.
The name of this object is rect, but you can choose another name. The
names of each of the reference variables in a program should be unique. We
discuss the rules and conventions for naming variables in the next chapter.

2.6 The DrawingKit Class

A class called DrawingKit is provided for you in the JavaBook\com\programwi th-
java\basic folder on the CD-ROM. Using this class, you can draw a window
on the screen and add graphics to it. Internally, Drawingkit uses existing
classes in Swing and Java 2D to create a window and add graphics to it.
(Swing is a Java toolkit that is used to create graphical user interfaces, or
GUIs.) You have to know only how to use the methods in the DrawingKit
class, and not its internal details.

Figure 2-8(a) shows a constructor and some of the methods in DrawingkKit.
Figure 2-8(b) shows a window. You can use an instance of class DrawingKit
to create a window, and draw and color graphical shapes on this window.

DrawingKit

DrawingKit () Constructor PR -
creates a window.

draw() Draw an object.
setPaint() Set the color.
fi11() Color the object. ‘
setStroke() Set the line thickness. }
setFont () Set the font. |
drawString() Write text.

(a) (b)

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

25 [

Figure 2-8

(a) A constructor and
some methods in class
DrawingKit. (b) You can
create this window, and
then draw and color
shapes on it using an
instance of class
DrawingKit.

W 26

Figure 2-9
The directory structure to
use for your programs.

CHAPTER2 Introduction to Classes and Objects

Note that when you click at any point in this window, the x- and y-coordi-
nates of that point will be displayed on the console.

2.6.1 Compiling and Running Your Program with Class DrawingKit

To run the programs correctly, you must put the DrawingKit.java file in the
correct directory. We set up the JavaBook directory in the previous chapter
to run the HelloWorld program. Create a directory named com inside src, and
another directory named programwithjava inside com, and finally a directory
named basic inside programwithjava. Copy the file Drawingkit.java from the
CD-ROM into the JavaBook\src\com\programwithjava\basic directory in your
computer. The directory structure is shown in Figure 2-9.

Copy the program shown in Example 2 into a file called RectangleDemo. java.
Place this file in the src folder. This program uses the Drawingkit class in the
DrawingKit.java file. You should provide the names of both files when you
compile the program. On a PC, use:

C:\JavaBook> javac -d bin src\com\programwithjava\basic\DrawingKit.java
src\RectangleDemo. java

(T ey

JavaBook

I
i (e RectangleDemo.java
|
I

———r—————

|

|

|

I
o
Qo
(7}
v
(e}

|

I

I

|

1

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

2.6 TheDrawingKit Class

You will compile it similarly on a Macintosh:

computer:~/JavaBook YourName$ javac -d bin
src/com/programwithjava/basic/DrawingKit.java src/RectangleDemo.java

If you get any compilation errors, check the directory structure. Also, check
that you are running the preceding command in the JavaBook directory. If
there are no errors, look inside the bin directory. You will see that a com\pro-
gramwithjava\basic directory has been created and that the DrawingKit.class
file has been placed in it. In addition, the bin directory should contain the
RectangleDemo.class file. To run this program on a PC, type the following
into the JavaBook directory:

C:\JavaBook> java -classpath bin RectangleDemo
Use the same command to run the program on a Macintosh.

It is important to note that the name of the file should match that of the
class defined in it. Thus, if the class is called Foo, it should be placed in a file
named Foo. java.

Example 2

This example shows how to draw and display a rectangle with its top-left
corner at (50, 100) and a width and height of 200 and 100, respectively. The
following code draws a window on the computer screen, and then displays
the rectangle inside this window. When you compile and run this program,
you will see a rectangle inside the window similar to the one in Figure 2—-10.

import java.awt.*;
import java.awt.geom.*;
import com.programwithjava.basic.DrawingKit;

public ‘class RectangleDemo {
public static void main(String[] args) {
DrawingKit dk = new DrawingKit("Rectangle");
Rectangle2D.Float rect = new Rectangle2D.Float(50, 100, 200, 100);
dk.draw(rect);
}
}

Congratulations! You have started on an exciting journey to create fantas-
tic artwork.]

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

. 28

Figure 2-10
Displaying a rectangle in
awindow.

CHAPTER2 Introduction to Classes and Objects

| £ Rectangle Lﬂlﬁ

2.6.2 Nutsand Bolts of the Program

We used several new Java keywords, such as public, static, and class, in Exam-
ple 2. Rest assured that these are explained in detail in later chapters. For now,
a brief explanation of the Java statements used in this program follows.

Java contains many classes that have the necessary information for imple-
menting graphics. These classes are organized into packages for conven-
ience. To use a class, you have to specify the package in which it is placed.
For example, the java.awt.geom package contains the class Rectangle2D.Float
and many others that are used to create geometrical shapes. The import key-
word lets you use the classes in this package:

import java.awt.geom.*;

This imports the DrawingKit class from the com.programwithjava.basic pack-
age:
import com.programwithjava.basic.DrawingKit;

A commonly used package is java.awt, which contains many Java 2D
classes (such as BasicStroke, Color, and Font). We will use it in our programs
when required.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

2.6 TheDrawingKit Class

The next statement declares a class named RectangleDemo:
public class RectangleDemo
You can change the name of the class to another if you wish. Two keywords

used here are public and class. Remember that keywords must be copied
exactly as shown with all letters in lowercase because Java is case-sensitive.

Every program must contain a method called main. The computer starts
executing the program from the start of the main method. It has to be
declared as shown here:

public static void main(String[] args) { }
A bare-bones Java program that does not perform any actions contains an
empty main method inside a class, as shown here:

public class RectangleDemo {
public static void main(String[] args) {
// your code goes here
}
}

Now let us examine the code inside the example’s main method. These lines
create the various graphical objects such as the window and the graphics
inside this window. The following statement creates a window on the com-
puter screen using the DrawingKit constructor:

DrawingKit dk = new DrawingKit("Rectangle");
We use this instance dk of class DrawingKit to draw and color graphics inside
this window. The title on the window is Rectangle. You can change this title,

and the new title will appear on the window. For example, to give the win-
dow a title of My First Program, you write:

DrawingKit dk = new DrawingKit("My First Program");
The next statement creates a rectangle:

Rectangle2D.Float rect = new Rectangle2D.Float (50, 100, 200, 100);

The last statement draws the rectangle rect in the window:

dk.draw(rect);

Here, the instance dk of class DrawingKit calls its draw method to draw the
object in the window. The variable that references the object to be drawn is

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

W 30

CHAPTER2 Introduction to Classes and Objects

used as an argument to the draw method. It should be specified within
parentheses, as shown.

2.6.3 Coloring a Rectangle

A shape can be colored by using DrawingKit’s setPaint and fi11 methods. The
object dk calls the setPaint method with a color as the argument. It then
calls the fi11 method with the variable that references the object to be col-
ored as its argument.

Suppose you would like to color the rectangle created in the previous
example with the color red. To do so, you must add these two lines to the
code in the RectangleDemo. java file below the dk.draw statement:

dk.setPaint(Color.red);
dk.fi11(rect);

The argument Color.red is a constant value defined in Java 2D’s Color class.
After adding these two lines, compile and run the program again. You will
see the rectangle is colored red on the screen.

There are many other colors that can be used, such as white, gray, 1ightGray,
b]ack,pink,ye]]ow,green,orange,cyan,b]ue,darkGray,an11magenta.lfywn1xvant
to color the rectangle gray instead, the code becomes:

dk.setPaint(Color.gray) ;
dk.fill(rect);

Try using other colors and see how the rectangle’s color changes!

2.7 (reating and Dis Graphics Objects

The Rectangle2D.Float class has been used to draw rectangles with sharp
corners. Another useful class is RoundRectangle2D.Float. This class is used to
draw rectangles with rounded corners. Like the Rectangle2D.Float class, this
class also takes the x- and y-coordinates, which specify the position of the
rectangle’s top-left corner, as well as its width and height as arguments. The
difference is that RoundRectangle2D.Float takes two additional arguments
called corner width and corner height, which specify the width and height of
each corner, respectively. Thus, the following line of code creates a rectan-
gle called rectRounded positioned at (10, 20) with width 30, height 40, corner
width 15, and corner height 25:

RoundRectangle2D.Float rectRounded = new RoundRectangle2D.Float(10, 20, 30,
40, 15, 25);

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

2.7 (reating and Displaying Graphics Objects

As an exercise, modify the RectangleDemo class to create rectangles with dif-
ferent corner widths and heights.

2.7.1 Drawing and Coloring an Ellipse

Next, you learn how to draw an ellipse (oval). The class that can be used to
create this shape is called E11ipse2D.Float. In this statement, four arguments
are passed to the E11ipse2D.Float constructor:

E1lipse2D.Float myellipse = new E1Tipse2D.Float(50, 100, 300, 200);

This creates an ellipse called myel1ipse that fits perfectly in a rectangle that
has its top-left corner at (50, 100) and has a width of 300 and a height of
200. The first two arguments are the x- and y-coordinates of the rectangle’s
top-left corner, and the third and fourth arguments are the width and
height of the ellipse, respectively. The relation between the arguments to the
E11ipse2D.Float constructor and the resulting shape are shown in Figure
2-11.

If the width is set equal to height, the resulting shape is a circle. The ellipse
can be drawn on the screen by using DrawingKit’s draw method:

dk.draw(myellipse);

Like the rectangle shape drawn earlier, it can be colored by using the set-
Paint and fi11 methods. For example, to color the ellipse magenta, use these
two lines:

dk.setPaint(Color.magenta);
dk.fi11(myellipse);

Height

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

31

Figure 2-11

Drawing an ellipse using
theE11ipse2D.Float
constructor.

. 32

CHAPTER2 Introduction to Classes and Objects

2.7.2- Drawinga Line

A line can be drawn using the Line2D.Float class. The x- and y-coordinates
of the endpoints must be specified. The following code shows how to use
the Line2D.Float constructor to create a Line2D.Float object called myLine that
joins the points (10, 20) and (40, 50):

Line2D.Float myLine = new Line2D.Float(10, 20, 40, 50);

The first two arguments specify the coordinates of the starting point, and the
next two arguments give the coordinates of the ending point. To display a line
of a particular color (say, magenta), use the setPaint and draw methods:

dk.setPaint(Color.magenta);
dk.draw(myLine);

Attempting to fill a line will display the same result as drawing it.

2.7.3_ Changing the Line Thickness

The thickness of a line (and other details) can be set using a class called
BasicStroke. The only argument to the BasicStroke constructor is the width
of a line. The following code shows how to create a stroke called myStroke
with a width of 10:

BasicStroke myStroke = new BasicStroke(10);
dk.setStroke (myStroke) ;

After these statements are executed, graphics objects will be drawn with a
line thickness of 10. If the number 10 is changed to a larger value, a thicker
line will be drawn.

Example 3

This program shows how to change the line width using the constructor of
class BasicStroke, and the setStroke method of DrawingKit. The first ellipse is
drawn with a line width of 1.0, which is the default width. The second
ellipse has the line width set to 8.0 using setStroke.

import java.awt.*;
import java.awt.geom.*;
import com.programwithjava.basic.DrawingKit;

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

2.7 (Creating and Displaying Graphics Objects 33 e

public class TwoEllipsesDemo {
public static void main(String[] args) {
DrawingKit dk = new DrawingKit("Two Ellipses");

// create and draw the first ellipse with the default Tine width
E1lipse2D.Float one = new E1lipse2D.Float(50, 100, 50, 60);
dk.draw(one);

E1Tipse2D.Float two = new Ellipse2D.Float (300, 100, 50, 60);

// change the line thickness to 8
BasicStroke s2 = new BasicStroke(8);
dk.setStroke(s2);

// draw the second ellipse with the new Tine width
dk.draw(two) ;
}
}

The ellipses are shown in Figure 2—12. "
é‘ Two Ellipses E@lﬁ Figure 2_1 2

Two ellipses drawn using
lines of different widths.

@ O

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

T 34

CHAPTER2 Introduction to Classes and Objects

2.7.4 Writing Text

Text can be written on the screen using DrawingKit’s drawString method. The
arguments to this method are the text that you want to write and the coor-
dinates of the starting location. For example, to write the word “Hello”
starting at the point (50, 100) on the window, use the following statement:

dk.drawString("HelTo", 50, 100);

Note that the word to be displayed is enclosed in double quotes. A group of
words that is enclosed in double quotes is called a string literal. The name,
style, and size of the font used for the string literal should be specified. To
do this, create a new font using a constructor in a class called Font:

Font myFont = new Font("Times New Roman", Font.ITALIC, 12);

This creates a new font object of the given name, style, and size. The first
argument is the name of a font, such as “Times New Roman”, “Arial’,
Sans Regular”, “Lucida Sans Bold”, or some other font. The second argument
is the style, and it can be Font.PLAIN, Font.ITALIC, Font.BOLD, or Font.ITALIC |
Font.BOLD. The third argument is the font size. The setFont method is called

by dk to set the font to this new font:

Lucida

dk.setFont(myFont) ;

The following example shows how you can use it in your code.

Example 4

This example shows how to write to the screen. Insert the following code
after the last statement in Example 3:

// Write the words "Two E11ipses"

Font myfont = new Font("ARIAL", Font.BOLD, 32);
dk.setFont (myfont);

dk.drawString("Two ElTlipses", 100, 300);

You can also color the ellipses in different colors by adding the following
statements:

// color ellipse called "one" with magenta
dk.setPaint(Color.magenta);

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

2.7 (reating and Displaying Graphics Objects

dk.fi11(one);

// color ellipse called "two" with yellow
dk.setPaint(Color.yellow);
dk.fi11(two);

When you run your program, the window shown in Figure 2—13 appears
on the screen. n

2.7.5 Drawinga Curve

A quadratic curve can be drawn using the QuadCurve2D.Float class. The
setCurve method of this class takes the x- and y-coordinates of three points
as arguments. These statements draw a curve joining the points (10, 20) and
(100, 200) through the point (80, 90):

QuadCurve2D.Float curvel = new QuadCurve2D.Float();
curvel.setCurve(10, 20, 80, 90, 100, 200);
dk.draw(curvel);

We use this method in the next example to draw a spaceship.

|£] Two Ellipses =lE

& O

Two Ellipses

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

Figure 2-13
Writing the words “Two
Ellipses” in a window.

35

W 36

CHAPTER2 Introduction to Classes and Objects

2.7.6 Drawing an Image Stored in a File

It is easy to draw an image from a file using DrawingKit. You must use the
drawPicture method of this class and specify the name of the file as an argu-
ment to this method. For example, the following statement draws the pic-
ture in the file clouds. jpg on the screen:

dk.drawPicture("clouds.jpg");

This file should be present in the working directory, where you are compil-
ing your program. The working directory can be different on different
computers (for example, C:\JavaBook on a PC or /Users/YourName/JavaBook on
a Macintosh), but Java will pick up the file from the correct directory. This
way the program will run correctly on different computers without your
having to change the file pathname. We are using the relative pathname of
the file because it is specified relative to the working directory. For example,
if you moved the file into the C: /JavaBook/image directory, you would use the
relative pathname image/.

The next example shows how you can use the drawPicture method.

2.7.7 (Changing the Window Size

The default window size is 500 by 500. If you want to create a window of a
different size (say, 800 by 200), you can do so by specifying it in the follow-
ing manner using a DrawingKit constructor:

DrawingKit dk = new DrawingKit("title", 800, 200);

The first number (800) is the window’s width and the second number
(200) is its height.

Example 5

The following program draws a spaceship in a window. The picture stored
in the file space.jpg will be used for the background. Create a folder called
image inside the JavaBook directory on your computer. Copy the space. jpg file
from the JavaBook/image folder on the CD-ROM into the JavaBook/image
folder in your computer. We will then draw graphical shapes on this back-
ground using the various Java 2D methods we discussed earlier.

import java.awt.*;

import java.awt.geom.*;
import com.programwithjava.basic.DrawingKit;

public class SpaceShip {

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

2.7 (reating and Displaying Graphics Objects

public static void main(String[] args) {
DrawingKit dk = new DrawingKit("Spaceship", 1200, 900);

// draw the picture
dk.drawPicture("image/space.jpg");

// draw the body

BasicStroke strokel = new BasicStroke(2);
dk.setStroke(strokel);

dk.setPaint(Color.red);

QuadCurve2D.Float curvel = new QuadCurve2D.Float();
curvel.setCurve (500, 500, 600, 400, 700, 500);
dk.draw(curvel);

QuadCurve2D.Float curve? = new QuadCurve2D.Float();
curve?2.setCurve (500, 500, 600, 610, 700, 500);
dk.draw(curve2);

dk.setPaint(Color.yellow);

dk.fill(curvel);

dk.fill(curve2);

// draw a window

dk.setPaint(Color.lightGray);

E1Tipse2D.Float curve3 = new E11ipse2D.Float (580, 425, 50, 60);
dk.fill(curve3);

dk.setPaint(Color.red);

dk.draw(curve3);

// draw the wings

E11ipse2D.Float ellipsel = new E1Tipse2D.Float (660, 495, 80, 15);
dk.fil1(ellipsel);

BasicStroke stroke2 = new BasicStroke(22);

dk.setStroke(stroke2);

Line2D.Float linel = new Line2D.Float(685, 475, 700, 455);
dk.draw(Tinel);

Line2D.Float 1ine2 = new Line2D.Float(685, 530, 710, 555);
dk.draw(1ine2);

// name the spaceship
Font fontl = new Font("ARIAL", Font.ITALIC, 13);
dk.setFont(fontl);
dk.drawString("STARSHIP", 570, 520);
}
}

Compile and run the program. This draws the spaceship in a window, as
shown in Figure 2-14. "

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

W 38

Figure 2-14
Drawing a picture and

graphical shapes in a win-

dow using DrawingKit.
space.jpg © Adrian Neider-
hauser, 123RF.com.

CHAPTER2 Introduction to Classes and Objects

2.8 Writing to the Console

We have only seen examples of graphical programs so far. The next program
that we explore does not use graphics; it simply displays text messages on the
console. This type of console output is especially useful for debugging a pro-

gram. To display the string literal “This is text output,” you can write:

System.out.print("This is text output");

Here, System.out refers to the console. This calls the print method to display
messages on the console. Another way to display messages is to use the
println method. If there are multiple calls to this method, each message is
displayed on a new line.

Example 6

Write a program to display the following two lines of text:
Text output is useful for debugging programs.
Graphics are more fun, though.

Solution: Note that only two println statements are needed to print out
these two lines, and they can be placed directly inside main. We do not have
to create the window here because no graphics are being drawn. If you

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

2.9 Summary

replace the printin method with print, the output will be displayed on a
single line. Be sure to place the text within quotes on a single line, because a
compiler error will occur otherwise.
public class ConsoleQutputDemo {
public static void main(String[] args) {
System.out.printIn("Text output is useful for debugging programs.");
System.out.printIn("Graphics are more fun, though.");
}
} .

This chapter described a subset of Java 2D graphics to create simple graph-
ical shapes and text in different fonts. These shapes are rectangles, lines,
ellipses, and curves. You can create a window, and display and color graph-
ical shapes using the DrawingKit class. Furthermore, Drawingkit also lets you
load images from files into a window. We will use this background in Java
2D to explore Java in subsequent chapters, using colorful and fun examples.

Graphics Statements

A summary of the Java statements discussed in this chapter to draw a win-
dow and other graphics is provided here for your reference.

Create awindow The following statement creates a window with a default
width and height of 500:

DrawingKit dk = new DrawingKit();

The following statement creates a window with the specified string literal
set as the title of the window:

DrawingKit dk = new DrawingKit("Two El1lipses");

The following statement creates a window with the specified title, width,
and height:

DrawingKit dk = new DrawingKit("Two El1lipses", width, height);

Draw a rectangle To draw a rectangle called rectl of the given width and
height with its top-left corner coordinates at the point (x, y), use the
following statement:

Rectangle2D.Float rectl = new Rectangle2D.Float(x, y, width, height);
dk.draw(rectl);

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

W 40

CHAPTER2 Introduction to Classes and Objects

Draw an ellipse The following statements draw an ellipse called myellipse
of the specified width and height and positioned at (x, y):

E1Tipse2D.Float myellipse = new El1Tipse2D.Float(x, y, width, height);
dk.draw(myellipse);

Drawaline The following statements draw a line called myLine:

Line2D.Float myLine = new Line2D.Float(x1, yl, x2, y2);
dk.draw(myLine);

The first two arguments (x1, y1) specify the coordinates of the starting
point, and the next two arguments (x2, y2) give the coordinates of the end-
ing point.

Draw a rounded rectangle To draw a rectangle with rounded corners called
rectRounded having the given width and height, with its top-left corner
coordinates at the point (x, y) and the specified corner width and height,
use the following statement:

RoundRectangle2D.Float rectRounded = new RoundRectangle2D.Float(x, y,
width, height, cornerWidth, cornerHeight);

Colorashape To color a Java 2D graphics object called shapel a given color
(say, red), use the following statements:

dk.setPaint(Color.red);
dk.fi11(shapel);

Write text Write the string literal “Hello there” starting at the position
(x, y) with the following statements:

dk.drawString("Hello there", x, y);

Change font To change the font to Arial with style Bold and size 12, use the
following statements:

Font myfont = new Font("ARIAL", Font.BOLD, 12);
dk.setFont (myfont);

Change line thickness The following statements change the thickness of the
lines used to draw shapes:

BasicStroke myStroke = new BasicStroke(thickness);
dk.setStroke (myStroke) ;

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

Exercises

Drawanimage The following statement draws an image from the specified
file on the window:

dk.drawPicture("space.jpg");

1.

Explain briefly:

What is a class?

How can you create an object of a class?
What is a reference variable?

How is a class different from an object?
What is an instance of a class?

What is a method?

What is a constructor?

Fw oo oap o op

What is a package?
What is the main method?

-

. Write a program that uses the System.out.printIn method to print out

your first and last names on different lines.

. Write a program that uses the System.out.print method to print out

the current date and time.

. Fix the errors in the following program so that it compiles and runs

correctly:

public class ProgramWithErrors {
public void main(String[] args) {
System.out.printin("Program runs correctly")

}

. Fix the errors in the following program so that it compiles and runs

correctly:

public class AnotherProgramhithErrors {
public static void main(String args) f{
System.out.printin("Program runs correctly");

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

. e

CHAPTER2 Introduction to Classes and Objects

Graphics Problems

6. Give the statements needed to create an object of the following classes:

Rectangle2D.Float
E1lipse2D.Float
Line2D.Float

. QuadCurve2D.Float

a0 oo

. What do the following methods do?

draw method of DrawingKit

a

b. fi11 method of DrawingKit

c. drawPicture method of DrawingKit
d

setCurve method of QuadCurve2D.Float

. Fix the order of statements in the following program so that it draws

a red ellipse on the screen:

import java.awt.*;
import java.awt.geom.*;
import com.programwithjava.basic.DrawingKit;

public class E11ipseDemo {
public static void main(String[] args) {
DrawingKit dk = new DrawingKit("E11ipse");
dk.draw(rect);
Ellipse2D.Float rect = new E11ipse2D.Float (50, 100, 200, 100);
dk.fi11(rect);
dk.setPaint(Color.red);

}

. Fix the compilation errors in this program:

import java.awt.*;
import java.awt.geom.*;
import com.programwithjava.basic.DrawingKit;

public class RectangleDemo {
DrawingKit dk = new DrawingKit("E11ipse");
Rectangle2DFloat rect = new Rectangle2DFloat (50, 100, 200);
dk.draw(rectl);
BasicStroke stroke = new BasicStroke(22);
dk.setStroke(stroke);

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

References

dk.setPaint(Color = blue);
linel = new Line2D.Float (285, 175, 300, 155);
dk.draw(linel);

1

10. Write a program to draw a rectangle inside a window with its top-left
corner at (30, 50) and a width and height of 100 and 300, respectively.
Color this rectangle yellow.

11. Repeat the previous problem to create the rectangle with rounded
corners.

12. Write a program to draw a line inside a window joining the points (0,
0) and (500, 500) with thickness 7. Color this line blue.

13. Write a program to draw an ellipse having width 50 and height 60
that just fits in a rectangle with its top-left corner at (100, 100).

14. Write a program to draw a curve inside a window joining the points
(30, 100) and (100, 300), and passing through the point (50, 150).

15. Write a program to write your name inside a window in italics using
Arial font of size 15.

16. Write a program to draw a robot using the Java statements discussed
in this chapter, and your imagination.

17. Repeat the previous problem to draw a vehicle of your choice.

Further Reading

For more information on Java, the interested reader can consult the refer-
ences [1-5]. [1] is a set of online Java tutorials. You can find detailed infor-
mation on other Java 2D classes and advanced graphics techniques in [6].

References

1. “The Java™ Tutorials.” Web.
<http://download.oracle.com/javase/tutorial/>.

2. Guzdial, Mark, and Barbara Ericson. Introduction to Computing and
Programming in Java: A Multimedia Approach. Upper Saddle River, NJ:
Pearson Prentice Hall, 2007. Print.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

W 44

CHAPTER2 Introduction to Classes and Objects

3. Eckel, Bruce. Thinking in Java. Upper Saddle River, NJ: Prentice Hall,
2006. Print.

4. Anderson, Julie, and Herve Franceschi. Java 6 [lluminated: An Active
Learning Approach. Sudbury, MA: Jones and Bartlett, 2008. Print.

5. Sierra, Kathy, and Bert Bates. Head First Java. Sebastopol, CA: O’Reilly,
2005. Print.

6. Knudsen, Jonathan. Java 2D Graphics. Beijing: O’Reilly, 1999. Print.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

