
2CHAPTER
Programming Building Blocks—
Java Basics

Introduction
2.1 Java Application Structure
2.2 Data Types, Variables, and Constants

2.2.1 Declaring Variables
2.2.2 Integer Data Types
2.2.3 Floating-Point Data Types
2.2.4 Character Data Type
2.2.5 Boolean Data Type
2.2.6 The Assignment Operator, Initial

Values, and Literals
2.2.7 String Literals and Escape Sequences
2.2.8 Constants

2.3 Expressions and Arithmetic Operators
2.3.1 The Assignment Operator and

Expressions
2.3.2 Arithmetic Operators
2.3.3 Operator Precedence
2.3.4 Programming Activity 1: Convert-

ing Inches to Centimeters

2.3.5 Integer Division and Modulus
2.3.6 Division by Zero
2.3.7 Mixed-Type Arithmetic and Type

Casting
2.3.8 Shortcut Operators

2.4 Programming Activity 2: Temperature
Conversion

2.5 Chapter Summary
2.6 Exercises, Problems, and Projects

2.6.1 Multiple Choice Exercises
2.6.2 Reading and Understanding Code
2.6.3 Fill In the Code
2.6.4 Identifying Errors in Code
2.6.5 Debugging Area—Using Messages

from the Java Compiler and Java
JVM

2.6.6 Write a Short Program
2.6.7 Programming Projects
2.6.8 Technical Writing

CHAPTER CONTENTS

04387_CH02_Anderson.qxd 12/8/10 1:16 PM Page 41

42 CHAPTER 2 Programming Building Blocks—Java Basics

Introduction

If you boil it down to the basics, a program has two elements: instructions
and data. The instructions tell the CPU what to do with the data. Typically,
a program’s structure will consist of the following operations:

1. Input the data.

2. Perform some processing on the data.

3. Output the results.

The data used by a program can come from a variety of sources. The user can
enter data from the keyboard, as happens when you type a new document into
a word processor. The program can read the data from a file, as happens when
you load an existing document into the word processor. Or the program can
generate the data randomly, as happens when a computer card game deals
hands. Finally, some data is already known; for example, the number of hours
in a day is 24, the number of days in December is 31, and the value of pi is
3.14159. This type of data is constant. The Java language provides a syntax for
describing a program’s data using keywords, symbolic names, and data types.

The data may be different in each execution of the program, but the
instructions stay the same. In a word processor, the words (data) are differ-
ent from document to document, but the operation (instructions) of the
word processor remains the same. When a line becomes full, for example,
the word processor automatically wraps to the next line. It doesn’t matter
which words are on the line, only that the line is full. When you select a
word and change the font to bold, it doesn’t matter which word you select;
it will become bold. Thus, a program’s instructions (its algorithm) must be
written to correctly handle any data it may receive.

In Chapter 1, we discussed the types of operations that the computer can
perform: input and output of data and various operations related to pro-
cessing data, such as arithmetic calculations, comparisons of data and sub-
sequent changes to the flow of control, and movement of data from one
location in memory to another. We will write our programs by translating
our algorithms into these basic operations.

In this chapter, we’ll look at basic Java syntax for defining the data to be
used in the program, performing calculations on that data, and outputting
program results to the screen.

2.1 Java Application Structure
Every Java program consists of at least one class. It is impossible to write a
Java program that doesn’t use classes. As we said in Chapter 1, classes

04387_CH02_Anderson.qxd 12/8/10 1:16 PM Page 42

2.1 Java Application Structure 43

describe a logical entity that has data as well as methods (the instructions)
to manipulate that data. An object is a physical instantiation of the class
that contains specific data. We’ll begin to cover classes in detail in the next
chapter. For now, we’ll just say that your source code should take the form
of the shell code in Example 2.1.

In Example 2.1, the numbers to the left of each line are not part of the pro-
gram code; they are included here for your convenience. IDEs typically
allow you to display line numbers.

From application to application, the name of the class, ShellApplication,
will change, because you will want to name your class something meaning-
ful that reflects its function. Each Java source code file must have the same
name as the class name with a .java extension. In this case, the source file
must be ShellApplication.java. Whatever name you select for a class must
comply with the Java syntax for identifiers.

Java identifiers are symbolic names that you assign to classes, methods,
and data. Identifiers must start with a Java letter and may contain any com-
bination of letters and digits, but no spaces. A Java letter is any character in
the range a–z or A–Z, the underscore (_), or the dollar sign ($), as well as
many Unicode characters that are used as letters in other languages. Digits
are any character between 0 and 9. The length of an identifier is essentially
unlimited. Identifier names are case-sensitive, so Number1 and number1
are considered to be different identifiers.

In addition, none of Java’s reserved words can be used as identifiers. These
reserved words, which are listed in Appendix A, consist of keywords used in
Java instructions, as well as three special data values: true, false, and null.
Given that Java identifiers are case-sensitive, note that it is legal to use True
or TRUE as identifiers, but true is not a legal variable name. Table 2.1 lists
the rules for creating Java identifiers.

1 /* An application shell
2 Anderson, Franceschi
3 */
4 public class ShellApplication
5 {
6 public static void main(String [] args) //required
7 {
8 // write your code here
9 }
10 }

EXAMPLE 2.1 A Shell for a Java Application

04387_CH02_Anderson.qxd 12/8/10 1:16 PM Page 43

�

Include a block comment
at the beginning of each
source file that identifies
the author of the program
and briefly describes the
function of the program.

SOFTWARE
ENGINEERING TIP

�

Liberal use of white space
makes your program more
readable. It is good pro-
gramming style to surround
identifiers, operands, and
operators with spaces and
to skip lines between logical
sections of the program.

SOFTWARE
ENGINEERING TIP

44 CHAPTER 2 Programming Building Blocks—Java Basics

TABLE 2.1 Rules for Creating Identifiers

Java Identifiers

� Must start with a Java letter (A–Z, a–z, _ , $, or many Unicode characters)

� Can contain an almost unlimited number of letters and/or digits (0–9)

� Cannot contain spaces

� Are case-sensitive

� Cannot be a Java reserved word

The shell code in Example 2.1 uses three identifiers: ShellApplication, main,
and args. The remainder of Example 2.1 consists of comments, Java key-
words, and required punctuation.

The basic building block of a Java program is the statement. A statement is
terminated with a semicolon and can span several lines.

Any amount of white space is permitted between identifiers, Java key-
words, operands, operators, and literals. White space characters are the
space, tab, newline, and carriage return. Liberal use of white space makes
your program more readable. It is good programming style to surround
identifiers, operands, and operators with spaces and to skip lines between
logical sections of the program.

A block, which consists of 0, 1, or more statements, starts with a left curly
brace ({) and ends with a right curly brace (}). Blocks are required for class
and method definitions and can be used anywhere else in the program that
a statement is legal. Example 2.1 has two blocks: the class definition (lines 5
through 10) and the main method definition (lines 7 through 9). As you
can see, nesting blocks within blocks is perfectly legal. The main block is
nested completely within the class definition block.

Comments document the operation of the program and are notes to your-
self and to other programmers who read your code. Comments are not
compiled and can be coded in two ways. Block comments can span several
lines; they begin with a forward slash-asterisk (/*) and end with an asterisk-
forward slash (*/). Everything between the /* and */ is ignored by the com-
piler. Note that there are no spaces between the asterisk and forward slash.

04387_CH02_Anderson.qxd 12/8/10 1:16 PM Page 44

2.1 Java Application Structure 45

1 /* Calculate the area of a circle
2 Anderson, Franceschi
3 */
4
5 public class AreaOfCircle
6 {
7 public static void main(String [] args)
8 {
9 // define the data we know
10 final double PI = 3.14159;
11
12 // define other data we will use
13 double radius;
14 double area;
15
16 // give radius a value
17 radius = 3.5;
18
19 // perform the calculation
20 area = PI * radius * radius;
21
22 // output the results
23 System.out.println(“The area of the circle is “ + area);
24 }
25 }

Example 2.2 Calculating the Area of a Circle

Lines 1–3 in Example 2.1 are block comments and illustrate the good soft-
ware engineering practice of providing at the beginning of your source
code a few comments that identify yourself as the author and briefly
describe what the program does.

The second way to include comments in your code is to precede the com-
ment with two forward slashes (//). There are no spaces between the for-
ward slashes. The compiler ignores everything from the two forward
slashes to the end of the line. In Example 2.1, the compiler ignores all of
line 8, but only the part of line 6 after the two forward slashes.

Let’s look at an example to get a sense of what a simple program looks like
and to get a feel for how a program operates. Example 2.2 calculates the
area of a circle.

04387_CH02_Anderson.qxd 12/8/10 1:16 PM Page 45

46 CHAPTER 2 Programming Building Blocks—Java Basics

The area of the circle is 38.4844775

Figure 2.1a
Output from Example 2.2
with a Radius of 3.5

The area of the circle is 1256.636

Figure 2.1b
Output from Example 2.2
with a Radius of 20

Figure 2.1a shows the output when the program is run with a radius of 3.5.
To calculate the area of a circle with a different radius, replace the value 3.5
in line 17 with the new radius value. For example, to calculate the area of a
circle with a radius of 20, change line 17 to

radius = 20;

Then recompile the program and run it again. Figure 2.1b shows the out-
put for a radius of 20.

You can see that Example 2.2 has the basic elements that we saw in the
ShellApplication (Example 2.1). We have added some statements in lines
9 to 23 that do the work of the program. First we identify the data we will
need. To calculate the area of a circle, we use the formula (pr2). We
know the value of p (3.14159), so we store that value in a memory loca-
tion we name PI (line 10). We also need places in memory to hold the
radius and the area. We name these locations in lines 13 and 14. In line
17 we give the radius a value; here we have chosen 3.5.

Now we’re ready to calculate the area. We want this program to output cor-
rect results with any radius, so we need to write the algorithm of the pro-
gram using the formula for calculating a circle’s area given above. Java
provides arithmetic operators for performing calculations. We use Java’s
multiplication operator (*) in line 20 to multiply PI times the radius times
the radius and store the result into the memory location we named area.
Now we’re ready to output the result. On line 23, we write a message that
includes the area value we calculated.

04387_CH02_Anderson.qxd 12/8/10 1:16 PM Page 46

�

When selecting identifiers,
choose meaningful names
that reflect the use of the
identifier in the program;
this will make your code
self-documented. Use as
many characters as neces-
sary to make the identifier
clear, but avoid extremely
long identifiers. Also, for
clarity in your program
logic, avoid identifiers that
resemble Java keywords.

SOFTWARE
ENGINEERING TIP

2.2 Data Types, Variables, and Constants 47

2.2 Data Types, Variables, and Constants
In Example 2.2, we used as data the value of PI and the radius, and we cal-
culated the area of the circle. For each of these values, we assigned a name.
We also used the Java keyword double, which defines the data type of the
data. The keyword double means that the value will be a floating-point
number.

Java allows you to refer to the data in a program by defining variables, which
are named locations in memory where you can store values. A variable can
store one data value at a time, but that value might change as the program
executes, and it might change from one execution of the program to the
next. The real advantage of using variables is that you can name a variable,
assign it a value, and subsequently refer to the name of the variable in an
expression rather than hard coding the specific value.

When we use a named variable, we need to tell the compiler which kind of
data we will store in the variable. We do this by giving a data type for each
variable.

Java supports eight primitive data types: byte, short, int, long, float, double,
char, and boolean. They are called primitive data types because they are part
of the core Java language.

The data type you specify for a variable tells the compiler how much mem-
ory to allocate and the format in which to store the data. For example, if
you specify that a data item is an int, then the compiler will allocate four
bytes of memory for it and store its value as a 32-bit signed binary number.
If, however, you specify that a data item is a double (a double-precision
floating-point number), then the compiler will allocate 8 bytes of memory
and store its value as an IEEE 754 floating-point number.

Once you declare a data type for a data item, the compiler will monitor
your use of that data item. If you attempt to perform operations that are
not allowed for that type or are not compatible with that type, the compiler
will generate an error. Because the Java compiler monitors the operations
on each data item, Java is called a strongly typed language.

Take care in selecting identifiers for your programs. The identifiers should
be meaningful and should reflect the data that will be stored in a variable,

04387_CH02_Anderson.qxd 12/8/10 1:16 PM Page 47

�

Begin variable names with
a lowercase letter. If the
variable name consists of
more than one word, begin
each word after the first
with a capital letter. Avoid
underscores in variable
names, and do not begin a
variable name with a dollar
sign.

SOFTWARE
ENGINEERING TIP

48 CHAPTER 2 Programming Building Blocks—Java Basics

the concept encapsulated by a class, or the function of a method. For exam-
ple, the identifier age clearly indicates that the variable will hold the age of
a person. When you select meaningful variable names, the logic of your
program is more easily understood, and you are less likely to introduce
errors. Sometimes, it may be necessary to create a long identifier in order to
clearly indicate its use, for example, numberOfStudentsWhoPassedCS1.
Although the length of identifiers is essentially unlimited, avoid creating
extremely long identifiers because they are more cumbersome to use. Also,
the longer the identifier, the more likely you are to make typos when enter-
ing the identifier into your program. Finally, although it is legal to use iden-
tifiers, such as TRUE, which differ from Java keywords only in case, it isn’t a
good idea because they easily can be confused with Java keywords, making
the program logic less clear.

2.2.1 Declaring Variables

Every variable must be given a name and a data type before it can be used.
This is called declaring a variable.

The syntax for declaring a variable is:

dataType identifier; // this declares one variable

or

dataType identifier1, identifier2, ...; // this declares multiple
// variables of the same
// data type

Note that a comma follows each identifier in the list except the last identi-
fier, which is followed by a semicolon.

By convention, the identifiers for variable names start with a lowercase let-
ter. If the variable name consists of more than one word, then each word
after the first should begin with a capital letter. For example, these identi-
fiers are conventional Java variable names: number1, highScore, booksTo-
Read, ageInYears, and xAxis. Underscores conventionally are not used in
variable names; they are reserved for the identifiers of constants, as we shall
discuss later in the chapter. Similarly, do not use dollar signs to begin vari-
able names. The dollar sign is reserved for the first letter of programmati-
cally generated variable names—that is, variable names generated by
software, not people. Although this may sound arbitrary now, the value of
following these conventions will become clearer as you gain more experi-
ence in Java and your programs become more complex.

04387_CH02_Anderson.qxd 12/8/10 1:16 PM Page 48

2.2 Data Types, Variables, and Constants 49

2.2.2 Integer Data Types

An integer data type is one that evaluates to a positive or negative whole
number. Java provides four integer data types, int, short, long, and byte.

The int, short, long, and byte types differ in the number of bytes of memory
allocated to store each type and, therefore, the maximum and minimum
values that can be stored in a variable of that type. All of Java’s integer types
are signed, meaning that they can be positive or negative; the high-order, or
leftmost, bit is reserved for the sign.

Table 2.2 summarizes the integer data types, their sizes in memory, and
their maximum and minimum values.

In most applications, the int type will be sufficient for your needs, since it can
store positive and negative numbers up into the 2 billion range. The short and
byte data types typically are used only when memory space is critical, and the
long data type is needed only for data values larger than 2 billion.

Let’s look at some examples of integer variable declarations. Note that the
variable names clearly indicate the data that the variables will hold.

int testGrade;
int numPlayers, highScore, diceRoll;
short xCoordinate, yCoordinate;
long cityPopulation;
byte ageInYears;

2.2.3 Floating-Point Data Types

Floating-point data types store numbers with fractional parts. Java sup-
ports two floating-point data types: the single-precision float and the dou-
ble-precision double.

TABLE 2.2 Integer Data Types

Integer Size Minimum Value Maximum Value
Data Type in Bytes

byte 1 �128 127

short 2 �32,768 32,767

int 4 �2, 147, 483, 648 2, 147, 483, 647

long 8 �9,223,372,036,854,775,808 9,223,372,036,854,775,807

04387_CH02_Anderson.qxd 12/8/10 1:16 PM Page 49

�
The encoding of ASCII and
Unicode characters is dis-
cussed in Appendix C.

REFERENCE POINT

�
Floating-point numbers are
stored using the IEEE 754
standard, which is dis-
cussed in Appendix E.

REFERENCE POINT

50 CHAPTER 2 Programming Building Blocks—Java Basics

The two types differ in the amount of memory allocated and the size of the
number that can be represented. The single-precision type (float) is stored
in 32 bits, while the double-precision type (double) is stored in 64 bits.
Floats and doubles can be positive or negative.

Table 2.3 summarizes Java’s floating-point data types, their sizes in mem-
ory, and their maximum and minimum positive nonzero values.

Because of its greater precision, the double data type is usually preferred
over the float data type. However, for calculations not requiring such preci-
sion, floats are often used because they require less memory.

Although integers can be stored as doubles or floats, it isn’t advisable to do so
because floating-point numbers require more processing time for calculations.

Let’s look at a few examples of floating-point variable declarations:

float salesTax;
double interestRate;
double paycheck, sumSalaries;

2.2.4 Character Data Type

The char data type stores one Unicode character. Because Unicode charac-
ters are encoded as unsigned numbers using 16 bits, a char variable is stored
in two bytes of memory.

Table 2.4 shows the size of the char data type, as well as the minimum and
maximum values. The maximum value is the unsigned hexadecimal num-
ber FFFF, which is reserved as a special code for “not a character.”

TABLE 2.3 Floating-point Data Types

Floating-point Data Type Size in Bytes Minimum Positive Maximum Value
Nonzero Value

float 4 1.4E-45 3.4028235E38

double 8 4.9E-324 1.7976931348623157E308

TABLE 2.4 The Character Data Type

Character Data Type Size in Bytes Minimum Value Maximum Value

char 2 The character encoded as 0000, The value FFFF, which is a
the null character special code for “not a

character”

04387_CH02_Anderson.qxd 12/8/10 1:16 PM Page 50

2.2 Data Types, Variables, and Constants 51

Obviously, since the char data type can store only a single character, such as a
K, a char variable is not useful for storing names, titles, or other text data. For
text data, Java provides a String class, which we’ll discuss later in this chapter.

Here are a few declarations of char variables:

char finalGrade;
char middleInitial;
char newline, tab, doubleQuotes;

2.2.5 Boolean Data Type

The boolean data type can store only two values, which are expressed using
the Java reserved words true and false, as shown in Table 2.5.

Booleans are typically used for decision making and for controlling the
order of execution of a program.

Here are examples of declarations of boolean variables:

boolean isEmpty;
boolean passed, failed;

2.2.6 The Assignment Operator, Initial Values, and Literals

When you declare a variable, you can also assign an initial value to the data.
To do that, use the assignment operator (=) with the following syntax:

dataType variableName = initialValue;

This statement is read as “variableName gets initialValue”

or

dataType variable1 = initialValue1, variable2 = initialValue2;

Notice that assignment is right to left. The initial value is assigned to the
variable.

TABLE 2.5 The boolean Data Type

boolean Data Type Possible Values

boolean true

false

04387_CH02_Anderson.qxd 12/8/10 1:16 PM Page 51

�

COMMON ERROR
TRAP

Although Unicode charac-
ters occupy two bytes in
memory, they still repre-
sent a single character.
Therefore, the literal must
also represent only one
character.

COMMON ERROR
TRAP

�

52 CHAPTER 2 Programming Building Blocks—Java Basics

One way to specify the initial value is by using a literal value. In the follow-
ing statement, the value 100 is an int literal value, which is assigned to the
variable testGrade.

int testGrade = 100;

Table 2.6 summarizes the legal characters in literals for all primitive data types.

Notice in Table 2.6 under the literal format for char, that \n and \t can be
used to format output. We’ll discuss these and other escape sequences in
the next section of this chapter.

TABLE 2.6 Literal Formats for Java Data Types

Data Type Literal Format

int, short, byte Optional initial sign (+ or �) followed by digits 0–9 in any combination. A
literal in this format is an int literal; however, an int literal may be assigned
to a byte or short variable if the literal is a legal value for the assigned data
type. An integer literal that begins with a 0 digit is considered to be an octal
number (base 8) and the remaining digits must be 0–7. An integer literal
that begins with 0x is considered to be a hexadecimal number (base 16) and
the remaining digits must be 0–F.

long Optional initial sign (+ or �) followed by digits 0–9 in any combination,
terminated with an L or l. It’s preferable to use the capital L, because the low-
ercase l can be confused with the number 1. An integer literal that begins
with a 0 digit is considered to be an octal number (base 8) and the remain-
ing digits must be 0–7. An integer literal that begins with 0x is considered to
be a hexadecimal number (base 16) and the remaining digits must be 0–F.

float Optional initial sign (+ or �) followed by a floating-point number in fixed
or scientific format, terminated by an F or f.

double Optional initial sign (+ or �) followed by a floating-point number in fixed
or scientific format.

char � Any printable character enclosed in single quotes.

� A decimal value from 0 to 65,535.

� ‘\m’, where \m is an escape sequence. For example,‘\n’ represents a new-
line, and ‘\t’ represents a tab character.

boolean true or false

04387_CH02_Anderson.qxd 12/8/10 1:16 PM Page 52

2.2 Data Types, Variables, and Constants 53

Example 2.3 shows a complete program illustrating variable declarations,
specifying a literal for the initial value of each.

Line 9 shows a single-line comment. Line 17 declares a double variable
named avogadroNumber and initializes it with its value in scientific nota-
tion. The Avogadro number represents the number of elementary particles
in one mole of any substance.

Figure 2.2 shows the output of Example 2.3.

1 /* Variables Class
2 Anderson, Franceschi
3 */
4
5 public class Variables
6 {
7 public static void main(String [] args)
8 {
9 // This example shows how to declare and initialize variables
10
11 int testGrade = 100;
12 long cityPopulation = 425612340L;
13 byte ageInYears = 19;
14
15 float salesTax = .05F;
16 double interestRate = 0.725;
17 double avogadroNumber = +6.022E23;
18 // avogadroNumber is represented in scientific notation;
19 // its value is 6.022 x 10 to the power 23
20
21 char finalGrade = ‘A’;
22 boolean isEmpty = true;
23
24 System.out.println(“testGrade is “ + testGrade);
25 System.out.println(“cityPopulation is “ + cityPopulation);
26 System.out.println(“ageInYears is “ + ageInYears);
27 System.out.println(“salesTax is “ + salesTax);
28 System.out.println(“interestRate is “ + interestRate);
29 System.out.println(“avogadroNumber is “ + avogadroNumber);
30 System.out.println(“finalGrade is “ + finalGrade);
31 System.out.println(“isEmpty is “ + isEmpty);
32 }
33 }

EXAMPLE 2.3 Declaring and Initializing Variables

04387_CH02_Anderson.qxd 12/8/10 1:16 PM Page 53

54 CHAPTER 2 Programming Building Blocks—Java Basics

Figure 2.2
Output of Example 2.3 testGrade is 100

cityPopulation is 425612340
ageInYears is 19
salesTax is 0.05
interestRate is 0.725
avogadroNumber is 6.022E23
finalGrade is A
isEmpty is true

Another way to specify an initial value for a variable is to assign the variable
the value of another variable, using this syntax:

dataType variable2 = variable1;

Two things need to be true for this assignment to work:

� variable1 needs to be declared and assigned a value before this
statement appears in the source code.

� variable1 and variable2 need to be compatible data types; in other
words, the precision of variable1 must be lower than or equal to
that of variable2.

For example, in these statements:

boolean isPassingGrade = true;
boolean isPromoted = isPassingGrade;

isPassingGrade is given an initial value of true. Then isPromoted is assigned
the value already given to isPassingGrade. Thus, isPromoted is also assigned
the initial value true. If isPassingGrade were assigned the initial value false,
then isPromoted would also be assigned the initial value false.

And in these statements:

float salesTax = .05f;
double taxRate = salesTax;

the initial value of .05 is assigned to salesTax and then to taxRate. It’s legal
to assign a float value to a double, because all values that can be stored as
floats are also valid double values. However, these statements are not valid:

04387_CH02_Anderson.qxd 12/8/10 1:16 PM Page 54

2.2 Data Types, Variables, and Constants 55

double taxRate = .05;
float salesTax = taxRate; // invalid; float is lower precision

Even though .05 is a valid float value, the compiler will generate a “possible
loss of precision” error.

Similarly, you can assign a lower-precision integer value to a higher-
precision integer variable.

Table 2.7 summarizes compatible data types; a variable or literal of any
type in the right column can be assigned to a variable of the data type in the
left column.

Variables need to be declared before they can be used in your program, but
be careful to declare each variable only once; that is, specify the data type of
the variable only the first time that variable is used in the program. If you
attempt to declare a variable that has already been declared, as in the fol-
lowing statements:

double twoCents;
double twoCents = 2; // incorrect, second declaration of twoCents

you will receive a compiler error similar to the following:

twoCents is already defined

TABLE 2.7 Valid Data Types for Assignment

Data Type Compatible Data Types

byte byte

short byte, short

int byte, short, int, char

long byte, short, int, char, long

float byte, short, int, char, long, float

double byte, short, int, char, long, float, double

boolean boolean

char char

04387_CH02_Anderson.qxd 12/8/10 1:16 PM Page 55

�

Declare each variable only
once, the first time the
variable is used. After the
variable has been declared,
its data type cannot be
changed.

COMMON ERROR
TRAP

56 CHAPTER 2 Programming Building Blocks—Java Basics

Similarly, once you have declared a variable, you cannot change its data
type. Thus, these statements:

double cashInHand;
int cashInHand; // incorrect, data type cannot be changed

will generate a compiler error similar to the following:

cashInHand is already defined

2.2.7 String Literals and Escape Sequences

In addition to literals for all the primitive data types, Java also supports
String literals. Strings are objects in Java, and we will discuss them in greater
depth in Chapter 3.

A String literal is a sequence of characters enclosed by double quotes. One
set of quotes “opens” the String literal and the second set of quotes “closes”
the literal. For example, these are all String literals:

“Hello”
“Hello world”
“The value of x is ”

We used a String literal in our first program in Chapter 1 in this statement:

System.out.println(“Programming is not a spectator sport!”);

We also used String literals in output statements in Example 2.3 to label the
data that we printed:

System.out.println(“The area of the circle is “ + area);

The + operator is the String concatenation operator. Among other uses,
the concatenation operator allows us to print primitive data types along
with Strings. We’ll discuss the concatenation operator in more detail in
Chapter 3.

String literals cannot extend over more than one line. If the compiler finds
a newline character in the middle of your String literal, it will generate a
compiler error. For example, the following statement is not valid:

On the CD-ROM included with this book, you will find a Flash movie showing a step-by-step illustra-
tion of declaring variables and assigning initial values. Click on the link for Chapter 2 to view the
movie.

CODE IN ACTION

04387_CH02_Anderson.qxd 12/8/10 1:16 PM Page 56

�

All open quotes for a String
literal should be matched
with a set of closing
quotes, and the closing
quotes must appear before
the line ends.

COMMON ERROR
TRAP

2.2 Data Types, Variables, and Constants 57

System.out.println(“Never pass a water fountain
without taking a drink.”);

In fact, that statement will generate several compiler errors:

StringTest.java:9: unclosed string literal
System.out.println(“Never pass a water fountain

^
StringTest.java:9: ';' expected

System.out.println("Never pass a water fountain
^

StringTest.java:10: ';' expected
without taking a drink.”);

^
StringTest.java:10: unclosed string literal

without taking a drink.”);
^

StringTest.java:10: not a statement
without taking a drink.”);

^
5 errors

If you have a long String to print, break it into several strings and use the
concatenation operator. This statement is a correction of the invalid state-
ment above:

System.out.println(“Never pass a water fountain,”
+ “ without taking a drink.”);

Another common programming error is omitting the closing quotes. Be
sure that all open quotes have matching closing quotes on the same line.

Now that we know that quotes open and close String literals, how can we
define a literal that includes quotes? This statement

System.out.println(“She said, “Java is fun””); // illegal quotes
// within literal

generates this compiler error:

StringTest.java:24: ‘)’ expected
System.out.println(“She said, “Java is fun””); // illegal quotes

^
StringTest.java:24: ';' expected

System.out.println("She said, "Java is fun""); // illegal quotes
^

2 errors

And since String literals can’t extend over two lines, how can we create a
String literal that includes a newline character? Java solves these problems

�

Add a space to the end of a
String literal before con-
catenating a value for more
readable output.

SOFTWARE
ENGINEERING TIP

04387_CH02_Anderson.qxd 12/8/10 1:16 PM Page 57

58 CHAPTER 2 Programming Building Blocks—Java Basics

TABLE 2.8 Java Escape Sequences

Character Escape Sequence

newline \n

tab \t

double quotes \"

single quote \'

backslash \\

backspace \b

carriage return \r

form feed \f

by providing a set of escape sequences that can be used to include a special
character within String and char literals. The escape sequences \n, \t, \b, \r,
and \f are nonprintable characters. Table 2.8 lists the Java escape sequences.

In Example 2.4, we see how escape sequences can be used in Strings.

Figure 2.3 shows the output of Example 2.4. Line 9 shows how \n causes the
remainder of the literal to be printed on the next line. The tab character, \t,

1 /* Literals Class
2 Anderson, Franceschi
3 */
4
5 public class Literals
6 {
7 public static void main(String [] args)
8 {
9 System.out.println(“One potato\nTwo potatoes\n”);
10 System.out.println(“\tTabs can make the output easier to read”);
11 System.out.println(“She said, \”Java is fun\””);
12 }
13 }

EXAMPLE 2.4 Using Escape Sequences

04387_CH02_Anderson.qxd 12/8/10 1:16 PM Page 58

2.2 Data Types, Variables, and Constants 59

Figure 2.3
Output of Example 2.4One potato

Two potatoes

Tabs can make the output easier to read
She said, "Java is fun"

used in line 10, will cause the literal that follows it to be indented one tab stop
when output. Line 11 outputs a sentence with embedded double quotes; the
embedded double quotes are printed with the escape sequence \".

2.2.8 Constants

Sometimes you know the value of a data item, and you know that its value
will not (and should not) change during program execution, nor is it
likely to change from one execution of the program to another. In this
case, it is a good software engineering practice to define that data item as
a constant.

Defining constants uses the same syntax as declaring variables, except that
the data type is preceded by the keyword final.

final dataType CONSTANT_IDENTIFIER = assignedValue;

Assigning a value is optional when the constant is defined, but you must
assign a value before the constant is used in the program. Also, once the
constant has been assigned a value, its value cannot be changed (reas-
signed) later in the program. Any attempt by your program to change the
value of a constant will generate the following compiler error:

cannot assign a value to final variable

Think of this as a service of the compiler in preventing your program from
unintentionally corrupting its data.

By convention, CONSTANT_IDENTIFIER consists of all capital letters, and
embedded words are separated by an underscore. This makes constants stand

04387_CH02_Anderson.qxd 12/8/10 1:16 PM Page 59

�

Declare as a constant any
data that should not
change during program
execution.The compiler
will then flag any attempts
by your program to change
the value of the constant,
thus preventing any unin-
tentional corruption of the
data.

SOFTWARE
ENGINEERING TIP

�

Use all capital letters for a
constant’s identifier; sepa-
rate words with an under-
score (_).Declare constants
at the top of the program
so their value can be seen
easily.

SOFTWARE
ENGINEERING TIP

60 CHAPTER 2 Programming Building Blocks—Java Basics

out in the code and easy to identify as constants. Also, constants are usually
defined at the top of a program where their values can be seen easily.

Example 2.5 shows how to use constants in a program.

Lines 9, 10, and 11 define four constants. On line 11, note that both
DAYS_IN_LEAP_YEAR and DAYS_IN_NON_LEAP_YEAR are constants.
You don’t need to repeat the keyword final to define two (or more) con-
stants of the same data types. Lines 13 to 18 output the values of the four
constants. If line 20 were not commented out, it would generate a compiler
error because once a constant is assigned a value, its value cannot be
changed. Figure 2.4 shows the output of Example 2.5.

Constants can make your code more readable: PI is more meaningful than
3.14159 when used inside an arithmetic expression. Another advantage of
using constants is to keep programmers from making logic errors: Let’s say

1 /* Constants Class
2 Anderson, Franceschi
3 */
4
5 public class Constants
6 {
7 public static void main(String [] args)
8 {
9 final char ZORRO = ‘Z’;
10 final double PI = 3.14159;
11 final int DAYS_IN_LEAP_YEAR = 366, DAYS_IN_NON_LEAP_YEAR = 365;
12
13 System.out.println(“The value of constant ZORRO is “ + ZORRO);
14 System.out.println(“The value of constant PI is “ + PI);
15 System.out.println(“The number of days in a leap year is ”
16 + DAYS_IN_LEAP_YEAR);
17 System.out.println(“The number of days in a non-leap year is ”
18 + DAYS_IN_NON_LEAP_YEAR);
19
20 // PI = 3.14;
21 // The statement above would generate a compiler error
22 // You cannot change the value of a constant
23 }
24 }

EXAMPLE 2.5 Using Constants

04387_CH02_Anderson.qxd 12/8/10 1:16 PM Page 60

2.2 Data Types, Variables, and Constants 61

Figure 2.4
Output of Example 2.5The value of constant ZORRO is Z

The value of constant PI is 3.14159
The number of days in a leap year is 366
The number of days in a non-leap year is 365

we set a constant to a particular value and it is used at various places
throughout the code (for instance, a constant representing a tax rate); we
then discover that the value of that constant needs to be changed. All we
have to do is make the change in one place, most likely at the beginning of
the code. If we had to change the value at many places throughout the code,
that could very well result in logic errors or typos.

2.6.1 Multiple Choice

Questions 1, 2

2.6.2 Reading and Understanding Code

Questions 4, 5, 6

2.6.3 Fill In the Code

Questions 23, 24, 25, 26

2.6.4 Identifying Errors in Code

Questions 33, 34, 38, 39

2.6.5 Debugging Area

Questions 40, 41

2.6.6 Write a Short Program

Question 46

2.6.8 Technical Writing

Question 52

Skill Practice
with these end-of-chapter questions

04387_CH02_Anderson.qxd 12/8/10 1:16 PM Page 61

62 CHAPTER 2 Programming Building Blocks—Java Basics

2.3 Expressions and Arithmetic Operators

2.3.1 The Assignment Operator and Expressions

In a previous section, we mentioned using the assignment operator to
assign initial values to variables and constants. Now let’s look at the assign-
ment operator in more detail.

The syntax for the assignment operator is:

target = expression;

An expression consists of operators and operands that evaluate to a single
value. The value of the expression is then assigned to target (target gets
expression), which must be a variable or constant having a data type com-
patible with the value of the expression.

If target is a variable, the value of the expression replaces any previous value
the variable was holding. For example, let’s look at these instructions:

int numberOfPlayers = 10; // numberOfPlayers value is 10
numberOfPlayers = 8; // numberOfPlayers value is now 8

The first instruction declares an int named numberOfPlayers. This allo-
cates four bytes in memory to a variable named numberOfPlayers and
stores the value 10 in that variable. Then, the second statement changes the
value stored in the variable numberOfPlayers to 8. The previous value, 10,
is discarded.

An expression can be a single variable name or a literal of any type, in
which case, the value of the expression is simply the value of the variable or
the literal. For example, in these statements,

int legalAge = 18;
int voterAge = legalAge;

the literal 18 is an expression. Its value is 18, which is assigned to the
variable legalAge. Then, in the second statement, legalAge is an expres-
sion, whose value is 18. Thus the value 18 is assigned to voterAge. So after
these statements have been executed, both legalAge and voterAge will
have the value 18.

04387_CH02_Anderson.qxd 12/8/10 1:16 PM Page 62

2.3 Expressions and Arithmetic Operators 63

One restriction, however, is that an assignment expression cannot include
another variable unless that variable has been defined previously. The state-
ment defining the length variable that follows is invalid, because it refers to
width, which is not defined until the next line.

int length = width * 2; // invalid, width is not yet defined
int width;

The compiler flags the statement defining length as an error

cannot find symbol

because width has not yet been defined.

An expression can be quite complex, consisting of multiple variables,
constants, literals, and operators. Before we can look at examples of
more complex expressions, however, we need to discuss the arithmetic
operators.

2.3.2 Arithmetic Operators

Java’s arithmetic operators are used for performing calculations on
numeric data. Some of these operators are shown in Table 2.9.

All these operators take two operands, which are espressions; thus, they are
called binary operators.

TABLE 2.9 Arithmetic Operators

Operator Operation

+ addition

– subtraction

* multiplication

/ division

% modulus (remainder after division)

04387_CH02_Anderson.qxd 12/8/10 1:16 PM Page 63

64 CHAPTER 2 Programming Building Blocks—Java Basics

1 /* Arithmetic Operators
2 Anderson, Franceschi
3 */
4
5 public class ArithmeticOperators
6 {
7 public static void main(String [] args)
8 {
9 // calculate the cost of lunch
10 double salad = 5.95;
11 double water = .89;
12 System.out.println(“The cost of lunch is $”
13 + (salad + water));
14
15 // calculate your age as of a certain year
16 int targetYear = 2011;
17 int birthYear = 1993;
18 System.out.println(“Your age in “ + targetYear + “ is “
19 + (targetYear - birthYear));
20
21 // calculate the total calories of apples
22 int caloriesPerApple = 127;
23 int numberOfApples = 3;
24 System.out.println(“The calories in “ + numberOfApples
25 + “ apples is “ +
26 + (caloriesPerApple * numberOfApples));
27
28 // calculate miles per gallon
29 double miles = 426.8;
30 double gallons = 15.2;
31 double mileage = miles / gallons;
32 System.out.println(“The mileage is “
33 + mileage + “ miles per gallon.”);
34 }
35 }

Example 2.6 Using Arithmetic Operators

In Example 2.6, we make a variety of calculations to demonstrate the addi-
tion, subtraction, multiplication, and division arithmetic operators. We
will discuss integer division and the modulus operator later in the chapter.
The output from this program is shown in Figure 2.5.

04387_CH02_Anderson.qxd 12/8/10 1:16 PM Page 64

�

For readable code, insert a
space between operators
and operands.

SOFTWARE
ENGINEERING TIP

�

Developing and testing
your code in steps makes it
easier to find and fix errors.

SOFTWARE
ENGINEERING TIP

2.3 Expressions and Arithmetic Operators 65

The cost of lunch is $6.84
Your age in 2011 is 18
The calories in 3 apples is 381
The mileage is 28.078947368421055 miles per gallon.

Figure 2.5
Output from Example 2.6

Example 2.6 demonstrates a number of small operations. To calculate a
total price (lines 12 and 13), we add the individual prices. To calculate an
age (lines 18 and 19), we subtract the birth year from the target year. To cal-
culate the number of calories in multiple apples (lines 24–26), we multiply
the number of calories in one apple by the number of apples. We calculate
miles per gallon by dividing the number of miles driven by the number of
gallons of gas used (line 31). Note that we can either store the result in
another variable, as we did in line 31, and subsequently output the result
(lines 32–33), or we can output the result of the calculation directly by
writing the expression in the System.out.println statement, as we did in the
other calculations in this example.

2.3.3 Operator Precedence

The statements in Example 2.6 perform simple calculations, but what if
you want to make more complex calculations using several operations,
such as calculating how much money you have in coins? Let’s say you have
two quarters, three dimes, and two nickels. To calculate the value of these
coins in pennies, you might use this expression:

int pennies = 2 * 25 + 3 * 10 + 2 * 5;

In which order should the computer do the calculation? If the value of the
expression were calculated left to right, then the result would be

= 2 * 25 + 3 * 10 + 2 * 5
= 50 + 3 * 10 + 2 * 5
= 53 * 10 + 2 * 5
= 530 + 2 * 5
= 532 * 5
= 2660

04387_CH02_Anderson.qxd 12/8/10 1:16 PM Page 65

66 CHAPTER 2 Programming Building Blocks—Java Basics

TABLE 2.10 Operator Precedence

Operator Order of Same-Statement
Hierarchy Evaluation Operation

() left to right parentheses for explicit grouping

*, /, % left to right multiplication, division, modulus

+, – left to right addition, subtraction

= right to left assignment

Clearly, 2,660 pennies is not the right answer. To calculate the correct number
of pennies, the multiplications should be performed first, then the additions.
This, in fact, is the order in which Java will calculate the preceding expression.

The Java compiler follows a set of rules called operator precedence to
determine the order in which the operations should be performed.

Table 2.10 provides the order of precedence of the operators we’ve dis-
cussed so far. The operators in the first row—parentheses—are evalu-
ated first, then the operators in the second row (*, /, %) are evaluated,
and so on with the operators in each row. When two or more operators
on the same level appear in the same expression, the order of evaluation
is left to right, except for the assignment operator, which is evaluated
right to left.

As we introduce more operators, we’ll add them to the Order of Precedence
chart. The complete chart is provided in Appendix B.

Using Table 2.10 as a guide, let’s recalculate the number of pennies:

int pennies = 2 * 25 + 3 * 10 + 2 * 5;
= 50 + 30 + 10
= 90

As you can see, 90 is the correct number of pennies in two quarters, three
dimes, and two nickels.

We also could have used parentheses to clearly display the order of calcula-
tion. For example,

int pennies = (2 * 25) + (3 * 10) + (2 * 5);
= 50 + 30 + 10
= 90

The result is the same, 90 pennies.

04387_CH02_Anderson.qxd 12/8/10 1:16 PM Page 66

2.3 Expressions and Arithmetic Operators 67

It sometimes helps to use parentheses to clarify the order of calculations,
but parentheses are essential when your desired order of evaluation is dif-
ferent from the rules of operator precedence. For example, to calculate the
value of this formula:

you could write this code:

double result = x / 2 * y;

This would generate incorrect results because, according to the rules of
precedence, x/2 would be calculated first, then the result of that division
would be multiplied by y. In algebraic terms, the preceding statement is
equivalent to

* y

To code the original formula correctly, you need to use parentheses to force
the multiplication to occur before the division:

double result = x / (2 * y);

2.3.4 Programming Activity 1: Converting Inches to Centimeters

Now that we know how to define variables and constants and make calcu-
lations, let’s put this all together by writing a program that converts inches
into the equivalent centimeters.

Locate the MetricLength.java source file found in the Chapter 2, Program-
ming Activity 1 folder on the CD-ROM accompanying this book. Copy the
file to your computer.

Open the MetricLength.java source file. You’ll notice that the class already
contains some source code. Your job is to fill in the blanks.

When we write a program, we begin by considering these questions:

1. What data values does the program require?

a. What data values do we know?

b. What data values will change from one execution of the program
to the next?

2. What processing (algorithm) do we need to implement?

3. What is the output?

x
�
2

x
�
2y

04387_CH02_Anderson.qxd 12/8/10 1:16 PM Page 67

The comments in the source file will guide you through the answers to
these questions, and by doing so, you will complete the program. Search for
five asterisks in a row (*****). This will position you to the places in the
source code where you will add your code. The MetricLength.java source
code is shown in Example 2.7. Sample output for a value of 5.2 inches is
shown in Figure 2.6.

1 /* MetricLength - converts inches to centimeters
2 Anderson, Franceschi
3 */
4
5 public class MetricLength
6 {
7 public static void main(String [] args)
8 {
9
10 /***** 1. What data values do we know?
11 /* We know that there are 2.54 centimeters in an inch.
12 /* Declare a double constant named CM_PER_INCH.
13 /* Assign CM_PER_INCH the value 2.54.
14 */
15
16
17 /***** 2. What other data does the program require?
18 /* For this program, we require the number of inches.
19 /* Declare a double variable named inches.
20 /* Assign any desired value to this variable.
21 */
22
23
24 /***** 3. Calculation: convert inches to centimeters
25 /* Declare a double variable named centimeters.
26 /* Multiply inches by CM_PER_INCH
27 /* and store the result in centimeters.
28 */
29
30
31 /***** 4. Output
32 /* Write one or two statements that output
33 /* the original inches and the equivalent centimeters.
34 /* Try to match the sample output in Figure 2.6.
35 */
36

68 CHAPTER 2 Programming Building Blocks—Java Basics

04387_CH02_Anderson.qxd 12/8/10 1:16 PM Page 68

37
38
39 }
40 }

Example 2.7 Converting Feet and Inches to Centimeters

2.3 Expressions and Arithmetic Operators 69

5.2 inches are equivalent to 13.208 centimeters.

Figure 2.6
Sample Output for
Programming Activity 1

DISCUSSION QUESTIONS
1. How do you know that your program results are correct?

2. If you change the inches data value, does your program still produce correct results?

?

2.3.5 Integer Division and Modulus

Division with two integer operands is performed in the Arithmetic Logic
Unit (ALU), which can calculate only an integer result. Any fractional part
is truncated; no rounding is performed. The remainder after division is
available, however, as an integer, by taking the modulus (%) of the two
integer operands. Thus, in Java, the integer division (/) operator will calcu-
late the quotient of the division, whereas the modulus (%) operator will
calculate the remainder of the division.

1 /* DivisionAndModulus Class
2 Anderson, Franceschi
3 */
4
5 public class DivisionAndModulus
6 {
7 public static void main(String [] args)
8 {
9 final int PENNIES_PER_QUARTER = 25;
10 int pennies = 113;
11
12 int quarters = pennies / PENNIES_PER_QUARTER;
13 System.out.println(“There are “ + quarters + “ quarters in ”
14 + pennies + “ pennies”);
15

04387_CH02_Anderson.qxd 12/8/10 1:16 PM Page 69

70 CHAPTER 2 Programming Building Blocks—Java Basics

Figure 2.7
Output of Example 2.8 There are 4 quarters in 113 pennies

There are 13 pennies left over
The monthly salary is 4166.666666666667

In Example 2.8, we have 113 pennies and we want to convert those pennies
into quarters. We can find the number of quarters by dividing 113 by 25.
The int variable pennies is assigned the value 113 at line 10. At line 12, the
variable quarters is assigned the result of the integer division of pennies by
the constant PENNIES_PER_QUARTER. Since the quotient of the division
of 113 by 25 is 4, quarters will be assigned 4. At line 16, we use the modulus
operator to assign to the variable penniesLeftOver the remainder of the
division of pennies by PENNIES_PER_QUARTER. Since the remainder of
the division of 113 by 25 is 13, 13 will be assigned to penniesLeftOver.
Notice that integer division and modulus are independent calculations. You
can perform a division without also calculating the modulus, and you can
calculate the modulus without performing the division.

At line 23, we divide a double by a double; therefore, a floating-point divi-
sion will be performed by the floating-point unit (FPU), and the result will
be assigned to the variable monthlySalary. Figure 2.7 shows the output of
the program.

16 int penniesLeftOver = pennies % PENNIES_PER_QUARTER;
17 System.out.println(“There are “ + penniesLeftOver
18 + “ pennies left over”);
19
20 final double MONTHS_PER_YEAR = 12;
21 double annualSalary = 50000.0;
22
23 double monthlySalary = annualSalary / MONTHS_PER_YEAR;
24 System.out.println(“The monthly salary is “ + monthlySalary);
25 }
26 }

EXAMPLE 2.8 How Integer Division and Modulus Work

04387_CH02_Anderson.qxd 12/8/10 1:16 PM Page 70

2.3 Expressions and Arithmetic Operators 71

2.6.2 Reading and Understanding Code

Questions 7, 8, 9, 10, 11, 12, 13

2.6.3 Fill In the Code

Questions 27, 29, 32

2.6.4 Identifying Errors in Code

Question 35

2.6.6 Write a Short Program

Question 44

Skill Practice
with these end-of-chapter questions

The modulus is actually a useful operator. As you will see later in this book,
it can be used to determine whether a number is even or odd, to control the
number of data items that are written per line, to determine if one number
is a factor of another, and for many other uses.

2.3.6 Division by Zero

As you might expect, Java does not allow integer division by 0. If you
include this statement in your program:

int result = 4 / 0;

the code will compile without errors, but at run time, when this statement
is executed, the JVM will generate an exception and print an error message
on the Java console:

Exception in thread “main” java.lang.ArithmeticException: / by zero

To see arithmetic operators used in a program, look for the Chapter 2 Flash movie on the
CD-ROM accompanying this book. Click on the link for Chapter 2 to start the movie.

CODE IN ACTION

04387_CH02_Anderson.qxd 12/8/10 1:16 PM Page 71

72 CHAPTER 2 Programming Building Blocks—Java Basics

1 /* DivisionByZero Class
2 Anderson, Franceschi
3 */
4
5 public class DivisionByZero
6 {
7 public static void main(String [] args)
8 {
9 double result1 = 4.3 / 0.0;
10 System.out.println(“The value of result1 is “ + result1);
11
12 double result2 = 0.0 / 0.0;
13 System.out.println(“The value of result2 is “ + result2);
14
15 int result3 = 4 / 0;
16 System.out.println(“The value of result3 is “ + result3);
17 }
18 }

EXAMPLE 2.9 Results of Division by Zero

Figure 2.8
Output of Example 2.9

The value of result1 is Infinity
The value of result2 is NaN
Exception in thread "main" java.lang.ArithmeticException: / by zero

at DivisionByZero.main(DivisionByZero.java:15)

In most cases, this stops the program. In Chapter 5, we show you how to
avoid dividing by zero by first testing whether the divisor is zero before per-
forming the division.

In contrast, floating-point division by zero does not generate an exception.
If the dividend is non-zero, the answer is Infinity. If both the dividend and
divisor are zero, the answer is NaN, which stands for “Not a Number.”

Example 2.9 illustrates the three cases of dividing by zero. As we can see on
the output shown in Figure 2.8, line 16 of Example 2.9 never executes. The
exception is generated at line 15 and the program halts execution.

Although floating-point division by zero doesn’t bring your program to a
halt, it doesn’t provide useful results either. It’s a good practice to avoid
dividing by zero in the first place. We’ll give you tools to do that in Chapter 5.

04387_CH02_Anderson.qxd 12/8/10 1:16 PM Page 72

2.3 Expressions and Arithmetic Operators 73

2.3.7 Mixed-Type Arithmetic and Type Casting

So far, we’ve used a single data type in the expressions we’ve evaluated. But
life isn’t always like that. Calculations often involve data of different primi-
tive types.

When calculations of mixed types are performed, lower-precision operands
are converted, or promoted, to the type of the operand that has the higher
precision.

The promotions are performed using the first of these rules that fits the
situation:

1. If either operand is a double, the other operand is converted to a double.

2. If either operand is a float, the other operand is converted to a float.

3. If either operand is a long, the other operand is converted to a long.

4. If either operand is an int, the other operand is promoted to an int.

5. If neither operand is a double, float, long, or an int, both operands are
promoted to int.

Table 2.11 summarizes these rules of promotion.

This arithmetic promotion of operands is called implicit type casting
because the compiler performs the promotions automatically, without our
specifying that the conversions should be made. Note that the data type of

TABLE 2.11 Rules of Operand Promotion

Data Type of One Data Type of Promotion of Data Type of
Operand Other Operand Other Operand Result

double char, byte, short, int, long, float double double

float char, byte, short, int, long float float

long char, byte, short, int long long

int char, byte, short int int

short char, byte Both operands are int
promoted to int

byte char Both operands are int
promoted to int

04387_CH02_Anderson.qxd 12/8/10 1:16 PM Page 73

74 CHAPTER 2 Programming Building Blocks—Java Basics

1 /* MixedDataTypes Class
2 Anderson, Franceschi
3 */
4
5 public class MixedDataTypes
6 {
7 public static void main(String [] args)
8 {
9 final double PI = 3.14159;
10 int radius = 4;

any promoted variable is not permanently changed; its type remains the
same after the calculation has been performed.

Table 2.11 shows many rules, but essentially, any arithmetic expression
involving integers and floating-point numbers will evaluate to a floating-
point number.

Lines 9 to 12 of Example 2.10 illustrate the rules of promotion. At line 11,
the expression PI * radius * radius is a mixed-type expression. This expres-
sion will be evaluated left to right, evaluating the mixed-type expression PI
* radius first. PI is a double and radius is an int. Therefore, radius is pro-
moted to a double (4.0) and the result of PI * radius is a double (12.56636).
Then, the next calculation (12.56636 * radius) also involves a mixed-type
expression, so radius is again promoted to a double (4.0). The final result,
50.26544, is a double and is assigned to area. Figure 2.9 shows the output of
the complete program.

Sometimes, it’s useful to instruct the compiler specifically to convert the
type of a variable. In this case, you use explicit type casting, which uses
this syntax:

(dataType) (expression)

The expression will be converted, or type cast, to the data type speci-
fied. The parentheses around expression are needed only when the
expression consists of a calculation that you want to be performed
before the type casting.

Type casting is useful in calculating an average. Example 2.10 shows how to
calculate your average test grade. Your test scores are 94, 86, 88, and 97,
making the combined total score 365. We expect the average to be 91.25.

04387_CH02_Anderson.qxd 12/8/10 1:16 PM Page 74

2.3 Expressions and Arithmetic Operators 75

11 double area = PI * radius * radius;
12 System.out.println(“The area is “ + area);
13
14 int total = 365, count = 4;
15 double average = total / count;
16 System.out.println(“\nPerforming integer division, ”
17 + “then implicit typecasting”);
18 System.out.println(“The average test score is “ + average);
19 // 91.0 INCORRECT ANSWER!
20
21 average = (double) (total / count);
22 System.out.println(“\nPerforming integer division, ”
23 + “then explicit typecasting”);
24 System.out.println(“The average test score is “ + average);
25 // 91.0 INCORRECT ANSWER!
26
27 average = (double) total / count;
28 System.out.println(“\nTypecast one variable to double, ”
29 + “then perform division”);
30 System.out.println(“The average test score is “ + average);
31 // 91.25 CORRECT ANSWER
32 }
33 }

EXAMPLE 2.10 Mixed Data Type Arithmetic

Line 15 first attempts to calculate the average but results in a wrong
answer because both total and count are integers. So integer division is
performed, which truncates any remainder. Thus, the result of total / count
is 91. Then 91 is assigned to average, which is a double, so 91 becomes 91.0.

Line 21 is a second attempt to calculate the average; again, this code does
not work correctly because the parentheses force the division to be per-
formed before the type casting. Thus, because total and count are both inte-
gers, integer division is performed again. The quotient, 91, is then cast to a
double, 91.0, and that double value is assigned to average.

At line 27, we correct this problem by casting only one of the operands to a
double. This forces the other operand to be promoted to a double. Then
floating-point division is performed, which retains the remainder. It doesn’t
matter whether we cast total or count to a double. Casting either to a double
forces the division to be a floating-point division.

04387_CH02_Anderson.qxd 12/8/10 1:16 PM Page 75

76 CHAPTER 2 Programming Building Blocks—Java Basics

Figure 2.9
Output of Example 2.10 The area is 50.26544

Performing integer division, then implicit typecasting
The average test score is 91.0

Performing integer division, then explicit typecasting
The average test score is 91.0

Typecast one variable to double, then perform division
The average test score is 91.25

Figure 2.9 shows the output of the complete program.

2.3.8 Shortcut Operators

A common operation in programming is adding 1 to a number (incre-
menting) or subtracting 1 from a number (decrementing). For example, if
you were counting how many data items the user entered, every time you
read another data item, you would add 1 to a count variable.

Because incrementing or decrementing a value is so common in program-
ming, Java provides shortcut operators to do this: ++ and – –. (Note that
there are no spaces between the two plus and minus signs.) The statement

count++;

adds 1 to the value of count, and the statement

count– –;

subtracts 1 from the value of count. Thus,

count++;

is equivalent to

count = count + 1;

To see the calculation of an average using mixed data types, look for the Chapter 2 Flash movie on
the CD-ROM accompanying this book. Click on the link for Chapter 2 to view the movie.

CODE IN ACTION

04387_CH02_Anderson.qxd 12/8/10 1:16 PM Page 76

2.3 Expressions and Arithmetic Operators 77

1 /* ShortcutOperators Class
2 Anderson, Franceschi
3 */
4
5 public class ShortcutOperators
6 {
7 public static void main(String [] args)
8 {
9 int a = 6;
10 int b = 2;
11
12 System.out.println(“At the beginning, a is “ + a);
13 System.out.println(“Increment a with prefix notation: “ + ++a);
14 System.out.println(“In the end, a is “ + a);

and

count– –;

is equivalent to

count = count - 1;

Both of these operators have prefix and postfix versions. The prefix ver-
sions precede the variable name (++a or – –a) whereas the postfix versions
follow the variable name (a++ or a– –). Both increment or decrement the
variable. If they are used as a single, atomic statement (as in the preceding
statements), there is no difference between the two versions. So

a++;

is functionally equivalent to

++a;

and

a--;

is functionally equivalent to

--a;

However, if they are used inside a more complex expression, then they dif-
fer as follows. The prefix versions increment or decrement the variable first,
then the new value of the variable is used in evaluating the expression. The
postfix versions increment or decrement the variable after the old value of
the variable is used in the expression.

Example 2.11 illustrates this difference.

04387_CH02_Anderson.qxd 12/8/10 1:16 PM Page 77

78 CHAPTER 2 Programming Building Blocks—Java Basics

15
16 System.out.println(“\nAt the beginning, b is “ + b);
17 System.out.println(“Increment b with postfix notation: “ + b++);
18 System.out.println(“In the end, b is “ + b);
19 }
20 }

EXAMPLE 2.11 Prefix and Postfix Increment Operators

Lines 9 and 10 declare and initialize two int variables, a and b, to 6 and 2,
respectively. In order to illustrate the effect of both the prefix and postfix
increment operators, we output their original values at lines 12 and 16. At
line 13, we use the prefix increment operator to increment a inside an out-
put statement; a is incremented before the output statement is executed,
resulting in the output statement using the value 7 for a. At line 17, we use
the postfix increment operator to increment b inside an output statement;
b is incremented after the output statement is executed, resulting in the
output statement using the value 2 for b. Lines 14 and 18 simply output the
values of a and b after the prefix and postfix operators were used at lines 13
and 17. Figure 2.10 shows the output of this example.

Another set of shortcut operators simplify common calculations that
change a single value. For example, the statement

a = a + 2: // add 2 to a

can be simplified as

a += 2; // add 2 to a

The value added to the target variable can be a variable name or a larger
expression.

Figure 2.10
Output of Example 2.11 At the beginning, a is 6

Increment a with prefix notation: 7
In the end, a is 7

At the beginning, b is 2
Increment b with postfix notation: 2
In the end, b is 3

04387_CH02_Anderson.qxd 12/8/10 1:16 PM Page 78

�

No spaces are allowed
between the arithmetic
operator (+) and the equal
sign. Note also that the
sequence is +=, not =+.

COMMON ERROR
TRAP

2.3 Expressions and Arithmetic Operators 79

The shortcut addition operator (+=) is a single operator; there are no spaces
between the + and the =. Also, be careful not to reverse the order of the opera-
tors. For example, in the following statement, the operators are reversed, so
the compiler interprets the statement as “assign a positive 2 to a.”

a =+ 2 ; // Incorrect! Assigns a positive 2 to a

Java provides shortcut operators for each of the basic arithmetic opera-
tions: addition, subtraction, multiplication, division, and modulus. These
operators are especially useful in performing repetitive calculations and in
converting values from one scale to another. For example, to convert feet to
inches, we multiply the number of feet by 12. So we can use the *= shortcut
operator:

int length = 3; // length in feet
length *= 12; // length converted to inches

Converting from one scale to another is a common operation in program-
ming. For example, earlier in the chapter we converted quarters, dimes, and
nickels to pennies. You might also need to convert hours to seconds, feet to
square feet, or Fahrenheit temperatures to Celsius.

Example 2.12 demonstrates each of the shortcut arithmetic operators. The
output is shown in Figure 2.11.

1 /* Shortcut Arithmetic Operators
2 Anderson, Franceschi
3 */
4
5 public class ShortcutArithmeticOperators
6 {
7 public static void main(String [] args)
8 {
9 int a = 5;
10 System.out.println(“a is “ + a);
11
12 a += 10; // a = a + 10;
13 System.out.println(“\nAfter a += 10; a is “ + a);
14
15 a -= 3; // a = a - 3;
16 System.out.println(“\nAfter a -= 3; a is “ + a);
17
18 a *= 2; // a = a * 2;
19 System.out.println(“\nAfter a *= 2; a is “ + a);
20
21 a /= 6; // a = a / 6;

04387_CH02_Anderson.qxd 12/8/10 1:16 PM Page 79

80 CHAPTER 2 Programming Building Blocks—Java Basics

Figure 2.11
Output of Example 2.12 a is 5

After a += 10; a is 15

After a -= 3; a is 12

After a *= 2; a is 24

After a /= 6; a is 4

After a %= 3; a is 1

22 System.out.println(“\nAfter a /= 6; a is “ + a);
23
24 a %= 3; // a = a % 3;
25 System.out.println(“\nAfter a %= 3; a is “ + a);
26 }
27 }

Example 2.12 Shortcut Arithmetic Operators

TABLE 2.12 Shortcut Operators

Shortcut Operator Example Equivalent Statement

++ a++; or ++a; a = a + 1;

– – a– –; or – –a; a = a – 1;

+= a += 3; a = a + 3;

–= a –=10; a = a – 10;

*= a *= 4; a = a • 4;

/= a /= 7; a = a / 7;

%= a %= 10; a = a % 10;

Table 2.12 summarizes the shortcut operators and Table 2.13 shows where
the shortcut operators fit into the order of operator precedence.

04387_CH02_Anderson.qxd 12/8/10 1:16 PM Page 80

2.3 Expressions and Arithmetic Operators 81

TABLE 2.13 Order of Operator Precedence

Order of Same-Statement
Operator Hierarchy Evaluation Operation

() left to right parentheses for explicit grouping

++, – – right to left shortcut postincrement

++, – – right to left shortcut preincrement

*, /, % left to right multiplication, division, modulus

+, – left to right addition or String concatenation, subtraction

=, +=, –=, *=, /=, %= right to left assignment operator and shortcut assignment operators

2.6.1 Multiple Choice Exercises

Question 3

2.6.2 Reading and Understanding Code

Questions 14, 15, 16, 17, 18, 19, 20, 21, 22

2.6.3 Fill In the Code

Questions 28, 30, 31

2.6.4 Identifying Errors in Code

Questions 36, 37

2.6.5 Debugging Area

Questions 42, 43

2.6.6 Write a Short Program

Question 45

2.6.8 Technical Writing

Question 51

Skill Practice
with these end-of-chapter questions

04387_CH02_Anderson.qxd 12/8/10 1:16 PM Page 81

82 CHAPTER 2 Programming Building Blocks—Java Basics

2.4 Programming Activity 2: Temperature Conversion
For this Programming Activity, you will write a program to convert a tem-
perature in Fahrenheit to Celsius. The conversion formula is the following:

Tc = 5 / 9 (Tf – 32)

where Tc is the temperature in Celsius and Tf is the temperature in Fahren-
heit, and 32 is the freezing point of water.

Locate the TemperatureConversion.java source file found in the Chapter 2,
Programming Activity 2 folder on the CD-ROM accompanying this book.
Copy the file to your computer. The source code is shown in Example 2.13.

1 /* Temperature Conversion
2 Anderson, Franceschi
3 */
4
5 public class TemperatureConversion
6 {
7 public static void main(String [] args)
8 {
9 //***** 1. declare any constants here
10
11
12 //***** 2. declare the temperature in Fahrenheit as an int
13
14
15 //***** 3. calculate equivalent Celsius temperature
16
17
18 //***** 4. output the temperature in Celsius
19
20
21 //***** 5. convert Celsius temperature back to Fahrenheit
22
23
24 //***** 6. output Fahrenheit temperature to check correctness
25
26
27 }
28 }

Example 2.13 TemperatureConversion.java

04387_CH02_Anderson.qxd 12/8/10 1:16 PM Page 82

2.5 Chapter Summary 83

SUM
M

ARY

DISCUSSION QUESTIONS
1. How did you change the expression 5 / 9 so that the value was not 0?

2. What constant(s) did you define?

3. What data type did you use for the Celsius temperature? Why?

?

Open the TemperatureConversion.java source file. You’ll notice that the
class already contains some source code. Your job is to fill in the blanks.

To verify that your code produces the correct output, add code to convert
your calculated Celsius temperature back to Fahrenheit and compare that
value to the original Fahrenheit temperature. The formula for converting
Celsius to Fahrenheit is:

Tf = 9 / 5 * Tc + 32

Before writing this program, you need to design a plan of attack. Ask yourself:

❥ What data do I need to define?

❥ What calculations should I make?

❥ What is the output of the program?

❥ How do I select data values so they will provide good test data for
my code?

Choose any input value for the Fahrenheit temperature. After you write the
program, try changing the original temperature value, recompiling and
rerunning the program to verify that the temperature conversion works for
multiple input values.

2.5 Chapter Summary
� Java programs consist of at least one class.

� Identifiers are symbolic names for classes, methods, and data.
Identifiers should start with a letter and may contain any combina-
tion of letters and digits, but no spaces. The length of an identifier
is essentially unlimited. Identifier names are case-sensitive.

� Java’s reserved words cannot be used as identifiers.

� The basic building block of a Java program is the statement. A state-
ment is terminated with a semicolon and can span several lines.

04387_CH02_Anderson.qxd 12/8/10 1:16 PM Page 83

84 CHAPTER 2 Programming Building Blocks—Java Basics

EX
ER

CI
SE

S,
PR

OB
LE

M
S,

AN
D

PR
OJ

EC
TS

� Any amount of white space is permitted between identifiers, Java
keywords, operands, operators, and literals. White space characters
are the space, tab, newline, and carriage return.

� A block, which consists of 0, 1, or more statements, starts with a
left curly brace and ends with a right curly brace. Blocks can be
used anywhere in the program that a statement is legal.

� Comments are ignored by the compiler. Block comments are
delineated by /* and */. Line comments start with // and continue
to the end of the line.

� Java supports eight primitive data types: double, float, long, int,
short, byte, char, and boolean.

� Variables must be declared before they are used. Declaring a variable
is specifying the data item’s identifier and data type. The syntax for
declaring a variable is: dataType identifier1, identifier2, . . .;

� Begin variable names with a lowercase letter. If the variable name
consists of more than one word, begin each word after the first
with a capital letter. Do not put spaces between words.

� An integer data type is one that evaluates to a positive or negative
whole number. Java recognizes four integer data types: int, short,
long, and byte.

� Floating-point data types store numbers with fractional parts. Java
supports two floating-point data types: the single-precision type
float, and the double-precision type double.

� The char data type stores one Unicode character. Because Unicode
characters are encoded as unsigned numbers using 16 bits, a char
variable is stored in two bytes of memory.

� The boolean data type can store only two values, which are
expressed using the Java reserved words true and false.

� The assignment operator (=) is used to give a value to a variable.

� To assign an initial value to a variable, use this syntax when declar-
ing the variable:

dataType variable1 = initialValue1;

� Literals can be used to assign initial values or to reassign the value
of a variable.

04387_CH02_Anderson.qxd 12/8/10 1:16 PM Page 84

2.5 Chapter Summary 85

EXERCISES,PROBLEM
S,AND PROJECTS

� Constants are data items whose value, once assigned, cannot be
changed. Data items that you know should not change throughout
the execution of a program should be declared as a constant, using
this syntax:

final dataType CONSTANT_IDENTIFIER = initialValue;

� Constant identifiers, by convention, are composed of all capital let-
ters with underscores separating words.

� An expression consists of operators and operands that evaluate to a
single value.

� The value of an expression can be assigned to a variable or constant,
which must be a data type compatible with the value of the expres-
sion and cannot be a constant that has been assigned a value already.

� Java provides binary operators for addition, subtraction, multipli-
cation, division, and modulus.

� Calculation of the value of expressions follows the rules of opera-
tor precedence.

� Integer division truncates any fractional part of the quotient.

� When an arithmetic operator is invoked with operands that are of
different primitive types, the compiler temporarily converts, or
promotes, one or both of the operands.

� An expression or a variable can be temporarily cast to a different
data type using this syntax:

(dataType) (expression)

� Shortcut operators ++ and – – simplify incrementing or decre-
menting a value by 1. The prefix versions precede the variable
name and increment or decrement the variable, then use its new
value in evaluation of the expression. The postfix versions follow
the variable name and increment or decrement the variable after
using the old value in the expression.

� Java provides shortcut operators for each of the basic arithmetic
operations: addition, subtraction, multiplication, division, and
modulus.

04387_CH02_Anderson.qxd 12/8/10 1:16 PM Page 85

86 CHAPTER 2 Programming Building Blocks—Java Basics

EX
ER

CI
SE

S,
PR

OB
LE

M
S,

AN
D

PR
OJ

EC
TS

2.6 Exercises, Problems, and Projects

2.6.1 Multiple Choice Exercises

1. What is the valid way to declare an integer variable named a? (Check
all that apply.)

❑ int a;

❑ a int;

❑ integer a;

2. Which of the following identifiers are valid?

❑ a

❑ sales

❑ sales&profit

❑ int

❑ inter

❑ doubleSales

❑ TAX_RATE

❑ 1stLetterChar

❑ char

3. Given three declared and initialized int variables a, b, and c, which of
the following statements are valid?

❑ a = b;

❑ a = 67;

❑ b = 8.7;

❑ a + b = 8;

❑ a * b = 12;

❑ c = a � b;

❑ c = a / 2.3;

❑ boolean t = a;

04387_CH02_Anderson.qxd 12/8/10 1:16 PM Page 86

2.6 Exercises, Problems, and Projects 87

EXERCISES,PROBLEM
S,AND PROJECTS

❑ a /= 4;

❑ a += c;

2.6.2 Reading and Understanding Code

4. What is the output of this code sequence?

double a = 12.5;
System.out.println(a);

5. What is the output of this code sequence?

int a = 6;
System.out.println(a);

6. What is the output of this code sequence?

float a = 13f;
System.out.println(a);

7. What is the output of this code sequence?

double a = 13 / 5;
System.out.println(a);

8. What is the output of this code sequence?

int a = 13 / 5;
System.out.println(a);

9. What is the output of this code sequence?

int a = 13 % 5;
System.out.println(a);

10. What is the output of this code sequence?

int a = 12 / 6 * 2;
System.out.println(a);

11. What is the output of this code sequence?

int a = 12 / (6 * 2);
System.out.println(a);

12. What is the output of this code sequence?

int a = 4 + 6 / 2;
System.out.println(a);

13. What is the output of this code sequence?

int a = (4 + 6) / 2;
System.out.println(a);

04387_CH02_Anderson.qxd 12/8/10 1:16 PM Page 87

88 CHAPTER 2 Programming Building Blocks—Java Basics

EX
ER

CI
SE

S,
PR

OB
LE

M
S,

AN
D

PR
OJ

EC
TS

14. What is the output of this code sequence?

double a = 12.0 / 5;
System.out.println(a);

15. What is the output of this code sequence?

int a = (int) 12.0 / 5;
System.out.println(a);

16. What is the output of this code sequence?

double a = (double) (12) / 5;
System.out.println(a);

17. What is the output of this code sequence?

double a = (double) (12 / 5);
System.out.println(a);

18. What is the output of this code sequence?

int a = 5;
a++;
System.out.println(a);

19. What is the output of this code sequence?

int a = 5;
System.out.println(a––);

20. What is the output of this code sequence?

int a = 5;
System.out.println(––a);

21. What is the output of this code sequence?

int a = 5;
a += 2;
System.out.println(a);

22. What is the output of this code sequence?

int a = 5;
a /= 6;
System.out.println(a);

2.6.3 Fill In the Code

23. Write the code to declare a float variable named a and assign a the
value 34.2.

// your code goes here

04387_CH02_Anderson.qxd 12/8/10 1:16 PM Page 88

2.6 Exercises, Problems, and Projects 89

EXERCISES,PROBLEM
S,AND PROJECTS

24. Write the code to assign the value 10 to an int variable named a.

int a;
// your code goes here

25. Write the code to declare a boolean variable named a and assign a the
value false.

// your code goes here

26. Write the code to declare a char variable named a and assign a the
character B.

// your code goes here

27. Write the code to calculate the total of three int variables a, b, and c
and print the result.

int a = 3;
int b = 5;
int c = 8;

// your code goes here

28. Write the code to calculate the average of two int variables a and b
and print the result. The average should be printed as a floating-
point number.

int a = 3;
int b = 5;

// your code goes here

29. Write the code to calculate and print the remainder of the division of
two int variables with the values 10 and 3 (the value printed will be 1).

int a = 10;
int b = 3;

// your code goes here

30. This code increases the value of a variable a by 1, using the shortcut
increment operator.

int a = 7;

// your code goes here

04387_CH02_Anderson.qxd 12/8/10 1:16 PM Page 89

90 CHAPTER 2 Programming Building Blocks—Java Basics

EX
ER

CI
SE

S,
PR

OB
LE

M
S,

AN
D

PR
OJ

EC
TS

31. This code multiplies the value of a variable a by 3, using a shortcut
operator.

int a = 7;

// your code goes here

32. Assume that we have already declared and initialized two int vari-
ables, a and b. Convert the following sentences to legal Java expres-
sions and statements.

❑ b gets a plus 3 minus 7

❑ b gets a times 4

❑ a gets b times b

❑ a gets b times 3 times 5

❑ b gets the quotient of the division of a by 2

❑ b gets the remainder of the division of a by 3

2.6.4 Identifying Errors in Code

33. Where is the error in this code sequence?

int a = 3.3;

34. Where is the error in this code sequence?

double a = 45.2;
float b = a;

35. Where is the error in this code sequence?

int a = 7.5 % 3;

36. What would happen when this code sequence is compiled and executed?

int a = 5 / 0;

37. Where is the error in this code sequence?

int a = 5;
a - = 4;

38. Is there an error in this code sequence? Explain.

char c = 67;

04387_CH02_Anderson.qxd 12/8/10 1:16 PM Page 90

2.6 Exercises, Problems, and Projects 91

EXERCISES,PROBLEM
S,AND PROJECTS

39. Is there an error in this code sequence? Explain.

boolean a = 1;

2.6.5 Debugging Area—Using Messages from the Java Compiler and Java JVM

40. You coded the following on line 8 of class Test.java:

int a = 26.4;

When you compile, you get the following message:

Test.java:8: possible loss of precision
int a = 26.4;

^
required: int
found : double

1 error

Explain what the problem is and how to fix it.

41. You coded the following on line 8 of class Test.java:

int a = 3

When you compile, you get the following message:

Test.java:8: ‘;’ expected
int a = 3

^

Explain what the problem is and how to fix it.

42. You coded the following in class Test.java:

int a = 32;
int b = 10;
double c = a / b;
System.out.println(“The value of c is “ + c);

The code compiles properly and runs, but the result is not what you
expected. The output is

The value of c is 3.0

You expected the value of c to be 3.2. Explain what the problem is and
how to fix it.

04387_CH02_Anderson.qxd 12/8/10 1:16 PM Page 91

92 CHAPTER 2 Programming Building Blocks—Java Basics

EX
ER

CI
SE

S,
PR

OB
LE

M
S,

AN
D

PR
OJ

EC
TS

43. You coded the following in class Test.java:

int a = 5;
a =+ 3;
System.out.println(“The value of a is “ + a);

The code compiles properly and runs, but the result is not what you
expected. The output is

The value of a is 3

You expected the value of a to be 8. Explain what the problem is and
how to fix it.

2.6.6 Write a Short Program

44. Write a program that calculates and outputs the square of each inte-
ger from 1 to 9.

45. Write a program that calculates and outputs the average of integers 1,
7, 9, and 34.

46. Write a program that outputs the following:

2.6.7 Programming Projects

47. Write a program that prints the letter X composed of asterisks (*).
Your output should look like this:

* *
* *
*
* *
* *

48. Write a program that converts 10, 50, and 100 kilograms to pounds (1
lb = 0.454 kg).

49. Write a program that converts 2, 5, and 10 inches to millimeters (1
inch = 25.4 mm).

50. Write a program to compute and output the perimeter and the area
of a circle having a radius of 3.2 inches.

04387_CH02_Anderson.qxd 12/8/10 1:16 PM Page 92

2.6 Exercises, Problems, and Projects 93

EXERCISES,PROBLEM
S,AND PROJECTS

2.6.8 Technical Writing

51. Some programmers like to write code that is as compact as possible,
for instance, using the increment (or decrement) operator in the
middle of another statement. Typically, these programmers document
their programs with very few comments. Discuss whether this is a
good idea, keeping in mind that a program “lives” through a certain
period of time.

52. Compare the following data types for integer numbers: int, short, and
long. Discuss their representation in binary, how much space they take
in memory, and the purpose of having these data types available to
programmers.

04387_CH02_Anderson.qxd 12/8/10 1:16 PM Page 93

04387_CH02_Anderson.qxd 12/8/10 1:16 PM Page 94

