100% 50

% PaleseR
BNEBN}D\:GXGB‘,\:G
L nl‘nl‘l’ghﬁmﬁ D'l:\'.‘:i‘_‘, %
ool Bul’aﬂl’

secTioN

Nursi
Nr ale Inf
mlnlstratci)\;g] Gas

|
L] Ca e

198 | SECTION IlI

Nursing Informatics Administrative Applications: Precare and Care Support

Nursing informatics (NI) and information technology (IT) have invaded nursing,
and some nurses are happy with the capabilities afforded by this specialty. Others,
however, remain convinced that changes wrought by IT are nothing more than a
nuisance. In the past, nursing administrators have found the implementation of
technology tools to be an expensive venture with minimal rewards. This is likely
related to their lack of knowledge about NI, which caused nursing administrators
to listen to vendors or other colleagues; in essence, it was decision making based
on limited and biased information. There were at least two reasons for the expe-
rience of limited rewards. One was the failure to include nurses in the testing and
implementation of products designed for nurses and nursing tasks. Second, the
new products they purchased had to interface with old, legacy systems and were
not at all compatible or seemed compatible until the glitches arose. The glitches
caused frustration for clinicians and administrators alike. They purchased tools
that should have made the nurses happy, but instead all they did was grumble. The
good news is that approaches have changed as a result of the difficult lessons
learned from the early forays into technology tools. Nursing personnel are in-
volved both at the agency level and the vendor level, in the decision making and
development of new systems and products charged with enhancing the practice of
nursing. Older legacy systems are being replaced with newer systems that have
more capacity to interface with other systems. Nurses and administrators have be-
come more astute in the realm of NI, but there is still a long way to go. Chapter
12 introduces the system development life cycle, used to make important and ap-
propriate organizational decisions for technology adoption.

Administrators need information systems that facilitate their administrative
role, and they particularly need systems that provide financial, risk management,
quality assurance, human resources, payroll, patient registration, acuity, commu-
nication, and scheduling functions. The administrator must be open to learning
about all of the tools available. One of the most important tasks that an adminis-
trator can oversee and engage in is data mining, or the extraction of data and in-
formation from sizeable data sets collected and warehoused. Data mining helps to
identify patterns in aggregate data, gain insights, and ultimately discover and gen-
erate knowledge applicable to nursing science. Nursing administrators must be-
come astute informaticists—knowledge workers who harness the information
and knowledge at their fingertips to facilitate the practice of their clinicians, im-
prove patient care, and advance the science of nursing. Clinical information sys-
tems (CIS) have traditionally been designed for use by one unit or department
within an institution. However, because clinicians working in other areas of the
organization need access to this information, these data and information are gen-
erally used by more than one area. The new initiatives arising with the develop-

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

Nursing Informatics Administrative Applications: Precare and Care Support

ment of the electronic health record place institutions in the position of striving
to manage their CIS through the electronic health record. Currently, there are
many CISs, including nursing, laboratory, pharmacy, monitoring, and order
entry, plus additional ancillary systems to meet the individual institutions’ needs.
Chapter 13 provides an overview of administrative information systems and helps
the reader to understand powerful data aggregation and data mining tools af-
forded by these systems.

Chapter 14, related to improving the human—technology interface, discusses
the need to improve quality and safety outcomes significantly in this country.
Through the use of IT, the designs for human—technology interfaces can be rad-
ically improved so that the technology better fits both human and task require-
ments. A number of useful tools are currently available for the analysis, design,
and evaluation phases of development life cycles and should be used routinely
by informatics professionals to ensure that technology better fits both task and
user requirements. In this chapter, the author stresses that the focus on interface
improvement using these tools has had a huge impact on patient safety in one
area of health care: anesthesiology. With increased attention from informatics
professionals and engineers, the same kinds of improvements should be possi-
ble in other areas. This human—technology interface is a crucial area if the the-
ories, architectures, and tools provided by the building block sciences are to be
implemented.

Each organization must determine who can access and use their information
systems, and provide robust tools for securing information in a networked envi-
ronment. It is also imperative that nurses understand copyright and fair use rules
as they apply to both written and electronic information. Chapter 15 introduces
these important safeguards for protecting information. As new technologies de-
signed to enhance patient care are adopted, barriers to implementation and resist-
ance by practitioners to change are frequently encountered. Chapter 16 provides
insights into clinical workflow analysis and provides advice on improving effi-
ciency and effectiveness to achieve meaningful use of caring technologies.

Pause to reflect on the Foundation of Knowledge Model (Figure III-1) and its
relationship to both personal and organizational knowledge management.
Consider that organizational decision making must be driven by appropriate in-
formation and knowledge developed in the organization and applied with wis-
dom. Equally important to adopting technology within an organization is the
consideration of the knowledge base and knowledge capabilities of the individu-
als within that organization. Administrators must use the system development life
cycle wisely, and carefully consider organizational workflow as they adopt NI
technology for meaningful use.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

200 | SECTION Il Nursing Informatics Administrative Applications: Precare and Care Support

FIGURE |
~\

-1 J Foundation of Knowledge model.

/
Feedback \ Feedback

KA - Knowledge acquisition
KD - Knowledge dissemination
KG - Knowledge generation
KP - Knowledge processing

Ba LL' Bytes

Bytes Bytes Bits
Data Information Bits
Data .
Bytes Information

ation

Data
its

SOURCE: Designed by Alicia Mastrian.

The reader of this section is challenged to ask the following questions: (1) How
can I apply the knowledge gained from my practice setting to benefit my patients
and enhance my practice; (2) How can I help my colleagues and patients under-
stand and use the current technology that is available; and (3) How can I use my
wisdom to create the theories, tools, and knowledge of the future?

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

Systems Development Life
Cycle: NI and Organizational
Decision Making

Dee McGonigle and Kathleen Mastrian

CASE
Envision two large healthcare facilities that merge resources to bet- m

ter serve their community. This merger is called the Wellness Shicf information
Alliance and its mission is to establish and manage community officer
health programming that addresses the health needs of their rural, Computer-aided software

underserved populations. They would like to establish pilot clinical engineering
sites in five rural areas to promote access and provide health care to Dynamic system
these underserved consumers. Each clinical site will have a full-time development method

End-users

rogram manager and three part-time employees (a secretary, a nurse
prog 8 P ploy (Y 3 Free/open source software

and a doctor). Each program manager will report to the Wellness Health management

Program Coordinator, a newly created position within the Well- information system

ness Alliance. Hospital information
Because you are a community health nurse with extensive experi- system

ence, you have been appointed as the Wellness Program Coordinator. :EIE;;?E;” technology

Your directive is to establish these clinical sites within 3 months and iR

report back in 6 months as to the following: (1) community health Iteration

programs offered, (2) level of community involvement in outreach Milestones

health programs and clinical site-based programming, (3) consumer MoSCoW

Object-oriented systems
development
Open source software

visits made to the clinical site, and (4) personnel performance.
You are excited and challenged, but soon reality sets in; you know

that you have five different sites with five different program man- Prototype
agers. Therefore, there must be some way to gather this information Rapid application
from each of them in a similar manner so that it is meaningful and development
useful to you as you develop your reports and evaluate the strengths Rapid prototyping
and weaknesses of the pilot project. You know that you need a sys- Repository
. ; . . . Systems development

tem that will handle all of the pilot project’s information needs. lfe cycle

Your first stop is the chief information officer of the health TELOS strategy
system, a nurse informaticist. You know her from the health . Waterfall model)

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

202 | CHAPTER 12

Systems Development Life Cycle: NI and Organizational Decision Making

management information system mini seminar that she led. After explaining
your needs, you also share with her that this system must be in place in 3 months
when the sites are up and running. When she begins to ask questions, you realize
that you do not know the answers. All you know is that you must be able to report
on what community health programs were offered, track the level of community
involvement in outreach health programs and clinical site-based programming,
monitor consumer visits made to the clinical site, and monitor the performance
of site personnel. You do know that you want accessible, real-time tracking but as
far as programming and clinical site-related activities, you do not have a precise
description of the process and procedures that will be involved in implementing
the pilot nor how they will gather and enter data.

The chief information officer requires that you and each program manager re-
main involved in the development process. She assigns an information technol-
ogy (IT) analyst to work with you and your team in the development of a system
that will meet your current needs. After the first meeting, your head is spinning
because the IT analyst has challenged your team not only to work out the process
for your immediate needs but also to envision what your needs will be in the fu-
ture. At the next meeting, you tell the analyst that your team does not feel com-
fortable trying to map everything out at this point. He states that there are several
ways to go about building the system and software by using the systems’ develop-
mental life cycle (SDLC). Noticing the blank look on everyone’s faces, he explains,
SDLC is a series of actions used to develop an information system. The SDLC is
similar to the nursing process where the nurse must assess, diagnose, plan, imple-
ment, evaluate, and revise. If this does not meet the patient’s need or if a new
problem arises, the nurse either revises and updates the plan or starts anew.
Therefore, you will plan, analyze, design, implement, operate, support, and secure
the system. The SDLC is an iterative process, a conceptual model that is used in
project management describing the phases involved in building or developing an
information system from assessing feasibility or project initiation, design analysis,
system specification, programming, testing, implementation, maintenance, and
destruction, literally from beginning to end. Once again, he saw puzzled looks
and quickly stated that even the destruction of the system is planned, how it will
be retired, broken down, and replaced with a new system. Even during upgrades,
destruction tactics can be invoked to secure the data and even decide if servers are
to be disposed of or repurposed. The security people will tell you that this is their
phase, where they make sure that any sensitive information is properly handled
whether the data is to be securely and safely archived or destroyed.

After reviewing all of the possible methods and helping you to conduct your
feasibility and business study, the analyst chose the dynamic system development
method (DSDM). This SDLC model was chosen because it works well when the

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

time span is short and the requirements are fluctuating and mainly unknown at
the outset. He explains that this model works well on tight schedules and is a
highly iterative and incremental approach stressing continuous user input and in-
volvement. As a highly iterative process, this means that the team will revisit and
loop through the same development activities numerous times; this repetitive ex-

amination provides ever-increasing levels of detail, thus improving accuracy. The
analyst explains that you will use a mockup of the hospital information system
(HIS) and design for what is known and then create your own mini system that
will interface with the HIS. Because time is short, the analysis, design, and devel-
opment phases will occur simultaneously while formulating and revising your
specific requirements through the iterative process so that they can be integrated
into the system.

The functional model iteration phase will be completed in 2 weeks based on
what you have given to the analyst. He explains further that, at that time, the pro-
totype will be reviewed by the team. He tells you to expect at least two or more it-
erations of the prototype based on your input. You should end with software that
provides some key capabilities. Design and testing will occur in the design and
build iteration phase until the system is ready for implementation, the final phase.
This DSDM should work well because any previous phase can be revisited and re-
worked through its iterative process.

One month into the SDLC process, the IT analyst tells the team that he will be
leaving his position at Wellness Alliance. He introduces his replacement. She is
new to Wellness Alliance and is eager to work with the team. The initial IT analyst
will be there 1 more week to help the new analyst with the transition. When he ex-
plains that you are working through DSDM, she looks a bit panicky and states that
she has never used that approach. She says that she has used the waterfall, proto-
typing, iterative enhancement, spiral, and object oriented methodologies but
never the DSDM. From what she heard, DSDM is new and often runs amok be-
cause of the lack of understanding as to how to implement it appropriately. After
1 week, she believes that this was not the best choice. As the leader of this SDLC,
she is growing concerned about having a product ready for when the clinical sites
open. She might combine another method to create a hybrid approach with which
she would be more comfortable; she is thinking out loud and has everyone very
nervous.

She reviews the equipment that has arrived for the sites and is excited that the
Mac computers were ordered from Apple. They will be powerful and versatile
enough for your needs. Two months after the opening of the clinical sites, you as
the wellness program coordinator are still tweaking the system with the help of
the IT analyst. It is hard to believe how quickly the team was able to get a robust
system in place. As you think back on the process it seems so long ago that you

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

204 | CHAPTER 12

Systems Development Life Cycle: NI and Organizational Decision Making

reviewed the HIS for deficiencies and screen shots. You re-examined your require-
ments and watched them come to life through five prototype iterations and con-
stant security updates. You trained your personnel on its use, tested its performance,
and made final adjustments before implementation. Your own standalone system
that met your needs was installed and fully operational on the Friday before you
opened the clinic doors on Monday, 1 day ahead of schedule. You are continuing
to evaluate and modify the system, but that is how the SDLC works: it is never fin-
ished, but rather constantly evolving.

INTRODUCTION

This case scenario demonstrates the need to have all of the stakeholders involved
from the beginning to the end of the SDLC. Creating the right team to manage
the development is a key. Various methodologies have been developed to guide the
process. This chapter reviews the following approaches to SDLC: waterfall, rapid
prototyping or rapid application development (RAD), object-oriented system
development (OOSD), and DSDM. When reading about each approach, think
about the case scenario and how important it is to understand the specific situa-
tional needs and the various methodologies for bringing a system to life. As in this
case, it is generally necessary or beneficial to use a hybrid approach that blends
two or more models for a robust development process.

As the case demonstrates, the process of developing systems or SDLC is an on-
going development with a life cycle. The first step in developing a system is to un-
derstand the problem or business needs; followed by understanding the solution
or how to address those needs; developing a plan; implementing the plan; evalu-
ating the implementation; and finally, maintenance, review, and destruction. If
the system needs major upgrading outside of the scope of the maintenance phase,
needs to be replaced because of technologic advances, or if the business needs
change, a new project is launched, the old system is destroyed, and the life cycle
begins anew.

SDLC is a way to deliver efficient and effective information systems that fit with
the strategic business plan of an organization. The business plan stems from the
mission of the organization. In the world of health care, this includes the needs as-
sessment for the entire organization, which should include outreach linkages (as
seen in the case scenario) and partnerships and merged or shared functions. The
organization’s participating physicians and other ancillary professionals and their
offices are included in thorough needs assessments. When developing a strategic
plan, the design must take into account the existence of the organization within
the larger health care delivery system and also assess those factors outside of the
organization itself including technologic, legislative, and environmental issues
that impact the organization. The plan must identify the needs of the organiza-
tion as a whole and solutions to meet the needs or a way to address the issues.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

Waterfall Model

SDLC can occur within an organization, be outsourced, or be a blending of the
two. By outsourcing, the team hires an outside organization to carry out all or
some of the development. Developing systems that truly meet business needs is
not an easy task and is quite complex. Therefore, it is common to run over budget
and miss milestones. When reading this chapter, reflect on the case scenario and
in general the challenges teams face when developing systems.

WATERFALL MODEL

The waterfall model is one of the oldest methods and literally depicts a waterfall
effect; the output from each previous phase flows into or becomes the initial input
for the next phase. This model is a sequential development process because there
is one pass through each component activity from conception or feasibility
through implementation in a linear order. The deliverables for each phase result
from the inputs and any additional information that is gathered. There is minimal
or no iterative development where one takes advantage of what was learned dur-
ing the development of earlier deliverables. Many projects are broken down into
six phases (Figure 12-1), especially small- to medium-size projects.

[Waterfall phases. L 12-1

Feasibility

Maintain

& Bartlett

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

206 | CHAPTER 12

Systems Development Life Cycle: NI and Organizational Decision Making

Feasibility

As the term implies, the feasibility study is used to determine if the project should
be initiated and supported. This study should generate a project plan and esti-
mated budget for the SDLC phases. Often, the TELOS strategy is followed: tech-
nologic and systems, economic, legal, operational, and schedule feasibility.
Technologic and systems feasibility addresses the issues of technologic capabilities
including the expertise and infrastructure to complete the project. Economic fea-
sibility is the cost—benefit analysis, weighing the benefits versus the costs to deter-
mine if the project is fiscally possible to do and worth undertaking. Formal
assessments should include return on investment. Legal feasibility assesses the
legal ramifications of the project including current contractual obligations, legis-
lation, regulatory bodies, and liabilities that could affect the project. Operational
feasibility determines how effective the project will be in meeting the needs and
expectations of the organization and actually achieving the goals of the project or
addressing and solving the business problem. Schedule feasibility assesses the vi-
ability of the timeframe, making sure it is a reasonable estimation of the time and
resources necessary for the project to be developed in time to attain the benefits
and meet constraints. TELOS helps to provide a clear picture of the feasibility of
the project.

Analysis

During the analysis phase, the requirements for the system are teased out from a
detailed study of the business needs of the organization. This is when work flows
and business practices are examined. It may be necessary to consider options for
changing the business process.

Design

The design phase focuses on high- and low-level design and interface and data de-
sign. At the high-level phase, the team establishes what programs are needed and
ascertains how they are going to interact. At the low end phase, they explore how
the individual programs are actually going to work. The interface design deter-
mines what the look and feel will be or what the interfaces will look like. During
data design, the team critically thinks about and verifies what data are required or
essential.

The analysis and design phases are vital in the development cycle and great
care is taken during these phases to ensure that the software’s overall configura-
tion is defined properly. Mockups or prototypes of screen shots, reports, and
processes may be generated to clarify the requirements and get the team or stake-
holders on the same page, limiting the occurrence of glitches resulting in costly
software development resolutions later in the project.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

Rapid Prototyping or Rapid Application Development

Implement

During this phase, the designs are brought to life through programming code. The
right programming language, such as C+ +, Pascal, Java, and so forth, is chosen
based on the application requirements.

Test

The testing is generally broken down into five layers: (1) the individual program-
ming modules, (2) integration, (3) volume, (4) the system as a whole, and (5) beta
testing. Typically, the programs are developed in a modular fashion and these in-
dividual modules are subjected to detailed testing. The separate modules are then
synthesized and the interfaces between the modules are tested. The system is eval-
uated with respect to its platform and expected amount or volume of data. The sys-
tem is then tested as a complete system by the team. Finally, to determine if the
system performs appropriately for the user, it is beta tested. During beta testing,
users put the new system through its paces to make sure that it does what they
need it to do to perform their jobs.

Maintain

Once the system has been finalized from the testing phase, it must be maintained.
This could include user support through actual software changes necessitated
through use or time.

The waterfall approach is linear and progresses sequentially. The main lack of
iterative development is seen as a major weakness according to Purcell (2007).
No projects are static and typically changes occur during the SDLC. As require-
ments change there is no way formally to address them using the waterfall
method after project requirements are developed. The waterfall model should be
used for simple projects when the requirements are well-known and stable from
the outset.

RAPID PROTOTYPING OR

RAPID APPLICATION DEVELOPMENT

As technology advances and faster development is expected, RAD provides a fast
way to add functionality through prototyping and user testing. It is easier for users
to examine actual prototypes rather than documentation. There is a rapid require-
ments gathering phase using workshops and focus groups to build a prototype ap-
plication using real data. This is then beta tested with users and their feedback is
used to perfect or add functionality and capabilities to the system. According to
Alexandrou (2010), “RAD (rapid application development) proposes that prod-
ucts can be developed faster and of higher quality” (para. 1). The RAD approach
uses informal communication, repurposes components, and typically follows a

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

208 | CHAPTER 12

Systems Development Life Cycle: NI and Organizational Decision Making

fast-paced schedule. Object-oriented programming using such languages as C++
and Java promotes software repurposing and reuse.

The major advantage is the speed with which the system can be deployed; a
working, usable system can be built within 3 months. The use of prototyping al-
lows the developers to skip steps in the SDLC process in favor of getting a
mockup in front of the user. At times, the system is deemed acceptable if it meets
a predefined minimum set of requirements rather than all of the identified re-
quirements. This rapid deployment also limits the project’s exposure to change
elements. The fast pace can also be its biggest disadvantage. Once one is locked
into a tight development schedule, the process may be too fast for adequate test-
ing to be in place and completed. The most dangerous lack of testing is in the
realm of security.

The RAD approach is chosen because it builds systems quickly through user-
driven prototyping and adherence to quick, strict delivery milestones. This ap-
proach continues to be refined and honed and other contemporary manifestations
of RAD continue to emerge in the agile software development realm.

OBJECT-ORIENTED SYSTEMS DEVELOPMENT

The OOSD model “combines the logic of the systems development life cycle with
the power of object-oriented modeling and programming” (Stair & Reynolds,
2008, p. 501). Object-oriented modeling makes an effort to represent real world
objects; modeling the real world entities or things (e.g., hospital, patient, account,
nurse) into abstract computer software objects. Once the system is object ori-
ented, all of the interactions or exchanges take place between or among the ob-
jects. The objects are derived from classes and “an object consists of both data and
the actions that can be performed on the data” (Stair & Reynolds, p. 501). Class
hierarchy allows objects to inherit characteristics or attributes from parent classes
and this fosters object reuse resulting in less coding. The object-oriented pro-
gramming languages, such as C++ and Java, promote software repurposing and
reuse. Therefore, the class hierarchy must be clearly and appropriately designed to
reap the benefits of this SDLC approach, which uses object-oriented program-
ming to support the interactions of objects.

For example, in the case scenario, a system could be developed for the Wellness
Alliance to manage the community health programming for the clinic system
being set up for outreach. There could be a class of programs and well-baby care
could be an object in the class of programs; programs is a relationship between
Wellness Alliance and well-baby care. The program class has attributes, such as
clinic site, location address, or attendees or patients. The relationship itself may be
considered an object having attributes, such as pediatric programs. The class hi-

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

Dynamic System Development Method

erarchy from which all of the system objects are created with resultant object in-
teractions must be clearly defined.

The OOSD model is a highly iterative approach. The process begins by inves-
tigating where object-oriented solutions can address business problems or needs,
determining user requirements, designing the system, programming or modifying
object modeling (class hierarchy and objects), implementing, user testing, modi-
fying, and implementing the system, and ends with the new system being re-
viewed regularly at established intervals and modifications being made as needed
throughout its life.

DYNAMIC SYSTEM DEVELOPMENT METHOD

DSDM is a highly iterative and incremental approach with a high level of user
input and involvement. The iterative process requires repetitive examination that
enhances detail and improves accuracy. The DSDM has three phases: (1) prepro-
ject; (2) project life cycle (feasibility and business studies, functional model itera-
tion, design and build iteration, and implementation); and (3) postproject.

In the preproject phase, buy-in or commitment is established and funding is
secured. This helps to identify the stakeholders (administration and end-users)
and gain support for the project.

In the project life cycle phase, the project’s life cycle begins. There are five steps
during this phase: (1) feasibility, (2) business studies, (3) functional model itera-
tion, (4) design and build iteration, and (5) implementation.

In steps one and two, the feasibility and business studies are completed. The
team ascertains if this project meets the required business needs while identifying
the potential risks during the feasibility study. In step one, the deliverables are a
feasibility report, project plan, and a risk log. Once the project is deemed feasible
step two, the business study, is begun. The business study extends the feasibility
report by examining the processes, stakeholders, and their needs. It is important
to align the stakeholders with the project and secure their buy-in because it is nec-
essary to have user input and involvement throughout the entire DSDM process.
Therefore, bringing them in at the beginning of the project is imperative.

Using the MoSCoW approach, the team works with the stakeholders to de-
velop a prioritized requirements list and a development plan. The MoSCoW ap-
proach stands for Must have, Should have, Could have, and Would have. The
“must have” requirements are needed to meet the business needs and are critical
to the success of the project. “Should have” requirements are those that would be
great to have if possible, but the success of the project does not depend on them
being addressed. The “could have” requirements are those that would be nice to
have met, and the “would have” are those requirements that can be put off until

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

210 | CHAPTER 12

Systems Development Life Cycle: NI and Organizational Decision Making

later; these may be undertaken during future developmental iterations.
Timeboxing is generally used to develop the project plan. In timeboxing, the proj-
ect is divided into sections with each having its own fixed budget and dates or
milestones for deliverables. The MoSCoW approach is then used to prioritize the
requirements within each section; the requirements are the only variables because
the schedule and budget are set. If a project is running out of time or money, the
team can easily omit the requirements that have been identified as the lowest pri-
ority to meet their schedule and budget obligations. This does not mean that the
final deliverable, the actual system, would be flawed or incomplete. Instead, it
meets the business needs. According to Haughey (2010), the 80/20 rule or Pareto
principle can be applied to nearly everything. Using the Pareto principle, 80% of
the project comes from 20% of the system requirements; therefore, the 20% of re-
quirements must be the crucial requirements or those with the highest priority.
One also must consider the pancake principle: the first pancake is not as good as
the rest, and one should know that the first development is not going to be per-
fect. This is why it is extremely important to clearly identify the “must have” and
“should have” requirements.

In the third step, functional model iteration, the deliverables are a functional
model and prototype ready for user testing. Once the requirements are identified
the next step is to translate them into a functional model with a functioning pro-
totype that can be evaluated by users. This could take several iterations to develop
the wanted functionality and incorporate the users’ input. At this stage, the team
should examine the quality of the product and revise the list requirements and
risk log. The requirements are adjusted, the ones that have been realized are
deleted, and the remaining requirements are prioritized. The risk log is revised
based on the risk analysis completed during and after prototype development.

The design and build iteration step focuses on integrating functional compo-
nents and identifying the nonfunctional requirements that need to be in the tested
system. Testing is crucial; the team will develop a system that the end-users
can safely use on a daily basis. The team will garner user feedback and generate
user documentation. These efforts provide this step’s deliverable, a tested system
with documentation for the next and final phase of the development process.

In the final step, implementation, deliverables are the system (ready to use),
documentation, and trained users. The requirements list should be satisfied along
with the users’ needs. Training users and implementing the approved system is the
first part of this phase, and the final part consists of a full review. It is important
to review the impact of the system on the business processes and determine if it
addressed the goals or requirements established at the beginning of the project.
This final review determines if the project is completed or if further development
is necessary. If further development is needed, preceding phases are revisited. If it

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

Computer-Aided Software Engineering Tools

is complete and satisfies the users, then it moves into postproject (maintenance
and ongoing development).

The final phase is labeled “postproject.” The team verifies that the system is
functioning properly. Once verified, the maintenance schedule is begun. Because
the DSDM is iterative, this postproject phase is seen as ongoing development and
any of the deliverables can be refined. This is what makes the DSDM such an it-
erative development process.

DSDM is one of an increasing number of agile methodologies, such as Scrum
and Extreme Programming. These new approaches address the organizational,
managerial, and interpersonal communication issues that bog down SDLC proj-
ects. Empowering teams and user involvement enhance the iterative and pro-
gramming strengths provided in these SDLC models.

COMPUTER-AIDED SOFTWARE ENGINEERING TOOLS

When reviewing SDLC, the computer-aided software engineering (CASE) tools
must be described. The “CASE tools automate many of the tasks required in a sys-
tems development effort and encourage adherence to the SDLC, thus instilling a
high degree of rigor and standardization to the entire systems development
process” (Stair & Reynolds, 2008, p. 500). These tools help to reduce cost and de-
velopment time while enriching the quality of the product. The CASE tools con-
tain a repository with information about the system: models, data definitions,
and references linking models together. They are valuable in their ability to make
sure the models follow diagramming rules and are consistent and complete. They
can be referred to as upper CASE tools or lower CASE tools. The upper CASE
tools support the analysis and design phases, whereas the lower CASE tools sup-
port implementation. The tools can also be general or specific in nature with the
specific tools being designed for a particular methodology. Two examples of CASE
tools are Visible Analyst and Rational Rose. According to Andoh-Baidoo, Kunene,
and Walker (n.d.), Visible Analyst “supports structured and object-oriented de-
sign (UML),” whereas Rational Rose “supports solely object-oriented design
(UML)’ (p. 372). They can both “build and reverse database schemas for SQL and
Oracle” and “support code generation for pre.NET versions of Visual Basic”
(p. 372). Visible Analyst can also support shell code generation for pre.NET ver-
sions of C and COBOL, whereas Rational Rose can support complete code for
C++ and Java. In addition, Andoh-Baidoo et al. found that Rational Rose
“Provides good integration with Java, and incorporates common packages into
class diagrams and decompositions through classes” (p. 372). The CASE tools
have many advantages including decreasing development time and producing
more flexible systems. On the down side, they can be difficult to tailor or cus-
tomize and use with existing systems.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

212 | CHAPTER 12

Systems Development Life Cycle: NI and Organizational Decision Making

OPEN SOURCE SOFTWARE AND FREE/OPEN SOURCE
SOFTWARE

Another area that must be discussed with SDLC is open source software (OSS).
An examination of job descriptions or advertisements for candidates shows that
many IS and IT professionals need a thorough understanding of SDLC and OSS
development tools (e.g., PHP, MySQL, and HTML). This is because, with OSS, any
programmer can implement, modify, apply, reconstruct, and restructure the rich
libraries of source codes available from proven, well-tested products. Vauldes
(2008) offers “Examples of FOSS successes are the Internet, Google, Web 2.0, the
GNU/Linux operating system, courseware such as Moodle, and the Veterans
Affairs VistA hospital system” (p. 7).

To transform health care it is necessary for clinicians to use information sys-
tems that can share patient data (Goulde & Brown, 2006). This all sounds terrific
and many people wonder why it has not as yet happened, but the challenges are
many. How does one establish the networks necessary to share data between and
among all healthcare facilities easily and securely? “Healthcare IT is beginning to
adopt open source software to address these challenges” (Goulde & Brown, p. 4).
Early attempts at OSS ventures in the healthcare realm failed because of a lack of
support or buy-in for sustained effort, technologic lags, authority and credibility,
and other such issues. “Spurred by a greater sense of urgency to adopt IT, health
industry leaders are showing renewed interest in open source solutions” (Goulde
& Brown, p. 5). Health care is realizing the benefits of OSS. Goulde and Brown
stated that “other benefits of open source software—low cost, flexibility, opportu-
nities to innovate—are important but independence from vendors is the most rel-
evant for health care” (p. 10).

INTEROPERABILITY

Interoperability, the ability to share information across organizations, will re-
main paramount under the HITECH Act (see Chapter 10). The ability to share
patient data is extremely important, both within an organization and across orga-
nizational boundaries. According to HIMSS (2010), few healthcare systems take
advantage of the full potential of the current state of the art in computer science
and health informatics. The consequences of this situation include a drain on fi-
nancial resources from the economy, the inability to truly mitigate the occurrence
of medical errors, and a lack of national preparedness to respond to natural and
man-made epidemics and disasters. HIMSS has created the Integration and In-
teroperability Steering Committee to guide the industry on allocating resources to
develop and implement standards and technology needed to achieve interoper-
ability (para. 2).

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

Conclusion

As we enter into SDLCs, we must be aware of the impact on our own health-
care organization and the impact on the healthcare delivery system as a whole. In
an ideal world, we would all work together to create systems that are integrated
within our own organization while having the interoperability to cross organiza-
tional boundaries and unite the healthcare delivery system to realize the common
goal of improving the quality of care provided to consumers.

CONCLUSION

At times during the SDLC, new information affects the outputs from earlier
phases and the development effort may be re-examined or halted until these mod-
ifications can be reconciled with the current design and scope of the project.
There are times that teams are overwhelmed with new ideas from the iterative
SDLC process that result in new capabilities or features that exceed the initial
scope of the project. Astute team leaders preserve these ideas or initiatives so they
can be considered at a later time. The team should develop a list of recommenda-
tions to improve the current software when the project is complete. This iterative
and dynamic exchange makes the SDLC robust.

As technology and research continue to advance, new SDLC models are pio-
neered and introduced to enhance techniques. The interpretation and implemen-
tation of any model selected reflects the knowledge and skill of the team applying
the model. The success of the project is often directly related to the quality of the
organizational decision making throughout the project; how well the plan was fol-
lowed and documented. United efforts to create systems that are integrated and
interoperable will define the future of health care.

Questions

1. How would you describe cognitive informatics? Reflect on a plan of care that you
have developed for a patient. How could cognitive informatics be used to create
tools to help with this important work?

2. Think of a clinical setting you are familiar with and envision artificial intelligence
tools. Are there any current tools in use? What tools would enhance practice in this
setting and why?

3. Reflect on the SDLC in relation to the quality of the organizational decision making
throughout the project. What are some of the major stumbling blocks faced by
healthcare organizations?

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

214 | CHAPTER 12 Systems Development Life Cycle: NI and Organizational Decision Making

LT II|1|||||||||||

For a full suite of assignments and additional learning activities, use the access code located in the
front of your book to visit this exclusive website: http://go.jblearning.com/mecgonigle. If you do not
have an access code, you can obtain one at the site.

References

Alexandrou, M. (2010). Rapid application development (RAD) methodology. Retrieved from http://www
.mariosalexandrou.com/methodologies/rapid-application-development.asp

Andoh-Baidoo, E., Kunene, K., & Walker, R. (n.d.). An evaluation of CASE tools as pedagogical aids in
software development courses. Retrieved from http://www.swdsi.org/swdsi 2009/Papers/9K10.pdf

Brown, P. (2010). Free software is a matter of liberty, not price. Retrieved from http://www.fsf.org/
about/

Goulde, M., & Brown, E. (2006). Open source software: A primer for health care leaders. Retrieved from
http://www.chcf.org/~/media/Files/PDF/O/OpenSourcePrimer.pdf

Haughey, D. (2010). Pareto analysis step by step. Retrieved from http://www.projectsmart.co .uk/pareto
-analysis-step-by-step.html

HIMSS. (2010). Integration and interoperability. Retrieved from http://www.himss.org/ASP/topics_
integration.asp

Lee, M. (2009). FSF announces new executive director. Retrieved from http://www.fsf.org/news/new-
executive-director.html

Purcell, J. (2007). Comparison of software development lifecycle methodologies. Retrieved from http://
www2.giac.org/resources/whitepaper/application/217.pdf

Stair, R., & Reynolds, G. (2008). Principles of information systems (8th ed.). Boston, MA: Thomson
Course Technology.

Vauldes, 1. (2008). Free and open source software in healthcare 1.0: American Medical Informatics
Association. Open Source Working Group White Paper. Retrieved from Https://Www.Amia.Org/
Files/Final-Os-Wg%?20white%20paper_11_19_08.Pdf

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

