Generics, Collections,
and Testing

Objectives
= An introduction to the use of the Java generic construct

= An introduction to the Java Collections Framework, including the Java
LinkedList data structure

= An introduction to the use of the Java iterator construct
= Implementation of a user-constructed Collection class

= Testing using JUnit

Key Terms
collection foreach iterator
elements generics JCF

Introduction

We claimed at the outset that this was a text on computing using Java as the
vehicle, not a text on programming in Java. This chapter will come closest to
violating that principle because we will cover three specifics of Java that aid in the
writing of correct and understandable programs. By using generics, one can write
general-purpose code that operates on more than one underlying data payload type.
By building collections, one can create code packages (such as code for a linked list)
that can be used as an extension to the base language by other programmers. And
by creating test suites with JUnit, one can provide standard modules for testing
code both now and after future modifications.

B 5.1 Using Generics for the Data Payload

In our code fragments in Figures 4.3 and 4.4 the use of the Record class was per-
vasive; this class was the data payload carried by a DLLNode. However, in this

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

85

86

CHAPTER 5 GENERICS, COLLECTIONS, AND TESTING

code we did something that is contrary to our general mantra that details of
data should be confined to the code that has a clear need to know about details.
Namely, we included in our DLLNode a specific textual reference to the Record class.
However, the linked list data structure should concern itself not with the nature
of the data payload but only with the existence of a payload of some definable
data type.

Think of the cases in which this is true. The DLLNode code refers in a few places
to the instance of the Record class that is the payload for that particular node.
It does not, however, actually do anything with the contents of the instance of
Record. Similarly, the DLL code makes no reference to the contents of a Record; it,
too, handles the instance of Record simply as a pass-through entity.

Consider also the inner loop code of the bubblesort in Figure 3.10. There is a
compareTo method that is called to determine which of two instances of the data
is “smaller,” but otherwise the code is moving entire instances of the data class
around.

Java provides through its generic feature the ability to write code to manipulate
entire instances of a class without specifying what that class is. For example, what
one really wants to write as a swap method for the bubblesort (or any other sort,
for that matter) is

void swap(ArrayList<T> list, int subl, int sub2)
{

T temp;

temp = list.get(sub2);

list.set(sub2, this.get(subl));

list.set(subl, temp);

where T is replaced by whatever happens to be the data type/class name of the
moment. In fact, this is exactly what we write. The T is taken by the compiler to
be a generic data type, and only if someone were to invoke this method from a code
fragment like

ArrayList<String> myList;
swap (myList, i, j);
would the compiler then finish the job by creating a swap method to swap instances
of String data.
We can rewrite the simplistic code in Figures 4.3 and 4.4 to make use of the

generic construct of Java. We have already used generics in this text, probably
without knowing that this is what we are doing—the ArrayList is defined with a

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

5.1 Using Generics for the Data Payload

generic data type that is instanced, for example, when we define an ArrayList of
Record type with the line

ArrayList<Record> myList;

The basic syntax for using generics is exactly the syntax we have been using
for an Arraylist. The code that would define the use of a generic would look
something like Arraylist<T>, with the T being essentially a symbolic reference to
a data type. When we use an Arraylist, we have to supply an actual data type as
in the preceding Arraylist declaration.

Our rewrite of Figures 4.3 and 4.4 to define classes DLL<T> and DLLNode<T> using
generics appears in part in Figures 5.1-5.5.

public class DLL<T extends Comparable<T>>
{

private int size;

private DLLNode<T> head;

private DLLNode<T> tail;

public DLL()

{
this.head = new DLLNode<T>();
this.tail = new DLLNode<T>();
head.setNext(this.tail);
tail.setPrev(this.head);
this.setSize(2);

}
private DLLNode<T> getHead()
{
return this.head;
}
private void setHead(DLLNode<T> value)
{
this.head = value;
}

CODE FOR THE SIZE VARIABLE HERE ...
private DLLNode<T> getTail()

{
return this.tail;
}
private void setTail(DLLNode<T> value)
{
this.tail = value;
}
MORE CODE ...

FIGURE 5.1 B Code fragment for a doubly-linked list using generics, part 1.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

87

88

CHAPTER 5 GENERICS, COLLECTIONS, AND TESTING

private void linkAfter (DLLNode<T> baseNode, DLLNode<T> newNode)

{
newNode.setNext (baseNode.getNext ()) ;
newNode.setPrev(baseNode) ;
baseNode.getNext () . setPrev(newNode) ;
baseNode.setNext (newNode) ;
this.incSize();

}

private void unlink (DLLNode<T> node)

{
node.getNext () .setPrev(node.getPrev());
node.getPrev() .setNext (node.getNext());
node.setNext (null);
node.setPrev(null);
this.decSize();

FIGURE 5.2 B Code fragment for a doubly-linked list using generics, part 2.

We note that the only change needed in the code to use these classes is that the
d11 instance variable that is the linked list must be declared and constructed with
DLL<Record> in a manner entirely analogous to the ArrayList<Record> mentioned
previously.

The use of the generic for the type of the data payload permits the linked list
class and the node class to include a payload of a type that is unspecified (one might
almost say “generic”) until the point at which the code is compiled and executed.
Since neither the linked list class nor the node class actually do anything with the
payload other than pass it forward and backward and move it around as an entire
unit, these two classes need not know anything about what that payload is. This
permits these two classes to be written once and for all (just as the ArrayList
class was) without having to specify much of anything about the nature of the
payload. You can almost view the T of the generic as a variable name that is passed
to the compiler; unless and until the compiler actually needs to do something that
depends on the value of the variable (the three things that we will deal with here are
comparison, input, and output), the compiler does not need to have that variable
given a value. Things like copying are legal for any variable, so code for copying
instances of a variable is legal without knowing what the value of the variable
happens to be.

A close comparison of the code in Figures 4.4 and 5.1 shows that essentially
nothing has changed except a slight bit of syntax. The major changes, however,
come from the fact that the code for DLL<T> and DLLNode<T>, since they no longer
explicitly reference the Record class, can now no longer make use of the knowledge
of the specific methods that are implemented for the Record class; the compiler

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

5.1 Using Generics for the Data Payload

[/ skokok sk ke ok sk ke sksk sk sk sk ok sk sk sk ok stk s ok sk sk ke ok stk ok sk sk sk sk sk sk sk sk ok sk sk ok stk ok sksk sk sk sk sk sk ok
* Method to find if a list has a given data item.

* @param dllData the <code>T</code> to match against.

* Q@return the <code>boolean</code> answer to the question.
*x/
public boolean contains(T dllData)

{

boolean returnValue = false;
DLLNode<T> foundNode = null;
foundNode = this.containsNode(dllData);
if (null !'= foundNode)
{

returnValue = true;
}

return returnValue;

/***

*
*
*
*

*%

/

Method to remove a node with a given record as data.

@param dllData the <code>T</code> to match against.

Q@return the <code>boolean</code> as to whether the record was
found and removed or not.

public boolean remove(T dllData)

{

boolean returnValue = false;
DLLNode<T> foundNode = null;
foundNode = this.containsNode(dllData);
if (null !'= foundNode)
{

this.unlink (foundNode) ;

returnValue = true;
}

return returnValue;

FIGURE 5.3 B Code fragment for a doubly-linked list using generics, part 3.

will not accept the use of methods that it cannot guarantee will exist for every type
that might possibly be passed as T to DLL<T> and DLLNode<T>.

Consider that one of our basic operations is to search the Phonebook for an entry,
that is, to use a contains method. Such a method was achieved in our early version
of the code by walking through the array and using a compareName method to
compare the name variable of a target entry against the name variable of the entries
in the list. Almost no data types, however, will possess a compareName method, and
yet the compiler, were it to see a reference to nodeData.compareName (*), would

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

89

CHAPTER 5 GENERICS, COLLECTIONS, AND TESTING

/3 skk kst stk sk ok sk ok ok sk sk ok sk ke ksl sk sk skl ks skl sk ok sk sk sk ok sk sk sk sk ok sk ki sk sk sk ok sk sk ok ok skok
* Method to return the node with a given data item in it, else null.
* This method eliminates duplicate code in <code>contains</code>
* and <code>remove</code>.

* @param dllData the <code>T</code> to match against.
* Q@return the <code>DLLNode</code> answer, else null.
sk /
public DLLNode<T> containsNode(T dllData)
{
DLLNode<T> returnValue = null;
DLLNode<T> currentNode = null;

currentNode = this.getHead();

currentNode = currentNode.getNext();
while(currentNode != this.getTail())
{

if (0 == currentNode.getNodeData() .compareTo(dllData))
{

returnValue = currentNode;
break; // we violate the style rule against 'break'
+

currentNode = currentNode.getNext() ;

}

return returnValue;

}

FIGURE 5.4 B Code fragment for a doubly-linked list using generics, part 4.
accept this as legal only if it could be assured that all the generic data types T used
in the linked list classes were to be guaranteed to possess a compareName method.

We cannot guarantee to the compiler that all data types used for T will possess
all possible methods. There is a way, however, to guarantee that some obviously
useful or otherwise necessary methods will be supplied. The

T extends Comparable

in the declaration

public class DLL<T extends Comparable>

in Figure 5.1 is our promise to the compiler that any data type used for T will
have implemented the compareTo method of the Comparable interface.! Having

In general, extends is a guarantee that the data type will implement all the methods required
by the interface, but in this case the Comparable interface requires only the one method compareTo.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

public class DLLNode<T>

{

}

private DLLNode<T> next;
private DLLNode<T> prev;
private T nodeData;
public DLLNode ()
{
super () ;
this.setNext (null);
this.setPrev(null);
this.setNodeData(null);
}
public DLLNode(T data)
{
super () ;
this.setNext (null);
this.setPrev(null);
this.setNodeData(data) ;
}
public T getNodeData()
{
return this.nodeData;
}
public void setNodeData(T newData)
{
this.nodeData = newData;
}
public DLLNode<T> getNext ()
{
return this.next;
}
public void setNext(DLLNode<T> newNext)
{
this.next = newNext;
}
public DLLNode<T> getPrev()
{
return this.prev;
}
public void setPrev(DLLNode<T> newPrev)
{
this.prev = newPrev;

}

5.1 Using Generics for the Data Payload

FIGURE 5.5 B Code fragment for a node in a doubly-linked list using generics.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

91

92

CHAPTER 5 GENERICS, COLLECTIONS, AND TESTING

guaranteed that compareTo will exist, the compiler permits us to write without
error the line

if (0 == currentNode.getNodeData() .compareTo(dllData))

because the call to currentNode. getNodeData() returns an instance of type T, and
we have instructed the compiler that T will extend Comparable and thus will have
a legitimate compareTo method implemented for it.

The T extends Comparable is a contract we have made with the compiler. The
compiler promises to hold up its end of the contract by accepting the use of a
compareTo method. We in turn must fulfill our part of the bargain by ensuring that
that method exists. To do this, we change the declaration of the Record class to read

public class Record implements Comparable<Record>

and we rename the old compareName method compareTo because that’s the more
general method name that Comparable uses and that the compiler is now expecting
to see. The compiler will now be happy, sure in its knowledge that whatever data
type is used for T, the comparison we have asked for will be syntactically correct.
(Of course, if we write the wrong code for the compareTo method, it could still
produce the wrong results, but the compiler isn’t going to worry about that.) The
two classes for DLL<T> and DLLNode<T> can be written without saying anything in
detail about what kind of data payload to expect except for the fact that payloads
can be compared.

Now that we have guaranteed that we can compare payloads, we can also do a
search for a specific payload, and we can therefore implement the contains and
remove methods in Figure 5.3. In implementing a contains method, unlike previous
methods for this application, we have to consider which values ought to be returned
to the calling program. We are shortly going to move from code that is entirely
under our control to the implementation of code that must follow the strictures
laid down by standard classes in Java, so we will take the opportunity to ensure
that what we do now will not have to be changed later. For this reason, we will
implement the add, contains, and remove methods to accept a Record (actually
an item of type T) as the input parameter and to return a boolean value indicating
whether the operation was successful. The use of a boolean both for the answer to
the contains question and to indicate that a remove operation actually did find
and remove an entry is obvious. Less obvious is the use of a boolean response to an
add method. However, in the Java collection classes there are classes for such things
as the equivalent of a mathematical set. Adding an entry that is already present
does not change the contents of a set, and thus the result of adding a duplicate
entry should be false to indicate that no change occurred to the data structure
implementing the set. For the sake of consistency with the rest of the Collections
framework, we will implement add as a method that returns a boolean. The value

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

5.2 Objects and Equality

true is returned if and only if the underlying structure has changed as a result of
the add. In the case of the current class, this will always be true.

The contains and remove methods in Figure 5.3 take as parameters an entire
instance of an object of generic type T. This is often not what we want to do; we
will frequently want to pass in only a key (like a last name) and have a version
of a contains method respond that yes (or no), an item with that String as last
name happens to be in the data (or not). We can easily write methods to do this by
overriding the original contains method. As a practical matter, though, we then
have to consider whether returning just a boolean is the smartest thing to do. The
original contains and remove methods are unambiguous; an entire instance of an
object is passed in, and the comparison is presumably done on the entire instance. In
the case of the ArrayList methods, these two methods return true only if the exact
object matches (and not just the values of the instance variables in the object). If we
are passing in a last name, it may well happen that we have multiple records with
the same last name. We probably don’t want to remove any arbitrary record just
because the last name matches, and we won’t get all the information we need if our
contains terminates a search and returns true the first time it hits a match on last
name. There will, therefore, be good reasons to write methods that differ from the
standard methods for adding, removing, and searching. Perhaps we would want the
method to return a subscript if we knew we were dealing with a subscripted list. If
we were dealing with something like a linked list, though, without formal subscripts,
we might want to have our methods return the entire instance of the object.

B 5.2 Objects and Equality

We have said it already, but it is worth saying again, because this is the point at
which it starts being a big deal: When two instances of an object are compared with
the == symbol, the two instances are considered to be equal if they are absolutely
identical. This means that the “two” instances must in fact be references to the
same location in memory. The code

Record one = new Record();
Record two = new Record();

if (one == two)
{
System.out.println("equal");
}
else
{
System.out.println("not equal);
}

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

93

94

CHAPTER 5 GENERICS, COLLECTIONS, AND TESTING

results in the message not equal because these are two Record instances with the
same (default) contents, not the same object, and Java would only return true for
the == if these were the same object. That would happen with the following code
fragment because variable two would be assigned to be identical to variable one.

Record one = new Record();
Record two = new Record();

two = one;

if (one == two)
{
System.out.println("equal");
}
else
{
System.out.println("not equal");
}

The basic equals method implemented in the Object class works this way—it
does the most narrow possible comparison to determine equality, and it requires
that the two objects point to the same location in memory before it will return a
value of true.

Probably in your earlier work in Java this was only an issue when dealing with
String data. Although the equals method for an instance of an Object returns
true only when the two objects are identical, the equals method has been overrid-
den for data of String type so that the method will return true if the two sequences
of characters are the same, that is, if the contents of the two String objects are
the same. This allows us to compare two strings of characters, and it is exactly
this kind of override that we will have to implement in order to use generics for an
arbitrary class. Any class that we declare is a subclass of Object and thus inherits
by default the equals method that is usually too strict for our purposes. We will
almost always, especially when using generics, have to override that method with
our own appropriate equals.

B 5.3 The Java LinkedList

It turns out that Java, straight out of the box, comes replete with classes and
interfaces that are part of the Java Collections Framework, or JCE. A collection is
nothing more than a representation for a group of objects known as the elements
of the collection. There exists, for example, a Java LinkedList class that can be
used instead of the code that we have presented so far in this text. The LinkedList

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

5.3 The Java LinkedList

class has methods for add, contains, and remove that function (almost) exactly
as do our methods for the same functions. The LinkedList also has a great many
other methods that are documented on the Java website. By including

import java.util.LinkedList;

in our Phonebook. java code, we can remove all reference to our own DLL. java and
DLLNode. java classes and replace them with references to DLL from LinkedList. If
we do this, the only complication is that we no longer have the hand-coded toString
method for the entire linked list. This method exists in the LinkedList class, but its
output is different from what we wrote ourselves. Our toString produced formatted
output that used the toString that we knew existed (because we had written it)
of the data payload. The built-in version of toString for the LinkedList is much
cruder because it must be more general purpose; it uses the Object.toString()
method that works for all objects. The documentation for Object.toString()
says in part “It is recommended that all subclasses override this method,” but
the creators of Java obviously did not feel it was necessary to require that this be
overridden.

To create the same output from LinkedList that we had before with our
own class, we also need to use the listIterator method that comes with the
LinkedList class; this requires us to include in our code

import java.util.ListIterator;

to ensure that the listIterator method is found by the compiler, and then the
Phonebook. java version of toString can be written as in Figure 5.6.

[k skok stk ok ok stk ok ok sk ok ok kst ok kst ok kst ok o ok sk ok ko sk ko sk ko sk ko sk ok ok
* Method to <code>toString</code> a complete Phonebook.
* Qreturn the <code>toString</code> rep'n of the entire DLL.
*%/
public String toString()

{
String s = "";
Record rec;
ListIterator<Record> iter = this.dll.listIterator();
while(iter.hasNext())
{
rec = iter.next();
s += String.format("%s%n", rec.toString());
}
return s;
}

FIGURE 5.6 B Code fragment for a toString method.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

95

96

CHAPTER 5 GENERICS, COLLECTIONS, AND TESTING

B 5.4 lterators

The code presented in Figure 5.6 uses a Java feature known as an iterator. We have
been using an iterator repeatedly in this course for input of data with a Scanner,
and it is now time to look one level deeper to see what this construct really does
for us and how to implement one.

An iterator is nothing more than a class that implements two (and some-
times three) methods for accessing the elements of a data structure. We present
in Figure 5.7 the code for a DLLIterator class that could be implemented sep-
arately and that would provide an iterator for the DLL code in this chapter.?
The interface for an Iterator class requires that methods hasNext and next
be implemented; these perform the same function as do the methods that we
have used for the Scanner class for input. The interface does not require that
the remove method be implemented, so we include code for that but throw the
UnsupportedOperationException as required.

We have in our toString method in Figure 5.6 used not an Iterator but a
ListIterator. The ListIterator is intended for use with a collection (like a linked
list) that has some notion of “sequential” access as opposed, say, to a collection that
implements a mathematical set for which no sequential ordering of the elements is
obviously appropriate. A ListIterator has more required methods than does an
Iterator, but the basic concept is the same, and we use both extensively.

An iterator is also present when the Java foreach construct is used. Instead of
the code in Figure 5.6 that resembles what we use with the Scanner class, we could
make our linked list “iterable” and write

for(Record rec: this.dll)
{

s = String.format("%s%n", rec.toString());

3

In either case, what we have done is to use a construct that allows us to access
directly the data payload in the structure without having to provide (or even think
about) subscripts.

B 5.4.1 The Justification for Iterators

It is conceivable at this point that the eyes of many readers are glazing over and
readers are wondering whether this concept of an iterator is just something dreamed

2In fact, we would probably not want to implement this as a separate class, but the reasons
for that will appear shortly. For now, it is sufficient that this code will in fact work.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

5.4 lterators

import java.util.Iterator;
public class DLLIterator<T extends Comparable<T>> implements Iterator<T>
{

private DLLNode<T> current;

private DLL<T> theDLL = null;

public DLLIterator (DLL<T> dl11)

{
this.theDLL = dl1;
this.current = this.theDLL.getHead();
}
public boolean hasNext ()
{
boolean returnValue = false;
if (this.current.getNext() != this.theDLL.getTail())
returnValue = true;
return returnValue;
}
public T next()
{
T returnValue = null;
this.current = this.current.getNext();
returnValue = this.current.getNodeData();
return returnValue;
}
public void remove()
{
throw new UnsupportedOperationException(
"'remove' not supported) ;
}
)

FIGURE 5.7 B Code for an Iterator class for a doubly-linked list.

up by compiler writers and language designers because they thought it would be
neat to have this kind of feature. Although we may agree with the readers some of
the time with regard to compiler and programming language people, this time we
have to admit that they got it right. Compare the following two bits of pseudocode,
for example.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

CHAPTER 5 GENERICS, COLLECTIONS, AND TESTING

// code fragment one

node = head;

while(node != tail)

{
Record rec = node.getRecord();
s = String.format("%s¥n", rec.toString());
node = node.next();

// code fragment two
for(Record rec: this.dll)
{
s = String.format("%s%n", rec.toString());
}

The big difference is this: In the first fragment, we knowingly traverse a sequence
of nodes, fetch the data payload for each node, and then use that payload. (In both
fragments all we do is create the toString of the payload, but this code could be
replaced in both fragments by code that actually used the data.)

In the second fragment, we simply fetch the data. The code at this level in the
second fragment is entirely ignorant of the underlying data structure. The data
structure has been hidden from this code fragment, and all that is visible is the
ability to move from one data element to the “next” data element.

This is® the essence of an iterator—instead of fetching the data structure element
and then the data in that element, we fetch the data element directly and can ignore
the implementation issues below the fetch. The Iterator interface requires no more
than a hasNext and a next method (with an optional remove method).

Even if no more than the required methods are implemented, this is a powerful
technique that eliminates one level of indirect reference (data payloads accessed
immediately instead of data payloads accessed within linked list nodes) by focusing
directly on the data payload itself. By focusing on the data itself, and removing
that one level of indirection, we would hope that programs would become simpler,
more likely to be correct, and easier to write.

It would be dishonest, however, to stop here and not point out one more unfor-
tunate fact. What we gain with an iterator, in the ability to reference a data item
and then “the next” data item, we must also pay for at the time we need to remove
an item or move it around. If we manipulate a sequence of data items with the
first code fragment, and what we really want to do is to remove the item from

3at least at the level of this course

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

5.5 Implementing Our Very Own Collection

the linked list, then we have the actual node to be unlinked, which means that we
have access to the next and previous nodes and can do the appropriate unlink-
ing and relinking of nodes. If we have gone beyond the concept of nodes, to deal
only with the data items themselves, then in order to unlink and relink, we will
need to implement methods that revert to linked list notions. There’s never any
free lunch.

B 5.5 Implementing Our Very Own Collection

It is now time to convert our code for a doubly-linked list into the sort of code
that would be expected of real Java programmers. We will not push this all the
way through to a complete implementation, but we will go far enough to show
what could be completed with only a SMOP,* and we will leave that SMOP to the
student, who will no doubt benefit immensely from the experience.

First, we observe that only two classes need to be changed—the DLL<T> class
and the Record class. The DLL<T> class must now begin

import java.util.AbstractSequentiallist;

import java.util.List;

import java.util.ListIterator;

public class DLL<T extends Comparable<T>>
extends AbstractSequentialList<T>
implements List<T>

and we are now required to implement several methods in order to satisfy the
requirements of AbstractSequentiallist and List. We notice that the require-
ment for the built-in add method specifies that elements are to be added at the tail
and not the head, so we write an addBeforeTail and a 1inkBefore method entirely
symmetrical to the two methods we have already written, and we use these instead
so as to comply with the rules for the classes and interfaces of the JCF. A brief
mention of the hierarchy is in order. The ancestral notion is of a Java Collection,
which is an interface that prepares the way for dealing with collections of data items
(that is, in a way more complicated and providing more underlying support than
are present with a simple data array). Three of the subinterfaces that have intuitive
meaning are the List, Set, and SortedSet. There is a built-in class AbstractList
that provides an abstract notion of a “list” data type, and then more specialized
than that is the AbstractSequentialList class that implements the notion, as the

4Small Matter Of Programming; search online for the “Jargon File.”

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

99

100

CHAPTER 5 GENERICS, COLLECTIONS, AND TESTING

name implies, of a list of data items that are to be thought of in a sequential manner.
Indeed, the LinkedList class we used in a previous section is itself a subclass of
AbstractSequentiallist.

To complete our nascent abstract sequential list, currently embodied in our linked
list code DLL, we need only supply in DLL a method listIterator. This code is
simple:

public ListIterator<T> listIterator(int index)

{
ListIterator<T> iter = new DLLListIterator(this);
return iter;

3

although we admit that all we have done is to pass off the work to the implementa-
tion of a DLLListIterator class. That class is found in Figures 5.8-5.10 as a class
embedded within the DLL class.

In a footnote early in Section 5.4, we said that we would explain soon why we
wouldn’t really want a separate class; the time is now to explain why we have
chosen to embed this class inside the DLL class. Our earlier class for an iterator
made a copy of the linked list when an instance of the iterator was created. This
is not only somewhat clumsy but also highly unsafe; to eliminate this problem, we
have embedded the new iterator class inside the DLL class so the iterator can have
direct access to some of the variables of the DLL class. The unlink method is used,
for example, by the remove method. More importantly, we can with the embedded
class get direct access to the linked list itself, so the only instance variable inside
the iterator class that we need in order to maintain a sense of context with the
linked list is the current pointer.

Finally, we have chosen in this implementation not to implement the optional
methods for add and set and we have not shown the implementations of nextIndex
and previousIndex. We have, however, implemented the remove method together
with its subtleties of when it is and is not legal to be issued.

The change to the Record class is significant, yet subtle. We note that the List
possesses methods

boolean contains(Object o)
and

boolean remove(Object o)

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

5.5 Implementing Our Very Own Collection

private class DLLListIterator implements ListIterator<T>
{
private boolean removelnvalid_Add;
private boolean removeInvalid_NextPrevious;
private DLLNode<T> cursor;
private DLLNode<T> lastReturned;
[/ skokok sk kok sk ke sksk sk ke skskok ks sk ok stk sk ok sk sk sk ok stk ok sk sk ki sk sk ok stk sk ok sk sk ok stk ok sk sk sk sk sk sk sk o
* Constructor.
*% /
public DLLListIterator (DLL<T> dl11)
{
this.cursor = dll.getHead().getNext();
this.lastReturned = null;
this.removeInvalid_Add = false; // we don’t implement 'add' here
this.removelInvalid_NextPrevious = true;

¥

sk ke sk sk sk ke ok sk s ok sk sk sk sk sk s ke sk sk s sk sk e ok sk sk e ok sk s ke sk sk sk ek sk s sk sk s sk sk s ke sk sk s ksl sk ke sk sk sk ek sk sk ek sk ok
* Method to answer the question of a "next" element.
* Q@return the <code>boolean</code> answer to the question.
*% /
@0verride
public boolean hasNext ()
{

boolean returnValue = false;

if (this.cursor != getTail())
returnValue = true;

return returnValue;

3

sk ke ks sk ok sk sk sk o sk sk sk sk sk s ok sk sk s sk sk s ksl sk e ok sk sk ok ksl sk o sk sk sk sk sk sk sk sk s ok sk sk s ok sk sk e ksl sk ke sk sk ok sk ok ok
* Method to answer the question of a "previous" element.
* @return the <code>boolean</code> answer to the question.
*x/
@0verride
public boolean hasPrevious()
{

boolean returnValue = false;

if (this.cursor.getPrev() != getHead())
returnValue = true;

return returnValue;

}

FIGURE 5.8 M The list iterator code, part 1.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

101

102 CHAPTER 5 GENERICS, COLLECTIONS, AND TESTING

/3K 3Kk K sk ok ok ok ok ok ok ok ok K ok ok ok ok ok ok ok K K ok ok ok K K 3 ok ok K K 3 oK oK K K 3 ok ok K K ok ok ok K ok ok ok K ok ok ok K ok ok ok Kk ok ok ok K
* Method to return the "next" element.
* Q@return the next data element.
*k /
public T next()
{
if (this.hasNext())
{
this.removelnvalid_NextPrevious = false;
this.lastReturned = this.cursor;
this.cursor = this.cursor.getNext();

}

else

{

throw new RuntimeException("ERROR: hasNext fails");

3

return this.lastReturned.getNodeData();

}

/***

* Method to return the "previous" element.
* Q@return the previous data element.
*k /

public T previous()

{

if (this.hasPrevious())

{
this.removelnvalid_NextPrevious = false;
this.cursor = this.cursor.getPrev();
this.lastReturned = this.cursor;

3

else

{

throw new RuntimeException("ERROR: hasPrevious fails");

}

return this.lastReturned.getNodeData() ;

}

FIGURE 5.9 M The list iterator code, part 2.

whose functions are exactly as the methods of the same name that we have imple-
mented already. However, it is here that we must take special note once again of the
way that Java defines the concept of “equals.” Two objects are considered equal,
that is,

this.equals(that)

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

5.5 Implementing Our Very Own Collection

/] 3Kk sk ok ok ok sk o ok ok ok K K ok ok ok K ok ok ok K K ok ok ok K 3k ok ok Kk 3k oK ok K K 3 ok oK K K 3 ok oK K K 3 ok ok ok K ok ok ok K ok ok ok ok ok ok K

*
*

* ¥ %

*x/

}

Method to remove the element returned by the most recent "next"
or "previous" operation. This is invalid if it has already been
called once since the last "next" or "previous" operation or if
"add" has been called since the last call to "next" or "previous".
@throws IllegalStateException if this method is invalid now.

public void remove()

String s = "";
if (this.removeInvalid_NextPrevious)
{
s = String.format("%s","illegal call to 'remove'");
s += String.format(")s","--already called since the ");

s += String.format("}s","last call to 'mext' or 'previous'");
throw new IllegalStateException(s);

}

else if (removeInvalid_Add)

{
s = String.format("}s","illegal call to 'remove'");
s += String.format("}s","--'add' called since the ");

s += String.format("%s","last call to 'nmext' or 'previous'");
throw new IllegalStateException(s);
}
else
{
// If we got the "lastReturned" from a "next" then we
// already bumped the "cursor". But if we got the
// "lastReturned" from a "previous" then we need to bump
// the "cursor" explicitly to the next node.
if (this.cursor == this.lastReturned)
this.cursor = this.cursor.getNext();
unlink(this.lastReturned);
removelnvalid_NextPrevious = true;

}

FIGURE 5.10 M The list iterator code, part 3.

returns a boolean true, if and only if this and that are the same object, unless

we override the default code for equals.
The contains(Object o) and remove(Object o) methods test for exact equal-

ity of objects, and these methods always work because everything in Java is a thing
of Object type. It is almost never the case, though, that this is what we will want in
a program. If we had an ArrayList of three strings, say pepperoni, mushroom, and

sausage for types of pizza, and if we then read input mushroom from a user ordering

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

103

104

CHAPTER 5 GENERICS, COLLECTIONS, AND TESTING

pizza, the contains method will return false when it does the lookup on mushroom.
The problem is that the mushroom instance of the object stored in the ArrayList is
a different instance of the object from the mushroom instance provided by the user,
and contains looks at the equality of the objects, not equality of the data contents.
(For String data, that test is done by the equals method in the String class.)

If we want to test for equality of the data contents, we must override the default
for equals, which is what we did in our Record class because we wanted to consider
two records to be “equal” if the last names in the data were the same. In any search
using a search key, we will want to do exactly this because we will be searching for
the complete record using only the key—if we had the entire record, we wouldn’t
need to be searching for it!

The second subtle but important change to our Record is to ensure that we will in
fact override the built-in method for equals. Java is very fussy about type-checking,
and our earlier code for the Record class read

public boolean equals(Record that)

which is not what the JCF needs. That method has a different signature than the
built-in method because the parameter is of type Record and not of type Object.

In order to use our own version of equals to override the default in the require-
ments for the List interface, we must change our code to read as in Figure 5.11.

[skkok sk sk ok stk ok sk s ok sk sk ke ok sk ke sksk sk ke sk sk sk ok sk ok ok sk sk ok sk sk sk ok skok ks sk ok sksk sk ok sk sk ok ok skok
* Method to override the <code>equals</code> method.

* We will declare two records to be equal if their data values are
* equal, not if they are identical objects.
* NOTE THE PARAMETER TYPE. THIS IS ESSENTIAL TO HAVING THE METHOD
* PROPERLY OVERRIDE THE DEFAULT <code>equals</code>.
* @param that the <code>Object</code> to be compared against.
* Qreturn boolean answer to the question.
*% /
public boolean equals(Object that)
{
boolean retVal;
retVal = true;
retVal &= this.getName().equals(((Record) that).getName());
retVal &= this.getOffice().equals(((Record) that).getOffice());
retVal &= this.getPhone().equals(((Record) that).getPhone());
retVal &= (this.getTeaching() == ((Record) that).getTeaching());
return retVal;
}

FIGURE 5.11 B The equals node in the Record class.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

5.6 Testing with JUnit

The parameter is passed as an instance of Object type, but it then must be cast to
an instance of Record type in order to invoke the correct equals method. Because
the signature of the method is now the same as that of the default equals method,
we will in fact be overriding the default instead of creating a new equals method
that would be valid only for parameters of type Record.

B 5.6 Testing with JUnit

The last part of converting our code so that it resembles professional code® is to
implement unit tests with JUnit. The Java JUnit capability is not inherent in
Java, but it is relatively easy to add the jar for JUnit; for example, when using
Eclipse™ it is necessary to add the external jar into the compiler’s build path for
the project.

A JUnit unit testing module for the Record class is presented in Figures 5.13—
5.16. The class is a standard Java class, except that the jar for JUnit is part of
the build path; we import part of that jar into our class; and the class extends
TestCase in the jar.

We have a number of methods, each of which has a name that begins with test
and continues with a method name from Record. Each of these methods will be
executed after a call to setUp, and the tearDown method will be executed afterward
each time, so these two methods should be written to provide each testing method
a clean environment with no context held over from a previous method.

The method calls that we will use from JUnit are given in Figure 5.12. The
syntax is almost self-explanatory. For the

assertEquals (messageString, expectedValue, actualValue)

method, for example, the expectedValue might be the returned parameter
expected from a method called with a certain set of arguments, and the
actualValue argument would in fact be the call to that method with those argu-
ments. If the values are not equal, then either a default or (in this case) a user-
specified messageString is printed along with the failure information. As with any
other Java class, output to the console is possible if the user is unsure as to the
progress of the testing.

In order to test the Record class with JUnit, we did have to make a few small
changes. A JUnit test is yet another class in Java and can thus see only the
public methods and variables. In our earlier code, for example, we had declared

5We use the word “resembles” because we are still not going to be done and would not go so
far as to suggest that it might actually be professional code.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

105

106

CHAPTER 5 GENERICS, COLLECTIONS, AND TESTING

assertEquals (expectedValue, actualValue)
assertEquals(messageString, expectedValue, actualValue)
assertFalse(booleanCondition)

assertFalse(messageString, booleanCondition)
assertNotNull(object)

assertNotNull (messageString, object)

assertNotSame (expectedValue, actualValue)

assertNotSame (messageString, expectedValue, actualValue)
assertNull (object)

assertNull (messageString, object)

assertSame (expectedValue, actualValue)

assertSame (messageString, expectedValue, actualValue)
assertTrue(booleanCondition)

assertTrue (messageString, booleanCondition)
failNotEquals(messageString, expectedValue, actualValue)
failNotSame (messageString, expectedValue, actualValue)

FIGURE 5.12 M Assertion methods in JUnit.

the DUMMYSTRING and DUMMYINT variables to be both private and static. In order
to use them as class variables in the testConstructor method in Figure 5.13, we
had to change the declaration to public. We note that we have not explicitly tested
the getName, getOffice, getPhone, and getTeaching methods. We have, however,
used each of these in testing other methods, so it can be argued that these methods
have been tested implicitly.

Further thought together with a look at the code for testing the equals,
readRecord, and toString methods shows that testing is an art, not entirely a
science. How much testing is enough? What should be tested in which test method?
For example, in testing the equals method, we have not tested (once again) the
fact that our constructor works correctly, but we have included lines to verify that
the setName method worked as intended. If the test methods are ever intended
to be broken apart and used separately, they should test all aspects of the code,
but if the test class is intended only to be used as a single class, then we could
assume, for example, that the setName method has been tested elsewhere and does
not need further testing in the testEquals method. (This does, of course, lead to
the possibility that the test methods will begin by being treated as a block and
then some methods will be yanked out for use in another testing class. Such actions
cannot be predicted, and such improper later use of code cannot be prevented. The
prudent programmer,® though, will include in the documentation of a test method
a sufficient number of caveats about what is and what is not tested so as to avoid
being blamed later for a poor test method.)

SThose who are unfamiliar with this sort of expression should look up “prudent mariner” in a
nautical context.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

5.6 Testing with JUnit

import junit.framework.*;

import java.util.Scanner;

/3ot sk sk sk ke ok sk sk sk s ok sk sk sk sk sk s ok sk sk o ok sk s ksl sk sk sk ks sk sk sk s ok sk s sk sk ke sk sk sk ek sk sk ke sk sk sk sk sk sk ok
*

*% /

public class RecordTester extends TestCase
private Record recl, rec2;

sk sk ok sk ke ok sk s ke ok sk ok sk sk s sk sk sk sk s ok sk sk e ok sk s ke ok sk sk ek sk s sk sk s sk sk s sk s ok sk sk ke sk sk sk e ok sk sk ke sk sk ok
*

*% /
public RecordTester (String name)

super (name) ;

/33K sk sk sk ke ok sk sk sk s sk sk sk sk sk ok stk ke ok sk sk ok sk e sksk sk ke skskok sk sk sk ok stk ok sk sk ok ok sk sk ek sk sk sk sk ok sk ok

*

*x/
protected void setUp()
{
recl = new Record();
rec2 = new Record();
}
ok ok skok ok ok sk ok ok sk ok ok ok ok o sk ok ok sk ok ok sk ok o sk o ok sk ok o ok sk ok sk ok o sk ok ok sk ok o sk ok ok sk ok ok ok sk ok ok kok ok
*
*x/
protected void tearDown()
{
recl = null;
rec2 = null;
}

/oK sk sk sk sk ok sk ok ok ok o ok ok ok o sk o sk ok sk R sk R ok R sk R ok ok o ok ok sk o sk ok ok sk sk R ok o sk ok ok ok o sk o sk ok ok ok oK
*
*%/
public void testConstructor()
{
System.out.println("Test the constructor");
recl = new Record();
assertEquals(Record.DUMMYSTRING, recl.getName());
assertEquals(Record.DUMMYSTRING, recl.getPhone());
assertEquals(Record.DUMMYSTRING, recl.getOffice());
assertEquals(Record.DUMMYINT, recl.getTeaching());

FIGURE 5.13 M A JUnit testing class for Record, part 1.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

107

108 CHAPTER 5 GENERICS, COLLECTIONS, AND TESTING

[F KA AR KKK KA A KK KK KKK oA KA KK KK KKK KK KK oK Kok oK KoK oK KoK KoK ook o ook ok ok K
*
*% /
public void testCompareTo ()
{
System.out.println("Test compareTo");
recl = new Record();
rec2 = new Record();
assertEquals(Record.DUMMYSTRING, recl.getName());
assertEquals(Record.DUMMYSTRING, rec2.getName());
recl.setName("duncan");
assertEquals("Failure compareTo set", "duncan", recl.getName());
rec2.setName ("duncan") ;
assertEquals("duncan", rec2.getName());
assertEquals("Failure compareTo equals", 0, recl.compareTo(rec2));
rec2.setName("aaaa");
assertEquals("aaaa", rec2.getName());
assertEquals("Failure compareTo greaterthan", 1, recl.compareTo(rec2));
rec2.setName("eeee");
assertEquals("eeee", rec2.getName());
assertEquals("Failure compareTo lessthan", -1, recl.compareTo(rec2));
}
TEST FOR compareName IS SIMILAR
[F AR AR AR AR KKK KK KRR kKKK KK KK SR KKKk kKKK KK K Kk
*
*x /
public void testDefaultInstances()
{
assertEquals(Record.DUMMYSTRING, recl.getName());
}
TESTS FOR getPhone, getOffice, getTeaching ARE SIMILAR
[F KA KA KA A KA KA KKK KA KA KA KA KK KK KK KKK KKK KK KKK KK ook K ook K
*
*% /
public void testSetName()
{
assertEquals(Record.DUMMYSTRING, recl.getName());
recl.setName("duncan");
assertEquals("Name Failure",'"duncan", recl.getName());
assertFalse("messagefail name", recl.getName().equals("Someone"));
}
TESTS FOR setPhone, setOffice, setTeaching ARE SIMILAR

FIGURE 5.14 B A Junit testing class for Record, part 2.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

5.6 Testing with JUnit

/] 3Kk sk ok ok ok sk o ok ok ok K K ok ok ok K ok ok ok K K ok ok ok K 3k ok ok Kk 3k oK ok K K 3 ok oK K K 3 ok oK K K 3 ok ok ok K ok ok ok K ok ok ok ok ok ok K

*
*x/

public void testEquals()

{

}

System.out.println("Test equals");

recl = new Record();

rec2 = new Record();

assertEquals("Failure equals one", true, recl.equals(rec2));
recl = new Record();

rec2 = new Record();

recl.setName("duncan");

assertFalse(recl.equals(rec2));

assertEquals("duncan", recl.getName());

rec2.setName ("duncan") ;

assertEquals("duncan", rec2.getName());
assertEquals("Failure equals two", true, recl.equals(rec2));
recl.setOffice("myoffice");

rec2.set0ffice("myoffice");

recl.setPhone ("myphone") ;

rec2.setPhone ("myphone") ;

recl.setTeaching(1248);

rec2.setTeaching(1248);

assertEquals("Failure equals three", true, recl.equals(rec2));

/] 3 3Kk sk ok ok ok ok ok ok ok K K ok ok ok K ok ok ok K K ok ok ok K K ok ok ok K K 3K oK oK K K 3 ok oK K K 3 ok ok oK K 3 ok ok ok K ok ok ok K ok ok ok K ok ok K

*
*x/

public void testToString()

{

String dummy = "";

Scanner inFile = null;
System.out.println("Test toString");
inFile = FileUtils.ScannerOpen("zin");
recl = new Record();

dummy = inFile.next();

assertEquals("add", dummy);

recl = Record.readRecord(inFile);
assertEquals ("Herbert", recl.getName());
assertEquals("2A41", recl.getOffice());
assertEquals("789.0123", recl.getPhone());
assertEquals(390, recl.getTeaching());
assertEquals("Herbert 2A41 789.0123 390", recl.toString());
FileUtils.closeFile(inFile);

FIGURE 5.15 B A JUnit testing class for Record, part 3.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

109

110 CHAPTER 5 GENERICS, COLLECTIONS, AND TESTING

public void testReadRecord()

{

String dummy = "";
Scanner inFile = null;

System.out.println("Test readRecord");

inFile = FileUtils.ScannerOpen("zin");
recl = new Record();

dummy = inFile.next();

assertEquals("add", dummy) ;

recl = Record.readRecord(inFile);
assertEquals("Herbert", recl.getName());
assertEquals("2A41", recl.getOffice());
assertEquals("789.0123", recl.getPhone());
assertEquals (390, recl.getTeaching());

dummy = inFile.next();

assertEquals("add", dummy) ;

recl = Record.readRecord(inFile);
assertEquals("Lander", recl.getName());
assertEquals ("2A47", recl.getOffice());
assertEquals("789.7890", recl.getPhone());
assertEquals (146, recl.getTeaching());

dummy = inFile.next();

assertEquals("add", dummy);

recl = Record.readRecord(inFile);
assertEquals("Winthrop", recl.getName());
assertEquals("3A71", recl.getOffice());
assertEquals("789.4667", recl.getPhone());
assertEquals(611, recl.getTeaching());

FileUtils.closeFile(inFile);

FIGURE 5.16 B A Junit testing class for Record, part 4.

5.7 Reflection

Contrary to popular belief and misunderstanding, this text and this course are not

about “how to program.” Computer science is largely about the management and

organization of information. The implementation of decisions about management
and organization will be made on a computer using specific programming languages,

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

5.7 Reflection

and thus the implementation will require that one know how to program. Now is a
good time to step back and think about the various kinds of information floating
around.

This course and its predecessor are not courses on how to program. They are
about the design of algorithms, and they use the particular syntax of a programming
language (in this case, Java) to force you to be crisp and precise in your thinking
and your design. You should by now be familiar with the information about the
computational task to be performed and about its implementation in Java. Iterating
through a for or a while loop is a standard process in computer science, with a
particular syntax required by Java. Storing data in an array or ArrayList and then
iterating to swap entries that are in the wrong order, as in the inner loop of the
bubblesort, is a standard process in computation, using code such as

for(int i = 0; i < list.size()-1; ++i)
{
for(int j = i+1l; j < list.size(); ++j)
{
if (list.get (i) > list.get(j))
swap the i-th and j-th entries

These are algorithmic processes that require you to manage the actual information
of the computation.

What we have covered in this chapter goes one level deeper. The use of the
Java generic construct requires you to think about the information used in the
compilation process. Iterating through the two loops and swapping two entries
requires only that we know about the existence of the entries in the list, not that
we know anything about the essence of those two entries. It is the test, to see if we
need to swap, that requires that we know about the data types to be tested so that
we can know how to implement the test.

The double loop with the test as a method call and the swap can be written
once for all time using the generic construct to indicate symbolically the data type
with which we are dealing. Because the Java compiler will try to compile code
that will always work, regardless of what the data type happens to be, you the
programmer must manage the information provided to the compiler so that it can
function correctly.

It is this metainformation about your computation, the information not about
the computation itself but about the compiling process, that you must manage in
using the generic construct and the various interfaces provided as part of Java. In
order for compilation to take place, the information that is available to the compiler

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

111

112

CHAPTER 5 GENERICS, COLLECTIONS, AND TESTING

about the program must be internally self-consistent. To use something like the
Record class in the linked list implemented with generics and to be able to do
the lookup of a contains method, we must guarantee that we extend Comparable
and provide some version of a compareTo method. Containment requires a test for
equality. The ArrayList construct, built using generics, has inherited the test for
equality of instances of Object type all the way at the top of the hierarchy, but
that’s a test that looks at the actual object, not the data contents. (Remember also
that one cannot create an ArrayList of int variables; it must be an ArrayList of
Integer variables, so that in fact each entry will be an object.)

Designing programs involves a constant tension between the need to keep every-
thing as simple as possible but not too simple and the desire to make everything
as general and abstract as possible so as not to have to write nearly identical bits
of code. At some point the ability to write general-purpose code (like the loop,
test, and swap of the bubblesort) bumps up against the need to handle data in
specific ways (like the exact nature of the test), and much of the Java framework
has been established to allow you to separate parts of the program based on what
information is necessary for proper functioning of each part.

B 5.8 Summary

Software systems of any reasonable size are not usually coded from scratch any
more. One of the justifications for Java as a programming language is the claim
that modules can be implemented once, tested carefully, and then repurposed for
use in other software projects without modification. The Java generic construct is
part of what allows classes to be built, including the Java Collections Framework,
that operate on objects whose types are specified at a later time. Facilitating this is
the use of iterators that allow one to move from one data payload to another inside
a structure without actually knowing what the underlying structure is. Finally,
testing of programs using JUnit permits a standard test suite to be built and used
to ensure that all parts of a method’s code have been exercised.

H 5.9 Exercises

1. Create a Pair class using generics that will store an ordered pair of elements of
any data type. Pass in the initial values as parameters to a constructor. Create
a method swap inside Pair that will swap the first element and the second
element. You will need a driver program to test this adequately.

2. Verify the correctness of the Pair code in the previous exercise by writing
JUnit test functions instead of using just a driver program.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

5.9 Exercises

. Instead of a Pair class that has just two values, write a RotatableList class
using

public class RotatableList<E> extends ArrayList<E>

to extend ArrayList and allow you to write a method rotate that rotates the
stored values, putting the first value in the last position and moving all the
others up one position.

. Look up the Class class in the Java documentation online, and notice that
there is a getClass method and a getName method so that your program can
in fact dynamically test the data type of a variable. Use this to implement a
select method in the Pair class that will return the first element if the data
type is Integer, the second element if the data type is String, and null for
all other data types. Notice that this works because we are still doing nothing
that requires us to look at the values of the elements.

. Notice in the previous exercise that you can’t really deal with the data stored
in Pair because the compiler will insist that anything you do will work with all
data types. For example, you can’t compare the two elements and return the
smaller. Similar to what was done with the Record class in the text, modify
Pair to have it read Pair<T extends Comparable<T>>. You should now be
able to compare elements of Integer and String type because these both have
implemented a compareTo method. Now change the driver and try to create
a Pair of elements of some other type that does not extend Comparable, and
the code will not compile.

. Follow up on Exercise 4 to resolve the problem. Similar to what was done with
the Record class in the text, modify Pair to have it read Pair<T extends
Comparable<T>> and create a wrapper class MyString (making sure that this
class extends Comparable). Your MyString class need do nothing but be a
wrapper for one instance variable of String type, perhaps named localString.
Comparing pairs of String values is possible because the String class has a
built-in compareTo that sorts data alphabetically. Override this with your own
compareTo method for the MyString class so that the string data is compared
according to the length of the string.

. This exercise will allow you to build a prototype of classes using generics so you
can steal code from yourself later. Start with an interface named ITinyTest
that reads

public interface ITinyTest<T>
{
public boolean isTiny();

}

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

113

114

CHAPTER 5 GENERICS, COLLECTIONS, AND TESTING

10.

Implement both a MyInteger and a MyString class that are wrappers for the
Integer and the String classes, respectively. Each of these should implement
ITinyTest, which means that you must include a method isTiny. For String
data, a string is tiny if it is equal to the word “tiny.” For Integer data, an
integer is tiny if it is equal to or less than —999999999. In between your driver
main program and the two data classes, write a MyData class that uses generics
and will allow you to test a generic MyData element for tininess. What you get
from this is a class that handles instances of data defined as generic, together
with an interface that you have defined and that requires looking at the values
of the instance variables and underlying data payload classes that implement
that interface.

Verify that you understand all the linked list code in this chapter by packaging
all the linked list pieces together using generics. At the end, you will have a
prototype of how to write linked list code as well as how to work with generics.
Verify that you understand all the iterator code in this chapter by packaging
all the pieces together and testing them with JUnit.

Instead of using the ListIterator to implement your own iterator, use the
Iterator interface.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

