
✐

✐

“15529˙CH11˙Linz” — 2011/1/12 — 10:03 — page 277 — #1
✐

✐

✐

✐

✐

✐

Chapter 11
A Hierarchy of
Formal Languages
and Automata

W e now return our attention to our main interest, the study of formal
languages. Our immediate goal will be to examine the languages
associated with Turing machines and some of their restrictions. Be-
cause Turing machines can perform any kind of algorithmic com-

putation, we expect to find that the family of languages associated with
them is quite broad. It includes not only regular and context-free lan-
guages, but also the various examples we have encountered that lie outside
these families. The nontrivial question is whether there are any languages
that are not accepted by some Turing machine. We will answer this ques-
tion first by showing that there are more languages than Turing machines,
so that there must be some languages for which there are no Turing ma-
chines. The proof is short and elegant, but nonconstructive, and gives little
insight into the problem. For this reason, we will establish the existence
of languages not recognizable by Turing machines through more explicit
examples that actually allow us to identify one such language. Another
avenue of investigation will be to look at the relation between Turing ma-
chines and certain types of grammars and to establish a connection between
these grammars and regular and context-free grammars. This leads to a
hierarchy of grammars and through it to a method for classifying language

277

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“15529˙CH11˙Linz” — 2011/1/12 — 10:03 — page 278 — #2
✐

✐

✐

✐

✐

✐

278 Chapter 11 A Hierarchy of Formal Languages and Automata

families. Some set-theoretic diagrams illustrate the relationships between
various language families clearly.

Strictly speaking, many of the arguments in this chapter are valid only
for languages that do not include the empty string. This restriction arises
from the fact that Turing machines, as we have defined them, cannot accept
the empty string. To avoid having to rephrase the definition or having to
add a repeated disclaimer, we make the tacit assumption that the languages
discussed in this chapter, unless otherwise stated, do not contain λ. It is a
trivial matter to restate everything so that λ is included, but we will leave
this to the reader.

11.1 Recursive and Recursively Enumerable
Languages

We start with some terminology for the languages associated with Turing
machines. In doing so, we must make the important distinction between
languages for which there exists an accepting Turing machine and languages
for which there exists a membership algorithm. Because a Turing machine
does not necessarily halt on input that it does not accept, the first does not
imply the second.

Definition 11.1

A language L is said to be recursively enumerable if there exists a Turing
machine that accepts it.

This definition implies only that there exists a Turing machine M , such
that, for every w ∈ L,

q0w
∗
�M x1qfx2,

with qf a final state. The definition says nothing about what happens for
w not in L; it may be that the machine halts in a nonfinal state or that
it never halts and goes into an infinite loop. We can be more demanding
and ask that the machine tell us whether or not any given input is in its
language.

Definition 11.2

A language L on Σ is said to be recursive if there exists a Turing machine
M that accepts L and that halts on every w in Σ+. In other words, a
language is recursive if and only if there exists a membership algorithm for
it.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“15529˙CH11˙Linz” — 2011/1/12 — 10:03 — page 279 — #3
✐

✐

✐

✐

✐

✐

11.1 Recursive and Recursively Enumerable Languages 279

If a language is recursive, then there exists an easily constructed enu-
meration procedure. Suppose that M is a Turing machine that determines
membership in a recursive language L. We first construct another Turing
machine, say M̂ , that generates all strings in Σ+ in proper order, let us
say w1, w2, As these strings are generated, they become the input to M ,
which is modified so that it writes strings on its tape only if they are in L.

That there is also an enumeration procedure for every recursively enu-
merable language is not as easy to see. We cannot use the previous argument
as it stands, because if some wj is not in L, the machine M , when started
with wj on its tape, may never halt and therefore never get to the strings
in L that follow wj in the enumeration. To make sure that this does not
happen, the computation is performed in a different way. We first get M̂
to generate w1 and let M execute one move on it. Then we let M̂ generate
w2 and let M execute one move on w2, followed by the second move on w1.
After this, we generate w3 and do one step on w3, the second step on w2,
the third step on w1, and so on. The order of performance is depicted in
Figure 11.1. From this, it is clear that M will never get into an infinite
loop. Since any w ∈ L is generated by M̂ and accepted by M in a finite
number of steps, every string in L is eventually produced by M .

It is easy to see that every language for which an enumeration procedure
exists is recursively enumerable. We simply compare the given input string
against successive strings generated by the enumeration procedure. If w ∈
L, we will eventually get a match, and the process can be terminated.

Definitions 11.1 and 11.2 give us very little insight into the nature of
either recursive or recursively enumerable languages. These definitions at-
tach names to language families associated with Turing machines, but shed
no light on the nature of representative languages in these families. Nor do
they tell us much about the relationships between these languages or their
connection to the language families we have encountered before. We are
therefore immediately faced with questions such as “Are there languages
that are recursively enumerable but not recursive?” and “Are there lan-
guages, describable somehow, that are not recursively enumerable?” While
we will be able to supply some answers, we will not be able to produce very
explicit examples to illustrate these questions, especially the second one.

Figure 11.1

First move . .
Second move

. .

Third move .

w1 w2 w3 w4 . . .

.

.

.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“15529˙CH11˙Linz” — 2011/1/12 — 10:03 — page 280 — #4
✐

✐

✐

✐

✐

✐

280 Chapter 11 A Hierarchy of Formal Languages and Automata

Languages That Are Not Recursively Enumerable
We can establish the existence of languages that are not recursively enu-
merable in a variety of ways. One is very short and uses a very fundamental
and elegant result of mathematics.

Theorem 11.1 Let S be an infinite countable set. Then its powerset 2S is not countable.

Proof: Let S = {s1, s2, s3, ...}. Then any element t of 2S can be represented
by a sequence of 0’s and 1’s, with a 1 in position i if and only if si is in
t. For example, the set {s2, s3, s6} is represented by 01100100..., while
{s1, s3, s5, ...} is represented by 10101.... Clearly, any element of 2S can be
represented by such a sequence, and any such sequence represents a unique
element of 2S . Suppose that 2S were countable; then its elements could be
written in some order, say t1, t2, ..., and we could enter these into a table, as
shown in Figure 11.2. In this table, take the elements in the main diagonal,
and complement each entry, that is, replace 0 with 1, and vice versa. In
the example in Figure 11.2, the elements are 1100..., so we get 0011... as
the result. The new sequence along the diagonal represents some element
of 2S , say ti for some i. But it cannot be t1 because it differs from t1
through s1. For the same reason it cannot be t2, t3, or any other entry in
the enumeration. This contradiction creates a logical impasse that can be
removed only by throwing out the assumption that 2S is countable. �

This kind of argument, because it involves a manipulation of the di-
agonal elements of a table, is called diagonalization. The technique is
attributed to the mathematician G. F. Cantor, who used it to demonstrate
that the set of real numbers is not countable. In the next few chapters, we
will see a similar argument in several contexts. Theorem 11.1 is diagonal-
ization in its purest form.

Figure 11.2 t1 1 0 0 0 0 . . .

t2 1 1 0 0 0 . . .

t3 1 1 0 1 0 . . .

t4 1 1 0 0 1 . . .
 .

. . .

.

.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“15529˙CH11˙Linz” — 2011/1/12 — 10:03 — page 281 — #5
✐

✐

✐

✐

✐

✐

11.1 Recursive and Recursively Enumerable Languages 281

As an immediate consequence of this result, we can show that, in some
sense, there are fewer Turing machines than there are languages, so that
there must be some languages that are not recursively enumerable.

Theorem 11.2 For any nonempty Σ, there exist languages that are not recursively enumer-
able.

Proof: A language is a subset of Σ∗, and every such subset is a language.
Therefore, the set of all languages is exactly 2Σ∗

. Since Σ∗ is infinite,
Theorem 11.1 tells us that the set of all languages on Σ is not countable.
But the set of all Turing machines can be enumerated, so the set of all
recursively enumerable languages is countable. By Exercise 16 at the end
of this section, this implies that there must be some languages on Σ that
are not recursively enumerable. �

This proof, although short and simple, is in many ways unsatisfying.
It is completely nonconstructive and, while it tells us of the existence of
some languages that are not recursively enumerable, it gives us no feeling
at all for what these languages might look like. In the next set of results,
we investigate the conclusion more explicitly.

A Language That Is Not Recursively Enumerable
Since every language that can be described in a direct algorithmic fashion
can be accepted by a Turing machine and hence is recursively enumerable,
the description of a language that is not recursively enumerable must be
indirect. Nevertheless, it is possible. The argument involves a variation on
the diagonalization theme.

Theorem 11.3 There exists a recursively enumerable language whose complement is not
recursively enumerable.

Proof: Let Σ = {a}, and consider the set of all Turing machines with this
input alphabet. By Theorem 10.3, this set is countable, so we can associate
an order M1,M2, ... with its elements. For each Turing machine Mi, there
is an associated recursively enumerable language L (Mi). Conversely, for
each recursively enumerable language on Σ, there is some Turing machine
that accepts it.

We now consider a new language L defined as follows. For each i ≥ 1,
the string ai is in L if and only if ai ∈ L (Mi). It is clear that the language
L is well defined, since the statement ai ∈ L (Mi), and hence ai ∈ L, must
be either true or false. Next, we consider the complement of L,

L =
{
ai : ai /∈ L (Mi)

}
, (11.1)

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“15529˙CH11˙Linz” — 2011/1/12 — 10:03 — page 282 — #6
✐

✐

✐

✐

✐

✐

282 Chapter 11 A Hierarchy of Formal Languages and Automata

which is also well defined but, as we will show, is not recursively enumerable.
We will show this by contradiction, starting from the assumption that

L is recursively enumerable. If this is so, then there must be some Turing
machine, say Mk, such that

L = L (Mk) . (11.2)

Consider the string ak. Is it in L or in L? Suppose that ak ∈ L. By (11.2)
this implies that

ak ∈ L (Mk) .

But (11.1) now implies that

ak /∈ L.

Alternatively, if we assume that ak is in L, then ak /∈ L and (11.2) implies
that

ak /∈ L (Mk) .

But then from (11.1) we get that

ak ∈ L.

The contradiction is inescapable, and we must conclude that our assumption
that L is recursively enumerable is false.

To complete the proof of the theorem as stated, we must still show that
L is recursively enumerable. For this we can use the known enumeration
procedure for Turing machines. Given ai, we first find i by counting the
number of a’s. We then use the enumeration procedure for Turing machines
to find Mi. Finally, we give its description along with ai to a universal
Turing machine Mu that simulates the action of M on ai. If ai is in L, the
computation carried out by Mu will eventually halt. The combined effect of
this is a Turing machine that accepts every ai ∈ L. Therefore, by Definition
11.1, L is recursively enumerable. �

The proof of this theorem explicitly exhibits, through (11.1), a well-
defined language that is not recursively enumerable. This is not to say
that there is an easy, intuitive interpretation of L; it would be difficult to
exhibit more than a few trivial members of this language. Nevertheless, L
is properly defined.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“15529˙CH11˙Linz” — 2011/1/12 — 10:03 — page 283 — #7
✐

✐

✐

✐

✐

✐

11.1 Recursive and Recursively Enumerable Languages 283

A Language That Is Recursively Enumerable but Not
Recursive
Next, we show there are some languages that are recursively enumerable
but not recursive. Again, we need do so in a rather roundabout way. We
begin by establishing a subsidiary result.

Theorem 11.4 If a language L and its complement L are both recursively enumerable, then
both languages are recursive. If L is recursive, then L is also recursive, and
consequently both are recursively enumerable.

Proof: If L and L are both recursively enumerable, then there exist Turing
machines M and M̂ that serve as enumeration procedures for L and L,
respectively. The first will produce w1, w2, ... in L, the second ŵ1, ŵ2, ... in
L. Suppose now we are given any w ∈ Σ+. We first let M generate w1 and
compare it with w. If they are not the same, we let M̂ generate ŵ1 and
compare again. If we need to continue, we next let M generate w2, then
M̂ generate ŵ2, and so on. Any w ∈ Σ+ will be generated by either M or
M̂ , so eventually we will get a match. If the matching string is produced
by M , w belongs to L, otherwise it is in L. The process is a membership
algorithm for both L and L, so they are both recursive.

For the converse, assume that L is recursive. Then there exists a mem-
bership algorithm for it. But this becomes a membership algorithm for L
by simply complementing its conclusion. Therefore, L is recursive. Since
any recursive language is recursively enumerable, the proof is completed.

�

From this, we conclude directly that the family of recursively enumer-
able languages and the family of recursive languages are not identical. The
language L in Theorem 11.3 is in the first but not in the second family.

Theorem 11.5 There exists a recursively enumerable language that is not recursive; that
is, the family of recursive languages is a proper subset of the family of
recursively enumerable languages.

Proof: Consider the language L of Theorem 11.3. This language is recur-
sively enumerable, but its complement is not. Therefore, by Theorem 11.4,
it is not recursive, giving us the looked-for example. �

We see from this that there are indeed well-defined languages for which
one cannot construct a membership algorithm.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“15529˙CH11˙Linz” — 2011/1/12 — 10:03 — page 284 — #8
✐

✐

✐

✐

✐

✐

284 Chapter 11 A Hierarchy of Formal Languages and Automata

EXERCISES

1. Prove that the set of all real numbers is not countable.

2. Prove that the set of all languages that are not recursively enumerable is not
countable. s

3. Let L be a finite language. Show that then L+ is recursively enumerable.
Suggest an enumeration procedure for L+.

4. Let L be a context-free language. Show that L+ is recursively enumerable
and suggest an enumeration procedure for it.

5. Show that if a language is not recursively enumerable, its complement cannot
be recursive.

6. Show that the family of recursively enumerable languages is closed under
union. s

7. Is the family of recursively enumerable languages closed under intersection?

8. Show that the family of recursive languages is closed under union and inter-
section.

9. Show that the families of recursively enumerable and recursive languages are
closed under reversal.

10. Is the family of recursive languages closed under concatenation?

11. Prove that the complement of a context-free language must be recursive. s

12. Let L1 be recursive and L2 recursively enumerable. Show that L2 − L1 is
necessarily recursively enumerable.

13. Suppose that L is such that there exists a Turing machine that enumerates
the elements of L in proper order. Show that this means that L is recursive.

14. If L is recursive, is it necessarily true that L+ is also recursive? s

15. Choose a particular encoding for Turing machines, and with it, find one
element of the language L in Theorem 11.3.

16. Let S1 be a countable set, S2 a set that is not countable, and S1 ⊂ S2. Show
that S2 must then contain an infinite number of elements that are not in S1.

17. In Exercise 16, show that in fact S2 − S1 cannot be countable.

18. Why does the argument in Theorem 11.1 fail when S is finite? s

19. Show that the set of all irrational numbers is not countable.

11.2 Unrestricted Grammars

To investigate the connection between recursively enumerable languages
and grammars, we return to the general definition of a grammar in Chapter
1. In Definition 1.1 the production rules were allowed to take any form,

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“15529˙CH11˙Linz” — 2011/1/12 — 10:03 — page 285 — #9
✐

✐

✐

✐

✐

✐

11.2 Unrestricted Grammars 285

but various restrictions were later made to get specific grammar types. If
we take the general form and impose no restrictions, we get unrestricted
grammars.

Definition 11.3

A grammar G = (V, T, S, P) is called unrestricted if all the produc-
tions are of the form

u → v,

where u is in (V ∪ T)+ and v is in (V ∪ T)∗.

In an unrestricted grammar, essentially no conditions are imposed on
the productions. Any number of variables and terminals can be on the left
or right, and these can occur in any order. There is only one restriction: λ
is not allowed as the left side of a production.

As we will see, unrestricted grammars are much more powerful than
restricted forms like the regular and context-free grammars we have studied
so far. In fact, unrestricted grammars correspond to the largest family
of languages so we can hope to recognize by mechanical means; that is,
unrestricted grammars generate exactly the family of recursively enumerable
languages. We show this in two parts; the first is quite straightforward, but
the second involves a lengthy construction.

Theorem 11.6 Any language generated by an unrestricted grammar is recursively enumer-
able.

Proof: The grammar in effect defines a procedure for enumerating all strings
in the language systematically. For example, we can list all w in L such that

S ⇒ w,

that is, w is derived in one step. Since the set of the productions of the
grammar is finite, there will be a finite number of such strings. Next, we
list all w in L that can be derived in two steps

S ⇒ x ⇒ w,

and so on. We can simulate these derivations on a Turing machine and,
therefore, have an enumeration procedure for the language. Hence it is
recursively enumerable. �

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“15529˙CH11˙Linz” — 2011/1/12 — 10:03 — page 286 — #10
✐

✐

✐

✐

✐

✐

286 Chapter 11 A Hierarchy of Formal Languages and Automata

This part of the correspondence between recursively enumerable lan-
guages and unrestricted grammars is not surprising. The grammar gener-
ates strings by a well-defined algorithmic process, so the derivations can
be done on a Turing machine. To show the converse, we describe how any
Turing machine can be mimicked by an unrestricted grammar.

We are given a Turing machine M = (Q,Σ,Γ, δ, q0,�, F) and want to
produce a grammar G such that L (G) = L (M). The idea behind the con-
struction is relatively simple, but its implementation becomes notationally
cumbersome.

Since the computation of the Turing machine can be described by the
sequence of instantaneous descriptions

q0w
∗
� xqfy, (11.3)

we will try to arrange it so that the corresponding grammar has the property
that

q0w
∗⇒ xqfy (11.4)

if and only if (11.3) holds. This is not hard to do; what is more difficult to
see is how to make the connection between (11.4) and what we really want,
namely,

S
∗⇒ w

for all w satisfying (11.3). To achieve this, we construct a grammar which,
in broad outline, has the following properties:

1. S can derive q0w for all w ∈ Σ+.

2. (11.4) is possible if and only if (11.3) holds.

3. When a string xqfy with qf ∈ F is generated, the grammar transforms
this string into the original w.

The complete sequence of derivations is then

S
∗⇒ q0w

∗⇒ xqfy
∗⇒ w. (11.5)

The third step in the above derivation is the troublesome one. How can the
grammar remember w if it is modified during the second step? We solve this
by encoding strings so that the coded version originally has two copies of
w. The first is saved, while the second is used in the steps in (11.4). When
a final configuration is entered, the grammar erases everything except the
saved w.

To produce two copies of w and to handle the state symbol of M (which
eventually has to be removed by the grammar), we introduce variables Vab

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“15529˙CH11˙Linz” — 2011/1/12 — 10:03 — page 287 — #11
✐

✐

✐

✐

✐

✐

11.2 Unrestricted Grammars 287

and Vaib for all a ∈ Σ∪{�}, b ∈ Γ, and all i such that qi ∈ Q. The variable
Vab encodes the two symbols a and b, while Vaib encodes a and b as well as
the state qi.

The first step in (11.5) can be achieved (in the encoded form) by

S → V� �S |SV� �|T, (11.6)
T → TVaa|Va0a, (11.7)

for all a ∈ Σ. These productions allow the grammar to generate an encoded
version of any string q0w with an arbitrary number of leading and trailing
blanks.

For the second step, for each transition

δ (qi, c) = (qj , d, R)

of M , we put into the grammar productions

VaicVpq → VadVpjq, (11.8)

for all a, p ∈ Σ ∪ {�}, q ∈ Γ. For each

δ (qi, c) = (qj , d, L)

of M , we include in G

VpqVaic → VpjqVad, (11.9)

for all a, p ∈ Σ ∪ {�}, q ∈ Γ.
If in the second step, M enters a final state, the grammar must then

get rid of everything except w, which is saved in the first indices of the V ’s.
Therefore, for every qj ∈ F , we include productions

Vajb → a, (11.10)

for all a ∈ Σ ∪ {�}, b ∈ Γ. This creates the first terminal in the string,
which then causes a rewriting in the rest by

cVab → ca, (11.11)
Vabc → ac, (11.12)

for all a, c ∈ Σ ∪ {�}, b ∈ Γ. We need one more special production

� → λ. (11.13)

This last production takes care of the case when M moves outside that part
of the tape occupied by the input w. To make things work in this case, we
must first use (11.6) and (11.7) to generate

� . . .�q0w� . . .�,

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“15529˙CH11˙Linz” — 2011/1/12 — 10:03 — page 288 — #12
✐

✐

✐

✐

✐

✐

288 Chapter 11 A Hierarchy of Formal Languages and Automata

representing all the tape region used. The extraneous blanks are removed
at the end by (11.13).

The following example illustrates this complicated construction. Care-
fully check each step in the example to see what the various productions do
and why they are needed.

Example 11.1 Let M = (Q,Σ,Γ, δ, q0,�, F) be a Turing machine with

Q = {q0, q1} ,
Γ = {a, b,�} ,
Σ = {a, b} ,
F = {q1} ,

and

δ (q0, a) = (q0, a, R) ,
δ (q0,�) = (q1,�, L) .

This machine accepts L (aa∗).
Consider now the computation

q0aa � aq0a � aaq0� � aq1a�, (11.14)

which accepts the string aa. To derive this string with G, we first use rules
of the form (11.6) and (11.7) to get the appropriate starting string,

S ⇒ SV�� ⇒ TV�� ⇒ TVaaV�� ⇒ Va0aVaaV��.

The last sentential form is the starting point for the part of the derivation
that mimics the computation of the Turing machine. It contains the original
input aa� in the sequence of first indices and the initial instantaneous
description q0aa� in the remaining indices. Next, we apply

Va0aVaa → VaaVa0a,

and

Va0aV�� → VaaV�0�,

which are specific instances of (11.8), and

VaaV�0� → Va1aV��

coming from (11.9). Then the next steps in the derivation are

Va0aVaaV�� ⇒ VaaVa0aV�� ⇒ VaaVaaV�0� ⇒ VaaVa1aV��.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“15529˙CH11˙Linz” — 2011/1/12 — 10:03 — page 289 — #13
✐

✐

✐

✐

✐

✐

11.2 Unrestricted Grammars 289

The sequence of first indices remains the same, always remembering the
initial input. The sequence of the other indices is

0aa�, a0a�, aa0�, a1a�,

which is equivalent to the sequence of instantaneous descriptions in (11.14).
Finally, (11.10) to (11.13) are used in the last steps

VaaVa1aV�� ⇒ VaaaV�� ⇒ Vaaa� ⇒ aa� ⇒ aa.

The construction described in (11.6) to (11.13) is the basis of the proof of
the following result.

Theorem 11.7 For every recursively enumerable language L, there exists an unrestricted
grammar G, such that L = L (G).

Proof: The construction described guarantees that

x � y,

then

e (x) ⇒ e (y) ,

where e (x) denotes the encoding of a string according to the given conven-
tion. By an induction on the number of steps, we can then show that

e (q0w) ∗⇒ e (y)

if and only if

q0w
∗
� y.

We also must show that we can generate every possible starting configura-
tion and that w is properly reconstructed if and only if M enters a final
configuration. The details, which are not too difficult, are left as an exer-
cise. �

These two theorems establish what we set out to do. They show that
the family of languages associated with unrestricted grammars is identical
with the family of recursively enumerable languages.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“15529˙CH11˙Linz” — 2011/1/12 — 10:03 — page 290 — #14
✐

✐

✐

✐

✐

✐

290 Chapter 11 A Hierarchy of Formal Languages and Automata

EXERCISES

1. What language does the unrestricted grammar

S → S1B,

S1 → aS1b,

bB → bbbB,

aS1b → aa,

B → λ

derive? s

2. What difficulties would arise if we allowed the empty string as the left side
of a production in an unrestricted grammar?

3. Consider a variation on grammars in which the starting point for any deriva-
tion can be a finite set of strings, rather than a single variable. Formalize
this concept, then investigate how such grammars relate to the unrestricted
grammars we have used here. s

4. In Example 11.1, prove that the constructed grammar cannot generate any
sentence with a b in it.

5. Give the details of the proof of Theorem 11.7.

6. Construct a Turing machine for L (01 (01)∗), then find an unrestricted gram-
mar for it using the construction in Theorem 11.7. Give a derivation for 0101
using the resulting grammar.

7. Show that for every unrestricted grammar there exists an equivalent unre-
stricted grammar, all of whose productions have the form

u → v,

with u, v ∈ (V ∪ T)+ and |u| ≤ |v|, or

A → λ,

with A ∈ V . s

8. Show that the conclusion of Exercise 7 still holds if we add the further con-
ditions |u| ≤ 2 and |v| ≤ 2.

9. Some authors give a definition of unrestricted grammars that is not quite the
same as our Definition 11.3. In this alternate definition, the productions of
an unrestricted grammar are required to be of the form

x → y,

where

x ∈ (V ∪ T)∗ V (V ∪ T)∗ ,

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“15529˙CH11˙Linz” — 2011/1/12 — 10:03 — page 291 — #15
✐

✐

✐

✐

✐

✐

11.3 Context-Sensitive Grammars and Languages 291

and

y ∈ (V ∪ T)∗ .

The difference is that here the left side must have at least one variable.

Show that this alternate definition is basically the same as the one we use, in
the sense that for every grammar of one type, there is an equivalent grammar
of the other type.

11.3 Context-Sensitive Grammars and
Languages

Between the restricted, context-free grammars and the general, unrestricted
grammars, a great variety of “somewhat restricted” grammars can be de-
fined. Not all cases yield interesting results; among the ones that do, the
context-sensitive grammars have received considerable attention. These
grammars generate languages associated with a restricted class of Turing
machines, linear bounded automata, which we introduced in Section 10.5.

Definition 11.4

A grammar G = (V, T, S, P) is said to be context-sensitive if all
productions are of the form

x → y,

where x, y ∈ (V ∪ T)+ and

|x| ≤ |y| . (11.15)

This definition shows clearly one aspect of this type of grammar; it
is noncontracting, in the sense that the length of successive sentential
forms can never decrease. It is less obvious why such grammars should be
called context-sensitive, but it can be shown (see, for example, Salomaa
1973) that all such grammars can be rewritten in a normal form in which
all productions are of the form

xAy → xvy.

This is equivalent to saying that the production

A → v

can be applied only in the situation where A occurs in a context of the string
x on the left and the string y on the right. While we use the terminology
arising from this particular interpretation, the form itself is of little interest
to us here, and we will rely entirely on Definition 11.4.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“15529˙CH11˙Linz” — 2011/1/12 — 10:03 — page 292 — #16
✐

✐

✐

✐

✐

✐

292 Chapter 11 A Hierarchy of Formal Languages and Automata

Context-Sensitive Languages and Linear Bounded
Automata
As the terminology suggests, context-sensitive grammars are associated with
a language family with the same name.

Definition 11.5

A language L is said to be context-sensitive if there exists a context-
sensitive grammar G, such that L = L (G) or L = L (G) ∪ {λ}.

In this definition, we reintroduce the empty string. Definition 11.4
implies that x → λ is not allowed, so that a context-sensitive grammar
can never generate a language containing the empty string. Yet, every
context-free language without λ can be generated by a special case of a
context-sensitive grammar, say by one in Chomsky or Greibach normal
form, both of which satisfy the conditions of Definition 11.4. By including
the empty string in the definition of a context-sensitive language (but not
in the grammar), we can claim that the family of context-free languages is
a subset of the family of context-sensitive languages.

Example 11.2 The language L = {anbncn : n ≥ 1} is a context-sensitive language. We
show this by exhibiting a context-sensitive grammar for the language. One
such grammar is

S → abc|aAbc,
Ab → bA,

Ac → Bbcc,

bB → Bb,

aB → aa|aaA.

We can see how this works by looking at a derivation of a3b3c3.

S ⇒ aAbc ⇒ abAc ⇒ abBbcc

⇒ aBbbcc ⇒ aaAbbcc ⇒ aabAbcc

⇒ aabbAcc ⇒ aabbBbccc

⇒ aabBbbccc ⇒ aaBbbbccc

⇒ aaabbbccc.

The solution effectively uses the variables A and B as messengers. An A
is created on the left, travels to the right to the first c, where it creates
another b and c. It then sends the messenger B back to the left in order

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“15529˙CH11˙Linz” — 2011/1/12 — 10:03 — page 293 — #17
✐

✐

✐

✐

✐

✐

11.3 Context-Sensitive Grammars and Languages 293

to create the corresponding a. The process is very similar to the way one
might program a Turing machine to accept the language L.

Since the language in the previous example is not context-free, we see
that the family of context-free languages is a proper subset of the family
of context-sensitive languages. Example 11.2 also shows that it is not an
easy matter to find a context-sensitive grammar even for relatively simple
examples. Often the solution is most easily obtained by starting with a
Turing machine program, then finding an equivalent grammar for it. A
few examples will show that, whenever the language is context-sensitive,
the corresponding Turing machine has predictable space requirements; in
particular, it can be viewed as a linear bounded automaton.

Theorem 11.8 For every context-sensitive language L not including λ, there exists some
linear bounded automaton M such that L = L (M).

Proof: If L is context-sensitive, then there exists a context-sensitive gram-
mar for L−{λ}. We show that derivations in this grammar can be simulated
by a linear bounded automaton. The linear bounded automaton will have
two tracks, one containing the input string w, the other containing the sen-
tential forms derived using G. A key point of this argument is that no
possible sentential form can have length greater than |w|. Another point to
notice is that a linear bounded automaton is, by definition, nondeterminis-
tic. This is necessary in the argument, since we can claim that the correct
production can always be guessed and that no unproductive alternatives
have to be pursued. Therefore, the computation described in Theorem 11.6
can be carried out without using space except that originally occupied by
w; that is, it can be done by a linear bounded automaton. �

Theorem 11.9 If a language L is accepted by some linear bounded automaton M , then
there exists a context-sensitive grammar that generates L.

Proof: The construction here is similar to that in Theorem 11.7. All
productions generated in Theorem 11.7 are noncontracting except (11.13),

� → λ.

But this production can be omitted. It is necessary only when the Turing
machine moves outside the bounds of the original input, which is not the case
here. The grammar obtained by the construction without this unnecessary
production is noncontracting, completing the argument. �

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“15529˙CH11˙Linz” — 2011/1/12 — 10:03 — page 294 — #18
✐

✐

✐

✐

✐

✐

294 Chapter 11 A Hierarchy of Formal Languages and Automata

Relation Between Recursive and Context-Sensitive
Languages
Theorem 11.9 tells us that every context-sensitive language is accepted by
some Turing machine and is therefore recursively enumerable. Theorem
11.10 follows easily from this.

Theorem 11.10 Every context-sensitive language L is recursive.
Proof: Consider the context-sensitive language L with an associated con-
text-sensitive grammar G, and look at a derivation of w

S ⇒ x1 ⇒ x2 ⇒ · · · ⇒ xn ⇒ w.

We can assume without any loss of generality that all sentential forms in a
single derivation are different; that is, xi
= xj for all i
= j. The crux of
our argument is that the number of steps in any derivation is a bounded
function of |w|. We know that

|xj | ≤ |xj+1| ,

because G is noncontracting. The only thing we need to add is that there
exist some m, depending only on G and w, such that

|xj | < |xj+m| ,

for all j, with m = m (|w|) a bounded function of |V ∪ T | and |w|. This
follows because the finiteness of |V ∪ T | implies that there are only a finite
number of strings of a given length. Therefore, the length of a derivation of
w ∈ L is at most |w|m (|w|).

This observation gives us immediately a membership algorithm for L.
We check all derivations of length up to |w|m (|w|). Since the set of pro-
ductions of G is finite, there are only a finite number of these. If any of
them give w, then w ∈ L, otherwise it is not. �

Theorem 11.11 There exists a recursive language that is not context-sensitive.
Proof: Consider the set of all context-sensitive grammars on T = {a, b}.
We can use a convention in which each grammar has a variable set of the
form

V = {V0, V1, V2, ...} .

Every context-sensitive grammar is completely specified by its productions;
we can think of them as written as a single string

x1 → y1;x2 → y2; . . . ;xm → ym.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“15529˙CH11˙Linz” — 2011/1/12 — 10:03 — page 295 — #19
✐

✐

✐

✐

✐

✐

11.3 Context-Sensitive Grammars and Languages 295

To this string we now apply the homomorphism

h (a) = 010,
h (b) = 0120,
h (→) = 0130,
h (;) = 0140,
h (Vi) = 01i+50.

Thus, any context-sensitive grammar can be represented uniquely by a
string from L

(
(011∗0)∗

)
. Furthermore, the representation is invertible in

the sense that, given any such string, there is at most one context-sensitive
grammar corresponding to it.

Let us introduce a proper ordering on {0, 1}+, so we can write strings in
the order w1, w2, etc. A given string wj may not define a context-sensitive
grammar; if it does, call the grammar Gj . Next, we define a language L by

L = {wi : wi defines a context-sensitive grammar Gi and wi /∈ L (Gi)} .

L is well defined and is in fact recursive. To see this, we construct a member-
ship algorithm. Given wi, we check it to see if it defines a context-sensitive
grammar Gi. If not, then wi /∈ L. If the string does define a grammar, then
L (Gi) is recursive, and we can use the membership algorithm of Theorem
11.10 to find out if wi ∈ L (Gi). If it is not, then wi belongs to L.

But L is not context-sensitive. If it were, there would exist some wj

such that L = L (Gj). We can then ask if wj is in L (Gj). If we assume
that wj ∈ L (Gj), then by definition wj is not in L. But L = L (Gj), so we
have a contradiction. Conversely, if we assume that wj /∈ L (Gj), then by
definition wj ∈ L and we have another contradiction. We must therefore
conclude that L is not context-sensitive. �

The result in Theorem 11.11 indicates that linear bounded automata
are indeed less powerful than Turing machines, since they accept only a
proper subset of the recursive languages. It follows from the same re-
sult that linear bounded automata are more powerful than pushdown au-
tomata. Context-free languages, being generated by context-free grammars,
are a subset of the context-sensitive languages. As various examples show,
they are a proper subset. Because of the essential equivalence of linear
bounded automata and context-sensitive languages on one hand, and push-
down automata and context-free languages on the other, we see that any
language accepted by a pushdown automaton is also accepted by some lin-
ear bounded automaton, but that there are languages accepted by some
linear bounded automata for which there are no pushdown automata.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“15529˙CH11˙Linz” — 2011/1/12 — 10:03 — page 296 — #20
✐

✐

✐

✐

✐

✐

296 Chapter 11 A Hierarchy of Formal Languages and Automata

EXERCISES

1. Find context-sensitive grammars for the following languages.

(a) L =
{
an+1bncn−1 : n ≥ 1

}
.

(b) L =
{
anbna2n : n ≥ 1

}
.

(c) L = {anbmcndm : n ≥ 1, m ≥ 1}. s

(d) L =
{
ww : w ∈ {a, b}+}

.

(e) L = {anbncndn : n ≥ 1, }.

2. Find context-sensitive grammars for the following languages.

(a) L = {w : na (w) = nb (w) = nc (w)}.

(b) L = {w : na (w) = nb (w) < nc (w)}.

3. Show that the family of context-sensitive languages is closed under union.

4. Show that the family of context-sensitive languages is closed under reversal.
s

5. For m in Theorem 11.10, give explicit bounds for m as a function of |w| and
|V ∪ T |.

6. Without explicitly constructing it, show that there exists a context-sensitive
grammar for the language L =

{
wuwR : w, u ∈ {a, b}+ , |w| ≥ |u|

}
. s

11.4 The Chomsky Hierarchy

We have now encountered a number of language families, among them the
recursively enumerable languages (LRE), the context-sensitive languages
(LCS), the context-free languages (LCF), and the regular languages (LREG).
One way of exhibiting the relationship between these families is by the
Chomsky hierarchy. Noam Chomsky, a founder of formal language the-
ory, provided an initial classification into four language types, type 0 to
type 3. This original terminology has persisted and one finds frequent ref-
erences to it, but the numeric types are actually different names for the
language families we have studied. Type 0 languages are those generated
by unrestricted grammars, that is, the recursively enumerable languages.
Type 1 consists of the context-sensitive languages, type 2 consists of the
context-free languages, and type 3 consists of the regular languages. As we
have seen, each language family of type i is a proper subset of the family of
type i−1. A diagram (Figure 11.3) exhibits the relationship clearly. Figure
11.3 shows the original Chomsky hierarchy. We have also met several other

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“15529˙CH11˙Linz” — 2011/1/12 — 10:03 — page 297 — #21
✐

✐

✐

✐

✐

✐

11.4 The Chomsky Hierarchy 297

Figure 11.3

LREG

LCF

LCS

LRE

Figure 11.4

LREG

LRE

LREC

LDCF

LCF

LCS

language families that can be fitted into this picture. Including the fami-
lies of deterministic context-free languages (LDCF) and recursive languages
(LREC), we arrive at the extended hierarchy shown in Figure 11.4.

Other language families can be defined and their place in Figure 11.4
studied, although their relationships do not always have the neatly nested
structure of Figures 11.3 and 11.4. In some instances, the relationships are
not completely understood.

Example 11.3 We have previously introduced the context-free language

L = {w : na (w) = nb (w)}

and shown that it is deterministic, but not linear. On the other hand, the
language

L = {anbn} ∪
{
anb2n

}

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“15529˙CH11˙Linz” — 2011/1/12 — 10:03 — page 298 — #22
✐

✐

✐

✐

✐

✐

298 Chapter 11 A Hierarchy of Formal Languages and Automata

Figure 11.5

LREGLLIN LDCF

LCF

is linear, but not deterministic. This indicates that the relationship between
regular, linear, deterministic context-free, and nondeterministic context-free
languages is as shown in Figure 11.5.

There is still an unresolved issue. We introduced the concept of a
deterministic linear bounded automaton in Exercise 8, Section 10.5. We
can now ask the question we asked in connection with other automata:
What role does nondeterminism play here? Unfortunately, there is no easy
answer. At this time, it is not known whether the family of languages
accepted by deterministic linear bounded automata is a proper subset of
the context-sensitive languages.

To summarize, we have explored the relationships between several lan-
guage families and their associated automata. In doing so, we established
a hierarchy of languages and classified automata by their power as lan-
guage accepters. Turing machines are more powerful than linear bounded
automata. These in turn are more powerful than pushdown automata. At
the bottom of the hierarchy are finite accepters, with which we began our
study.

EXERCISES

1. Collect examples given in this book that demonstrate that all the subset
relations depicted in Figure 11.4 are indeed proper ones.

2. Find two examples (excluding the one in Example 11.3) of languages that are
linear but not deterministic context-free.

3. Find two examples (excluding the one in Example 11.3) of languages that are
deterministic context-free but not linear.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

