
Welcome to the third edition of Object-Oriented Data Structures Using Java™.
This book presents the algorithmic, programming, and structuring tech-
niques of a traditional data structures course in an object-oriented context.

You’ll find the familiar topics of stacks, queues, lists, trees, graphs, sorting, searching,
Big-O complexity analysis, and recursion, all covered from an object-oriented point
of view using Java. We stress software engineering principles throughout, including
modularization, information hiding, data abstraction, stepwise refinement, the use of
visual aids, the analysis of algorithms, and software verification methods.

To the Student

At this point you have completed at least one semester of computer science course-
work. You know that an algorithm is a sequence of unambiguous instructions for
solving a problem. You can take a problem of moderate complexity, design a small
set of classes/objects that work together to solve the problem, code the method algo-
rithms needed to make the objects work, and demonstrate the correctness of your
solution.

Algorithms describe actions. These actions manipulate data. For most interesting
problems that are solved using computers, the structure of the data is just as impor-
tant as the structure of the algorithms used to manipulate the data. Using this text-
book you will discover that the way you structure data affects how efficiently you
can use the data; you will see how the nature of the problem you are attempting to
solve dictates your structuring decisions; and you will learn about the data structures
that computer scientists have developed over the years to help solve problems.

Abstract Data Types

Over the last 20 years the focus of the data structures course has broadened consider-
ably. The topic of data structures now has been subsumed under the broader topic of
abstract data types (ADTs)—the study of classes of objects whose logical behavior is

13549_PREF_Dale.qxd 1/26/11 11:00 AM Page v

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

defined by a set of values and a set of operations. The term abstract data type represents
a domain of values and a set of operations on those values that are specified indepen-
dently of any particular implementation. The shift in emphasis is representative of the
move toward more abstraction in computing education. We are interested in the
abstract properties of classes of data objects in addition to how the objects might be
represented in a program.

In this textbook we view our data structures from three different perspectives: their
specification, their application, and their implementation. The specification describes the
logical or abstract level—what the logical relationships among the data elements are and
what operations can be performed on the structure. The application level, sometimes
called the user level, is concerned with how the data structure is used to solve a prob-
lem—why the operations do what they do. The implementation level involves the coding
details—how the structures and operations are implemented.

Object-Oriented Programming with Java

Our primary goal is to present the traditional data structure topics with an emphasis on
problem solving and software design. Using the Java programming language as a vehicle
for problem solutions, however, presents an opportunity for students to expand their
familiarity with a modern programming language and the object-oriented paradigm. As
our data structure coverage unfolds, we introduce and use the appropriate Java constructs
that support our primary goals. Starting early and continuing throughout the text, we
introduce and expand on the use of many Java features such as classes, objects, generics,
packages, interfaces, library classes, inheritance, and exceptions. Our case studies demon-
strate how to identify and filter candidate classes and how to organize modular solutions
to interesting problems. We use Universal Modeling Language (UML) class diagrams
throughout to help us model and visualize our classes and their interrelationships.

Second Edition Improvements Retained

The second edition of this textbook included many significant changes to the first edi-
tion. This third edition retains and builds on all of those improvements. We maintain
the early introduction to the heart of the textbook material, introducing data structures
and the use of references (pointers, links) as a structuring mechanism in Chapter 1. We
have retained the popular Chapter 2, which was added to the second edition, where we
introduce a simple yet interesting ADT (a StringLog). Our development of this ADT,
including both array-based and reference-based implementations, acts as a gentle intro-
duction to the approaches used for the more complicated ADTs throughout the rest of
the text.

In the second edition we also rearranged our coverage of the classic data structures,
starting with the simpler stack and queue structures and then moving to the more com-
plicated lists, trees, and graphs. We continue to follow that approach, as well as intro-
ducing recursion much earlier (Chapter 4 rather than Chapter 7), immediately after our
coverage of the related Stack ADT. This rearrangement of topics from the second edition
allows our List ADT coverage in Chapter 6 to include both traditional and recursive
implementations of list operations, and to include a presentation of an indexed list ADT.

vi | Preface

13549_PREF_Dale.qxd 1/26/11 11:00 AM Page vi

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

In addition to the major structural changes in the second edition, we streamlined
our presentation of concepts throughout, added even more exercises, and included
many additional example applications. We took advantage of several of the new fea-
tures of Java 5.0, including autoboxing and the Scanner class, to simplify our problem
solutions. Two new appendices that rounded out our second edition improvements have
been retained—one devoted to Java 5.0’s new generics mechanism and one providing
Application Programmer Interfaces (APIs) for the Java library classes used throughout
the textbook.

New to the Third Edition

When we published the second edition we chose to omit generics for reasons outlined in
Section 3.2 of that edition. We believe that was a reasonable decision at the time—but
since then, Java generics have become a mature technology. Therefore, we now include
their use throughout the textbook, providing the dual benefits of allowing for a type-
safe use of data structures while exposing students to modern approaches.

With this edition we are pleased to be among the first data structures textbooks
to address the topics of concurrency and synchronization, which are growing in
importance as computer systems move to using more cores and threads to obtain
additional performance with each new generation. We introduce the topic in the new
Section 5.7 where we start with the basics of Java threads, continue through exam-
ples of thread interference and synchronization, and culminate in a discussion of
efficiency concerns.

In addition to the two major changes described above, we have improved the
book in many smaller ways. We have included more code examples, added program-
ming exercises including several project-type exercises, rearranged the order of pres-
entation of topics in several chapters, simplified the list architecture used in Chapter
6, and clarified many tables and figures. In the robust set of exercises at the end of
each chapter, you will still find the familiar computer icon indicating an exercise
involving programming—but now you will see two such icons beside those problems
with a "significant" programming component, indicating exercises that might be used
for major class projects.

We hope that you enjoy this updated, modern approach to the data structures
course.

Prerequisite Assumptions

In this book, we assume that readers are familiar with the following Java constructs:

• Built-in simple data types and the array type
• Control structures while, do, for, if, and switch
• Creating and instantiating objects
• Basic user-defined classes

• variables and methods
• constructors, method parameters, and the return statement
• visibility modifiers

Preface | vii

13549_PREF_Dale.qxd 1/26/11 11:00 AM Page vii

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

Throughout the text we use several of the support classes from the Java Class
Library, such as String, Scanner (new in Java 5.0), System, Random, and Math. Appen-
dix E provides an introduction to these classes.

Input/Output

It is difficult to know what background the students using a data structures textbook
will have in Java I/O. Some may have learned Java in an environment where the
Java input/output statements were “hidden” behind a package provided with their
introductory textbook. Others may have learned graphical input/output techniques,
but never learned how to do file input/output. Some have learned how to create
graphical interfaces using the Java AWT; others have learned Swing; others have
learned neither. To allow all the students using our textbook to concentrate on the
primary topic of data structures, we use the simplest I/O approach we can, namely
console I/O. For input we use the Scanner class, a class introduced in Java 5.0 that
greatly simplifies the input task. Output is accomplished using the simple
System.out.print command.

To support those teachers and students who prefer to work with graphical user
interfaces (GUIs), we provide GUIs for many of our case studies (in addition to the con-
sole-based solutions). In this way they have a code base to support instruction and addi-
tional work using GUIs. At the conclusion of each case study we discuss the GUI-based
solution, include some screenshots of the program in action, and provide some related
exercises.

Content and Organization

Chapter 1 is all about Getting Organized. It introduces ways of organizing software
development and software solutions. An overview of object orientation stresses mecha-
nisms for organizing objects and classes of objects. Our primary topic of data structures
starts with a look at the classic structures and the two fundamental language constructs
that are used to implement those structures: the array and the reference (link/pointer).
The chapter concludes with a study of Big-O analysis—how we evaluate algorithms that
provide access to, or otherwise use, our data structures.

Chapter 2 introduces Abstract Data Types (ADTs). We view data from three differ-
ent levels: the logical, application, and implementation levels. We introduce the Java
interface mechanism as a means of supporting this three-tiered view. As a simple exam-
ple of an ADT we present a collection of strings and show how it is handled at each of
the three levels. For the implementation level we include both array-based and refer-
ence-based approaches. To support the reference-based approach we introduce the
linked list structure. We also address ways of verifying the correctness of our work.
Finally, in a case study, we see how the use of abstraction simplifies the task of imple-
menting a trivia game system.

Chapter 3 presents The Stack ADT. The stack is first considered from its abstract
perspective, and the idea of recording the logical abstraction in an ADT specification as
a Java interface is reinforced. Sub-interfacing allows us to define both bounded and
unbounded stack abstractions. We investigate the kinds of elements we should store in

viii | Preface

13549_PREF_Dale.qxd 1/26/11 11:00 AM Page viii

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

our collection ADTs, such as the stack, to make them generally usable. We also study
ways of handling exceptional situations that might arise when using our ADTs. We
show how stacks are used to determine if a set of grouping symbols is well formed and
to support evaluation of mathematical expressions. We investigate the implementation
of stacks using the two basic implementation approaches introduced previously in the
text: arrays and references. We also investigate an approach using the Java Library
class ArrayList.

Chapter 4 discusses Recursion, first providing an intuitive view of the concept, and
then showing how recursion can be used to solve programming problems. Guidelines for
writing recursive methods are illustrated with many examples. After demonstrating that
a by-hand simulation of a recursive routine can be very tedious, a simple three-question
technique is introduced for verifying the correctness of recursive methods. A more
detailed discussion of how recursion works leads to an understanding of how recursion
can be replaced with iteration and stacks. Our sample applications include the classic
Towers of Hanoi and Blob Counting (image analysis).

Chapter 5 presents The Queue ADT. As with the stack, the queue ADT is first con-
sidered from its abstract perspective, followed by a formal specification, and then imple-
mented using both array-based and reference-based approaches. We include an
array-based approach to implementing an unbounded queue. Example applications for
the queue involve checking for palindromes, simulating the card game War, and simu-
lating a system of real-world queues. Finally, we look at Java’s concurrency and syn-
chronization mechanisms, explaining issues of interference and efficiency.

Chapter 6 introduces The List ADT. Because list management requires us to
directly compare objects, the chapter begins with a review of that topic. This is fol-
lowed by a general discussion of lists and then a formal specification of a list frame-
work, supporting unsorted, sorted, and indexed lists. We use inheritance to take
advantage of the commonalities among our list variations for both our array-based
and reference-based implementations. Three interesting applications, involving poker,
golf, and music, demonstrate how each of the list variations can be used to help solve
problems. This chapter includes a study of the binary search algorithm, which is use-
ful when searching for an element in an array-based sorted list. The chapter concludes
with a section on the practical topic of storing and retrieving data structures using
files.

Chapter 7 looks at More Lists: circular linked lists, doubly linked lists, and lists
with headers and trailers. An alternative representation of a linked structure, using
static allocation (an array of nodes), is designed. The case study uses a list ADT devel-
oped specifically to support the implementation of large integers.

Chapter 8 introduces Binary Search Trees as a way to arrange data, giving the
flexibility of a linked structure with efficient insertion and deletion time. We exploit the
inherent recursive nature of binary trees by presenting recursive algorithms for many of
the operations. We also address the problems of balancing binary search trees and
implementing them with an array. The case study discusses the process of building an
index for a manuscript and implements the first phase of the process.

Chapter 9 presents a collection of other ADTs: Priority Queues, Heaps, and
Graphs. The graph algorithms make use of stacks, queues, and priority queues, thus

Preface | ix

13549_PREF_Dale.qxd 1/26/11 11:00 AM Page ix

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

both reinforcing earlier material and demonstrating the general usability of these
structures.

Chapter 10 presents a number of Sorting and Searching Algorithms. The sorting
algorithms that are illustrated, implemented, and compared include straight selection
sort, two versions of bubble sort, insertion sort, quick sort, heap sort, and merge sort.
The sorting algorithms are compared using Big-O notation. The discussion of algorithm
analysis continues in the context of searching. Previously presented searching algo-
rithms are reviewed and new ones are described. Hashing techniques are discussed in
some detail.

Additional Features

Chapter Goals Sets of knowledge and skill goals are presented at the beginning of
each chapter to help the students assess what they have learned.

Sample Programs Numerous sample programs and program segments illustrate the
abstract concepts throughout the text.

Case Studies Each of the five major case studies includes a problem description, an
analysis of the problem, the identification of a set of support classes to use in solving
the problem, the development of the code for the support classes and the driving
application, and a discussion of testing the solution. The class identification stage
includes descriptions of brainstorming, filtering, and scenario analysis techniques as
needed.

Chapter Summaries Each chapter concludes with a summary section that reviews the
most important topics of the chapter and ties together related topics.

Chapter Exercises We average more than 40 exercises per chapter. The exercises are
organized by chapter sections to make them easier for you to manage. They vary in
levels of difficulty, including short and long programming problems (marked with
“programming-required” icons—one icon to indicate short exercises and two icons for
projects), the analysis of algorithms, and problems to test students’ understanding of
abstract concepts.

Appendices The appendices summarize the Java reserved word set, operator
precedence, primitive data types, the ASCII subset of Unicode, and the Java library
classes used in the textbook.

Website http://www.jblearning/catalog/9781449613549/
This website provides access to the textbook’s source code files, presentation slides

for each chapter, and a glossary of terms. Additionally, registered instructors are able to
access answers to most of the textbook’s exercises and a test item file. Please contact
the authors if you have material related to the text that you would like to share with
others.

x | Preface

13549_PREF_Dale.qxd 1/26/11 11:00 AM Page x

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

Acknowledgments

We would like to thank the following people who took the time to review this textbook:
Mark Llewellyn at the University of Central Florida, Chenglie Hu at Carroll College, Val
Tannen at the University of Pennsylvania, Chris Dovolis at the University of Minnesota,
Mike Coe at Plano Senior High School, Mikel Petty at University of Alabama in Hunts-
ville, Gene Sheppard at Georgia Perimeter College, Noni Bohonak at the University of
South Carolina–Lancaster, Jose Cordova at the University of Louisiana–Monroe, and
Judy Gurka at the Metropolitan State College of Denver. A special thanks to Christine
Shannon at Centre College, to Phil LaMastra at Fairfield University, and to Kristen
Obermyer and Tara Srihara, both at Villanova University, for specific comments leading
to improvements to this edition.

A virtual bouquet of roses to the people at Jones & Bartlett Learning who contributed
so much, especially Tim Anderson, Amy Rose, Tiffany Sliter, Melissa Potter, and Stephanie
Sguigna.

ND
DJ
CW

Preface | xi

13549_PREF_Dale.qxd 1/26/11 11:00 AM Page xi

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

Intentional Blank

13549_PREF_Dale.qxd 1/26/11 11:00 AM Page xii

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

