
Knowledge Goals
You should be able to
■ describe a stack and its operations at a logical level
■ list three options for making a collection ADT generally usable
■ explain three ways to “handle” exceptional situations when defining an ADT
■ explain the difference between the formal definitions of bounded and unbounded stacks
■ describe an algorithm for determining whether grouping symbols (such as parentheses) within a string are

balanced using a stack
■ describe algorithms for implementing stack operations using an array
■ describe algorithms for implementing stack operations using an ArrayList
■ describe algorithms for implementing stack operations using a linked list
■ use Big-O analysis to describe and compare the efficiency of algorithms for implementing stack operations using various

data structuring mechanisms
■ define inheritance of interfaces and multiple inheritance of interfaces
■ describe an algorithm for evaluating postfix expressions, using a stack

Skill Goals
You should be able to
■ use the Java generics mechanism when designing/implementing a collections ADT
■ implement the Stack ADT using an array
■ implement the Stack ADT using the Java library’s ArrayList class
■ implement the Stack ADT using a linked list
■ draw diagrams showing the effect of stack operations for a particular implementation of a stack
■ create a Java exception class
■ throw Java exceptions from within an ADT and catch them within an application that uses the ADT
■ use a Stack ADT as a component of an application
■ evaluate a postfix expression “by hand”

The Stack ADT

G
oals

13549_CH03_Dale.qxd 1/6/11 9:35 AM Page 159

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

160 | Chapter 3: The Stack ADT

Figure 3.1 Real-life stacks

A stack of
cafeteria trays

A stack
of pennies

A stack of
shoe boxes

A stack of
neatly folded shirts

In this chapter we investigate the stack, an important data structure. As we described in
Chapter 1, a stack is a “last in, first out” structure. We study the stack as an ADT, look-
ing at it from the logical, application, and implementation levels. At the logical level we
formally define our Stack ADT using a Java interface. We discuss many applications
of stacks and look in particular at how stacks are used to determine whether a set of
grouping symbols is well formed and to support evaluation of mathematical expres-
sions. We investigate the implementation of stacks using our two basic approaches:
arrays and linked lists. We also investigate an approach using the Java library’s
ArrayList class.

This chapter will also expand your understanding of ADTs and your practical
knowledge of the Java language. Early in the chapter we look at ways to make an ADT
generally usable and options for addressing exceptional situations. Java topics in this
chapter include a closer look at the exception mechanism and the introduction of gener-
ics and the inheritance of interfaces.

3.1 Stacks

Consider the items pictured in Figure 3.1. Although the objects are all different, each
illustrates a common concept—the stack. At the logical level, a stack is an ordered group

of homogeneous elements. The removal of existing ele-
ments and the addition of new ones can take place only
at the top of the stack. For instance, if your favorite
blue shirt is underneath a faded, old, red one in a stack
of shirts, you first take the red shirt from the top of the
stack. Then you remove the blue shirt, which is now at

the top of the stack. The red shirt may then be put back on the top of the stack. Or it
could be thrown away!

Stack A structure in which elements are added and
removed from only one end; a “last in, first out” (LIFO)
structure

13549_CH03_Dale.qxd 1/6/11 9:35 AM Page 160

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

3.1 Stacks | 161

1. Another common approach is to define a pop operation in the classical way—that is, it removes and
returns the top element—and to define another operation, often called peek, that simply returns the top ele-
ment.

A stack may be considered “ordered” because elements occur in sequence according
to how long they’ve been in the stack. The elements that have been in the stack the
longest are at the bottom; the most recent are at the top. At any time, given any two
elements in a stack, one is higher than the other. (For instance, the red shirt was higher
in the stack than the blue shirt.)

Because elements are added and removed only from the top of the stack, the last
element to be added is the first to be removed. There is a handy mnemonic to help you
remember this rule of stack behavior: A stack is a LIFO (“last in, first out”) structure.

The accessing protocol for a stack is summarized as follows: Both to retrieve ele-
ments and to store new elements, access only the top of the stack.

Operations on Stacks
The logical picture of the structure is only half the definition of an abstract data type.
The other half is a set of operations that allows the user to access and manipulate the
elements stored in the structure. What operations do we need to use a stack?

When we begin using a stack, it should be empty. Thus we assume that our stack
has at least one class constructor that sets it to the empty state.

The operation that adds an element to the top of a stack is usually called push, and
the operation that removes the top element off the stack is referred to as pop. Classi-
cally, the pop operation has both removed the top element of the stack and returned the
top element to the client program that invoked pop. More recently, programmers have
been defining two separate operations to perform these actions because operations that
combine observations and transformation can result in confusing programs.

We follow modern convention and define a pop operation that removes the top ele-
ment from a stack and a top operation that returns the top element of a stack.1 Our push
and pop operations are strictly transformers, and our top operation is strictly an
observer. Figure 3.2 shows how a stack, envisioned as a stack of building blocks, is
modified by several push and pop operations.

Using Stacks
Stacks are very useful ADTs, especially in the field of computing system software. They
are most often used in situations in which we must process nested components. For
example, programming language systems typically use a stack to keep track of opera-
tion calls. The main program calls operation A, which in turn calls operation B, which
in turn calls operation C. When C finishes, control returns to B; when B finishes, control
returns to A; and so on. The call and return sequence is essentially a last in, first out
sequence, so a stack is the perfect structure for tracking it, as shown in Figure 3.3.

13549_CH03_Dale.qxd 1/6/11 9:35 AM Page 161

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

162 | Chapter 3: The Stack ADT

Figure 3.2 The effects of push and pop operations

2

2

3pop top = block3

3

2

2

3

5push block5

4push block4

top = block5

top = block4

3

2

originally

push block2

push block3

stack is empty

top = block2

top = block3

You may have encountered a case where a Java exception has produced an error
message that mentions “a system stack trace.” This trace shows the nested sequence of
method calls that ultimately led to the exception being thrown. These calls were saved
on the “system stack.”

Compilers use stacks to analyze language statements. A program often consists of
nested components—for example, a for loop containing an if-then statement that con-
tains a while loop. As a compiler is working through such nested constructs, it “saves”
information about what it is currently working on in a stack; when it finishes its work
on the innermost construct, it can “retrieve” its previous status from the stack and pick
up where it left off.

13549_CH03_Dale.qxd 1/6/11 9:35 AM Page 162

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

3.2 Collection Elements | 163

Figure 3.3 Call-return stack

main running Top: <empty>

main calls method A

method A running

Stack contains

Top: main

Stack contains

method A calls method B

method B running Top: A
 main

Stack contains

method C returns

method B running Top: A
 main

Stack contains

method B returns

method A running Top: main

Stack contains

method A returns

main running Top: <empty>

Stack contains

method B calls method C

method C running Top: B
 A
 main

Stack contains

Similarly, an operating system sometimes saves information about the current exe-
cuting process on a stack so that it can work on a higher-priority, interrupting process.
If that process is interrupted by an even higher-priority process, its information can also
be pushed on the process stack. When the operating system finishes its work on the
highest-priority process, it retrieves the information about the most recently stacked
process and continues working on it.

3.2 Collection Elements

A stack is an example of a collection ADT. A
stack collects together elements for future use,
while maintaining a first in, last out ordering
among the elements. Before continuing our
coverage of stacks, we examine the question of
which types of elements can be stored in a collection. We look at several variations that
are possible when structuring collections of elements and describe the approaches we
adopt for use throughout this text. It is important to understand the various options,
along with their strengths and weaknesses, so that you can make informed decisions
about which approach to use based on your particular situation.

Collection An object that holds other objects. Typi-
cally we are interested in inserting, removing, and iter-
ating through the contents of a collection.

13549_CH03_Dale.qxd 1/6/11 9:35 AM Page 163

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

164 | Chapter 3: The Stack ADT

Figure 3.4 Options for collection elements

String String String Integer Integer Integer

Integer Integer Integer

Bank
Account

Bank
Account

Bank
Account

(a)

(b)

(c)

StringLog Collection

String String String

ObjectLog Collection ObjectLog Collection

Integer String Bank
Account

ObjectLog Collection

Monster Monster TreasureHero

Drawable Collection

IntegerLog Collection BankAccountLog Collection

NumberString BankAccount

Monster

Hero

Treasure

Object

Integer

<interface>
Drawable

+ draw(): void

String String String Integer Integer Integer Bank
Account

Bank
Account

Bank
Account

(d) Log<String> Collection Log<Integer> Collection Log<BankAccount> Collection

Generally Usable Collections
The StringLog ADT we constructed in Chapter 2 is also a collection ADT. It was con-
strained to holding data of one specific type—namely, strings. Based on the approach
used in that chapter, if we wanted to have a log of something else—say, integers or pro-
grammer-defined bank account objects—we would have to design and code additional
ADTs. (See Figure 3.4a.)

13549_CH03_Dale.qxd 1/6/11 9:35 AM Page 164

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

3.2 Collection Elements | 165

Although the StringLog ADT is handy, a Log ADT would be much more useful if
it could hold any kind of information. In Chapter 2 our goal was to present basic ADT
concepts using a simple example, so we were content to create an ADT restricted to a
single type of element. In this section we present several ways to design our collec-
tions so that they hold different types of information, making them more generally
usable.

Collections of Class Object
One approach to creating generally usable collections is to have the collection ADT hold
variables of class Object. Because all Java classes ultimately inherit from Object, such
an ADT is able to hold a variable of any class. (See Figure 3.4b.) This approach works
well, especially when the elements of the collection don’t have any special properties—
for example, if the elements don’t have to be sorted.

Although this approach is simple, it is not without problems. One drawback: When-
ever an element is removed from the collection, it can be referenced only as an Object.
If you intend to use it as something else, you must cast it into the type that you intend
to use. For example, suppose you place a string into a collection and then retrieve it. To
use the retrieved object as a String object you must cast it, as emphasized here:

collection.push("E. E. Cummings"); // push string on a stack
String poet = (String) collection.top(); // cast top to String
System.out.println(poet.toLowerCase()); // use the string

Without the cast you will get a compile error, because Java is a strongly typed lan-
guage and will not allow you to assign a variable of type Object to a variable of type
String. The cast operation tells the compiler that you, the programmer, are guarantee-
ing that the Object is, indeed, a String.

The Object approach works by converting every class of object into class Object
as it is stored in the collection. Users of the collection must remember what kinds of
objects have been stored in it, and then explicitly cast those objects back into their orig-
inal classes when they are removed from the collection.

As shown by the third ObjectLog collection in Figure 3.4(b), this approach allows
a program to mix the types of elements in a single collection. That collection holds an
Integer, a String, and a BankAccount. In general, such mixing is not considered to
be a good idea, and it should be used only in rare cases under careful control. Its use
can easily lead to a program that retrieves one type of object—say, an Integer—and
tries to cast it as another type of object—say, a String. This, of course, is an error.

Collections of a Class That Implements a Particular Interface
Sometimes we may want to ensure that all of the objects in a collection support a par-
ticular operation or set of operations. As an example, suppose the objects represent ele-
ments of a video game. Many different types of elements exist, such as monsters,
heroes, and treasure. When an element is removed from the collection it is drawn on the

13549_CH03_Dale.qxd 1/6/11 9:35 AM Page 165

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

166 | Chapter 3: The Stack ADT

screen, using a draw operation. In this case, we would like to ensure that only objects
that support the draw operation can be placed in the collection.

Recall from Chapter 2 that a Java interface can include only abstract methods—that
is, methods without bodies. Once an interface is defined we can create classes that
implement the interface by supplying the missing method bodies. For our video game
example we could create an interface with an abstract draw method. A good name for
the interface might be Drawable, as classes that implement this interface provide
objects that can be drawn. The various types of video game elements that can be drawn
on the screen should all be defined as implementing the Drawable interface.

Now we can ensure that the elements in our example collection are all “legal” by
designing it as a collection of Drawable objects—in other words, objects that implement
the Drawable interface. In this way we ensure that only objects that support a draw
operation are allowed in the collection. (See Figure 3.4c.)

Later in the text we present two data structures, the sorted list and the binary search
tree, whose elements are organized in a sorted order. Every element that is inserted into
one of these collections must provide an operation that allows us to compare it to other
objects in its class. That is, objects inserted into the collection must support a com-
pareTo operation. To enforce this requirement we define our sorted list and binary
search ADTs as collections of Comparable objects. The Comparable interface is defined
within the java.lang package and includes exactly one abstract method: compareTo.

Generic Collections
Beginning with version 5.0, the Java language supports generics. Generics allow us to
define a set of operations that manipulate objects of a particular class, without specify-
ing the class of the objects being manipulated until a later time. Generics represented
one of the most significant changes to the language in this version of Java.

In a nutshell, generics are parameterized types. Of course, you are already familiar
with the concept of a parameter. For example, in our StringLog class the insert
method has a String parameter named element. When we invoke that method we
must pass it a String argument, such as “Elvis”:

log.insert("Elvis");

Generics allow us to pass type names such as Integer, String, or BankAccount
as arguments. Notice the subtle difference—with generics we actually pass a type, for
example, String, instead of a value of a particular type, for example, “Elvis.”

With this capability, we can define a collection class, such as Log, as containing
elements of a type T, where T is a placeholder for the name of a type. We indicate the
name of the placeholder (convention tells us to use T) within braces; that is, <T>, in the
header of the class.

public class Log<T>
{
private T[] log; // array that holds objects of class T

13549_CH03_Dale.qxd 1/6/11 9:35 AM Page 166

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

3.3 Exceptional Situations | 167

3.3 Exceptional Situations

There is one more topic to cover before formally specifying our Stack ADT. In this sec-
tion we take a look at various methods of handling exceptional situations that might
arise when running a program. For example, what should happen if a stack is empty
and the pop operation is invoked? There is nothing to pop! As part of formally specify-
ing a stack, or any ADT, we must determine how such exceptional situations will be
addressed.

Handling Exceptional Situations
Many different types of exceptional situations
can occur when a program is running. Excep-
tional situations alter the flow of control of the
program, sometimes resulting in a crash. Some
examples follow:

• A user enters an input value of the wrong type.
• While reading information from a file, the end of the file is reached.

Exceptional situation Associated with an unusual,
sometimes unpredictable event, detectable by software
or hardware, which requires special processing. The
event may or may not be erroneous.

private int lastIndex = -1; // index of last T in the array
...

In a subsequent application we can supply the actual type, such as Integer,
String, or BankAccount, when the collection is instantiated.

Log<Integer> numbers;
Log<BankAccount> investments;
Log<String> answers;

If we pass BankAccount as the argument, we get a BankAccount log; if we pass
String, we get a String log; and so on.

In place of passing a type when instantiating a generic collection we have the
option of passing a java interface, for example

Log<Drawable> avatars;

As discussed in the previous subsection, this could then allow us to include any object
that implements the interface in the collection—the avatars log could contain humans,
elves, and ogres, as long as each of their respective classes implements the Drawable
interface.

Generics provide the flexibility to design generally usable collections yet retain the
benefit of Java’s strong type checking. They are an excellent solution and we will use
this approach throughout most of the remainder of this textbook.

13549_CH03_Dale.qxd 1/6/11 9:35 AM Page 167

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

168 | Chapter 3: The Stack ADT

• A user presses a control key combination.
• An illegal mathematical operation occurs, such as divide-by-zero.
• An impossible operation is requested of an ADT, such as an attempt to pop an

empty stack.

Working with these kinds of exceptional situations begins at the design phase, when
several questions arise: What are the unusual situations that the program should recog-
nize? Where in the program can the situations be detected? How should the situations
be handled if they occur?

Java (along with some other languages) provides built-in mechanisms to manage
exceptional situations. In Java an exceptional situation is referred to simply as an
exception. The Java exception mechanism has three major parts:

• Defining the exception Usually as a subclass of Java’s Exception class
• Generating (raising) the exception By recognizing the exceptional situation and

then using Java’s throw statement to “announce” that the exception has
occurred

• Handling the exception Using Java’s try-catch statement to discover that an
exception has been thrown and then take the appropriate action

Java also includes numerous predefined built-in exceptions that are raised automati-
cally under certain situations.

From this point on we use the Java term “exception,” instead of the more general
phrase exceptional situation. Here are some general guidelines for using exceptions:

• An exception may be handled anywhere in the software hierarchy—from the
place in the program module where it is first detected through the top level of
the program.

• Unhandled built-in exceptions carry the penalty of program termination.
• Where in an application an exception is handled is a design decision; however,

exceptions should always be handled at a level that knows what the exception
means.

• An exception need not be fatal.
• For nonfatal exceptions, the thread of execution can continue from various

points in the program, but execution should continue from the lowest level that
can recover from the exception.

Exceptions and ADTs: An Example
When creating our own ADTs we identify exceptions that require special processing. If
the special processing is application dependent, we use the Java exception mechanism
to throw the problem out of the ADT and force the application programmers to handle
it. Conversely, if the exception handling can be hidden within the ADT, then there is no
need to burden the application programmers with the task.

For an example of an exception created to support a programmer-defined ADT, let’s
return to our Date class from Chapter 1.

13549_CH03_Dale.qxd 1/6/11 9:35 AM Page 168

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

3.3 Exceptional Situations | 169

public class Date
{
protected int year;
protected int month;
protected int day;
public static final int MINYEAR = 1583;

public Date(int newMonth, int newDay, int newYear)
{
month = newMonth;
day = newDay;
year = newYear;
}

public int getYear()
{
return year;

}

public int getMonth()
{
return month;

}

public int getDay()
{
return day;

}

public int lilian()
{
// Returns the Lilian Day Number of this date.
// Algorithm goes here.
// See "Lilian Day Numbers" feature, Chapter 1, for details.

}

public String toString()
{
return(month + "/" + day + "/" + year);

}
}

As currently defined, an application could invoke the Date constructor with an
impossible date—for example, 25/15/2000. We can avoid the creation of such dates by

13549_CH03_Dale.qxd 1/6/11 9:35 AM Page 169

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

170 | Chapter 3: The Stack ADT

checking the legality of the month argument passed to the constructor. But what should
our constructor do if it discovers an illegal argument? Here are some options:

• Write a warning message to the output stream. This is not a good option because
within the Date ADT we don’t really know which output stream is used by the
application.

• Instantiate the new Date object to some default date, perhaps 0/0/0. The problem
with this approach is that the application program may just continue processing
as if nothing is wrong and produce erroneous results. In general it is better for a
program to “bomb” than to produce erroneous results that may be used to make
bad decisions.

• Throw an exception. This way, normal processing is interrupted and the con-
structor does not have to return a new object; instead, the application program is
forced to acknowledge the problem (catch the exception) and either handle it or
throw it to the next level.

Once we have decided to handle the situation with an exception, we must decide
whether to use one of the Java library’s predefined exceptions or to create one of our
own. A study of the library in this case reveals a candidate exception called DataFor-
matException, to be used to signal data format errors. We could use that exception but
we decide it doesn’t really fit: It’s not the format of the data that is the problem in this
case, it’s the value of the data.

We decide to create our own exception, DateOutOfBounds. We could call it
“MonthOutOfBounds” but we decide that we want to use the exception to indicate other
potential problems with dates, not just problems with the month value.

We create our DateOutOfBounds exception by extending the library’s Exception
class. It is customary when creating your own exceptions to define two constructors,
mirroring the two constructors of the Exception class. In fact, the easiest thing to do is
define the constructors so that they just call the corresponding constructors of the
superclass:

public class DateOutOfBoundsException extends Exception
{
public DateOutOfBoundsException()
{
super();

}
public DateOutOfBoundsException(String message)
{
super(message);

}
}

The first constructor creates an exception without an associated message. The second
constructor creates an exception with a message equal to the string argument passed to
the constructor.

13549_CH03_Dale.qxd 1/6/11 9:35 AM Page 170

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

3.3 Exceptional Situations | 171

Next we need to consider where, within our Date ADT, we throw the exception. All
places within our ADT where a date value is created or changed should be examined to
see if the resultant value could be an illegal date. If so, we should create an object of
our exception class with an appropriate message and throw the exception.

Here is how we might write a Date constructor to check for legal months and years:

public Date(int newMonth, int newDay, int newYear)
throws DateOutOfBoundsException

{
if ((newMonth <= 0) || (newMonth > 12))
throw new DateOutOfBoundsException("month " + newMonth + "out of range");

else
month = newMonth;

day = newDay;

if (newYear < MINYEAR)
throw new DateOutOfBoundsException("year " + newYear + " is too early");

else
year = newYear;

}

Notice that the message defined for each throw statement pertains to the problem dis-
covered at that point in the code. This should help the application program that is han-
dling the exception, or at least provide pertinent information to the user of the program
if the exception is propagated all the way to the user level.

Finally, let’s see how an application program might use the revised Date class.
Consider a program called UseDates that prompts the user for a month, day, and year
and creates a Date object based on the user’s responses. In the following code we hide
the details of how the prompt and response are handled, by replacing those statements
with comments. This way we can emphasize the code related to our current discussion:

public class UseDates
{
public static void main(String[] args)

throws DateOutOfBoundsException
{
Date theDate;

// Program prompts user for a date.
// M is set equal to user's month.
// D is set equal to user's day.
// Y is set equal to user's year.

13549_CH03_Dale.qxd 1/6/11 9:35 AM Page 171

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

172 | Chapter 3: The Stack ADT

theDate = new Date(M, D, Y);

// Program continues ...
}

}

When this program runs, if the user responds with an illegal value—for example, a year
of 1051—the DateOutOfBoundsException is thrown by the Date constructor; because
it is not caught and handled within the program, it is thrown to the interpreter as indi-
cated by the emphasized throws clause. The interpreter stops the program and displays
a message like this:

Exception in thread "main" DateOutOfBoundsException: year 1051 is too
early

at Date.<init>(Date.java:18)
at UseDates.main(UseDates.java:57)

The interpreter’s message includes the name and message string of the exception as
well as a trace of calls leading up to the exception (the system stack trace mentioned in
Section 3.1.)

Alternatively, the UseDates class could catch and handle the exception itself,
rather than throwing it to the interpreter. The application could ask for a new date when
the exception occurs. Here is how UseDates can be written to do this (again we ignore
user interface details and emphasize code related to exceptions):

public class UseDates
{
public static void main(String[] args)
{
Date theDate;
boolean DateOK = false;

while (!DateOK)
{
// Program prompts user for a date.
// M is set equal to user's month.
// D is set equal to user's day.
// Y is set equal to user's year.
try
{
theDate = new Date(M, D, Y);
DateOK = true;

}
catch(DateOutOfBoundsException DateOBExcept)
{

13549_CH03_Dale.qxd 1/6/11 9:35 AM Page 172

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

3.3 Exceptional Situations | 173

output.println(DateOBExcept.getMessage());
}

}

// Program continues ...
}

}

If the new statement executes without any trouble, meaning the Date constructor
did not throw an exception, then the DateOK variable is set to true and the while loop
terminates. However, if the DateOutOfBounds exception is thrown by the Date con-
structor, it is caught by the catch statement. This, in turn, prints the message from the
exception and the while loop is reexecuted, again prompting the user for a date. The
program repeatedly prompts for date information until it is given a legal date. Notice
that the main method no longer throws DateOutOfBoundsException, as it handles the
exception itself.

One last important note about exceptions. The java.lang.RunTimeException
class is treated uniquely by the Java environment. Exceptions of this class are thrown
when a standard run-time program error occurs. Examples of run-time errors include
division-by-zero and array-index-out-of-bounds. Because run-time exceptions can hap-
pen in virtually any method or segment of code, we are not required to explicitly handle
these exceptions. Otherwise, our programs would become unreadable because of so
many try, catch, and throw statements. These errors are classified as unchecked
exceptions. The exceptions we create later in
this chapter to support our Stack ADT are
extensions of the Java RunTimeException
class and, therefore, are unchecked.

Error Situations and ADTs
When dealing with error situations within our ADT methods, we have several options.

First, we can detect and handle the error within the method itself. This is the best
approach if the error can be handled internally and if it does not greatly complicate the
design. For example, if an illegal value is passed to a method, we may be able to
replace it with a useful default value. Suppose we have a method used to set the
employee discount for an online store. Passing it a negative number might be con-
strued as an error—it might be reasonable in such a case to set the value to zero and
continue processing. When handling a problem internally in this way, it may be possi-
ble to pass information about the situation from the method to the caller through a
return value. For example, we could design a push operation for a stack that returns a
boolean value of true if the operation is successful and the argument is pushed onto
the stack, and a value of false if the operation fails for some reason (e.g., because the

Unchecked exception An exception of the Run-
TimeException class. It does not have to be
explicitly handled by the method within which it might
be raised.

13549_CH03_Dale.qxd 1/6/11 9:35 AM Page 173

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

174 | Chapter 3: The Stack ADT

stack is full). As another example, consider a top operation that returns the object
from the top of the stack. Instead of terminating the program if the stack is empty, the
operation could return the value null, indicating that the operation “failed.” In these
examples the caller is responsible for checking the returned value and acting appropri-
ately if failure is indicated.

Second, we can detect the error within the method, throw an exception related to
the error, and thereby force the calling method to deal with the exception. If it is not
clear how to handle a particular error situation, this approach might be best—throw it to
a level where it can be handled. For example, if an application passes a nonsensical date
to the Date class constructor, it is best to throw an exception—the constructor doesn’t
“know” what the ramifications of the impossible date are, but the application should.
Another example is when an application attempts to pop something from an empty
stack. The Stack ADT doesn’t “know” what this erroneous situation means, but the
application should. Of course, if the caller does not catch and handle the thrown excep-
tion, it will continue to be thrown until it is either handled or thrown all the way to the
interpreter, causing program termination.

Third, we can ignore the error situation. Recall the “programming by contract” dis-
cussion related to preconditions in Chapter 2. With this approach, if the preconditions of
a method are not met, the method is not responsible for the consequences. For example,
suppose a method requires a prime number as an argument. If this is a precondition,
then the method assumes that the argument is prime—it does not test the primality of
the number. If the number is not prime, then the results are undefined. It is the respon-
sibility of the calling code to ensure that the precondition is met. See the feature “Pro-
gramming by Contract” for more information.

When we define an ADT, we partition error situations into three sets: those to be
handled internally, those to be thrown back to the calling process, and those that are
assumed not to occur. We document this third approach in the preconditions of the
appropriate methods. Our goal is to strike a balance between the complexity required to
handle every error situation internally and the lack of safety resulting from handling
everything by contract.

Programming by Contract
Let’s revisit briefly our “programming by contract” approach. We want to emphasize the way we
handle method preconditions, because some programmers use a different methodology: They
test preconditions within a method and throw exceptions when preconditions aren’t met. They
treat unmet preconditions as errors. We don’t.

We don’t believe in unmet preconditions. If a condition might not be true when a method is
called, then it shouldn’t be listed as a precondition. It should be listed as an error condition. The
point of a precondition is to simplify our code and make it more efficient, not to complicate
things with extra levels of unneeded testing.

13549_CH03_Dale.qxd 1/6/11 9:35 AM Page 174

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

3.4 Formal Specification | 175

Why is our approach more efficient? Preconditions are always supposed to be true. Thus
testing them each time a method is called is a waste of time.

Consider the example of the method that requires a prime number as an argument. Suppose
methodA obtains a prime number and passes it to methodB. It guarantees that the number is
prime. If we require methodB to test the primality of the number (a nontrivial task), we are
unnecessarily complicating methodB and slowing down our program. Instead, we simply state
within our preconditions that the argument is prime and no longer worry about it:

public void methodB(int primenumber)
// Precondition: primenumber is prime.
. . .

On the other hand, if we cannot assume that the number passed to methodB is prime, then we
document this possibility as a potential error condition, test for it, and handle it if needed:

public void methodB(int primenumber) throws NotPrimeException
// Throws NotPrimeException if primenumber is not prime,
// otherwise ...

For any specific condition we use one or the other of these approaches, but not both!

3.4 Formal Specification

In this section we use the Java interface construct to create a formal specification of our
Stack ADT. To specify any collection ADT we must determine which types of elements it
will hold, which operations it will export, and how exceptional situations will be han-
dled. Some of these decisions have already been documented.

Recall from Section 3.1 that a stack is a “last in, first out” structure, with three pri-
mary operations:

• push Adds an element to the top of the stack.
• pop Removes the top element off the stack.
• top Returns the top element of a stack.

In addition to these operations we need a constructor that creates an empty stack.
As noted in Section 3.2, our Stack ADT will be a generic stack. The class of ele-

ments that a stack stores will be specified by the client code at the time the stack is
instantiated. Following the common Java coding convention, we use <T> to represent
the class of objects stored in our stack.

Now we look at exceptional situations. As you’ll see, this exploration can lead to
the identification of additional operations.

13549_CH03_Dale.qxd 1/6/11 9:35 AM Page 175

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

176 | Chapter 3: The Stack ADT

Exceptional Situations
Are there any exceptional situations that require handling? The constructor simply ini-
tializes a new empty stack. This action, in itself, cannot cause an error—assuming, of
course, that it is coded correctly.

The remaining operations all present potential problem situations. The descriptions
of the pop and top operations both refer to manipulating the “top element of the stack.”
But what if the stack is empty? Then there is no top element to manipulate. We know
that there are three ways to deal with this scenario. Can we handle the problem within
the methods themselves? Should we detect the situation and throw an exception? Is it
reasonable to state, as a precondition, that the stack be nonempty?

How might the problem be handled within the methods themselves? Given that the
pop method is strictly a transformer, it could simply do nothing when it is invoked on
an empty stack. In effect, it could perform a vacuous transformation. For top, which
must return an Object reference, the response might be to return null. For some appli-
cations this might be a reasonable approach, but for most cases it would merely compli-
cate the application code.

What if we state a precondition that a stack must not be empty before calling top
or pop? Then we do not have to worry about handling the situation within the ADT. Of
course, we can’t expect every application that uses our stack to keep track of whether it
is empty; that should be the responsibility of the Stack ADT itself. To address this
requirement we define an observer called isEmpty, which returns a boolean value of
true if the stack is empty. Then the application can prevent misuse of the pop and top
operations.

if !myStack.isEmpty()
myObject = myStack.top();

This approach appears promising but can place an unwanted burden on the application.
If an application must perform a guarding test before every stack operation, its code
might become inefficient and difficult to read.

It is also a good idea to provide an exception related to accessing an empty stack.
Consider the situation where a large number of stack calls take place within a section of
code. If we define an exception—for example, StackUnderflowException—to be
thrown by both pop and top if they are called when the stack is empty, then such a
section of code could be surrounded by a single try-catch statement, rather than use
multiple calls to the isEmpty operation.

We decide to use this last approach. That is, we define a StackUnderflowExcep-
tion, to be thrown by both pop and top if they are called when the stack is empty. To
provide flexibility to the application programmer, we also include the isEmpty opera-
tion in our ADT. Now the application programmer can decide either to prevent popping
or accessing an empty stack by using the isEmpty operation as a guard or, as shown
next, to “try” the operations on the stack and “catch and handle” the raised exception, if
the stack is empty.

13549_CH03_Dale.qxd 1/6/11 9:35 AM Page 176

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

3.4 Formal Specification | 177

2. The files can be found in the stacks subdirectory of the ch03 subdirectory of the bookFiles directory that
contains the program files associated with the textbook.

try
{
myObject = myStack.top();
myStack.pop();
myOtherObject = myStack.top();
myStack.pop();

}
catch (StackUnderflowException underflow)
{
System.out.println("There was a problem in the ABC routine.");
System.out.println("Please inform System Control.");
System.out.println("Exception: " + underflow.getMessage());
System.exit(1);

}

We define StackUnderflowException to extend the Java RuntimeException, as
it represents a situation that a programmer can avoid by using the stack properly. The
RuntimeException class is typically used in such situations. Recall that such excep-
tions are unchecked; in other words, they do not have to be explicitly caught by a pro-
gram.

Here is the code for our StackUnderflowException class. Note that it includes a
package statement. This class is the first of several classes and interfaces we develop
related to the stack data structure. We collect all of these together into a single package
called ch03.stacks.2

package ch03.stacks;

public class StackUnderflowException extends RuntimeException
{
public StackUnderflowException()
{
super();

}

public StackUnderflowException(String message)
{
super(message);

}
}

13549_CH03_Dale.qxd 1/6/11 9:35 AM Page 177

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

178 | Chapter 3: The Stack ADT

Because StackUnderflowException is an unchecked exception, if it is raised and
not caught it is eventually thrown to the run-time environment, which displays an error
message and halts. An example of such a message follows:

Exception in thread “main” ch03.stacks.StackUnderflowException: Top attempted on an
empty stack.

at ch03.stacks.ArrayStack.top(ArrayStack.java:78)

at MyTestStack.main(MyTestStack.java:25)

On the other hand, if the programmer explicitly catches the exception, as we showed in
the try-catch example, the error message can be tailored more closely to the specific
problem:

There was a problem in the ABC routine.

Please inform System Control.

Exception: top attempted on an empty stack.

A consideration of the push operation reveals another potential problem: What if
we try to push something onto a stack and there is no room for it? In an abstract sense,
a stack is never conceptually “full.” Sometimes, however, it is useful to specify an upper
bound on the size of a stack. We might know that memory is in short supply or prob-
lem-related constraints may dictate a limit on the number of push operations that can
occur without corresponding pop operations.

We can address this problem in a way analogous to the stack underflow problem.
First, we provide an additional boolean observer operation called isFull, which
returns true if the stack is full. The application programmer can use this operation to
prevent misuse of the push operation. Second, we define StackOverflowException,
which is thrown by the push operation if it is called when the stack is full. Here is the
code for the StackOverflowException class:

package ch03.stacks;

public class StackOverflowException extends RuntimeException
{
public StackOverflowException()
{
super();

}

public StackOverflowException(String message)
{
super(message);

}
}

13549_CH03_Dale.qxd 1/6/11 9:35 AM Page 178

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

3.4 Formal Specification | 179

3. Because our stack exceptions are unchecked exceptions, including them in the interface actually has no
effect on anything from a syntactic or run-time error-checking point of view. They aren’t checked. However,
we still list them as being thrown because we are also trying to communicate our requirements to the imple-
mentation programmer.

As with the underflow situation, the application programmer can decide either to
prevent pushing information onto a full stack through use of the isFull operation or
to “try” the operation on a stack and “catch and handle” any raised exception. The
StackOverflowException is also an unchecked exception.

The Interfaces
We are now ready to formally specify our Stack ADT. As we planned, we use the Java
interface construct. But how do we handle the fact that sometimes we may want to use
a stack with an upper bound on its size and sometimes we want an unbounded stack?

We were faced with this same situation in developing our StringLog ADT in Chap-
ter 2. In that case we decided to include the isFull operation as part of the single inter-
face, even though its existence did not make sense for some implementations of the
StringLog. Recall that in the linked-list-based implementation, isFull always returned
false. For the Stack ADT we use a different approach: We define separate interfaces for
the bounded and unbounded versions of the stack. In fact, we define three interfaces.

Whether a stack is bounded in size affects only the push operation and the need for
an isFull operation. It has no effect on the pop, top, or isEmpty operations. First, we
define a general stack interface, StackInterface, that contains the signatures of those
three operations:

//---
// StackInterface.java by Dale/Joyce/Weems Chapter 3
//
// Interface for a class that implements a stack of T.
// A stack is a last in, first out structure.
//---

package ch03.stacks;

public interface StackInterface<T>

{
void pop() throws StackUnderflowException3;
// Throws StackUnderflowException if this stack is empty,
// otherwise removes top element from this stack.

T top() throws StackUnderflowException;
// Throws StackUnderflowException if this stack is empty,
// otherwise returns top element from this stack.

13549_CH03_Dale.qxd 1/6/11 9:35 AM Page 179

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

180 | Chapter 3: The Stack ADT

4. In contrast, a Java class can extend only one other class.

boolean isEmpty();
// Returns true if this stack is empty, otherwise returns false.

}

In Section 3.2 we presented our intention to create generic collection ADTs. This means
that in addition to implementing our ADTs as generic classes—that is, classes that accept
a parameter type upon instantiation—we also will define generic interfaces for those
classes. Note the use of <T> in the header of StackInterface. As with generic classes,
<T> used in this way indicates that T is a placeholder for a type provided by the client
code. T represents the class of objects held by the specified stack. Since the top method
returns one of those objects, in the interface it is listed as returning T. This same
approach is used for ADT interfaces throughout the remainder of the textbook.

Note that we document the effects of the operations, the postconditions, as com-
ments. For this ADT there are no preconditions because we have elected to throw excep-
tions for all error situations.

Next, we turn our attention to the bounded version of the stack, for which we cre-
ate a second interface, BoundedStackInterface. A stack that is bounded in size must

support all of the operations of a “regular” stack plus
the isFull operation. It must also provide a push
operation that throws an exception if the operation is
invoked when the stack is full.

Java supports inheritance of interfaces. That is, one
interface can extend another interface. (In fact, the lan-
guage supports multiple inheritance of interfaces so
that a single interface can extend any number of other
interfaces.) The fact that the new interface requires all
of the operations of our current StackInterface
makes this a perfect place to use inheritance. We define
our BoundedStackInterface as a new interface that
extends StackInterface and adds isFull and push
methods. Here is the code for the new interface (note
the extends clause):

//--
// BoundedStackInterface.java by Dale/Joyce/Weems Chapter 3
//
// Interface for a class that implements a stack of T with a bound
// on the size of the stack. A stack is a last in, first out structure.
//--

package ch03.stacks;

Inheritance of interfaces A Java interface can extend
another Java interface, inheriting its requirements. If
interface B extends interface A, then classes that
implement interface B must also implement interface
A. Usually, interface B adds abstract methods to those
required by interface A.

Multiple inheritance of interfaces A Java interface
may extend more than one interface.4 If interface C
extends both interface A and interface B, then classes
that implement interface C must also implement both
interface A and interface B. Sometimes multiple inheri-
tance of interfaces is used simply to combine the
requirements of two interfaces, without adding any
more methods.

13549_CH03_Dale.qxd 1/6/11 9:35 AM Page 180

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

3.4 Formal Specification | 181

5. The only way it could be full is if the system runs out of space. In this rare case the Java run-time system
raises an exception anyway.

public interface BoundedStackInterface<T> extends StackInterface<T>

{
void push(T element) throws StackOverflowException;
// Throws StackOverflowException if this stack is full,
// otherwise places element at the top of this stack.

boolean isFull();
// Returns true if this stack is full, otherwise returns false.

}

Finally, we create an interface for the unbounded case. An unbounded stack need
not support an isFull operation, because it will “never” be full.5 For this same reason,
the push operation need not throw an exception.

//--
// UnboundedStackInterface.java by Dale/Joyce/Weems Chapter 3
//
// Interface for a class that implements a stack of T with no bound
// on the size of the stack. A stack is a last in, first out structure.
//--

package ch03.stacks;

public interface UnboundedStackInterface<T> extends StackInterface<T>

{
void push(T element);
// Places element at the top of this stack.

}

We have now defined our three interfaces, along with two exception classes. Their
relationship is shown in the UML diagram in Figure 3.5. A specific implementation of a
stack would implement either the BoundedStackInterface or the UnboundedStack-
Interface. By virtue of the interface inheritance rules, it must also implement the
StackInterface.

13549_CH03_Dale.qxd 1/6/11 9:35 AM Page 181

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

182 | Chapter 3: The Stack ADT

Figure 3.5 UML diagram of our Stack ADT interfaces

+ StackOverflowException()
+ StackOverflowException(String message)

<<interface>>
StackInterface<T>

+ pop(): void
+ top(): T
+ isEmpty(): boolean

StackOverflowException<<interface>>
UnboundedStackInterface<T>

+ push(T element): void

<<interface>>
BoundedStackInterface<T>

+ push(T element): void
+ isFull(): boolean

StackUnderflowException

+StackUnderflowException()
+StackUnderflowException(String message)

 uses

 extends

 Key:

Note that our Stack ADT interfaces are not an example of multiple inheritance of
interfaces. That occurs when one interface inherits from more than one other inter-
face. Here we have defined two interfaces that inherit from the same interface, just
as in a normal class hierarchy. We discussed multiple inheritance in this section
simply because it is an aspect of the Java syntax for interface inheritance that you
should be aware of.

Example Use
The simple ReverseStrings example shows how we can use a stack to store strings
provided by a user and then to output the strings in the opposite order from which they
were entered. The code uses the array-based implementation of a stack we develop in
the following section. The parts of the code directly related to the creation and use of
the stack are emphasized. We declare the stack to be of type BoundedStackInter-
face<String> and then instantiate it as an ArrayStack<String>. Within the for
loop, three strings provided by the user are pushed onto the stack. The while loop
repeatedly removes and prints the top string from the stack until the stack is empty. If
we try to push any type of object other than a String onto the stack, we will receive a
compile time error message saying that the push method cannot be applied to that type
of object.

//---
// ReverseStrings.java by Dale/Joyce/Weems Chapter 3
//
// Sample use of stack. Outputs strings in reverse order of entry.
//---

13549_CH03_Dale.qxd 1/6/11 9:35 AM Page 182

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

3.4 Formal Specification | 183

import ch03.stacks.*;
import java.util.Scanner;

public class ReverseStrings
{
public static void main(String[] args)
{
Scanner conIn = new Scanner(System.in);

BoundedStackInterface<String> stack;
stack = new ArrayStack<String>(3);

String line;

for (int i = 1; i <= 3; i++)
{
System.out.print(“Enter a line of text > “);
line = conIn.nextLine();
stack.push(line);

}

System.out.println(“\nReverse is:\n”);
while (!stack.isEmpty())
{
line = stack.top();
stack.pop();
System.out.println(line);

}
}

}

Here is the output from a sample run:

Enter a line of text > the beginning of a story
Enter a line of text > is often different than
Enter a line of text > the end of a story

Reverse is:

the end of a story

is often different than

the beginning of a story

13549_CH03_Dale.qxd 1/6/11 9:35 AM Page 183

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

184 | Chapter 3: The Stack ADT

6. In the library isEmpty is called empty, and top is called peek.

The Java Stack Class and the Collections Framework
The Java library provides classes that implement ADTs that are based on common data struc-
tures—stacks, queues, lists, maps, sets, and more. The library’s Stack class is similar to the Stack
ADT we develop in this chapter in that it provides a LIFO structure. However, in addition to our
push, top, and isEmpty6 operations, it includes two other operations:

• pop Removes and returns the top element from the stack.
• search(Object o) Returns the position of object o on the stack.

Because the library Stack class extends the library Vector class, it also inherits the many
operations defined for Vector and its ancestors.

Here is how you might implement the reverse strings application using the Stack class
from the Java library. The minimal differences between this application and the one using our
Stack ADT are emphasized.

//--
// ReverseStrings2.java by Dale/Joyce/Weems Chapter 3
//
// Sample use of the library Stack.
// Outputs strings in reverse order of entry.
//--

import java.util.Stack;
import java.util.Scanner;

public class ReverseStrings2
{
public static void main(String[] args)
{
Scanner conIn = new Scanner(System.in);

Stack<String> stack = new Stack<String>();

String line;

for (int i = 1; i <= 3; i++)
{
System.out.print(“Enter a line of text > “);
line = conIn.nextLine();
stack.push(line);

}

13549_CH03_Dale.qxd 1/6/11 9:35 AM Page 184

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

3.5 Array-Based Implementations | 185

System.out.println(“\nReverse is:\n”);
while (!stack.empty())
{
line = stack.peek();
stack.pop();
System.out.println(line);

}
}

}

As discussed in Section 3.2, another term for a data structure is collection. The Java
developers refer to the set of library classes, such as Stack, that support data structures as
the Collections Framework. This framework includes both interfaces and classes. It also
includes documentation that explains how the developers intend for us to use them. As of
Java 5.0 all the structures in the Collections Framework support generics (see the subsection
Generic Collections in Section 3.2).

The Collections Framework comprises an extensive set of tools. It does more than just
provide implementations of data structures; it provides a unified architecture for working with
collections. In this textbook we do not cover the framework in great detail. This textbook is
meant to teach you about the fundamental nature of data structures and to demonstrate how
we define, implement, and use them. It is not an exploration of how to use Java’s specific
library architecture of similar structures.

Before you become a professional Java programmer, you should carefully study the Collec-
tions Framework and learn how to use it productively. This textbook prepares you to do this not
just for Java, but for other languages and libraries as well. Nevertheless, when we discuss a data
structure that has a counterpart in the Java library, we will briefly describe the similarities and
differences between our approach and the library’s approach, as we did here for stacks.

If you are interested in learning more about the Java Collections Framework, you can study
the extensive documentation available at Oracle’s website.

3.5 Array-Based Implementations

In this section we study an array-based implementation of the Stack ADT. Additionally,
in a feature section, we look at an alternative implementation that uses the Java
library’s ArrayList class.

Note that Figure 3.17, in the Summary on page 230, shows the relationships among
the primary classes and interfaces created to support our Stack ADT, including those
developed in this section.

The ArrayStack Class
First we develop a Java class that implements the BoundedStackInterface. We call
this class ArrayStack, in recognition of the fact that it uses an array as the underlying

13549_CH03_Dale.qxd 1/6/11 9:35 AM Page 185

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

186 | Chapter 3: The Stack ADT

structure. An array is a reasonable structure to contain elements of a stack. We can put
elements into sequential slots in the array, placing the first element pushed onto the
stack into the first array position, the second element pushed into the second array posi-
tion, and so on. The floating “high-water” mark is the top element in the stack. Given
that stacks grow and shrink from only one end, we do not have to worry about inserting
an element into the middle of the elements already stored in the array.

What instance variables does our implementation need? We need the stack elements
themselves and a variable indicating the top of the stack. We hold the stack elements in
a protected array called stack. We use a protected integer variable called topIndex to
indicate which element of the array is the top. We initialize topIndex to �1, as noth-
ing is stored on the stack when it is first created.

As we push and pop elements, respectively, we increment and decrement the value
of topIndex. For example, starting with an empty stack and pushing “A,” “B,” and “C”
we would have

We provide two constructors for use by clients of the ArrayStack class: One
allows the client to specify the maximum expected size of the stack, and the other
assumes a default maximum size of 100 elements. To facilitate the latter constructor, we
define a constant DEFCAP (default capacity) set to 100.

The beginning of the ArrayStack.java file is shown here:

//--
// ArrayStack.java by Dale/Joyce/Weems Chapter 3
//
// Implements BoundedStackInterface using an array to hold the
// stack elements.
//

topIndex: 2

[2]

[1]

[0]

•
•
•

"C"

"B"

"A"

topIndex: —1

[2]

[1]

[0]

•
•
•

null

null

null

13549_CH03_Dale.qxd 1/6/11 9:35 AM Page 186

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

3.5 Array-Based Implementations | 187

6. An unchecked cast warning is generated because the compiler cannot ensure that the array contains objects
of class T—the warning can safely be ignored.

// Two constructors are provided: one that creates an array of a
// default size and one that allows the calling program to
// specify the size.
//--

package ch03.stacks;

public class ArrayStack<T> implements BoundedStackInterface<T>
{
protected final int DEFCAP = 100; // default capacity
protected T[] stack; // holds stack elements
protected int topIndex = -1; // index of top element in stack

public ArrayStack()
{
stack = (T[]) new Object[DEFCAP];6

}

public ArrayStack(int maxSize)
{
stack = (T[]) new Object[maxSize];6

}

We can see that this class accepts a generic parameter <T> as listed in the class
header. The stack variable is declared to be of type T[], that is, an array of class T.
This class implements a stack of T’s—the class of T is not yet determined. It will be
specified by the client class that uses the bounded stack. Because the Java translator
will not generate references to a generic type, our code must specify Object along
with the new statement within our constructors. Thus, although we declare our array
to be an array of class T, we must instantiate it to be an array of class Object. Then,
to ensure that the desired type checking takes place, we cast array elements into class
T, as shown here:

stack = (T[]) new Object[DEFCAP];

Even though this approach is somewhat awkward and typically generates a compiler
warning, it is how we must create generic collections using arrays in Java. We could use
the Java library’s generic ArrayList to rectify the problem (see the feature The

13549_CH03_Dale.qxd 1/6/11 9:35 AM Page 187

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

188 | Chapter 3: The Stack ADT

ArrayListStack Class at the end of this section), but we prefer to use the more basic
array structure for pedagogic reasons. The compiler warning can safely be ignored.

Definitions of Stack Operations
As we are now implementing the BoundedStackInterface, we must provide a con-
crete implementation of the isFull method. For the array-based approach, the imple-
mentations of isFull and its counterpart, isEmpty, are both very simple. The stack is
empty if the top index is equal to –1, and the stack is full if the top index is equal to
one less than the size of the array.

public boolean isEmpty()
// Returns true if this stack is empty, otherwise returns false.
{
if (topIndex == -1)
return true;

else
return false;

}

public boolean isFull()
// Returns true if this stack is full, otherwise returns false.
{
if (topIndex == (stack.length - 1))
return true;

else
return false;

}

Now let’s write the method to push an element of type T onto the top of the stack. If
the stack is already full when we invoke push, there is nowhere to put the element.
Recall that this condition is called stack overflow. Our formal specifications state that
the method should throw the StackOverflowException in this case. We include a
pertinent error message when the exception is thrown. If the stack is not full, push must
increment topIndex and store the new element into stack[topIndex]. The imple-
mentation of this method is straightforward.

public void push(T element)
// Throws StackOverflowException if this stack is full,
// otherwise places element at the top of this stack.
{
if (!isFull())
{

13549_CH03_Dale.qxd 1/6/11 9:35 AM Page 188

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

3.5 Array-Based Implementations | 189

topIndex++;
stack[topIndex] = element;

}
else
throw new StackOverflowException("Push attempted on a full stack.");

}

The pop method is essentially the reverse of push: Instead of putting an element
onto the top of the stack, we remove the top element from the stack by decrementing
topIndex. It is good practice to also “null out” the array location associated with the
current top. Setting the array value to null removes the physical reference. Figure 3.6
shows the difference between the “lazy” approach to coding pop and the “proper”
approach.

If the stack is empty when we invoke pop, there is no top element to remove and
we have stack underflow. As with the push method, the specifications say to throw an
exception.

public void pop()
// Throws StackUnderflowException if this stack is empty,
// otherwise removes top element from this stack.
{
if (!isEmpty())
{
stack[topIndex] = null;
topIndex--;

}
else
throw new StackUnderflowException("Pop attempted on an empty stack.");

}

Figure 3.6 Lazy versus proper pop approaches for an array-based stack after push(“A”), push(“B”),
and pop()

[1]

[0]

•
•
• topIndex: 0

"B"

"A"

"Lazy" Approach

[1]

[0]

•
•
• topIndex: 0

"A"

null

"Proper" Approach

13549_CH03_Dale.qxd 1/6/11 9:35 AM Page 189

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

190 | Chapter 3: The Stack ADT

Finally, the top operation simply returns the top element of the stack, the element
indexed by topIndex. Consistent with our generic approach, the top method shows
type T as its return type. As with the pop operation, if we attempt to perform the top
operation on an empty stack, a stack underflow results.

public T top()
// Throws StackUnderflowException if this stack is empty,
// otherwise returns top element from this stack.
{
T topOfStack = null;
if (!isEmpty())
topOfStack = stack[topIndex];

else
throw new StackUnderflowException("Top attempted on an empty stack.");

return topOfStack;
}

Test Plan
Our ArrayStack implementation can be tested using the general ADT testing approach
described in Section 2.4, “Software Testing,” where we presented an example based on
the StringLog ADT. Unlike the StringLog ADT, our Stack ADT does not include a
toString operation. Therefore it is not as easy to check the contents of a stack during
testing. There are several ways we can address this problem. For instance, we could add
a toString operation to our stack implementations. (See Exercise 29.) Alternatively, we
could create an application-level method that is passed a stack; uses top, pop, and
push to take the stack apart and display its contents; and then uses the same operations
to put the stack back together. This approach requires a second stack to hold the con-
tents of the original stack under investigation, while it is being “taken apart.” (See Exer-
cise 30d.)

Once the problem of viewing the contents of a stack has been solved, we can create
an interactive test driver, as we did for the ArrayStringLog in Chapter 2. Such a
driver helps us carry out our test plans.

Page 191 shows a short test plan for the ArrayStack. The test plan tests a stack of
Integer. The type of data stored in the stack has no effect on the operations that manip-
ulate the stack, so testing an Integer stack suffices. We set the stack size to 5, to keep
our test cases manageable.

One final note about using an array to implement a stack. We implemented the
BoundedStackInterface using an array because the size of an array is fixed. We can
also use arrays to implement the UnboundedStackInterface. One approach is to
instantiate increasingly larger arrays, as needed during processing, copying the current
array into the larger, newly instantiated array. We investigate this approach when we
implement the Queue ADT in Chapter 5.

13549_CH03_Dale.qxd 1/6/11 9:35 AM Page 190

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

3.5 Array-Based Implementations | 191

Operation to be Tested
and Description of
Action Input Values Expected Output

ArrayStack 5
apply isEmpty immediately Stack is empty

push, pop, and top
push 4 items, top/pop and print 5,7,6,9 9,6,7,5
push with duplicates and
top/pop and print 2,3,3,4 4,3,3,2
interlace operations
push 5
pop
push 3
push 7
pop
top and print 3

isEmpty
invoke when empty Stack is empty
push and invoke Stack is not empty
pop and invoke Stack is empty

isFull
push 4 items and invoke Stack is not full
push 1 item and invoke Stack is full

throw StackOverflowException Outputs string:
push 5 items then ”Push attempted on a full stack.”
push another item Program terminates

throw StackUnderflowException Outputs string:
when stack is empty “Pop attempted on an empty stack.”
attempt to pop Program terminates

when stack is empty Outputs string:
attempt to top “Top attempted on an empty stack.”

Program terminates

13549_CH03_Dale.qxd 1/6/11 9:35 AM Page 191

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

7. Appendix E contains information concerning the Java ArrayList class.

The ArrayListStack Class
There are often many ways to implement an ADT. In this feature, we present an alternate implemen-
tation for the Stack ADT based on the ArrayList7 class of the Java class library. The ArrayList
is part of the Java Collections Framework discussed at the end of Section 3.4.

The defining quality of the ArrayList class is that it can grow and shrink in response to
the program’s needs. As a consequence, when we use the ArrayList approach we do not have
to worry about our stacks being bounded. Instead of implementing the BoundedStackInter-
face, we implement the UnboundedStackInterface. Our constructor no longer needs to
declare a stack size. We do not implement an isFull operation. We do not have to handle stack
overflows.

One could argue that if a program runs completely out of memory, then the stack could
be considered full and should throw StackOverflowException. However, in that case the
run-time environment throws an “out of memory” exception anyway; we do not have to worry
about the situation going unnoticed. Furthermore, running out of system memory is a serious
problem (and ideally a rare event) and cannot be handled in the same way as a Stack ADT
overflow.

The fact that an ArrayList automatically grows as needed makes it a good choice for
implementing our unbounded Stack ADT. Additionally, it provides a size method that we can
use to keep track of the top of our stack. The index of the top of the stack is always the size
minus one.

Study the following code. Compare this implementation to the previous implementation. They
are similar, yet different. One is based directly on arrays, whereas the other uses arrays indirectly
through the ArrayList class. One nice benefit of using the ArrayList approach is we no
longer receive the annoying unchecked cast warning from the compiler. This is because an
ArrayList object, unlike the basic array, is a first-class object in Java and fully supports the
use of generics. Despite the obvious benefits of using ArrayList we will continue to use arrays
as one of our basic ADT implementation structures throughout most of the rest of the book.
Learning to use the standard array is important for future professional software developers.

//---
// ArrayListStack.java by Dale/Joyce/Weems Chapter 3
//
// Implements UnboundedStackInterface using an ArrayList to
// hold the stack elements.
//---

package ch03.stacks;

import java.util.*;

192 | Chapter 3: The Stack ADT

13549_CH03_Dale.qxd 1/6/11 9:35 AM Page 192

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

3.5 Array-Based Implementations | 193

public class ArrayListStack<T> implements UnboundedStackInterface<T>
{
protected ArrayList<T> stack; // ArrayList that holds stack

// elements

public ArrayListStack()
{
stack = new ArrayList<T>();

}

public void push(T element)
// Places element at the top of this stack.
{
stack.add(element);

}

public void pop()
// Throws StackUnderflowException if this stack is empty,
// otherwise removes top element from this stack.
{
if (!isEmpty())
{
stack.remove(stack.size() - 1);

}
else
throw new StackUnderflowException("Pop attempted on an empty " +

"stack.");
}

public T top()
// Throws StackUnderflowException if this stack is empty,
// otherwise returns top element from this stack.
{
T topOfStack = null;
if (!isEmpty())
topOfStack = stack.get(stack.size() - 1);

else
throw new StackUnderflowException("Top attempted on an empty " +

"stack.");
return topOfStack;

}

public boolean isEmpty()
// Returns true if this stack is empty, otherwise returns false.
{
if (stack.size() == 0)
return true;

else
return false;

}
}

13549_CH03_Dale.qxd 1/6/11 9:35 AM Page 193

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

3.6 Application: Well-Formed Expressions

Stacks are great for “remembering” things that have to be “taken care of” at a later time.
In this sample application we tackle a problem that perplexes many beginning program-
mers: matching parentheses, brackets, and braces in writing code. Matching grouping
symbols is an important problem in the world of computing. For example, it is related to
the legality of arithmetic equations, the syntactical correctness of computer programs,
and the validity of XHTML tags used to define web pages. This problem is a classic situa-
tion for using a stack, because we must “remember” an open symbol (e.g., (, [, or {)
until it is “taken care of” later by matching a corresponding close symbol (e.g.,),], or },
respectively). When the grouping symbols in an expression are properly matched, com-
puter scientists say that the expression is well formed and that the grouping symbols are
balanced.

Given a set of grouping symbols, our problem is to determine whether the open and
close versions of each symbol are matched correctly. We’ll focus on the normal pairs:
(), [], and {}. In theory, of course, we could define any pair of symbols (e.g., <> or /\)
as grouping symbols. Any number of other characters may appear in the input expres-
sion before, between, or after a grouping pair, and an expression may contain nested
groupings. Each close symbol must match the last unmatched open grouping symbol,
and each open grouping symbol must have a matching close symbol. Thus, matching
symbols can be unbalanced for two reasons: There is a mismatching close symbol (e.g.,
{]) or there is a missing close symbol (e.g., {{[]}). Figure 3.7 shows examples of both
well-formed and ill-formed expressions.

The Balanced Class
To help solve our problem we create a class called Balanced, with a single exported
method test that takes an expression as a string argument and checks whether the
grouping symbols in the expression are balanced. As there are two ways that an expres-
sion can fail the balance test, there are three possible results. We use an integer to indi-
cate the result of the test:

0 means the symbols are balanced, such as (([xx])xx)
1 means the expression has unbalanced symbols, such as (([xx}xx))
2 means the expression came to an end prematurely, such as (([xxx])xx

194 | Chapter 3: The Stack ADT

Figure 3.7 Well-formed and ill-formed expressions

Well-Formed Expressions Ill-Formed Expressions

(xx (xx ()) xx) (xx (xx ()) xxx) xxx)
[] () { }] [
([] { xxx } xxx () xxx) (xx [xxx) xx]
([{ [(([{ x }]) x)] } x]) ([{ [(([{ x }]) x)] } x })
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxx {

13549_CH03_Dale.qxd 1/6/11 9:35 AM Page 194

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

3.6 Application: Well-Formed Expressions | 195

We include a single constructor for the Balanced class. To make the class more
generally usable, we allow the application to specify the open and close symbols. We
thus define two string parameters for the constructor, openSet and closeSet,
through which the user can pass the symbols. The symbols in the two sets match up
by position. For our specific problem the two arguments could be “([{” and “)]}.”

It is important that each symbol in the combined open and close sets is unique and
that the sets be the same size. Otherwise, it is impossible to determine matching crite-
ria. We use programming by contract and state these criteria in a precondition of the
constructor.

public Balanced(String openSet, String closeSet)
// Preconditions: No character is contained more than once in the
// combined openSet and closeSet strings.
// The size of openSet = the size of closeSet.
{
this.openSet = openSet;
this.closeSet = closeSet;

}

Now we turn our attention to the test method. It is passed a String argument
through its subject parameter and must determine, based on the characters in
openSet and closeSet, whether the symbols in subject are balanced. The method
processes the characters in subject one at a time. For each character, it performs one
of three tasks:

• If the character is an open symbol, it is pushed on the stack.
• If the character is a close symbol, it is checked against the last open symbol,

which is obtained from the top of the stack. If they match, processing continues
with the next character. If the close symbol does not match the top of the stack
or if the stack is empty, then the expression is ill formed.

• If the character is not a special symbol, it is skipped.

The stack is the appropriate data structure in which to save the open symbols
because we always need to examine the most recent one. When all of the characters
have been processed, the stack should be empty—otherwise, there are open symbols left
over.

Now we are ready to write the main algorithm for test. We assume an instance of
a Stack ADT as defined by BoundedStackInterface. We use a bounded stack because
we know the stack cannot contain more elements than the number of characters in the
expression. We also declare a boolean variable stillBalanced, initialized to true, to
record whether the expression, as processed so far, is balanced.

13549_CH03_Dale.qxd 1/6/11 9:35 AM Page 195

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

196 | Chapter 3: The Stack ADT

Test for Well-Formed Expression Algorithm (String subject)
Create a new stack of size equal to the length of subject
Set stillBalanced to true
Get the first character from subject

while (the expression is still balanced AND there are still more characters to process)
Process the current character
Get the next character from subject

if (!stillBalanced)
return 1

else if (stack is not empty)
return 2

else
return 0

The part of this algorithm that requires expansion before moving on to the coding
stage is the “Process the current character” command. We previously described how to
handle each type of character. Here are those steps in algorithmic form:

if (the character is an open symbol)
Push the open symbol character onto the stack

else if (the character is a close symbol)
if (the stack is empty)

Set stillBalanced to false
else

Set open symbol character to the value at the top of the stack
Pop the stack
if the close symbol character does not “match” the open symbol character

Set stillBalanced to false
else

Skip the character

13549_CH03_Dale.qxd 1/6/11 9:35 AM Page 196

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

3.6 Application: Well-Formed Expressions | 197

The code for the Balanced class is listed next. Because the focus of this chapter is
stacks, we have emphasized the calls to the stack operations in the code listing. There
are several interesting things to note about the Balanced class:

1. We declare our stack to be of type BoundedStackInterface, but instantiate it as
class ArrayStack, following the convention suggested in “Using the StringLogIn-
terface” at the end of Section 2.2.

2. We use a shortcut for determining whether a close symbol matches an open sym-
bol. According to our rules, the symbols match if they share the same relative
position in their respective sets. This means that when we encounter an open
special symbol, rather than save the actual character on the stack, we can push
its position in the openSet string onto the stack. Later in the processing, when
we encounter a close symbol, we can just compare its position with the position
value on the stack. Thus, rather than push a character value onto the stack, we
push an integer value.

3. We instantiate our stacks to hold elements of type Integer. But, as just mentioned,
in the test method we push elements of the primitive type int onto our stack.
How can this be? As of Java 5.0, Java includes a feature called Autoboxing. If a
programmer uses a value of a primitive type as an Object, it is automatically con-
verted (boxed) into an object of its corresponding wrapper class. So when the test
method says

stack.push(openIndex);

the integer value of openIndex is automatically converted to an Integer object
before being stored on the stack. In previous versions of Java we would have
needed to state the conversion explicitly:

Integer openIndexObject = new Integer(openIndex);
stack.push(openIndexObject);

4. A corresponding feature, introduced with Java 5.0, called Unboxing, reverses the
effect of the Autoboxing. When we access the top of the stack with the statement

openIndex = stack.top();

the Integer object at the top of the stack is automatically converted to an integer
value. In previous versions of Java we would have needed to write

openIndex = stack.top().intValue();

5. In processing a closing symbol, we access the stack to see if its top holds the corre-
sponding opening symbol. If the stack is empty, it indicates an unbalanced expres-
sion. We have two ways to check whether the stack is empty: We can use the
isEmpty method or we can try to access the stack and catch a StackUnderflowEx-
ception. We choose the latter approach. It seems to fit the spirit of the algorithm,
because we expect to find the open symbol and finding the stack empty is the
“exceptional” case.

13549_CH03_Dale.qxd 1/6/11 9:35 AM Page 197

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

198 | Chapter 3: The Stack ADT

6. In contrast, we use isEmpty to check for an empty stack at the end of processing
the expression. Here, we don’t want to extract an element from the stack—we just
need to know whether it is empty.

Here is the code for the entire class:

//--
// Balanced.java by Dale/Joyce/Weems Chapter 3
//
// Checks for balanced expressions using standard rules.
//
// Matching pairs of open and close symbols are provided to the
// constructor through two string parameters.
//--

import ch03.stacks.*;

public class Balanced
{
private String openSet;
private String closeSet;

public Balanced(String openSet, String closeSet)
// Preconditions: No character is contained more than once in the
// combined openSet and closeSet strings.
// The size of openSet = the size of closeSet.
{
this.openSet = openSet;
this.closeSet = closeSet;

}

public int test(String expression)
// Returns 0 if expression is balanced.
// Returns 1 if expression has unbalanced symbols.
// Returns 2 if expression came to end prematurely.
{
char currChar; // current expression character being studied
int currCharIndex; // index of current character
int lastCharIndex; // index of last character in the expression

int openIndex; // index of current character in openSet
int closeIndex; // index of current character in closeSet

boolean stillBalanced = true; // true as long as expression is balanced

13549_CH03_Dale.qxd 1/6/11 9:35 AM Page 198

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

3.6 Application: Well-Formed Expressions | 199

// holds unmatched open symbols
BoundedStackInterface<Integer> stack;
stack = new ArrayStack<Integer>(expression.length());

currCharIndex = 0;
lastCharIndex = expression.length() - 1;

while (stillBalanced && (currCharIndex <= lastCharIndex))
// while expression still balanced and not at end of expression
{
currChar = expression.charAt(currCharIndex);
openIndex = openSet.indexOf(currChar);

if(openIndex != -1) // if the current character is in the openSet
{
// Push the index onto the stack.
stack.push(openIndex);

}
else
{
closeIndex = closeSet.indexOf(currChar);
if(closeIndex != -1) // if the current character is in the closeSet
{
try // try to pop an index off the stack
{
openIndex = stack.top();
stack.pop();

if (openIndex != closeIndex) // if popped index doesn't match
{
stillBalanced = false; // then expression not balanced

}
}
catch(StackUnderflowException e) // if stack was empty
{
stillBalanced = false; // then expression not balanced

}
}

}
currCharIndex++; // set up processing of next character

}

if (!stillBalanced)
return 1; // unbalanced symbols

else

13549_CH03_Dale.qxd 1/6/11 9:35 AM Page 199

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

200 | Chapter 3: The Stack ADT

if (!stack.isEmpty())
return 2; // premature end of expression

else
return 0; // expression is balanced

}
}

The Application
Now that we have the Balanced class, it is not difficult to finish our application. Of
course, we should carefully test the class first—but in this case we can use our applica-
tion as a test driver.

Because the Balanced class is responsible for determining whether grouping sym-
bols are balanced, all that remains is to implement the user input and output. Rather than
processing just one expression, we allow the user to enter a series of expressions, asking
whether he or she wishes to continue after each result is output. Following our standard
approach, we implement a console-based system. It is straightforward to convert this
application to a GUI, if you are familiar with Java’s Swing classes. We call our program
BalancedApp. Note that when the Balanced class is instantiated, the constructor is
passed the strings “({[” “)]}” so that it corresponds to our specific problem.

//--
// BalancedApp.java by Dale/Joyce/Weems Chapter 3
//
// Checks for balanced grouping symbols.
// Input consists of a sequence of expressions, one per line.
// Special symbol types are (), [], and {}.
//--

import java.util.Scanner;

public class BalancedApp
{
public static void main(String[] args)
{
Scanner conIn = new Scanner(System.in);

// Instantiate new Balanced class with grouping symbols.
Balanced bal = new Balanced("([{", ")]}");

int result; // 0 = balanced, 1 = unbalanced,
// 2 = premature end

String expression = null; // expression to be evaluated
String more = null; // used to stop or continue processing

13549_CH03_Dale.qxd 1/6/11 9:35 AM Page 200

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

3.6 Application: Well-Formed Expressions | 201

do
{
// Get next expression to be processed.
System.out.println("Enter an expression to be evaluated: ");
expression = conIn.nextLine();

// Obtain and output result of balanced testing.
result = bal.test(expression);
if (result == 1)
System.out.println("Unbalanced symbols ");

else
if (result == 2)
System.out.println("Premature end of expression");

else
System.out.println("The symbols are balanced.");

// Determine if there is another expression to process.
System.out.println();
System.out.print("Evaluate another expression? (Y=Yes): ");
more = conIn.nextLine();
System.out.println();

}
while (more.equalsIgnoreCase("y"));

}
}

Here is the output from a sample run:

Enter an expression to be evaluated:

(xx[yy]{ttt})
The symbols are balanced.

Evaluate another expression? (Y=Yes): Y

Enter an expression to be evaluated:

((())
Premature end of expression

Evaluate another expression? (Y=Yes): Y

Enter an expression to be evaluated:

(tttttttt]

13549_CH03_Dale.qxd 1/6/11 9:35 AM Page 201

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

202 | Chapter 3: The Stack ADT

Unbalanced symbols

Evaluate another expression? (Y=Yes): Y

Enter an expression to be evaluated:

(){}[][({{[{({})}]}})]
The symbols are balanced.

Evaluate another expression? (Y=Yes): n

Figure 3.8 is a UML diagram showing the relationships among our interfaces and classes
used in this program. The intent is to show the general architecture, so we do not
include details about attributes and operations.

3.7 Link-Based Implementation

In Chapter 2 we introduced linked lists and explained how they provide an alternative
to arrays when implementing collections. It is important for you to learn both
approaches. Recall that a “link” is the same thing as a “reference.” The Stack ADT
implementation presented in this section is therefore referred to as a reference- or link-
based implementation.

Figure 3.17, in the Summary on page 230, shows the relationships among the pri-
mary classes and interfaces created to support our Stack ADT, including those developed
in this section.

Figure 3.8 Program architecture

<<interface>>
StackInterface StackUnderflowException

<<interface>>
BoundedStackInterface

ArrayStack Balanced BalancedApp

 extends

 uses

 implements

 Key:

13549_CH03_Dale.qxd 1/6/11 9:35 AM Page 202

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

3.7 Link-Based Implementation | 203

Figure 3.9 UML class diagram of LLNode

+LLNode(T info)
+setInfo(T info):void
+getInfo():T
+setLink(LLNode link):void
+getLink():LLNode

–LLNode:link

–T:info

LLNode<T>

8. The LLNode class file can be found in the support subdirectory of the bookFiles directory that contains
the program files associated with the textbook.

The LLNode Class
Recall from Chapter 2 that to create a linked list we needed to define a self-referential class
to act as the nodes of the list. Our approach there was to define the LLStringNode class
that allowed us to create a linked list of strings. If we merely needed to create stacks of
strings, we could reuse the LLStringNode class to support our link-based implementation
of stacks. However, the class of objects held by our stacks must be parametizable—it will
be specified by the client whenever a stack is instantiated. Therefore we define a class
that is analogous to the LLStringNode class called LLNode. Figure 3.9 shows the corre-
sponding UML class diagram. The self-referential nature of the class is evident from the fact
that an LLNode has an instance variable, link, of class LLNode. Because we plan to use
this class to support our development of several data structures, we place it in a package
named support.8

The implementation of the LLNode class is essentially the same as that of the
LLStringNode class. The info variable contains a reference to the object of class T
representing the information held by the node, and the link variable holds a reference
to the next LLNode on the list. The code includes a constructor that accepts an object of
class T as an argument and constructs a node that references that object. An abstract
view of a single LLNode is pictured in Figure 3.10. The code also includes setters and
getters for both the info and link attributes so that we can create, manipulate, and
traverse the linked list of T nodes.

Figure 3.10 A single node

link:

info: Object of class T

Another
node

13549_CH03_Dale.qxd 1/6/11 9:35 AM Page 203

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

204 | Chapter 3: The Stack ADT

//--
// LLNode.java by Dale/Joyce/Weems Chapter 3
//
// Implements <T> nodes for a linked list.
//--

package support;

public class LLNode<T>
{
private LLNode link;
private T info;

public LLNode(T info)
{
this.info = info;
link = null;

}

public void setInfo(T info)
// Sets info of this LLNode.
{
this.info = info;

}

public T getInfo()
// Returns info of this LLNode.
{
return info;

}

public void setLink(LLNode link)
// Sets link of this LLNode.
{
this.link = link;

}

public LLNode getLink()
// Returns link of this LLNode.
{
return link;

}
}

The LinkedStack Class
We call our new stack class LinkedStack, to differentiate it from the array-based classes
of the previous section. LinkedStack implements the UnboundedStackInterface.

We need to define only one instance variable in the LinkedStack class, to hold a
reference to the linked list of objects that represents the stack. Because we just need

13549_CH03_Dale.qxd 1/6/11 9:35 AM Page 204

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

3.7 Link-Based Implementation | 205

quick access to the top of the stack, we maintain a reference to the node representing
the most recent element pushed onto the stack. That node will, in turn, hold a reference
to the node representing the next most recent element. That pattern continues until a
particular node holds a null reference in its link attribute, signifying the bottom of the
stack. We call the original reference variable top, as it will always reference the top of
the stack. It is a reference to a LLNode. When we instantiate an object of class Linked-
Stack, we create an empty stack by setting top to null. The beginning of the class
definition is shown here. Note the import statement that allows us to use the LLNode
class.

//---
// LinkedStack.java by Dale/Joyce/Weems Chapter 3
//
// Implements UnboundedStackInterface using a linked list
// to hold the stack elements.
//---

package ch03.stacks;

import support.LLNode;

public class LinkedStack<T> implements UnboundedStackInterface<T>
{
protected LLNode<T> top; // reference to the top of this stack

public LinkedStack()
{
top = null;

}
. . .

Now, let’s see how we implement our link-based stack operations.

The push Operation
Pushing an element onto the stack means creating a new node and linking it to the cur-
rent chain of nodes. Figure 3.11 shows the result of the sequence of operations listed
here. It graphically demonstrates the dynamic allocation of space for the references to
the stack elements. Assume A, B, and C represent objects of class String.

UnboundedStackInterface<String> myStack;
myStack = new LinkedStack<String>();
myStack.push(A);
myStack.push(B);
myStack.push(C);

13549_CH03_Dale.qxd 1/6/11 9:35 AM Page 205

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

206 | Chapter 3: The Stack ADT

Figure 3.11 Results of stack operations using LLNode

(Nonexistent)nullmyStack:

UnboundedStackInterface<String> myStack;

Internal View Abstract View

(Empty)myStack: top: null

myStack=new LinkedStack<String>();

AmyStack: toptop:

myStack.push(A);

info:

link: null

A

B

A
myStack:

top

myStack.push(B);

top:

info:

link: null

A info:

link:

B

C

B

A

myStack:

top
myStack.push(C);

top:

info:

link: null

A info:

link:

B info:

link:

C

13549_CH03_Dale.qxd 1/6/11 9:35 AM Page 206

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

3.7 Link-Based Implementation | 207

push(element)
Allocate space for the next stack node

and set the node info to element
Set the node link to the previous top of stack
Set the top of stack to the new stack node

When performing the push operation we must allocate space for each new node
dynamically. Here is the general algorithm:

Figure 3.12 graphically displays the effect of each step of the algorithm, starting
with a stack that already contains A and B and showing what happens when C is
pushed onto it. This is the same algorithm we studied previously in Section 2.5 for
insertion into the beginning of a linked list. We have arranged the node boxes visually
to emphasize the last in, first out nature of a stack.

Let’s look at the algorithm line by line, creating our code as we go. Follow our
progress through both the algorithm and Figure 3.12 during this discussion. We begin
by allocating space for a new stack node and setting its info attribute to the element:

LLNode<T> newNode = new LLNode<T>(element);

Thus, newNode is a reference to an object that contains two attributes: info of class T and
link of the class LLNode. The constructor has set the info attribute to reference element,
as required. Next we need to set the value of the link attribute:

newNode.setLink(top);

Now info references the element pushed onto the stack, and link references the pre-
vious top of stack. Finally, we need to reset the top of the stack to reference the new
node:

top = newNode;

Putting it all together, the code for the push method is

public void push(T element)
// Places element at the top of this stack.
{
LLNode<T> newNode = new LLNode<T>(element);
newNode.setLink(top);
top = newNode;

}

13549_CH03_Dale.qxd 1/6/11 9:35 AM Page 207

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

208 | Chapter 3: The Stack ADT

Figure 3.12 Results of push operation

stack:

Set the top of stack to the new stack node

top:

info:

link: null

A info:

link:

B info:

link:

C

stack:

Set the node link to the previous top of stack

top:

info:

link: null

A info:

link:

B info:

link:

C

stack: top:

info:

link: null

A info:

link:

B info:

link: null

C

Allocate space for the next stack node and set the node info to element

newNode:

newNode:

newNode:

Note that the order of these tasks is critical. If we reset the top variable before setting
the link of the new node, we would lose access to the stack nodes! This situation is gener-
ally true when we are dealing with a linked structure: You must be very careful to change
the references in the correct order, so that you do not lose access to any of the data.

You have seen how the algorithm works on a stack that contains elements. What hap-
pens if the stack is empty? Although we verified in Section 2.5 that our approach works in
this case, let’s trace through it again. Figure 3.13 shows graphically what occurs.

Space is allocated for the new node and the node’s info attribute is set to reference
element. Now we need to correctly set the various links. The link of the new node is
assigned the value of top. What is this value when the stack is empty? It is null, which
is exactly what we want to put into the link of the last (bottom) node of a linked stack.
Then top is reset to point to the new node, making the new node the top of the stack.
The result is exactly what we would expect—the new node is the only node on the
linked list and it is the current top of the stack.

13549_CH03_Dale.qxd 1/6/11 9:35 AM Page 208

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

3.7 Link-Based Implementation | 209

Figure 3.13 Results of push operation on an empty stack

stack:

Set the top of stack to the new stack node

top:

info:

link: null

A

stack:

Set the node link to the previous top of stack

top: null

info:

link: null

A

stack: top: null

info:

link: null

A

Allocate space for the next stack node and set the node info to element

newNode:

newNode:

newNode:

The pop Operation
The pop operation is equivalent to deleting the first node of a linked list. It is essentially
the reverse of the push operation.

To accomplish it we simply reset the stack’s top variable to reference the node that
represents the next element. That is all we really have to do. Resetting top to the next
stack node effectively removes the top element from the stack. See Figure 3.14. This
requires only a single line of code:

top = top.getLink();

The assignment copies the reference from the link attribute of the top stack node into
the variable top. After this code is executed, top refers to the LLNode object just below
the prior top of the stack. We can no longer use top to reference the previous top
object, because we overwrote our only reference to it.

As indicated in Figure 3.14, the former top of the stack is labeled as garbage; the
system garbage collector will eventually reclaim the space. If the info attribute of this
object is the only reference to the data object labeled C in the figure, it, too, is garbage
and its space will be reclaimed.

13549_CH03_Dale.qxd 1/6/11 9:35 AM Page 209

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

210 | Chapter 3: The Stack ADT

Figure 3.14 Results of pop operation

Internal View Abstract View

C

B

A

topmyStack: top:

info:

link: null

A info:

link:

B info:

link:

C

Original

topmyStack: top:

info:

link: null

A info:

link:

B info:

link:

C

After myStack.pop();

B

A

which equals: top = top.getLink();

garbage?

garbage

Are there any special cases to consider? Given that we are removing an element
from the stack, we should be concerned with empty stack situations. What happens if
we try to pop an empty stack? In this case the top variable contains null and the
assignment statement “top = top.getLink;” results in a run-time error: Null-
PointerException. To control this problem ourselves, we protect the assignment
statement using the Stack ADT’s isEmpty operation. The code for our pop method is
shown next.

13549_CH03_Dale.qxd 1/6/11 9:35 AM Page 210

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

3.7 Link-Based Implementation | 211

public void pop()
// Throws StackUnderflowException if this stack is empty,
// otherwise removes top element from this stack.
{
if (!isEmpty())
{
top = top.getLink();

}
else
throw new StackUnderflowException("Pop attempted on an empty stack.");

}

We use the same StackUnderflowException we used in our array-based approaches.
There is one more special case—popping from a stack with only one element. We

need to make sure that this operation results in an empty stack. Let’s see if it does.
When our stack is instantiated, top is set to null. When an element is pushed onto the
stack, the link of the node that represents the element is set to the current top vari-
able; therefore, when the first element is pushed onto our stack, the link of its node is
set to null. Of course, the first element pushed onto the stack is the last element
popped off. This means that the last element popped off the stack has an associated
link value of null. Because the pop method sets top to the value of this link attrib-
ute, after the last value is popped top again has the value null, just as it did when the
stack was first instantiated. We conclude that the pop method works for a stack of one
element. Figure 3.15 graphically depicts pushing a single element onto a stack and then
popping it off.

The Other Stack Operations
Recall that the top operation simply returns a reference to the top element of the stack.
At first glance this might seem very straightforward. Simply code

return top;

as top references the element on the top of the stack. However, remember that top ref-
erences an LLNode object. Whatever program is using the Stack ADT is not concerned
about LLNode objects. The client program is only interested in the object that is refer-
enced by the info variable of the LLNode object.

Let’s try again. To return the info of the top LLNode object we code

return top.getInfo();

That’s better, but we still need to do a little more work. What about the special case
when the stack is empty? In that situation we need to throw an exception instead of
returning an object. The final code for the top method is shown next.

13549_CH03_Dale.qxd 1/6/11 9:35 AM Page 211

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

212 | Chapter 3: The Stack ADT

Figure 3.15 Results of push, then pop on an empty stack

Empty Stack:

myStack: top: null

myStack: top: null

myStack: top:

info:

link: null

A

info:

link: null

A

After

And then myStack.pop();

garbage?

garbage

myStack.push(A):

public T top()
// Throws StackUnderflowException if this stack is empty,
// otherwise returns top element from this stack.
{
if (!isEmpty())
return top.getInfo();

else
throw new StackUnderflowException("Top attempted on an empty stack.");

}

13549_CH03_Dale.qxd 1/6/11 9:35 AM Page 212

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

3.7 Link-Based Implementation | 213

That wasn’t bad, but the isEmpty method is even easier. If we initialize an empty stack
by setting the top variable to null, then we can detect an empty stack by checking for
the value null.

public boolean isEmpty()
// Returns true if this stack is empty, otherwise returns false.
{
if (top == null)
return true;

else
return false;

}

An even simpler way of writing this is

return (top == null);

The linked implementation of the Stack ADT can be tested using the same test plan
that was presented for the array-based version, except we would not have to test an
isFull operation.

Comparing Stack Implementations
Let’s compare our two classic implementations of the Stack ADT, ArrayStack and
LinkedStack, in terms of storage requirements and efficiency of the algorithms. First
we consider the storage requirements. An array that is instantiated to match the maxi-
mum stack size takes the same amount of memory, no matter how many array slots are
actually used. The linked implementation, using dynamically allocated storage, requires
space only for the number of elements actually on the stack at run time. Note, however,
that the elements are larger because we must store the reference to the next element as
well as the reference to the user’s data.

We now compare the relative execution “efficiency” of the two implementations in
terms of Big-O notation. The implementations of isFull and isEmpty, where required, are
clearly O(1); they always take a constant amount of work. What about push, pop, and top?
Does the number of elements in the stack affect the amount of work required by these oper-
ations? No, it does not. In both implementations, we directly access the top of the stack, so
these operations also take a constant amount of work. They, too, have O(1) complexity.

Only the class constructor differs from one implementation to the other in terms of
the Big-O efficiency. In the array-based implementation, when the array is instantiated,
the system creates and initializes each of the array locations. As it is an array of objects,
each array slot is initialized to null. The number of array slots is equal to the maxi-
mum number of possible stack elements. We call this number N and say that the array-
based constructor is O(N). For the linked approach, the constructor simply sets the top
variable to null, so it is only O(1).

13549_CH03_Dale.qxd 1/6/11 9:35 AM Page 213

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

214 | Chapter 3: The Stack ADT

9. Postfix notation is also known as reverse Polish notation (RPN), so named after the Polish logician Jan
Lukasiewicz (1875–1956) who developed it.

Overall the two stack implementations are roughly equivalent in terms of the
amount of work they do.

So, which is better? The answer, as usual, is “It depends.” The linked implementa-
tion does not have space limitations, and in applications where the number of stack
elements can vary greatly, it wastes less space when the stack is small. Why would
we ever want to use the array-based implementation? Because it’s short, simple, and
efficient. If pushing occurs frequently, the array-based implementation executes
faster than the link-based implementation because it does not incur the run-time
overhead of repeatedly invoking the new operation. When the maximum size is small
and we know the maximum size with certainty, the array-based implementation is a
good choice.

3.8 Case Study: Postfix Expression Evaluator

Postfix notation9 is a notation for writing arithmetic expressions in which the operators
appear after their operands. For example, instead of writing

(2 + 14) � 23

we write

2 14 + 23 �

With postfix notation, there are no precedence rules to learn, and parentheses are
never needed. Because of this simplicity, some popular handheld calculators of the
1980s used postfix notation to avoid the complications of the multiple parentheses
required in traditional algebraic notation. Postfix notation is also used by compilers for
generating nonambiguous expressions.

In this case study, we create a computer program that evaluates postfix expressions.

Discussion
In elementary school you learned how to evaluate simple expressions that involve the
basic binary operators: addition, subtraction, multiplication, and division. These are
called binary operators because they each operate on two operands. It is easy to see how
a child would solve the following problem:

2 + 5 = ?

13549_CH03_Dale.qxd 1/6/11 9:35 AM Page 214

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

3.8 Case Study: Postfix Expression Evaluator | 215

10. See Appendix B, Java Operator Precedence.

As expressions become more complicated, the pencil-and-paper solutions require a
little more work. Multiple tasks must be performed to solve the following problem:

(((13 � 1) / 2) � (3 + 5)) = ?

These expressions are written using a format known as infix notation, which is the
same notation used for expressions in Java. The operator in an infix expression is writ-
ten in between its operands. When an expression contains multiple operators such as

3 + 5 � 2

we need a set of rules to determine which operation to carry out first. You learned in
your mathematics classes that multiplication is done before addition. You learned Java’s
operator-precedence rules10 in your first Java programming course. We can use paren-
theses to override the normal ordering rules. Still, it is easy to make a mistake when
writing or interpreting an infix expression containing multiple operations.

Evaluating Postfix Expressions
Postfix notation is another format for writing arithmetic expressions. In this notation,
the operator is written after (post) the two operands. Here are some simple postfix
expressions and their results:

Postfix Expression Result

4 5 + 9

9 3 / 3

17 8 � 9

The rules for evaluating postfix expressions with multiple operators are much sim-
pler than those for evaluating infix expressions; simply perform the operations from left
to right. Now, let’s look at a postfix expression containing two operators.

6 2 / 5 +

We evaluate the expression by scanning from left to right. The first item, 6, is an
operand, so we go on. The second item, 2, is also an operand, so again we continue. The
third item is the division operator. We now apply this operator to the two previous
operands. Which of the two saved operands is the divisor? The one we saw most

13549_CH03_Dale.qxd 1/6/11 9:35 AM Page 215

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

216 | Chapter 3: The Stack ADT

recently. We divide 6 by 2 and substitute 3 back into the expression, replacing 6 2 /.
Our expression now looks like this:

3 5 +

We continue our scanning. The next item is an operand, 5, so we go on. The next
(and last) item is the operator +. We apply this operator to the two previous operands,
obtaining a result of 8.

Here’s another example:

5 7 + 6 2 � �

As we scan from left to right, the first operator we encounter is +. Applying this to the
two preceding operands (5 and 7), we obtain the expression

12 6 2 � �

The next operator we encounter is �, so we subtract 2 from 6, obtaining

12 4 �

We apply the last operator, �, to its two preceding operands and obtain our final
answer: 48.

Here are some more examples of postfix expressions containing multiple operators,
equivalent expressions in infix notation, and the results of evaluating them. See if you
get the same results when you evaluate the postfix expressions.

Postfix Expression Infix Equivalent Result

4 5 7 2 + � � 4 � (5 � (7 + 2)) �16
3 4 + 2 � 7 / ((3 + 4) � 2)/7 2
5 7 + 6 2 � � (5 + 7) � (6 � 2) 48
4 2 3 5 1 � + � + � ?�(4 + (2 � (3 + (5 � 1)))) not enough operands
4 2 + 3 5 1 � � + (4 + 2) + (3 � (5 � 1)) 18

Our task is to write a program that evaluates postfix expressions entered interactively
from the keyboard. In addition to computing and displaying the value of an expression, our
program must display error messages when appropriate (“not enough operands,” “too many
operands,” and “illegal symbol”). Before we describe our specific requirements, let’s look at
the data structure and algorithm involved in postfix expression evaluation.

Postfix Expression Evaluation Algorithm
As so often happens, our by-hand algorithm can serve as a guideline for our computer
algorithm. From the previous discussion, we see that there are two basic items in a post-

13549_CH03_Dale.qxd 1/6/11 9:35 AM Page 216

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

3.8 Case Study: Postfix Expression Evaluator | 217

Evaluate Expression
while more items exist

Get an item
if item is an operand

stack.push(item)
else

operand2 = stack.top()
stack.pop()
operand1 = stack.top()
stack.pop()
Set result to (apply operation corresponding to item to operand1 and operand2)
stack.push(result)

result = stack.top()
stack.pop()
return result

fix expression: operands (numbers) and operators. We access items (an operand or an
operator) from left to right, one at a time. When the item we get is an operator, we
apply it to the preceding two operands.

We must save previously scanned operands in a collection object of some kind. A
stack is the ideal place to store the previous operands, because the top item is always
the most recent operand and the next item on the stack is always the second most
recent operand—just the two operands required when we find an operator. The following
algorithm uses a stack to evaluate a postfix expression:

Each iteration of the while loop processes one operator or one operand from the
expression. When an operand is found, there is nothing to do with it (we haven’t yet
found the operator to apply to it), so we save it on the stack until later. When an
operator is found, we get the two topmost operands from the stack, perform the
operation, and put the result back on the stack; the result may be an operand for a
future operator.

Let’s trace this algorithm. Before we enter the loop, the input remaining to be
processed and the stack look like this:

5 7 + 6 2 – *

13549_CH03_Dale.qxd 1/6/11 9:35 AM Page 217

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

218 | Chapter 3: The Stack ADT

After one iteration of the loop, we have processed the first operand and pushed it onto
the stack.

After the second iteration of the loop, the stack contains two operands.

We encounter the + operator in the third iteration. We remove the two operands from
the stack, perform the operation, and push the result onto the stack.

In the next two iterations of the loop, we push two operands onto the stack.

When we find the � operator, we remove the top two operands, subtract, and push the
result onto the stack.

5 7 + 6 2 – *

4
12

5 7 + 6 2 – *

2
6
12

5 7 + 6 2 – *

12

5 7 + 6 2 – *

7
5

5 7 + 6 2 – *

5

13549_CH03_Dale.qxd 1/6/11 9:35 AM Page 218

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

3.8 Case Study: Postfix Expression Evaluator | 219

When we find the * operator, we remove the top two operands, multiply, and push the
result onto the stack.

Now that we have processed all of the items on the input line, we exit the loop. We
remove the result, 48, from the stack.

Of course, we have glossed over a few “minor” details, such as how we recognize an
operator and how we know when we are finished. All of the input values in this example
were one-digit numbers. Clearly, this is too restrictive. We also need to handle invalid
input. We discuss these challenges as we continue to evolve the solution to our problem.

Specification: Program Postfix Evaluation
Here is a more formal specification of our problem.

Function
The program evaluates postfix arithmetic expressions containing integers and the binary
operators +, -, *, and /.

Interface
Following our established conventions, we are not specifying which type of interface
the program should provide. We develop a console-based solution but also provide a
GUI solution for your study. In either case, the program must allow the user to enter
a postfix expression, have it evaluated, and see the results of the evaluation. The
user should then have the option of entering additional expressions or ending the
program.

Input
The input is a series of arithmetic postfix expressions, entered interactively from the
keyboard. An expression is made up of operators (the characters +, -, *, and /) and
integers (the operands). Operators and operands must be separated by at least one blank.

5 7 + 6 2 – *

Result

48

5 7 + 6 2 – *

48

13549_CH03_Dale.qxd 1/6/11 9:35 AM Page 219

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

220 | Chapter 3: The Stack ADT

Data
All numbers input, manipulated, and output by the program are integers.

Output
After the evaluation of each expression, the results are displayed:

“Result = value”

Error Processing
The program should recognize illegal postfix expressions. Instead of displaying an inte-
ger result when the expression is entered, in such a case it should display error messages
as follows:

Type of Illegal Expression Error Message

An expression contains a symbol that is not Illegal symbol
an integer or not one of “+”, “-”, “ * ”, and “/”

An expression requires more than 50 stack items Too many operands—stack overflow

There is more than one operand left on the stack Too many operands—operands left over
after the expression is processed; for example,
the expression 5 6 7 + has too many operands

There are not enough operands on the stack Not enough operands—stack underflow
when it is time to perform an operation; for
example, 6 7 + + +; and, for example, 5 + 5

Assumptions
1. The operations in expressions are valid at run time. This means that we do not try

to divide by zero. Also, we do not generate numbers outside of the range of the
Java int type.

2. A postfix expression has a maximum of 50 operands.

Brainstorming and Filtering
A study of the specifications provides the following list of nouns that appear to be pos-
sibilities for classes: postfix arithmetic expressions, operators, result, operands, and error
messages. Let’s look at each in turn.

• The postfix arithmetic expressions are entered by the user and consist of both
numbers and other characters. We conclude that an expression should be repre-
sented by a string.

• This means we can probably represent operators as strings, too. Another possibil-
ity is to hold the operators in an ADT that provides a “set” of characters. How-

13549_CH03_Dale.qxd 1/6/11 9:35 AM Page 220

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

3.8 Case Study: Postfix Expression Evaluator | 221

ever, upon reflection, we realize that all we really have to do is recognize the
operator character, and the built-in string and character operations we already
have at our disposal should be sufficient.

• The result of an evaluation is an interesting case. Where does the result come
from? We propose the creation of a separate class PostFixEvaluator that pro-
vides an evaluate method that accepts a postfix expression as a string and
returns the value of the expression. Our main program will use this class (and a
few others) to solve the problem.

• The operands are integers.
• The error messages we need to generate are all related to the evaluation of the

postfix expression. Because the PostFixEvaluator class evaluates the postfix
expression, it will discover the errors. Therefore, to communicate the error mes-
sages between PostFixEvaluator and the main program, we propose the cre-
ation of an exception class called PostFixException.

From our knowledge of the postfix expression evaluation algorithm we know we
also need a stack. We decide to use our ArrayStack class, which implements the
BoundedStackInterface, because the problem description places an upper bound of
50 on the size of the stack. Additionally, we intend to use our standard approach and
create a main program that provides interaction with the user.

Let’s look at a short scenario describing how these classes can be used to solve our
problem. The main program will prompt the user for an expression and read it into a
string variable. It can then pass this string to the evaluate method of the PostFix-
Evaluator class, which will use an ArrayStack object to help determine the value of
the expression, assuming it is a legal expression. The evaluate method is used within a
try-catch statement that allows the main program to determine whether any PostFix-
Exception exceptions have been thrown. In either case it reports the result to the user
and prompts for another expression. We can proceed with confidence that our set of
classes seems sufficient to solve the problem.

We now move on to the design, implementation, and testing of the classes. Note
that we can test the classes together, once they have all been created, by evaluating a
number of postfix expressions (both legal and illegal) with the application.

Evolving a Program
We present our case studies in an idealized fashion. We make a general problem statement; dis-
cuss it; define formal specifications; identify classes; design and code the classes; and then test
the system. In reality, however, such an application would probably evolve gradually, with small
unit tests performed along the way. Especially during design and coding, it is sometimes helpful
to take smaller steps and to evolve your program rather than trying to create it all at once. For
example, for this case study you could take the following steps:

13549_CH03_Dale.qxd 1/6/11 9:35 AM Page 221

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

222 | Chapter 3: The Stack ADT

1. Build a prototype of the main program that just provides input/output activity—it would not
support any processing. Its purpose is to test the usability of the user interface and provide a
driver for further development.

2. Build a small part of PostFixEvaluator and see if you can pass it a string from the inter-
face at the appropriate time.

3. See if you can pass back some information—any information—about the string from Post-
FixEvaluator to the main program and have it display on the user interface. For example,
you could display the number of tokens in the string.

4. Upgrade PostFixEvaluator so that it recognizes operands and transforms them into
integers. Have it obtain an operand from the expression string, transform it, push the integer
onto a stack, retrieve it, and pass it back for display.

5. Upgrade PostFixEvaluator to recognize operators and process expressions that are more
complicated. Test some legal expressions.

6. Add the error trapping and reporting portion. Test using illegal expressions.

Devising a good program evolution plan is often the key to successful programming.

The PostFixEvaluator Class
The purpose of this class is to provide an evaluate method that accepts a postfix expres-
sion as a string and returns the value of the expression. We do not need any objects of
the class, so we implement evaluate as a public static method. This means that it is
invoked through the class itself, rather than through an object of the class.

The evaluate method must take a postfix expression as a string argument and
return the value of the expression. The code for the class is listed below. It follows the
basic postfix expression algorithm that we developed earlier, using an ArrayStack
object to hold operands of class Integer until they are needed. Note that it instantiates
a Scanner object to “read” the string argument and break it into tokens.

Let’s consider error message generation. Look through the code for the lines that
throw PostFixException exceptions. You should be able to see that we cover all of the
error conditions required by the problem specification. As would be expected, the error
messages directly related to the stack processing are all protected by if statements that
check whether the stack is empty (not enough operands) or full (too many operands). The
only other error trapping occurs if the string stored in operator does not match any of the
legal operators, in which case we throw an exception with the message “Illegal symbol.”

//--
// PostFixEvaluator.java by Dale/Joyce/Weems Chapter 3
//
// Provides a postfix expression evaluation.
//--

package ch03.postfix;

13549_CH03_Dale.qxd 1/6/11 9:35 AM Page 222

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

3.8 Case Study: Postfix Expression Evaluator | 223

import ch03.stacks.*;
import java.util.Scanner;

public class PostFixEvaluator
{
public static int evaluate(String expression)
{
BoundedStackInterface<Integer> stack = new ArrayStack<Integer>(50);

int value;
String operator;

int operand1;
int operand2;

int result = 0;

Scanner tokenizer = new Scanner(expression);

while (tokenizer.hasNext())
{
if (tokenizer.hasNextInt())
{
// Process operand.
value = tokenizer.nextInt();
if (stack.isFull())
throw new PostFixException("Too many operands - stack overflow");

stack.push(value);
}
else
{
// Process operator.
operator = tokenizer.next();

// Obtain second operand from stack.
if (stack.isEmpty())
throw new PostFixException("Not enough operands - stack " +

"underflow");
operand2 = stack.top();
stack.pop();

// Obtain first operand from stack.
if (stack.isEmpty())
throw new PostFixException("Not enough operands - stack " +

"underflow");

13549_CH03_Dale.qxd 1/6/11 9:35 AM Page 223

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

224 | Chapter 3: The Stack ADT

operand1 = stack.top();
stack.pop();

// Perform operation.
if (operator.equals("/"))
result = operand1 / operand2;

else
if(operator.equals("*"))
result = operand1 * operand2;

else
if(operator.equals("+"))
result = operand1 + operand2;

else
if(operator.equals("-"))
result = operand1 - operand2;

else
throw new PostFixException("Illegal symbol: " + operator);

// Push result of operation onto stack.
stack.push(result);

}
}

// Obtain final result from stack.
if (stack.isEmpty())
throw new PostFixException("Not enough operands - stack underflow");

result = stack.top();
stack.pop();

// Stack should now be empty.
if (!stack.isEmpty())
throw new PostFixException("Too many operands - operands left over");

// Return the final result.
return result;

}
}

The PFixConsole Class
This class is the main driver for our console-based application. Using the PostFixEvalu-
ator and PostFixException classes, it is easy to design our program. We follow the
same basic approach we used for BalancedApp earlier in the chapter—namely, prompt the
user for an expression, evaluate it, return the results to the user, and ask the user if he or

13549_CH03_Dale.qxd 1/6/11 9:35 AM Page 224

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

3.8 Case Study: Postfix Expression Evaluator | 225

she would like to continue. Note that the main program does not directly use ArrayStack;
it is used strictly by the PostFixEvaluator class when evaluating an expression.

//--
// PFixConsole.java by Dale/Joyce/Weems Chapter 3
//
// Evaluates postfix expressions entered by the user.
// Uses a console interface.
//--

import java.util.Scanner;
import ch03.postfix.*;

public class PFixConsole
{
public static void main(String[] args)
{
Scanner conIn = new Scanner(System.in);

String line = null; // string to be evaluated
String more = null; // used to stop or continue processing

int result; // result of evaluation

do
{
// Get next expression to be processed.
System.out.println("Enter a postfix expression to be evaluated: ");
line = conIn.nextLine();

// Obtain and output result of expression evaluation.
try
{
result = PostFixEvaluator.evaluate(line);

// Output result.
System.out.println();
System.out.println("Result = " + result);

}
catch (PostFixException error)
{
// Output error message.
System.out.println();
System.out.println("Error in expression - " + error.getMessage());

}

13549_CH03_Dale.qxd 1/6/11 9:35 AM Page 225

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

226 | Chapter 3: The Stack ADT

// Determine if there is another expression to process.
System.out.println();
System.out.print("Evaluate another expression? (Y = Yes): ");
more = conIn.nextLine();
System.out.println();

}
while (more.equalsIgnoreCase("y"));

System.out.println("Program completed.");
}

}

Here is a sample run of our console-based application:

Enter a postfix expression to be evaluated:

5 7 + 6 2 - *

Result = 48

Evaluate another expression? (Y = Yes): y

Enter a postfix expression to be evaluated:

4 2 3 5 1 - + * + *

Error in expression - Not enough operands - stack underflow

Evaluate another expression? (Y = Yes): n

Program completed.

Testing the Postfix Evaluator
As mentioned earlier, we can test all of the classes created for this case study by simply
running the postfix evaluator program and entering postfix expressions. We should test
expressions that contain only additions, subtractions, multiplications, and divisions, as
well as expressions that contain a mixture of operations. We should test expressions
where the operators all come last and expressions where the operators are intermingled
with the operands. Of course, we must evaluate all test expressions “by hand” to verify
the correctness of the program’s results. Finally, we must test that illegal expressions are
correctly handled, as defined in the specifications. This includes a test of stack overflow,
which requires at least 51 operands.

13549_CH03_Dale.qxd 1/6/11 9:35 AM Page 226

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

3.8 Case Study: Postfix Expression Evaluator | 227

The GUI Approach
Most of the code in the PFixConsole program is responsible for presenting a console-based
interface to the user. Just as that program used the PostFixEvaluator and PostFixEx-
ception classes to do its primary processing, so can a program that presents a graphical user
interface. Our PFixGUI program does just that. We do not list the code for this program here,
but the interested reader can find it with the rest of the textbook code on the website. It uses
the Border layout with nested containers.

Here are a few screenshots from the running program. The first shows the interface as orig-
inally presented to the user:

Here’s the result of a successful evaluation:

Next, the Clear button is clicked:

13549_CH03_Dale.qxd 1/6/11 9:35 AM Page 227

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

228 | Chapter 3: The Stack ADT

Here’s what happens when the user enters an expression with too many operands:

And finally, here’s what happens when an illegal operand is used:

Exercises

1. Revise and test the PFixGUI application to meet these specifications:

a. Use Flow layout exclusively.
b. Keep track of statistics about the numbers pushed onto the stack during the evaluation

of an expression. The program should output the largest and smallest numbers pushed,
how many numbers were pushed, and the average value of pushed numbers.

2. Revise and test the PFixGUI application so that it will step through the evaluation of a
postfix expression one step at a time, showing the intermediate results as it goes. Include a
Step button on the interface so the user can control when a step is taken. For example, if
the original expression is 2 3 4 + + 5 -, clicking Step once will display in the expres-
sion box 2 7 + 5 -, clicking it again will display 9 5 -, and clicking it one last time will
display 4.

3. Design and implement your own GUI for this problem. Write a short explanation about why
your interface is better than the one shown in the textbook.

Figure 3.16 is a UML diagram showing the “uses” relationships among the stack
implementation class, the postfix expression evaluation class, and the two main driver
classes (one console-based and one GUI-based).

13549_CH03_Dale.qxd 1/6/11 9:35 AM Page 228

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

Exercises | 229

Figure 3.16 UML diagram for postfix program

ArrayStack PostFixEvaluator

PFixConsole

PFixGUI

Summary
We have defined a stack at the logical level as an abstract data type, used a stack in two
applications, and presented three implementations (array-based, link-based, and
ArrayList-based). We have also seen how to use Java’s generics to enable our stack
implementations to work with different kinds of objects.

Although our logical picture of a stack is a linear collection of data elements with the
newest element (the top) at one end and the oldest element at the other end, the physi-
cal representation of the stack class does not have to re-create our mental image. The
implementation of the stack class must always support the last in, first out (LIFO) prop-
erty; how this property is supported, however, is another matter.

Usually more than one functionally correct design is possible for the same data struc-
ture. When multiple correct solutions exist, the requirements and specifications of the
application may determine which solution represents the best design.

We have seen how a hierarchy of interfaces can be used to represent the essential
features of a data structure ADT and then extend it with different properties, such as
being bounded or unbounded in size. We have also seen three different approaches to
dealing with exceptional situations that are encountered within an ADT.

In this chapter we developed algorithms for two important applications of stacks in
computer science. We can now check whether the grouping symbols in a string are bal-
anced, and we can evaluate a postfix arithmetic expression.

Figure 3.17 is a UML diagram showing the stack-related interfaces and classes devel-
oped in this chapter, along with a few other supporting classes, and their relationships.

Exercises
3.1 Stacks

1. True or False?

a. A stack is a first in, first out structure.

b. The item that has been in a stack the longest is at the “bottom” of the stack.

c. If you push five items onto an empty stack and then pop the stack five times,
the stack will be empty again.

d. If you push five items onto an empty stack and then perform the top opera-
tion five times, the stack will be empty again.

13549_CH03_Dale.qxd 1/6/11 9:35 AM Page 229

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

230 | Chapter 3: The Stack ADT

Figure 3.17 The stack-related interfaces and classes developed in Chapter 3

<<interface>>
StackInterface<T>

<<interface>>
UnboundedStackInterface<T>

<<interface>>
BoundedStackInterface

+pop():void
+top():T
+isEmpty():boolean

+push(T element):void

LinkedStack<T>

#top:LLNode

+LinkedStack()
+push(T element:void
+pop():void
+top():T
+isEmpty():boolean

<<interface>>
BoundedStackInterface<T>

StackUnderflowException

+push(T element):void
+isFull(): boolean

+StackUnderflowException()
+StackUnderflowException(String message)

StackOverflowException

+StackOverflowException()
+StackOverflowException(String message)

ArrayStack<T>

#DEFCAP:int
#stack:T[]
#topIndex:int

+ArrayStack()
+ArrayStack(int maxsize)
+push(T element):void
+pop():void
+top():T
+isEmpty():boolean
+isFull():boolean

 uses

 extends

 implements

 Key:

e. The push operation should be classified as a “transformer.”

f. The top operation should be classified as a “transformer.”

g. The pop operation should be classified as an “observer.”

h. If we first push itemA onto a stack and then push itemB, then the top of
the stack is itemB.

2. Following the style of Figure 3.2, show the effects of the following stack opera-
tions, assuming you begin with an empty stack:

push block5
push block7
pop
pop
push block2
push block1

13549_CH03_Dale.qxd 1/6/11 9:35 AM Page 230

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

Exercises | 231

pop
push block8

3.2 Collection Elements
3. In Section 3.2 we looked at four approaches to defining the types of elements

we can hold in a collection ADT. Briefly describe each of the four approaches.

4. For each of the following programs that involve casting, predict the result of
compiling and running the program. Potential answers include “there is a syntax
error because . . . ,” “there is a run-time error because . . . ,” and “the output of
the program would be”

a. public class test1
{
public static void main(String[] args)
{
String s1, s2;
Object o1;
s2 = "E. E. Cummings";
o1 = s2;
s1 = o1;
System.out.println(s1.toLowerCase());

}
}

b. public class test2
{
public static void main(String[] args)
{
String s1, s2;
Object o1;
s2 = "E. E. Cummings";
o1 = s2;
s1 = (String) o1;
System.out.println(s1.toLowerCase());

}
}

5. In Chapter 2 we developed a StringLog ADT. It represents a “log” that holds
objects of class String. Suppose that instead of restricting ourselves to strings,
we decided to create a “log” that holds objects of type Object. Describe the
changes you would have to make to each of the following classes to implement
such a change.

a. Change StringLogInterface to ObjectLogInterface.

b. Change ArrayStringLog to ArrayObjectLog.

13549_CH03_Dale.qxd 1/6/11 9:35 AM Page 231

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

232 | Chapter 3: The Stack ADT

c. Change ITDArrayStringLog to ITDArrayObjectLog.

d. Change LLStringNode to LLObjectNode.

e. Change LinkedStringLog to LinkedObjectLog.
6. Create a generic array-based log class that features all the functionality of the

StringLog class, as specified in Section 2.2. Create a driver application that
demonstrates that your implementation works correctly.

7. Create a generic link-based bag class that features all the functionality of the
Bag class specified in Exercise 29 of Chapter 2. Create a driver application that
demonstrates that your implementation works correctly.

3.3 Exceptional Situations
8. Explain the difference between a programmer-defined exception that extends the

Java Exception class and one that extends the Java RunTimeException class.

9. Expand your solution to Exercise 29 of Chapter 1, where you implemented the
Date class, to include the appropriate throwing of the DateOutOfBoundsEx-
ception by the class constructor, as described in this chapter. Don’t forget to
check for legal days, in addition to months and years.

10. Let’s assume you have correctly implemented the Date class, as requested in
Exercise 9. Recall that the IncDate class extends Date, adding a method
called increment that adds one day to the date represented by the Date
object. Consider exceptional situations that might be related to the incre-
ment method.

a. Should the increment method test the current date values to make sure they
are legal before incrementing the date?

b. How about after incrementing the date? Would it be a good idea for the
increment method to test the new date to make sure it is legal, perhaps rais-
ing the DateOutOfBoundsException if it is not?

11. Describe three ways to “handle” error situations within our ADT
specification/implementation. For each approach, include a brief description of
when it is most appropriate to use it.

12. What is wrong with the following method, based on our conventions for han-
dling error situations?

public void method10(int number)
// Precondition: number is > 0.
// Throws NotPositiveException if number is not > 0,
// otherwise ...

13. There are three parts to this exercise:

a. Create a “standard” exception class called ThirteenException.

b. Write a program that repeatedly prompts the user to enter a string. After each
string is entered the program outputs the length of the string, unless the

13549_CH03_Dale.qxd 1/6/11 9:35 AM Page 232

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

Exercises | 233

length of the string is 13, in which case the ThirteenException is thrown
with the message “Use thirteen letter words and stainless steel to protect
yourself!” Your main method should simply throw the ThirteenException
exception out to the run-time environment. A sample run of the program
might be:

Input a string > Villanova University
That string has length 20.
Input a string > Triscadecaphobia
That string has length 16.
Input a string > misprogrammed

At this point the program bombs and the system provides some information,
including the “Use thirteen letter words and stainless steel to protect your-
self!” message.

c. Create another program similar to the one you created for part b, except this
time, within your code, include a try-catch clause so that you catch the
exception when it is thrown. If it is thrown, then catch it, print its message,
and end the program “normally.”

14. Write a class Array that encapsulates an array and provides bounds-checked
access. The private instance variables should be int index and int
array[10]. The public members should be a default constructor and methods
(signatures shown below) to provide read and write access to the array.

void insert(int location, int value);
int retrieve(int location);

If the location is within the correct range for the array, the insert method
should set that location of the array to the value. Likewise, if the location is
within the correct range for the array, the retrieve method should return the
value at that location—the approach taken by the library before Java 5.0. In either
case, if location is not within the correct range, the method should throw an
exception of class ArrayOutOfBoundsException. Write an application that helps
you test your implementation. Your application should assign values to the array by
using the insert method, then use the retrieve method to read these values back
from the array. It should also try calling both methods with illegal location values.
Catch any exceptions thrown by placing the “illegal” calls in a try block with an
appropriate catch.

3.4 Formal Specification
15. Based on our Stack ADT specification, an application programmer has two ways

to check for an empty stack. Describe them and discuss when one approach
might be preferable to the other approach.

16. Show what is written by the following segments of code, given that item1,
item2, and item3 are int variables, and stack is an object that fits the

13549_CH03_Dale.qxd 1/6/11 9:35 AM Page 233

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

234 | Chapter 3: The Stack ADT

abstract description of a stack as given in the section. Assume that you can store
and retrieve variables of type int on stack.

a. item1 = 1;
item2 = 0;
item3 = 4;
stack.push(item2);
stack.push(item1);
stack.push(item1 + item3);
item2 = stack.top();
stack.push (item3*item3);
stack.push(item2);
stack.push(3);
item1 = stack.top();
stack.pop();
System.out.println(item1 + " " + item2 + " " + item3);
while (!stack.isEmpty())
{
item1 = stack.top();
stack.pop();
System.out.println(item1);

}

b. item1 = 4;
item3 = 0;
item2 = item1 + 1;
stack.push(item2);
stack.push(item2 + 1);
stack.push(item1);
item2 = stack.top();
stack.pop();
item1 = item2 + 1;
stack.push(item1);
stack.push(item3);
while (!stack.isEmpty())
{
item3 = stack.top();
stack.pop();
System.out.println(item3);

}
System.out.println(item1 + " " + item2 + " " + item3);

17. Your friend Bill says, “The push and pop stack operations are inverses of each
other. Therefore performing a push followed by a pop is always equivalent to per-
forming a pop followed by a push. You get the same result!” How would you
respond to that? Do you agree?

13549_CH03_Dale.qxd 1/6/11 9:35 AM Page 234

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

Exercises | 235

18. The following code segment is a count-controlled loop going from 1 through 5. At
each iteration, the loop counter is either printed or put on a stack depending on the
boolean result returned by the method random. (Assume that random randomly
returns either true or false.) At the end of the loop, the items on the stack are
removed and printed. Because of the logical properties of a stack, this code segment
cannot print certain sequences of the values of the loop counter. You are given an
output and asked to determine whether the code segment could generate the output.

for (count = 1; count <= 5; count++)
{
if (random())
System.out.println(count);

else
stack.push(count);

}
while (!stack.isEmpty())
{
number = stack.top();
stack.pop();
System.out.println(number);

}

a. The following output is possible: 1 3 5 2 4

i. True ii. False iii. Not enough information

b. The following output is possible: 1 3 5 4 2

i. True ii. False iii. Not enough information

c. The following output is possible: 1 2 3 4 5

i. True ii. False iii. Not enough information

d. The following output is possible: 5 4 3 2 1

i. True ii. False iii. Not enough information

19. In compiler construction, we need an observer method to examine stack ele-
ments based on their location in the stack (the top of the stack is considered
location 1, the second element from the top is location 2, and so on). This is
sometimes called (colloquially) a “glass stack” or (more formally) a “traversable
stack.” The definition of the stack is exactly as we specify in this chapter, except
we add a public method named inspector that accepts an int argument indi-
cating the location to be returned. The method should return null if the argu-
ment indicates an unused location. Describe explicitly what you would add to
the StackInterface interface to include this method.

20. In compiler construction, we need to be able to pop more than one element at
a time, discarding the items popped. To do so, we provide an int parameter
count for a popSome method that removes the top count items from the
stack. The new method should throw StackUnderflowException as needed.

13549_CH03_Dale.qxd 1/6/11 9:35 AM Page 235

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

236 | Chapter 3: The Stack ADT

Write the popSome method at the application level, using operations from
StackInterface.

21. In each plastic container of Pez candy, the colors are stored in random order.
Your little brother Phil likes only the yellow ones, so he painstakingly takes out
all the candies one by one, eats the yellow ones, and keeps the others in order,
so that he can return them to the container in exactly the same order as before—
minus the yellow candies, of course. Write the algorithm to simulate this
process. (You may use any of the stack operations defined in the Stack ADT, but
may not assume any knowledge of how the stack is implemented.)

22. Describe inheritance of interfaces and explain why it was used in Section 3.4.

Exercises 23–26 require “outside” research.

23. Describe the major differences between the Java library’s Vector and
ArrayList classes.

24. Explain how the iterators in the Java Collections Framework are used.

25. What is the defining feature of the Java library’s Set class?

26. Which classes of the Java library implement the Collection interface?

3.5 Array-Based Implementations
27. Explain why an array is a good implementation structure for a bounded stack.

28. Describe the effects each of the following changes would have on the
ArrayStack class.

a. Remove the final attribute from the DEFCAP instance variable.

b. Change the value assigned to DEFCAP to 10.

c. Change the value assigned to DEFCAP to �10.

d. In the first constructor change the statement to stack = (T[]) new
Object[100];

e. In isEmpty, change “topIndex == -1” to “topIndex < 0”.

f. Reverse the order of the two statements in the if clause of the push method.

g. Reverse the order of the two statements in the if clause of the pop method.

h. In the throws statement of the top method change the argument string from
“Top attempted on an empty stack” to “Pop attempted on an empty stack.”

29. Create a toString method for the ArrayStack class. This method should create
and return a string that correctly represents the current stack. Such a method
could prove useful for testing and debugging the ArrayStack class and for test-
ing and debugging applications that use the ArrayStack class.

30. Write a segment of code (application level) to perform each of the following oper-
ations. Assume myStack is an object of the class ArrayStack. You may call any
of the public methods of ArrayStack. You may declare additional stack objects.

a. Set secondElement to the second element from the top of myStack, leaving
myStack without its original top two elements.

13549_CH03_Dale.qxd 1/6/11 9:35 AM Page 236

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

Exercises | 237

b. Set bottom equal to the bottom element in myStack, leaving myStack empty.

c. Set bottom equal to the bottom element in myStack, leaving myStack
unchanged.

d. Print out the contents of myStack, leaving myStack unchanged.

31. Explain the differences between arrays and array lists.

32. Explain why we use a comparison to �1 for the isEmpty method of ArrayStack,
yet in the isEmpty method for ArrayListStack we use a comparison to 0.

33. Exercise 19 described an inspector method for a stack.

a. Implement inspector for the ArrayStack class.

b. Implement inspector for the ArrayListStack class.

34. Exercise 20 described a popSome method for a stack.

a. Implement popSome for the ArrayStack class.

b. Implement popSome for the ArrayListStack class.

35. Two stacks of positive integers are needed, both containing integers with values
less than or equal to 1000. One stack contains even integers; the other contains odd
integers. The total number of elements in the combined stacks is never more than
200 at any time, but we cannot predict how many are in each stack. (All of the ele-
ments could be in one stack, they could be evenly divided, both stacks could be
empty, and so on.) Can you think of a way to implement both stacks in one array?

a. Draw a diagram of how the stacks might look.

b. Write the definitions for such a double-stack structure.

c. Implement the push operation; it should store the new item into the correct
stack according to its value (even or odd).

3.6 Application: Well-Formed Expressions
36. For each of the following programs that involve casting and Autoboxing, predict

the result of compiling and running the program. Potential answers include
“there is a syntax error because . . . ,” “there is a run-time error because . . . ,”
and “the output of the program would be”

a. public class test3
{
public static void main(String[] args)
{
String s1;
int i1;
Object o1;
i1 = 35;
o1 = i1;
s1 = (String) o1;

13549_CH03_Dale.qxd 1/6/11 9:35 AM Page 237

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

238 | Chapter 3: The Stack ADT

System.out.println(s1.toLowerCase());
}

}

b. public class test4
{
public static void main(String[] args)
{
Integer I1;
int i1;
Object o1;
i1 = 35;
o1 = i1;
I1 = (Integer) o1;
System.out.println(I1);

}
}

37. Answer the following questions about the Balanced class:

a. Is there any functional difference between the class being instantiated in the
following two ways?

Balanced bal = new Balanced ("abc", "xyz");
Balanced bal = new Balanced ("cab", "zxy");

b. Is there any functional difference between the class being instantiated in the
following two ways?

Balanced bal = new Balanced ("abc", "xyz");
Balanced bal = new Balanced ("abc", "zxy");

c. Is there any functional difference between the class being instantiated in the
following two ways?

Balanced bal = new Balanced ("abc", "xyz");
Balanced bal = new Balanced ("xyz", "abc");

d. Which type is pushed onto the stack? A char? An int? An Integer? Explain.

e. Under which circumstances is the first operation performed on the stack
(not counting the new operation) the top operation?

f. What happens if the string s, which is passed to the test method, is an
empty string?

38. Suppose we want to change our application so that it reports more information
about an unbalanced string—namely, the location and value of the first unbal-
anced character. To report character locations to the user, we number the char-

13549_CH03_Dale.qxd 1/6/11 9:35 AM Page 238

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

Exercises | 239

acters starting with 1. For example, if the user enters the string “(xxx[x}]xx)x”
the output would be “Unbalanced symbol } at location 7.”

a. Describe how you would change the classes to implement this change.

b. Make the changes to the application and test the result.

3.7 Link-Based Implementation
39. What are the main differences, in terms of memory allocation, between using an

array-based stack and using a reference-based stack?

40. Consider the code for the push method of the LinkedStack class. What would
be the effect of the following changes to that code?

a. Switch the first and second lines.

b. Switch the second and third lines.

41. Draw a sequence of diagrams, of the style used in Section 3.7, to depict what hap-
pens from the inside view with the dynamic allocation of space for the references
to the stack elements. Assume A, B, and C represent objects of class String.

a. UnboundedStackInterface<String> myStack;
myStack = new LinkedStack<String>();
myStack.push(A);
myStack.pop();
myStack.push(B);
myStack.push(C);

b. UnboundedStackInterface<String> myStack;
myStack = new LinkedStack<String>();
myStack.push(A);
myStack.push(B);
myStack.push(A);

c. UnboundedStackInterface<String> myStack;
myStack = new LinkedStack<String>();
myStack.push(A);
myStack.push(C);
myStack.push(B);
myStack.pop();

42. Create a toString method for the LinkedStack class. This method should cre-
ate and return a string that correctly represents the current stack. Such a method
could prove useful for testing and debugging the LinkedStack class and for
testing and debugging applications that use the LinkedStack class.

43. Exercise 19 described an inspector method for a stack. Implement inspector
for the LinkedStack class.

44. Exercise 20 described a popSome method for a stack. Implement popSome for the
LinkedStack class.

13549_CH03_Dale.qxd 1/6/11 9:35 AM Page 239

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

240 | Chapter 3: The Stack ADT

45. We decide to add a new operation to our Stack ADT called popTop. We add the
following code to our StackInterface interface:

public T popTop() throws StackUnderflowException;
// Throws StackUnderflowException if this stack is empty,
// otherwise removes and returns top element from this stack.

An operation like this is often included for stacks. Implement the popTop
method for the LinkedStack class.

46. Suppose we decide to add a new operation to our Stack ADT called sizeIs,
which returns a value of primitive type int equal to the number of items on the
stack. The method signature for sizeIs is

public int sizeIs()

a. Write the code for sizeIs for the ArrayStack class.

b. Write the code for sizeIs for the LinkedStack class (do not add any
instance variables to the class; each time sizeIs is called you must “walk”
through the stack and count the nodes).

c. Suppose you decide to augment the LinkedStack class with an instance
variable size that always holds the current size of the stack. Now you can
implement the sizeIs operation by just returning the value of size. Identify
all of the methods of LinkedStack that you need to modify to maintain the
correct value in the size variable and describe how you would change them.

d. Analyze the methods created/changed in parts a, b, and c in terms of Big-O
efficiency.

47. Use the LinkedStack class to support an application that tracks the status of an
online auction. Bidding begins at 1 (dollars, pounds, euros, or whatever) and
proceeds in increments of at least 1. If a bid arrives that is less than the current
bid, it is discarded. If a bid arrives that is more than the current bid, but less
than the maximum bid by the current high bidder, then the current bid for the
current high bidder is increased to match it and the new bid is discarded. If a bid
arrives that is more than the maximum bid for the current high bidder, then the
new bidder becomes the current high bidder, at a bid of one more than the pre-
vious high bidder’s maximum. When the auction is over (the end of the input is
reached), a history of the actual bids (the ones not discarded), from high bid to
low bid, should be displayed. For example:

New Bid Result High Bidder High Bid Maximum Bid

7 John New high bidder John 1 7

5 Hank High bid increased John 5 7

10 Jill New high bidder Jill 8 10

8 Thad No change Jill 8 10

15 Joey New high bidder Joey 11 15

13549_CH03_Dale.qxd 1/6/11 9:35 AM Page 240

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

Exercises | 241

The bid history for this auction would be

Joey 11

Jill 8

John 5

John 1

Input/output details can be determined by you or your instructor. In any case, as
input proceeds the current status of the auction should be displayed. The final
output should include the bid history as described above.

3.8 Case Study: Postfix Expression Evaluator
48. Evaluate the following postfix expressions.

a. 5 7 8 * +

b. 5 7 8 + *

c. 5 7 + 8 *

d. 1 2 + 3 4 + 5 6 * 2 *

49. Evaluate the following postfix expressions. Some of them may be ill-formed
expressions—in that case, identify the appropriate error message (e.g., too many
operands, too few operands).

a. 1 2 3 4 5 + + +

b. 1 2 + + 5

c. 1 2 * 5 6 *

d. / 23 * 87

e. 4567 234 / 45372 231 * + 34526 342 / + 0 *

50. Revise and test the postfix expression evaluator program as specified here.

a. Use the ArrayListStack class instead of the ArrayStack class—do not
worry about stack overflow.

b. Catch and handle the divide-by-zero situation that was assumed not to hap-
pen. For example, if the input expression is 5 3 3 - /, the result would be
the message “illegal divide by zero.”

c. Support a new operation indicated by “^” that returns the larger of its
operands. For example, 5 7 ^ = 7.

d. Keep track of statistics about the numbers pushed onto the stack during the
evaluation of an expression. The program should output the largest and
smallest numbers pushed, the total numbers pushed, and the average value of
pushed numbers.

13549_CH03_Dale.qxd 1/6/11 9:35 AM Page 241

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

13549_CH03_Dale.qxd 1/6/11 9:35 AM Page 242

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

