PAGE

APPENDIX A: PHYSICAL DATA ORGANIZATION

A.1 File Organization

The tasks of storing and retrieving records in a database are handled by the database management system and the operating system access methods. Normally, the user is unaware of the methods used to locate and store data. However, the database

administrator needs to be familiar with the physical organization of the database. The DBA may design the layout of data and may need to choose other physical options that affect database performance. The purpose of this section is to describe some of the file organization techniques used in database management.

A.1.1 Storage media

A variety of media are used for storing, backing up, and processing databases.

1. Disk storage

The entire database is usually stored on disk. Unlike main memory, disk storage is nonvolatile, not erased when the system is shut off. Disk is a direct access storage device (DASD), which means the data can be accessed in any order. Disks come in various forms and sizes. To be used, disks must be mounted on disk drives, which are devices that allow data to be stored and read from disk. The disks may be permanently mounted on the drives, or they may be portable. Although disk is the most common type of storage for databases, it has disadvantages caused by the technology. While data on disk is not affected by a system failure, a major problem occurs when disk units fail and destroy data. Problems such as head crashes occur because of the mechanical movement involved in using disks. In addition, there are delays in accessing data caused by the movement of read/write heads and spinning of the disks.
2. magnetic tape
Magnetic tape is a nonvolatile storage medium that provides sequential access, meaning that to reach a piece of data it is necessary to go through all the data before it. Tape is not used for ordinary database processing, which usually requires direct access. However, it is used extensively for storing archival data and for backups. In the event the disk copy of the database is destroyed, the latest backup tape is used to reconstruct the database. Tape is also the medium most widely used for transferring data from one organization to another.

3. main memory
Main memory is volatile, which means that it is lost when the system is shut off. It provides direct access to data stored in it. The database does not usually fit in main memory, since its size is limited and since it must hold not only data but systems programs and applications programs. However, any data that is to be used must be brought into main memory first. A portion of main memory called a buffer is used to hold records for processing. When a record is requested, the system checks to see if the record is already in the buffer. If so, it simply passes the address in the buffer to the requesting process. If not, the system finds the location on disk where the record is stored and directs the reading of the record into the buffer. It usually reads more than one record at a time. The system then passes the address in the buffer to the requesting process. Note that the record still exists on disk; the buffer contains a copy of it. Accessing records in the buffer is many times faster than accessing those on disk. For this reason, records that are used most frequently are sometimes kept in the buffer whenever the database is being used.

4. cache memory
Cache is a small portion of main memory that is constructed using very high speed memory chips. In microcomputers, most of the main memory consists of DRAM (dynamic random access memory) chips. A small portion of the memory uses much more expensive SRAM (static random access memory) chips, having faster access time. SRAM is by nature faster than DRAM and, unlike DRAM, does not need to be

"refreshed" or regenerated before being read. The result is almost instantaneous access, so that the processor is not kept waiting for data. To use cache successfully, the system has to guess which data will be needed next, and try to ensure that it is in cache when needed. When data is needed, the system looks in cache first, and then in the slower DRAM. The higher the number of "hits", when the data needed is actually in the cache when requested, the faster the system will be. There are statistical procedures used by cache controllers to decide which items to hold in cache. For a database using hierarchical indexes, the higher levels of the index might be kept in cache whenever the database is in use.

A.1.2 Blocking of Records

Normally the system reads more than one record into the buffer, because all data is stored and transferred in fixed size units called blocks that can usually hold more than one record. A block appears to the programmer to be a contiguous set of bytes on a single track of a single disk surface. A typical block size is a multiple of 1024 bytes, but a block may be several thousand bytes. For example, if a disk track contained 4 blocks, each disk access would bring the entire contents of approximately a quarter of a track into the buffer. A block is sometimes called a page or a physical record. If we are using the term physical record to refer to a block, then we refer to the data records we want (e.g., student records, employee records, order records) as logical records. In general, then, one physical record will contain several logical records. The number of logical records in a block is called the blocking factor for a file. Figure A.1 shows a block with a blocking factor of 3 (i.e. 3 records per block). The entire circular track would contain 12 logical records, but only 4 physical ones.

Figure A.1 A block containing 3 logical records

Blocking is done to save space. For each physical record on a track, there is a certain amount of overhead information required. At the beginning of each physical record there is a header containing several fields with such information as the address of the physical record, an indicator to tell whether the track is defective, the length of the record key, the length of the data in the record, and where the record begins. These fields are separated by inter-record gaps, further increasing the number of bytes needed before usable data is found. If each physical record held just one logical record, there would be a header for each logical record. When records are blocked, there is a single header for each block. Figure A.2 (a) shows 5 unblocked records, while Figure A.2 (b) shows 12 records blocked 3 per block on a track holding 4 blocks. Since the first arrangement requires 5 headers for the 5 logical (and physical) records, while the second requires only 4 headers for the 12 logical records, there is a saving in storage space.
 SHAPE * MERGEFORMAT

Figure A.2(a) Unblocked records with headers and inter-record gaps

 SHAPE * MERGEFORMAT

Figure A.2(b) Blocked records with blocking factor of 3

The amount of space saved depends on the size of records, the size of blocks, the size of the inter-record gaps, and the amount of overhead information required. There is a tradeoff for this saving in storage. The operating system always brings an entire block into the buffer, even though the block may contain logical records that are not needed by the requesting process. Of course, if the DBA has placed records that are usually processed together in the same block, it is likely that the next request will be for one of the records already in the buffer, thereby saving another disk access. To pass the buffer location of the desired logical record to the requesting process, the system must deblock or break up the block into separate logical records in the buffer. Similarly, when writing records, the system must place them in blocks in the buffer before writing them out to disk. The blocking and deblocking is additional processing that is the tradeoff for more efficient use of storage. Usually the DBA has no control over block size, but he or she may be able to tailor record sizes to block size. If there is a poor fit between record size and block size, there will be a lot of wasted space in the database.

A.1.3 Record Formats

In our discussion, we have assumed that all logical records have the same length. Since working with such fixed-length records makes it easier to create and manage files, the DBA may choose to create the database by using several files, each with one type of fixed-length record. However, the records may not fit neatly into the block size. If there is space left over at the end of blocks, the DBA must decide whether to place part of a

record at the end of one block and the remainder of the record at the beginning of the next one. This technique is called spanning records and is illustrated in Figure A.3 (a). For simplicity we are ignoring headers in this illustration. The problem with spanning records is that retrieving a record may require two disk accesses. For example, to retrieve record 3 we need to read both block 1 and block 2 into the buffer. Therefore spanning is not used. A simpler solution is to leave unoccupied space at the end of the block, as shown in Figure A.3 (b). This solution, of course, wastes space.
 SHAPE * MERGEFORMAT

Figure A.3(a) Spanned records

 SHAPE * MERGEFORMAT

Figure A.3(b) Unspanned records

Some database files may have records with different lengths, called variable-length records. Different record lengths result when different record types are stored in the same file (because they are related) or when records of the same type have variable-length fields or repeating fields that may occur a different number of times in different records. When the database is first loaded, variable-length records are easy to accommodate. If we had unblocked format, we could simply add a header field showing the total length of the record. For blocked records, each logical record in the block is preceded by its length, as shown in Figure A.4 (a), which tells the system where to stop reading. One problem with this choice is that it is impossible to add additional data to a variable-length record without relocating it. For example, if we needed to add 20 more bytes to the first record in Figure A.4 (a) we would have to relocate the record to a larger space. Another problem arises when we want to delete a record. Once a record is deleted we could move all subsequent records up one slot, but this may involve rewriting a large portion of the file. Instead, the system merely marks the record as deleted and ignores it when reading. The space should, however, be available for use when an insertion is to be made, so the system keeps track of spaces from deleted records. If records all had the same length, the new record would fit the space exactly. However, spaces left by deleted variable length records are difficult to reuse, since new records may not fit exactly in the empty slot. Generally, only a shorter record can be stored in the space left after a deletion, resulting in many empty spaces being left. A possible solution to the problem of reusing empty spaces is to identify the maximum length for records and use that fixed length for all records, leaving empty space at the end of those that are shorter than the maximum. This technique is shown in Figure A.4 (b). However, if many records are shorter than the maximum, this leads to a lot of wasted space. A better solution is to set up a prime area with a fixed length record space of the most common record length and have an overflow area for parts of records that do not fit into the usual space. To access the overflow data, we use a pointer, a field that contains the address of the overflow, inserted in the prime area portion. When a record is inserted, we begin storing it in the prime area. If it is too long for the space, we put the remainder in the overflow area and use a pointer to connect the beginning of the record with its overflow. Figure A.4 (c) illustrates this choice. This method also allows a record to grow, since additional overflow space can be used as needed and connected by pointers to the existing fields of either a prime-area or overflow-area record. It is also easy to reuse space, since every record within the same area has the same length.

 SHAPE * MERGEFORMAT

Figure A.4(a) Variable-length records with record length headers

 SHAPE * MERGEFORMAT

Figure A.4(b) Using fixed maximum length for all records

 SHAPE * MERGEFORMAT

Figure A.4(c) Using prime and overflow fixed length records

A.1.4 File Organizations
File organization means the way we store data so that it can be retrieved when needed. It includes the physical order and layout of records on storage devices. The techniques used to find and retrieve stored records are called access methods. Since the retrieval methods depend to a large extent on the way the records are stored, the terms access method and file organization are used interchangeably. The operating system

provides the basic access methods and performs the actual I/O, but the DBMS is responsible for requesting this service of the operating system. Although there are many operating system access methods available, database processing uses three basic

methods-sequential, indexed sequential, and direct.

1. Sequential File Organization

In sequential file organization records are arranged in physical sequence by the value of some field, called the sequence field. Often the field chosen is a key field, one with unique values that are used to identify records. The records are simply laid out on the storage device, usually magnetic tape, in increasing or decreasing order by the value of the sequence field. Figure A.5 illustrates an Employee file in sequence by empId, the key. This organization is simple, easy to understand, and easy to manage, but is best for providing sequential access, retrieving records one after another in the same order in which they are stored. It is not good for direct or random access, which means picking out a particular record, because it generally requires that we pass over prior records in order to find the target record. It is also not possible to insert a new record in the middle of the file. In Figure A.5 we would not have room to insert a new employee with empId of E103. With sequential organization, record insertion, deletion, and update are done by rewriting the entire file.
 SHAPE * MERGEFORMAT

Figure A.5 A sequential file

Sequential is the oldest type of file organization and, despite its shortcomings, is well suited for certain applications that use batch processing of a set of records. For example, a payroll program usually requires that we access every employee's record in order by empId. In a typical payroll application, we have a payroll master file with permanent information about the employee and year-to-date data about earnings and deductions, and a payroll transaction file holding data about the past week, such as hours worked for each employee, and any changes such as deletions of old records or additions of new ones. The transaction file is sorted in order by empId to match the order of the master file. When the payroll program runs, it matches IDs of master and transaction records, computes pay and deductions, prints paychecks and paystubs, updates the year-to-date totals, and inserts or deletes records as indicated by the transaction file. Instead of rewriting the records on the master file, it produces a new master file each week. Figure A.6 summarizes this system, which is typical for sequential file processing.
 SHAPE * MERGEFORMAT

Figure A.6 Batch processing using sequential files

Since much of database processing requires direct access and immediate update, insertion, or deletion of records, sequential organization is not appropriate for ordinary

processing. However, it is widely used by database management systems for producing dumps or backups, copies of the database kept on tape as archival data, or in case the database must be reconstructed after a disk failure.

2. Indexed Sequential File Organization

We can enjoy the advantages of sequential files and still have direct access by creating an index, a table that tells where particular records are stored. Suppose we want to keep Employee records in order by empId because we have several applications that access them in that order, but we want to be able to locate a particular employee's record when needed. If we store the records on disk and can fit 5 per track, we might set up our file as shown in Figure A.7 (a). Since the file is in order by empId, it is easy to access the records sequentially. To provide direct access, we could create a dense track index listing every empId and giving the address (track number, in this case) of the record with that empId value. However, we many of the index entries are unnecessary because we can get the same information if we list just the highest key on each track, as

shown in Figure A.7 (b). This nondense or sparse index does not have an entry for every record, but it is sufficient to give the location of each one. For example, to find the record of employee E121, we notice it cannot be on track 1 because the employee ID is higher than the highest ID on that track, E112. Since it is lower than the highest ID on track 2, E128, the record, if it exists, must be somewhere on track 2. Now we read

track 2 sequentially until we either find the record or reach a record with a higher empId without finding it.
 SHAPE * MERGEFORMAT

Figure A.7(a) Indexed Sequential Organization

 SHAPE * MERGEFORMAT

Figure A.7(b) Nondense track index

 SHAPE * MERGEFORMAT

[image: image12]

Figure A.7(c) Cylinder and track indexes

Since a typical file occupies many tracks, the track index will be very long and searching the index may be too time consuming. Therefore we can set up another level of index, the cylinder index. If our Employee file has 1500 records and each cylinder has 30 tracks, each holding 5 records, we need 10 cylinders for our file. We could set up a cylinder index that gives the highest key on each cylinder. This leads to the correct track index that lists the highest key on each track of the cylinder. Figure A.7(c) illustrates the use of a cylinder index to locate a record. We could carry this process further by grouping cylinders into volumes, sets of cylinders on the same or different disk packs, and setting up a volume index or master index that leads to a cylinder index that leads to a track index.

The difficulties we had with insertion, deletion or update of records in sequential file organization can be corrected with indexed sequential organization because we can limit the amount of reorganizing we need to perform. Records can be updated in place, by simply writing over the old record within the same track. When we delete a record, we locate the track and put a deletion flag at the beginning of the record to indicate that it

should not be read. Insertion, however, requires more planning. We want to be able to insert records in sequential order, but we do not want to rewrite the entire file whenever we need to insert a record. For example, suppose the file appears exactly as shown in Figure A.7 (a) and we want to insert a new employee with empId E103. The record belongs on the first track, but we have no room for it there. If we insert it and move the other records, all remaining tracks will have to be rewritten and the index recreated. We could anticipate insertions by leaving some room, or distributed free space, on each track for additional records. For example, if we placed only four records on each track when the file was first created, we would have room for one additional record on each track. Then we could insert E103 by placing it in its correct position and shifting the other records on track 1. However, this is a short term solution, since we would now have a problem if another new employee record, this time with ID E108, had to be added. To allow for an unknown number of such additions, we create an overflow area for records that do not fit on their correct tracks. To ensure that we can find an overflow record, we extend the track index by adding an overflow pointer, which gives the address of the first overflow record for each track. Records in the overflow area contain pointer fields, so that if a track has more than one overflow record the first will point to the second, the second to the third, and so on. Indexed sequential file organization is used by operating systems to manage some non-database files, but database files are not managed by the operating system's indexed sequential access method. However, the techniques are used by the DBMS to set up its own indexed file organization.
3. Direct File Organization
Database management systems can use direct file organization to help manage the database. This is one of the basic organizations used by the operating system. This organization is designed to provide random access, rapid direct non-sequential access to records. Using this organization, records are inserted in what appears to be a random order, not in sequence by key field value. Each record is assigned a relative address on the basis of the value of a field within the record. When a record is to be stored, the system takes the value of the specified field and usually performs some type of calculation to derive a target address for the record. Normally, the record is then stored at the target address. When it is time to retrieve a record, the system uses the key value supplied to figure out where the record should be stored and goes to that address to find it.

If the values of the chosen field are simply consecutive integers, it is a simple matter to store the records. For example, suppose we are creating a database to keep track of customer orders for some vendor. If all orders are assigned consecutive order numbers, then the order records might have a field called orderNumber which can be used as the relative address. If the field uses nonconsecutive numbers or is nonnumeric, it is necessary to convert its value in some way. The conversion scheme for numeric values is called a hashing scheme and the field on which it is performed is the hashing field. Nonnumeric values are easily converted into numeric ones by using some type of code-for example, alphabetical position or ASCII values. Once a number is obtained, there are many possible algorithms for deriving a target address. For example, suppose we are storing Employee records and our hashing field is socialSecurityNumber. A sample social security number, expressed as a numeric field, is 123456789. We are seeking an algorithm that can take a 9-digit number with possible values 0-999,999,999 and convert it into one of the addresses available. It is not appropriate to use the social security number as the address, because that would require a file with 1,000,000,000 positions, most of which would be empty, since there are large gaps between social security numbers of employees. Suppose, for example, that we have 1000 positions for storage. If we only have 800 employees there should be enough room in a file with 1000

addresses for all their records. However, we must remember that we are trying to map values in the range 0-999,999,999 into the range 0-999, as indicated in Figure A.8. We do not care if the social security numbers are kept in increasing order, so it is acceptable to have a high social security number map to a low address, or a low one to a high address, as shown in Figure A.8. One method, called the division/remainder method, is to divide by some fixed divisor and take the remainder as the address. For our example, if we use 1000 as the divisor, the remainder will be in the range 0-999, and will simply be the last three digits of the social security number. The values are guaranteed to be in the correct range for addresses, 0-999. For example, the social security number 085439598 gives a remainder of 598 on division by 1000, so its target address is 598. Our choice of 1000 as the divisor was arbitrary and was designed to make our calculations easy. In fact, it is customary to choose divisors that are prime numbers slightly less than the number of addresses available. Many other hashing algorithms exist.
 SHAPE * MERGEFORMAT

 Figure A.8 Mapping social security number to file addresses

A major problem, called a collision, occurs when two different key values yield the same target address. The keys are then called synonyms. For example, we know the social security number 85439598 hashes to 598 using division/remainder with a divisor of 1000, but so does 998876598, so these two social security numbers are synonyms. If we had previously inserted the record of the employee with social security number 85439598 in the target address 598, we would be unable to store the employee record with social security number 998876598 in the correct address. A good hashing algorithm is one that produces addresses that fit the range, provides a fairly uniform

distribution of records, and minimizes collisions. No algorithm, no matter how well designed, eliminates collisions altogether. Therefore we must find ways to handle collisions. One way of minimizing them, as already suggested, is by choosing a good

hashing scheme. The division/remainder method with a prime number as the divisor is one of the best. However, there may be some pattern in the key values that causes many collisions when this method is used. Therefore, the DBA should be familiar with several schemes and should study the effect each would have on the distribution of records. Another way to minimize collisions is to calculate a block address (also called a bucket number) rather than an individual record address. As explained earlier, records in a database are usually stored in blocks or pages that may hold several logical records. For our employee file with 800 records, we may choose a page size that will hold four employee records. Although theoretically we would need only 200 pages to hold our 800 records, we cannot expect the records to be perfectly distributed, so we allow a little extra room. We might choose to reserve 250 pages, or room for 1000 records. This would give us a packing density, which is the percentage ratio of stored records to the number of spaces, of 80%. We now change our hashing algorithm so that it yields addresses in the range 0249, and plan to place 4 records in each address or bucket. Recall that a bucket is a space that can hold several records. For example, we can use the division/remainder method with the prime number 241 as our divisor and get addresses in the range 0240. Now we can store 4 synonyms in the same bucket. The effect of collisions can be further reduced by increasing the bucket size. For example, we can leave room for 5 records in each bucket. However, we may be constrained by the

system to fixed block sizes. A second method of reducing the effect of collisions is to reduce the packing density by increasing the number of buckets allocated. As the packing density decreases, however, more space will be wasted, so we are trading off storage efficiency for better collision management. Our sample packing density of 80% is about the highest practical one. Average packing density is closer to 60%.

Regardless of algorithm efficiency or bucket size, we will eventually reach a point where some record does not fit into the correct bucket. There are two ways of handling such an overflow. The first is to search forward until we find an empty slot or record space. We may find room in the next bucket or the one after that for the record. If we search forward some predetermined number of addresses (perhaps 5) without finding room for the record, we simply cannot insert the record and have to reorganize the file because it is too full or dense in that region. A predetermined number is chosen because we want to avoid long record searches which would delay processing. A second method of dealing with overflows is to set aside an overflow area into which records that do not fit in their correct buckets are inserted, and connect the overflow record with its correct address by placing a synonym pointer in the record stored at that address. Records in the overflow area also have "next synonym" pointers that give the address in the overflow area of the next synonym for the same target address, so that all synonyms for a particular address can be retrieved by following a chain of pointers.
A.2 Data Structures

The database management system uses a variety of techniques to allow rapid direct retrieval of records for applications, retrieval on the basis of relationships between records, and retrieval by the value of a non-key field. To do so, the DBMS uses data structures, which are structured or composite data types made up of simpler data types.

A.2.1 Inverted Files

Inverted files are commonly used to allow the database management system to retrieve records on the basis of the value of a non-key field. Such a field, which may or may not have unique values, is referred to as a secondary key. For example, we may have student records physically arranged in order by student ID, as shown in Figure A.9(a). This order makes it easy for the operating system to retrieve records by ID, using either sequential or indexed sequential access. However, if we want to retrieve records in alphabetical order by last name, we need another organization. We could sort the records on last name each time, but that wastes processing time. We could store records in two different files, one in order by the ID and one in order by last name, but this duplication of data wastes space and eventually causes data to become inconsistent. Instead, we can create an index or inverted list using lastName as the field for ordering. We say we have inverted the file on the field lastName. The secondary index for the inversion is shown in Figure A.9 (b). Note that we are using relative addresses and ignoring blocking of records. If we want to access the student file on the basis of major, we could create a secondary index on major, using separate records for each repeated value, as shown in Figure A.9 (c). If we set up indexes for each of the fields in the Student record, we say the file is fully inverted. Since only two of the fields are indexed in Figure A.9, our example shows a partially inverted file. The indexes provide for very efficient direct access to records on the basis of the values of the indexed field. In addition, the indexes themselves are sufficient to give information such as the number of CSC majors without accessing the file at all. Note that these indexes are created by the DBMS, not by the access method, although the DBMS needs the access method to tell it the addresses of records in order to build the index. When retrieving a record by using the index, the DBMS looks up the appropriate value of the indexed field, determines the relative address of the record desired, and tells the access method to retrieve the record stored at that address. The access method uses its own technique to find and retrieve the record. The indexes themselves, as well as the files they index, are stored in the areas under the control of the DBMS.

	Student

	stuId
	lastName
	firstName
	major
	credits

	S1001
	Smith
	Tom
	History
	90

	S1002
	Chin
	Ann
	Math
	36

	S1005
	Lee
	Perry
	History
	3

	S1010
	Burns
	Edward
	Art
	63

	S1013
	McCarthy
	Owen
	Math
	0

	S1015
	Jones
	Mary
	Math
	42

	S1020
	Rivera
	Jane
	CSC
	15

Figure A.9(a) Student file in order by stuId

	KEY VALUE
	RELATIVE ADDRESS

	Burns
	4

	Chin
	2

	Jones
	6

	Lee
	3

	McCarthy
	5

	Rivera
	7

	Smith
	1

Figure A.9(b) Index on lastName for Student file

	KEY VALUE
	RELATIVE ADDRESS

	Art
	4

	CSC
	7

	History
	1

	History
	3

	Math
	2

	Math
	5

	Math
	6

Figure A.9(c) Index on major for Student file

A.2.2 Linked Lists

A second technique for handling secondary keys or setting up any other desired order is the linked list or pointer chain. A linked list is created by adding an extra link field to each data record. The field contains a pointer, the address of the next record in the logical sequence being created. Figure A.10 (a) shows Student records in a linked list with links arranged in order by lastName. Once again, we are using relative addresses

and ignoring blocking. Note that we must identify the head or first record in the list to start with, which is record 4 (Burns). When we reach that record, we look at the value of the link to see where the next logical record appears. We follow that link to the next record, and so on until we reach the end of the pointer chain, identified by a null link value, which we are writing as 0. If we wish, we can replace the null pointer at the end of the chain with the address of the head of the list, thereby creating a circular linked list or ring. A ring allows us to reach any record in the chain from any other. Figure A.10 (b) illustrates a circular linked list of Employee records, this time using empId as the ordering field. A two-way linked list is one in which each record has two pointers-a forward or next one to indicate the location of the next record and a backwards or prior one to indicate the location of the previous record. Figure A.10 (c) shows the Employee file using a two-way linked list to create alphabetical and reverse alphabetical order on empName. We can create more than one logical order for the same file by using two or more pointer fields in each record. Figure A.10(d) shows the Employee file with the empId link creating order by empId and the empName link creating order by empName.
Head: 4

	Student

	stuId
	lastName
	firstName
	major
	credits
	pointer

	S1001
	Smith
	Tom
	History
	90
	0

	S1002
	Chin
	Ann
	Math
	36
	6

	S1005
	Lee
	Perry
	History
	3
	5

	S1010
	Burns
	Edward
	Art
	63
	2

	S1013
	McCarthy
	Owen
	Math
	0
	7

	S1015
	Jones
	Mary
	Math
	42
	3

	S1020
	Rivera
	Jane
	CSC
	3
	1

Figure A.10(a) Linked list with pointers for lastName

Head: 3

	Employee

	empId
	lastName
	firstName
	dept
	salary
	pointer

	E125
	Jones
	Mike
	Marketing
	38000
	7

	E110
	Lyons
	Mary
	Research
	50000
	6

	E101
	Jones
	Jack
	Marketing
	35000
	4

	E104
	Smith
	John
	Research
	30000
	2

	E120
	Miranda
	Jane
	Sales
	48000
	1

	E115
	Chin
	Greg
	Development
	45000
	5

	E130
	DiNoto
	Steve
	Research
	55000
	3

Figure A.10(b) Circular linked list with pointers for empId

Head: 6

Tail: 4

	Employee

	empId
	lastName
	firstName
	dept
	salary
	Forward

pointer
	Backwards

pointer

	E125
	Jones
	Mike
	Marketing
	38000
	2
	3

	E110
	Lyons
	Mary
	Research
	50000
	5
	1

	E101
	Jones
	Jack
	Marketing
	35000
	1
	7

	E104
	Smith
	John
	Research
	30000
	0
	5

	E120
	Miranda
	Jane
	Sales
	48000
	4
	2

	E115
	Chin
	Greg
	Development
	45000
	7
	0

	E130
	DiNoto
	Steve
	Research
	55000
	3
	6

Figure A.10(c) Two-way linked list with pointers for lastName

empId head: 3

lastName head: 6

	Employee

	empId
	lastName
	firstName
	dept
	salary
	Empid

pointer
	lastName

pointer

	E125
	Jones
	Mike
	Marketing
	38000
	7
	2

	E110
	Lyons
	Mary
	Research
	50000
	6
	5

	E101
	Jones
	Jack
	Marketing
	35000
	4
	1

	E104
	Smith
	John
	Research
	30000
	2
	0

	E120
	Miranda
	Jane
	Sales
	48000
	1
	4

	E115
	Chin
	Greg
	Development
	45000
	5
	7

	E130
	DiNoto
	Steve
	Research
	55000
	0
	3

Figure A.10(d) Linked list with pointers for empId and lastName

Insertion is easy with a linked list. We simply add the new record at the physical end of the file and include it in the correct order by changing only two links. Figure A.11(a) shows how to insert a new Student record at the end of the file shown in Figure A.10 (a). Deletion is equally easy. We simply readjust the pointer that used to lead us to the deleted record by setting it to the pointer value that appeared in the deleted record. Figure A.11(b) shows how to delete a record from the original Student file of Figure A.10(a). To keep track of which slots are occupied by deleted records, we do garbage collection by means of another linked list. This time we have a header for unused slots, which leads to the first deleted record, which in turn would point to the second deleted record (if one existed), and so forth, as shown in Figure A.11(b). When we need to insert a record, we can reuse the space by placing the record in the address indicated by the unused space header and using as the new header value the pointer value that used to appear there.
Head: 4

	Student

	stuId
	lastName
	firstName
	major
	credits
	pointer

	S1001
	Smith
	Tom
	History
	90
	0

	S1002
	Chin
	Ann
	Math
	36
	6

	S1005
	Lee
	Perry
	History
	3
	5

	S1010
	Burns
	Edward
	Art
	63
	2

	S1013
	McCarthy
	Owen
	Math
	0
	7

	S1015
	Jones
	Mary
	Math
	42
	8

	S1020
	Rivera
	Jane
	CSC
	3
	1

	S1006
	Klein
	Mark
	CSC
	0
	3

Figure A.11(a) Adding record of S 1006 to end of Student file

LastName Head:4

UNUSED Head: 2

	Student

	stuId
	lastName
	firstName
	major
	credits
	pointer

	S1001
	Smith
	Tom
	History
	90
	0

	S1002
	Chin
	Ann
	Math
	36
	0

	S1005
	Lee
	Perry
	History
	3
	5

	S1010
	Burns
	Edward
	Art
	63
	6

	S1013
	McCarthy
	Owen
	Math
	0
	7

	S1015
	Jones
	Mary
	Math
	42
	3

	S1020
	Rivera
	Jane
	CSC
	3
	1

Figure A.11(b) Deleting record of student S1002 from original Student file

The DBMS is responsible for creating and maintaining its own linked lists for various logical orders. To do so, it must get addresses from the operating system. To permit following of pointers, the operating system must use indexed sequential or direct organization as the access method, with direct being the usual choice.

A combination of inverted and linked lists can be used for secondary keys with non-unique values. The index can list each secondary key value only once, with a pointer to the first record having that value. The first record then becomes the head of a linked list, pointing to the second record with the same secondary key value, which in turn points to the third record, and so forth. An alternative is to list the addresses of each record having a particular value for the key.

A.2.3 Trees

Many database management systems use a data structure called a tree to hold indexes. A tree is a data structure that consists of a hierarchy of nodes. The nodes contain data and are connected by lines or branches. At the highest level there is a single node, called the root of the tree. The root may have any number of dependent nodes, called its children, directly below it. These child nodes, in turn, may have children dependent on them. A strict rule for tree structures is that each node, with the exception of the root, has exactly one parent, that is, one node on the level immediately above it to which it is related. Parent-child relationships are shown by drawing a line or an edge between the parent and child nodes.
 SHAPE * MERGEFORMAT

Figure A.12 A tree structure

Figure A.12 represents an example of a tree structure. In that example, node A is the root. Nodes B,C, and D are its children. B has two children, E and F. C has one child, G, while D has three children, H, I, and J. E has two children, K and L. G has one child, M, and H has one child, N. From the diagram, it is clear that a node can have zero, one, or many children, but a node can have only one parent. The root node has no parent. A node that has no children is called a leaf, so nodes K, L, F, M, N, I, and J are leaves. Note that leaves can occur on different levels. Nodes that are children of the same parent are called siblings. For example, from the diagram, you can see that nodes E and F are siblings, since they have the same parent, B. For any node, there is a single path, called the hierarchical path, from the root to that node. The nodes along this path are called that node's ancestors. For example, the hierarchical path to node L begins with A, goes through B, then E, and finally L. Therefore, A, B, and E are ancestors of L. Similarly, for a given node, any node along a path from that node to a leaf is called its descendant. If you visualize a node as if it were a root node in a new tree, the node and all its

descendants form a subtree of the original tree structure . In the diagram, we see the descendants of B are nodes E, K, L, and F. B forms the root of the subtree containing itself and all its descendants.

The root of the tree is assigned level 0. Its children are on level 1. Their children are on level 2, and so forth. The height or depth of a tree is the maximum number of levels or, alternatively, the number of nodes on the longest hierarchical path from the root to a leaf. The tree in Figure A.12 has height of 4. A tree is said to be balanced if every path from the root node to a leaf has the same length. The tree in our example is not balanced, since the path from A to F has length 3, while the path from A to K has length 4. The degree or order of a tree is the maximum number of children any node has. The tree in Figure A.12 has order 3. A binary tree is one of order 2, in which each node has no more than two children. Our example is clearly not a binary tree, since both A and D have three children.
A.2.4 B+ Trees
Trees are used for holding and processing various database structures, but they are widely used for indexing files. A structure called a B+ tree can be used to store an efficient and flexible hierarchical index that provides both sequential and direct access to records. The index consists of two parts, called an index set and a sequence set. The sequence set is at the bottom level of the index (the leaf nodes) and consists of all the key values arranged in sequence with a pointer from each key value to its corresponding record in the data file. Figure A.13 illustrates a B+ tree index. If you look at the bottom level, you will see the sequence set showing all key values and their corresponding pointers that lead to the appropriate data records. We are not showing the data records, which may be arranged randomly or in any desired physical sequence. We are assuming data records are unblocked and each pointer leads to a single record. However, the pointers may lead to buckets, spaces that can hold several records, if desired. You will also notice that the rightmost pointer of each leaf node, the horizontal pointer, is used to link the node with the next one in the sequence set. This allows us to use the sequence set for sequential access to the file. All we need to do is start at the leftmost leaf node and locate each record from that leaf in turn, then follow the horizontal pointers to reach the next sequence set node, and so forth.

Direct access to records is accomplished by using the index set, starting at the root node and taking a strict hierarchical path to the appropriate node in the sequence set. The root node in Figure A.13 has the same structure as all the other nodes of the tree. In this example, it has room for 3 key values and 4 pointers that could lead to 4 child nodes, so the tree has order 4. (In reality a node would contain many more key values and pointers.) Since we are using only 2 key values and 3 pointers in the root node, we leave the rightmost key and pointer values blank, and show only 3 level 1 nodes. The leftmost pointer is used to access all records whose key values are less than 100. The middle pointer leads to all records with key values greater than or equal to 100 but less than 200, while the rightmost non-null pointer leads to all records with key values greater than or equal to 200. Following the root node's leftmost pointer, we reach a level 1 node with

room for 3 key values and 4 pointers. We are storing only 2 key values, 15 and 60, and 3 pointers in this node. The leftmost pointer in this node is used to access all records with key values less than 15, the next pointer for records with keys greater or equal to 15 but less than 60, the next for keys greater than or equal to 60 but less than 100, and the last is

empty at the moment. If we follow the leftmost pointer once again, we arrive at the leftmost node of the sequence set. This has key values 1 and 8. The leftmost pointer leads to the data record with key value of 1, the next to the data record with key value of 8, the third is blank, and the fourth leads to the next node of the sequence set. You will recall this pointer is used to chain together sequence set nodes for sequential processing

and is not used for direct access.

||100 || 200 || ||

||15 ||60 || ||

||120||150|| ||

||230|| 270 || ||

_____ _______ ______ _______ _______ _______ _______ _______ ______

||1||8 || || ||15||25||30|| ||60||75||80|| ||100||115|| || ||120||145|| || ||150||165|| || ||200||215|| || ||230||240|| || ||270||300||

to to

1 8 ...

Figure A.13 A B+ Tree

Suppose we wanted to access the record with key value 115. We would begin at the root node and follow the second pointer, since the value we seek is greater than 100 but less than 200. This leads to the middle level 1 node. This time, we would follow the leftmost pointer, since the value we seek is less than 120. This leads to the sequence set, where we find the value 115 in the second position of the appropriate node. The pointer to the left of 115 leads us to the correct data record.

There are strict rules for constructing B+ trees, among them:

· If the root is not a leaf, it must have at least two children.
· If the tree has order n, each interior node (that is, all nodes except the root and leaf nodes), must have between n/2 and n occupied pointers (and children). If n/2 is not an integer, round up to determine the minimum number of pointers.

· The number of key values contained in a non-leaf node is 1 less than the number of pointers.

· If the tree has order n, the number of occupied key values in a leaf node must be between (n -1)/2 and n -1. If (n -1)/2 is not an integer, round up to determine the minimum number of occupied key values.
· The tree must be balanced, that is, every path from the root node to a leaf must have the same length.

These requirements account for the efficiency of a B+ tree index. In practice, each node in the tree is actually a block, so we can store many more than 3 key values and 4 pointers in a typical node. If we had room for 20 pointers in each node, we could easily access 1000 records using a 3-level index. Since the root node is usually kept in main memory during processing, we would need only 2 disk accesses to reach the sequence set, or only a total of 3 accesses to reach any one of the 1000 data records.

Insertion and deletion of records in a data file with a B+ tree index can be complicated, particularly if the index nodes become too full or too empty. First we consider the simple case where no problems arise when we insert records into the index

shown in Figure A.13. Suppose we wish to insert a record with key value of 5. We see that its key belongs in the leftmost leaf node, since it is less than 15. To place it in the correct order, we move the value 8 and its pointer to the right and insert 5 and its pointer in the correct sequential position, so the tree index now appears as in Figure A.14 (a). The record with key value 5 is inserted into the data file, and its address becomes the pointer value stored to the left of the 5 in the sequence set. The leftmost leaf node in now completely filled, and no other insertions can be made into it without some reorganizing. Now suppose we wish to delete the record with key value of 80. The sequence set node containing 80 is the third from the left. If we simply erase the key value and its pointer,

the leaf node would now have only two key values. We must check the requirements to see whether two keys are sufficient for a leaf node. Recall this tree has order 4. The rule for leaves is that a leaf must have between (n -1)/2 and n -1 keys. Calculating (4-1)/2 we see that the leaf node has enough key values. Therefore we erase the key value and its pointer, and delete the data record. Figure A.14 (b) shows the present state of the index, after inserting 5 and deleting 80.

||100 || 200 || ||

||15 ||60 || ||

||120||150|| ||

||230|| 270 || ||

_____ _______ ______ _______ _______ _______ _______ _______ ______

||1||5||8|| ||15||25||30|| ||60||75||80|| ||100||115|| || ||120||145|| || ||150||165|| || ||200||215|| || ||230||240|| || ||270||300||

to to
to

1 5 8 ...

Figure A.14(a) Inserting key value 5

||100 || 200 || ||

||15 ||60 || ||

||120||150|| ||

||230|| 270 || ||

_____ _______ ______ ______ _______ _______ _______ _______ _______

||1||5||8|| ||15||25||30|| ||60||75|| || ||100||115|| || ||120||145|| || ||150||165|| || ||200||215|| || ||230||240|| || ||270||300|0|

to to
to

1 5 8 ...

Figure A.14(b) Index after inserting 5 and deleting 80

||100 || 200 || ||

||15 ||25||60||

||120||150|| ||

||230|| 270 || ||

_____ ______ ______ _______ _______ _______ _______ _______ _______

||1||5||8|| ||15||20|| || ||25||30|| || ||60||75||80|| ||100||115|| || ||120||145|| || ||150||165|| || ||200||215|| || ||230||240|| || …

to to
to

1 5 8 ...

Figure A.14(c) Index after inserting 5, deleting 80, and inserting 20

||100 || 200 || ||

||15 ||25|| ||

||120||150|| ||

||230|| 270 || ||

_____ ______ ______ _
______ _______ ______ _______ _______ _______

||1||5||8|| ||15||20|| || ||25||30||60 || ||100||115|| || ||120||145|| || ||150||165|| || ||200||215|| || ||230||240|| || ||270||300|| ||

to to
to

1 5 8 ...

Figure A.14(d) Index after inserting 5, deleting 80, inserting 20, and deleting 75

Now we consider what happens when a leaf node becomes too full. Suppose we wish to insert a record with key value of 20. The key value belongs in the second leaf node from the left, between 15 and 25. However, this leaf node is already filled, so we must reorganize. The existing node must be split, or divided up into two nodes. We add a new leaf node immediately to the right of the existing one, and split up the key values so there are about half in each of the two resulting leaves. Now the old node will contain key values 15 and 20, with their pointers, while the new one will contain the values 25 and 30, with their pointers. However, we must consider what effect this may have on the parent of the leaf node. We see that 25 should appear in the parent node, which is the leftmost level 1 node. Therefore we rewrite that node so that the key values will appear in proper sequence, which is 15, 25, 60. We also adjust the pointers to lead to the proper leaf nodes, including the new one. We can now insert the data record. Figure A.14 (c) shows the new state of the index. We were fortunate that the parent had enough space for the key value and the pointer to the new leaf. If it did not, we would have had to split the parent as well, and adjust its parent, the root node. If the root node were full, we would

have to split the root, which would require creating a level above the present root, resulting in another level being added to the index. This example shows why B+ tree indexes are usually created with some empty spaces to allow for limited insertion

without splitting.

Now we consider an example where deletion causes a problem. Starting with the index as it appears in Figure A.14 (c), let us delete the record with key value of 75. The leaf node affected is the fourth from the left. If we were to erase the 75, this leaf would have only one key left, 60. For a tree of order 4, leaves must have a minimum of 2 keys, so we are not permitted to have such a leaf. Note that if the leaf were now empty, we could simply delete it and adjust the parent node. However, it contains information that we need, namely the key value of 60 and the pointer to the corresponding record. To preserve this information, we look for a sibling node in which we might store it. The node immediately to the left has the same parent and contains only 2 keys, 25 and 30. Therefore, we coalesce or combine the two sibling leaf nodes into one with the three key

values, 25, 30, and 60. We must also adjust the parent node by deleting the value of 60 and the pointer from it to the old node. The result is shown in Figure A.14 (d). Note that if the parent node had become too small (fewer than 2 pointers, for this index), we would have had to coalesce level 1 nodes. If coalescing level 1 nodes ever causes the root to have fewer than two children, the index loses a level. In a case where a sibling is too full to allow coalescing, it would be necessary to redistribute pointers between the two siblings (much as we did in splitting) so that each node has the required number.

3.2.5 B Trees
A B tree index is similar to a B+ tree index, but it eliminates redundant storage of some keys. In Figure A.14 (d) the values that appear on higher levels of the index are repeated in the sequence set. For example, 100, 200, 15, 25, and others appear on two levels. We can make the index slightly more efficient for accessing some records by placing data record pointers for these values on the highest level on which they appear, instead of carrying the values all the way down to the sequence set. Each non-leaf node will be expanded to include data record pointers as well as the usual pointers to the next

index level. Figure A.15 shows the root node of the index shown in Figure A.14 (d) with the extra pointers that would be included. Similar pointers would appear in all non-leaf nodes. B tree indexes are more efficient for lookup if the value sought appears higher in the index than the sequence set, since the number of accesses will be fewer than in a corresponding B+ tree index. However, maintenance of the index is more complicated.

In addition, a B+ tree node holds more key values, since it does not contain the direct data record pointers of a B tree, so fewer nodes are needed to contain the index. Finally, the leaf nodes of a B tree do not form a complete sequence set that can be used for sequential access, as in the B+ tree.
 SHAPE * MERGEFORMAT

to level 1
 to
to level 1
 to

to level 1

k<100
 100
100<k<200 200

k>200

Figure A.15 B tree
Record E101 Record E102 Record E103

. . .

Hdr1

Rec1

Hdr2

Rec2

Hdr3

Rec3

Hdr4

Rec4

Hdr5

Rec5

Hdr1

Hdr2

Hdr3

Hdr4

rec1 rec2 rec3

rec4 rec5 rec6

rec7 rec8 rec9

Rec10 rec11 rec12

Rec1

Rec2

Rec3-start

Rec3-rest

Rec4

Rec5

Rec6-start

Rec1

Rec2

blank

Rec3

Rec4

blank

Block

header

Block

length

Record

length

Rec1

Record

length

Rec2

Record

length

Rec3

Rec1

Rec2

Rec3

Rec4

Rec1

Rec2-start

Rec3-start

Rec4

Prime area

Rec2-rest

Rec3-rest

Overflow area

E101

Jones,Jack

Sales Rep

Marketing

45000

E104

E110

E115

Smith,John

Lyons,Mary

Chin,Greg

Research Asst

Sr. Researcher

Planner

Research

Research

Development

35000

60000

55000

. . .

Old

Payroll

Master

File

Transaction File

Payroll program

Paychecks and paystubs

Payroll report

New Payroll Master

File

E101

E104

E110

E115

E120

E125

E130

E131

E153

E138

E140

E143

E145

E150

E134

. . .

Track 1

Track 2

Track 3

Highest key on track

E120

E138

E153

…

Track number

1

2

3

…

Track index for cylinder 3

Highest key on cylinder

E820

E1236

E2121

…

Cylinder

Number

1

2

3

…

Highest key

On track

E120

E138

E153

…

E820

Track Number

1

2

3

…

30

Highest key

On track

E890

E908

E923

…

E1236

Highest key

On track

E1259

E1278

E1297

…

E2121

Track Number

1

2

3

…

30

Track Number

1

2

3

…

30

Cylinder index

Track index for cylinder 1

Track index for cylinder 2

0

999999999

0

999

A

B

D

C

E

F

G

H

I

J

K

L

M

N

100

200

PAGE
37

