Database Planning
and Database Architecture

Chapter Objectives
2.1 Data as a Resource
2.2 Characteristics of Data
2.2.1 Data and Information
2.2.2 Levels of Discussing Data
2.2.3 Data Sublanguages
2.3 Stages in Database Design
2.4 Design Tools
2.4.1 Data Dictionary
2.4.2 Project Management Software
2.5 Database Administration
2.5.1 Planning and Design
2.5.2 Developing the Database
2.5.3 Database Management
2.6 The Three-Level Database Architecture
2.6.1 External Views
2.6.2 Logical and Conceptual Models
2.6.3 Internal Model
2.6.4 Data Independence
2.7 Overview of Data Models
2.7.1 The Entity-Relationship Model
2.7.2 Relational Model

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

Chapter Objectives
In this chapter you will
learn the following:

» The distinction
between data and
information

= The four levels of
discussion about
data

= The steps in staged
database design

= The functions of a
database
administrator

= The distinction
between DDL and
DML

= The rationale for
and contents of the
three-level database
architecture

* The meaning of
logical and physical
data independence



26

Characteristics of
various data
models

CHAPTER 2 Database Planning and Database Architecture

2.7.3 Object-Oriented Model
2.7.4 Object-Relational Model
2.7.5 Semistructured Data Model
2.8 Chapter Summary
Exercises
~ On the Companion Website:
é = Lab Exercises

= Sample Project

» Student Projects

2.1 Dataas a Resource

If you were asked to identify the resources of a typical business organiza-
tion, you would probably include capital equipment, financial assets, and
personnel, but you might not think of data as a resource. When a corpo-
rate database exists, the data it contains is a genuine corporate resource.
Since the database contains data about the organization’s operations
(called operational data) that is used by many departments, and since it is
professionally managed by a DBA, there is an increased appreciation of
the value of the data itself, independent of the applications that use it. A
resource is any asset that is of value to an organization and that incurs
costs. An organization’s operational data clearly fits this definition. To
appreciate the value of an organization’s data more fully, imagine what
would happen if the data were lost or fell into the hands of a competitor.
Many organizations, such as banks and brokerage houses, are heavily
dependent on data, and would fail very quickly if their data were lost.
Most businesses would suffer heavy losses if their operational data were
unavailable. In fact, an organization depends on the availability of opera-
tional data in managing its other resources. For example, decisions about
the purchase, lease, or use of equipment; financial investments and finan-
cial returns; and staffing needs should be made on the basis of informa-
tion about the organization’s operations. The recognition of data as a
corporate resource is an important objective in developing an integrated
database environment. The database protects the data resource by provid-
ing data security, integrity, and reliability controls through the DBMS.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.



2.2 Characteristics of Data

2.2 Characteristics of Data

In order to appreciate the importance of data as a corporate resource, we
need to examine its characteristics more closely.

2.2.1 Dataand Information

We often think of data as information, but these two terms have slightly dif-
ferent meanings. The term data refers to the bare facts recorded in the data-
base. Information is processed data that is in a form that is useful for making
decisions. Information is derived from the stored data by re-arranging, select-
ing, combining, summarizing, or performing other operations on the data.
For example, if we simply print out all the stored items in the database shown
in Figure 1.1, without the column headings that identify what they represent,
we have data. However, if we print a formatted report such as the one in Fig-
ure 1.3, showing the data in some order that helps us make a decision, we
have information. In practice, most people use the two terms interchangeably.

2.2.2 Levels of Discussing Data

When we discuss data, it is important to distinguish between the real
world, the small part of the real world that the database is concerned with,
the inherent structure of that portion of the world, the structure of the
database, and the data stored in the database. There are actually four levels
of discussion or abstraction to be considered when we talk about databases.

We begin with the real world, or reality. On this first level, we talk about
the enterprise, the organization for which the database is designed. The
enterprise might be a corporation, government agency, university, bank,
brokerage house, school, hospital, or other organization. As the enterprise
functions in the real world, there is too much detail involved to keep track
of all the facts needed for decision making by direct observation. Instead,
we identify those facets of the enterprise that we need to keep track of for
decision making. The part of the real world that will be represented in the
database is called a miniworld or a universe of discourse. For the mini-
world, we begin to develop a conceptual model, which forms the second
level of data discussion. We identify entities which are persons, places,
events, objects, or concepts about which we collect data. For the organiza-
tions mentioned previously, we could choose entities such as customers,

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.




5

CHAPTER 2 Database Planning and Database Architecture

employees, students, bank accounts, investments, classes, or patients. We
group similar entities into entity sets. For example, for the set of all cus-
tomers we form the entity set we might call Customers. Similarly, we
might have entity sets called Employees, Students, Accounts, Investments,
Classes, and Patients—each consisting of all entity instances of the corre-
sponding type. A conceptual model may have many entity sets. Each entity
has certain attributes, which are characteristics or properties to describe
the entity and that the organization considers important. For the
Student entity set, attributes might include student ID, name, address,
telephone number, major, credits passed, grade point average, and adviser.
Some entities may have relationships or associations with other entities.
For example, in a university, students are related to classes by being
enrolled in those classes, and faculty members are related to classes by
teaching them. The conceptual model will represent these relationships by
connecting the entity sets in some manner. The concepts of entity,
attribute, and relationship will be discussed in more detail in Chapter 3.
The conceptual model is often represented by a diagram such as an ER or
UML diagram. The model should be designed to be a useful picture of the
organization and its operations for the miniworld of interest.

The structure of the database, called the logical model of the database, is
the third level of discussion. The logical model is also called the intension
of the database, and it is relatively permanent. The database schema is a
written description of the logical model. The schema may change occa-
sionally if new data needs arise, a process called schema evolution. On
this level, we talk about metadata, or data about data. For each entity set in
the conceptual model, we have a record type (or equivalent representation,
such as a class) in the logical model of the database. For example, for the
Student entity set in the university, we would have a Student record type.
A record type contains several data item types, each of which represents an
attribute of an entity. For the Student record type, the data item types
could be stuIld, stuName, address, phone, major, credits, gpa, and
adviser. A data item is the smallest named unit of stored data. Other
words sometimes used for data item are data element, field, or attribute.
Data items are sometimes grouped together to form data aggregates,
which are named groups of data items within a record. Data aggregates
allow us to refer to the group of data items as a whole or to the individual
items in the group. A record is a named collection of related data items

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.



2.2 Characteristics of Data

and/or data aggregates. Relationships must also be represented in the logi-
cal model.

Information about the logical structure of the database is stored in a
DBMS data dictionary, also called a data directory or system catalog.
This repository of information contains descriptions of the record types,
data item types, and data aggregates in the database, as well as other infor-
mation. The data dictionary is actually a database about the database.
However, a DBMS system catalog usually does much more than simply
store the description of the database structure. For some systems, the sys-
tem catalog is actively involved in all database accesses.

The fourth level of discussion concerns actual data in the database itself. It
consists of data instances or occurrences. For each entity occurrence in
the miniworld, there will be an occurrence of a corresponding record in
the database. For each student in the university, there is a student record
occurrence. So, while there is only one Student record type, which is
described in the data dictionary and corresponds to the Student entity set,
there may be thousands of Student record occurrences, corresponding to
individual student entities, in the database itself. Similarly, there will be
many instances of each of the data item types that correspond to attrib-
utes. A file (sometimes called a data set) is a named collection of record
occurrences. For example, the Student file may contain 5000 Student
records. Finally, the database may be thought of as a named collection of
related files. The data stored in the database at a given moment is called an
extension of the database, or a database instance or database state. The
extension changes whenever records are added, deleted, or updated. The
extension should always be a valid state, which means it should satisfy all
the constraints specified in the schema. The intension of the database is
actually a complex abstract data structure that formally defines all possible
extensions. Figure 2.1 summarizes the four levels of discussion of data.

2.2.3 Data Sublanguages

The language that is used to describe a database to a DBMS is part of a data
sublanguage. A data sublanguage consists of two parts: a data definition
language (DDL) and a data manipulation language (DML). The DDL is
used to describe the database, while the DML is used to process the data-
base. These languages are called sublanguages because they have limited
functionality, lacking many features of general purpose programming

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.




- 30

CHAPTER 2 Database Planning and Database Architecture

Realm Objects Examples
Real World Enterprise Corporation, university, bank
(ontaining
Miniworld Some aspects Human resources
of the enterprise Student enrollment
Customers and accounts
Conceptual Model Entity astudent, a class
Attribute name, schedule
Entity set all students, all classes
Relationship Student entity relates to Class
entity by being enrolled in it
Logical Model Record type Student record type,
Metadata: (lass record type
data definitions,
stored in Data item type stuld, classNumber
Data Dictionary
Data aggregate address, consisting of
street, city, state, ZIP
Data Student record Record of student Tom Smith
Ocurrences occurrence
stored in the
database Data item ‘51001, 'Smith; Tom;History,90
occurrence
File Student file with 5000
Student records
Database University database
containing Student file,
(lass file, Faculty file, . . .
FIGURE 2.1

Four Levels of Discussing Data

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.




2.3 Stages in Database Design

languages. The data sublanguage commands can be embedded within a
host program, a general purpose language program in, for example, C,
C++, C#, Java, COBOL, Fortran, or Ada. There are standards for most of
the widely used general purpose languages as host languages for standard
data sublanguages. In addition, most data sublanguages allow non-embed-
ded or interactive commands for access from workstations.

2.3  Stages in Database Design

The process of analyzing the organization and its environment, develop-
ing a database model, and implementing that model requires an appro-
priate methodology. Traditional systems analysis provides a possible
approach, but a staged database design approach offers a better solution.
The database should be designed in such a way that it can evolve, chang-
ing to meet the future information needs of the organization. This evolu-
tion is possible when the designer develops a true conceptual model of
the organization with the following characteristics:

» The model faithfully mirrors the operations of the organization.

= It is flexible enough to allow changes as new information needs arise.
= It supports many different user views.

= Jtis independent of physical implementation.

» It does not depend on the data model used by a particular data-
base management system.

A well-designed conceptual database model protects the data resource by
allowing it to evolve so that it serves both today’s and tomorrow’s infor-
mation needs. Even if the database management system chosen for imple-
mentation is replaced, the logical model may change, but the conceptual
model of the enterprise can survive. The staged database design approach
is a top-down method that begins with general statements of needs, and
progresses to more and more detailed consideration of problems. Differ-
ent problems are considered at different phases of the project. Each stage

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.




I 32 CHAPTER 2 Database Planning and Database Architecture

FIGURE 2.2 Analyze User <
Steps in Staged Database Environment
Design

Y

Develop
Conceptual Model

Y
Choose DBMS

TA

Y

Develop Logical
Model

ol

Y

Develop Physical
Model —

Y

Evaluate Physical
Model

Y
Tune System

Y
Implement System

uses design tools that are appropriate to the problem at that level. Figure
2.2 shows the major design stages. They are

1. Analyze the user environment.
The first step in designing a database is to determine the current
user environment. The designer studies all current applications,

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.



2.3 Stages in Database Design

determines their input and output, examines all reports gener-
ated by the present system, and interviews users to determine
how they use the system. After the present system is thoroughly
understood, the designer works closely with present users and
potential users of the new system to identify their needs using
these same methods. The designer considers not only present
needs but possible new applications or future uses of the data-
base. The result of this analysis is a model of the user environ-
ment and requirements.

Develop a conceptual data model.

Using the model of the user environment, the designer develops a
detailed conceptual model of the database—identifying the enti-
ties, attributes, and relationships that will be represented. In addi-
tion to the conceptual model, the designer has to consider how
the database is to be used. The types of applications and transac-
tions, the kinds of access, the volume of transactions, the volume
of data, the frequency of access, and other quantitative data must
be specified. Other constraints such as budgetary restrictions and
performance requirements must also be identified. The result of
this phase is a set of database specifications.

Choose a DBMS.

The designer uses the specifications and knowledge of available
hardware and software resources to evaluate alternative database
management systems and chooses the system that best satisfies the
specifications.

Develop the logical model.
The designer maps the conceptual model to the data model used
by the chosen DBMS, creating the logical model.

Develop the physical model.

The designer plans the layout of data considering the structures
supported by the chosen DBMS, and hardware and software
resources available.

Evaluate the physical model.

The designer estimates the performance of all applications and
transactions, considering the quantitative data previously identi-
fied, information about the performance characteristics of hard-
ware and software to be used, and priorities given to applications

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.




I

CHAPTER 2 Database Planning and Database Architecture

and transactions. It can be helpful to develop a prototype, imple-
menting a selected portion of the database so that user views can
be validated and performance measured more accurately.

7. Perform tuning if indicated by the evaluation.
Adjustments such as modifying physical structures or optimizing
software can be done to improve performance.

8. Implement the physical model.
If the evaluation is positive, the designer then implements the
physical design and the database becomes operational.

The loops in Figure 2.2 provide opportunities for feedback and changes at
various stages in the design process. For example, after developing the
conceptual model, the designer communicates with user groups to make
sure their data requirements are represented properly. If not, the concep-
tual model must be adjusted. If the conceptual model does not map well
to a particular data model, another should be considered. For a particular
DBMS, there might be several possible logical mappings that can be evalu-
ated. If the physical model is not acceptable, a different mapping or a dif-
ferent DBMS can be considered. If the results of the performance
evaluation are not satisfactory, additional tuning and evaluation may be
performed. The physical model can be changed if tuning does not produce
the required performance. If repeated tuning and optimization are not
sufficient, it might be necessary to change the way the logical model is
mapped to the DBMS or to consider a different database management sys-
tem. Even after the system is implemented, changes might be needed to
respond to changing user needs or a changing environment.

2.4 Design Tools

Many methodologies exist that can make the database design process
easier for both designers and users. They vary from general techniques
described in the software engineering literature to commercial products
to automate the design process. For example, CASE (Computer-Aided
Software Engineering) packages include various tools for system analy-
sis, project management, and design that can be very useful in the data-
base design process. They are helpful for collecting and analyzing data,
designing the data model, designing applications, and implementing

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.



2.4 Design Tools

the database, including prototyping, data conversion, generating appli-
cation code, generating reports, and testing. Project management soft-
ware is another type of tool that can be applied effectively to database
development.

2.4.1 Data Dictionary

A DBMS data dictionary, as discussed in Section 2.2.2, is a repository of
information that describes the logical structure of the database. It contains
metadata, or data about the data in the database. It has entries for all the
types of objects that exist in the database. If the data dictionary is part of
the DBMS, it is referred to as an integrated data dictionary or system cat-
alog. A system catalog is always consistent with the actual database struc-
ture, because it is maintained automatically by the system. It can perform
many functions throughout the life of the database. If the data dictionary
is available without a particular DBMS, we refer to it as a freestanding
data dictionary. A freestanding data dictionary can be a commercial prod-
uct or a simple file developed and maintained by the designer. For exam-
ple, CASE packages often include a data dictionary tool, and freestanding
data dictionaries are available even for non-database environments. Both
integrated and freestanding data dictionaries have advantages and disad-
vantages, but a freestanding dictionary is helpful in the initial design
stages, before the designer has chosen a particular DBMS. It allows the
designer to enjoy the advantages of having this tool without committing
to a particular implementation. A major disadvantage is that once the
database is created, adjustments to its structure may not be entered into
the freestanding data dictionary and, over time, the dictionary will not be
an accurate reflection of the database structure.

A freestanding data dictionary is useful in the early design stages for col-
lecting and organizing information about data. Each data item, its
source(s), its name(s), its uses, its meaning, its relationship to other items,
its format, and the identity of the person or group responsible for entering
it, updating it, and maintaining its correctness must be determined. The
data dictionary provides an effective tool for accomplishing these tasks.
The database administrator (DBA) can begin development of the data dic-
tionary by identifying data items, securing agreement from users on a defi-
nition of each item, and entering the item in the dictionary. Since users

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.




6

CHAPTER 2 Database Planning and Database Architecture

should not be aware of other users’ data, the DBA should control access to
the dictionary.

A freestanding data dictionary is useful for the following:

Collecting and storing information about data in a central location.
This helps management to gain control over data as a resource.

Securing agreement from users and designers about the meanings
of data items. An exact, agreed-upon definition of each item
should be developed for storage in the data dictionary.

Communicating with users. The data dictionary greatly facilitates
communication, since exact meanings are stored. The dictionary
also identifies the persons, departments, or groups having access
to or interest in each item.

Identifying redundancy and inconsistency in data item names. In
the process of identifying and defining data items, the DBA may
discover synonyms, which are different names for the same item.
The database can accept synonyms, but the system must be aware
of them. The DBA might also discover homonyms, which are
identical names for different data items. These are never permit-
ted in a database.

Keeping track of changes to the database structure. Changes
such as creation of new data items and record types or alter-
ations to data item descriptions should be recorded in the data
dictionary.

Determining the impact of changes to the database structure.
Since the data dictionary records each item, all its relation-
ships, and all its users, the DBA can see what effects a change
would have.

Identifying the sources of and responsibility for the correctness of
each item. A general rule for data entry is that data should be cap-
tured as near to its source as possible. The persons or departments
that generate or capture values for each data item and those
responsible for updating each item should be listed in the data
dictionary.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.



2.5 Database Administration

= Recording the external, logical, and internal schemas and the map-
pings between them. This aspect will be discussed in Section 2.6.

» Recording access control information. A data dictionary can
record the identities of all those who are permitted to access each
item, along with the type of access-retrieval, insertion, update, or
deletion.

= A DBMS system catalog can also perform all these functions, but
it is also useful for providing audit information. The system cata-
log can be used to record each access, allowing usage statistics to
be collected for auditing the system and spotting attempted secu-
rity violations.

Note that not all data dictionaries provide support for all of these func-
tions, and some provide additional functions. Some just store the schema,
some control documentation, while some system catalogs are “meta-
systems” that control access to the database, generate system code, and
keep statistics on database usage as well.

2.4.2 Project Management Software

This type of software provides a set of tools that can be used to plan
and manage a project, especially when there are many people working
on it. There are usually several types of graphs and charts available,
such as Gantt charts and PERT charts, which are similar. The user
specifies the objectives and scope of the project, identifies the major
tasks and phases, indicates dependencies among the tasks, identifies the
resources available, and sets a timeline for completion of the tasks and
phases of the project. The software can be used to generate calendars,
to produce graphs with many different views of the progress of the
project, and to provide a means of communication among the project
staff, using either intranet or Internet access. An example is Microsoft
Project.

2.5 Database Administration

The database administrator is responsible for the design, operation, and
management of the database. In many cases, the conceptual design is done
by a database designer, and the DBA implements the design, develops the

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.




- ¢

CHAPTER 2 Database Planning and Database Architecture

system, and manages it. The DBA must be technically competent, a good
manager, a skilled communicator, and must have excellent interpersonal
and communication skills. The DBA has many functions that vary accord-
ing to the stage of the database project. Major functions include planning,
designing, developing, and managing the database.

2.5.1

Planning and Design

Preliminary Database Planning. If the DBA or database
designer is chosen early enough in the project, he or she should
participate in the preliminary investigation and feasibility
study.

Identifying User Requirements. The DBA or designer examines
all transactions and all reports generated by the present system
and consults with users to determine whether they satisfy their
information needs. He or she works with present and potential
users to design new reports and new transactions. The frequency
of reports and transactions and the timeframe within which they
must be produced are also recorded. The DBA uses his or her
knowledge of the long-term and short-term objectives of the
organization to prioritize user requirements.

Developing and Maintaining the Data Dictionary. As he or she
determines data needs of users, the DBA or designer stores data item
names, sources, meanings, usage, and synonyms in the data dictio-
nary. The DBA revises the data dictionary as the project progresses.

Designing the Conceptual Model. The DBA or designer identifies
all entities, attributes, and relationships that are to be represented
in the database, and develops a conceptual model that is an accu-
rate reflection of the miniworld.

Choosing a DBMS. The DBA considers the conceptual model and
other database specifications and the hardware and software avail-
able, and chooses the DBMS that best fits the environment and
meets the specifications.

Developing the Logical Model. There may be several ways the
conceptual model could be mapped to the data model used by
the DBMS. The DBA chooses the one that appears to be most
appropriate.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.



2.5.2

2.5 Database Administration

Developing the Physical Model. There may be several ways the
logical model could be mapped to the data structures provided by
the DBMS and to physical devices. The DBA evaluates each map-
ping by estimating performance of applications and transactions.
The best mapping becomes the physical model.

Developing the Database

Creating and Loading the Database. Once the physical model is
developed, the DBA creates the structure of the database using the
data definition language for the chosen DBMS. He or she estab-
lishes physical data sets, creates libraries, and loads the data into
the database.

Developing User Views. The DBA attempts to satisfy the data
needs of all users. A user’s view may be identical to the one
requested in the initial design stages. Often, however, users’
requests change as they begin to understand the system better. If
the view does not coincide with the user’s request, the DBA
should present cogent reasons why the request has not been met
and secure agreement on the actual view.

Writing and Maintaining Documentation. When the database is
created, the DBA makes sure all documentation accurately reflects
the structure of the database. Some database documentation is writ-
ten automatically by the system catalog as the database is created.

Developing and Enforcing Data Standards. Since the database is
shared by many users, it is important that standards be defined
and enforced for the benefit of all. Users who are responsible for
inserting and updating data must follow a standard format for
entering data. The user interface should be designed to make it
easy for users to follow the standards by displaying default values,
showing acceptable ranges for items, and so on. Typical data stan-
dards include specifications for null values, abbreviations, codes,
punctuation, and capitalization. The system can automatically
check for errors and range restrictions, uniqueness of key values,
and relationships between data values in a single record, between
records in the same file, and between records in different files.

Developing and Enforcing Application Program Standards. The
DBA must develop security and privacy standards for applications

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.




I <0

CHAPTER 2 Database Planning and Database Architecture

25.3

and make sure they are subject to the audit mechanism, make
proper use of the high-level data manipulation language, and fit
the application development facilities provided by the DBMS.
These standards apply both to old applications that are converted
for use with the database and to new applications.

Developing Operating Procedures. The DBA is responsible for
establishing procedures for daily startup of the DBMS (if necessary),
smooth running of database operations, logging of transactions,
periodic backups, security and authorization procedures, recording
hardware and software failures, taking performance measurements,
shutting down the database in an orderly fashion in case of failure,
restarting and recovering after failure, and shutting down at the end
of each day (if necessary). Since these procedures are performed by
operators, the DBA must consult with the operations manager to
ensure that operators are trained in all aspects of database operations.

Doing User Training. End users, application programmers, and
systems programmers who access the database should participate in
training programs so that they can learn to use it most effectively.
Sessions may be conducted by the DBA, the vendor of the DBMS,
or other technical trainers, either onsite or in a training center.

Database Management

Monitoring Performance. The DBA is responsible for collecting
and analyzing statistics on database performance and responding
to user complaints and suggestions regarding performance. The
running time for applications and the response time for interac-
tive queries should be measured, so that the DBA can spot prob-
lems in database use. Usually, the DBMS provides facilities for
recording this information. The DBA continually compares per-
formance to requirements and makes adjustments when necessary.

Tuning and Reorganizing. If performance begins to degrade as
changes are made to the stored data, the DBA can respond by
adding or changing indexes, reorganizing files, using faster stor-
age devices, or optimizing software. For serious performance
problems, he or she may have to reorganize the entire database.

Keeping Current on Database Improvements. The DBA should be
aware of new features and new versions of the DBMS that become

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.



2.6 The Three-Level Database Architecture

available. He or she should evaluate these new products and other
hardware and software developments to determine whether they
would provide substantial benefits to the organization.

2.6  The Three-Level Database Architecture

In Section 2.3, we presented a staged database design process that began
with the development of a conceptual model and ended with a physical
model. Now we are ready to examine these and related concepts more
closely. When we discuss a database, we need some means of describing dif-
ferent aspects of its structure. An early proposal for a standardized vocabu-
lary and architecture for database systems was developed and published in
1971 by the Database Task Group appointed by the Conference on Data
Systems and Languages, or CODASYL DBTG. As a result of this and later
reports, databases can be viewed at three levels of abstraction. The levels
form a layered three-level architecture and are described by three schemas,
which are written descriptions of their structures. The purpose of the three-
level architecture is to separate the user’s model from the physical structure
of the database. There are several reasons why this separation is desirable:

= Different users need different views of the same data.
» The way a particular user needs to see the data may change over time.

» Users should not have to deal with the complexities of the data-
base storage structures.

» The DBA should be able to make changes to the conceptual model
of the database without affecting all users.

» The DBA should be able to change the logical model, including
data structures and file structures, without affecting the concep-
tual model or users’ views.

= Database structure should be unaffected by changes to the physi-
cal aspects of storage, such as changes to storage devices.

Figure 2.3 shows a simplified version of the three-level architecture of data-
base systems. The way users think about data is called the external level. The
internal level is the way the data is actually stored using standard data struc-
tures and file organizations. However, there are many different users’ views
and many physical structures, so there must be some method of mapping
the external views to the physical structures. A direct mapping is undesirable,
since changes made to physical structures or storage devices would require a

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.




I 4

FIGURE 2.3

Simplified Three-Level
Architecture for Database
Systems

CHAPTER 2 Database Planning and Database Architecture

External
Level

A

Y

Logical
Level

A

Y

Internal
Level

corresponding change in the external to physical mapping. Therefore there is
a middle level that provides both the mapping and the desired independence
between the external and physical levels. This is the logical level.

2.6.1 External Views

The external level consists of many different external views or external
models of the database. Each user has a model of the real world repre-
sented in a form that is suitable for that user. Figure 2.4 presents a more
detailed picture of the three-level database architecture. The top level of
Figure 2.4 shows several external views. A particular user interacts with
only certain aspects of the miniworld, and is interested in only some enti-
ties, and only some of their attributes and relationships. Therefore, that
user’s view will contain only information about those aspects. Other enti-
ties or other attributes or relationships may actually be represented in the
database, but the user will be unaware of them. Besides including different
entities, attributes, and relationships, different views may have different
representations of the same data. For example, one user may believe dates
are stored in the form month, day, year, while another may believe they are
represented as year, month, day. Some views might include virtual or cal-
culated data, data not actually stored as such, but created when needed.
For example, age may not be actually stored, but dateOfBirth may be, and
age may be calculated by the system when the user refers to it. Views may
even include data combined or calculated from several records. An exter-
nal record is a record as seen by a particular user, a part of his or her
external view. An external view is actually a collection of external records.
The external views are described in external schemas (also called sub-
schemas) that are written in the data definition language (DDL). Each

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.



2.6 The Three-Level Database Architecture

A \ 4 Y Y
External External External External View D
View A View B View C Interactive DML External
C++ Java COBOL Schemas
+ DML + DML + DML 7y

 Ox pISTRENTIGY o,

External/Logical

Stored Record Interface

Physical
Level

hy5|cal Record Interface

Mapping
Y
Logical - 7 Logical
Model - Schema
A
Logical/Internal
Mapping
Logical Record Interface
\ v
Internal P Internal
Model ~ Schema

FIGURE 2.4

Three-Level Database Architecture

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.



—

CHAPTER 2 Database Planning and Database Architecture

user’s schema gives a complete description of each type of external record
that appears in that user’s view. The schemas are stored for use by the sys-
tem data catalog in retrieving records. They should also be kept in source
form as documentation. The DBMS uses the external schema to create a
user interface, which is both a facility and a barrier. An individual user
sees the database through this interface. It defines and creates the working
environment for that user, accepting and displaying information in the
format the user expects. It also acts as a boundary below which the user is
not permitted to see. It hides the logical, internal, and physical details
from the user.

2.6.2 Logical and Conceptual Models

The middle level in the three-level architecture is the logical level, as
shown in Figure 2.4. This model includes the entire information structure
of the database, as seen by the DBA. It is the “community view” of data,
and includes a description of all of the data that is available to be shared.
It is a comprehensive model or view of the workings of the organization
in the miniworld. All the entities, with their attributes and relationships,
are represented in the logical model using the data model that the DBMS
supports. The model includes any constraints on the data and semantic
information about the data meanings. The logical model supports the
external views, in that any data available to any user must be present in or
derivable from the logical model. The logical model is relatively constant.
When the DBA originally designs it, he or she tries to determine present
and future information needs and attempts to develop a lasting model of
the organization. Therefore, as new data needs arise, the logical model
might already contain the objects required. If that is not the case, the DBA
expands the logical model to include the new objects. A good logical
model will be able to accommodate this change and still support the old
external views. Only users who need access to the new data should be
affected by the change. The logical schema is a complete description of
the information content of the database. It is written in DDL, compiled
by the DBMS, and stored in the system catalog and in source form as doc-
umentation. The DBMS uses the logical schema to create the logical
record interface, which is a boundary below which everything is invisible
to the logical level and which defines and creates the working environ-
ment for the logical level. No internal or physical details such as how

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.



2.6 The Three-Level Database Architecture

records are stored or sequenced cross this boundary. The logical model is
actually a collection of logical records.

The logical data model is the heart of the database. It supports all the
external views and is, in turn, supported by the internal model. However,
the internal model is merely the physical implementation of the logical
model. The logical model is itself derived from the conceptual model.
Developing the conceptual model is the most challenging, interesting, and
rewarding part of database design. The database designer must be able to
identify, classify, and structure elements in the design. The process of
abstraction, which means identifying common properties of a set of
objects rather than focusing on details, is used to categorize data. In com-
puter science, abstraction is used to simplify concepts and hide complex-
ity. For example, abstract data types are considered apart from their
implementation; the behavior of queues and stacks can be described with-
out considering how they are represented. The designer can look at differ-
ent levels of abstraction, so that an abstract object on one level becomes a
component of a higher level abstraction. During the conceptual design
process, there might be many errors and several false starts. Like many
other problem-solving processes, conceptual database design is an art,
guided by knowledge. There may be many possible solutions, but some are
better than others. The process itself is a learning situation. The designer
gradually comes to understand the workings of the organization and the
meanings of its data, and expresses that understanding in the chosen model.
If the designer produces a good conceptual model, it is a relatively easy task
to convert it to a logical model and complete the internal and physical
design. If the conceptual model is a good one, the external views are easy to
define as well. If any data that a user might be interested in is included in the
conceptual model, it is an easy task to put it into the user’s external view. On
the other hand, a poor conceptual model can be hard to implement, partic-
ularly if data and relationships are not well defined. It will also be inade-
quate to provide all the needed external models. It will continue to cause
problems during the lifetime of the database, because it will have to be
“patched up” whenever different information needs arise. The ability to
adjust to change is one of the hallmarks of good conceptual design. There-
fore, it is worthwhile to spend all the time and energy necessary to produce
the best possible conceptual design. The payoft will be felt not only at the
logical and internal design stages but in the future.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.




I <6

CHAPTER 2 Database Planning and Database Architecture

2.6.3 Internal Model

The internal level covers the physical implementation of the database. It
includes the data structures and file organizations used to store data on
physical storage devices. The DBMS chosen determines, to a large extent,
what structures are available. It works with the operating system access
methods to lay out the data on the storage devices, build the indexes,
and/or set the pointers that will be used for data retrieval. Therefore, there
is actually a physical level below the one the DBMS is responsible for—
one that is managed by the operating system under the direction of the
DBMS. The line between the DBMS responsibilities and the operating sys-
tem responsibilities is not clear cut and can vary from system to system.
Some DBMSs take advantage of many of the operating system access
method facilities, while others ignore all but the most basic I/O managers
and create their own alternative file organizations. The DBA must be
aware of the possibilities for mapping the logical model to the internal
model, and choose a mapping that supports the logical view and provides
suitable performance. The internal schema, written in DDL, is a complete
description of the internal model. It includes such items as how data is
represented, how records are sequenced, what indexes exist, what pointers
exist, and what hashing scheme, if any, is used. An internal record is a sin-
gle stored record. It is the unit that is passed up to the internal level. The
stored record interface is the boundary between the physical level, for
which the operating system may be responsible, and the internal level, for
which the DBMS is responsible. This interface is provided to the DBMS by
the operating system. In some cases where the DBMS performs some
operating system functions, the DBMS itself may create this interface. The
physical level below this interface consists of items only the operating sys-
tem knows, such as exactly how the sequencing is implemented and
whether the fields of internal records are actually stored as contiguous
bytes on the disk. The operating system creates the physical record inter-
face, which is a lower boundary where storage details, such as exactly what
portion of what track contains what data, are hidden.

The data dictionary/directory not only stores the complete external, logi-
cal, and internal schemas, but it also stores the mappings between them.
The external/logical mapping tells the DBMS which objects on the logical
level correspond to which objects in a particular user’s external view. There

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.



2.6 The Three-Level Database Architecture

may be differences in record names, data item names, data item order, data
types, and so forth. If changes are made to either an external view or the
logical model, the mappings must be changed. Similarly, the logical/inter-
nal mapping gives the correspondence between logical objects and inter-
nal ones, in that it tells how the logical objects are physically represented. If
the stored structure is changed, the mapping must be changed accordingly.

To understand the distinctions among the three levels, we will examine
what each level receives and passes on when we request the record of a par-
ticular employee. Refer to Figure 2.5 along with Figure 2.6. When User A
requests a record such as the (external) record of Employee 101, the DBMS
intercepts the request. Once the DBMS receives the request, it checks the
user’s external view and the external/logical mapping. Both the views and
the mapping are stored in object form in the system catalog, so the check-
ing can be accomplished easily. The DBMS also checks the user’s authoriza-
tion to access the items and to perform the operations requested. If there is
no such authorization, the request is denied. If the user is authorized, the
DBMS notes what logical level objects are needed, and the request is passed
down to the logical level. Next, the logical/internal mapping is checked to
see what internal structures correspond to the logical items. Once again,
the system catalog has stored both of the models and the mapping. The
DBMS identifies the internal objects that are required, and it passes the
request to the operating system.

On the physical level, an employee record is contained in a physical record,
a page or block that can hold several employee records. This is the unit that
is brought to the buffer from the disk. The operating system is responsible
for performing the basic job of locating the correct block for the requested
record and managing its retrieval. When the retrieval is complete, the
proper block is in the buffer, and the operating system passes to the DBMS
the exact location within the buffer at which the stored record appears. The
DBMS reads only the requested employee record, not all the records in the
block. However, it sees the complete stored record, exactly as it is coded or
encrypted, together with any embedded blanks and pointers that may
appear in it, but without its header. This is a description of an internal
record, which is the unit that passes up through the stored record interface.
The DBMS uses the logical/internal mapping to decide what items to pass
up through the logical record interface to the logical level.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.




I <3

FIGURE 2.5

Retrieving Record of E101
for UserA

CHAPTER 2 Database Planning and Database Architecture

User A requests record of employee
E101 through User Interface

v

DBMS receives request

v

DBMS checks user A’s external
schema, external/logical mapping,
logical schema in DD

v

DBMS checks to see if user A is
authorized. If not, rejects request

v

DBMS checks logical/internal
mapping, determines corresponding
internal structures

v

DBMS uses stored record interface to
request stored record from OS

v

OS identifies desired physical record
and asks access method to retrieve it

v

Access method retrieves block of
records to buffer, passes address of
stored record to DBMS

v

DBMS checks logical/internal
mapping, edits stored record, passes
logical record to logical level

v

DBMS checks external/logical
mapping, edits logical record, passes
external record to User A

At the logical level, the record appears as a logical record, with encryption
and special coding removed. Pointers that are used for establishing rela-
tionships do not appear on the logical level, since that level is only con-
cerned with the existence of relationships, not how they are implemented.
Similarly, pointers used for sequencing are not of interest on the logical
level, nor are indexes. The logical level record therefore contains only the

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.



2.6 The Three-Level Database Architecture

External Employee Record:

employeeName empNumber dept

JACK JONES E101 Marketing

empld lastName firstName dept salary
E101 Jones Jack 12 55000

Stored Employee Record:

forward backward
empld lastName  firstName  dept salary pointer pointer

E101bbbbbbJonesbhbbbbJackbbbbbbhbb12bbbbbbbbh550006bbb10101bbbbbh10001

Physical Record:

Block header rec of E90 rec of E95 recof E101  recof E125

information for that particular employee, but it contains all the fields
stored for the employee, in the order in which they are stored. The DBMS
checks the external/logical mapping to decide what the user’s external
record should look like.

When the record is passed up through the user interface to the external
level, certain fields can be hidden, some can have their names changed,
some can be rearranged, some can appear in a form different from their
stored form, and some can be virtual, created from the stored record.
Some external records might be combinations of stored records, or the
result of operations such as calculations on stored records. The user then
performs operations on the external record. That is, he or she can
manipulate only those items that appear in the external record. These
changes, if legal, are eventually made to the stored record. Figure 2.5
summarizes the steps in this process, and Figure 2.6 illustrates the differ-
ences in the appearance of the employee record as it is passed up to the
external level.

2.6.4 Datalndependence

A major reason for the three-level architecture is to provide data indepen-
dence, which means that upper levels are unaffected by changes to lower

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

4 I

FIGURE 2.6

Differences in External,
Logical, Stored, and Phys-
ical Record



50

FIGURE 2.7

Logical and Physical Data
Independence

CHAPTER 2 Database Planning and Database Architecture

| External Views |

...................... User Interface - eeemeennnenns Logical Data Independence
| Logical Model |
----------- Logical Record Interface - Physical Data Independence

l

| Internal Model |

levels. There are two kinds of data independence: logical and physical.
Logical data independence refers to the immunity of external models to
changes in the logical model. Logical model changes such as addition of
new record types, new data items, and new relationships should be possi-
ble without affecting existing external views. Of course, the users for
whom the changes are made need to be aware of them, but other users
should not be. In particular, existing application programs should not
have to be rewritten when logical level changes are made.

Physical data independence refers to the immunity of the logical
model to changes in the internal model. Internal or physical changes
such as a different physical sequencing of records, switching from one
access method to another, changing the hashing algorithm, using dif-
ferent data structures, and using new storage devices should have no
effect on the logical model. On the external level, the only effect that
may be felt is a change in performance. In fact, deterioration in perfor-
mance is the most common reason for internal model changes. Figure
2.7 shows where each type of data independence occurs.

2.7 Overview of Data Models

A data model is a collection of tools often including a type of diagram
and specialized vocabulary for describing the structure of the database.
There is much disagreement over what constitutes a data model, and that is
reflected in the dozens of proposed models and methodologies found in the
literature. A data model provides a description of the database structure

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.



2.7 Overview of Data Models

including the data, the relationships, constraints, and sometimes data
semantics or meanings.

2.7.1 The Entity-Relationship Model

The Entity-Relationship model is an example of a semantic model. Seman-
tic models are used to describe the conceptual and external levels of data,
and are independent of the internal and physical aspects. In addition to
specifying what is to be represented in the database, they attempt to incor-
porate some meanings or semantic aspects of data such as explicit represen-
tation of objects, attributes, and relationships, categorization of objects,
abstractions, and explicit data constraints. Some of the concepts of the E-R
model were introduced in Section 2.2.2, when we described the four levels
of abstraction in the discussion of data. The model was introduced by Chen
in the mid 1970s and is widely used for conceptual design. It is based on
identifying entities that are representations of real objects in the miniworld.
Entities are described by their attributes and are connected by relationships.
We described entities as persons, places, events, objects, or concepts about
which we collect data. A more abstract description is that an entity is any
object that exists and is distinguishable from other objects. The attributes
are qualities or characteristics that describe the entities and distinguish them
from one another. We defined an entity set as a collection of entities of the
same type. Now we also define a relationship set as a set of relationships of
the same type, and we add the fact that relationships themselves might have
descriptive attributes. The E-R model also allows us to express constraints,
or restrictions, on the entities or relationships. Chapter 3 contains a more
complete description of the E-R model, including details about constraints.

One of the most useful and attractive features of the E-R model is that it
provides a graphical method for depicting the conceptual structure of the
database. E-R diagrams contain symbols for entities, attributes, and rela-
tionships. Figure 2.8 shows some of the symbols, along with their names,
meanings, and usages. Figure 2.9 illustrates a simple E-R diagram for a stu-
dents and classes database similar to the one we discussed in Section 1.2. It
shows an entity set called Student, with the attributes stuld (the primary
key, which is a unique identifier for each student entity instance), last-
Name, firstName, major, and credits. Class information, to be kept for
each class offered during the current term, includes the classNumber (pri-
mary key), the schedule, and the room. The Student and Class entity sets
are connected by a relationship set, Enroll, which tells us which students

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.




I 52 CHAPTER 2 Database Planning and Database Architecture

SYMBOL

D

FIGURE 2.8
Basic Symbols for E-R Diagrams

NAME MEANING
Rectangle Entity Set
Oval Attribute
Diamond Relationship
Line Links:

Attribute to Entity

Entity Set to
Relationship

Attribute to
Relationship

are enrolled in which classes. It has its own descriptive attribute, grade.
Note that grade is not an attribute of Student, since knowing the grade for
a student is meaningless unless we know the course as well. Similarly,
grade is not an attribute of Class, since knowing that a particular grade
was given for a class is meaningless unless we know to which student the
grade was given. Therefore, since grade has meaning only for a particular
combination of student and class, it belongs to the relationship set. Since

EXAMPLE

Student

O ©

Student

Student

oy

¢

grade

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.



2.7 Overview of Data Models

Class
Number

Student Enroll Class
‘@

FIGURE 2.9
Simplified E-R Diagram

the E-R model describes only a conceptual structure for the database, we
do not attempt to describe how the model could or should be represented
internally. Therefore, the material in Section 2.2.2 in which we described
data items, records, and files is not part of the E-R model itself.

2.7.2 Relational Model

The relational model is an example of a record-based model, one that
essentially pictures what the logical records will look like. Record-based
models are used to describe the external, logical, and to some extent the
internal levels of the database. They allow the designer to develop and
specify the logical structure and provide some options for implementation
of the design. However, they do not provide much semantic information
such as categorization of objects, relationships, abstraction, or data con-
straints. The relational model was proposed by Codd in 1970 and is widely
used, because of its simplicity and its power. The relational model began
by using the theory of relations in mathematics and adapting it for use in
database theory. The same type of theoretical development of the subject,
complete with formal notation, definitions, theorems, and proofs that we
usually find in mathematics can be applied to databases using this model.
The results of this theoretical development are then applied to practical
considerations of implementation. In the relational model, entities are
represented as relations, which are physically represented as tables, and
attributes as columns of those tables. Some relationships may also be rep-
resented as relations or tables. Figure 1.1 (a)—(d) showed a sample relational

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.



I 5

CHAPTER 2 Database Planning and Database Architecture

database for data about students, faculty, and their classes. We will study the
relational model, including SQL, the standard language for the model, in later
chapters. Two older record-based models are the network and the hierarchi-
cal models mentioned in Section 1.6. They are primarily of historic interest,
since they are no longer widely used for developing new databases. However,
many legacy databases based on these models still exist, with code that is still
being used and that must be maintained.

2.7.3  Object-Oriented Model

The object-oriented model is a semantic model. It is based on the notion of
an object, which, like an entity, is a representation of some person, place,
event, or concept in the real world that we wish to represent in the database.
While entities have only attributes, objects have both a state and a behavior.
The state of an object is determined by the values of its attributes (instance
variables). The behavior is the set of functions (methods) defined for the
object. A class is similar to an entity set and consists of the set of objects
having the same structure and behavior. The object-oriented model uses
encapsulation, incorporating both data and functions in a unit where they
are protected from modification from outside. Classes can be grouped into
hierarchies, For example, we could define a Person class with attributes such
as FirstName, LastName, and ID and methods such as ChangeName. We
could then create a Student class and a Faculty class as subclasses of Person.
The subclasses inherit the attributes and methods of the parent, so in this
example, every Student object and every Faculty object has the attributes
and methods of Person. They can also have their own attributes and meth-
ods. For example, the Student class can have its own additional attribute,
Major, and a method changeMajor. Classes can also participate in relation-
ships of various types. For example, the Student class can be related to the
Course class. Unified Modeling Language (UML) class diagrams are usually
used for representing object-oriented data models. Figure 2.10 shows an
example of a simple OO data model. Every object in a database must have a
unique object identifier that functions as a permanent primary key, but that
does not take its value from any of the object’s attributes. An important dif-
ference between program objects and database objects is persistence. Unlike
a program object that exists only while the program is executing, a database
object remains in existence after execution of an application program com-
pletes.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.



2.7 Overview of Data Models

Person

—id : string
—lastName : string
—firstName : string

+changeName()

T

Faculty Student
—rank : string —major : string
+changeRank() —cjgits : int
+changeMajor()
+addCredits()
1 —taughtBy
0.* —takenBy 0.* —takes
Course
—classNumber : string
—schedule : string
—room : string
—teaches 0..*
Figure 2.10
A Class Diagram

2.7.4 Object-Relational Model

The object-relational model extends the relational model by adding com-
plex data types and methods as well as other advanced features. Instead of
atomic, single-valued attributes as required in the relational model, this
model allows attributes to be structured and have sets or arrays of values.
It also permits methods and type inheritance. The SQL language was
extended to create and manipulate the more complex data types and facil-
ities that this model supports. Therefore the language used to manage an
object-relational database is closer to the type of language used for rela-
tional databases than that used for strictly object-oriented databases.

2.7.5 Semistructured Data Model

Most data models require that entity sets (or classes or records, depending
on the model) have the same structure. The structure is defined in the

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.




56

bl

CHAPTER 2 Database Planning and Database Architecture

schema, and remains unchanged unless the DBA changes the schema. By
contrast, the semi-structured model allows a collection of nodes, each con-
taining data, possibly with different schemas. The node itself contains infor-
mation about the structure of its contents. Semi-structured databases are
especially useful when existing databases having different schemas must be
integrated. The individual databases can be viewed as documents, and XML
(Extensible Markup Language) tags can be attached to each document to
describe its contents. XML is a language similar to HTML (Hypertext
Markup Language), but is used as a standard for data exchange rather than
data presentation. XML tags are used to identify elements, sub-elements, and
attributes that store data. The schema can be specified using a Document
Type Definition (DTD) or by an XML schema that identifies the elements,
their attributes, and their relationships to one another.

2.8  Chapter Summary

A corporation’s operational data is a corporate resource, an asset that is
of value to the organization and incurs cost. A database, which is shared
by many users, protects operational data by providing data security,
integrity constraints, reliability controls, and professional management
by a DBA.

Data means facts, while information is processed data. There are four lev-
els of discussion about data: reality (the real world) containing the mini-
world (Universe of Discourse) that we are modeling, the abstract
conceptual model of the miniworld, the logical model or intention of the
database with its metadata (data about data), and the database extension,
with data instances.

A staged approach to database design is a top-down approach that allows
the designer to develop a conceptual model that mirrors the operations of
the organization, allows changes, supports many user views, is indepen-
dent of physical implementation, and does not depend on the model of a
particular DBMS. This approach allows the database to evolve as needs
change. In staged database design the designer must analyze the user envi-
ronment, develop a conceptual data model, choose the DBMS, create the
logical model by mapping the conceptual model to the data model of the
DBMS, develop the internal and physical models, evaluate the physical

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.



2.8 Chapter Summary

model, perform tuning if needed, and implement the physical model.
Steps may be repeated until the design is satisfactory.

Design methodologies can be general techniques or commercial products
such as CASE packages. A data dictionary can be integrated (the DBMS
system catalog) or freestanding (independent of a DBMS). A data dictio-
nary is a valuable tool for collecting and organizing information about data.

The DBA must be technically competent, a good manager, and have excel-
lent interpersonal and communication skills. He or she has primary
responsibility for planning, designing, developing, and managing the
operating database.

Standard database architecture uses three levels of abstraction: external, logi-
cal, and internal. An external view is the model seen by a particular user. An
external schema is an external model description written in the data defini-
tion language, which is part of the data sublanguage for the DBMS being
used. The user interface creates the user’s working environment and hides
lower levels from the user. The logical schema is a complete DDL description
of the logical model. It specifies the information content of the database,
including all record types and fields. It is derived from the conceptual model.
A good conceptual model results in a logical model that is easy to implement
and supports the desired external views. The logical record interface is a
boundary below which the logical level cannot see. The internal schema is a
DDL description of the internal model. It specifies how data is represented,
how records are sequenced, what indexes and pointers exist, and what hashing
scheme is used. The stored record interface is the boundary below which the
DBMS does not see. The operating system should be responsible for all physi-
cal details below this interface, including creating a physical record interface
for itself to handle low-level physical details such as track placement. The
external/logical mapping tells how the external views correspond to the logi-
cal items. The logical/internal mapping tells how logical items correspond to
internal ones. Data independence makes each level immune to changes on
lower levels. Logical data independence means that the logical level can be
changed without changing external views. Physical data independence
means internal and physical changes will not affect the logical model.

Some data models are the entity-relationship, object-oriented, object-
relational, and semistructured models. There are also record-based

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.




¢

hew.

CHAPTER 2 Database Planning and Database Architecture

models, including the relational as well as the older network and hierar-
chical models. The entity-relationship model uses E-R diagrams to show
entity sets, attributes of entities, relationship sets, and descriptive attrib-
utes of relationships. The relational model uses tables to represent data
and relationships. The object-oriented model uses the concept of a class,
having attributes and methods. An object is created as an instance of a
class. Object-oriented databases contain persistent objects. Object-
relational databases are extensions of relational model databases to allow
complex objects and methods. Semistructured databases consist of nodes
that are self-describing using XML.

Exercises

2.1 Name four resources of a typical business organization.

2.2 Distinguish between data and information.

2.3 Identify the four levels of abstraction in discussing data. For each,

give an example of an item that appears on that level.

24 Distinguish between an entity set and an entity instance.
2.5 Distinguish between a record type and a record occurrence.
2.6 What level of data abstraction is represented in the data dictionary?

Give examples of the types of entries that would be stored there.

2.7 Explain why a staged design approach is appropriate for database
design.

2.8 Name five desirable characteristics of a conceptual model of an
enterprise.

2.9 Name the eight major design stages in staged database design,
along with the activities and possible outcomes of each.

2.10  Explain what is meant by saying staged database design is a “top-
down” method.

2.11  Explain how a CASE package can be used in database design.
2.12  Name two advantages and two disadvantages of the following:
a. integrated data dictionaries

b. freestanding data dictionaries

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.



2.13
2.14

2.15

2.16
2.17

2.18
2.19
2.20

Exercises

Explain why users should not have access to the data dictionary.
Name eight uses for a data dictionary.

What types of skills must a database administrator possess? For
what tasks are they needed?

List the major functions of the DBA.
Define each of the following terms:

a. operational data
b. corporate resource
c. metadata

d. entity

e. attribute

f. data item

g. data aggregate

h. data record

i. data file

j. data sublanguage
k. prototype

1. system tuning

m. CASE

n. integrated data dictionary
o. data dictionary synonym
p. data dictionary homonym
g. data standards

r. DBA

Describe the three-level architecture for databases.
Describe the two parts of data sublanguages.

Give five reasons why it is desirable to separate the physical repre-
sentation from the external structure of a database.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.




T

CHAPTER 2 Database Planning and Database Architecture

2.21

2.22

2.23

2.24

2.25
2.26

2.27
2.28

Distinguish between the following: user interface, logical record
interface, stored record interface, physical record interface.

Describe each of the following: external schema, logical schema,
internal schema.

Explain the purpose of the external/logical mapping and of the
logical/internal mapping.

Distinguish between logical and physical data independence, and
give examples of possible changes they allow.

Explain why the logical model is called the heart of the database.

Describe abstraction and explain how it is used in database
design.

Distinguish between the intension and extension of a database.

Explain how record-based data models differ from semantic models.

On the Companion Website:

Lab Exercises
Sample Project

Student Projects

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.





