
Introduction
An important feature of any application program is its ability to make decisions. For
example, programmers expect their users to make mistakes. The reality is that to err
is human nature, so software must be designed to recover from mistakes. Software,
in general, is full of choices for users and is typically designed to allow a user to
navigate a path based on these choices. For example, when computing wages for
an employee, a decision needs to be made as to whether some of the hours worked
will be eligible for an overtime rate. Decision making is a regular characteristic of
software applications.

Selective control is a process in which some condition is checked and a deci-
sion is made about whether a certain segment of the program code will execute. For
example, if an employee works overtime, the calculation to compute his pay may
be different than if the same person was a salaried employee. Statements that permit
a program to make decisions are called selective control structures. They provide
much of the power and simplicity of a programming language and allow us to write
meaningful programs. When combined with assignment statements, these selective
control structures offer a potent assortment of programming constructions. This
chapter looks at the two AS3 selective control structures: if statements and switch
statements.

The foundation of selective control is the subject called Boolean logic. The name
“Boolean” is bestowed in honor of the English mathematician George Boole, who
pioneered the mathematical theory that now bears his name. A variable of the data
type Bool can store a value of either true or false. In AS3, as with most programming
languages, true and false are reserved keywords. In this chapter, we will examine
relational operators and learn how to form Boolean expressions, also called Boolean
test conditions, by using logical operators.

Boolean logic is important to selective control structures because test conditions
are defined using Boolean expressions.

 227

Selective Control and
Advanced Animations5

00082_CH05_Cornez.indd 227 7/19/11 10:35:41 AM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

228 Chapter 5 Selective Control and Advanced Animations

 5.1 Boolean Logic

Simply speaking, Boolean logic is used to represent expressions that have two possi-
ble values: true or false. These expressions are often constructed with, but not limited
to, relational operators, arithmetic operators, and logical operators.

5.1.1 Relational Operators

In arithmetic, number values can be compared using equalities (==) and inequalities
(<, >, <=, >=, and so on). All programming languages provide for the comparison of
number values. The operators used for comparison are called relational operators.
Table 5-1 lists the six relational operators used by AS3.

TaBLe 5-1 AS3 Relational Operators

Relational Operator Meaning
== Is equivalent to
< Is less than
> Is greater than
<= Is less than or equal to
>= Is greater than or equal to
!= Is not equivalent to

When two numbers or variable values are compared using a single relational
operator, the expression is referred to as a simple Boolean expression. Each simple
Boolean expression has the Boolean value of true or false according to the validity
of the expression. Data of the same general type can be compared; thus numbers can
be compared with each other, and strings can be compared with strings. Strings and
numbers, however, cannot be compared.

Here are two examples of simple Boolean expressions.

Example 1

Evaluate the value of a simple Boolean expression.

17 != 5

evaluation

This Boolean statement expresses that the number 17 is not equivalent to the
number 5. This is clearly true.

The value returned by this expression is true.

00082_CH05_Cornez.indd 228 7/19/11 10:35:41 AM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

 5.1 Boolean Logic 229

Example 2

4 < (3 + 2)

evaluation

Arithmetic operators, such as +, -, and *, can also be used in simple Boolean
expressions. The value returned by this example is true.

5.1.2 Priority Levels of Relational Operators and arithmetic Operators

The evaluation of an expression that uses both arithmetic operators and relational
operators necessitates recognition of priority level. Among arithmetic and relational
operators, there are three levels of priority. The relational operators have the lowest
priority and are always evaluated last.

Table 5-2 summarizes the priority of these operations. Among arithmetic and
relational operators, the relational operators are always evaluated last. Operators of
the same priority level are evaluated in order from left to right.

TaBLe 5-2 Priority Levels of Relational Operators
Compared with Arithmetic Operators

Priority Operator

Highest Priority Level 1
*

/

%

Level 2
+

-

Lowest Priority Level 3

==

>

<

<=

>=

!=

Example 1

4 * 5 != 17 + 3

evaluation

In this example, the expressions on both sides of the relational operator are
evaluated first. Because both sides evaluate to 20, this statement evaluates to
false.

00082_CH05_Cornez.indd 229 7/19/11 10:35:41 AM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

230 Chapter 5 Selective Control and Advanced Animations

Example 2

14 + 3 * 5 <= 17 + 30 / 4 - 20

evaluation

This example shows an expression that is difficult to evaluate. Although paren-
theses are not required, sometimes it is a good idea to use them to increase the
readability of an expression. Parentheses may also help you avoid using an
incorrect expression.

Using precedence priorities, the left side evaluates to 29, while the right
side evaluates to 4. Thus this Boolean expression evaluates to false.

5.1.3 Logical Operators

Simple Boolean expressions, such as the ones shown in the previous examples, can
be combined to form compound Boolean expressions. This is done by using logical
connectives and negation. The logical connectives used by AS3 are && (for AND) and
|| (for OR). Negation is represented by the symbol ! (for NOT). These three reserved
symbols (&&, ||, and !) are called logical operators.

The && Operator (AND) To understand the && operator, we first define two simple
Boolean expressions P and Q. As shown here, && is used to express the conjunction of
P and Q. P && Q is true only when P is true and Q is true.

P Q P && Q

true true true

true false false

false true false

false false false

The || Operator (OR) The logical operator || is used to express the disjunction
of two simple Boolean expressions in which the resulting compound expressions are
true if either or both of the expressions are true. As shown here, P || Q is true when P
is true, Q is true, or both P and Q are true.

P Q P || Q

true true true

true false true

false true true

false false false

00082_CH05_Cornez.indd 230 7/19/11 10:35:41 AM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

 5.1 Boolean Logic 231

The ! Operator (NOT) The NOT operator ! produces the logical negation of an
expression; thus not true is false and not false is true. As shown here, this operator is
a unary operator and is not used to join simple Boolean expressions.

P !P

true false

false true

5.1.4 Priority Levels for all Operators

The priority levels of all operators are listed in Table 5-3. Note that the logical opera-
tors do not share the same level of priority. As a unary operator, ! has the highest pos-
sible priority among all operators, including the arithmetic and relational operators. It
is also important to note that && has a higher priority than ||. As with arithmetic and
relational operators, && operators are evaluated from left to right, as are || operators.

TaBLe 5-3 Priority Levels of All Operators

Priority Operator

Highest Priority Level 1 !

Level 2 *, /, %

Level 3 +, -

Level 4 ==

>, <

<=, >=
!=

Level 5 &&

Level 6 ||

Lowest Priority Level 7 =

+=, -=

/=, *=, %=

Priority levels are illustrated in the following six examples. For the first four
examples, assume that P, Q, and R are Boolean expressions with the values true, true,
and false, respectively.

Example 1

P && !Q

00082_CH05_Cornez.indd 231 7/19/11 10:35:42 AM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

232 Chapter 5 Selective Control and Advanced Animations

evaluation

In this example, the logical negation of Q is performed first because ! has the
highest priority. The successive steps are shown here.

P && !Q

Step 1 T && !T

Step 2 T && F

Final value false

P and Q are simple expressions. The complete expression P && !Q is referred to as a com-
pound Boolean expression.

Note

Example 2

P && Q || !R

evaluation

In this expression, the logical negation of R is performed first. Next, the logical
AND is performed linking P and Q. Finally, the results of these two operations
are linked together with logical OR. The successive steps in the evaluation of
the Boolean expression are shown here.

P && Q || !R

Step 1 T && T || !F

Step 2 T && T || T

Step 2 T || T

Final value true

Example 3

P && ! (Q || R)

evaluation

In this example, a set of parentheses is used to alter the order of priority. The
logical operation || is first used to link Q and R. This result is negated to produce

00082_CH05_Cornez.indd 232 7/19/11 10:35:42 AM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

 5.1 Boolean Logic 233

a value of false and then linked with P using the logical operation &&. The suc-
cessive steps are as follows.

P && !(Q || R)

Step 1 T && !(T || F)

Step 2 T && !T

Step 2 T && F

Final value false

Example 4

P || Q && R

evaluation

Because the && operator has a higher priority than ||, Q && R is evaluated first,
followed by the || logical operation. The successive steps in the evaluation of
the Boolean expression are as follows.

P || Q && R

Step 1 T || T && F

Step 2 T || F

Final value false

When logical operators are used with relational expressions, parentheses are
not required but are often helpful. When complex compound expressions are being
evaluated, the logical operators, arithmetic expressions, and relational operators are
evaluated during successive passes through the expression. The next set of examples
illustrates the evaluation, construction, and common errors found in compound
Boolean expressions.

Example 5

Task

Write a Boolean statement expressing that the values stored in the Number vari-
ables named n1 and n2 are either both positive or both negative.

Solution

n1 > 0 && n2 > 0 || n1 < 0 && n2 < 0

00082_CH05_Cornez.indd 233 7/19/11 10:35:42 AM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

234 Chapter 5 Selective Control and Advanced Animations

evaluation

The solution requires a compound Boolean statement. The first component
expresses that n1 and n2 are both positive. The second component expresses
that n1 and n2 are both negative. If the first or second component of the expres-
sion is true, then the entire Boolean expression is true. Due to the fact that && is
evaluated first, no parentheses are required.

Only if the first component of this statement is false will the second component be tested.

Note

Example 6

Task

Write a Boolean statement expressing that values stored in n1 and n2 are not
both zero.

Solutions

a. n1!= 0 && n2!= 0

b. n1 && n2

evaluation

There are actually more than two solutions to express this condition. The two
shown here are the most clear-cut.

a. This Boolean statement uses !=, the “is not equivalent” operator, to express
the condition that both n1 and n2 are not zero.

b. Of the two solutions, this one is the least complicated. It plainly exploits
the condition that any number other than zero is considered to be true.

 5.2 Introduction to if Statements

Boolean expressions are used to identify whether a condition is true. An if statement
provides the mechanism for controlling the execution of program statements based on
this condition. This control structure gives AS3 the capacity to make a decision. In
other words, programmers can use if statements to examine the existence of a con-
dition and then select the appropriate course of action best suited to that condition.
Because it is used in this way, an if statement is referred to as a selection control
mechanism.

00082_CH05_Cornez.indd 234 7/19/11 10:35:42 AM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

 5.2 Introduction to if Statements 235

We begin with the general form of the if statement.

if (Boolean expression) {

 statement 1;

 statement 2;

 .

 .

 .

 statement n;

}

An if statement begins with the keyword if, written in lowercase, followed by a
Boolean expression, which must be enclosed in parentheses. The list of statements to
be executed, contained within the {}, is referred to as the set of actions. AS3 requires
the set of actions be enclosed in {}. To ensure better readability, the set of action
statements should be indented. In the decision structure’s simplest form, a specific
action, or set of actions, is taken only when a specific condition exists. As shown in
Figure 5-1, when the condition is found to be false, the set of actions statements is not
performed, but instead is completely bypassed.

FIguRe 5-1 Flowchart visually depicting how the if statement works.

false

true

statement 1;
statement 2:
.
.
.
statement n;

if (Boolean test expression)
?

The following examples illustrate how the if statement works.

Example 1

1 if (day == WEEKEND){
2 trace (“Wear comfortable jeans.”);
3 trace (“Put on sandals”);
4 }

00082_CH05_Cornez.indd 235 7/19/11 10:35:42 AM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

236 Chapter 5 Selective Control and Advanced Animations

evaluation

The Boolean expression on line 1 tests whether it is a weekend day. If this con-
dition is true, then the set of actions consisting of “Wear comfortable jeans.”
and “Put on sandals.” is executed. As shown in Figure 5-2, if it is not a weekend
day, then the condition is false and the program flow follows another path and
skips the set of actions.

FIguRe 5-2 Diagram of the if statement flow of control.

false

true

Wear comfortable jeans.

Put on sandals.

if (day == WEEKEND)
?

Example 2

1 var age:int;
2 if (age < 35) {
3 trace (“You are not old enough to be a U.S. president.”);
4 }
5 trace (“The youngest U.S. president was Kennedy at 42 years old.”);

evaluations for Different Values of age

a. age = 25

 In this scenario, the conditional expression on line 2 (age < 35) is true and,
therefore, the action statement on line 3 is executed. The statement on line
5 is not located inside the {} and, therefore, is an unconditional statement.
Unconditional statements do not depend on a Boolean expression being
true or false and will automatically be executed.

 The output produced by this segment of code is

You are not old enough to be a U.S. president.
The youngest U.S. president was Kennedy at 42 years old.

b. age = 36

00082_CH05_Cornez.indd 236 7/19/11 10:35:42 AM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

 5.2 Introduction to if Statements 237

 The condition expression for this given age is false. The action statement is
not executed. The unconditional statement will still execute, however.

 The output produced by this segment of code is

The youngest U.S. president was Kennedy at 42 years old.

Example 3

What is the problem in the following segment of code?

1 var n1:int = 3;
2 var n2:int = 7;
3 if (n1 = n2) {
4 trace(“The value in n1 is “, n1);
5 }

evaluation

This example illustrates a common error when writing Boolean expressions:
The operator used to express equality is incorrect. The relational operator is
== and the assignment operator is =. As with most logic errors, this kind of
typographical error can be difficult to identify because it does not hinder the
application’s ability to run. This error can be detected only during runtime test-
ing of the application.

In this specific example, the Boolean expression on line 3 is an assignment
statement. Recall that the number 7 is considered to be a true value because
only zero is false. Because true is being assigned to n1, the result is a true
expression.

The output produced by this segment of code is

The value in n1 is 7

Example 4

What is the problem in the following segment of code?

1 var n1:int = -5;
2 if (3 < n1 < 10) {
3 trace(“Blue”);
4 }

evaluation

At first glance, the Boolean expression on line 2 appears to be written correct-
ly—but a deceptive logical error is actually present. The goal is to express that
the value in n1 is within the range of 3 to 10. The problem is that this math-
ematical relationship cannot be represented in a programming language without
using a logical operator. More to the point, this statement will always be true,
no matter what value is stored in n1.

00082_CH05_Cornez.indd 237 7/19/11 10:35:42 AM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

238 Chapter 5 Selective Control and Advanced Animations

The first operation examines whether 3 is less than n1, which produces a
value of false. Because false is represented by a zero, the value zero is used
as the operand for the next operation. To show the illogical outcome of this
expression, it is necessary to examine the sequence of steps.

3 < n1 < 10

 false

 0 < 10

 true

The output produced by this segment of code is

Blue

The correct way to write this condition follows in Example 5.

Example 5

1 var n1:int = -5;
2 if (3 < n1 && n1 < 10){
3 trace(“Blue”);
4 }

evaluation

Unlike the expression in Example 4, the Boolean expression on line 2 is writ-
ten correctly. This mathematical relationship begins with an expression of what
the lower bound of n1 is. The logical operator && is then used to link the lower
bound logical definition with the upper bound definition.

Here is the sequence of steps.

3 < n1 && n1 < 10

Step 1

 false && n1 < 10

Step 2
 false && true

Step 3

 false

00082_CH05_Cornez.indd 238 7/19/11 10:35:42 AM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

 5.3 The if–else Statement 239

No output is produced by this segment of code.

 5.3 The if–else Statement

The if statements considered thus far involve selecting a single alternative. Another
form of the if statement is one that contains an else clause and, therefore, offers the
possibility of selecting one of two alternatives. The correct form and syntax for an
if-else statement is

if (Boolean expression) {

 set of action statements 1;

}

else {

 set of action statements 2;

}

The flow of control when using an if-else statement is as follows:

 1. The Boolean expression is evaluated.

 2. If the Boolean expression is true, the first set of action statements following the
expression is executed and control then exits the entire if-else statement struc-
ture.

 3. If the Boolean expression is false, the set of action statements belonging to the
else clause is executed and control then exits the if-else statement.

The next two examples illustrate how the if-else statement works.

Example 1

1 var rain:Boolean = false;
2 if (rain == true){
3 trace (“Get an umbrella.”);
4 trace (“Wear boots.”);
5 } else {
6 trace (“Store the umbrella.”);
7 trace (“Wear sandals.”);
8 }

evaluation

As shown in Figure 5-3, the Boolean expression on line 2 tests whether it is
raining. If this condition is true, the block of statements on lines 3 and 4 is exe-
cuted. If the condition is false, the else clause on lines 6 and 7 will be executed
and “Store the umbrella.” and “Wear shoes” are output.

00082_CH05_Cornez.indd 239 7/19/11 10:35:42 AM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

240 Chapter 5 Selective Control and Advanced Animations

The Boolean expression is false. Thus the output produced by this segment
of code is

Store the umbrella.
Wear sandals.

false

true

Get an umbrella.

Wear boots.

if (it is raining)
?

Store the umbrella.

Wear sandals.

else

FIguRe 5-3 if-else statement flow of control.

Example 2

1 var Num1: Number = 2.2;
2 var Num2: Number = 0;
3 var value:Number;
4
5 if (Num2== 0){
6 trace (“Error. Division by Zero “);
7 } else {
8 value = Num1 / Num2;
9 trace (value);
10 }
11 trace(“exit”);

00082_CH05_Cornez.indd 240 7/19/11 10:35:43 AM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

 5.4 The if–else if–else Statement 241

evaluation

This segment of code employs the if-else statement to guard against division
by zero. The Boolean expression on line 5 is true; thus the output produced
by this segment of code is that shown below. The final statement on line 11 is
not dependent on the Boolean expression. Because it is unconditional, it will
always execute.

Error. Division by Zero
exit

 5.4 The if–else if–else Statement

Oftentimes, decisions need to be made that involve more than two alternatives. It is
possible to use the if–else structure to formulate a selective statement exactly for this
purpose. This type of selective statement will take the form if–else if–else if–else,
with each clause selecting its own appropriate course of action. This is not a new kind
of if statement, but rather a collection of if-else statements.

Here is a generic version of the if statement that contains five alternatives. In this
format, statement 1 will execute only if Boolean expression 1 is found to be true, and
statement 2 will execute only if Boolean expression 2 is true, and so on. Each if in
an else if clause is actually a new if statement and, therefore, is executed only if the
conditions defined in all the preceding Boolean expressions are false. Similarly, each
else in an else if clause is actually associated with the if of the preceding else if
clause (or the first if).

if (Boolean expression1) {

 statement 1;

}else if (Boolean expression2) {

 statement 2;

}else if (Boolean expression3) {

 statement 3;

}else if (Boolean expression4) {

 statement 4;

}else {

 statement 5;

}

The next three examples examine these kinds of selective statements.

00082_CH05_Cornez.indd 241 7/19/11 10:35:43 AM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

242 Chapter 5 Selective Control and Advanced Animations

Example 1

1 var n1: Number ;
2 if (n1 == 0){
3 trace (“Zero”);
4 } else if (n1 % 2 == 1){
5 trace (“Odd “);
6 } else {
7 trace (“Even”);
8 }
9 trace (“Number”);

evaluations for Different Values of n1

In this example, the value stored in n1 can either be zero, an odd number, or
an even number. The if statement uses an if–else if–else format to test each
possibility. Each Boolean expression will be tested in sequential order. Once it
reaches a condition that is true, it executes the action statement associated with
that condition and then exits the structure. The statement trace (“Number”); on
line 9 is unconditional and not dependent on any if statement. It will always
execute.

a. n1 = 0

 The output produced by this segment of code is

Zero
Number

b. n1 = 44

 The output produced by this segment of code is

Even
Number

c. n1 = 57

 The output produced by this segment of code is

Odd
Number

Example 2

Task

Given the following grading scale, write a segment of code to display the cor-
rect grade for an exam score. Assume the value stored in the variable holding
the exam score is valid.

00082_CH05_Cornez.indd 242 7/19/11 10:35:43 AM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

 5.4 The if–else if–else Statement 243

grade exam Score

A Greater than or equal to 90

B 80–89

C 70–79

D 60–69

F Less than 60

Solution

By using an if–else if–else if–else structure, this task can be greatly simpli-
fied. A well-designed selective structure should avoid unnecessary test condi-
tions. For example, the letter grade A is displayed when (score >= 90) is true,
as shown in line 2. If this condition is false, it is unnecessary to test for the
second part of (score >= 80 && score < 90), because score < 90 is automatically
implied. A well designed if–else if–else if–else is written as follows:

1 var score: Number ;
2 if (score>= 90){
3 trace (“Grade: A “);
4 } else if (score>= 80){
5 trace (“Grade: B “);
6 } else if (score>= 70){
7 trace (“Grade: C”);
8 } else if (score>= 60){
9 trace (“Grade: D”);
10 } else {
11 trace (“Grade: F “);
12 }

evaluations for Different Values of score

a. score = 55

 The only Boolean condition that is true for this scenario is the default test,
the else clause. All of the previous Boolean expressions are false.

 The output produced by this segment of code is

Grade: F

b. score = 75

 The program will examine each of the Boolean conditions in sequential or-
der. Once it reaches a Boolean condition that is true, it executes the action
statement associated with that condition and then exits the structure.

00082_CH05_Cornez.indd 243 7/19/11 10:35:43 AM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

244 Chapter 5 Selective Control and Advanced Animations

 The sequential conditions are evaluated as follows:

Test 1 if (score >=90) false

Test 2 if (score >=80) false

Test 3 if (score >=70) true trace (“Grade: C”);

 The output produced by this segment of code is

Grade: C

Example 3

1 var score: Number ;
2 if (score>= 70){
3 trace (“Grade: C “);
4 } else if (score>= 80){
5 trace (“Grade: B “);
6 } else if (score>= 90){
7 trace (“Grade: A”);
8 }

evaluation

The objective of this segment of code is similar to that of Example 2, which is
to display the letter grade that corresponds with the numeric score. However,
the order of these conditions creates a logic error such that all scores of 70
or higher are given a grade of ‘C’ and any score less than 70 will not receive
a grade. Upon close examination, you will see that the condition on line 4 is
evaluated only if score is less than 70.

There are several ways to solve this problem, two of which are identified
here. The first option is of poor quality, however.

Option 1 utilizes independent if statements, even though the Boolean
conditions are unmistakably related to each other. This option is inefficient
because all test conditions will be evaluated regardless of whether a preceding
condition is found to be true. This option should not be considered because of
its poor quality.

Option 2 is not only correct, but also of good quality; it is concise and
clear. The code and order of the conditions have been refined by eliminating
all unnecessary Boolean expressions.

00082_CH05_Cornez.indd 244 7/19/11 10:35:43 AM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

 5.5 Case Study 1: The Game of Pong and Collision Detection 245

 Option 1: Poor Quality Option 2: excellent Quality
1 if (score>= 70 && score < 80){
2 trace (“Grade: C “);
3 }
4 if (score>= 80 && score < 90){
5 trace (“Grade: B “);
6 }
7 if (score>= 90){
8 trace (“Grade: A”);
9 }

1 if (score <= 90){
2 trace (“Grade: A “);
3 } else if (score<= 80){
4 trace (“Grade: B “);
5 } else if (score>= 70){
6 trace (“Grade: C”);
7 }

 5.5 Case Study 1: The game of Pong and Collision Detection

In 1972, Atari released a simple video game that featured two elemental objects: a
bouncing ball and a paddle to hit the ball with. This game was called Pong. Its enor-
mous popularity eventually led to the start of the video game industry. In this case
study we will create a similar game, as shown in Figure 5-4.

Objectives of this case study:

 1. Explore decision making.

 2. Work with concepts of animation.

 3. Program basic collision detection.

FIguRe 5-4 Pong application.

Ball

Paddle

00082_CH05_Cornez.indd 245 7/19/11 10:35:43 AM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

246 Chapter 5 Selective Control and Advanced Animations

game Plan

This game is a simple version of Pong. It is a single-player game that uses a single
paddle and ball. At most, two display objects can be in motion at any given time—the
ball and the paddle. The ball will move with a fixed velocity around the stage. When
the ball collides with the top, left, or right wall of the stage, it will reverse its direction.
The paddle will be controlled by the mouse and can move horizontally across the bot-
tom of the stage. The player must stop the ball from going off the bottom of the stage
by hitting it with the paddle.

Once the ball bounces below the bottom of the stage, the ball disappears and the
game is over.

Visual elements

At its most basic level, Pong is a highly instinctive game. This fact is significant for
the visual design phase because it indicates that game-play instructions or even elabo-
rate interface elements can be minimized or, as in this case study, skipped altogether.
Our game of Pong will rely solely on a single screen during the entire game.

The two display objects, Ball and Paddle (shown in Figure 5-4), are both MovieClip
instances. The main Timeline is organized using a single layer in a single frame. Both
display objects, Ball and Paddle, are placed on the same layer. The frame rate for this
animation is set to 30 frames per second, which is fast enough to produce smooth
movements.

The display objects, Ball and Paddle, will utilize inherited properties such as
height, width, x, and y. In addition, Ball will have two newly constructed properties,
xVelocity and yVelocity. Table 5-4 lists all of the properties.

TaBLe 5-4 Display Objects and Properties Used in the Pong Game

Display Object Name Property
Ball height: Height of Ball.

width: Width of Ball.

x: x-axis position on the Stage.

y: y-axis position on the Stage.

xVelocity: A newly constructed property governing the x-axis
velocity.

yVelocity: A newly constructed property governing the y-axis
velocity.

Paddle x: The Paddle MovieClip moves along the x-axis. Only the x-axis
position on the Stage will be required.

00082_CH05_Cornez.indd 246 7/19/11 10:35:43 AM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

 5.5 Case Study 1: The Game of Pong and Collision Detection 247

Collision Detection

To design the algorithm, the details of the collisions need to be established. This game
will use three boundary limits of the viewable screen: TOP, LEFT, and RIGHT. TOP, LEFT,
and RIGHT represent the topmost, leftmost, and rightmost boundaries, espectively, of
where the ball can move in the game area. BOTTOM will not be used in this case study,
but will be explored further in an end-of-chapter problem.

To understand boundaries and collisions, we will assume the ball’s registration
point is located at its center. It is necessary to detect these collisions because the ball’s
velocity will be reversed once it collides with wall boundaries. As shown in Figure
5-5, the ball collides with TOP when its y position is less than or equal to zero (the
topmost edge of the Stage) plus the ball’s radius. In a similar fashion, the ball collides
with the RIGHT boundary when its x location is equal to or exceeds the width of the
Stage minus the ball’s radius. Finally, the ball collides with the LEFT boundary when
its x location is less than or equal to zero plus the ball’s radius.

FIguRe 5-5 The Ball boundaries used for collision detection in the game of Pong.

algorithm Design

The AS3 code for this application consists of the class constructor pongApp(), which
initializes the game, and moveBall() and movePaddle(), which control the animation
and drive the game. In addition, two auxiliary functions perform the tasks of detect-
ing collisions. Table 5-5 lists all five main functions, and Figure 5-6 illustrates their
relationship.

00082_CH05_Cornez.indd 247 7/19/11 10:35:44 AM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

248 Chapter 5 Selective Control and Advanced Animations

TaBLe 5-5 Pong Application Program Functions

Function Name Description
pongApp() The class constructor. After launching, it initializes the Ball and

Paddle properties and registers the events for interaction and anima-
tion.

moveBall() Performs the task of animating the ball. This event handler controls
the ball’s movements by responding to the event ENTER_FRAME loop-
ing mechanism. It also guides the collision detection tasks by calling
the appropriate functions.

movePaddle() Responds to the event MOUSE_MOVE. This event handler performs the
simple task of visually moving Paddle.

checkBalltoWall() Checks whether Ball has collided with one of the walls and responds
by reversing Ball’s velocity.

checkBalltoPaddle() Checks whether Ball has been struck by Paddle and responds appro-
priately.

FIguRe 5-6 Relationship of the functions used by the Pong game.

pongApp()

moveBall() movePaddle()

checkBalltoPaddle()checkBalltoWall()

The class package requires the display and events library classes. The last two
lines contain closing curly brackets to conclude the pongApp class and the package.

1 package {
2 import flash.display.*;
3 import flash.events.*;
4
5 public class pongApp extends MovieClip {

⋮

71 }
72 }

00082_CH05_Cornez.indd 248 7/19/11 10:35:44 AM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

 5.5 Case Study 1: The Game of Pong and Collision Detection 249

Constants

The game of Pong uses constant values when identifying collisions and reversing the
direction of the ball. These constants can be divided into three categories.

The first constant represents the radius of the ball, which is set to 16 pixels. This
constant will be used to calculate the boundaries of the area where the ball can freely
move.

The second category represents the concrete boundaries: TOP, BOTTOM, LEFT, and
RIGHT. As shown in Figure 5-5, the TOP boundary is not zero, but rather the point at
which the ball strikes the ceiling, which is the radius of the ball. Lines 9–12 provide
constant declarations for these boundaries.

The final constant is REVERSE, which is assigned a value of 21. When the ball’s
current velocity is multiplied by this constant, the velocity will be negated to reverse
the direction.

6
7 const BALL_RADIUS:int=16;
8
9 const TOP:Number=BALL_RADIUS;
10 const BOTTOM:Number=stage.stageHeight;
11 const LEFT:Number=BALL_RADIUS;
12 const RIGHT:Number=stage.stageWidth - BALL_RADIUS;
13
14 const REVERSE:int=-1;
15

These six functions for this game are designed as follows.

Function pongApp() Design

The function pongApp() is immediately executed upon launching the game. Its objec-
tive is to simply initialize the elements of the game, which are organized into two
tasks.

Task 1: This task performs the initialization of the two dynamic display objects,
Ball and Paddle. Both use several inherited properties that will be set to initial
values. In addition, Ball will have two newly constructed properties, xVelocity
and yVelocity. Table 5-4 lists all of the properties.

Task 2: The second task of this function is to register two listener events. The
first registered event listens for the simple movement of the mouse, which will
be used to move the paddle. The second registered event is a frame loop that
animates the ball by calling moveBall() at regular intervals.

00082_CH05_Cornez.indd 249 7/19/11 10:35:44 AM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

250 Chapter 5 Selective Control and Advanced Animations

16 function pongApp() {
17 //TASK 1: INITIALIZE BALL AND PADDLE
18 Ball.height=RADIUS * 2;
19 Ball.width=RADIUS * 2;
20 Ball.x=40;
21 Ball.y=40;
22 Ball.xVelocity=3;
23 Ball.yVelocity=3;
24 Paddle.x=500;
25 Paddle.y=500;
26
27 //TASK 2: REGISTER EVENT LISTENERS TO MOVE BALL AND PADDLE
28 addEventListener(Event.ENTER_FRAME, moveBall);
29 stage.addEventListener(MouseEvent.MOUSE_MOVE, movePaddle);
30 }
31

Function movePaddle() Design

The function movePaddle() has one very simple objective—to move the paddle in
a horizontal direction along the bottom of the Stage. The y position for Paddle has
already been initialized. The x position will be altered as the user moves the mouse.
Therefore, Paddle adheres to the position of the mouse along the x-axis.

32 function movePaddle(event:MouseEvent) {
33 //TASK : MOVE PADDLE ALONG WITH THE MOUSE ON THE X-AXIS
34 Paddle.x=stage.mouseX;
35 }
36

Function moveBall() Design

This function is the event handler for the ENTER_FRAME event registered by pongApp().
It is also the animation engine that takes the game from static mode to dynamic play
by directing the movement of the ball (Task 1) and calling the functions that detect
collisions at regular intervals.

In Task 1, Ball is incremented by its fixed velocity along the x- and y-axes. Thus,
when the xVelocity property is positive, Ball moves from left to right; otherwise, it
moves from right to left. When the yVelocity property is positive, the ball moves
toward the bottom of the Stage.

Task 2 examines two types of collisions. The first collision occurs when the ball
strikes a wall. The second collision takes place when the ball hits the paddle.

37 function moveBall(event:Event) {
38 //TASK 1: MOVE THE BALL ITS FIXED VELOCITY
39 Ball.x += Ball.xVelocity;

00082_CH05_Cornez.indd 250 7/19/11 10:35:44 AM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

 5.5 Case Study 1: The Game of Pong and Collision Detection 251

40 Ball.y += Ball.yVelocity;
41
42 //TASK 2: CHECK BALL COLLISIONS
43 checkBalltoWall();
44 checkBalltoPaddle();
45 }
46

Function checkBalltoWall() Design

This function checks for three possible boundary collisions. It is possible for a ball to
collide with the top wall and the left wall at the same time, such as when the ball has
struck the corner of the Stage. This rationale also applies to the top wall and the right
wall. It is not possible, however, for a ball to strike the left and right walls simultane-
ously. The tasks for this function are to test these specific conditions.

If a ball moves beyond TOP, LEFT, or RIGHT, the ball is positioned at the boundary
and the appropriate velocity is reversed. The tactic of positioning Ball at the boundary
accomplishes two things:

•	 It tricks the eye into seeing the ball hit the boundary.

•	 It forces the ball into the correct location. Because the ball is not allowed to move
beyond its boundary, its x and y coordinates are set to a corrected position.

Note that collision with the BOTTOM boundary is not being tested for. Once the ball
has moved beyond the BOTTOM boundary of the Stage, the game is over because the ball
is no longer available to hit. How would this be resolved? This issue is revisited in an
end-of-chapter programming problem.

47 function checkBalltoWall() {
48 //TASK 1: IF BALL HAS HIT TOP OF THE STAGE, REVERSE ITS DIRECTION
59 if (Ball.y<TOP) {
50 Ball.y=TOP;
51 Ball.yVelocity*=REVERSE;
52 }
53
54 //TASK 2: IF BALL HAS HIT A SIDE WALL, REVERSE ITS DIRECTION
55 if (Ball.x<LEFT) {
56 Ball.x=LEFT;
57 Ball.xVelocity*=REVERSE;
58 } else if (Ball.x > RIGHT) {
59 Ball.x=RIGHT;
60 Ball.xVelocity*=REVERSE;
61 }
62 }
63

00082_CH05_Cornez.indd 251 7/19/11 10:35:44 AM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

252 Chapter 5 Selective Control and Advanced Animations

Function checkBalltoPaddle() Design

This function uses the display object inherited method called hitTestObject(). This
method returns true if the referenced object collides with the argument object—in this
case, Paddle and Ball.

64 function checkBalltoPaddle() {
65 //TASK : USE hitTestObject
66 if (Paddle.hitTestObject(Ball)) {
67 Ball.yVelocity*=REVERSE;
68 }
69 }
70 }

 5.6 Case Study 2: Weight Loss Calculator with error Detection

Problem
One pound of body weight is equivalent to 3500 calories, regardless of the person’s
gender or age. Thus, to lose one pound of weight, a person must create a deficit of
3500 calories. This can be done by burning more calories, by reducing the calorie
intake, or by implementing a combination of both. The weight loss calculator created
in this case study computes the time it will take to drop a given number of pounds
using the method of reducing the daily calorie intake by a specific amount. An exam-
ple run of this application is shown in Figure 5-7.

FIguRe 5-7 Weight loss calculator application.

00082_CH05_Cornez.indd 252 7/19/11 10:35:44 AM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

 5.6 Case Study 2: Weight Loss Calculator with Error Detection 253

Problem analysis

This interactive application provides input text fields for users to supply their current
weight, the number of pounds they wish to drop, and the number of calories they will
eliminate daily. Once it is determined that the input is valid, the application computes
the amount of time it will take to lose the desired weight. This time will be displayed
in terms of years, weeks, and days, as opposed to simply days. Examine the following
two sentences. The first sentence is easier to assimilate.

Output Option 1: It will take 1 year, 49 weeks and 1 day to lose the weight.

Output Option 2: It will take 709 days to lose the weight.

This case study has two primary objectives:

 1. Explore error detection in the user’s input by using an if–else if–else state-
ment.

 2. Examine the use of the appendText method. Because the output for this application
requires years, weeks, and days to obtain readable results, we will use this method
to concatenate several text values.

Visual Design

The visual side of this application requires only one screen for the combined input of
weight loss information and the output of the computed results. This interface screen
uses a single frame in the Timeline.

In terms of design, it is important that the screen be readable, intuitive, visually
appealing, and efficient. The text for this application is the primary source of informa-
tion. To minimize the possibility of human error, the labels must be worded carefully
so that they are easy to understand. The screen is organized from left to right and from
top to bottom, and the input text fields are grouped together for effective and quick
navigation. Finally, the single interactive button on the screen is labeled and graphi-
cally designed so that the user can reasonably understand how to use it.

The visual objects for this application consist of three input text boxes, a single
dynamic text box for multipurpose output, and a button that initiates the process to
calculate how long it will take to drop the given weight. Figure 5-7 shows the visual
blueprint of the completed screen, along with the interactive objects. Table 5-6 lists
the objects and describes their specific use.

00082_CH05_Cornez.indd 253 7/19/11 10:35:44 AM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

254 Chapter 5 Selective Control and Advanced Animations

TaBLe 5-6 Visual Objects Used in the Input/Output Screen

Visual Object Name Type of Object Description of the Object
Input1 Input text box Used to input the user’s current weight.
Input2 Input text box Used to input the number of pounds the user

wishes to lose.
Input3 Input text box Used to input the reduction in daily calories.
Output1 Dynamic text box Used to display all errors that have been encoun-

tered during input and the amount of time it will
take to lose the weight.

ComputeBtn Button Used to start the computation process. This
interactive button is labeled “How long will it
take?”

Program Design

The AS3 code for this application consists of three algorithms, each represented by a
function. The class constructor is named caloriesApp(). The other two functions are
validateInput() and computeTime(). Table 5-7 lists the functions used in the applica-
tion and Figure 5-8 shows the relationship and flow between these functions.

TaBLe 5-7 Weight Loss Program Functions

Function Name Description
caloriesApp() Controls interactivity. This function is the main function as well as the class

constructor.
validateInput() Identifies input errors. This function reads the input values and tests for a

variety of errors.
computeTime() Computes the time required to lose the weight. The time is then formatted

and displayed on the screen.

FIguRe 5-8 Relationship of functions used by the weight loss application.

caloriesApp()

validateInput()

computeTime()

00082_CH05_Cornez.indd 254 7/19/11 10:35:45 AM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

 5.6 Case Study 2: Weight Loss Calculator with Error Detection 255

The package for this program contains flash.display.* and flash.events.*. The
application requires three constants for computing the amount of time for the weight
loss. These constants (lines 7–9) define the number of days in a year, the number of
days in a week, and the number of calories that constitute one pound.

1 package {
2 import flash.display.*;
3 import flash.events.*;
4
5 public class caloriesApp extends MovieClip {
6 //CONSTANTS USED FOR WEIGHT LOSS COMPUTATION
7 const DAYS_IN_YEAR:int=365;
8 const DAYS_IN_WEEK:int=7;
9 const CALORIES_PER_LB:int=3500;
10

⋮

60 }
61 }

The tasks of each function written for this application are outlined next.

Function caloriesApp() Design

The main algorithm, caloriesApp, is simply the class constructor function that will
load immediately once the application is launched. The objective of this function is to
construct a listener event that waits for the user to click ComputeBtn. Once this button is
clicked, the sub-algorithm validateInput() is called. Prior to clicking the ComputeBtn,
the user should have entered the current weight, the number of pounds the user wishes
to lose, and the intended reduction in calories.

11 function caloriesApp() {
12 //TASK: REGISTER A MOUSE CLICK EVENT TO VALIDATE INPUT AND COMPUTE
13 ComputeBtn.addEventListener(MouseEvent.CLICK, validateInput);
14 }
15

Function validateInput() Design

The main goal of the validateInput() function is to validate the user’s input. Once it
is determined that the input does not contain any errors, the function computeTime() is
called to process the weight loss information.

If an error is encountered in an input text box, an appropriate error message is dis-
played in the text field output1. When validating user input, the isNaN operator allows
the application to test whether a variable or expression is Not a Number. For example,
if the text box named input1, which gathers the user’s current weight, contains some-
thing other than a number, isNaN() returns true.

00082_CH05_Cornez.indd 255 7/19/11 10:35:45 AM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

256 Chapter 5 Selective Control and Advanced Animations

Six obvious validation conditions are examined by the code, each one defined as
a Boolean expression in an if statement:

Validation 1: The current weight must be a number.

Validation 2: The current weight must be greater than zero.

Validation 3: The number of pounds the user wishes to lose must be a number.

Validation 4: The number of pounds must be greater than zero and less than the
current weight.

Validation 5: The reduced calories must be a number.

Validation 6: The reduced calories must be greater than zero.

If no errors are found in the input, the else default clause calls the function
 computeTime() to compute the amount of time it will take to lose the desired weight.

16 function validateInput(event:MouseEvent) {
17 //TASK1: EXAMINE EVERY POSSIBLE INCORRECT INPUT FROM THE USER
18 if (isNaN(Number(input1.text))) {
19 output1.text=”Your current weight must be a number.\n”;
20 } else if (Number(input1.text) <= 0) {
21 output1.text=”Your current weight must be greater than zero.\n”;
22 } else if (isNaN(Number(input2.text))) {
23 output1.text=”The amount of weight you wish to lose must be a
number.\n”;
24 } else if (Number(input2.text) >= Number(input1.text) || Number(input2.
text) <= 0) {
25 output1.text=”The pounds to lose must be less than your weight.\n” +
26 ”and greater than zero.”;
27 } else if (isNaN(Number(input3.text))) {
28 output1.text=”The reduced calories must be a number.\n”;
29 } else if (Number(input3.text)<= 0) {
30 output1.text=”The reduced calories must be greater than zero.\n”;
31 } else {
32 //TASK: IF INPUT FROM THE USER IS CORRECT, COMPUTE THE TIME TO LOSE
WEIGHT
33 computeTime();
34 }
35 }
36

Function computeTime() Design

The computeTime() function is called by validateInput() only after it has been estab-
lished that the input is error free. This function, whose objective is to calculate the
time it will take the user to lose the specified weight and display it in a readable fash-
ion, performs four tasks:

00082_CH05_Cornez.indd 256 7/19/11 10:35:45 AM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

 5.7 The Nested if Statement 257

Task 1: Read the text from dynamic text boxes for Input1, Input2, and Input3 into
the data objects currentWeight, weightLoss, and reducedCals.

Task 2: Compute the time it takes to lose the weight. The time will be in days.

Task 3: For easy readability, convert the total number of days into years, weeks,
and days. The % operator is used in these computations.

Task 4: Construct the output display of the time it takes to lose the weight. The
output1 text box is used to display this output and a general message along with
the six values in the remaining dynamic text boxes.

37 function computeTime () {
38 //TASK 1: READ VALUES FROM INPUT TEXTFIELDS
39 var currentWeight:Number=Number(input1.text);
40 var weightLoss:Number=Number(input2.text);
41 var reducedCals:Number=Number(input3.text);
42
43 //TASK 2: COMPUTE THE DAYS REQUIRED TO LOSE THE WEIGHT
44 var days:int=int((weightLoss * CALORIES_PER_LB)/reducedCals);
45
46 //TASK 3: TRANSLATE DAYS INTO YEARS, WEEKS, AND DAYS
47 var years:int=days/DAYS_IN_YEAR;
48 var weeks:int=days%DAYS_IN_YEAR/DAYS_IN_WEEK;
49 days=days%DAYS_IN_YEAR%DAYS_IN_WEEK;
50
51 //TASK 4: DISPLAY YEARS, WEEKS, AND DAYS TO LOSE WEIGHT
52 output1.text=”The time it will take to drop this weight is:\n”;
53 if (years>0) {
54 output1.appendText(years + “ year(s)\n”);
55 }
56 if (weeks>0) {
57 output1.appendText(weeks + “ weeks(s)\n”);
58 }
59 if (days>0) {
60 output1.appendText(days + “ day(s)\n”);
61 }
62 }

 5.7 The Nested if Statement

The previous section explored if statements that may also contain if-else and else
clauses. These clauses provide the option of selecting multiple alternatives. An if
statement contains a set of action statements, enclosed in {}, which may also be anoth-
er if statement—hence the term if statement. The objective of a nested if statement
is to improve the efficiency of the code by reducing or eliminating redundant Boolean
tests. These refinements occur when compound Boolean expressions are pared down

00082_CH05_Cornez.indd 257 7/19/11 10:35:45 AM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

258 Chapter 5 Selective Control and Advanced Animations

and assembled into a collection of simple Boolean expressions containing nested if
statements. Oftentimes, use of such nested if statements can also boost readability.

The next two examples demonstrate nested if statements.

Example 1

For this first example, let us consider the childhood game called Rock, Scissors,
Paper. In this two-player game, the user plays against the computer. The user
selects one of the elements, while the computer is randomly assigned one. The
user wins only if her choice dominates the computer’s choice. The two players
tie if the choices are the same. Otherwise, the user loses. Here are the domina-
tion rules:

Rule 1: Rock beats scissors because it can crush it.

Rule 2: Scissors beats paper because it can cut it.

Rule 3: Paper beats rock because it can cover it.

A good solution will display a detailed reason for a win, loss, or tie out-
come for the user. There are a total of nine detailed game outcomes.

Two code solutions are provided here to showcase the efficiency of a
nested if statement.

Rock, Scissors, Paper game Solution 1

This first solution does not rely on nested statements. Upon close examination,
it becomes clear that within each compound Boolean expression is a simple
Boolean expression that appears in several compound Boolean expressions. For
example, the simple Boolean expression user == ROCK occurs three times, on
lines 1, 3, and 5.

1 if (user == ROCK && computer == PAPER) {
2 trace (“You lose because computer chose PAPER, which covers
ROCK.”);
3 } else if (user == ROCK && computer == SCISSORS) {
4 trace (“ROCK wins because SCISSORS can be crushed by ROCK. Player
wins.”);
5 } else if (user == ROCK && computer == ROCK) {
6 trace (“You tied with the computer because you both chose ROCK. ”);
7 } else if (user == PAPER && computer == SCISSORS) {
8 trace (“PAPER loses because SCISSORS cuts PAPER. Player loses.”);
9 } else if (user == PAPER && computer == ROCK) {
10 trace (“PAPER wins because PAPER covers ROCK. Player wins.”);
11 } else if (user == PAPER && computer == PAPER) {
12 trace (“You both chose PAPER. Player ties with the computer.”);
13 } else if (user == SCISSORS && computer == PAPER) {
14 trace (“SCISSORS wins because PAPER is vulnerable to cutting. You

00082_CH05_Cornez.indd 258 7/19/11 10:35:45 AM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

 5.7 The Nested if Statement 259

win.”);
15 } else if (user == SCISSORS && computer == ROCK) {
16 trace (“ROCK loses because PAPER covers ROCK. Player loses.”);
17 } else {
18 trace (“You both chose SCISSORS. Player ties with the computer.”);
19 }

Rock, Scissors, Paper game Solution 2

This second solution utilizes nested if statements to take advantage of the fact
that the compound Boolean expressions from Solution 1 can be grouped into
three main scenarios:

user == ROCK
user == PAPER
user == SCISSORS

Within each scenario is a set of subscenarios expressed as nested if state-
ments. For example, when the user chooses Rock, as identified in line 1, there
are three possible subscenarios identified on lines 2–8: computer == PAPER, com-
puter == SCISSORS, and computer == ROCK.

The final solution is easier to read and of higher quality due to the elimina-
tion of redundant Boolean test expressions.

1 if (user == ROCK){ //SCENARIO 1: USER IS ROCK
2 if (computer == PAPER) {
3 trace (“You lose because the computer chose PAPER, which covers
ROCK.”);
4 } else if (computer == SCISSORS) {
5 trace (“ROCK wins because SCISSORS can be crushed by ROCK.
Player wins.”);
6 } else {
7 trace (“You tied with the computer because you both chose ROCK.
”);
8 }
9 } else if (user == PAPER) { //SCENARIO 2: USER IS PAPER
10 if (computer == SCISSORS) {
11 trace (“PAPER loses because SCISSORS cuts PAPER. Player los-
es.”);
12 } else if (computer == ROCK) {
13 trace (“PAPER wins because PAPER covers ROCK. Player wins.”);
14 } else {
15 trace (“You both chose PAPER. Player ties with the computer.”);
16 }
17 } else if (user == SCISSORS) { //SCENARIO 3: USER IS SCISSORS
18 if (computer == PAPER) {
19 trace (“SCISSORS wins because PAPER is vulnerable to cutting.
Player wins.”);

00082_CH05_Cornez.indd 259 7/19/11 10:35:45 AM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

260 Chapter 5 Selective Control and Advanced Animations

20 } else if (computer == ROCK) {
21 trace (“ROCK loses because PAPER covers ROCK. Player loses.”);
22 } else {
23 trace (“You both chose SCISSORS. Player ties with the comput-
er.”);
24 }
25}

Example 2

In this example, we examine a segment of AS3 code that issues facts about a
user’s age. Depending on the user’s age, multiple conditions need to be exam-
ined and one or more age-appropriate pieces of information displayed based on
the following facts.

Fact 1: Any person age 5 or younger is considered to be a child.

Fact 2: All persons older than age 5 and younger than age 13 are considered
to be kids.

Fact 3: Kids younger than age 8 go to elementary school.

Fact 4: Kids age 8 and older go to middle school.

Fact 5: All persons from the age of 13 through 19 are called teenagers.

Fact 6: Teenagers younger than age 16 cannot drive a car.

Fact 7: Teenagers of age 16 and older may drive a car if they pass a driving
test.

Fact 8: Any person who is not a child, kid, or teenager is considered to be an
adult.

Two solutions are used to showcase the efficiency of a nested if state-
ment.

age-appropriate Facts Solution 1

The first solution does not use nested statements. Because multiple statements
can be true, this solution is split into two independent if statements. Suppose
the user is 13 years old. He is a teenager and he cannot drive.

1 //ARE YOU A CHILD, KID, TEENAGER, OR ADULT?
2 if (age <= 5) {
3 trace (“You are a child.”);
4 } else if (age < 13) {
5 trace (“You are a kid.”);
6 } else if (age <= 19) {
7 trace (“You are a teenager.”);
8 } else {
9 trace (“You are an adult.”);

00082_CH05_Cornez.indd 260 7/19/11 10:35:45 AM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

 5.7 The Nested if Statement 261

10 }
11
12 //WHAT YOU CAN (OR CANNOT) DO AT YOUR CURRENT AGE
13 if (age < 13 && age > 5) {
14 trace (“You are in school.”);
15 } else if (age <= 19 && age >= 16) {
16 trace (“You can drive.”);
17 } else if (age < 16)
18 trace (“You cannot drive yet.”);
19 } else {
20 trace (“You are an adult.”);
21 trace (“You can run for president.”);
22 }

age-appropriate Facts Solution 2

This solution uses a single nested if statement in which user is categorized into
one of the following groups:

Child Kid Teenager Adult

By using nested if statements, multiple conditions can be examined. This
code solution is concise, efficient, and easy to read.

1 if (age <= 5) { // A CHILD
2 trace (“You are a child.”);
3 } else if (age < 13) { // A KID
4 trace (“You are a kid.”);
5 if (age > 5) {
6 trace (“You should be in school.”);
7 }
8 } else if (age <= 19) { // A TEENAGER
9 trace (“You are a teenager.”);
10 if (age <= 16) {
11 trace (“You can drive.”);
12 } else {
13 trace (“You cannot drive yet.”);
14 }
15 } else { // AN ADULT
16 trace (“You are an adult.”);
17 }

00082_CH05_Cornez.indd 261 7/19/11 10:35:45 AM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

262 Chapter 5 Selective Control and Advanced Animations

 5.8 Case Study 3: The Virtual Pet Fish

Problem

The virtual fish in this case study has a single requirement for survival—food. Our fish
will never starve, however, because there is a constant source of food in the tank.

The fish exhibits three possible states: playing, hungry, and eating. While the fish
is playing, it is in a constant state of motion, moving around the tank seeking out its
toy, and burning off calories. Once it becomes hungry, the fish immediately moves
toward the food source. When it locates its food, the fish eats until its stomach is full,
at which point it again seeks out its toy to burn off calories until it is hungry again,
and the cycle continues.

There are three objectives for this case study:

 1. Use nested if statements to monitor and respond to the three possible conditions
of the fish: isHungry, isEating, and isAtPlay.

 2. Build custom properties to identify individual fish attributes.

 3. Work with basic game mathematics to create realistic motion.

Problem analysis and Visual Design

The primary goal of this application is to create a display object that behaves like a
simple-minded pet fish in a virtual fish tank. This pet fish will need a minimal amount
of artificial intelligence that allows it to evaluate its current condition as it plays,
becomes hungry, or generally swims around the tank. Once it understands its current
condition, it then responds with an appropriate change in behavior.

The display object on the stage that represents the pet fish is a MovieClip instance
named Fish. In addition to Fish, two other MovieClip instances are found in this vir-
tual environment: Toy and Food. These three display objects are shown in the fish tank
environment in Figure 5-9.

Fish’s behavior will be controlled by basic artificial intelligence constructed as
a set of nested if–else if–else statements, more appropriately called rules. These
rules will utilize a set of properties, shown in Table 5-8, created specifically for this
purpose.

The artificial intelligence rules for controlling Fish are as follows:

Rule 1: If Fish is playing with its toy (isAtPlay == true), rotate and move Fish
toward Toy. Burn a calorie by reducing the amount of food in Fish’s stomach
and check whether it is hungry.

00082_CH05_Cornez.indd 262 7/19/11 10:35:45 AM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

 5.8 Case Study 3: The Virtual Pet Fish 263

FIguRe 5-9 Virtual pet fish application.

Rule 2: If Fish is hungry (isHungry == true), rotate and move Fish toward Food.
Check whether it has reached its food.

Rule 3: If Fish is eating (isEating == true), check whether its stomach has
reached its limited capacity for food.

TaBLe 5-8 Properties Constructed for Fish

Fish Property Type of Property Description of Property
isHungry Boolean, dynamic value True if Fish is hungry; false otherwise. If Fish is

hungry, it is not eating or playing.
isAtPlay Boolean, dynamic value True if Fish is playing with, or seeking to play

with, its toy.
isEating Boolean, dynamic value True if Fish is currently eating; false otherwise.

If Fish is eating, it is not hungry and not playing.
velocity Number, static value Fish’s normal traveling velocity. This static

value will not change throughout the program.
capacity Number, static value The amount of food Fish can eat before it is full.
inStomach Number, static value The current amount of food in Fish’s stomach.

00082_CH05_Cornez.indd 263 7/19/11 10:35:45 AM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

264 Chapter 5 Selective Control and Advanced Animations

algorithmic Design

The program for this game consists of the five functions described in Table 5-9. Figure
5-10 shows the relationship between these functions.

TaBLe 5-9 Program Functions Used by the Virtual Pet Fish Application

Function Name Description
virtualPetApp() The main function as well as the class constructor. It executes immediate-

ly when the application begins. This function is responsible for initializing
the Fish properties and registering the main listener event ENTER_FRAME.

makeItLive() The event handler for the listener event ENTER_FRAME. It is also the engine
that drives the artificial intelligence of the pet fish by monitoring its three
possible conditions—isHungry, isAtPlay, and isEating—and responds
with a call to the appropriate function that carries out the required behav-
ior.

goPlay() Called when Fish is seeking out its toy and playing.
findFood() Dictates how Fish will locate its food.
eatFood() Called when Fish is eating its food. This function dictates how the pet

eats and finishes eating.

FIguRe 5-10 Relationship structure of functions used by the virtual pet fish application.

virtualPetApp()

makeItLive()

goPlay() findFood() eatFood()

This program does not require any game constants. The package contains the
libraries flash.display.* and flash.events.*.

1 package {
2 import flash.display.*;
3 import flash.events.*;
4

00082_CH05_Cornez.indd 264 7/19/11 10:35:46 AM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

 5.8 Case Study 3: The Virtual Pet Fish 265

5 public class virtualPetApp extends MovieClip {
6

⋮

89 }
90 }

The tasks of each function written for this application are outlined next.

Function virtualPetApp() Design

The function virtualPetApp(), which is the class constructor, has the sole task of
initializing Fish and registering the event listener ENTER_FRAME to enable a looping
mechanism. Its instructions are organized into three tasks:

Task 1: Set Fish’s initial behavioral conditions. Initially Fish is playing with its
toy. Because it is not currently hungry and not eating, both these conditions are set
to false.

Task 2: Set Fish’s attributes that govern its velocity and the physical properties
that will dictate hunger. Its normal traveling velocity is set to 10. Its capacity, which
is the amount of food it can eat to satisfy its hunger, and the current amount of food
in its stomach are both set to 50.

Task 3: Register the listener event ENTER_FRAME with the function makeItLive() as
the event handler.

7 function virtualPetApp() {
8 //TASK 1: SET THE INITIAL CONDITION OF THE FISH TO PLAY
9 Fish.isHungry=false;
10 Fish.isAtPlay=true;
11 Fish.isEating=false;
12
13 //TASK 2: SET THE INITIAL PROPERTIES OF THE PET FISH
14 Fish.velocity=10;//ITS NORMAL TRAVELING VELOCITY.
15 Fish.capacity=50;//HOW MUCH CAN IT EAT BEFORE IT’S FULL
16 Fish.inStomach=50;//THE CURRENT AMOUNT OF FOOD IN FISH
17
18 //TASK 3: USE AN ENTER_FRAME LISTENER TO MAKE PET ALIVE
19 addEventListener(Event.ENTER_FRAME,makeItLive);
20 }
21

Function makeItLive() Design

Function makeItLive() is the event handler that executes at regular intervals when
called by the event listener for ENTER_FRAME. This function takes the static fish and
makes it dynamic by responding with appropriate function calls based on the current
condition of Fish.

00082_CH05_Cornez.indd 265 7/19/11 10:35:46 AM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

266 Chapter 5 Selective Control and Advanced Animations

By using an if–else if–else if structure, the function can identify when Fish is
hungry, playing with its toy, or eating.

22 function makeItLive (event:Event) {
23 //EXAMINE AND RESPOND THE CONDITIONS: isHungry, isAtPlay, isEating
24 if (Fish.isAtPlay) {
25 goPlay();
26 } else if (Fish.isHungry) {
27 findFood();
28 } else if (Fish.isEating) {
29 eatFood();
30 }
31

Function goPlay() Design

The goPlay() function directs the behavior of Fish while its current state is playing
with its toy. This function is subdivided into five tasks:

Task 1: Burn a calorie by reducing the amount of food in the fish’s stomach by
decrementing this amount by one.

Task 2: Compute the distance Fish must travel to get to its toy. This distance must
be computed along both the x-axis and the y-axis.

Task 3: Turn Fish in the direction of its toy. To accomplish this task, the angle
must first be computed. This is done by using the arctangent function Math.
atan(), which produces a result in radians. Because rotation requires a value in
degrees, the conversion from radians to degrees is performed by multiplying the
angle by 180 / Math.PI.

Task 4: Move Fish toward Toy. To create the illusion of elegant dynamic move-
ment, the fish must be able to gradually slow down as it nears its toy, as
opposed to barreling into the toy and stopping abruptly. This can easily be done
by dividing the distance to be traveled by the fixed velocity, which eases Fish
to its final destination.

Task 5: Check whether Fish is hungry again. This code assumes Fish is hungry if
it has less than 25 units of food in its stomach. If Fish is found to be hungry, the
isAtPlay property is set to false and the isHungry property is set to true.

32 function goPlay() {
33 //TASK 1: BURN A CALORIE
34 Fish.inStomach—;
35
36 //TASK 2: COMPUTE THE DISTANCE TO TOY
37 var xDistance:Number=Toy.x-Fish.x;
38 var yDistance:Number=Toy.y-Fish.y;
39

00082_CH05_Cornez.indd 266 7/19/11 10:35:46 AM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

 5.8 Case Study 3: The Virtual Pet Fish 267

40 //TASK3: ANGLE THE FISH TOWARD ITS TOY
41 var Angle:Number=Math.atan2(yDistance,xDistance);
42 Fish.rotation=Angle*180/Math.PI;
43
44 //TASK4: MOVE FISH CLOSER TO ITS TOY
45 Fish.x+=xDistance/Fish.velocity;
46 Fish.y+=yDistance/Fish.velocity;
47
48 //TASK 5: CHECK IF THE FISH IS HUNGRY
49 if (Fish.inStomach < 25) {
50 //SUBTASK 1: SET THE FISH TO HUNGRY
51 Fish.isAtPlay=false;
52 Fish.isHungry=true;
53 }
54 }
55

Function findFood() Design

The findFood() function is divided into four tasks:

Task 1: Compute the distance Fish must travel to locate Food.

Task 2: Turn Fish in the direction of Food.

Task 3: Move Fish toward Food by traveling distance divided by velocity. Fish
will ease toward its final destination.

Task 4: Check whether Fish has located Food. This code assumes Fish has located
Food once its horizontal distance is less than 5 and its vertical distance is less
than 3. At this point, the isEating property is set to true and the isHungry prop-
erty is set to false.

56 function findFood() {
57 //TASK 1: CALCULATE DISTANCE TO ITS FOOD
58 var xDistance:Number=Food.x-Fish.x;
59 var yDistance:Number=Food.y-Fish.y;
60
61 //TASK 2: TURN FISH TOWARD ITS FOOD
62 var Angle:Number=Math.atan2(yDistance,xDistance);
63 Fish.rotation=Angle*180/Math.PI;
64
65 //TASK 3: MOVE THE FISH TOWARD ITS FOOD
66 Fish.x+=xDistance/Fish.velocity;
67 Fish.y+=yDistance/Fish.velocity;
68
69 //TASK 4: CHECK IF THE FISH HAS LOCATED ITS FOOD
70 if (xDistance < 5 && yDistance < 3) {
71 //SUBTASK: SET THE STATE OF THE FISH TO EATING
72 Fish.isHungry=false;

00082_CH05_Cornez.indd 267 7/19/11 10:35:46 AM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

268 Chapter 5 Selective Control and Advanced Animations

73 Fish.isEating=true;
74 }
75 }
76

function eatFood() Design

The eatFood() function is divided into two tasks:

Task 1: Increment the amount of food in Fish’s stomach.

Task 2: Check whether Fish’s stomach is full. This code assumes Fish is full when
the amount of food in its stomach has reached capacity. At this point, the isEat-
ing property is set to false and the isAtPlay property is set to true.

77 function eatFood() {
78 //TASK 1: FISH CONSUMES A CALORIE OF FOOD
79 Fish.inStomach++;
80
81 //TASK 2: CHECK IF THE FISH IS FULL
82 if (Fish.inStomach >= Fish.capacity) {
83 //SUBTASK: SET THE STATE OF THE FISH TO PLAYING
84 Fish.isEating=false;
85 Fish.isAtPlay=true;
86 }
87 }
88

 5.9 The switch Statement

In addition to the if statement, there is another selective control structure available—
the switch statement. The switch statement is not strictly necessary, but can in some
cases make for more concise and readable code.

As seen in the previous sections, one of the most commonly seen patterns in
programming is a series of if–else if–else statements that test a single value against
a series of values. For example, the following code segment displays the string
“Freshman,” “Sophomore,” “Junior,” or “Senior,” on depending on the value of
year:

if (year == 1) {
 trace(“Freshman”);
}else if (year == 2 {
 trace(“Sophomore”);
}else if (year == 3) {
 trace(“Junior”);
}else {
 trace(“Senior”);
}

00082_CH05_Cornez.indd 268 7/19/11 10:35:46 AM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

 5.9 The switch Statement 269

This structure is important in programming because it provides us with a mecha-
nism to solve all multiway selective-type problems. Because multiway selection state-
ments can sometimes be difficult to follow, many languages provide an alternative
method of handling this concept—the switch statement.

In AS3 3.0, switch statements are often used when several options depend on the
value of a single variable or expression, as in the previous example. The typical form
of the switch statement is shown next. The words switch, case, break, and default are
reserved keywords.

switch (variable) {

case value1 : statement list1;

 break;

case value2 : statement list2;

 break;

.

.

.

case valueN : statement listN;

 break;

default : statement listDefault;

}

The following code segment is a rewrite of the if statement that displays
“Freshman,” “Sophomore,” “Junior,” or “Senior,” depending on the value of year.
This segment illustrates the switch statement. Each of the statement lists in a switch
statement usually ends with a break statement. The effect of the break in these state-
ments causes a transfer of control to the end of the switch statement.

switch (year) {
 case 1:
 trace(“Freshman”);
 break;
 case 2:
 trace(“Sophomore”);
 break;
 case 3:
 trace(“Junior”);
 break;

 1. The value of variable is deter-
mined.

 2. The first matching value with
a case is found. The statements
following the matching case are
executed.

 Note: break and default statements
are optional. If a break statement
occurs, control is transferred to the
first statement following the end
of the switch statement; otherwise,
the execution of statements contin-
ues. In general, a case should end
with a break statement.

 3. If no matching value is found,
then the default statement list is
executed.

00082_CH05_Cornez.indd 269 7/19/11 10:35:46 AM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

270 Chapter 5 Selective Control and Advanced Animations

 default :
 trace(“Senior”);
}

The next three examples illustrate how the switch statement works.

Example 1

1 var Num:Number;
2 switch (Num){
3 case 0 : trace (“ZERO”);
4 break;
5 case 1 : trace (“ONE or”);
6 case 2 : trace (“TWO”);
7 break;
8 default : trace(“NO
9 MATCHES!”);
10 }
11 trace (“DONE”);

evaluations for Different Values of Num

a. Num = 0

 In this scenario, the value of Num is matched with the first case in line 1.
The trace statement executes, and a break is encountered on line 4, ending
the switch statement. Line 11 is an unconditional statement that displays
the text “DONE.”

 The output produced by this segment of code is

ZERO
DONE

b. Num = 1

 The value of Num has found a match with the second case statement, 1,
on line 5. The trace statement on the same line executes, but no break is
encountered; hence, all instructions are executed until a break is found, or
the switch statement terminates on its own. In this case, a break statement
is found on line 7.

 The output produced by this segment of code is

ONE or
TWO
DONE

c. Num = 4

00082_CH05_Cornez.indd 270 7/19/11 10:35:46 AM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

 5.9 The switch Statement 271

 No matching values for Num are found. The default statement on line 8 is
executed.

 The output produced by this segment of code is

NO MATCHES!
DONE

Example 2

1 var Digit:int;
2 switch (Digit){
3 case 0 : trace (“ZERO”);
4 break;
5 case 1 :
6 case 3 :
7 case 5 :
8 case 9 : trace (“ODD”);
9 break;
10 case 2 :
11 case 4 :
12 case 6 :
13 case 8 : trace (“EVEN”);
14 }

evaluation

The switch statement in this segment of code illustrates the capture of multiple
matches.

a. Digit = 3

 When Digit contains the value 3, a match is found in the third case state-
ment on line 6. There are no statements to execute, but more importantly,
there is no break statement to terminate the switch statement. This means
any instructions from lines 6 through 8 are executed until a break is en-
countered on line 9.

 The output produced by this segment of code is

ODD

b. Digit = 8

 In this scenario, a match is found in the final case statement on line 13.
There is no break statement following this final statement list because there
are no statements to execute, so the switch statement will terminate auto-
matically. As shown in this example, default statements are optional.

00082_CH05_Cornez.indd 271 7/19/11 10:35:46 AM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

272 Chapter 5 Selective Control and Advanced Animations

 The output produced by this segment of code is

EVEN

Example 3

1 var P:int;
2 var Q:int;
3 switch (P){
4 case 0 : switch (Q){
5 case 3: P = P + Q; break;
6 default: P = P - Q;
7 }
8 break;
9 case 1 :
10 case 3:
11 case 5 : switch (Q){
12 case 2:
13 case 6: P = P * Q; break;
14 case -4:
15 case -6: P = Q * Q;
16 }
17 }
18 trace (“P = “, P);
19 trace (“Q = “, Q);

evaluation

This segment of code illustrates a nested switch statement. Like if statements,
switch statements may contain multiple layers of alternatives.

a. P = 0, Q = 3

 A match is found for P in the first case statement on line 4. The nested
switch statement switch (Q) is executed, and a match is found in case 3 on
line 5. The statement P = P + Q is executed, followed by the break on line
8.

 The output produced by this segment of code is

P = 3
Q = 3

b. P = 1, Q = -3

 When P contains the value 1, a match is found in the second case statement
on line 9. There is no break statement to terminate the switch statement, so
all statements will be executed until a break is encountered. In this case,
the nested switch (Q) statement in case 5 on line 11 will execute. No match

00082_CH05_Cornez.indd 272 7/19/11 10:35:46 AM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

 5.10 Case Study 4: Airship Flight Simulator 273

is found within the nested switch statement, and the values in P and Q will
not be altered.

 The output produced by this segment of code is

P = 1
Q = -3

 5.10 Case Study 4: airship Flight Simulator

Problem
In this case study, we construct a simple top-view flight simulator for an airship.
Airships were once luxury passenger aircrafts that experienced a period of grandeur in
Europe during the 1920s and 1930s. These magnificent aircraft, which were designed
to fly wealthy passengers across oceans and continents, often featured opulent lounges,
fine accommodations, dining rooms, and even smoking rooms. The largest passenger
airship in history, as well as the most disastrous, was the Hindenburg.

FIguRe 5-11 Airship flight simulator application.

World Airship Shadow

00082_CH05_Cornez.indd 273 7/19/11 10:35:48 AM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

274 Chapter 5 Selective Control and Advanced Animations

Three objectives are addressed in this case study:

 1. Use switch statements to respond to keyboard control of the airship.

 2. Use a timer to create smooth animations as the airship flies to a higher or lower
altitude over the world below.

 3. Work with basic game math to reposition the world below as the airship changes
direction and flies overhead.

game Plan and analysis

The flight simulator for this case study, shown in Figure 5-11, will be kept simple in
terms of the rules of engagement and the game play parameters. For example, the air-
ship will not be permitted to land or crash. Four essential characteristics govern how
this simulator will perform:

 1. The airship will be constrained to a static location at Stage center. The world
below will move as the airship flies overhead. There are two reasons for the
restricted movement of the airship. First, an anchored airship will not run the
risk of flying off the Stage. It will be possible for the airship to change direction.
Second, and most important, the user can expect a uniform perspective, thereby
creating the illusion of being aboard, or at least linked to, the airship. This consis-
tent perspective will make the navigation more user friendly.

 2. The dynamic world below the airship will be stored as a separate MovieClip
instance. Using an ENTER_FRAME event, this world will be continuously repositioned
and scaled to reveal a new view from the moving airship.

 3. The airship will have a fixed velocity. The user will not have access to this
velocity.

 4. The user can guide the airship by simply pressing the up, down, left, or right
arrow keys. These keys will change the direction and elevation of the airship. The
up arrow will be used to climb to a higher altitude. The down arrow key will be
used to decrease elevation, but not beyond a set minimum altitude. The left and
right arrow keys allow the airship to change direction by turning left or right a set
number of degrees.

Visual Design

The flight simulator requires three MovieClip instances as shown in Figure 5-11:
Airship, Shadow, and World. Both Airship and Shadow are simple vector drawings cre-
ated in Flash, with Shadow representing the shadow the airship casts over the world
below. For this example, the MovieClip instance named World was created in Adobe

00082_CH05_Cornez.indd 274 7/19/11 10:35:48 AM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

 5.10 Case Study 4: Airship Flight Simulator 275

Photoshop and then imported into Flash. This is not a requirement and could just as
easily have been done in Flash using the vector drawing tools.

The simulator application relies solely on a single frame, representing a single
screen. There are no instructions or buttons. The Timeline is organized using three layers.
The bottom layer holds World, the middle layer holds Shadow, and the top layer contains
Airship. This animation is set to a rate of 60 frames per second, which is fast enough to
create the illusion of a smooth flight—a hallmark of these luxurious airships.

Program Design

The algorithm for this game application will use Airship, Shadow, and World to create
the animations necessary for visualizing an aircraft in virtual flight. These animations
will rely on a select set of inherited display object properties. In addition, the MovieClip
instance Airship will utilize the constructed properties Velocity and Altitude. Table
5-10 provides a comprehensive explanatory list of all the display object properties
required for the visualization of the flight simulator.

TaBLe 5-10 Properties Constructed for the Airship Flight Simulator Application

Display Object Name Property
Airship rotation: Airship’s turn amount dictated by the left and right

arrow keys. Note: The x and y position of Airship will remain static
throughout execution; however, the ability to turn left or right will be
permitted.

Velocity: Airship’s traveling Velocity. This newly constructed
property will be used to compute the visual adjustments made to the
World. These adjustments will ultimately create the illusion of move-
ment from the perspective of the airship looking below as it travels.

Altitude: Elevation gains and losses of Airship. This property is
used to make alterations to the velocity for the airship. The lower the
airship, the faster it appears to fly because the World is magnified.

Shadow alpha: The level of transparency for the airship’s shadow. Creates a
three-dimensional impression of an overhead airship.

scaleX, scaleY: The scale of the shadow projected by the airship.
Used to create the illusion of three-dimensionality. This value is
altered only when the elevation of the airship changes. As the airship
descends closer to the surface, the shadow’s scale increases. As the
airship moves farther away, the shadow’s scale decreases.

World x, y: World is the only display object whose x and y positions will be
altered during runtime.

scaleX, scaleY: As with Shadow, the scale of World will be altered
when the elevation of Airship changes.

00082_CH05_Cornez.indd 275 7/19/11 10:35:48 AM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

276 Chapter 5 Selective Control and Advanced Animations

This flight simulator application will consist of five functions: airshipApp(),
adjustWorld(), checkControlKey(), zoomHigher(), and zoomLower() (described in Table
5-11). Figure 5-12 shows the relationship between these functions.

TaBLe 5-11 Airship Flight Simulator Program Functions

Function Name Description
airshipApp() Sets the game elements and adds event listeners. The main function of

the application, it is also the constructor function and executes imme-
diately when the application is launched.

adjustWorld() Adjusts World’s location as the airship moves. This function is an event
handler that is triggered by the ENTER_FRAME event. It executes at regu-
lar intervals.

checkControlKey() Examines the control keys (up, down, left, and right), and responds to
them.

zoomHigher() Creates a visual animation that uses scaling to impart the illusion of
the airship climbing in altitude. This function is an event handler trig-
gered by a timer event.

zoomLower() Creates a visual animation that shows the airship decreasing in alti-
tude. Scaling is used to trick the eye. Like ZoomHigher(), this function
is an event handler triggered by a timer event.

FIguRe 5-12 Relationship of functions used in the airship flight simulator application.

adjustWorld() checkControlKey()

airshipApp()

zoomHigher() zoomLower()

The first line of this airshipApp.as AS3 file consists of the class package. The
required library classes to be imported are display, events, and utils. The utils
library classes are needed for the timer event. The final curly brackets, located on the
last two lines of the file, conclude the airshipApp class and the package.

00082_CH05_Cornez.indd 276 7/19/11 10:35:48 AM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

 5.10 Case Study 4: Airship Flight Simulator 277

1 package {
2 import flash.display.*;
3 import flash.events.*;
4 import flash.utils.*;
5 public class airshipApp extends MovieClip {

⋮

103 }
104 }

game Constants

Two categories of constant values are needed. The first category defines game con-
stants. The first constant is RADIANS, which will be used in the game mathematics.
Recall that Flash trigonometric functions use radians instead of degrees as units. The
other constants include the airship’s cruising altitude and minimum and maximum fly-
ing altitudes. Line 12 contains the constant ALTITUDE_AMT, which specifies the altitude
increase and decrease amounts when the user presses the up and down arrow control
keys. The constant TURN specifies the turn amount in degrees for maneuvering left or
right when the user presses the left and right arrow keys.

6 //GAME CONSTANTS
7 const RADIANS:Number=Math.PI/180;
8 const MIN_ALTITUDE:Number=30;
9 const CRUISING_ALTITUDE:Number=50;
10 const MAX_ALTITUDE:Number=70;
11 const CRUISING_VELOCITY:Number=.3;
12 const ALTITUDE_AMT:Number=0.1;
13 const TURN:Number=4;

The last category of constants defines the flight control keys. These constants
represent the specific ASCII key values used to direct the airship right and left and to
adjust its altitude.

14 //FLIGHT CONTROL CONSTANTS
15 const RIGHTARROW:Number=39;
16 const LEFTARROW:Number=37;
17 const UPARROW:Number=38;
18 const DOWNARROW:Number=40;

Timer Variable

In addition to the constants, there will be a global variable, atimer, that stores a timer
object. This variable is used by the functions checkControlKey(), zoomHigher(), and
zoomLower() to smooth the scaling animation of World as the airship gains or losses
altitude. This variable object is made global so that all three functions that use it will

00082_CH05_Cornez.indd 277 7/19/11 10:35:48 AM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

278 Chapter 5 Selective Control and Advanced Animations

have unfettered access to the variable. Chapter 8 discusses the alternative to creating
global variables such as atimer.

19 //TIMER VARIABLES
20 var atimer:Timer;

The functions for this application are designed as follows.

Function airshipApp() Design

The main algorithm, airshipApp(), is a constructor that loads immediately once the
application is launched. The objective of this function is to set the initial properties of
the elements on the Stage and add event listeners for the control keys and adjustments
made to the World at every frame loop.

Task 1: Initialize the properties of Airship. The two properties Velocity and
Altitude are constructed when they are initialized.

Task 2: Initialize the properties of Shadow. The initial scale of Shadow is set to 25%
of the size of the airship and 25% opacity.

Task 3: Initialize the position and scale of World.

Task 4: Register the event listeners for the ENTER_FRAME event and the KEY_DOWN
event. The keyboard event listener waits for the user to interactively control the
altitude and direction of the airship.

21 function airshipApp() {
22 //TASK 1: SET AIRSHIP PROPERTIES TO INITIAL VALUES
23 Airship.x=Airship.y=350;
24 Airship.Altitude=CRUISING_ALTITUDE;
25 Airship.Velocity=CRUISING_VELOCITY;
26
27 //TASK 2: SET AIRSHIP SHADOW PROPERTIES TO VALUES
28 Shadow.alpha=.25;
29 Shadow.scaleY=.25;
30 Shadow.scaleX=.25;
31
32 //TASK 3: SET VILLAGE PROPERTIES TO INITIAL VALUES
33 World.x=World.y=350;
34 World.scaleY =.25;
35 World.scaleX=.25;
36
37 //TASK 4: ADD EVENT LISTENERS
38 stage.addEventListener(Event.ENTER_FRAME, adjustWorld);
39 stage.addEventListener(KeyboardEvent.KEY_DOWN, checkControlKey);
40 }
41

00082_CH05_Cornez.indd 278 7/19/11 10:35:48 AM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

 5.10 Case Study 4: Airship Flight Simulator 279

Function adjustWorld() Design

This function is an event handler that is called at every frame loop. Its primary objec-
tive is to adjust the location of the world below. Its complete set of tasks is as fol-
lows:

Task 1: Adjust the velocity of the airship to make the world below appear to
move faster at low altitudes and slower at high altitudes. This small trick has a
nuanced effect in creating a more realistic simulation.

Task 2: Change the world’s x and y positions on the stage. As shown in Figure
5-13, the calculation of this altered world is based on the velocity and rotation
of the airship. For example, as Airship changes direction by turning to the right,
World will shift to the left.

The trigonometric functions sin() and cos() are used to compute the correct angle
(in radians) in which to shift the world below. The radian value is needed to use
the sin() and cos() function.

FIguRe 5-13 Angle and velocity diagram of the airship.

Rotation

Ve
lo
ci
ty

42 function adjustWorld(event:Event) {
43 //TASK1: ADJUST THE VELOCITY OF THE AIRSHIP ACCORDING TO ALTITUDE
44 Airship.Veloicity=CRUISING_VELOCITY-.01 * (Airship.Altitude - CRUISING_
ALTITUDE);
45

00082_CH05_Cornez.indd 279 7/19/11 10:35:49 AM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

280 Chapter 5 Selective Control and Advanced Animations

46 //TASK 2: CHANGE WORLD’S LOCATION RELATIVE TO THE AIRSHIP
47 var toRadians:Number=Math.PI/180;
48 World.x += (Airship.Velocity)*Math.sin(Airship.rotation*toRadians);
49 World.y -= (Airship.Velocity)*Math.cos(Airship.rotation*toRadians);
50 }
51

Function checkControlKey() Design

This function, an event handler, has the simple task of examining the input from the
user and responding. Using a switch statement makes this code more readable.

Responses to individual arrow keys occur by changing Airship’s rotation and
altitude as follows:

LEFTARROW or RIGHTARROW: Rotate Airship and Shadow the appropriate number of
degrees defined by the constant TURN.

UPARROW: Increase the altitude of Airship. If the maximum altitude has not been
exceeded, activate a timer to decrease, in gradual measure, the scale of World.
The timer is set to execute four times, for 40 milliseconds each time. The ani-
mation generated by this timer creates the illusion of the airship moving farther
away.

DOWNARROW: Decrease the altitude of Airship. If the altitude has not gone below the
minimum, a timer animation is triggered to create the illusion of the airship
moving closer to the world below.

52
53 function checkControlKey(event:KeyboardEvent) {
54 //TASK : EXAMINE AND RESPOND TO INPUT FROM USER
55 switch (event.keyCode) {
56 case RIGHTARROW :
57 Airship.rotation+=TURN;
58 Shadow.rotation+=TURN;
59 break;
60 case LEFTARROW :
61 Airship.rotation-=TURN;
62 Shadow.rotation-=TURN;
63 break;
64 case UPARROW :
65 //AIRSHIP INCREASES ITS ALTITUDE
66 Airship.Altitude+=ALTITUDE_AMT;
67 if (Airship.Altitude > MAX_ALTITUDE) {
68 Airship.Altitude=MAX_ALTITUDE;
69 } else {
70 atimer=new Timer(40,4);

00082_CH05_Cornez.indd 280 7/19/11 10:35:49 AM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

 5.10 Case Study 4: Airship Flight Simulator 281

71 atimer.addEventListener(TimerEvent.TIMER, ZoomHigher);
72 atimer.start();
73 }
74 break;
75 case DOWNARROW :
76 //AIRSHIP DECREASES ITS ALTITUDE
77 Airship.Altitude-=ALTITUDE_AMT;
78 if (Airship.Altitude < MIN_ALTITUDE) {
79 Airship.Altitude=MIN_ALTITUDE;
80 } else {
81 atimer=new Timer(40,4);
82 atimer.addEventListener(TimerEvent.TIMER, ZoomLower);
83 atimer.start();
84 }
85 }
86 }
87

Function ZoomHigher() Design

This function has the simple task of examining the input from the user and responding
to arrow keys. Using a switch statement makes this code more readable. Responses to
individual arrow keys occur by changing the airship’s rotation and altitude.

88 function ZoomHigher(event:TimerEvent) {
89 var newSize:Number;
90 newSize=World.scaleY-.0001;
91 World.scaleY=World.scaleX=newSize;
92 Shadow.scaleY=Shadow.scaleX=newSize;
93 atimer.removeEventListener(TimerEvent.TIMER, ZoomHigher);
94 }
95

Function ZoomLower() Design

This function has the simple task of examining the input from the user and responding
to arrow keys. Using a switch statement makes this code easier to read. Responses to
individual arrow keys occur by changing the airship’s rotation and scale.

96 function ZoomLower(event:TimerEvent) {
97 var newSize:Number;
98 newSize=World.scaleY+.0001;
99 World.scaleY=World.scaleX=newSize;
100 Shadow.scaleY=Shadow.scaleX=newSize;
101 atimer.removeEventListener(TimerEvent.TIMER, ZoomLower);
102 }

00082_CH05_Cornez.indd 281 7/19/11 10:35:49 AM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

282 Chapter 5 Selective Control and Advanced Animations

 5.11 Case Study 5: Billiard Physics

In this case study, we explore several important physical concepts in the game of bil-
liards. Our focus is a pared-down game that revolves around a user hitting a cue ball
with a cue stick.

algorithm Design

Three display objects will be used by the ActionScript 3.0 code: Stick, CueBall, and
RedBall. In addition, a table and an image of a green cloth will provide visual boundar-
ies to aid the player in the game (Figure 5-14). We assume both balls on the billiard
table are of the same mass. The frame rate for this application is set to 30 frames per
second to smooth animations.

In addition to delving into the mechanisms behind aiming the cue stick and strik-
ing a ball with it, four important physical concepts are explored in this algorithm:

 1. Velocity vectors

 2. Friction

 3. Impulse

 4. Conservation of momentum

FIguRe 5-14 Billiards application.

Stick CueBall RedBall

00082_CH05_Cornez.indd 282 7/19/11 10:35:50 AM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

 5.11 Case Study 5: Billiard Physics 283

Velocity Vector

The velocity of a given ball is the speed at which it moves in a given direction. Figure
5-15 shows the velocity vectors indicating both direction and speed for two balls.
Notice that the red ball moves from left to right at nearly half the speed of the cue ball
sitting to the right. The velocity vector of a given ball can be deconstructed into its
velocity along the x-axis and its velocity along the y-axis. In this case study, we will
refer to these velocities as xVelocity and yVelocity, respectively.

FIguRe 5-15 Velocity vectors for two balls in motion.

Friction

One important element of billiards is the green felt table cloth, which provides trac-
tion as well as friction. Friction is the resistance the ball encounters as it rolls over
the surface of the table cloth, causing it to slow down. The velocity of a moving ball
is constantly changing due to the force of friction. Friction will be applied to moving
balls in this case study.

Impulse

Impulse is the change in momentum of an object. In other words, it refers to the hit and
the resulting transference of velocity from one object to the object it has impacted.

In this game, the user attempts to strike the cue ball with the stick. Once hit, the
cue ball moves with similar velocity and direction. Thus the momentum from the
stick is transferred to the cue ball, forcing it to move across the billiards table with an
initial velocity.

00082_CH05_Cornez.indd 283 7/19/11 10:35:50 AM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

284 Chapter 5 Selective Control and Advanced Animations

Conservation of Momentum

Momentum is a conserved quantity. The total momentum during and following a col-
lision will be the same. For example, when one ball hits another, the first ball imparts
velocity to the second through momentum. As shown in Figure 5-16, when the cue
ball hits the red ball, the red ball, which is initially at rest, is transferred a good deal
of speed; simultaneously, the velocity of the cue ball decreases. Together, the new
velocities add up to the momentum before impact. Notice that after impact, the red
ball moves in the direction of the impulse, which is the line joining the center of the
two balls.

FIguRe 5-16 Momentum before and after the collision of two balls in motion.

00082_CH05_Cornez.indd 284 7/19/11 10:35:50 AM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

 5.11 Case Study 5: Billiard Physics 285

The theory of conservation of momentum, along with the initial velocity vectors
of the colliding balls, can be used to compute the trajectories after impact. The line of
collision is drawn at a tangent to both balls at the point of contact. This line is perpen-
dicular to the line of impulse, which passes through the center of the two balls at the
point of contact. Using geometry, we can see that the line of collision also makes an
angle u with the vertical, and the line of impulse makes an angle u with the horizontal.
This behavior follows the geometric principle that the angle of incidence will equal
the angle of reflection.

As you will notice soon in the AS3 code, the physics of billiards is complex.
To develop such a game, programmers need to be proficient in trigonometry and the
practical usage of the physics.

Interactive Cue Stick Functionality

The cue stick is the user’s only tool for interaction. Placing a strict restriction in its
functionality so that it aims solely at the cue ball will provide a better gaming experi-
ence for the user. The stick is flexible only in its ability to follow the mouse cursor,
which enables the user to direct a shot from any angle. As Figure 5-17 illustrates,
trigonometry is used to compute the angle of rotation, u, for the stick.

u = Math.atan2(dy, dx);

FIguRe 5-17 The billiards stick shooting the cue ball from angle u.

dx

dy

algorithm Functions

The AS3 code for this application consists of the class constructor billiardsApp(),
which initializes the game, and aimStick(), startShoot(), and billiardsEngine(),

00082_CH05_Cornez.indd 285 7/19/11 10:35:51 AM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

286 Chapter 5 Selective Control and Advanced Animations

which control the animation and drive the game. In addition, three auxiliary func-
tions perform the tasks completing a shot and responding to movement and collisions.
Table 5-12 lists the seven functions and Figure 5-18 illustrates their relationship.

TaBLe 5-12 billiardsApp Program Functions

Function Name Description
billiardsApp() The class constructor. After launching, it initializes the visual element

properties and registers the events for interaction and animation.
aimStick() Performs the task of aiming the cue stick at the cue ball. This event

handler imposes a strict and constant aim on the cue ball by responding
to the ENTER_FRAME event.

startShoot() An event handler that responds to the event MOUSE_DOWN. This function
starts the task of allowing the user to shoot the cue ball. It also initi-
ates the event handler, finishShoot(), for completing the shot. Finally, it
initializes collision detection tasks by calling the appropriate functions.

finishShoot() An event handler that responds to the event MOUSE_UP. This function
ends the task of the user shooting the cue ball.

billiardsEngine() Drives the game of billiards by calling appropriate functions to move
the balls and check for and respond to collisions.

moveBall() Moves an individual ball, computes the decrease in velocity from fric-
tional force, and responds to ball and table wall collisions.

checkCollision() Checks for a collision between the two balls. If a collision has occurred,
it responds by computing the new trajectories.

FIguRe 5-18 Relationship of the functions used by the billiards game.

checkCollision()moveBall()finishShoot()

billiardsEngine()startShoot()aimStick()

billiardsApp()

game Constants

Billiards will utilize many of the same constants required by the game of Pong. The
game of Pong used constant values when identifying collisions and reversing direction

00082_CH05_Cornez.indd 286 7/19/11 10:35:51 AM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

 5.11 Case Study 5: Billiard Physics 287

of the ball. These constants can be divided into three categories for the billiards game.
The first represents the radius of the ball, which is set to 16 pixels. This constant is
used to calculate the boundaries within which the ball can freely move. The second
category represents the concrete boundaries of the table—TOP, BOTTOM, LEFT, and RIGHT.
As in the Pong game, the TOP boundary is not zero, but rather the point at which the
ball strikes the top rail of the table, which is the radius of the ball. Lines 12–15 are
constant declarations for these boundaries.

The final constant is REVERSE, 21. When the ball’s current velocity is multiplied
by this constant, the velocity is negated to reverse the ball’s direction.

The package requires the display and events library classes. The final lines contain
closing curly brackets to conclude the billiardsApp class and the package.

1 package {
2 import flash.display.*;
3 import flash.events.*;
4
5 public class billiardsApp extends MovieClip {
6 // GAME CONSTANTS
7 const REVERSE:Number=-1; //REVERSE DIRECTION OF MOVING OBJECTS
8 const DIAMETER:Number=20; //DIAMETER OF THE BILLIARD BALLS
9 const FRICTION:Number=.96; //FRICTION OF THE BALLS ON THE TABLE
10 const MINSPEED:Number=.1; //A BALL IS CONSIDERED STOPPED
11
12 const LEFT:Number=285; //LEFT OF THE TABLE
13 const RIGHT:Number=734; //RIGHT OF THE TABLE
14 const TOP:Number=241; //TOP OF THE TABLE
15 const BOTTOM:Number=480; //BOTTOM OF THE TABLE
16

⋮

157 }
158 }

The initial velocity vector of the cue ball is used to compute the resulting velocity
vectors for both balls following a collision. Thus, if the ball hits the side of the table
at an angle of 25 degrees, it will rebound at that angle.

Function billiardsApp() Design

This function initializes the ball properties and registers an event to wait for the user
to use the cue stick.

17 function billiardsApp() {
18 //TASK 1: SET THE VELOCITIES OF EACH BALL TO ZERO
19 CueBall.width=DIAMETER;
20 CueBall.height=DIAMETER;

00082_CH05_Cornez.indd 287 7/19/11 10:35:51 AM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

288 Chapter 5 Selective Control and Advanced Animations

21 RedBall.width=DIAMETER;
22 RedBall.height=DIAMETER;
23
24 //TASK 2: POSITION BALLS ON THE TABLE
25 CueBall.x=400;
26 CueBall.y=350;
27 RedBall.x=600;
28 RedBall.y=350;
29
30 //TASK 3: SET THE VELOCITY OF EACH BALL TO ZERO
31 CueBall.xVelocity=0;
32 CueBall.yVelocity=0;
33 RedBall.xVelocity=0;
34 RedBall.yVelocity=0;
35
36 //TASK 4: ALWAYS AIM THE STICK AT THE CUE BALL
37 stick.addEventListener(Event.ENTER_FRAME,aimStick);
38
39 //TASK 5: WAIT FOR USER TO START TO SHOOT MOUSE DOWN
40 stick.addEventListener(MouseEvent.MOUSE_DOWN,startShoot);
41 //TASK 6: AT EVERY FRAME, CHECK IF A BALL SHOULD MOVE
42 addEventListener(Event.ENTER_FRAME,gameEngine);
43 }
44

Function aimStick() Design

Aiming the stick requires positioning its tip at the cue ball. The angle of the stick can
be adjusted by moving it along with the mouse. The angle is computed using right
triangle properties.

45 function aimStick(event:Event) {
46 //ROTATES THE ANGLE OF THE CUE STICK TO POINT AT THE WHITE BALL
47 var dx:Number=CueBall.x-mouseX;
48 var dy:Number=CueBall.y-mouseY;
49 var angle:Number=Math.atan2(dy,dx);
50 stick.rotation=angle*180/Math.PI;
51 stick.x=mouseX;
52 stick.y=mouseY;
53 }
54

Function startShoot() Design

This function begins the process of shooting the cue ball with the stick. If the ball has
successfully been hit, the event handler function FinishShoot() is called to complete
the task.

00082_CH05_Cornez.indd 288 7/19/11 10:35:51 AM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

 5.11 Case Study 5: Billiard Physics 289

55 function startShoot(event:MouseEvent) {
56 //TASK 1: LOCATE THE DISTANCE BETWEEN THE STICK AND THE BALL
57 var dx:Number=CueBall.x-mouseX;
58 var dy:Number=CueBall.y-mouseY;
59 var dist:Number=Math.sqrt(dx*dx+dy*dy);
60
61 //TASK 2: IF WITHIN SHOOTING DISTANCE,
62 // WAIT FOR THE USER TO FINISH THE SHOT
63 if (dist > 110) {
64 //TASK 3: STORE THE STARTING POSITION OF THE SHOT
65 stick.startx=stick.x;
66 stick.starty=stick.y;
67 stick.addEventListener(Event.ENTER_FRAME,FinishShoot);
68 }
69 }
70

Function FinishShoot() Design

This function is the event handler for completing a shot. The velocity of CueBall is
computed based on the distance of the stick and the ball when the process began.

71 function FinishShoot(event:Event) {
72 //TASK 1: COMPUTE DISTANCE BETWEEN STICK AND CUE BALL
73 var dx:Number=CueBall.x-stick.x;
74 var dy:Number=CueBall.y-stick.y;
75 var dist:Number=Math.sqrt(dx*dx+dy*dy);
76
77 //CHECK IF THE STICK HAS JUST HIT THE WHITE BALL
78 if (dist < 110) {
79 //TASK 2: COMPUTE THE NEW VELOCITY OF THE WHITE BALL
80 CueBall.xVelocity=(stick.x-stick.startx)/4;
81 CueBall.yVelocity=(stick.y-stick.starty)/4;
82 //TASK 3: THE FINISH SHOOT OPERATION IS DONE
83 stick.removeEventListener(Event.ENTER_FRAME,FinishShoot);
84 }
85 }
86

Function gameEngine() Design

This function is the event handler for the ENTER_FRAME event registered by the applica-
tion constructor billiardsApp(). It is also the animation engine that takes the game
from static mode to dynamic play by directing the movement at regular intervals. In
addition, this function is responsible for directing collision detection between the two
balls on the Stage.

00082_CH05_Cornez.indd 289 7/19/11 10:35:51 AM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

290 Chapter 5 Selective Control and Advanced Animations

87 function gameEngine(event:Event) {
88 //TASK 1: MOVE EACH BALL ON STAGE
89 moveBall(CueBall);
90 moveBall(RedBall);
91
92 //TASK 1: CHECK IF BALLS HAVE COLLIDED
93 checkBalltoBall();
94 }

Function moveBall() Design

This function moves an individual ball, applies friction, and checks for collisions
along the table walls. The object Ball is a parameter: It is a variable that represents
either the CueBall or the RedBall. By utilizing this variable, this function is written to
perform the tasks for either ball.

95 function moveBall(Ball) {
96 //TASK 1: MOVE THE GIVEN BALL ITS FIXED SPEED
97 Ball.x+=Ball.xVelocity;
98 Ball.y+=Ball.yVelocity;
99
100 //TASK 2: APPLY FRICTION TO THE BALL
101 Ball.xVelocity*=FRICTION;
102 Ball.yVelocity*=FRICTION;
103
104 //TASK 3: IF A WALL IS HIT, CHANGE DIRECTION
105 if (Ball.x > RIGHT) {
106 Ball.xVelocity*=REVERSE;
107 Ball.x=RIGHT;
108 } else if (Ball.x < LEFT) {
109 Ball.xVelocity*=REVERSE;
110 Ball.x=LEFT;
111 }
112 if (Ball.y > BOTTOM) {
113 Ball.yVelocity*=REVERSE;
114 Ball.y=BOTTOM;
115 } else if (Ball.y < TOP) {
116 Ball.yVelocity*=REVERSE;
117 Ball.y=TOP;
118 }
119
120 //TASK 4: DETERMINE IF THE BALL HAS STOPPED MOVING
121 var speed:Number;
122 speed =Math.sqrt(Ball.xVelocity*Ball.xVelocity+Ball.yVelocity*Ball.yVe-
locity);

00082_CH05_Cornez.indd 290 7/19/11 10:35:51 AM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

 Review Questions 291

123 if (speed < MINSPEED) {
124 Ball.xVelocity=0;
125 Ball.yVelocity=0;
126 }
127 }
128

Function checkBalltoBall() Design

This function is called to compute the resulting velocities and angles when the balls
have collided with each other.

129 function checkBalltoBall() {
130 //TASK 1: COMPUTE THE DISTANCE BETWEEN THE TWO BALLS
131 var dx:Number=CueBall.x-RedBall.x;
132 var dy:Number=CueBall.y-RedBall.y;
133 var dist:Number=Math.sqrt(dx*dx+dy*dy);
134
135 // HAVE THE BALLS COLLIDED?
136 if (dist < DIAMETER) {
137 //TASK 2: COMPUTE THE ANGLE OF COLLISION
138 var angle=Math.atan2(dy,dx);
139
140 //TASK 3: COMPUTE THE COSINE AND SINE OF THE ANGLE OF COLLISION
141 var cosineAngle=Math.cos(angle);
142 var sinAngle=Math.sin(angle);
143
144 //TASK 4: COMPUTE THE VELOCITIES ALONG THE ANGLE OF COLLISION
145 var xVelocity2=cosineAngle*CueBall.xVelocity+sinAngle*CueBall.yVelocity;
146 var yVelocity1=cosineAngle*CueBall.yVelocity-sinAngle*CueBall.xVelocity;
147 var xVelocity1=cosineAngle*RedBall.xVelocity+sinAngle*RedBall.yVelocity;
184 var yVelocity2=cosineAngle*RedBall.yVelocity-sinAngle*RedBall.xVelocity;
149
150 //TASK 5: ASSIGN NEW TRAJECTORIES FOR BOTH BALLS
151 CueBall.xVelocity=cosineAngle*xVelocity1-sinAngle*yVelocity1;
152 CueBall.yVelocity=cosineAngle*yVelocity1+sinAngle*xVelocity1;
153 RedBall.xVelocity=cosineAngle*xVelocity2-sinAngle*yVelocity2;
154 RedBall.yVelocity=cosineAngle*yVelocity2+sinAngle*xVelocity2;
155 }
156 }

 Review Questions

 1. What is a logical expression?

 2. Give an example of a simple Boolean expression.

 3. Give an example of a compound Boolean expression. How does a compound
Boolean expression differ from a simple Boolean expression?

00082_CH05_Cornez.indd 291 7/19/11 10:35:51 AM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

292 Chapter 5 Selective Control and Advanced Animations

 4. Identify the three logical operators and describe how they work.

 5. What is the if statement used for?

 6. List and briefly describe the six relational operators provided by AS3.

 7. What value is used to represent false in the computer?

 8. What value is used to represent true in the computer?

 9. How does a switch statement differ from an if statement?

 exercises

Evaluate the following logical expressions. Provide an answer of true or false.
 1. (!0)

 2. (5 + 4 < 3 && 7 + 3 <= 20)

 3. (int (3.9) != 3)

 4. (!(7 == 7))

 5. (3 % 2)

 6. (!1 || !0)

 7. (3 != 2 || 7 == 7 && 10 < 9)

Determine the output for each of the following program segments. Assume that n1 and
n2 have the following assignments prior to the execution of each if operation:

var n1:Number = 2;
var n2:Number = 3;

 8. if (n1 < n2){
 trace (“n1 = “ , n1);
 trace (“n2 = “ , n2);
}

 9. if (n1 == ‘2’){
 trace (“n1 = “ , n1);
}

 10. if (n1){
 trace (“The value of n1 is nonzero.”);
}

 11. if (n1 == n2 - 1){
 var temp:Number = n2;
 n2 = n1;
 n1 = temp;
 trace (“n1 = “ , n1);
 trace (“n2 = “ , n2);
}

00082_CH05_Cornez.indd 292 7/19/11 10:35:52 AM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

 Exercises 293

 12. if ((n1 < n2) && (n2 != 10)){
 var sum:int = n1 + n2;
 trace (“n1 = “ , n1);
 trace (“n2 = “ , n2);
 trace (“Sum = “ , sum);
}

 13. if ((n1 > n2) || (n1 - n2 < 0)){
 n1 += 1;
 n2 -= 1;
 trace (“n1 = “ , n1);
 trace (“n2 = “ , n2);
}

 14. if (n1 > n2){
 n1 += 1;
}else{
 n2 -= 1;
 trace (“n1 = “ , n1);
 trace (“n2 = “ , n2);
}

 15. if (n1 < n2){
 n1 += 1;
}else{
 n2 -= 1;}
 trace (“n1 = “ , n1);
 trace (“n2 = “ , n2);

 16. if (!(n1 > n2)){
 n1 += 1;
}else{
 n2 -= 1;
 trace (“n1 = “ , n1);
 trace (“n2 = “ , n2);
}

 17. if ((n1 > n2) || (n1 * n2 < 0)){
 n1 +=1;
 n2 -= 1;
 trace (“n1 = “ , n1);
 trace (“n2 = “ , n2);
}
trace (“n1 = “ , n1);
trace (“n2 = “ , n2);

 18. if (n1 < n2){
 n1 +=1;
 n2 -= 1;
 trace (“n1 = “ , n1);
 trace (“n2 = “ , n2);
}

00082_CH05_Cornez.indd 293 7/19/11 10:35:52 AM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

294 Chapter 5 Selective Control and Advanced Animations

trace (“n1 = “ , n1);
trace (“n2 = “ , n2);

 19. Write an if statement that displays “not zero” when the value of variable num1 (a
Number) is nonzero.

 20. Write an if statement that displays “BLUE” when both num1 and num2 (Number
variables) are positive or both negative.

 21. Write an if statement that displays “IN RANGE” when num1 (a Number variable)
is between 210 and 10.

 22. Rewrite the following segment of code in the most efficient way possible.

if ((n1 < n2) && (n1 == 0)){
 trace (“ORANGE”);
}
if ((n1 < n2) && (n1 != 0)){
 trace (“APPLE”);
}
if (n1 >= n2){
 trace (“BANANA”);
}

 23. Write an if statement that displays “Out of Range” if the input text box entry
input0 is negative or is greater than 100.

 24. Write an efficient if statement to assign num3 the following values:

 8 if num1 is less than 1.5

 7 if 1.5 <= num1 < 2.5

 6 otherwise

 25. Write a segment of AS3 code to do the following:

 a. Assume values exist for variables num1, num2, and num3 (all uints).

 b. If num3 is a 1, calculate and display the sum of num1 and num2.

 c. Otherwise, output the difference of num1 and num2.

 26. Write a switch statement that does the following:

 a. Increases balance (a Number variable) by adding amount (a Number variable) to it
if the value of transaction (a String variable) is “Deposit”.

 b. Decreases balance by subtracting amount from it if the value of transaction is
“Withdrawal”.

 c. Display the value of balance if the value of transaction is “Display”.

 d. Display “Illegal transaction” otherwise.

00082_CH05_Cornez.indd 294 7/19/11 10:35:52 AM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

 Projects 295

 Projects

 1. The city of Flowerville bills its residents for water consumption. The charges are
based on usage according to the following table:

Water used Rate

First 200 cubic meters $5.00 minimum cost

Next 430 cubic meters $0.10 per cubic meter

Next 570 cubic meters $0.07 per cubic meter

More than 1000 cubic meters $0.02 per cubic meter

 Create an application that computes the charges for a given amount of water
usage. Provide error detection capabilities to identify incorrect input by the user.

 2. Write an application that allows the user to enter a date and then determine its
validity. If the date is invalid, an error message should be displayed explaining
precisely where the error is. If the date is valid, the program should compute the
day of the year. During leap years, there are 29 days in February. During non-leap
years, there are exactly 28 days. To be a leap year, the year must be evenly divis-
ible by 4. However, not all years evenly divisible by 4 are leap years. Years whose
last two digits are zero are century years; for example, 1800, 1900, and 2000 are
century years. Century years are leap years only if they are evenly divisible by
400. Thus the years 1600 and 2000 are leap years; 1700, 1800, and 1900 are not
leap years.

Example date 1:

Day: 1 Month: 13 Year: 2001

Display: This date has an error. 13 is an invalid month.

Example date 2:

Day: 12 Month: 3 Year: 3012

Display: This is day number 72 of the leap year 3012.

 3. Write an interactive application that plays the game of Rock, Paper, Scissors. In
this game, the user will play against the computer. Provide buttons for the user to
choose “rock,” “paper,” or “scissors.” Your program must be able to generate a
random choice for the computer. The winner is the one whose choice dominates
the other.

 4. Rewrite the game of Pong in Case Study 1 so that when the ball falls through the
BOTTOM of the stage, the listener event moving the ball is eliminated.

00082_CH05_Cornez.indd 295 7/19/11 10:35:52 AM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

296 Chapter 5 Selective Control and Advanced Animations

 5. Enhance the game of Pong further by keeping track of how many successful hits
the user makes. Make the game more challenging by increasing the velocity of the
ball with each successful hit.

 6. Modify the pet fish application to have the fish die after a set number of feedings
and rotate and float to the top of the tank.

 7. Modify the pet fish application to have the fish randomly select two toys to play
with.

 8. Make enhancements to the pet fish application from Case Study 3.

 a. Add animation to each stage of its life—eating, sleeping, and moving. Use a
switch statement.

 b. Introduce an obstacle to fish tank that requires the fish to navigate around it.

 c. Decrease the food size as the pet fish feeds.

 d. Add a predator object to the aquarium.

00082_CH05_Cornez.indd 296 7/19/11 10:35:52 AM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

