
195

CHAPTER

“When you wish to produce a result by means of an instrument, do not

allow yourself to complicate it.”

—Leonardo da Vinci

4
MARIE: An Introduction
to a Simple Computer

4.1 INTRODUCTION

D
esigning a computer nowadays is a job for a computer engineer with plenty of
training. It is impossible in an introductory textbook such as this (and in an

introductory course in computer organization and architecture) to present every-
thing necessary to design and build a working computer such as those we can buy
today. However, in this chapter, we first look at a very simple computer called
MARIE: a Machine Architecture that is Really Intuitive and Easy. We then pro-
vide brief overviews of Intel and MIPs machines, two popular architectures
reflecting the CISC and RISC design philosophies. The objective of this chapter
is to give you an understanding of how a computer functions. We have, therefore,
kept the architecture as uncomplicated as possible, following the advice in the
opening quote by Leonardo da Vinci.

4.2 CPU BASICS AND ORGANIZATION

From our studies in Chapter 2 (data representation) we know that a computer
must manipulate binary-coded data. We also know from Chapter 3 that memory is
used to store both data and program instructions (also in binary). Somehow, the
program must be executed and the data must be processed correctly. The central
processing unit (CPU) is responsible for fetching program instructions, decod-
ing each instruction that is fetched, and performing the indicated sequence of
operations on the correct data. To understand how computers work, you must first
become familiar with their various components and the interaction among these

00068_CH04_Null.qxd 10/18/10 12:03 PM Page 195

196 Chapter 4 / MARIE: An Introduction to a Simple Computer

components. To introduce the simple architecture in the next section, we first
examine, in general, the microarchitecture that exists at the control level of mod-
ern computers.

All computers have a CPU that can be divided into two pieces. The first is the
datapath, which is a network of storage units (registers) and arithmetic and logic
units (for performing various operations on data) connected by buses (capable of
moving data from place to place) where the timing is controlled by clocks. The
second CPU component is the control unit, a module responsible for sequencing
operations and making sure the correct data are where they need to be at the cor-
rect time. Together, these components perform the tasks of the CPU: fetching
instructions, decoding them, and finally performing the indicated sequence of
operations. The performance of a machine is directly affected by the design of the
datapath and the control unit. Therefore, we cover these components of the CPU
in detail in the following sections.

4.2.1 The Registers

Registers are used in computer systems as places to store a wide variety of data,
such as addresses, program counters, or data necessary for program execution.
Put simply, a register is a hardware device that stores binary data. Registers are
located on the processor so information can be accessed very quickly. We saw in
Chapter 3 that D flip-flops can be used to implement registers. One D flip-flop is
equivalent to a 1-bit register, so a collection of D flip-flops is necessary to store
multi-bit values. For example, to build a 16-bit register, we need to connect 16 D
flip-flops together. We saw in our binary counter figure from Chapter 3 that these
collections of flip-flops must be clocked to work in unison. At each pulse of the
clock, input enters the register and cannot be changed (and thus is stored) until
the clock pulses again.

Data processing on a computer is usually done on fixed-size binary words
stored in registers. Therefore, most computers have registers of a certain size.
Common sizes include 16, 32, and 64 bits. The number of registers in a machine
varies from architecture to architecture, but is typically a power of 2, with 16 and
32 being most common. Registers contain data, addresses, or control information.
Some registers are specified as “special purpose” and may contain only data, only
addresses, or only control information. Other registers are more generic and may
hold data, addresses, and control information at various times.

Information is written to registers, read from registers, and transferred from
register to register. Registers are not addressed in the same way memory is
addressed (recall that each memory word has a unique binary address beginning
with location 0). Registers are addressed and manipulated by the control unit itself.

In modern computer systems, there are many types of specialized registers:
registers to store information, registers to shift values, registers to compare val-
ues, and registers that count. There are “scratchpad” registers that store temporary
values, index registers to control program looping, stack pointer registers to man-

00068_CH04_Null.qxd 10/18/10 12:03 PM Page 196

4.3 / The Bus 197

age stacks of information for processes, status (or flag) registers to hold the status
or mode of operation (such as overflow, carry, or zero conditions), and general
purpose registers that are the registers available to the programmer. Most comput-
ers have register sets, and each set is used in a specific way. For example, the
Pentium architecture has a data register set and an address register set. Certain
architectures have very large sets of registers that can be used in quite novel ways
to speed up execution of instructions. (We discuss this topic when we cover
advanced architectures in Chapter 9.)

4.2.2 The ALU

The arithmetic logic unit (ALU) carries out the logic operations (such as com-
parisons) and arithmetic operations (such as add or multiply) required during the
program execution. You saw an example of a simple ALU in Chapter 3. Generally
an ALU has two data inputs and one data output. Operations performed in the
ALU often affect bits in the status register (bits are set to indicate actions such
as whether an overflow has occurred). The ALU knows which operations to per-
form because it is controlled by signals from the control unit.

4.2.3 The Control Unit

The control unit is the “policeman” or “traffic manager” of the CPU. It monitors
the execution of all instructions and the transfer of all information. The control
unit extracts instructions from memory, decodes these instructions, making sure
data are in the right place at the right time, tells the ALU which registers to use,
services interrupts, and turns on the correct circuitry in the ALU for the execution
of the desired operation. The control unit uses a program counter register to find
the next instruction for execution and a status register to keep track of overflows,
carries, borrows, and the like. Section 4.13 covers the control unit in more detail.

4.3 THE BUS

The CPU communicates with the other components via a bus. A bus is a set of
wires that acts as a shared but common datapath to connect multiple subsystems
within the system. It consists of multiple lines, allowing the parallel movement of
bits. Buses are low cost but very versatile, and they make it easy to connect new
devices to each other and to the system. At any one time, only one device (be it a
register, the ALU, memory, or some other component) may use the bus. However,
this sharing often results in a communications bottleneck. The speed of the bus is
affected by its length as well as by the number of devices sharing it. Quite often,
devices are divided into master and slave categories; a master device is one that
initiates actions and a slave is one that responds to requests by a master.

A bus can be point-to-point, connecting two specific components (as seen in
Figure 4.1a) or it can be a common pathway that connects a number of devices,

00068_CH04_Null.qxd 10/18/10 12:03 PM Page 197

198 Chapter 4 / MARIE: An Introduction to a Simple Computer

FIGURE 4.1 a) Point-to-Point Buses

b) Multipoint Buses

Serial
Port Modem

ALU
Control

Unit

Computer 1

Computer 2

CPU

Monitor

File
Server

Printer

Memory
Disk

Controller

Disk
Controller

Disk

(a)

(b)

00068_CH04_Null.qxd 10/18/10 12:03 PM Page 198

4.3 / The Bus 199

CPU

Main
Memory

Power

Address Lines

Data Lines

Control Lines

I/O
Device

I/O
Device

I/O Subsystem

FIGURE 4.2 The Components of a Typical Bus

requiring these devices to share the bus (referred to as a multipoint bus and
shown in Figure 4.1b).

Because of this sharing, the bus protocol (set of usage rules) is very impor-
tant. Figure 4.2 shows a typical bus consisting of data lines, address lines, control
lines, and power lines. Often the lines of a bus dedicated to moving data are
called the data bus. These data lines contain the actual information that must be
moved from one location to another. Control lines indicate which device has per-
mission to use the bus and for what purpose (reading or writing from memory or
from an input/output [I/O] device, for example). Control lines also transfer
acknowledgments for bus requests, interrupts, and clock synchronization signals.
Address lines indicate the location (e.g., in memory) that the data should be
either read from or written to. The power lines provide the electrical power nec-
essary. Typical bus transactions include sending an address (for a read or write),
transferring data from memory to a register (a memory read), and transferring
data to the memory from a register (a memory write). In addition, buses are used
for I/O reads and writes from peripheral devices. Each type of transfer occurs
within a bus cycle, the time between two ticks of the bus clock.

Because of the different types of information buses transport and the various
devices that use the buses, buses themselves have been divided into different
types. Processor-memory buses are short, high-speed buses that are closely
matched to the memory system on the machine to maximize the bandwidth
(transfer of data) and are usually design specific. I/O buses are typically longer
than processor-memory buses and allow for many types of devices with varying
bandwidths. These buses are compatible with many different architectures. A
backplane bus (Figure 4.3) is actually built into the chassis of the machine and

00068_CH04_Null.qxd 10/18/10 12:03 PM Page 199

200 Chapter 4 / MARIE: An Introduction to a Simple Computer

System
Bus

Interface
Cards

FIGURE 4.3 Backplane Bus

connects the processor, the I/O devices, and the memory (so all devices share one
bus). Many computers have a hierarchy of buses, so it is not uncommon to have
two buses (e.g., a processor-memory bus and an I/O bus) or more in the same sys-
tem. High-performance systems often use all three types of buses.

Personal computers have their own terminology when it comes to buses. They
have an internal bus (called the system bus) that connects the CPU, memory, and all
other internal components. External buses (sometimes referred to as expansion
buses) connect external devices, peripherals, expansion slots, and I/O ports to the
rest of the computer. Most PCs also have local buses, data buses that connect a
peripheral device directly to the CPU. These high-speed buses can be used to con-
nect only a limited number of similar devices. Expansion buses are slower but allow
for more generic connectivity. Chapter 7 deals with these topics in great detail.

Buses are physically little more than bunches of wires, but they have specific
standards for connectors, timing, and signaling specifications and exact protocols
for use. Synchronous buses are clocked, and things happen only at the clock
ticks (a sequence of events is controlled by the clock). Every device is synchro-
nized by the rate at which the clock ticks, or the clock rate. The bus cycle time
mentioned is the reciprocal of the bus clock rate. For example, if the bus clock
rate is 133 MHz, then the length of the bus cycle is 1/133,000,000 or
7.52 nanoseconds (ns). Because the clock controls the transactions, any clock
skew (drift in the clock) has the potential to cause problems, implying that the
bus must be kept as short as possible so the clock drift cannot get overly large. In
addition, the bus cycle time must not be shorter than the length of time it takes
information to traverse the bus. The length of the bus, therefore, imposes restric-
tions on both the bus clock rate and the bus cycle time.

With asynchronous buses, control lines coordinate the operations, and a com-
plex handshaking protocol must be used to enforce timing. To read a word of data
from memory, for example, the protocol would require steps similar to the following:

1. ReqREAD: This bus control line is activated and the data memory address is put
on the appropriate bus lines at the same time.

00068_CH04_Null.qxd 10/18/10 12:03 PM Page 200

4.4 / Clocks 201

2. ReadyDATA: This control line is asserted when the memory system has put the
required data on the data lines for the bus.

3. ACK: This control line is used to indicate that the ReqREAD or the ReadyDATA
has been acknowledged.

Using a protocol instead of the clock to coordinate transactions means that
asynchronous buses scale better with technology and can support a wider variety
of devices.

To use a bus, a device must reserve it, because only one device can use the bus
at a time. As mentioned, bus masters are devices that are allowed to initiate trans-
fer of information (control bus), and bus slaves are modules that are activated by a
master and respond to requests to read and write data (so only masters can reserve
the bus). Both follow a communications protocol to use the bus, working within
very specific timing requirements. In a very simple system (such as the one we
present in the next section), the processor is the only device allowed to become a
bus master. This is good in terms of avoiding chaos, but bad because the processor
now is involved in every transaction that uses the bus.

In systems with more than one master device, bus arbitration is required.
Bus arbitration schemes must provide priority to certain master devices and, at
the same time, make sure lower priority devices are not starved out. Bus arbitra-
tion schemes fall into four categories:

1. Daisy chain arbitration: This scheme uses a “grant bus” control line that is
passed down the bus from the highest priority device to the lowest priority device.
(Fairness is not ensured, and it is possible that low-priority devices are “starved
out” and never allowed to use the bus.) This scheme is simple but not fair.

2. Centralized parallel arbitration: Each device has a request control line to the
bus and a centralized arbiter selects who gets the bus. Bottlenecks can result
using this type of arbitration.

3. Distributed arbitration using self-selection: This scheme is similar to centralized
arbitration but instead of a central authority selecting who gets the bus, the devices
themselves determine who has highest priority and who should get the bus.

4. Distributed arbitration using collision detection: Each device is allowed to
make a request for the bus. If the bus detects any collisions (multiple simulta-
neous requests), the device must make another request. (Ethernet uses this type
of arbitration.)

Chapter 7 contains more detailed information on buses and their protocols.

4.4 CLOCKS

Every computer contains an internal clock that regulates how quickly instructions
can be executed. The clock also synchronizes all of the components in the sys-
tem. As the clock ticks, it sets the pace for everything that happens in the system,

00068_CH04_Null.qxd 10/18/10 12:03 PM Page 201

202 Chapter 4 / MARIE: An Introduction to a Simple Computer

much like a metronome or a symphony conductor. The CPU uses this clock to
regulate its progress, checking the otherwise unpredictable speed of the digital
logic gates. The CPU requires a fixed number of clock ticks to execute each
instruction. Therefore, instruction performance is often measured in clock
cycles—the time between clock ticks—instead of seconds. The clock frequency
(sometimes called the clock rate or clock speed) is measured in megahertz (MHz)
or gigahertz (GHz), as we saw in Chapter 1. The clock cycle time (or clock
period) is simply the reciprocal of the clock frequency. For example, an 800 MHz
machine has a clock cycle time of 1/800,000,000 or 1.25ns. If a machine has a
2ns cycle time, then it is a 500 MHz machine.

Most machines are synchronous: there is a master clock signal, which ticks
(changing from 0 to 1 to 0 and so on) at regular intervals. Registers must wait for the
clock to tick before new data can be loaded. It seems reasonable to assume that if we
speed up the clock, the machine will run faster. However, there are limits on how
short we can make the clock cycles. When the clock ticks and new data are loaded
into the registers, the register outputs are likely to change. These changed output
values must propagate through all the circuits in the machine until they reach the
input of the next set of registers, where they are stored. The clock cycle must be long
enough to allow these changes to reach the next set of registers. If the clock cycle is
too short, we could end up with some values not reaching the registers. This would
result in an inconsistent state in our machine, which is definitely something we must
avoid. Therefore, the minimum clock cycle time must be at least as great as the
maximum propagation delay of the circuit, from each set of register outputs to regis-
ter inputs. What if we “shorten” the distance between registers to shorten the propa-
gation delay? We could do this by adding registers between the output registers and
the corresponding input registers. But recall that registers cannot change values until
the clock ticks, so we have, in effect, increased the number of clock cycles. For
example, an instruction that would require two clock cycles might now require three
or four (or more, depending on where we locate the additional registers).

Most machine instructions require one or two clock cycles, but some can take
35 or more. We present the following formula to relate seconds to cycles:

It is important to note that the architecture of a machine has a large effect on its
performance. Two machines with the same clock speed do not necessarily exe-
cute instructions in the same number of cycles. For example, a multiply operation
on an older Intel 286 machine required 20 clock cycles, but on a new Pentium, a
multiply operation can be done in 1 clock cycle, which implies the newer
machine would be 20 times faster than the 286, even if they both had the same
internal system clock. In general, multiplication requires more time than addition,
floating-point operations require more cycles than integer ones, and accessing
memory takes longer than accessing registers.

CPU time �
seconds
program

�
instructions

program
�

average cycles

instruction
�

seconds

cycle

00068_CH04_Null.qxd 10/18/10 12:03 PM Page 202

4.5 / The Input/Output Subsystem 203

Generally, when we mention the clock, we are referring to the system clock,
or the master clock that regulates the CPU and other components. However, cer-
tain buses also have their own clocks. Bus clocks are usually slower than CPU
clocks, causing bottleneck problems.

System components have defined performance bounds, indicating the maxi-
mum time required for the components to perform their functions. Manufacturers
guarantee their components will run within these bounds in the most extreme cir-
cumstances. When we connect all of the components together serially, where one
component must complete its task before another can function properly, it is
important to be aware of these performance bounds so we are able to synchronize
the components properly. However, many people push the bounds of certain sys-
tem components in an attempt to improve system performance. Overclocking is
one method people use to achieve this goal.

Although many components are potential candidates, one of the most popular
components for overclocking is the CPU. The basic idea is to run the CPU at
clock and/or bus speeds above the upper bound specified by the manufacturer.
Although this can increase system performance, one must be careful not to create
system timing faults or, worse yet, overheat the CPU. The system bus can also be
overclocked, which results in overclocking the various components that commu-
nicate via the bus. Overclocking the system bus can provide considerable per-
formance improvements, but can also damage the components that use the bus or
cause them to perform unreliably.

4.5 THE INPUT/OUTPUT SUBSYSTEM

Input and output (I/O) devices allow us to communicate with the computer sys-
tem. I/O is the transfer of data between primary memory and various I/O periph-
erals. Input devices such as keyboards, mice, card readers, scanners, voice
recognition systems, and touch screens allow us to enter data into the computer.
Output devices such as monitors, printers, plotters, and speakers allow us to get
information from the computer.

These devices are not connected directly to the CPU. Instead, there is an
interface that handles the data transfers. This interface converts the system bus
signals to and from a format that is acceptable to the given device. The CPU com-
municates to these external devices via I/O registers. This exchange of data is per-
formed in two ways. In memory-mapped I/O, the registers in the interface
appear in the computer’s memory map and there is no real difference between
accessing memory and accessing an I/O device. Clearly, this is advantageous
from the perspective of speed, but it uses up memory space in the system. With
instruction-based I/O, the CPU has specialized instructions that perform the
input and output. Although this does not use memory space, it requires specific
I/O instructions, which implies it can be used only by CPUs that can execute these
specific instructions. Interrupts play a very important part in I/O, because they are

00068_CH04_Null.qxd 10/18/10 12:03 PM Page 203

204 Chapter 4 / MARIE: An Introduction to a Simple Computer

Address 8-bit Address 16-bit

0
1
2
3
...

N–1

0
1
2
3
...

M–1

(a) (b)

FIGURE 4.4 a) N 8-Bit Memory Locations

b) M 16-Bit Memory Locations

an efficient way to notify the CPU that input or output is available for use. We
explore thse I/O methods in detail in Chapter 7.

4.6 MEMORY ORGANIZATION AND ADDRESSING

We saw an example of a rather small memory in Chapter 3. However, we have not
yet discussed in detail how memory is laid out and how it is addressed. It is impor-
tant that you have a good understanding of these concepts before we continue.

You can envision memory as a matrix of bits. Each row, implemented by a
register, has a length typically equivalent to the addressable unit size of the
machine. Each register (more commonly referred to as a memory location) has a
unique address; memory addresses usually start at zero and progress upward. Fig-
ure 4.4 illustrates this concept.

An address is typically represented by an unsigned integer. Recall from
Chapter 2 that four bits are a nibble and eight bits are a byte. Normally, memory
is byte addressable, which means that each individual byte has a unique address.
Some machines may have a word size that is larger than a single byte. For exam-
ple, a computer might handle 32-bit words (which means it can manipulate 32
bits at a time through various instructions and it uses 32-bit registers), but still
employ a byte-addressable architecture. In this situation, when a word uses multi-
ple bytes, the byte with the lowest address determines the address of the entire
word. It is also possible that a computer might be word addressable, which
means each word (not necessarily each byte) has its own address, but most cur-
rent machines are byte addressable (even though they have 32-bit or larger
words). A memory address is typically stored in a single machine word.

If all this talk about machines using byte addressing with words of different
sizes has you somewhat confused, the following analogy may help. Memory is
similar to a street full of apartment buildings. Each building (word) has multiple
apartments (bytes), and each apartment has its own address. All of the apartments
are numbered sequentially (addressed), from 0 to the total number of apartments
in the complex minus one. The buildings themselves serve to group the apart-
ments. In computers, words do the same thing. Words are the basic unit of size

00068_CH04_Null.qxd 10/18/10 12:03 PM Page 204

4.6 / Memory Organization and Addressing 205

Total Items
Total as a Power of 2
Number of Bits

2
21

1

4
22

2

8
23

3

16
24

4

32
25

??

TABLE 4.1 Calculating the Address Bits Required

used in various instructions. For example, you may read a word from or write a
word to memory, even on a byte-addressable machine.

If an architecture is byte addressable, and the instruction set architecture word is
larger than 1 byte, the issue of alignment must be addressed. For example, if we
wish to read a 32-bit word on a byte-addressable machine, we must make sure that
(1) the word is stored on a natural alignment boundary, and (2) the access starts on
that boundary. This is accomplished, in the case of 32-bit words, by requiring the
address to be a multiple of 4. Some architectures allow certain instructions to per-
form unaligned accesses, where the desired address does not have to start on a natu-
ral boundary.

Memory is built from random access memory (RAM) chips. (We cover mem-
ory in detail in Chapter 6.) Memory is often referred to using the notation length
� width (L � W). For example, 4M � 8 means the memory is 4M long (it has
4M = 22 � 220 = 222 items) and each item is 8 bits wide (which means that each
item is a byte). To address this memory (assuming byte addressing), we need to
be able to uniquely identify 222 different items, which means we need 222 differ-
ent addresses. Because addresses are unsigned binary numbers, we need to count
from 0 to (222 � 1) in binary. How many bits does this require? Well, to count
from 0 to 3 in binary (for a total of four items), we need 2 bits. To count from 0 to
7 in binary (for a total of eight items), we need 3 bits. To count from 0 to 15 in
binary (for a total of 16 items), we need 4 bits. Do you see a pattern emerging
here? Can you fill in the missing value for Table 4.1?

The correct answer to the missing table entry is 5 bits. The number of bits
required for our 4M memory is 22. Since most memories are byte addressable, we
say we need N bits to uniquely address each byte. In general, if a computer has 2N

addressable units of memory, it requires N bits to uniquely address each unit.
To better illustrate the difference between words and bytes, suppose the

4M � 8 memory referred to in the previous example were word addressable
instead of byte addressable and each word were 16 bits long. There are 222 unique
bytes, which implies there are 222 ÷ 2 = 221 total words, which would require 21,
not 22, bits per address. Each word would require two bytes, but we express the
address of the entire word by using the lower byte address.

While most memory is byte addressable and 8 bits wide, memory can vary in
width. For example, a 2K � 16 memory holds 211 = 2048 16-bit items. This type
of memory is typically used on a word-addressable architecture with 16-bit words.

Main memory is usually larger than one RAM chip. Consequently, these chips
are combined into a single memory of the desired size. For example, suppose you
need to build a 32K � 8 byte-addressable memory and all you have are 2K � 8
RAM chips. You could connect 16 rows of chips together as shown in Figure 4.5.

00068_CH04_Null.qxd 10/18/10 12:03 PM Page 205

206 Chapter 4 / MARIE: An Introduction to a Simple Computer

Row 0

Row 1

Row 15

2K � 8

2K � 8

2K � 8

•••

FIGURE 4.5 Memory as a Collection of RAM Chips

Each chip addresses 2K bytes. Addresses for this memory must have 15 bits
(there are 32K = 25 � 210 bytes to access). But each chip requires only 11 address
lines (each chip holds only 211 bytes). In this situation, a decoder is needed to
decode either the leftmost or rightmost 4 bits of the address to determine which
chip holds the desired data. Once the proper chip has been located, the remaining
11 bits are used to determine the offset on that chip. Whether we use the 4 left-
most or 4 rightmost bits depends on how the memory is interleaved.

A single memory module causes sequentialization of access (only one mem-
ory access can be performed at a time). Memory interleaving, which splits mem-
ory across multiple memory modules (or banks), can be used to help relieve this.
With low-order interleaving, the low-order bits of the address are used to select
the bank; in high-order interleaving, the high-order bits of the address are used.

Suppose we have a byte-addressable memory consisting of 8 modules of 4
bytes each, for a total of 32 bytes of memory. We need 5 bits to uniquely identify
each byte. Three of these bits are used to determine the module (we have 23 = 8
modules), and the remaining two are used to determine the offset within that
module. High-order interleaving, the most intuitive organization, distributes the
addresses so that each module contains consecutive addresses, as we see with the
32 addresses in Figure 4.6. Module 0 contains the data stored at addresses 0, 1, 2,
and 3; module 1 contains the data stored at addresses 4, 5, 6, and 7; and so on.

Module 0

0

1

2

3

Module 1

4

5

6

7

Module 2

8

9

10

11

Module 3

12

13

14

15

Module 4

16

17

18

19

Module 5

20

21

22

23

Module 6

24

25

26

27

Module 7

28

29

30

31

FIGURE 4.6 High-Order Memory Interleaving

00068_CH04_Null.qxd 10/18/10 12:03 PM Page 206

Consider address 3, which in binary (using our required 5 bits), is 00011. High-
order interleaving uses the leftmost three bits (000) to determine the module (so
the data at address 3 is in module 0). The remaining two bits (11) tell us that the
desired data is at offset 3 (112 is decimal value 3), the last address in module 0.

Low-order interleaved memory places consecutive addresses of memory in
different memory modules. Figure 4.7 shows low-order interleaving on 32
addresses. In this figure, we see that module 0 now contains the data stored at
addresses 0, 8, 16, and 24. To locate address 3 (00011), low-order interleaving
uses the rightmost 3 bits to determine the module (which points us to module 3),
and the remaining two bits, 00, tell us to look at offset zero within that module. If
you check module 3 in Figure 4.7, this is precisely where we find address 3.

With the appropriate buses using low-order interleaving, a read or write using
one module can be started before a read or write using another module actually
completes (reads and writes can be overlapped). For example, if an array of
length 4 is stored in the above example of memory using high-order interleaving
(stored at addresses 0, 1, 2, and 3), we are forced to access each array element
sequentially, as the entire array is stored in one module. If, however, low-order
interleaving is used (and the array is stored in modules 0, 1, 2, and 3 at offset 0 in
each), we can access the array elements in parallel because each array element is
in a different module.

Let’s return to the memory shown in Figure 4.5, a 32K � 8 memory consist-
ing of 16 chips (modules) of size 2K � 8 each. Memory is 32K = 25 � 210 = 215

addressable units (in this case, bytes), which means we need 15 bits for each
address. Each chip holds 2K = 211 bytes, so 11 bits are used to determine the off-
set on the chip. There are 16 = 24 chips, so we need 4 bits to determine the chip.
Consider the address 001000000100111. Using high-order interleaving, we use
the 4 leftmost bits to determine the chip, and the remaining 11 as the offset:

15-bits

0010 00000100111

chip offset on chip

4 bits 11 bits

4.6 / Memory Organization and Addressing 207

Module 0

0

8

16

24

Module 1

1

9

17

25

Module 2

2

10

18

26

Module 3

3

11

19

27

Module 4

4

12

20

28

Module 5

5

13

21

29

Module 6

6

14

22

30

Module 7

7

15

23

31

FIGURE 4.7 Low-Order Memory Interleaving

00068_CH04_Null.qxd 10/18/10 12:03 PM Page 207

The data at address 001000000100111 is stored on chip 2 (00102) at offset 39
(000001001112). If we use low-order interleaving, the rightmost 4 bits are used to
determine the chip:

So the data, using low-order interleaving, is stored on chip 7 (01112) at offset 258
(001000000102).

Although low-order interleaving allows for concurrent access of data stored
sequentially in memory (such as an array or the instructions in a program), high-
order interleaving is more intuitive. Therefore, for the remainder of the book, we
assume high-order interleaving is being used.

The memory concepts we have covered are very important and appear in var-
ious places in the remaining chapters, in particular in Chapter 6, which discusses
memory in detail. The key concepts to focus on are: (1) Memory addresses are
unsigned binary values (although we often view them as hex values because it is
easier), and (2) The number of items to be addressed determines the numbers of
bits that occur in the address. Although we could always use more bits for the
address than required, that is seldom done because minimization is an important
concept in computer design.

4.7 INTERRUPTS

We have introduced the basic hardware information required for a solid under-
standing of computer architecture: the CPU, buses, control unit, registers, clocks,
I/O, and memory. However, there is one more concept we need to cover that deals
with how these components interact with the processor: Interrupts are events
that alter (or interrupt) the normal flow of execution in the system. An interrupt
can be triggered for a variety of reasons, including:

• I/O requests
• Arithmetic errors (e.g., division by 0)
• Arithmetic underflow or overflow
• Hardware malfunction (e.g., memory parity error)
• User-defined break points (such as when debugging a program)

15-bits

011100100000010

chipoffset on chip

4 bits11 bits

208 Chapter 4 / MARIE: An Introduction to a Simple Computer

00068_CH04_Null.qxd 10/18/10 12:03 PM Page 208

4.8 / MARIE 209

• Page faults (this is covered in detail in Chapter 6)
• Invalid instructions (usually resulting from pointer issues)
• Miscellaneous

The actions performed for each of these types of interrupts (called interrupt
handling) are very different. Telling the CPU that an I/O request has finished is
much different from terminating a program because of division by 0. But these
actions are both handled by interrupts because they require a change in the nor-
mal flow of the program’s execution.

An interrupt can be initiated by the user or the system, can be maskable (dis-
abled or ignored) or nonmaskable (a high priority interrupt that cannot be dis-
abled and must be acknowledged), can occur within or between instructions, may
be synchronous (occurs at the same place every time a program is executed) or
asynchronous (occurs unexpectedly), and can result in the program terminating or
continuing execution once the interrupt is handled. Interrupts are covered in more
detail in Section 4.9.2 and in Chapter 7.

Now that we have given a general overview of the components necessary for
a computer system to function, we proceed by introducing a simple, yet func-
tional, architecture to illustrate these concepts.

4.8 MARIE

MARIE, a Machine Architecture that is Really Intuitive and Easy, is a simple
architecture consisting of memory (to store programs and data) and a CPU (con-
sisting of an ALU and several registers). It has all the functional components
necessary to be a real working computer. MARIE will help to illustrate the con-
cepts in this and the preceding three chapters. We describe MARIE’s architecture
in the following sections.

4.8.1 The Architecture

MARIE has the following characteristics:

• Binary, two’s complement
• Stored program, fixed word length
• Word (but not byte) addressable
• 4K words of main memory (this implies 12 bits per address)
• 16-bit data (words have 16 bits)
• 16-bit instructions, 4 for the opcode and 12 for the address
• A 16-bit accumulator (AC)
• A 16-bit instruction register (IR)

00068_CH04_Null.qxd 10/18/10 12:03 PM Page 209

210 Chapter 4 / MARIE: An Introduction to a Simple Computer

Memory Address 0

Memory Address 4K–1

ALU
AC

OutREG

InREG

MBR MAR

PC IR

Control Unit

The CPU

Main
Memory

FIGURE 4.8 MARIE’s Architecture

• A 16-bit memory buffer register (MBR)
• A 12-bit program counter (PC)
• A 12-bit memory address register (MAR)
• An 8-bit input register
• An 8-bit output register

Figure 4.8 shows the architecture for MARIE.
Before we continue, we need to stress one important point about memory. In

Chapter 3, we presented a simple memory built using D flip-flops. We emphasize
again that each location in memory has a unique address (represented in binary)
and each location can hold a value. These notions of the address versus what is
actually stored at that address tend to be confusing. To help avoid confusion,
visualize a post office. There are post office boxes with various “addresses” or
numbers. Inside the post office box, there is mail. To get the mail, the number of
the post office box must be known. The same is true for data or instructions that
need to be fetched from memory. The contents of any memory address are manip-
ulated by specifying the address of that memory location. We shall see that there
are many different ways to specify this address.

00068_CH04_Null.qxd 10/18/10 12:03 PM Page 210

4.8 / MARIE 211

4.8.2 Registers and Buses

Registers are storage locations within the CPU (as illustrated in Figure 4.8). The
ALU portion of the CPU performs all of the processing (arithmetic operations,
logic decisions, etc.). The registers are used for very specific purposes when pro-
grams are executing: They hold values for temporary storage, data that is being
manipulated in some way, or results of simple calculations. Many times, registers
are referenced implicitly in an instruction, as we see when we describe the
instruction set for MARIE in Section 4.8.3.

In MARIE, there are seven registers, as follows:

• AC: The accumulator, which holds data values. This is a general-purpose
register and holds data that the CPU needs to process. Most computers today
have multiple general-purpose registers.

• MAR: The memory address register, which holds the memory address of the
data being referenced.

• MBR: The memory buffer register, which holds either the data just read
from memory or the data ready to be written to memory.

• PC: The program counter, which holds the address of the next instruction to
be executed in the program.

• IR: The instruction register, which holds the next instruction to be executed.
• InREG: The input register, which holds data from the input device.
• OutREG: The output register, which holds data for the output device.

The MAR, MBR, PC, and IR hold very specific information and cannot be
used for anything other than their stated purposes. For example, we could not
store an arbitrary data value from memory in the PC. We must use the MBR or
the AC to store this arbitrary value. In addition, there is a status or flag regis-
ter that holds information indicating various conditions, such as an overflow
in the ALU. However, for clarity, we do not include that register explicitly in
any figures.

MARIE is a very simple computer with a limited register set. Modern
CPUs have multiple general-purpose registers, often called user-visible regis-
ters, that perform functions similar to those of the AC. Today’s computers also
have additional registers; for example, some computers have registers that
shift data values and other registers that, if taken as a set, can be treated as a
list of values.

MARIE cannot transfer data or instructions into or out of registers without a
bus. In MARIE, we assume a common bus scheme. Each device connected to
the bus has a number, and before the device can use the bus, it must be set to
that identifying number. We also have some pathways to speed up execution.
We have a communication path between the MAR and memory (the MAR pro-
vides the inputs to the address lines for memory so the CPU knows where in

00068_CH04_Null.qxd 10/18/10 12:03 PM Page 211

212 Chapter 4 / MARIE: An Introduction to a Simple Computer

Bus

16-bit bus

0

1

2

3

4

5

6

7

Main Memory

MAR

PC

MBR

AC

InREG

OutREG

IR

ALU

FIGURE 4.9 Datapath in MARIE

memory to read or write), and a separate path from the MBR to the AC. There is
also a special path from the MBR to the ALU to allow the data in the MBR to be
used in arithmetic operations. Information can also flow from the AC through
the ALU and back into the AC without being put on the common bus. The
advantage gained using these additional pathways is that information can be put
on the common bus in the same clock cycle in which data are put on these other
pathways, allowing these events to take place in parallel. Figure 4.9 shows the
datapath (the path that information follows) in MARIE.

4.8.3 Instruction Set Architecture

MARIE has a very simple, yet powerful, instruction set. The instruction set
architecture (ISA) of a machine specifies the instructions that the computer can
perform and the format for each instruction. The ISA is essentially an interface
between the software and the hardware. Some ISAs include hundreds of instruc-

00068_CH04_Null.qxd 10/18/10 12:03 PM Page 212

4.8 / MARIE 213

Opcode Address

15Bit 12 11 0

FIGURE 4.10 MARIE’s Instruction Format

TABLE 4.2 MARIE’s Instruction Set

Instruction Number

Hex

1
2
3
4

5
6
7
8
9

Load the contents of address X into AC.
Store the contents of AC at address X.
Add the contents of address X to AC and store the result in AC.
Subtract the contents of address X from AC and store the
result in AC.
Input a value from the keyboard into AC.
Output the value in AC to the display.
Terminate the program.
Skip the next instruction on condition.
Load the value of X into PC.

Instruction

Load X
Store X
Add X
Subt X

Input
Output
Halt
Skipcond
Jump X

Meaning

0001
0010
0011
0100

0101
0110
0111
1000
1001

Bin

tions. We mentioned previously that each instruction for MARIE consists of 16
bits. The most significant 4 bits, bits 12 through 15, make up the opcode that
specifies the instruction to be executed (which allows for a total of 16 instruc-
tions). The least significant 12 bits, bits 0 through 11, form an address, which
allows for a maximum memory address of 212–1. The instruction format for
MARIE is shown in Figure 4.10.

Most ISAs consist of instructions for processing data, moving data, and con-
trolling the execution sequence of the program. MARIE’s instruction set consists
of the instructions shown in Table 4.2.

The Load instruction allows us to move data from memory into the CPU (via
the MBR and the AC). All data (which includes anything that is not an instruction)
from memory must move first into the MBR and then into either the AC or the
ALU; there are no other options in this architecture. Notice that the Load instruc-
tion does not have to name the AC as the final destination; this register is implicit
in the instruction. Other instructions reference the AC register in a similar fashion.
The Store instruction allows us to move data from the CPU back to memory. The
Add and Subt instructions add and subtract, respectively, the data value found at
address X to or from the value in the AC. The data located at address X is copied
into the MBR where it is held until the arithmetic operation is executed. Input and
Output allow MARIE to communicate with the outside world.

00068_CH04_Null.qxd 10/18/10 12:03 PM Page 213

214 Chapter 4 / MARIE: An Introduction to a Simple Computer

Input and output are complicated operations. In modern computers, input and
output are done using ASCII bytes. This means that if you type in the number 32
on the keyboard as input, it is actually read in as the ASCII character “3” fol-
lowed by “2.” These two characters must be converted to the numeric value 32
before they are stored in the AC. Because we are focusing on how a computer
works, we are going to assume that a value input from the keyboard is “automati-
cally” converted correctly. We are glossing over a very important concept: How
does the computer know whether an I/O value is to be treated as numeric or
ASCII, if everything that is input or output is actually ASCII? The answer is that
the computer knows through the context of how the value is used. In MARIE, we
assume numeric input and output only. We also allow values to be input as deci-
mal and assume there is a “magic conversion” to the actual binary values that are
stored. In reality, these are issues that must be addressed if a computer is to work
properly.

The Halt command causes the current program execution to terminate. The
Skipcond instruction allows us to perform conditional branching (as is done with
“while” loops or “if” statements). When the Skipcond instruction is executed, the
value stored in the AC must be inspected. Two of the address bits (let’s assume
we always use the two address bits closest to the opcode field, bits 10 and 11)
specify the condition to be tested. If the two address bits are 00, this translates to
“skip if the AC is negative.” If the two address bits are 01 (bit eleven is 0 and bit
ten is 1), this translates to “skip if the AC is equal to 0.” Finally, if the two
address bits are 10 (or 2), this translates to “skip if the AC is greater than 0.” By
“skip” we simply mean jump over the next instruction. This is accomplished by
incrementing the PC by 1, essentially ignoring the following instruction, which is
never fetched. The Jump instruction, an unconditional branch, also affects the PC.
This instruction causes the contents of the PC to be replaced with the value of X,
which is the address of the next instruction to fetch.

We wish to keep the architecture and the instruction set as simple as possible and
yet convey the information necessary to understand how a computer works. There-
fore, we have omitted several useful instructions. However, you will see shortly that
this instruction set is still quite powerful. Once you gain familiarity with how the
machine works, we will extend the instruction set to make programming easier.

Let’s examine the instruction format used in MARIE. Suppose we have the
following 16-bit instruction:

The leftmost four bits indicate the opcode, or the instruction to be executed.
0001 is binary for 1, which represents the Load instruction. The remaining 12 bits

0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1

Bit 151413121110 9 8 7 6 5 4 3 2 1 0

addressopcode

00068_CH04_Null.qxd 10/18/10 12:03 PM Page 214

4.8 / MARIE 215

indicate the address of the value we are loading, which is address 3 in main mem-
ory. This instruction causes the data value found in main memory, address 3, to be
copied into the AC. Consider another instruction:

The leftmost four bits, 0011, are equal to 3, which is the Add instruction. The
address bits indicate address 00D in hex (or 13 decimal). We go to main memory,
get the data value at address 00D, and add this value to the AC. The value in the
AC would then change to reflect this sum. One more example follows:

The opcode for this instruction represents the Skipcond instruction. Bits ten
and eleven (read left to right, or bit eleven followed by bit ten) are 10, indicating
a value of 2. This implies a “skip if AC greater than 0.” If the value in the AC is
less than or equal to zero, this instruction is ignored and we simply go on to the
next instruction. If the value in the AC is greater than zero, this instruction causes
the PC to be incremented by 1, thus causing the instruction immediately follow-
ing this instruction in the program to be ignored (keep this in mind as you read
the following section on the instruction cycle).

These examples bring up an interesting point. We will be writing programs
using this limited instruction set. Would you rather write a program using the
commands Load, Add, and Halt, or their binary equivalents 0001, 0011, and
0111? Most people would rather use the instruction name, or mnemonic, for the
instruction, instead of the binary value for the instruction. Our binary instructions
are called machine instructions. The corresponding mnemonic instructions are
what we refer to as assembly language instructions. There is a one-to-one corre-
spondence between assembly language and machine instructions. When we type
in an assembly language program (i.e., using the instructions listed in Table 4.2),
we need an assembler to convert it to its binary equivalent. We discuss assem-
blers in Section 4.11.

4.8.4 Register Transfer Notation

We have seen that digital systems consist of many components, including arith-
metic logic units, registers, memory, decoders, and control units. These units are
interconnected by buses to allow information to flow through the system. The
instruction set presented for MARIE in the preceding sections constitutes a set of

1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

Bit 151413121110 9 8 7 6 5 4 3 2 1 0

addressopcode

0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 1

Bit 151413121110 9 8 7 6 5 4 3 2 1 0

addressopcode

00068_CH04_Null.qxd 10/18/10 12:03 PM Page 215

216 Chapter 4 / MARIE: An Introduction to a Simple Computer

machine-level instructions used by these components to execute a program. Each
instruction appears to be very simplistic; however, if you examine what actually
happens at the component level, each instruction involves multiple operations.
For example, the Load instruction loads the contents of the given memory location
into the AC register. But, if we observe what is happening at the component level,
we see that multiple “mini-instructions” are being executed. First, the address from
the instruction must be loaded into the MAR. Then the data in memory at this loca-
tion must be loaded into the MBR. Then the MBR must be loaded into the AC.
These mini-instructions are called microoperations and specify the elementary
operations that can be performed on data stored in registers.

The symbolic notation used to describe the behavior of microoperations is
called register transfer notation (RTN) or register transfer language (RTL).
We use the notation M[X] to indicate the actual data stored at location X in mem-
ory, and ← to indicate a transfer of information. In reality, a transfer from one
register to another always involves a transfer onto the bus from the source regis-
ter, and then a transfer off the bus into the destination register. However, for the
sake of clarity, we do not include these bus transfers, assuming that you under-
stand that the bus must be used for data transfer.

We now present the register transfer notation for each of the instructions in
the ISA for MARIE.

Load X

Recall that this instruction loads the contents of memory location X into the AC.
However, the address X must first be placed into the MAR. Then the data at loca-
tion M[MAR] (or address X) is moved into the MBR. Finally, this data is placed
in the AC.

MAR ← X

MBR ← M[MAR]

AC ← MBR

Because the IR must use the bus to copy the value of X into the MAR, before
the data at location X can be placed into the MBR, this operation requires two bus
cycles. Therefore, these two operations are on separate lines to indicate they cannot
occur during the same cycle. However, because we have a special connection
between the MBR and the AC, the transfer of the data from the MBR to the AC can
occur immediately after the data is put into the MBR, without waiting for the bus.

Store X

This instruction stores the contents of the AC in memory location X:

MAR ← X, MBR ← AC

M[MAR] ← MBR

00068_CH04_Null.qxd 10/18/10 12:03 PM Page 216

4.8 / MARIE 217

Add X

The data value stored at address X is added to the AC. This can be accomplished
as follows:

MAR ← X

MBR ← M[MAR]

AC ← AC + MBR

Subt X

Similar to Add, this instruction subtracts the value stored at address X from the
accumulator and places the result back in the AC:

MAR ← X

MBR ← M[MAR]

AC ← AC � MBR

Input

Any input from the input device is first routed into the InREG. Then the data is
transferred into the AC.

AC ← InREG

Output

This instruction causes the contents of the AC to be placed into the OutREG,
where it is eventually sent to the output device.

OutREG ← AC

Halt

No operations are performed on registers; the machine simply ceases execution of
the program.

Skipcond

Recall that this instruction uses the bits in positions 10 and 11 in the address field
to determine what comparison to perform on the AC. Depending on this bit com-
bination, the AC is checked to see whether it is negative, equal to 0, or greater
than 0. If the given condition is true, then the next instruction is skipped. This is
performed by incrementing the PC register by 1.

00068_CH04_Null.qxd 10/18/10 12:03 PM Page 217

218 Chapter 4 / MARIE: An Introduction to a Simple Computer

If IR[11–10] = 00 then {if bits 10 and 11 in the IR are both 0}

If AC < 0 then PC ← PC + 1

else If IR[11–10] = 01 then {if bit 11 = 0 and bit 10 = 1}

If AC = 0 then PC ← PC + 1

else If IR[11–10] = 10 then {if bit 11 = 1 and bit 10 = 0}

If AC > 0 then PC ← PC + 1

If the bits in positions ten and eleven are both ones, an error condition
results. However, an additional condition could also be defined using these
bit values.

Jump X

This instruction causes an unconditional branch to the given address, X. There-
fore, to execute this instruction, X must be loaded into the PC.

PC ← X

In reality, the lower or least significant 12 bits of the instruction register (or
IR[11–0]) reflect the value of X. So this transfer is more accurately depicted as:

PC ← IR[11–0]

However, we feel that the notation PC ← X is easier to understand and relate
to the actual instructions, so we use this instead.

Register transfer notation is a symbolic means of expressing what is happen-
ing in the system when a given instruction is executing. RTN is sensitive to the
datapath, in that if multiple microoperations must share the bus, they must be
executed in a sequential fashion, one following the other.

4.9 INSTRUCTION PROCESSING

Now that we have a basic language with which to communicate ideas to our com-
puter, we need to discuss exactly how a specific program is executed. All comput-
ers follow a basic machine cycle: the fetch, decode, and execute cycle.

4.9.1 The Fetch–Decode–Execute Cycle

The fetch–decode–execute cycle represents the steps that a computer follows to
run a program. The CPU fetches an instruction (transfers it from main memory to
the instruction register), decodes it (determines the opcode and fetches any data
necessary to carry out the instruction), and executes it (performs the operation[s]
indicated by the instruction). Notice that a large part of this cycle is spent copy-
ing data from one location to another. When a program is initially loaded, the
address of the first instruction must be placed in the PC. The steps in this cycle,
which take place in specific clock cycles, are listed below. Note that Steps 1 and

00068_CH04_Null.qxd 10/18/10 12:03 PM Page 218

4.9 / Instruction Processing 219

2 make up the fetch phase, Step 3 makes up the decode phase, and Step 4 is the
execute phase.

1. Copy the contents of the PC to the MAR: MAR ← PC.

2. Go to main memory and fetch the instruction found at the address in the MAR,
placing this instruction in the IR; increment PC by 1 (PC now points to the next
instruction in the program): IR ← M[MAR] and then PC ← PC+1. (Note: Because
MARIE is word addressable, the PC is incremented by 1, which results in the
next word’s address occupying the PC. If MARIE were byte addressable, the
PC would need to be incremented by 2 to point to the address of the next
instruction, because each instruction would require 2 bytes. On a byte-address-
able machine with 32-bit words, the PC would need to be incremented by 4.)

3. Copy the rightmost 12 bits of the IR into the MAR; decode the leftmost 4 bits
to determine the opcode, MAR ← IR[11–0], and decode IR[15–12].

4. If necessary, use the address in the MAR to go to memory to get data, placing
the data in the MBR (and possibly the AC), and then execute the instruction
MBR ← M[MAR] and execute the actual instruction.

This cycle is illustrated in the flowchart in Figure 4.11.
Note that computers today, even with large instruction sets, long instructions,

and huge memories, can execute millions of these fetch–decode–execute cycles
in the blink of an eye.

4.9.2 Interrupts and the Instruction Cycle

All computers provide a means for the normal fetch–decode–execute cycle to be
interrupted. These interruptions may be necessary for many reasons, including a
program error (such as division by 0, arithmetic overflow, stack overflow, or
attempting to access a protected area of memory); a hardware error (such as a
memory parity error or power failure); an I/O completion (which happens when a
disk read is requested and the data transfer is complete); a user interrupt (such as
hitting Ctrl-C or Ctrl-Break to stop a program); or an interrupt from a timer set by
the operating system (such as is necessary when allocating virtual memory or
performing certain bookkeeping functions). All of these have something in com-
mon: they interrupt the normal flow of the fetch–decode–execute cycle and tell
the computer to stop what it is currently doing and go do something else. They
are, naturally, called interrupts.

The speed with which a computer processes interrupts plays a key role in
determining the computer’s overall performance. Hardware interrupts can be
generated by any peripheral on the system, including memory, the hard drive,
the keyboard, the mouse, or even the modem. Instead of using interrupts,
processors could poll hardware devices on a regular basis to see if they need
anything done. However, this would waste CPU time as the answer would more

00068_CH04_Null.qxd 10/18/10 12:03 PM Page 219

220 Chapter 4 / MARIE: An Introduction to a Simple Computer

Start

Copy the PC to
the MAR

Copy the contents of
memory at address

MAR to IR;
Increment PC by 1

Decode the instruction and
place bits IR[11-0] in

MAR

Instruction
requires

operand?

Yes No

Copy the contents of
memory at address

MAR to MBR

Execute the
instruction

FIGURE 4.11 The Fetch–Decode–Execute Cycle

often than not be “no.” Interrupts are nice because they let the CPU know the
device needs attention at a particular moment without requiring the CPU to con-
stantly monitor the device. Suppose you need specific information that a friend
has promised to acquire for you. You have two choices: call the friend on a reg-
ular schedule (polling) and waste his or her time and yours if the information is
not ready, or wait for a phone call from your friend once the information has
been acquired. You may be in the middle of a conversation with someone else
when the phone call “interrupts” you, but the latter approach is by far the more
efficient way to handle the exchange of information.

Computers also employ software interrupts (also called traps or
exceptions) used by various software applications. Modern computers support
both software and hardware interrupts by using interrupt handlers. These han-

00068_CH04_Null.qxd 10/18/10 12:03 PM Page 220

4.9 / Instruction Processing 221

Has an
interrupt been

issued?

Yes No

Process the
interrupt

Perform fetch–
decode–execute

cycle

FIGURE 4.12 Fetch–Decode–Execute Cycle with Interrupt Checking

dlers are simply routines (procedures) that are executed when their respective
interrupts are detected. The interrupts, along with their associated interrupt serv-
ice routines (ISRs), are stored in an interrupt vector table.

How do interrupts fit into the fetch–decode–execute cycle? The CPU finishes
execution of the current instruction and checks, at the beginning of every
fetch–decode–execute cycle, to see if an interrupt has been generated, as shown
in Figure 4.12. Once the CPU acknowledges the interrupt, it must then process
the interrupt.

The details of the “Process the Interrupt” block are given in Figure 4.13. This
process, which is the same regardless of what type of interrupt has been invoked,
begins with the CPU detecting the interrupt signal. Before doing anything else,
the system suspends whatever process is executing by saving the program’s state
and variable information. The device ID or interrupt request number of the
device causing the interrupt is then used as an index into the interrupt vector
table, which is kept in very low memory. The address of the interrupt service
routine (known as its address vector) is retrieved and placed into the program
counter, and execution resumes (the fetch–decode–execute cycle begins again)
within the service routine. After the interrupt service has completed, the system
restores the information it saved from the program that was running when the
interrupt occurred, and program execution may resume—unless another interrupt
is detected, whereupon the interrupt is serviced as described.

It is possible to suspend processing of noncritical interrupts by use of a spe-
cial interrupt mask bit found in the flag register. This is called interrupt mask-
ing, and interrupts that can be suspended are called maskable interrupts.
Nonmaskable interrupts cannot be suspended, because to do so, it is possible that
the system would enter an unstable or unpredictable state.

Assembly languages provide specific instructions for working with hardware
and software interrupts. When writing assembly language programs, one of the

00068_CH04_Null.qxd 10/18/10 12:03 PM Page 221

222 Chapter 4 / MARIE: An Introduction to a Simple Computer

Start

Interrupt
signal

detected

Start

Return

Save
variables and

registers

Look up ISR
address in
interrupt

vector table

Place ISR
address

in PC

Restore
saved variables

and registers

Branch
to ISR

Branch to
top of

fetch-decode-
execute cycle

Perform work
specific to
interrupt

FIGURE 4.13 Processing an Interrupt

00068_CH04_Null.qxd 10/18/10 12:03 PM Page 222

4.10 / A Simple Program 223

most common tasks is dealing with I/O through software interrupts (see Chapter
7 for additional information on interrupt-driven I/O). Indeed, one of the more
complicated functions for the novice assembly language programmer is reading
input and writing output, specifically because this must be done using interrupts.
MARIE simplifies the I/O process for the programmer by avoiding the use of
interrupts for I/O.

4.9.3 MARIE’s I/O

I/O processing is one of the most challenging aspects of computer system design
and programming. Our model is necessarily simplified, and we provide it at this
point only to complete MARIE’s functionality.

MARIE has two registers to handle input and output. One, the input register,
holds data being transferred from an input device into the computer; the other, the
output register, holds information ready to be sent to an output device. The timing
used by these two registers is very important. For example, if you are entering input
from the keyboard and type very fast, the computer must be able to read each char-
acter that is put into the input register. If another character is entered into that regis-
ter before the computer has a chance to process the current character, the current
character is lost. It is more likely, because the processor is very fast and keyboard
input is very slow, that the processor might read the same character from the input
register multiple times. We must avoid both of these situations.

To get around problems like these, MARIE employs a modified type of pro-
grammed I/O (discussed in Chapter 7) that places all I/O under the direct control
of the programmer. MARIE’s output action is simply a matter of placing a value
into the OutREG. This register can be read by an output controller that sends it to
an appropriate output device, such as a terminal display, printer, or disk. For
input, MARIE, being the simplest of simple systems, places the CPU into a wait
state until a character is entered into the InREG. The InREG is then copied to the
accumulator for subsequent processing as directed by the programmer. We
observe that this model provides no concurrency. The machine is essentially idle
while waiting for input. Chapter 7 explains other approaches to I/O that make
more efficient use of machine resources.

4.10 A SIMPLE PROGRAM

We now present a simple program written for MARIE. In Section 4.12, we pres-
ent several additional examples to illustrate the power of this minimal architec-
ture. It can even be used to run programs with procedures, various looping
constructs, and different selection options.

Our first program adds two numbers together (both of which are found in
main memory), storing the sum in memory. (We forgo I/O for now.)

00068_CH04_Null.qxd 10/18/10 12:03 PM Page 223

224 Chapter 4 / MARIE: An Introduction to a Simple Computer

Hex
Address Instruction Binary Contents of

Memory Address
Hex Contents

of Memory

100
101
102
103
104
105
106

Load 104
Add 105
Store 106
Halt
0023
FFE9
0000

0001000100000100
0011000100000101
0010000100000110
0111000000000000
0000000000100011
1111111111101001
0000000000000000

1104
3105
2106
7000
0023
FFE9
0000

TABLE 4.3 A Program to Add Two Numbers

Table 4.3 lists an assembly language program to do this, along with its corre-
sponding machine-language program. The list of instructions under the Instruc-
tion column constitutes the actual assembly language program. We know that the
fetch–decode–execute cycle starts by fetching the first instruction of the program,
which it finds by loading the PC with the address of the first instruction when the
program is loaded for execution. For simplicity, let’s assume our programs in
MARIE are always loaded starting at address 100 (in hex).

The list of instructions under the Binary Contents of Memory Address col-
umn constitutes the actual machine language program. It is often easier for
humans to read hexadecimal as opposed to binary, so the actual contents of mem-
ory are displayed in hexadecimal.

This program loads 002316 (or decimal value 35) into the AC. It then adds the
hex value FFE9 (decimal �23) that it finds at address 105. This results in a value
of 12 in the AC. The Store instruction stores this value at memory location 106.
When the program is done, the binary contents of location 106 change to
0000000000001100, which is hex 000C, or decimal 12. Figure 4.14 indicates the
contents of the registers as the program executes.

The last RTN instruction in part c places the sum at the proper memory loca-
tion. The statement “decode IR[15–12]” simply means the instruction must be
decoded to determine what is to be done. This decoding can be done in software
(using a microprogram) or in hardware (using hardwired circuits). These two con-
cepts are covered in more detail in Section 4.13.

Note that there is a one-to-one correspondence between the assembly lan-
guage and the machine-language instructions. This makes it easy to convert
assembly language into machine code. Using the instruction tables given in this
chapter, you should be able to hand assemble any of our example programs. For
this reason, we look at only the assembly language code from this point on.
Before we present more programming examples, however, a discussion of the
assembly process is in order.

00068_CH04_Null.qxd 10/18/10 12:03 PM Page 224

4.10 / A Simple Program 225

FIGURE 4.14 A Trace of the Program to Add Two Numbers

Step RTN PC IR MAR MBR AC

(initial values)
Fetch

Decode

Get operand
Execute

MAR PC
IR M[MAR]
PC PC + 1
MAR IR[11—0]
(Decode IR[15—12])
MBR M[MAR]
AC MBR

100
100
100
101
101
101
101
101

1104
1104
1104
1104
1104
1104

100
100
100
104
104
104
104

0023
0023

0023

(a) Load 104

Step RTN PC IR MAR MBR AC

(initial values)
Fetch

Decode

Get operand
Execute

MAR PC
IR M[MAR]
PC PC + 1
MAR IR[11—0]
(Decode IR[15—12])
MBR M[MAR]
AC AC + MBR

101
101
101
102
102
102
102
102

1104
1104
3105
3105
3105
3105
3105
3105

104
101
101
101
105
105
105
105

0023
0023
0023
0023
0023
0023
FFE9
FFE9

0023
0023
0023
0023
0023
0023
0023
000C

(b) Add 105

Step RTN PC IR MAR MBR AC

(initial values)
Fetch

Decode

Get operand
Execute

MAR PC
IR M[MAR]
PC PC + 1
MAR IR[11—0]
(Decode IR[15—12])
(not necessary)
MBR AC
M[MAR] MBR

102
102
102
103
103
103
103
103
103

3105
3105
2106
2106
2106
2106
2106
2106
2106

105
102
102
102
106
106
106
106
106

FFE9
FFE9
FFE9
FFE9
FFE9
FFE9
FFE9
000C
000C

000C
000C
000C
000C
000C
000C
000C
000C
000C

(c) Store 106

00068_CH04_Null.qxd 10/18/10 12:03 PM Page 225

226 Chapter 4 / MARIE: An Introduction to a Simple Computer

Address Instruction

100
101
102
103
104
105
106

Load X
Add Y
Store Z
Halt
0023
FFE9
0000

X,
Y,
Z,

TABLE 4.4 An Example Using Labels

4.11 A DISCUSSION ON ASSEMBLERS

In the program shown in Table 4.3, it is a simple matter to convert from the
assembly language instruction Load 104, for example, to the machine lan-
guage instruction 1104 (in hex). But why bother with this conversion? Why
not just write in machine code? Although it is very efficient for computers to
see these instructions as binary numbers, it is difficult for human beings to
understand and program in sequences of 0s and 1s. We prefer words and sym-
bols over long numbers, so it seems a natural solution to devise a program
that does this simple conversion for us. This program is called an assembler.

4.11.1 What Do Assemblers Do?

An assembler’s job is to convert assembly language (using mnemonics) into
machine language (which consists entirely of binary values, or strings of 0s
and 1s). Assemblers take a programmer’s assembly language program, which
is really a symbolic representation of the binary numbers, and convert it into
binary instructions, or the machine code equivalent. The assembler reads a
source file (assembly program) and produces an object file (the machine
code).

Substituting simple alphanumeric names for the opcodes makes programming
much easier. We can also substitute labels (simple names) to identify or name par-
ticular memory addresses, making the task of writing assembly programs even
simpler. For example, in our program to add two numbers, we can use labels to
indicate the memory addresses, thus making it unnecessary to know the exact
memory address of the operands for instructions. Table 4.4 illustrates this concept.

When the address field of an instruction is a label instead of an actual physical
address, the assembler still must translate it into a real, physical address in main
memory. Most assembly languages allow for labels. Assemblers typically specify
formatting rules for their instructions, including those with labels. For example, a
label might be limited to three characters and may also be required to occur as the
first field in the instruction. MARIE requires labels to be followed by a comma.

Labels are nice for programmers. However, they make more work for the
assembler. It must make two passes through a program to do the translation. This

00068_CH04_Null.qxd 10/18/10 12:03 PM Page 226

4.11 / A Discussion on Assemblers 227

means the assembler reads the program twice, from top to bottom each time. On the
first pass, the assembler builds a set of correspondences called a symbol table. For
the above example, it builds a table with three symbols: X, Y, and Z. Because an
assembler goes through the code from top to bottom, it cannot translate the entire
assembly language instruction into machine code in one pass; it does not know
where the data portion of the instruction is located if it is given only a label. But
after it has built the symbol table, it can make a second pass and “fill in the blanks.”

In the above program, the first pass of the assembler creates the following
symbol table:

It also begins to translate the instructions. After the first pass, the translated
instructions would be incomplete as follows:

On the second pass, the assembler uses the symbol table to fill in the addresses
and create the corresponding machine language instructions. Thus, on the second
pass, it would know that X is located at address 104, and would then substitute 104
for the X. A similar procedure would replace the Y and Z, resulting in:

Because most people are uncomfortable reading hexadecimal, most assembly
languages allow the data values stored in memory to be specified as binary, hexa-
decimal, or decimal. Typically, some sort of assembler directive (an instruction
specifically for the assembler that is not supposed to be translated into machine
code) is given to the assembler to specify which base is to be used to interpret the
value. We use DEC for decimal and HEX for hexadecimal in MARIE’s assembly
language. For example, we rewrite the program in Table 4.4 as shown in Table 4.5.

Instead of requiring the actual binary data value (written in HEX), we specify
a decimal value by using the directive DEC. The assembler recognizes this direc-
tive and converts the value accordingly before storing it in memory. Again, direc-
tives are not converted to machine language; they simply instruct the assembler
in some way.

Another kind of directive common to virtually every programming language
is the comment delimiter. Comment delimiters are special characters that tell the

1

3

2

7

1

1

1

0

0

0

0

0

4

5

6

0

1

3

2

7

X

Y

Z

00 0

X

Y

Z

104

105

106

00068_CH04_Null.qxd 10/18/10 12:03 PM Page 227

228 Chapter 4 / MARIE: An Introduction to a Simple Computer

Address Instruction

100
101
102
103
104
105
106

Load X
Add Y
Store Z
Halt
DEC 35
DEC –23
HEX 0000

X,
Y,
Z,

TABLE 4.5 An Example Using Directives for Constants

assembler (or compiler) to ignore all text following the special character.
MARIE’s comment delimiter is a front slash (“/”), which causes all text between
the delimiter and the end of the line to be ignored.

4.11.2 Why Use Assembly Language?

Our main objective in presenting MARIE’s assembly language is to give you an
idea of how the language relates to the architecture. Understanding how to pro-
gram in assembly goes a long way toward understanding the architecture (and
vice versa). Not only do you learn basic computer architecture, but you also can
learn exactly how the processor works and gain significant insight into the partic-
ular architecture on which you are programming. There are many other situations
where assembly programming is useful.

Most programmers agree that 10% of the code in a program uses approxi-
mately 90% of the CPU time. In time-critical applications, we often need to opti-
mize this 10% of the code. Typically, the compiler handles this optimization for us.
The compiler takes a high-level language (such as C++) and converts it into assem-
bly language (which is then converted into machine code). Compilers have been
around a long time and in most cases they do a great job. Occasionally, however,
programmers must bypass some of the restrictions found in high-level languages
and manipulate the assembly code themselves. By doing this, programmers can
make the program more efficient in terms of time (and space). This hybrid
approach (most of the program written in a high-level language, with part rewritten
in assembly) allows the programmer to take advantage of the best of both worlds.

Are there situations in which entire programs should be written in assembly
language? If the overall size of the program or response time is critical, assembly
language often becomes the language of choice. This is because compilers tend to
obscure information about the cost (in time) of various operations and programmers
often find it difficult to judge exactly how their compiled programs will perform.
Assembly language puts the programmer closer to the architecture and, thus, in
firmer control. Assembly language might actually be necessary if the programmer
wishes to accomplish certain operations not available in a high-level language.

A perfect example, in terms of both response performance and space-critical
design, is found in embedded systems. These are systems in which the computer
is integrated into a device that is typically not a computer. Embedded systems

00068_CH04_Null.qxd 10/18/10 12:03 PM Page 228

4.12 / Extending Our Instruction Set 229

Instruction
Number (hex) Instruction

0
A
B

C

D

E

JnS X
Clear
AddI X

JumpI X

LoadI X

StoreI X

Meaning

Store the PC at address X and jump to X + 1.
Put all zeros in AC.
Add indirect: Go to address X. Use the value at X

as the actual address of the data
operand to add to AC.

Jump indirect: Go to address X. Use the value at X
as the actual address of the location to
jump to.

Load indirect: Go to address X. Use the value at
 X as the actual address of the operand to
 load into the AC.

Store indirect: Go to address X. Use the value at
 X as the destination address for storing
 the value in the accumulator.

TABLE 4.6 MARIE’s Extended Instruction Set

must be reactive and often are found in time-constrained environments. These
systems are designed to perform either a single instruction or a very specific set
of instructions. Chances are you use some type of embedded system every day.
Consumer electronics (such as cameras, camcorders, cellular phones, PDAs, and
interactive games), consumer products (such as washers, microwave ovens, and
washing machines), automobiles (particularly engine control and antilock
brakes), medical instruments (such as CAT scanners and heart monitors), and
industry (for process controllers and avionics) are just a few of the examples of
where we find embedded systems.

The software for an embedded system is critical. An embedded software pro-
gram must perform within very specific response parameters and is limited in the
amount of space it can consume. These are perfect applications for assembly lan-
guage programming. We delve deeper into this topic in Chapter 10.

4.12 EXTENDING OUR INSTRUCTION SET

Even though MARIE’s instruction set is sufficient to write any program we wish,
there are a few instructions we can add to make programming much simpler. We
have 4 bits allocated to the opcode, which implies we can have 16 unique instruc-
tions, and we are using only 9 of them. Surely, we can make many programming
tasks much easier by adding a few well-chosen instructions to our instruction set.
Our new instructions are summarized in Table 4.6.

The JnS (jump-and-store) instruction allows us to store a pointer to a return
instruction and then proceeds to set the PC to a different instruction. This enables
us to call procedures and other subroutines, and then return to the calling point in
our code once the subroutine has finished. The Clear instruction moves all 0s

00068_CH04_Null.qxd 10/18/10 12:03 PM Page 229

230 Chapter 4 / MARIE: An Introduction to a Simple Computer

into the accumulator. This saves the machine cycles that would otherwise be
expended in loading a 0 operand from memory.

With the AddI, JumpI, LoadI, and StoreI instructions we introduce a differ-
ent addressing mode. All previous instructions assume the value in the data por-
tion of the instruction is the direct address of the operand required for the
instruction. These instructions use the indirect addressing mode. Instead of using
the value found at location X as the actual address, we use the value found in X as
a pointer to a new memory location that contains the data we wish to use in the
instruction. For example, to execute the instruction AddI 400, we first go to loca-
tion 400. If we find the value 240 stored at location 400, we would go to location
240 to get the actual operand for the instruction. We have essentially allowed for
pointers in our language, giving us tremendous power to create advanced data
structures and manipulate strings. (We delve more deeply into addressing modes
in Chapter 5)

Our six new instructions are detailed below using register transfer notation.

JnS LoadI X

MBR ← PC MBR ← X

MAR ← X MBR ← M[MAR]

M[MAR] ← MBR MAR ← MBR

MBR ← X MBR ← M[MAR]

AC ← 1 AC ← MBR

AC ← AC + MBR

PC ← AC
StoreI X

Clear MBR ← X
AC ← 0 MBR ← M[MAR]

AddI X MAR ← MBR

MAR ← X MBR ← AC

MBR ← M[MAR] M[MAR] ← MBR

MAR ← MBR

MBR ← M[MAR]

AC ← AC + MBR

JumpI X

MAR ← X

MBR ← M[MAR]

PC ← MBR

Table 4.7 summarizes MARIE’s entire instruction set.

Let’s look at some examples using the full instruction set.

00068_CH04_Null.qxd 10/18/10 12:03 PM Page 230

4.12 / Extending Our Instruction Set 231

EXAMPLE 4.1 Here is an example using a loop to add five numbers:

Address Instruction
100 Load Addr /Load address of first number to be added
101 Store Next /Store this address as our Next pointer
102 Load Num /Load the number of items to be added
103 Subt One /Decrement
104 Store Ctr /Store this value in Ctr to control looping
105 Loop, Load Sum /Load the Sum into AC
106 AddI Next /Add the value pointed to by location Next
107 Store Sum /Store this sum
108 Load Next /Load Next
109 Add One /Increment by one to point to next address
10A Store Next /Store in our pointer Next
10B Load Ctr /Load the loop control variable
10C Subt One /Subtract one from the loop control variable
10D Store Ctr /Store this new value in loop control variable
10E Skipcond 000 /If control variable < 0, skip next

/instruction
10F Jump Loop /Otherwise, go to Loop
110 Halt /Terminate program
111 Addr, Hex 117 /Numbers to be summed start at location 117
112 Next, Hex 0 /A pointer to the next number to add
113 Num, Dec 5 /The number of values to add
114 Sum, Dec 0 /The sum
115 Ctr, Hex 0 /The loop control variable
116 One, Dec 1 /Used to increment and decrement by 1
117 Dec 10 /The values to be added together
118 Dec 15
119 Dec 20
11A Dec 25
11B Dec 30

Note: Line numbers in program are given for information only and are not used in the MarieSim environment.

Although the comments are reasonably explanatory, let’s walk through Exam-
ple 4.1. Recall that the symbol table stores [label, location] pairs. The Load Addr
instruction becomes Load 111, because Addr is located at physical memory address
111. The value of 117 (the value stored at Addr) is then stored in Next. This is the
pointer that allows us to “step through” the five values we are adding (located at
addresses 117, 118, 119, 11A, and 11B). The Ctr variable keeps track of how many
iterations of the loop we have performed. Because we are checking to see if Ctr is
negative to terminate the loop, we start by subtracting one from Ctr. Sum (with an
initial value of 0) is then loaded in the AC. The loop begins, using Next as the
address of the data we wish to add to the AC. The Skipcond statement terminates
the loop when Ctr is negative by skipping the unconditional branch to the top of
the loop. The program then terminates when the Halt statement is executed.

00068_CH04_Null.qxd 10/18/10 12:03 PM Page 231

232 Chapter 4 / MARIE: An Introduction to a Simple Computer

TABLE 4.7 MARIE’s Full Instruction Set

Opcode Instruction RTN

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

JnS X

Load X

Store X

Add X

Subt X

Input

Output

Halt

Skipcond

Jump X

Clear

AddI X

JumpI X

LoadI X

StoreI X

MBR PC
MAR X
M[MAR] MBR
MBR X
AC 1
AC AC + MBR
PC AC

MAR X
MBR M[MAR]
AC MBR

MAR X, MBR AC
M[MAR] MBR

MAR X
MBR M[MAR]
AC AC + MBR

MAR X
MBR M[MAR]
AC AC – MBR

AC InREG

OutREG AC

If IR[11—10] = 00 then
 If AC < 0 then PC PC + 1
Else If IR[11—10] = 01 then
 If AC = 0 then PC PC + 1
Else If IR[11—10] = 10 then
 If AC > 0 then PC PC + 1

PC IR[11—0]

AC 0

MAR X
MBR M[MAR]
MAR MBR
MBR M[MAR]
AC AC + MBR

MAR X
MBR M[MAR]
PC MBR

MAR X
MBR M[MAR]
MAR MBR
MBR M[MAR]
AC MBR

MAR X
MBR M[MAR]
MAR MBR
MBR AC
M[MAR] MBR

00068_CH04_Null.qxd 10/18/10 12:03 PM Page 232

4.12 / Extending Our Instruction Set 233

Example 4.2 shows how you can use the Skipcond and Jump instructions to per-
form selection. Although this example illustrates an if/else construct, you can easily
modify this to perform an if/then structure, or even a case (or switch) structure.

EXAMPLE 4.2 This example illustrates the use of an if/else construct to
allow for selection. In particular, it implements the following:

if X = Y then
X = X � 2

else
Y = Y � X;

Address Instruction
100 If, Load X /Load the first value
101 Subt Y /Subtract the value of Y, store result in AC
102 Skipcond 400 /If AC = 0, skip the next instruction
103 Jump Else /Jump to Else part if AC is not equal to 0
104 Then, Load X /Reload X so it can be doubled
105 Add X /Double X
106 Store X /Store the new value
107 Jump Endif /Skip over the false, or else, part to end of

/if
108 Else, Load Y /Start the else part by loading Y
109 Subt X /Subtract X from Y
10A Store Y /Store Y - X in Y
10B Endif, Halt /Terminate program (it doesn't do much!)
10C X, Dec 12 /Load the loop control variable
10D Y, Dec 20 /Subtract one from the loop control variable

EXAMPLE 4.3 This program demonstrates the use of indirect addressing to
traverse and output a string. The string is terminated with a null.

Address Instruction
100 Getch, LoadI Chptr / Load the character found at address Chptr.
101 Skipcond 400 / If AC = 0, skip next instruction.
102 Jump Outp / Otherwise, proceed with operation.
103 Halt
104 Outp, Output / Output the character.
105 Load Chptr / Move pointer to next character.
106 Add One
107 Store Chptr
108 Jump Getch / Process next character.
109 One, Hex 0001
10A Chptr, Hex 10B / Pointer to “current” character.

00068_CH04_Null.qxd 10/18/10 12:03 PM Page 233

10B String, Dec 072 / H / String definition starts here.
10C Dec 101 / e
10D Dec 108 / l
10E Dec 108 / l
10F Dec 111 / o
110 Dec 032 / [space]
111 Dec 119 / w
112 Dec 111 / o
113 Dec 114 / r
114 Dec 108 / l
115 Dec 100 / d
116 Dec 033 / !
117 Dec 000 / [null]
END

Example 4.3 demonstrates the use of the LoadI and StoreI instructions by
printing a string. Readers who understand the C and C++ programming languages
will recognize the pattern: We start by declaring the memory location of the first
character of the string and read it until we find a null character. Once the LoadI
instruction places a null in the accumulator, Skipcond 400 evaluates to true, and
the Halt instruction is executed. You will notice that to process each character of
the string, we increment the “current character” pointer, Chptr, so that it points to
the next character to print.

Example 4.4 demonstrates how JnS and JumpI are used to allow for subroutines.
This program includes an END statement, another example of an assembler directive.
This statement tells the assembler where the program ends. Other potential directives
include statements to let the assembler know where to find the first program instruc-
tion, how to set up memory, and whether blocks of code are procedures.

EXAMPLE 4.4 This example illustrates the use of a simple subroutine to double any
number and can be coded.

Address Instruction
100 Load X /Load the first number to be doubled
101 Store Temp /Use Temp as a parameter to pass value to Subr
102 JnS Subr /Store return address, jump to procedure
103 Store X /Store first number, doubled
104 Load Y /Load the second number to be doubled
105 Store Temp /Use Temp as a parameter to pass value to Subr
106 JnS Subr /Store return address, jump to procedure
107 Store Y /Store second number, doubled
108 Halt /End program
109 X, Dec 20
10A Y, Dec 48
10B Temp, Dec 0

234 Chapter 4 / MARIE: An Introduction to a Simple Computer

00068_CH04_Null.qxd 10/18/10 12:03 PM Page 234

10C Subr, Hex 0 /Store return address here
10D Load Temp /Subroutine to double numbers
10E Add Temp
10F JumpI Subr

END

Note: Line numbers in program are given for information only and are not used in the MarieSim environment.

Using MARIE’s simple instruction set, you should be able to implement any
high-level programming language construct, such as loop statements and while
statements. These are left as exercises at the end of the chapter.

4.13 A DISCUSSION ON DECODING: HARDWIRED VERSUS
MICROPROGRAMMED CONTROL

How does the control unit really function? We have done some hand waving and
simply assumed everything works as described, with a basic understanding that, for
each instruction, the control unit causes the CPU to execute a sequence of steps cor-
rectly. In reality, there must be control signals to assert lines on various digital com-
ponents to make things happen as described (recall the various digital components
from Chapter 3). For example, when we perform an Add instruction in MARIE in
assembly language, we assume the addition takes place because the control signals
for the ALU are set to “add” and the result is put into the AC. The ALU has various
control lines that determine which operation to perform. The question we need to
answer is, “How do these control lines actually become asserted?”

There are two methods by which control lines can be set. The first approach,
hardwired control, directly connects the control lines to the actual machine
instructions. The instructions are divided into fields, and bits in the fields are con-
nected to input lines that drive various digital logic components. The second
approach, microprogrammed control, employs software consisting of microin-
structions that carry out an instruction’s microoperations. We look at both of these
control methods in more detail after we describe machine control in general.

4.13.1 Machine Control

In Sections 4.8 and 4.12, we provided register transfer language for each of MARIE’s
instructions. The microoperations described by the register transfer language actually
define the operation of the control unit. Each microoperation is associated with a dis-
tinctive signal pattern. The signals are fed to combinational circuits within the control
unit that carry out the logical operations appropriate to the instruction.

A schematic of MARIE’s data path is shown in Figure 4.9. We see that each
register and main memory has an address (0 through 7) along the datapath. These
addresses, in the form of signal patterns, are used by the control unit to enable the
flow of bytes through the system. For the sake of example, we define two sets of
signals: P2, P1, P0 that can enable reading from memory or a register and P5, P4,

4.13 / A Discussion on Decoding: Hardwired versus Microprogrammed Control 235

00068_CH04_Null.qxd 10/18/10 12:03 PM Page 235

236 Chapter 4 / MARIE: An Introduction to a Simple Computer

QD

P5 P4 P3

D15 D0 D0D15

P2 P1 P0

Q 16
D Flip-Flops

Control Unit

DQD

D14 D14

FIGURE 4.15 Connection of MARIE’s MBR to the Datapath

P3 that can enable writing to a register or memory. The control lines that convey
these signals are connected to registers through combinational logic circuits.

A close-up view of the connection of MARIE’s MBR (with address 3) to the
datapath is shown in Figure 4.15. You can see how this register is enabled for
reading when signals P1 and P0 are high, and writing to the MBR is enabled when
signals P4 and P3 are high. (Note that these signals correspond to the binary string
of the address of the MBR, 0112.) No other signal pattern is recognized by this
register’s circuits. (The combinational logic that enables the other entities on the
datapath is left as an exercise.)

If you study MARIE’s instruction set, you will see that the ALU has only
three operations: add, subtract, and clear. We also need to consider the case where
the ALU is not involved in an instruction, so we’ll define “do nothing” as a fourth
ALU state. Thus, with only four operations, MARIE’s ALU can be controlled

00068_CH04_Null.qxd 10/18/10 12:03 PM Page 236

4.13 / A Discussion on Decoding: Hardwired versus Microprogrammed Control 237

TABLE 4.8 Caption to come

A0 A1 ALU Response

0 0 Do Nothing
1 0 AC d AC + MBR
0 1 AC d AC – MBR
1 1 AC d 0 (Clear)

ALU Control
Signals

using only two control signals that we’ll call A0 and A1. These control signals and
the ALU response are given in Table 4.8.

A computer’s clock sequences microoperations by raising the right signals at
the right time. MARIE’s instructions vary in the number of clock cycles each
requires. The activities taking place during each clock cycle are coordinated with
signals from a cycle counter. One way of doing this is to connect the clock to a
synchronous counter, and the counter to a decoder. Suppose that the largest num-
ber of clock cycles required by any instruction is eight. Then we need a 3-bit
counter and a 3 � 8 decoder. The output of the decoder, signals T0 through T7, is
ANDed with combinational components and registers to produce the behavior
required by the instruction. If fewer than eight clock cycles are needed for an
instruction, the cycle counter reset signal, Cr, is asserted to get ready for the next
machine instruction.

To pull all of this together, consider MARIE’s Add instruction. The RTN is:

MAR ← X

MBR ← M[MAR]

AC ← AC + MBR

After the Add instruction is fetched, X is in the rightmost 12 bits of the IR and
the IR’s datapath address is 7, so we need to raise all three datapath read signals,
P2 P1 P0, to place IR bits 0 through 11 on the bus. The MAR, with an address of 1,
is activated for writing by raising only P3. Using the signals as we have just
defined them, we can now add the signal patterns to our RTN as follows:

P2P1P0P3T0: MAR ← X

P4P3T1: MBR ← M[MAR]

A0P1P0P5T2: AC ← AC + MBR

CrT3: [Reset the clock cycle counter.]

All signals, except for data signals (D0. . .D15), are assumed to be low unless
specified in the RTN. Figure 4.16 is a timing diagram that illustrates the sequence
of signal patterns just described. As you can see, at clock cycle C0, all signals

00068_CH04_Null.qxd 10/18/10 12:03 PM Page 237

238 Chapter 4 / MARIE: An Introduction to a Simple Computer

C0

T0

T1

T2

T3

P0

A0

Cr

P1

P2

P3

P5

C1 C2 C3

P4

FIGURE 4.16 Timing Diagram for the Microoperations of MARIE’s Add
Instruction

except P0, P1, P2, P3, and T0 are low. Enabling P0, P1, and P2 allows the IR to be
read from, and asserting P3 allows the MAR to be written to. This action occurs
only when T0 is asserted. At clock cycle C1, all signals except P3, P4, and T1 are
low. This machine state, occurring at time T1, connects the bytes read from main
memory (address zero) to the inputs on the MBR. The last microinstruction of the
Add sequence occurs at clock cycle T3, when the timing signals are reset to 0.

4.13.2 Hardwired Control

There are three essential components common to all hardwired control units: the
instruction decoder, the cycle counter, and the control matrix. Depending on the
complexity of the system, specialized registers and sets of status flags may be

00068_CH04_Null.qxd 10/18/10 12:03 PM Page 238

4.13 / A Discussion on Decoding: Hardwired versus Microprogrammed Control 239

Instruction Register

Instruction Decoder

Control Matrix
(Combinational Circuit)

Control Signals
(These signals go to registers,

the datapath, and the ALU.)

Input from clock

Input from system bus
(such as interrupts)

Input from status/
flag registers

• • •

• • •

• • •

• • •
• • •

Cycle Counter

FIGURE 4.17 Hardwired Control Unit

provided as well. Figure 4.17 illustrates a simplified control unit. Let us look at it
in detail.

The first essential component is the instruction decoder. Its job is to raise the
unique output signal corresponding to the opcode in the instruction register. If we
have a four-bit opcode, the instruction decoder could have as many as 16 output
signal lines. (Why?) A partial decoder for MARIE’s instruction set is shown in
Figure 4.18.

The next important component is the control unit’s cycle counter. It raises a
single, distinct timing signal, T0, T1, T2, …, Tn, for each tick of the system clock.
After Tn is reached, the counter cycles back to T0. The maximum number of
microoperations required to carry out any of the instructions in the instruction set
determines the number of distinct signals (i.e., the value of n in Tn). MARIE’s
timer needs to count only up to 7 (T0 through T6) to accommodate the JnS
instruction. (You can verify this statement with a close inspection of Table 4.7.)

00068_CH04_Null.qxd 10/18/10 12:03 PM Page 239

240 Chapter 4 / MARIE: An Introduction to a Simple Computer

FIGURE 4.18 Partial Instruction Decoder for MARIE’s Instruction Set

JnS

Load

Store

Add

Instruction
Register

Opcode Operand

The sequential logic circuit that provides a repeated series of timing signals is
called a ring counter. Figure 4.19 shows one implementation of a ring counter
using D flip-flops. Initially, all of the flip-flop inputs are low except for the input
to D0 (because of the inverted OR gate on the other outputs). Thus, in the
counter’s initial state, output T0 is energized. At the next tick of the clock, the
output of D0 goes high, causing the input of D0 to go low (because of the inverted
OR gate). T0 turns off and T1 turns on. As you can readily see, we have effec-
tively moved a “timing bit” from D0 to D1. This bit circulates through the ring of
flip-flops until it reaches Dn, unless the ring is first reset by way of the clock reset
signal, Cr.

Signals from the counter and instruction decoder are combined within the
control matrix to produce the series of signals that result in the execution of
microoperations involving the ALU, registers, and datapath.

The sequence of control signals for MARIE’s Add instruction is identical
regardless of whether we employ hardwired or microprogrammed control. If we
use hardwired control, the bit pattern in the machine instruction (Add = 0011)
feeds directly into combinational logic within the control unit. The control unit
initiates the sequence of signal events that we just described. Consider the control
unit in Figure 4.17. The most interesting part of this diagram is the connection
between the instruction decoder and the logic inside the control unit. With timing
being key to all activities in the system, the timing signals, along with the bits in
the instruction, produce the required behavior. The hardwired logic for the Add
instruction is shown in Figure 4.20. You can see how each clock cycle is ANDed

00068_CH04_Null.qxd 10/18/10 12:03 PM Page 240

4.13 / A Discussion on Decoding: Hardwired versus Microprogrammed Control 241

FIGURE 4.19 Ring Counter Using D Flip-Flops

QD3QD0 QD1 QD2

Clock

Cr

(Counter
Reset)

T0 T1 T2 T3 T4

T0

P0
P1

P2

A0
A1

Cr

P3
P4
P5

T1 T2 T3

Q

0

D Q

0

D Q

1

D Q

1

D Q

?

D Q

?

D
Other IR
Flip-Flops

FIGURE 4.20 Combinational Logic for Signal Controls of MARIE’s Add Instruction

00068_CH04_Null.qxd 10/18/10 12:03 PM Page 241

242 Chapter 4 / MARIE: An Introduction to a Simple Computer

with the instruction bits to raise the signals as appropriate. With each clock tick, a
different group of combinational logic circuits is activated.

The advantage of hardwired control is that it is very fast. The disadvantage is
that the instruction set and the control logic are tied together directly by complex
circuits that are difficult to design and modify. If someone designs a hardwired
computer and later decides to extend the instruction set (as we did with MARIE),
the physical components in the computer must be changed. This is prohibitively
expensive, because not only must new chips be fabricated, but the old ones must
also be located and replaced.

4.13.3 Microprogrammed Control

Signals control the movement of bytes (which are actually signal patterns that we
interpret as bytes) along the datapath in a computer system. The manner in which
these control signals are produced is what distinguishes hardwired control from
microprogrammed control. In hardwired control, timing signals from the clock
are ANDed using combinational logic circuits to raise and lower signals. In
microprogrammed control, instruction microcode produces changes in the data-
path signals. A generic block diagram of a microprogrammed control unit is
shown in Figure 4.21.

All machine instructions are input into a special program, the micro-
program, that converts machine instructions of 0s and 1s into control signals.
The microprogram is essentially an interpreter, written in microcode, that is
stored in firmware (ROM, PROM, or EPROM), which is often referred to as the
control store. A microcode microinstruction is retrieved during each clock cycle.
The particular instruction retrieved is a function of the current state of the
machine and the value of the microsequencer, which is somewhat like a program
counter that selects the next instruction from the control store. If MARIE were
microprogrammed, the microinstruction format might look like the one shown in
Figure 4.22.

MicroOp1 and MicroOp2 are binary codes for each unique microoperation
specified in the RTN for MARIE’s instruction set. A comprehensive list of this
RTN (as given in Table 4.7) along with the RTN for the fetch–decode–execute
cycle reveals that there are only 22 unique microoperations required to implement
MARIE’s entire instruction set. Two additional microoperations are also neces-
sary. One of these codes, NOP, indicates “no operation.” NOP is useful when the
system must wait for a set of signals to stabilize, when waiting for a value to be
fetched from memory, or when we need a placeholder. Second, and most impor-
tant, we need a microoperation that compares the bit pattern in the first 4 bits of
the instruction register (IR[15-12]) to a literal value that is in the first 4 bits of the
MicroOp2 field. This instruction is crucial to the execution control of MARIE’s
microprogram. Each of MARIE’s microoperations is assigned a binary code, as
shown in Table 4.9.

00068_CH04_Null.qxd 10/18/10 12:03 PM Page 242

4.13 / A Discussion on Decoding: Hardwired versus Microprogrammed Control 243

Instruction Register

Microinstruction
Address Generation

Microinstruction Buffer

Microinstruction
Decoder

Control Store
Microprogram Memory

Input from status/
flag registers

• • •

• • •

Put microinstruction
in buffer

Subroutine that is
executed for given
microinstruction

Select a
specific
instruction

Clock

Control Signals

FIGURE 4.21 Microprogrammed Control Unit

First
Microoperation

Second
Microoperation

Boolean: Set to
indicate a jump.

Destination
address for jump.

Field Name

Meaning

Bit

MicroOp 1 MicroOp 2 Jump Dest

17 13 12 8 7 6 0

FIGURE 4.22 MARIE’s Microinstruction Format

00068_CH04_Null.qxd 10/18/10 12:03 PM Page 243

244 Chapter 4 / MARIE: An Introduction to a Simple Computer

MicroOp
Code Microoperation MicroOp

Code Microoperation

00000
00001
00010
00011
00100
00101
00110
00111
01000
01001
01010
01011
01100

NOP
AC d 0
AC d MBR
AC d AC – MBR
AC d AC + MBR
AC d InREG
IR d M[MAR]
M[MAR] d MBR
MAR d IR[11-0]
MAR d MBR
MAR d PC
MAR d X
MBR d AC

MBR d M[MAR]
OutREG d AC
PC d IR[11–0]
PC d MBR
PC d PC + 1
If AC = 00
If AC > 0
If AC < 0
If IR[11-10] = 00
If IR[11-10] = 01
If IR[11-10] = 10
If IR[15-12] =
 MicroOp2[4-1]

01101
01110
01111
10000
10001
10010
10011
10100
10101
10110
10111
11000

TABLE 4.9 Microoperation Codes and Corresponding MARIE RTL

MARIE’s entire microprogram consists of fewer than 128 statements, so each
statement can be uniquely identified by seven bits. This means that each microin-
struction has a seven-bit address. When the Jump bit is set, it indicates that the
Dest field contains a valid address. This address is then moved to the microse-
quencer, which is the program counter that controls the flow of execution in the
microprogram. Control then branches to the address found in the Dest field.

MARIE’s control store memory holds the entire microprogram in contiguous
space. This program consists of a jump table and blocks of code that correspond
to each of MARIE’s operations. The first nine statements (in RTL form) of
MARIE’s microprogram are given in Figure 4.23 (we have used the RTL for clar-
ity; the microprogram is actually stored in binary). When MARIE is booted up,
hardware sets the microsequencer to point to address 0000000 of the micropro-
gram. Execution commences from this entry point. We see that the first four state-
ments of the microprogram are the first four statements of the fetch–
decode–execute cycle. The statements starting at address 0000100 that contain
“ifs” are the jump table containing the addresses of the statements that carry out
the machine instructions. They effectively decode the instruction by branching to
the code block that sets the control signals to carry out the machine instruction.

At line number 0000111, the statement If IR[15-12] = MicroOp2[4-1]
compares the value in the leftmost 4 bits of the second microoperation field with
the value in the opcode field of the instruction that was fetched in the first three
lines of the microprogram. In this particular statement, we are comparing the
opcode against MARIE’s binary code for the Add operation, 0011. If we have a
match, the Jump bit is set to true and control branches to address 0101100.

At address 0101100, we see the microoperations (RTN) for the Add instruc-
tion. As these microoperations are executed, control lines are set exactly as

00068_CH04_Null.qxd 10/18/10 12:03 PM Page 244

4.13 / A Discussion on Decoding: Hardwired versus Microprogrammed Control 245

MicroOp 1Address MicroOp 2 Jump Dest

0000011

0000100

0000101

0000110

0000111

0001000

0101010

0101011

0101100

0101101

0101110

0101111

0

1

0

0

1

0

0000000

0000000

0000000

0000000

0000000

0000000

MAR

M[MAR]

MAR

MBR

AC

MAR

X

 MBR

X

M[MAR]

AC + MBR

MAR

MBR

NOP

NOP

NOP

NOP

NOP

AC

MAR NOP 0 0000000

0000000
0000000
0000000

0100000

0101010

0101100

0101111

0100111

0

0
0

1

1

1

1

1

NOP
NOP
NOP

00000

01000

00100

00110

00010

PC

MAR

IR M[MAR]

IR[11–0]

PC + 1PC

If IR[15–12] =
MicroOP2[4–1]
If IR[15–12] =
MicroOP2[4–1]
If IR[15–12] =
MicroOP2[4–1]
If IR[15–12] =
MicroOP2[4–1]
If IR[15–12] =
MicroOP2[4–1]

0000000
0000001
0000010

FIGURE 4.23 Selected Statements in MARIE’s Microprogram

described in Section 4.13.1. The last instruction for Add, at 0101110, has the Jump
bit set once again. The setting of this bit causes the value of all 0s (the jump
Dest) to be moved to the microsequencer. This effectively branches back to the
start of the fetch cycle at the top of the program.

We must emphasize that a microprogrammed control unit works like a system
in miniature. To fetch an instruction from the control store, a certain set of signals
must be raised. The microsequencer points at the instruction to retrieve and is
subsequently incremented. This is why microprogrammed control tends to be
slower than hardwired control—all instructions must go through an additional
level of interpretation. But performance is not everything. Microprogramming is
flexible, simple in design, and lends itself to very powerful instruction sets. The
great advantage of microprogrammed control is that if the instruction set requires
modification, only the microprogram needs to be updated to match: No changes
to the hardware are required. Thus, microprogrammed control units are less

00068_CH04_Null.qxd 10/18/10 12:03 PM Page 245

246 Chapter 4 / MARIE: An Introduction to a Simple Computer

costly to manufacture and maintain. Because cost is critical in consumer prod-
ucts, microprogrammed control dominates the personal computer market.

4.14 REAL-WORLD EXAMPLES OF COMPUTER ARCHITECTURES

The MARIE architecture is designed to be as simple as possible so that the essen-
tial concepts of computer architecture would be easy to understand without being
completely overwhelming. Although MARIE’s architecture and assembly lan-
guage are powerful enough to solve any problems that could be carried out on a
modern architecture using a high-level language such as C++, Ada, or Java, you
probably wouldn’t be very happy with the inefficiency of the architecture or with
how difficult the program would be to write and to debug! MARIE’s performance
could be significantly improved if more storage were incorporated into the CPU
by adding more registers. Making things easier for the programmer is a different
matter. For example, suppose a MARIE programmer wants to use procedures
with parameters. Although MARIE allows for subroutines (programs can branch
to various sections of code, execute the code, and then return), MARIE has no
mechanism to support the passing of parameters. Programs can be written with-
out parameters, but we know that using them not only makes the program more
efficient (particularly in the area of reuse), but also makes the program easier to
write and debug.

To allow for parameters, MARIE would need a stack, a data structure that
maintains a list of items that can be accessed from only one end. A pile of plates
in your kitchen cabinet is analogous to a stack: You put plates on the top and you
take plates off the top (normally). For this reason, stacks are often called last-in-
first-out structures. (Please see Appendix A at the end of this book for a brief
overview of the various data structures.)

We can emulate a stack using certain portions of main memory if we restrict
the way data is accessed. For example, if we assume memory locations 0000
through 00FF are used as a stack, and we treat 0000 as the top, then pushing
(adding) onto the stack must be done from the top, and popping (removing) from
the stack must be done from the top. If we push the value 2 onto the stack, it would
be placed at location 0000. If we then push the value 6, it would be placed at loca-
tion 0001. If we then performed a pop operation, the 6 would be removed. A stack
pointer keeps track of the location to which items should be pushed or popped.

MARIE shares many features with modern architectures, but is not an accurate
depiction of them. In the next two sections, we introduce two contemporary com-
puter architectures to better illustrate the features of modern architectures that, in an
attempt to follow Leonardo da Vinci’s advice, were excluded from MARIE. We
begin with the Intel architecture (the x86 and the Pentium families) and then follow
with the MIPS architecture. We chose these architectures because, although they are
similar in some respects, they are built on fundamentally different philosophies.
Each member of the x86 family of Intel architectures is known as a CISC (complex
instruction set computer) machine, whereas the Pentium family and the MIPS
architectures are examples of RISC (reduced instruction set computer) machines.

00068_CH04_Null.qxd 10/18/10 12:03 PM Page 246

4.14 / Real-World Examples of Computer Architectures 247

CISC machines have a large number of instructions, of variable length, with
complex layouts. Many of these instructions are quite complicated, performing
multiple operations when a single instruction is executed (e.g., it is possible to do
loops using a single assembly language instruction). The basic problem with
CISC machines is that a small subset of complex CISC instructions slows the sys-
tems down considerably. Designers decided to return to a less complicated archi-
tecture and to hardwire a small (but complete) instruction set that would execute
extremely quickly. This meant it would be the compiler’s responsibility to pro-
duce efficient code for the ISA. Machines utilizing this philosophy are called
RISC machines.

RISC is something of a misnomer. It is true that the number of instructions is
reduced. However, the main objective of RISC machines is to simplify instruc-
tions so they can execute more quickly. Each instruction performs only one oper-
ation, they are all the same size, they have only a few different layouts, and all
arithmetic operations must be performed between registers (data in memory can-
not be used as operands). Virtually all new instruction sets (for any architectures)
since 1982 have been RISC, or some sort of combination of CISC and RISC. We
cover CISC and RISC in detail in Chapter 9.

4.14.1 Intel Architectures

The Intel Corporation has produced many different architectures, some of
which may be familiar to you. Intel’s first popular chip, the 8086, was intro-
duced in 1979 and used in the IBM PC. It handled 16-bit data and worked with
20-bit addresses; thus it could address a million bytes of memory. (A close
cousin of the 8086, the 8-bit 8088, was used in many personal computers to
lower the cost.) The 8086 CPU was split into two parts: the execution unit,
which included the general registers and the ALU, and the bus interface unit,
which included the instruction queue, the segment registers, and the instruction
pointer.

The 8086 had four 16-bit general purpose registers named AX (the primary
accumulator), BX (the base register used to extend addressing), CX (the count reg-
ister), and DX (the data register). Each of these registers was divided into two
pieces: the most significant half was designated the “high” half (denoted by AH,
BH, CH, and DH), and the least significant was designated the “low” half (denoted
by AL, BL, CL, and DL). Various 8086 instructions required the use of a specific
register, but the registers could be used for other purposes as well. The 8086 also
had three pointer registers: the stack pointer (SP), which was used as an offset into
the stack; the base pointer (BP), which was used to reference parameters pushed
onto the stack; and the instruction pointer (IP), which held the address of the next
instruction (similar to MARIE’s PC). There were also two index registers: the SI
(source index) register, used as a source pointer for string operations, and the DI
(destination index) register, used as a destination pointer for string operations. The
8086 also had a status flags register. Individual bits in this register indicated vari-
ous conditions, such as overflow, parity, carry interrupt, and so on.

00068_CH04_Null.qxd 10/18/10 12:03 PM Page 247

248 Chapter 4 / MARIE: An Introduction to a Simple Computer

AH AL

EAX

AX

8 bits 8 bits16 bits

32 bits

FIGURE 4.24 EAX Register, Broken into Parts

An 8086 assembly language program was divided into different segments,
special blocks or areas to hold specific types of information. There was a code
segment (for holding the program), a data segment (for holding the program’s
data), and a stack segment (for holding the program’s stack). To access informa-
tion in any of these segments, it was necessary to specify that item’s offset from
the beginning of the corresponding segment. Therefore, segment pointers were
necessary to store the addresses of the segments. These registers included the
code segment (CS) register, the data segment (DS) register, and the stack seg-
ment (SS) register. There was also a fourth segment register, called the extra
segment (ES) register, which was used by some string operations to handle
memory addressing. Addresses were specified using segment/offset addressing
in the form: xxx:yyy, where xxx was the value in the segment register and yyy
was the offset.

In 1980, Intel introduced the 8087, which added floating-point instructions
to the 8086 machine set as well as an 80-bit wide stack. Many new chips were
introduced that used essentially the same ISA as the 8086, including the 80286
in 1982 (which could address 16 million bytes) and the 80386 in 1985 (which
could address up to 4 billion bytes of memory). The 80386 was a 32-bit chip,
the first in a family of chips often called IA-32 (for Intel Architecture, 32-bit).
When Intel moved from the 16-bit 80286 to the 32-bit 80386, designers wanted
these architectures to be backward compatible, which means that programs
written for a less powerful and older processor should run on the newer, faster
processors. For example, programs that ran on the 80286 should also run on the
80386. Therefore, Intel kept the same basic architecture and register sets. (New
features were added to each successive model, so forward compatibility was not
guaranteed.)

The naming convention used in the 80386 for the registers, which had gone from
16 to 32 bits, was to include an “E” prefix (which stood for “extended”). So instead
of AX, BX, CX, and DX, the registers became EAX, EBX, ECX, and EDX. This
same convention was used for all other registers. However, the programmer could
still access the original registers, AX, AL, and AH, for example, using the original
names. Figure 4.24 illustrates how this worked, using the AX register as an example.

00068_CH04_Null.qxd 10/18/10 12:03 PM Page 248

4.14 / Real-World Examples of Computer Architectures 249

The 80386 and 80486 were both 32-bit machines, with 32-bit data buses. The
80486 added a high-speed cache memory (see Chapter 6 for more details on
cache and memory), which improved performance significantly.

The Pentium series (see sidebar “What’s in a Name?” to find out why Intel
stopped using numbers and switched to the name “Pentium”) started with the
Pentium processor, which had 32-bit registers and a 64-bit data bus and employed
a superscalar design. This means the CPU had multiple ALUs and could issue
more than one instruction per clock cycle (i.e., run instructions in parallel). The
Pentium Pro added branch prediction, and the Pentium II added MMX technol-
ogy (which most will agree was not a huge success) to deal with multimedia. The
Pentium III added increased support for 3D graphics (using floating-point
instructions). Historically, Intel used a classic CISC approach throughout its
processor series. The more recent Pentium II and III used a combined approach,
employing CISC architectures with RISC cores that could translate from CISC to
RISC instructions. Intel was conforming to the current trend by moving away
from CISC and toward RISC.

The seventh-generation family of Intel CPUs introduced the Intel Pen-
tium IV (also known as the Pentium 4) processor. This processor differs from
its predecessors in several different ways, many of which are beyond the
scope of this text. Suffice it to say that the Pentium IV processor has clock
rates of 1.4 and 1.7 GHz, uses no less than 42 million transistors for the CPU,
and implements a NetBurst microarchitecture. (The processors in the Pen-
tium family, up to this point, had all been based on the same microarchitec-
ture, a term used to describe the architecture below the instruction set.) This
type of architecture includes four salient improvements: hyperpipelining, a
wider instruction pipeline (pipelining is covered in Chapter 5) to handle more
instructions concurrently; a rapid execution engine (the Pentium IV has two
arithmetic logic units); an execution trace cache, a cache that holds decoded
instructions so if they are used again, they do not have to be decoded again;
and a 400 MHz bus. This has made the Pentium IV an extremely useful
processor for multimedia applications.

The Pentium IV processor also introduced hyperthreading (HT). Threads
are tasks that can run independently of one another within the context of the
same process. A thread shares code and data with the parent process but has its
own resources, including a stack and instruction pointer. Because multiple child
threads share with their parent, threads require fewer system resources than if
each were a separate process. Systems with more than one processor take advan-
tage of thread processing by splitting instructions so that multiple threads can
execute on the processors in parallel. However, Intel’s HT enables a single physi-
cal processor to simulate two logical (or virtual) processors—the operating sys-
tem actually sees two processors where only one exists. (To take advantage of
HT, the operating system must recognize thread processing.) HT does this
through a mix of shared, duplicated, and partitioned chip resources, including
registers, math units, counters, and cache memory.

00068_CH04_Null.qxd 10/18/10 12:03 PM Page 249

What’s in a Name?

Intel Corporation makes approximately 80% of the CPUs used in today’s micro-

computers. It all started with the 4-bit 4004, which in 1971 was the first com-

mercially available microprocessor, or “CPU on a chip.” Four years later, Intel’s

8-bit 8080 with 6000 transistors was put into the first personal computer, the

Altair 8800. As technology allowed more transistors per chip, Intel kept pace by

introducing the 16-bit 8086 in 1978 and the 8088 in 1979 (both with approxi-

mately 29,000 transistors). These two processors truly started the personal

computer revolution, as they were used in the IBM personal computer (later

dubbed the XT) and became the industry standard.

The 80186 was introduced in 1980, and although buyers could choose

from an 8-bit or a 16-bit version, the 80186 was never used in personal com-

puters. In 1982, Intel introduced the 80286, a 16-bit processor with

134,000 transistors. In fewer than 5 years, over 14 million personal comput-

ers were using the 80286 (which most people shortened to simply “286”). In

1985, Intel came out with the first 32-bit microprocessor, the 80386. The

386 multitasking chip was an immediate success, with its 275,000 transistors

and 5 million instructions-per-second operating speed. Four years later, Intel

introduced the 80486, which had an amazing 1.2 million transistors per chip

and operated at 16.9 million instructions per second! The 486, with its built-

in math coprocessor, was the first microprocessor to truly rival mainframe

computers.

With such huge success and name recognition, why then, did Intel suddenly

stop using the 80x86 moniker and switch to Pentium in 1993? By this time,

many companies were copying Intel’s designs and using the same numbering

scheme. One of the most successful of these was Advanced Micro Device

(AMD). The AMD486 processor had already found its way into many portable

and desktop computers. Another was Cyrix with its 486SLC chip. Before intro-

ducing its next processor, Intel asked the U.S. Patent and Trademark Office if

the company could trademark the name “586.” In the United States, numbers

cannot be trademarked. (Other countries do allow numbers as trademarks,

such as Peugeot’s trademark three-digit model numbers with a central zero.)

Intel was denied its trademark request and switched the name to Pentium. (The

astute reader will recognize that pent means five, as in pentagon.)

250 Chapter 4 / MARIE: An Introduction to a Simple Computer

HT duplicates the architectural state of the processor but permits the threads
to share main execution resources. This sharing allows the threads to utilize
resources that might otherwise be idle (e.g., on a cache miss), resulting in up to a
40% improvement in resource utilization and potential performance gains as high
as 25%. Performance gains depend on the application, with computer-intensive
applications seeing the most significant gain. Commonplace programs, such as
word processors and spreadsheets, are mostly unaffected by HT technology.

00068_CH04_Null.qxd 10/18/10 12:03 PM Page 250

4.14 / Real-World Examples of Computer Architectures 251

It is interesting to note that all of this happened at about the same time as

Intel began using its ubiquitous “Intel inside” stickers. It is also interesting that

AMD introduced what it called the PR rating system, a method of comparing

their x86 processor to Intel’s processor. PR stands for “Performance Rating”

(not “Pentium Rating” as many people believe) and was intended to guide con-

sumers regarding a particular processor’s performance as compared to that of

a Pentium.

Intel has continued to manufacture chips using the Pentium naming scheme.

The first Pentium chip had 3 million transistors, operated at 25 million instruc-

tions per second, and had clock speeds from 60 to 200 MHz. Intel produced

many different name variations of the Pentium, including the Pentium MMX in

1997, which improved multimedia performance using the MMX instruction set.

Other manufacturers have also continued to design chips to compete with

the Pentium line. AMD introduced the AMD5x86, and later the K5 and K6, to

compete with Pentium MMX technology. AMD gave its 5x86 processor a

“PR75” rating, meaning this processor was as fast as a Pentium running at 75

MHz. Cyrix introduced the 6x86 chip (or M1) and MediaGX, followed by the

Cyrix 6x86MX (M2), to compete with the Pentium MMX.

Intel moved on to the Pentium Pro in 1995. This processor had 5.5 million

transistors but had only a slightly larger die than the 4004, which was intro-

duced almost 25 years earlier. The Pentium II (1997) was a cross between the

Pentium MMX and the Pentium Pro and contained 7.5 million transistors. AMD

continued to keep pace and introduced the K6-2 in 1998, followed by the K6-

3. In an attempt to capture more of the low-end market, Intel introduced the

Celeron, an entry-level version of the Pentium II with less cache memory.

Intel released the Pentium III in 1999. This chip, housing 9.5 million transis-

tors, used the SSE instruction set (which is an extension to MMX). Intel contin-

ued with improvements to this processor by placing cache directly on the core,

making caching considerably faster. AMD released the Athlon line of chips in

1999 to compete with the Pentium III. (AMD continues to manufacture the

Athlon line to this day.) In 2000, Intel released the Pentium IV, and depending

on the particular core, this chip has from 42 to 55 million transistors!

Clearly, changing the name of its processors from the x86 designation to a

Pentium-based series has had no negative effects on Intel’s success. However,

because Pentium is one of the most recognized trademarks in the processor

world, industry watchers were surprised when Intel introduced its 64-bit Ita-

nium processor without including Pentium as part of the name. Some people

believe that this chip name has backfired and their comparison of this chip to a

sinking ship has prompted some to call it the Itanic.

Intel recently submitted a patent bid to trademark “Intel VIIV.” There is con-

siderable speculation as to what VIIV could mean. VI and IV are the Roman

numerals for 6 and 4, which could reference 64-bit technology. VIIV might also

be representative of Intel’s new dual-core chips and could mean 5–2–5, or two

Pentium 5 cores.

00068_CH04_Null.qxd 10/18/10 12:03 PM Page 251

252 Chapter 4 / MARIE: An Introduction to a Simple Computer

Although this discussion has given a timeline of Intel’s processors, it also

shows that, for the past 30 years, Moore’s law has held with remarkable accu-

racy. And we have looked at only Intel and Intel clone processors. There are

many other microprocessors we have not mentioned, including those made by

Motorola, Zilog, TI, and RCA, to name only a few. With continually increasing

power and decreasing costs, there is little wonder that microprocessors have

become the most prevalent type of processor in the computer market. Even

more amazing is that there is no sign of this trend changing at any time in the

near future.

The introduction of the Itanium processor in 2001 marked Intel’s first 64-
bit chip (IA-64). Itanium includes a register-based programming language and a
very rich instruction set. It also employs a hardware emulator to maintain back-
ward compatibility with IA-32/x86 instruction sets. This processor has four
integer units, two floating-point units, a significant amount of cache memory at
four different levels (we study cache levels in Chapter 6), 128 floating-point
registers, 128 integer registers, and multiple miscellaneous registers for dealing
with efficient loading of instructions in branching situations. Itanium can
address up to 16 GB of main memory.

The assembly language of an architecture reveals significant information
about that architecture. To compare MARIE’s architecture to Intel’s architecture,
let’s return to Example 4.1, the MARIE program that used a loop to add five num-
bers. Let’s rewrite the program in x86 assembly language, as seen in Example
4.5. Note the addition of a Data segment directive and a Code segment directive.

EXAMPLE 4.5 A program using a loop to add five numbers written to run on
a Pentium.

.DATA
Num1 EQU 10 ; Num1 is initialized to 10

EQU 15 ; Each word following Num1 is initialized
EQU 20
EQU 25
EQU 30

Num DB 5 ; Initialize the loop counter
Sum DB 0 ; Initialize the Sum

.CODE
LEA EBX, Num1 ; Load the address of Num1 into EBX
MOV ECX, Num ; Set the loop counter
MOV EAX, 0 ; Initialize the sum
MOV EDI, 0 ; Initialize the offset (of which number to add)

Start: ADD EAX, [EBX+EDI*4] ; Add the EBXth number to EAX
INC EDI ; Increment the offset by 1

00068_CH04_Null.qxd 10/18/10 12:03 PM Page 252

4.14 / Real-World Examples of Computer Architectures 253

DEC ECX ; Decrement the loop counter by 1
JG Start ; If counter is greater than 0, return to Start
MOV Sum, EAX ; Store the result in Sum

We can make this program easier to read (which also makes it look less like
MARIE’s assembly language) by using the loop statement. Syntactically, the loop
instruction resembles a jump instruction, in that it requires a label. This loop can
be rewritten as follows:

MOV ECX, Num ; Set the counter
Start: ADD EAX, [EBX + EDI * 4]

INC EDI
LOOP Start
MOV Sum, EAX

The loop statement in x86 assembly is similar to the do...while construct
in C, C++, or Java. The difference is that there is no explicit loop variable—the
ECX register is assumed to hold the loop counter. Upon execution of the loop
instruction, the processor decreases ECX by one, and then tests ECX to see if it
is equal to 0. If it is not 0, control jumps to Start; if it is 0, the loop terminates.
The loop statement is an example of the types of instructions that can be added
to make the programmer’s job easier, but which aren’t necessary for getting the
job done.

4.14.2 MIPS Architectures

The MIPS family of CPUs has been one of the most successful and flexible
designs of its class. The MIPS R3000, R4000, R5000, R8000, and R10000 are
some of the many registered trademarks belonging to MIPS Technologies, Inc.
MIPS chips are used in embedded systems, in addition to computers (such as Sili-
con Graphics machines) and various computerized toys (Nintendo and Sony use
the MIPS CPU in many of their products). Cisco, a very successful manufacturer
of Internet routers, uses MIPS CPUs as well.

The first MIPS ISA was MIPS I, followed by MIPS II through MIPS V. The
current ISAs are referred to as MIPS32 (for the 32-bit architecture) and MIPS64
(for the 64-bit architecture). Our discussion in this section focuses on MIPS32. It
is important to note that MIPS Technologies made a decision similar to that of
Intel—as the ISA evolved, backward compatibility was maintained. And, like
Intel, each new version of the ISA included operations and instructions to
improve efficiency and handle floating-point values. The new MIPS32 and
MIPS64 architectures have significant improvements in VLSI technology and
CPU organization. The end result is notable cost and performance benefits over
traditional architectures.

Like IA-32 and IA-64, the MIPS ISA embodies a rich set of instructions,
including arithmetic, logical, comparison, data transfer, branching, jumping,
shifting, and multimedia instructions. MIPS is a load/store architecture, which

00068_CH04_Null.qxd 10/18/10 12:03 PM Page 253

254 Chapter 4 / MARIE: An Introduction to a Simple Computer

Naming
Convention

Register
Number

$v0–$v1
$a0–$a3
$t0–$t7
$s0–$s7
$t8–$t9

2—3
4—7
8—15
16—23
24—25

Value Put in Register

Results, expressions
Arguments
Temporary values
Saved values
More temporary values

TABLE 4.10 MIPS32 Register Naming Convention

means that all instructions (other than the load and store instructions) must use
registers as operands (no memory operands are allowed). MIPS32 has 168 32-bit
instructions, but many are similar. For example, there are six different add
instructions, all of which add numbers, but they vary in the operands and registers
used. This idea of having multiple instructions for the same operation is common
in assembly language instruction sets. Another common instruction is the MIPS
NOP instruction, which does nothing except eat up time (NOPs are used in
pipelining as we see in Chapter 5).

The CPU in a MIPS32 architecture has thirty-two 32-bit general-purpose reg-
isters numbered r0 through r31. (Two of these have special functions: r0 is hard-
wired to a value of 0 and r31 is the default register for use with certain instructions,
which means it does not have to be specified in the instruction itself.) In MIPS
assembly, these 32 general-purpose registers are designated $0, $1, . . . , $31. Regis-
ter 1 is reserved, and registers 26 and 27 are used by the operating system kernel.
Registers 28, 29, and 30 are pointer registers. The remaining registers can be
referred to by number, using the naming convention shown in Table 4.10. For
example, you can refer to register 8 as $8 or as $t0.

There are two special purpose registers, HI and LO, which hold the results of
certain integer operations. Of course, there is a PC register as well, giving a total
of three special-purpose registers.

MIPS32 has thirty-two 32-bit floating-point registers that can be used in sin-
gle-precision floating-point operations (with double-precision values being stored
in even-odd pairs of these registers). There are four special-purpose floating-point
control registers for use by the floating-point unit.

Let’s continue our comparison by writing the programs from Examples 4.1
and 4.5 in MIPS32 assembly language.

EXAMPLE 4.6

. . .
.data

$t0 = sum
$t1 = loop counter Ctr

Value: .word 10, 15,20,25,30
Sum = 0
Ctr = 5

00068_CH04_Null.qxd 10/18/10 12:03 PM Page 254

Chapter Summary 255

.text

.global main # Declaration of main as a global variable
main: lw $t0, Sum # Initialize register containing sum to zero

lw $t1, Ctr # Copy Ctr value to register
la $t2, value # $t2 is a pointer to current value

while: blez $t1, end_while # Done with loop if counter <= 0
lw $t3, 0($t2) # Load value offset of 0 from pointer
add $t0, $t0, $t3 # Add value to sum
addi $t2, $t2, 4 # Go to next data value
sub $t1, $t1, 1 # Decrement Ctr
b while # Return to top of loop
la $t4, sum # Load the address of sum into register
sw $t0, 0($t4) # Write the sum into memory location sum
. . .

This is similar to the Intel code in that the loop counter is copied into a regis-
ter, decremented during each interation of the loop, and then checked to see if it is
less than or equal to 0. The register names may look formidable, but they are
actually easy to work with once you understand the naming conventions.

If you have enjoyed working with the MARIE simulator and are ready to try
your hand at a more complex machine, you will surely find the MIPS Assembler
and Runtime Simulator, MARS, to your liking. MARS is a Java-based MIPS
R2000 and R3000 simulator designed especially for undergraduate education by
Kenneth Vollmar and Pete Sanderson. It provides all the essential MIPS machine
functions in a useful and inviting graphical interface. SPIM is another popular
MIPS simulator widely used by students and professionals alike. Both of these
simulators are freely downloadable and can run on Windows XP and Windows
Vista, Mac OS X, Unix, and Linux. For more information see the references at
the end of this chapter.

If you examine Examples 4.1, 4.5, and 4.6, you can see that the instructions
are quite similar. Registers are referenced in different ways and have different
names, but the underlying operations are basically the same. Some assembly lan-
guages have larger instruction sets, allowing the programmer more choices for
coding various algorithms. But, as we have seen with MARIE, a large instruction
set is not absolutely necessary to get the job done.

CHAPTER SUMMARY

This chapter presented a simple architecture, MARIE, as a means to understand
the basic fetch–decode–execute cycle and how computers actually operate.

This simple architecture was combined with an ISA and an assembly language,
with emphasis given to the relationship between these two, allowing us to write
programs for MARIE.

00068_CH04_Null.qxd 10/18/10 12:03 PM Page 255

256 Chapter 4 / MARIE: An Introduction to a Simple Computer

The CPU is the principal component in any computer. It consists of a data-
path (registers and an ALU connected by a bus) and a control unit responsible for
sequencing the operations and data movement and creating the timing signals. All
components use these timing signals to work in unison. The I/O subsystem
accommodates getting data into the computer and back out to the user.

MARIE is a very simple architecture designed specifically to illustrate the con-
cepts in this chapter without getting bogged down in too many technical details.
MARIE has 4K 16-bit words of main memory, uses 16-bit instructions, and has
seven registers. There is only one general-purpose register, the AC. Instructions for
MARIE use 4 bits for the opcode and 12 bits for an address. Register transfer nota-
tion was introduced as a symbolic means for examining what each instruction does
at the register level.

The fetch–decode–execute cycle consists of the steps a computer follows to
run a program. An instruction is fetched and then decoded, any required operands
are then fetched, and finally the instruction is executed. Interrupts are processed
at the beginning of this cycle, returning to normal fetch–decode–execute status
when the interrupt handler is finished.

A machine language is a list of binary numbers representing executable
machine instructions, whereas an assembly language program uses symbolic
instructions to represent the numerical data from which the machine language
program is derived. Assembly language is a programming language, but does not
offer a large variety of data types or instructions for the programmer. Assembly
language programs represent a lower level method of programming.

You would probably agree that programming in MARIE’s assembly language
is, at the very least, quite tedious. We saw that most branching must be explicitly
performed by the programmer, using jump and branch statements. It is also a
large step from this assembly language to a high-level language such as C++ or
Ada. However, the assembler is one step in the process of converting source code
into something the machine can understand. We have not introduced assembly
language with the expectation that you will rush out and become an assembly lan-
guage programmer. Rather, this introduction should serve to give you a better
understanding of machine architecture and how instructions and architectures are
related. Assembly language should also give you a basic idea of what is going on
behind the scenes in high-level C++, Java, or Ada programs. Although assembly
language programs are easier to write for x86 and MIPS than for MARIE, all are
more difficult to write and debug than high-level language programs.

Intel and MIPS assembly languages and architectures were introduced (but by
no means covered in detail) for two reasons. First, it is interesting to compare the
various architectures, starting with a very simple architecture and continuing with
much more complex and involved architectures. You should focus on the differ-
ences as well as the similarities. Second, although the Intel and MIPS assembly
languages looked different from MARIE’s assembly language, they are actually
quite comparable. Instructions access memory and registers, and there are instruc-
tions for moving data, performing arithmetic and logic operations, and branching.
MARIE’s instruction set is very simple and lacks many of the “programmer
friendly” instructions that are present in both Intel and MIPS instruction sets. Intel

00068_CH04_Null.qxd 10/18/10 12:03 PM Page 256

References 257

and MIPS also have more registers than MARIE. Aside from the number of
instructions and the number of registers, the languages function almost identically.

FURTHER READING

A MARIE assembly simulator is available on this textbook’s home page. This
simulator assembles and executes your MARIE programs.

For more detailed information on CPU organization and ISAs, you are referred
to the Tanenbaum (2005) and Stallings (2009) books. Mano and Cilett (2006) con-
tains instructional examples of microprogrammed architectures. Wilkes, Renwick,
and Wheeler (1958) is an excellent reference on microprogramming.

For more information regarding Intel assembly language programming,
check out the Abel (2001), Dandamudi (1998), and Jones (2001) books. The
Jones book takes a straightforward and simple approach to assembly language
programming, and all three books are quite thorough. If you are interested in
other assembly languages, you might refer to Struble (1975) for IBM assembly,
Gill, Corwin, and Logar (1987) for Motorola, and SPARC International (1994)
for SPARC. For a gentle introduction to embedded systems, try Williams (2000).

If you are interested in MIPS programming, Patterson and Hennessy (2008)
give a very good presentation and their book has a separate appendix with useful
information. Donovan (1972) and Goodman and Miller (1993) also have good
coverage of the MIPS environment. Kane and Heinrich (1992) wrote the defini-
tive text on the MIPS instruction set and assembly language programming on
MIPS machines. The MIPS home page also has a wealth of information.

To read more about Intel architectures, please refer to Alpert and Avnon
(1993), Brey (2003), Dulon (1998), and Samaras (2001). Perhaps one of the best
books on the subject of the Pentium architecture is Shanley (1998). Motorola,
UltraSparc, and Alpha architectures are discussed in Circello and co-workers
(1995), Horel and Lauterbach (1999), and McLellan (1995), respectively. For a
more general introduction to advanced architectures, see Tabak (1994).

If you wish to learn more about the SPIM simulator for MIPS, see Patterson
and Hennessy (2008) or the SPIM home page, which has documentation, manu-
als, and various other downloads. The excellent MARS MIPS Simulator can be
downloaded from Vollmar’s page at Missouri State University, at http://courses
.missouristate.edu/KenVollmar/MARS/. Waldron (1999) is an excellent introduc-
tion to RISC assembly language programming and MIPS as well.

REFERENCES

Abel, P. IBM PC Assembly Language and Programming, 5th ed. Upper Saddle River, NJ: Prentice
Hall, 2001.

Alpert, D., & Avnon, D. “Architecture of the Pentium Microprocessor.” IEEE Micro 13, April
1993, pp. 11–21.

Brey, B. Intel Microprocessors 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium, and Pen-
tium Pro Processor, Pentium II, Pentium III, and Pentium IV: Architecture, Programming, and
Interfacing, 6th ed. Englewood Cliffs, NJ: Prentice Hall, 2003.

00068_CH04_Null.qxd 10/18/10 12:03 PM Page 257

258 Chapter 4 / MARIE: An Introduction to a Simple Computer

Circello, J., Edgington, G., McCarthy, D., Gay, J., Schimke, D., Sullivan, S., Duerden, R., Hinds,
C., Marquette, D., Sood, L., Crouch, A., & Chow, D. “The Superscalar Architecture of the
MC68060.” IEEE Micro 15, April 1995, pp. 10–21.

Dandamudi, S. P. Introduction to Assembly Language Programming—From 8086 to Pentium
Processors. New York: Springer Verlag, 1998.

Donovan. J. J. Systems Programming. New York: McGraw-Hill, 1972.

Dulon, C. “The IA-64 Architecture at Work.” COMPUTER 31, July 1998, pp. 24–32.

Gill, A., Corwin, E., & Logar, A. Assembly Language Programming for the 68000. Upper Saddle
River, NJ: Prentice Hall, 1987.

Goodman, J., & Miller, K. A Programmer’s View of Computer Architecture. Philadelphia: Saun-
ders College Publishing, 1993.

Horel, T., & Lauterbach, G. “UltraSPARC III: Designing Third Generation 64-Bit Performance.”
IEEE Micro 19, May/June 1999, pp. 73–85.

Jones, W. Assembly Language for the IBM PC Family, 3rd ed. El Granada, CA: Scott Jones, Inc., 2001.

Kane, G., & Heinrich, J. MIPS RISC Architecture, 2nd ed. Englewood Cliffs, NJ: Prentice Hall, 1992.

Mano, M., & Ciletti, M. Digital Design, 3rd ed. Upper Saddle River, NJ: Prentice Hall, 2006.

McLellan, E. “The Alpha AXP Architecture and 21164 Alpha Microprocessor.” IEEE Micro 15,
April 1995, pp. 33–43.

MIPS home page: www.mips.com.

Patterson, D. A., & Hennessy, J. L. Computer Organization and Design: The Hardware/Software
Interface, 4th ed. San Mateo, CA: Morgan Kaufmann, 2008.

Samaras, W. A., Cherukuri, N., & Venkataraman, S. “The IA-64 Itanium Processor Cartridge.”
IEEE Micro 21, Jan/Feb 2001, pp. 82–89.

Shanley, T. Pentium Pro and Pentium II System Architecture. Reading, MA: Addison-Wesley, 1998.

SPARC International, Inc. The SPARC Architecture Manual: Version 9. Upper Saddle River, NJ:
Prentice Hall, 1994.

SPIM home page: www.cs.wisc.edu/~larus/spim.html.

Stallings, W. Computer Organization and Architecture, 8th ed. Upper Saddle River, NJ: Prentice
Hall, 2009.

Struble, G. W. Assembler Language Programming: The IBM System/360 and 370, 2nd ed. Read-
ing, MA: Addison Wesley, 1975.

Tabak, D. Advanced Microprocessors. 2nd ed. New York: McGraw-Hill, 1994.

Tanenbaum, A. Structured Computer Organization, 5th ed. Upper Saddle River, NJ: Prentice Hall,
2005.

Vollmar, K., & Sanderson, P. “MARS: An Education-Oriented MIPS Assembly Language Simula-
tor.” ACM SIGCSE Bulletin, 38:1, March 2006, 239–243.

Waldron, J. Introduction to RISC Assembly Language. Reading, MA: Addison Wesley, 1999.

Wilkes, M. V., Renwick, W., & Wheeler, D. J. “The Design of the Control Unit of an Electronic
Digital Computer.” Proceedings of IEEE, 105, 1958, pp. 121–128.

Williams, A. Microcontroller Projects with Basic Stamps. Gilroy, CA: R&D Books, 2000.

00068_CH04_Null.qxd 10/18/10 12:03 PM Page 258

Review of Essential Terms and Concepts 259

REVIEW OF ESSENTIAL TERMS AND CONCEPTS

1. What is the function of a CPU?

2. What purpose does a datapath serve?

3. What does the control unit do?

4. Where are registers located and what are the different types?

5. How does the ALU know which function to perform?

6. Why is a bus often a communications bottleneck?

7. What is the difference between a point-to-point bus and a multipoint bus?

8. Why is a bus protocol important?

9. Explain the differences between data buses, address buses, and control buses.

10. What is a bus cycle?

11. Name three different types of buses and where you would find them.

12. What is the difference between synchronous buses and nonsynchronous buses?

13. What are the four types of bus arbitration?

14. Explain the difference between clock cycles and clock frequency.

15. How do system clocks and bus clocks differ?

16. What is the function of an I/O interface?

17. Explain the difference between memory-mapped I/O and instruction-based I/O.

18. What is the difference between a byte and a word? What distinguishes each?

19. Explain the difference between byte addressable and word addressable.

20. Why is address alignment important?

21. List and explain the two types of memory interleaving and the differences between them.

22. Describe how an interrupt works and name four different types.

23. How does a maskable interrupt differ from a nonmaskable interrupt?

24. Why is it that if MARIE has 4K words of main memory, addresses must have 12 bits?

25. Explain the functions of all of MARIE’s registers.

26. What is an opcode?

27. Explain how each instruction in MARIE works.

28. How does a machine language differ from an assembly language? Is the conversion
one-to-one (one assembly instruction equals one machine instruction)?

29. What is the significance of RTN?

30. Is a microoperation the same thing as a machine instruction?

31. How does a microoperation differ from a regular assembly language instruction?

32. Explain the steps of the fetch–decode–execute cycle.

33. How does interrupt-driven I/O work?

34. Explain how an assembler works, including how it generates the symbol table, what
it does with source and object code, and how it handles labels.

00068_CH04_Null.qxd 10/18/10 12:03 PM Page 259

260 Chapter 4 / MARIE: An Introduction to a Simple Computer

35. What is an embedded system? How does it differ from a regular computer?

36. Provide a trace (similar to the one in Figure 4.14) for Example 4.1.

37. Explain the difference between hardwired control and microprogrammed control.

38. What is a stack? Why is it important for programming?

39. Compare CISC machines to RISC machines.

40. How does Intel’s architecture differ from MIPS?

41. Name four Intel processors and four MIPS processors.

EXERCISES

1. What are the main functions of the CPU?

2. How is the ALU related to the CPU? What are its main functions?

3. Explain what the CPU should do when an interrupt occurs. Include in your answer
the method the CPU uses to detect an interrupt, how it is handled, and what happens
when the interrupt has been serviced.

� 4. How many bits would you need to address a 2M � 32 memory if

a) the memory is byte addressable?

b) the memory is word addressable?

5. How many bits are required to address a 4M � 16 main memory if

a) main memory is byte addressable?

b) main memory is word addressable?

6. How many bits are required to address a 1M � 8 main memory if

a) main memory is byte addressable?

b) main memory is word addressable?

7. Suppose we have 4 memory modules instead of 8 in Figures 4.6 and 4.7. Draw the
memory modules with the addresses they contain using:

a) High-order interleaving

b) Low-order interleaving.

8. How many 256x8 RAM chips are needed to provide a memory capacity of 4096
bytes?

a) How many bits will each address contain?

b) How many lines must go to each chip?

c) How many lines must be decoded for the chip select inputs? Specify the size of
the decoder.

� 9. Suppose that a 2M � 16 main memory is built using 256K � 8 RAM chips and
memory is word addressable.

a) How many RAM chips are necessary?

b) How many RAM chips are there per memory word?

00068_CH04_Null.qxd 10/18/10 12:03 PM Page 260

Exercises 261

c) How many address bits are needed for each RAM chip?

d) How many banks will this memory have?

e) How many address bits are needed for all of memory?

f) If high-order interleaving is used, where would address 14 (which is E in hex) be
located?

g) Repeat Exercise 6f for low-order interleaving.

10. Redo Exercise 9 assuming a 16M � 16 memory built using 512K � 8 RAM chips.

11. A digital computer has a memory unit with 24 bits per word. The instruction set con-
sists of 150 different operations. All instructions have an operation code part
(opcode) and an address part (allowing for only one address). Each instruction is
stored in one word of memory.

a) How many bits are needed for the opcode?

b) How many bits are left for the address part of the instruction?

c) What is the maximum allowable size for memory?

d) What is the largest unsigned binary number that can be accommodated in one
word of memory?

12. A digital computer has a memory unit with 32 bits per word. The instruction set con-
sists of 110 different operations. All instructions have an operation code part
(opcode) and two address fields: one for a memory address and one for a register
address. This particular system includes eight general-purpose, user-addressable reg-
isters. Registers may be loaded directly from memory, and memory may be updated
directly from the registers. Direct memory-to-memory data movement operations are
not supported. Each instruction stored in one word of memory.

a) How many bits are needed for the opcode?

b) How many bits are needed to specify the register?

c) How many bits are left for the memory address part of the instruction?

d) What is the maximum allowable size for memory?

e) What is the largest unsigned binary number that can be accommodated in one
word of memory?

13. Assume a 220 byte memory.

� a) What are the lowest and highest addresses if memory is byte addressable?

� b) What are the lowest and highest addresses if memory is word addressable,
assuming a 16-bit word?

c) What are the lowest and highest addresses if memory is word addressable,
assuming a 32-bit word?

14. You and a colleague are designing a brand new microprocessor architecture. Your
colleague wants the processor to support 509 different instructions. You do not agree,
and would like to have many fewer instructions. Outline the argument for a position
paper to present to the management team that will make the final decision. Try to
anticipate the argument that could be made to support the opposing viewpoint.

00068_CH04_Null.qxd 10/18/10 12:03 PM Page 261

262 Chapter 4 / MARIE: An Introduction to a Simple Computer

15. Given a memory of 2048 bytes consisting of several 64 � 8 RAM chips, and assum-
ing byte-addressable memory, which of the following seven diagrams indicates the
correct way to use the address bits? Explain your answer.

16. Explain the steps in the fetch–decode–execute cycle. Your explanation should
include what is happening in the various registers.

17. Combine the flowcharts that appear in Figures 4.11 and 4.12 so that the interrupt
checking appears at a suitable place.

18. Explain why, in MARIE, the MAR is only 12 bits wide and the AC is 16 bits wide.
(Hint: Consider the difference between data and addresses.)

19. List the hexadecimal code for the following program (hand assemble it).

Hex Address Label Instruction
100 LOAD A
101 ADD ONE
102 JUMP S1
103 S2, ADD ONE
104 STORE A
105 HALT
106 S1, ADD A
107 JUMP S2

8 bits for address on chip2 bits for chip select

10-bit address

48 bits for address on chip16 bits for chip select

64-bit address

5 bits for address on chip6 bits for chip select

11-bit address

5 bits for address on chip1 bit for chip select

6-bit address

6 bits for address on chip5 bits for chip select

11-bit address

6 bits for address on chip4 bits for chip select

10-bit address

56 bits for address on chip8 bits for chip select

64-bit address

a.

b.

c.

d.

e.

f.

g.

00068_CH04_Null.qxd 10/18/10 12:03 PM Page 262

Exercises 263

108 A, HEX 0023
109 One, HEX 0001

� 20. What are the contents of the symbol table for the preceding program?

21. Consider the MARIE program below.

a) List the hexadecimal code for each instruction.

b) Draw the symbol table.

c) What is the value stored in the AC when the program terminates?

Hex Address Label Instruction
100 Start, LOAD A
101 ADD B
102 STORE D
103 CLEAR
104 OUTPUT
105 ADDI D
106 STORE B
107 HALT
108 A, HEX 00FC
109 B, DEC 14
10A C, HEX 0108
10B D, HEX 0000

22. Consider the MARIE program below.

a) List the hexadecimal code for each instruction.

b) Draw the symbol table.

c) What is the value stored in the AC when the program terminates?

Hex Address Label Instruction
200 Begin, LOAD Base
201 ADD Offs
202 Loop, SUBT One
203 STORE Addr
204 SKIPCOND 800
205 JUMP Done
206 JUMPI Addr
207 CLEAR
208 Done, HALT
209 Base, HEX 200
20A Offs, DEC 9
20B One, HEX 0001
20C Addr, HEX 0000

00068_CH04_Null.qxd 10/18/10 12:03 PM Page 263

264 Chapter 4 / MARIE: An Introduction to a Simple Computer

23. Given the instruction set for MARIE in this chapter, do the following.

Decipher the following MARIE machine language instructions (write the assembly
language equivalent):

a) 0010000000000111

b) 1001000000001011

c) 0011000000001001

24. Write the assembly language equivalent of the following MARIE machine language
instructions:

a) 0111000000000000

b) 1011001100110000

c) 0100111101001111

25. Write the assembly language equivalent of the following MARIE machine language
instructions:

� a) 0000010111000000

b) 0001101110010010

c) 1100100101101011

26. Write the following code segment in MARIE’s assembly language:

if X > 1 then

Y = X + X;

X = 0;

endif;

Y = Y + 1;

27. What are the potential problems (perhaps more than one) with the following assem-
bly language code fragment (implementing a subroutine) written to run on MARIE?
The subroutine assumes the parameter to be passed is in the AC and should double
this value. The Main part of the program includes a sample call to the subroutine.
You can assume this fragment is part of a larger program.

Main, Load X

Jump Sub1

Sret, Store X

. . .

Sub1, Add X

Jump Sret

28. Write a MARIE program to evaluate the expression A � B + C � D.

29. Write the following code segment in MARIE assembly language:

X = 1;

while X < 10 do

X = X + 1;

endwhile;

00068_CH04_Null.qxd 10/18/10 12:03 PM Page 264

Exercises 265

30. Write the following code segment in MARIE assembly language (Hint: Turn the for
loop into a while loop):

Sum = 0;

for X = 1 to 10 do

Sum = Sum + X;

31. Write a MARIE program using a loop that multiplies two positive numbers by using
repeated addition. For example, to multiply 3 � 6, the program would add 3 six
times, or 3 + 3 + 3 + 3 + 3 + 3.

32. Write a MARIE subroutine to subtract two numbers.

33. A linked list is a linear data structure consisting of a set of nodes, where each one
except the last one points to the next node in the list. (Appendix A provides more
information about linked lists.) Suppose we have the set of 5 nodes shown in the
illustration below. These nodes have been scrambled up and placed in a MARIE pro-
gram as shown below. Write a MARIE program to traverse the list and print the data
in order as stored in each node.

MARIE program fragment:

Address Label
(Hex)
00D Addr, Hex ???? / Top of list pointer:

/ You fill in the address of Node1
00E Node2, Hex 0032 / Node’s data is the character “2”
00F Hex ???? / Address of Node3
010 Node4, Hex 0034 / Character “4”
011 Hex ????
012 Node1, Hex 0031 / Character “1”
013 Hex ????
014 Node3, Hex 0033 / Character “3”
015 Hex ????
016 Node5, Hex 0035 / Character “5”
017 Hex 0000 / Indicates terminal node

34. More registers appear to be a good thing, in terms of reducing the total number of
memory accesses a program might require. Give an arithmetic example to support

1 2 3

4 5

00068_CH04_Null.qxd 10/18/10 12:03 PM Page 265

266 Chapter 4 / MARIE: An Introduction to a Simple Computer

this statement. First, determine the number of memory accesses necessary using
MARIE and the two registers for holding memory data values (AC and MBR). Then
perform the same arithmetic computation for a processor that has more than three
registers to hold memory data values.

35. MARIE saves the return address for a subroutine in memory, at a location designated
by the JnS instruction. In some architectures, this address is stored in a register, and
in many it is stored on a stack. Which of these methods would best handle recursion?
Explain your answer. (Hint: Recursion implies many subroutine calls.)

36. Write a MARIE program that performs the three basic stack operations: push, peek,
and pop (in that order). In the peek operation, output the value that’s on the top of the
stack. (If you are unfamiliar with stacks, see Appendix A for more information.)

37. Provide a trace (similar to the one in Figure 4.14) for Example 4.2.

38. Provide a trace (similar to the one in Figure 4.14) for Example 4.3.

39. Suppose we add the following instruction to MARIE’s ISA:

IncSZ Operand

This instruction increments the value with effective address “Operand,” and if
this newly incremented value is equal to 0, the program counter is incremented
by 1. Basically, we are incrementing the operand, and if this new value is equal
to 0, we skip the next instruction. Show how this instruction would be written
using RTN.

40. Draw the connection of MARIE’s PC to the datapath using the format shown in Fig-
ure 4.15.

41. The table below provides a summary of MARIE’s datapath control signals. Using
this information, Table 4.9, and Figure 4.20 as guides draw the control logic for
MARIE’s Load instruction.

42. The table in Problem 41 provides a summary of MARIE’s datapath control signals.
Using this information, Table 4.9, and Figure 4.20 as guides draw the control logic
for MARIE’s JumpI instruction.

43. The table in Problem 41 provides a summary of MARIE’s datapath control signals.
Using this information, Table 4.9, and Figure 4.20 as guides draw the control logic
for MARIE’s StoreI instruction.

44. Suppose some hypothetical system’s control unit has a ring (cycle) counter consist-
ing of some number of D flip-flops. This system runs at 1 GHz and has a maximum
of 10 microoperations/ instruction.

a) What is the maximum frequency of the output (number of signal pulses) by each
flip-flop?

Register Memory MAR PC MBR AC IN OUT IR

Signals

P2P1P0 (Read) 000 001 010 011 100 101 110 111
P5P4P3 (Write)

00068_CH04_Null.qxd 10/18/10 12:03 PM Page 266

Exercises 267

b) How long does it take to execute an instruction that requires only 4 microopera-
tions?

45. Suppose you are designing a hardwired control unit for a very small computerized
device. This system is so revolutionary that the system designers have devised an
entirely new ISA for it. Because everything is so new, you are contemplating
including one or two extra flip-flops and signal outputs in the cycle counter. Why
would you want to do this? Why would you not want to do this? Discuss the trade-
offs.

46. Building on the idea presented in Problem 45, suppose that MARIE has a hardwired
control unit and we decide to add a new instruction that requires 8 clock cycles to
execute. (This is one cycle longer than the longest instruction, JnS.) Briefly discuss
the changes that we would need to make to accommodate this new instruction.

47. Draw the timing diagram for MARIE’s Load instruction using the format of Figure
4.16.

48. Draw the timing diagram for MARIE’s Subt instruction using the format of Figure
4.16.

49. Draw the timing diagram for MARIE’s AddI instruction using the format of Figure
4.16.

50. Using the coding given in Table 4.9, translate into binary the mnemonic microcode
instructions given in Figure 4.23 for the fetch-decode cycle (the first nine lines of the
table).

51. Continuing from Exercise 50, write the microcode for the jump table for the
MARIE instructions for Jump X, Clear, and AddI X. (Use all 1s for the Destina-
tion value.)

52. Using Figure 4.23 as a guide, write the binary microcode for MARIE’s Load instruc-
tion. Assume that the microcode begins at instruction line number 01100002.

53. Using Figure 4.23 as a guide, write the binary microcode for MARIE’s Add instruc-
tion. Assume that the microcode begins at instruction line number 01101002.

54. Would you recommend a synchronous bus or an asynchronous bus for use between
the CPU and the memory? Explain your answer.

*55. Pick an architecture (other than those covered in this chapter). Do research to find out
how your architecture deals with the concepts introduced in this chapter, as was done
for Intel and MIPS.

True or False

1. If a computer uses hardwired control, the microprogram determines the instruction
set for the machine. This instruction set can never be changed unless the architecture
is redesigned.

2. A branch instruction changes the flow of information by changing the PC.

3. Registers are storage locations within the CPU itself.

4. A two-pass assembler generally creates a symbol table during the first pass and fin-
ishes the complete translation from assembly language to machine instructions on the
second.

00068_CH04_Null.qxd 10/18/10 12:03 PM Page 267

268 Chapter 4 / MARIE: An Introduction to a Simple Computer

5. The MAR, MBR, PC, and IR registers in MARIE can be used to hold arbitrary data
values.

6. MARIE has a common bus scheme, which means a number of entities share the bus.

7. An assembler is a program that accepts a symbolic language program and produces
the binary machine language equivalent, resulting in a one-to-one correspondence
between the assembly language source program and the machine language object
program.

8. If a computer uses microprogrammed control, the microprogram determines the
instruction set for the machine.

00068_CH04_Null.qxd 10/18/10 12:03 PM Page 268

