
269

CHAPTER

“Every program has at least one bug and can be shortened by at least

one instruction—from which, by induction, one can deduce that every

program can be reduced to one instruction which doesn’t work.”

—Anonymous

5
A Closer Look at
Instruction Set
Architectures

5.1 INTRODUCTION

W
e saw in Chapter 4 that machine instructions consist of opcodes and operands.
The opcodes specify the operations to be executed; the operands specify regis-

ter or memory locations of data. Why, when we have languages such as C++, Java,
and Ada available, should we be concerned with machine instructions? When pro-
gramming in a high-level language, we frequently have little awareness of the top-
ics discussed in Chapter 4 (or in this chapter) because high-level languages hide the
details of the architecture from the programmer. Employers frequently prefer to hire
people with assembly language backgrounds not because they need an assembly
language programmer, but because they need someone who can understand com-
puter architecture to write more efficient and more effective programs.

In this chapter, we expand on the topics presented in the last chapter, the
objective being to provide you with a more detailed look at machine instruction
sets. We look at different instruction types and operand types, and how instruc-
tions access data in memory. You will see that the variations in instruction sets are
integral in distinguishing different computer architectures. Understanding how
instruction sets are designed and how they function can help you understand the
more intricate details of the architecture of the machine itself.

5.2 INSTRUCTION FORMATS

We know that a machine instruction has an opcode and zero or more operands. In
Chapter 4 we saw that MARIE had an instruction length of 16 bits and could have,
at most, 1 operand. Encoding an instruction set can be done in a variety of ways.

00068_CH05_Null.qxd 10/13/10 1:30 PM Page 269

270 Chapter 5 / A Closer Look at Instruction Set Architectures

Architectures are differentiated from one another by the number of bits allowed
per instruction (16, 32, and 64 are the most common), by the number of operands
allowed per instruction, and by the types of instructions and data each can process.
More specifically, instruction sets are differentiated by the following features:

• Operand storage (data can be stored in a stack structure or in registers or both)
• Number of explicit operands per instruction (zero, one, two, and three being

the most common)
• Operand location (instructions can be classified as register-to-register, register-

to-memory, or memory-to-memory, which simply refer to the combinations of
operands allowed per instruction)

• Operations (including not only types of operations but also which instructions
can access memory and which cannot)

• Type and size of operands (operands can be addresses, numbers, or even
characters)

5.2.1 Design Decisions for Instruction Sets

When a computer architecture is in the design phase, the instruction set format
must be determined before many other decisions can be made. Selecting this for-
mat is often quite difficult because the instruction set must match the architecture,
and the architecture, if well designed, could last for decades. Decisions made dur-
ing the design phase have long-lasting ramifications.

Instruction set architectures are measured by several different factors, includ-
ing (1) the amount of space a program requires; (2) the complexity of the instruc-
tion set, in terms of the amount of decoding necessary to execute an instruction,
and the complexity of the tasks performed by the instructions; (3) the length of
the instructions; and (4) the total number of instructions. Things to consider when
designing an instruction set include:

• Short instructions are typically better because they take up less space in mem-
ory and can be fetched quickly. However, this limits the number of instruc-
tions, because there must be enough bits in the instruction to specify the
number of instructions we need. Shorter instructions also have tighter limits on
the size and number of operands.

• Instructions of a fixed length are easier to decode but waste space.
• Memory organization affects instruction format. If memory has, for example,

16- or 32-bit words and is not byte-addressable, it is difficult to access a single
character. For this reason, even machines that have 16-, 32-, or 64-bit words
are often byte-addressable, meaning every byte has a unique address even
though words are longer than 1 byte.

• A fixed length instruction does not necessarily imply a fixed number of
operands. We could design an ISA with fixed overall instruction length, but
allow the number of bits in the operand field to vary as necessary. (This is
called an expanding opcode and is covered in more detail in Section 5.2.5.)

00068_CH05_Null.qxd 10/13/10 1:30 PM Page 270

5.2 / Instruction Formats 271

• There are many different types of addressing modes. In Chapter 4, MARIE
used two addressing modes: direct and indirect; however, we see in this chap-
ter that a large variety of addressing modes exist.

• If words consist of multiple bytes, in what order should these bytes be stored
on a byte-addressable machine? Should the least significant byte be stored at
the highest or lowest byte address? This little versus big endian debate is dis-
cussed in the following section.

• How many registers should the architecture contain and how should these reg-
isters be organized? How should operands be stored in the CPU?

The little versus big endian debate, expanding opcodes, and CPU register organi-
zation are examined further in the following sections. In the process of discussing
these topics, we also touch on the other design issues listed.

5.2.2 Little versus Big Endian

The term endian refers to a computer architecture’s “byte order,” or the way the
computer stores the bytes of a multiple-byte data element. Virtually all computer
architectures today are byte-addressable and must, therefore, have a standard for stor-
ing information requiring more than a single byte. Some machines store a two-byte
integer, for example, with the least significant byte first (at the lower address) fol-
lowed by the most significant byte. Therefore, a byte at a lower address has lower
significance. These machines are called little endian machines. Other machines store
this same two-byte integer with its most significant byte first, followed by its least
significant byte. These are called big endian machines because they store the most
significant bytes at the lower addresses. Most UNIX machines are big endian,
whereas most PCs are little endian machines. Most newer RISC architectures are also
big endian.

These two terms, little and big endian, are from the book Gulliver’s Travels.
You may remember the story in which the Lilliputians (the tiny people) were
divided into two camps: those who ate their eggs by opening the “big” end (big
endians) and those who ate their eggs by opening the “little” end (little endians).
CPU manufacturers are also divided into two factions. For example, Intel has
always done things the “little endian” way, whereas Motorola has always done
things the “big endian” way. (It is also worth noting that some CPUs can handle
both little and big endian.)

For example, consider an integer requiring 4 bytes:

On a little endian machine, this is arranged in memory as follows:

Base Address + 0 = Byte0

Base Address + 1 = Byte1

Base Address + 2 = Byte2

Base Address + 3 = Byte3

Byte 3 Byte 2 Byte 1 Byte 0

00068_CH05_Null.qxd 10/13/10 1:30 PM Page 271

272 Chapter 5 / A Closer Look at Instruction Set Architectures

Big Endian

Little Endian

78

1234

56

56

34

78

12

11100100Address

FIGURE 5.1 The Hex Value 12345678 Stored in Both Big and Little Endian

Format

On a big endian machine, this long integer would then be stored as:

Base Address + 0 = Byte3

Base Address + 1 = Byte2

Base Address + 2 = Byte1

Base Address + 3 = Byte0

Let’s assume that on a byte-addressable machine, the 32-bit hex value 12345678
is stored at address 0. Each digit requires a nibble, so one byte holds two digits.
This hex value is stored in memory as shown in Figure 5.1, where the shaded
cells represent the actual contents of memory.

There are advantages and disadvantages to each method, although one
method is not necessarily better than the other. Big endian is more natural to most
people and thus makes it easier to read hex dumps. By having the high-order byte
come first, you can always test whether the number is positive or negative by
looking at the byte at offset zero. (Compare this to little endian where you must
know how long the number is and then must skip over bytes to find the one con-
taining the sign information.) Big endian machines store integers and strings in
the same order and are faster in certain string operations. Most bitmapped graph-
ics are mapped with a “most significant bit on the left” scheme, which means
working with graphical elements larger than one byte can be handled by the
architecture itself. This is a performance limitation for little endian computers
because they must continually reverse the byte order when working with large
graphical objects. When decoding compressed data encoded with such schemes
as Huffman and LZW (discussed in Chapter 7), the actual codeword can be used
as an index into a lookup table if it is stored in big endian (this is also true for
encoding).

However, big endian also has disadvantages. Conversion from a 32-bit inte-
ger address to a 16-bit integer address requires a big endian machine to perform
addition. High-precision arithmetic on little endian machines is faster and easier.
Most architectures using the big endian scheme do not allow words to be written
on non-word address boundaries (for example, if a word is 2 or 4 bytes, it must
always begin on an even-numbered byte address). This wastes space. Little
endian architectures, such as Intel, allow odd address reads and writes, which
makes programming on these machines much easier. If a programmer writes an
instruction to read a nonzero value of the wrong word size, on a big endian
machine it is always read as an incorrect value; on a little endian machine, it can
sometimes result in the correct data being read. (Note that Intel finally has added
an instruction to reverse the byte order within registers.)

00068_CH05_Null.qxd 10/13/10 1:30 PM Page 272

5.2 / Instruction Formats 273

Computer networks are big endian, which means that when little endian com-
puters are going to pass integers over the network (network device addresses, for
example), they need to convert them to network byte order. Likewise, when they
receive integer values over the network, they need to convert them back to their
own native representation.

Although you may not be familiar with this little versus big endian debate, it
is important to many current software applications. Any program that writes data
to or reads data from a file must be aware of the byte ordering on the particular
machine. For example, the Windows BMP graphics format was developed on a
little endian machine, so to view BMPs on a big endian machine, the application
used to view them must first reverse the byte order. Software designers of popular
software are well aware of these byte-ordering issues. For example, Adobe Photo-
shop uses big endian, GIF is little endian, JPEG is big endian, MacPaint is big
endian, PC Paintbrush is little endian, RTF by Microsoft is little endian, and Sun
raster files are big endian. Some applications support both formats: Microsoft
WAV and AVI files, TIF files, and XWD (X windows Dump) support both, typi-
cally by encoding an identifier into the file.

5.2.3 Internal Storage in the CPU: Stacks versus Registers

Once byte ordering in memory is determined, the hardware designer must make
some decisions on how the CPU should store data. This is the most basic means
to differentiate ISAs. There are three choices:

1. A stack architecture
2. An accumulator architecture
3. A general-purpose register (GPR) architecture

Stack architectures use a stack to execute instructions, and the operands are
(implicitly) found on top of the stack. Even though stack-based machines have good
code density and a simple model for evaluation of expressions, a stack cannot be
accessed randomly, which makes it difficult to generate efficient code. In addition,
the stack becomes a bottleneck during execution. Accumulator architectures such
as MARIE, with one operand implicitly in the accumulator, minimize the internal
complexity of the machine and allow for very short instructions. But because the
accumulator is only temporary storage, memory traffic is very high. General-pur-
pose register architectures, which use sets of general-purpose registers, are the
most widely accepted models for machine architectures today. These register sets are
faster than memory, easy for compilers to deal with, and can be used very effectively
and efficiently. In addition, hardware prices have decreased significantly, making it
possible to add a large number of registers at a minimal cost. If memory access is
fast, a stack-based design may be a good idea; if memory is slow, it is often better to
use registers. These are the reasons why most computers over the past 10 years have
been general-register based. However, because all operands must be named, using
registers results in longer instructions, causing longer fetch and decode times. (A
very important goal for ISA designers is short instructions.) Designers choosing an

00068_CH05_Null.qxd 10/13/10 1:30 PM Page 273

274 Chapter 5 / A Closer Look at Instruction Set Architectures

ISA must decide which will work best in a particular environment and examine the
tradeoffs carefully.

The general-purpose architecture can be broken into three classifications,
depending on where the operands are located. Memory-memory architectures
may have two or three operands in memory, allowing an instruction to perform an
operation without requiring any operand to be in a register. Register-memory
architectures require a mix, where at least one operand is in a register and one is
in memory. Load-store architectures require data to be moved into registers
before any operations on those data are performed. Intel and Motorola are exam-
ples of register-memory architectures; Digital Equipment’s VAX architecture
allows memory-memory operations; and SPARC, MIPS, Alpha, and the PowerPC
are all load-store machines.

Given that most architectures today are GPR-based, we now examine two
major instruction set characteristics that divide general-purpose register architec-
tures. Those two characteristics are the number of operands and how the operands
are addressed. In Section 5.2.4 we look at the instruction length and number of
operands an instruction can have. (Two or three operands are the most common
for GPR architectures, and we compare these to zero and one operand architec-
tures.) We then investigate instruction types. Finally, in Section 5.4 we investigate
the various addressing modes available.

5.2.4 Number of Operands and Instruction Length

The traditional method for describing a computer architecture is to specify the
maximum number of operands, or addresses, contained in each instruction. This
has a direct impact on the length of the instruction itself. MARIE uses a fixed-
length instruction with a 4-bit opcode and a 12-bit operand. Instructions on cur-
rent architectures can be formatted in two ways:

• Fixed length—Wastes space but is fast and results in better performance when
instruction-level pipelining is used, as we see in Section 5.5.

• Variable length—More complex to decode but saves storage space.

Typically, the real-life compromise involves using two to three instruction
lengths, which provides bit patterns that are easily distinguishable and simple to
decode. The instruction length must also be compared to the word length on the
machine. If the instruction length is exactly equal to the word length, the instruc-
tions align perfectly when stored in main memory. Instructions always need to be
word aligned for addressing reasons. Therefore, instructions that are half, quarter,
double, or triple the actual word size can waste space. Variable length instructions
are clearly not the same size and need to be word aligned, resulting in loss of
space as well.

The most common instruction formats include zero, one, two, or three
operands. We saw in Chapter 4 that some instructions for MARIE have no

00068_CH05_Null.qxd 10/13/10 1:30 PM Page 274

5.2 / Instruction Formats 275

operands, whereas others have one operand. Arithmetic and logic operations typi-
cally have two operands, but can be executed with one operand (as we saw in
MARIE), if the accumulator is implicit. We can extend this idea to three operands
if we consider the final destination as a third operand. We can also use a stack
that allows us to have zero operand instructions. The following are some common
instruction formats:

• OPCODE only (zero addresses)
• OPCODE + 1 Address (usually a memory address)
• OPCODE + 2 Addresses (usually registers, or one register and one memory

address)
• OPCODE + 3 Addresses (usually registers, or combinations of registers and

memory)

All architectures have a limit on the maximum number of operands allowed per
instruction. For example, in MARIE, the maximum was one, although some
instructions had no operands (Halt and Skipcond). We mentioned that zero-,
one-, two-, and three-operand instructions are the most common. One-, two-, and
even three-operand instructions are reasonably easy to understand; an entire ISA
built on zero-operand instructions can, at first, be somewhat confusing.

Machine instructions that have no operands must use a stack (the last-in,
first-out data structure, introduced in Chapter 4 and described in detail in Appen-
dix A, where all insertions and deletions are made from the top) to perform those
operations that logically require one or two operands (such as an Add). Instead of
using general purpose registers, a stack-based architecture stores the operands on
the top of the stack, making the top element accessible to the CPU. (Note that one
of the most important data structures in machine architectures is the stack. Not
only does this structure provide an efficient means of storing intermediate data
values during complex calculations, but it also provides an efficient method for
passing parameters during procedure calls as well as a means to save local block
structure and define the scope of variables and subroutines.)

In architectures based on stacks, most instructions consist of opcodes only; how-
ever, there are special instructions (those that add elements to and remove elements
from the stack) that have just one operand. Stack architectures need a push instruction
and a pop instruction, each of which is allowed one operand. Push X places the data
value found at memory location X onto the stack; Pop X removes the top element in
the stack and stores it at location X. Only certain instructions are allowed to access
memory; all others must use the stack for any operands required during execution.

For operations requiring two operands, the top two elements of the stack are
used. For example, if we execute an Add instruction, the CPU adds the top two
elements of the stack, popping them both and then pushing the sum onto the top
of the stack. For noncommutative operations such as subtraction, the top stack
element is subtracted from the next-to-the-top element, both are popped, and the
result is pushed onto the top of the stack.

00068_CH05_Null.qxd 10/13/10 1:30 PM Page 275

276 Chapter 5 / A Closer Look at Instruction Set Architectures

This stack organization is very effective for evaluating long arithmetic
expressions written in reverse Polish notation (RPN). This representation places
the operator after the operands in what is known as postfix notation (as com-
pared to infix notation, which places the operator between operands, and prefix
notation, which places the operator before the operands). For example:

X + Y is in infix notation
+ X Y is in prefix notation
X Y + is in postfix notation

When using postfix (or RPN) notation, every operator follows its operands in any
expression. If the expression contains more than one operation, the operator is
given immediately after its second operand. The infix expression “3 + 4” is
equivalent to the postfix expression “3 4 +”; the + operator is applied to the two
operands 3 and 4. If the expression is more complex, we can still use this idea to
convert from infix to postfix. We simply need to examine the expression and
determine operator precedence.

EXAMPLE 5.1 Consider the infix expression 12/(4+2). We convert this to
postfix as follows:

Therefore, the postfix expression 12 4 2 + / is equivalent to the infix expression
12/(4 + 2). Notice there was no need to change the order of operands, and the
need for parentheses to preserve precedence for the addition operator is elimi-
nated.

EXAMPLE 5.2 Consider the following infix expression (2+3) – 6/3. We con-
vert this to postfix as follows:

Expression Explanation

2 3 + – 6/3 The sum 2 + 3 is in parentheses and takes precedence; we replace it
with 2 3 +

2 3 + – 6 3 / The division operator takes precedence, so we replace 6/3 with 6 3 /

2 3 + 6 3 / – We wish to subtract the quotient of 6/3 from the sum of 2 + 3, so we move
the – operator to the end.

Expression Explanation

12 / 4 2 + The sum 4 + 2 is in parentheses and takes precedence; we replace it
with 4 2 +

12 4 2 + / The two new operands are 12 and the sum of 4 and 2; we place the first
operand followed by the second, followed by the division operator.

00068_CH05_Null.qxd 10/13/10 1:30 PM Page 276

5.2 / Instruction Formats 277

Therefore, the postfix expression 2 3 + 6 3 / – is equivalent to the infix expres-
sion 12/(4 + 2).

All arithmetic expressions can be written using any of these representations.
However, postfix representation combined with a stack of registers is the most
efficient means to evaluate arithmetic expressions. In fact, some electronic calcu-
lators (such as Hewlett-Packard) require the user to enter expressions in postfix
notation. With a little practice on these calculators, it is possible to rapidly evalu-
ate long expressions containing many nested parentheses without ever stopping to
think about how terms are grouped.

The algorithm to evaluate an RPN expression using a stack is quite simple:
the expression is scanned from left to right, each operand (variable or constant) is
pushed onto the stack, and when a binary operator is encountered, the top two
operands are popped from the stack, the specified operation is performed on those
operands, and then the result is pushed onto the stack.

EXAMPLE 5.3 Consider the RPN expression 10 2 3 + /. Using a stack to eval-
uate the expression and scanning left to right, we would first push 10 onto the
stack, followed by 2, and then 3, to get:

The “+” operator is next, which pops 3 and 2 from the stack, performs the opera-
tion (2+3), and pushes 5 onto the stack, resulting in:

The “/” operator then causes 5 and 10 to be popped from the stack, 10 is divided
by 5, and then the result 2 is pushed onto the stack. (Note: for noncommutative
operations such as subtraction and division, the top stack element is always the
second operand.)

EXAMPLE 5.4 Consider the following infix expression:

(X + Y) (W – Z) + 2

This expression, written in RPN notation is:

X Y + W Z – 2 +

5

10

Stack top

3

2

10

Stack top

00068_CH05_Null.qxd 10/13/10 1:30 PM Page 277

278 Chapter 5 / A Closer Look at Instruction Set Architectures

To evaluate this expression using a stack, we push X and Y, add them (which
pops them from the stack) and store the sum (X + Y) on the stack. Then we push
W and Z, subtract (which pops them both from the stack) and store the difference
(W – Z) on the stack. The operator multiplies (X + Y) by (W – Z), removes both
of these expressions from the stack, and places the product on the stack. We push
2 onto the stack, resulting in:

The + operator adds the top two stack elements, pops them from the stack, and
pushes the sum onto the stack, resulting in (X + Y) (W – Z) + 2 stored on the top
of the stack.

EXAMPLE 5.5 Convert the RPN expression:

8 6 + 4 2 – /

to infix notation.
Recall that each operator follows its operands. Therefore the “+” operator has

operands 8 and 6, and the “– “ operator has operands 4 and 2. The “/” operator
must use the sum of 8 and 6 as the first operand and the difference of 4 and 2 as
the second. We must use parentheses to express this in infix notation (to ensure
the addition and subtraction are performed before the division), resulting in the
infix expression:

(8 + 6) / (4 – 2)

To illustrate the concepts of zero, one, two, and three operands, let’s write a
simple program to evaluate an arithmetic expression, using each of these formats.

EXAMPLE 5.6 Suppose we wish to evaluate the following expression:

Z = (X � Y) + (W � U)

Typically, when three operands are allowed, at least one operand must be a regis-
ter, and the first operand is normally the destination. Using three-address instruc-
tions, the code to evaluate the expression for Z is written as follows:

Mult R1, X, Y
Mult R2, W, U
Add Z, R2, R1

2

(X + Y � (W – Z)

Stack top

00068_CH05_Null.qxd 10/13/10 1:30 PM Page 278

5.2 / Instruction Formats 279

When using two-address instructions, normally one address specifies a register
(two-address instructions seldom allow for both operands to be memory
addresses). The other operand could be either a register or a memory address.
Using two-address instructions, our code becomes:

Load R1, X
Mult R1, Y
Load R2, W
Mult R2, U
Add R1, R2
Store Z, R1

Note that it is important to know whether the first operand is the source or the
destination. In the above instructions, we assume it is the destination. (This tends
to be a point of confusion for those programmers who must switch between Intel
assembly language and Motorola assembly language—Intel assembly specifies
the first operand as the destination, whereas in Motorola assembly, the first
operand is the source.)

Using one-address instructions (as in MARIE), we must assume a register
(normally the accumulator) is implied as the destination for the result of the
instruction. To evaluate Z, our code now becomes:

Load X
Mult Y
Store Temp
Load W
Mult U
Add Temp
Store Z

Note that as we reduce the number of operands allowed per instruction, the num-
ber of instructions required to execute the desired code increases. This is an
example of a typical space/time trade-off in architecture design—shorter instruc-
tions but longer programs.

What does this program look like on a stack-based machine with zero-
address instructions? Stack-based architectures use no operands for instructions
such as Add, Subt, Mult, or Divide. We need a stack and two operations on that
stack: Pop and Push. Operations that communicate with the stack must have an
address field to specify the operand to be popped or pushed onto the stack (all
other operations are zero-address). Push places the operand on the top of the
stack. Pop removes the stack top and places it in the operand. This architecture
results in the longest program to evaluate our equation. Assuming arithmetic
operations use the two operands on the stack top, pop them, and push the result of
the operation, our code is as follows:

00068_CH05_Null.qxd 10/13/10 1:30 PM Page 279

280 Chapter 5 / A Closer Look at Instruction Set Architectures

Push X
Push Y
Mult
Push W
Push U
Mult
Add
Pop Z

The instruction length is certainly affected by the opcode length and by the num-
ber of operands allowed in the instruction. If the opcode length is fixed, decoding
is much easier. However, to provide for backward compatibility and flexibility,
opcodes can have variable length. Variable length opcodes present the same prob-
lems as variable versus constant length instructions. A compromise used by many
designers is expanding opcodes.

5.2.5 Expanding Opcodes

We have seen how the number of operands in an instruction is dependent on the
instruction length; we must have enough bits for the opcode and for the operand
addresses. However, not all instructions require the same number of operands.

Expanding opcodes represent a compromise between the need for a rich set
of opcodes and the desire to have short opcodes, and thus short instructions. The
idea is to make some opcodes short, but have a means to provide longer ones
when needed. When the opcode is short, a lot of bits are left to hold operands
(which means we could have two or three operands per instruction). When you
don’t need any space for operands (for an instruction such as Halt or because the
machine uses a stack), all the bits can be used for the opcode, which allows for
many unique instructions. In between, there are longer opcodes with fewer
operands as well as shorter opcodes with more operands.

Consider a machine with 16-bit instructions and 16 registers. Because we
now have a register set instead of one simple accumulator (as in MARIE), we
need to use 4 bits to specify a unique register. We could encode 16 instructions,
each with 3 register operands (which implies any data to be operated on must first
be loaded into a register), or use 4 bits for the opcode and 12 bits for a memory
address (as in MARIE, assuming a memory of size 4K). However, if all data in
memory is first loaded into a register in this register set, the instruction can select
that particular data element using only 4 bits (assuming 16 registers). These two
choices are illustrated in Figure 5.2.

But why limit the opcode to only 4 bits? If we allow the length of the opcode
to vary, that changes the number of remaining bits that can be used for operand
addresses. Using expanding opcodes, we could allow for opcodes of 8 bits that

00068_CH05_Null.qxd 10/13/10 1:30 PM Page 280

5.2 / Instruction Formats 281

Opcode Address 1 Address 2 Address 3

Opcode Address 1

FIGURE 5.2 Two Possibilities for a 16-Bit Instruction Format

require two register operands; or we could allow opcodes of 12 bits that operate
on one register; or we could allow for 16-bit opcodes that require no operands.
These formats are illustrated in Figure 5.3.

The only issue is that we need a method to determine when the instruction
should be interpreted as having a 4-bit, 8-bit, 12-bit, or 16-bit opcode. The trick is
to use an “escape opcode” to indicate which format should be used. This idea is
best illustrated with an example.

EXAMPLE 5.7 Suppose we wish to encode the following instructions:

• 15 instructions with 3 addresses
• 14 instructions with 2 addresses
• 31 instructions with 1 address
• 16 instructions with 0 addresses

Opcode Address 1 Address 2

Opcode Address 1

Opcode

FIGURE 5.3 Three More Possibilities for a 16-Bit Instruction Format

00068_CH05_Null.qxd 10/13/10 1:30 PM Page 281

282 Chapter 5 / A Closer Look at Instruction Set Architectures

Can we encode this instruction set in 16 bits? The answer is yes, as long as we
use expanding opcodes. The encoding is as follows:

0000 R1 R2 R3
... 15 3-address codes

1110 R1 R2 R3

1111 0000 R1 R2
... 14 2-address codes

1111 1101 R1 R2

1111 1110 0000 R1
... 31 1-address codes

1111 1111 1110 R1

1111 1111 1111 0000
... 16 0-address codes

1111 1111 1111 1111

We can see the use of the escape opcode in the first group of 3-address instruc-
tions. When the first 4 bits are 1111, that indicates the instruction does not have 3
operands, but instead has 2, 1 or none (which of these depends on the following
groups of 4 bits). For the second group of 2-address instructions, the escape
opcode is 11111110 (any instruction with this opcode or higher cannot have more
than 1 operand). For the third group of 1-address instructions, the escape opcode
is 111111111111 (instructions having this sequence of 12 bits have zero
operands).

While allowing for a wider variety of instructions, this expanding opcode
scheme also makes the decoding more complex. Instead of simply looking at a bit
pattern and deciding which instruction it is, we need to decode the instruction
something like this:

if (leftmost four bits != 1111) {
Execute appropriate three-address instruction}

else if (leftmost seven bits != 1111 111) {
Execute appropriate two-address instruction}

else if (leftmost twelve bits != 1111 1111 1111) {

00068_CH05_Null.qxd 10/13/10 1:30 PM Page 282

5.2 / Instruction Formats 283

Execute appropriate one-address instruction }
else {

Execute appropriate zero-address instruction
}

At each stage, one spare code—the escape code—is used to indicate that we
should now look at more bits. This is another example of the types of trade-offs
hardware designers continually face: Here, we trade opcode space for operand
space.

How do we know if the instruction set we want is possible when using
expanding opcodes? We must first determine if we have enough bits to create the
desired number of bit patterns. Once we determine this is possible, we can create
the appropriate escape opcodes for the instruction set.

EXAMPLE 5.8 Refer back to the instruction set given in Example 5.7. To
show that there are enough overall bit patterns, we need to calculate the number
of bit patterns each instruction format requires.

• The first 15 instructions account for 15 * 24 * 24 * 24 = 15 * 212 = 61440 bit
patterns. (Each register address can be one of 16 different bit patterns.)

• The next 14 instructions account for 14 * 24 * 24 = 14 * 28 = 3584 bit patterns.
• The next 31 instructions account for 31 * 24 = 496 bit patterns.
• The last 16 instructions account for 16 bit patterns.

If we add these up we have 61440 + 3584 + 496 + 16 = 65536. We have a total of
16 bits, which means we can create 216 = 65536 total bit patterns (an exact match
with no wasted bit patterns).

EXAMPLE 5.9 Is it possible to design an expanding opcode to allow the fol-
lowing to be encoded in a 12-bit instruction? Assume a register operand requires
3 bits and this instruction set does not allow memory addresses to be directly used
in an instruction.

• 4 instructions with 3 registers
• 255 instructions with 1 register
• 16 instructions with 0 registers

The first 4 instructions would account for 4 * 23 * 23 * 23 = 211 = 2048 bit pat-
terns. The next 255 instructions would account for 255 * 23 = 2040 bit patterns.
The last 16 instructions would account for 16 bit patterns.

00068_CH05_Null.qxd 10/13/10 1:30 PM Page 283

3 instructions with two 3-bit operands

2 instructions with one 4-bit operand

4 instructions with one 3-bit operand

284 Chapter 5 / A Closer Look at Instruction Set Architectures

12 bits allow for a total of 212 = 4096 bit patterns. If we add up what each instruc-
tion format requires, we get 2048 + 2040 + 16 = 4104. We need 4104 bit patterns
to create this instruction set, but with 12 bits we only have 4096 bit patterns pos-
sible. Therefore, we cannot design an expanding opcode instruction set to meet
the specified requirements.

Let’s look at one last example, from start to finish.

EXAMPLE 5.10 Given 8-bit instructions, it is possible to use expanding
opcodes to allow the following to be encoded? If so, show the encoding.

• 3 instructions with two 3-bit operands
• 2 instructions with one 4-bit operand
• 4 instructions with one 3-bit operand

First, we must determine if the encoding is possible.

• 3 * 23 * 23 = 3 * 26 = 192
• 2 * 24 = 32
• 4 * 23 = 32

If we sum the required number of bit patterns, we get 192 + 32 + 32 = 256. 8 bits
in the instruction means a total of 28 =256 bit patterns, so we have an exact match
(which means the encoding is possible, but every bit pattern will be used in creat-
ing it).

The encoding we can use is as follows:

00 xxx xxx
01 xxx xxx
10 xxx xxx
11 – escape opcode
1100 xxxx
1101 xxxx
1110 – escape opcode
1111 – escape opcode
11100 xxx
11101 xxx
11110 xxx
11111 xxx

00068_CH05_Null.qxd 10/13/10 1:30 PM Page 284

5.3 / Instruction Types 285

5.3 INSTRUCTION TYPES

Most computer instructions operate on data; however, there are some that do not.
Computer manufacturers regularly group instructions into the following categories:
data movement, arithmetic, Boolean, bit manipulation (shift and rotate), I/O,
transfer of control, and special purpose.

We discuss each of these categories in the following sections.

5.3.1 Data Movement

Data movement instructions are the most frequently used instructions. Data is
moved from memory into registers, from registers to registers, and from registers
to memory, and many machines provide different instructions depending on the
source and destination. For example, there may be a MOVER instruction that
always requires two register operands, whereas a MOVE instruction allows one reg-
ister and one memory operand. Some architectures, such as RISC, limit the
instructions that can move data to and from memory in an attempt to speed up
execution. Many machines have variations of load, store, and move instructions
to handle data of different sizes. For example, there may be a LOADB instruction
for dealing with bytes and a LOADW instruction for handling words. Data move-
ment instructions include MOVE, LOAD, STORE, PUSH, POP, EXCHANGE, and multiple
variations on each of these.

5.3.2 Arithmetic Operations

Arithmetic operations include those instructions that use integers and floating-
point numbers. Many instruction sets provide different arithmetic instructions
for various data sizes. As with the data movement instructions, there are some-
times different instructions for providing various combinations of register and
memory accesses in different addressing modes. Instructions may exist for
arithmetic operations on both signed and unsigned numbers, as well as for
operands in different bases. Many times, operands are implied in arithmetic
instructions. For example, a multiply instruction may assume the multiplicand
is resident in a specific register so it need not be explicitly given in the instruc-
tion. This class of instructions also affects the flag register, setting the zero,
carry, and overflow bits (to name only a few). Arithmetic instructions include
ADD, SUBTRACT, MULTIPLY, DIVIDE, INCREMENT, DECREMENT, and NEGATE (to
change the sign).

5.3.3 Boolean Logic Instructions

Boolean logic instructions perform Boolean operations, much in the same way
that arithmetic operations work. These instructions allow bits to be set, cleared,
and complemented. Logic operations are commonly used to control I/O devices.
As with arithmetic operations, logic instructions affect the flag register, including
the carry and overflow bits. There are typically instructions for performing AND,
NOT, OR, XOR, TEST, and COMPARE.

00068_CH05_Null.qxd 10/13/10 1:30 PM Page 285

286 Chapter 5 / A Closer Look at Instruction Set Architectures

5.3.4 Bit Manipulation Instructions

Bit manipulation instructions are used for setting and resetting individual bits (or
sometimes groups of bits) within a given data word. These include both arith-
metic and logical SHIFT instructions and ROTATE instructions, each to the left and
to the right. Logical shift instructions simply shift bits to either the left or the
right by a specified number of bits, shifting in zeros on the opposite end. For
example, if we have an 8-bit register containing the value 11110000, and we per-
form a logical shift left by one bit, the result is 11100000. If our register contains
11110000 and we perform a logical shift right by one bit, the result is 01111000.

Arithmetic shift instructions, commonly used to multiply or divide by 2,
treat data as signed two’s complement numbers, and do not shift the leftmost bit,
since this represents the sign of the number. On a right arithmetic shift, the sign
bit is replicated into the bit position(s) to its right: if the number is positive, the
leftmost bits are filled by zeros; if the number is negative, the leftmost bits are
filled by ones. A right arithmetic shift is equivalent to division by two. For
example, if our value is 00001110 (�14) and we perform an arithmetic shift
right by one bit, the result is 00000111 (�7). If the value is negative, such as
11111110 (�2), the result is 11111111 (-1). On a left arithmetic shift, bits are
shifted left, zeros are shifted in, but the sign bit does not participate in the shift-
ing. An arithmetic shift left is equivalent to multiplication by 2. For example, if
our register contains 00000011 (�3), and we perform an arithmetic shift left,
one bit, the result is 00000110 (�6). If the register contains a negative number
such as 11111111 (�1), performing an arithmetic shift left by one bit yields
11111110 (�2). If the last bit shifted out (excluding the sign bit) does not match
the sign, overflow or underflow occurs. For example, if the number is 10111111
(�65) and we do an arithmetic shift left by one bit, the result is 11111110 (�2),
but the bit that was “shifted out” is a zero and does not match the sign; hence we
have overflow.

Rotate instructions are simply shift instructions that shift in the bits that are
shifted out—a circular shift basically. For example, on a rotate left one bit, the
leftmost bit is shifted out and rotated around to become the rightmost bit. If the
value 00001111 is rotated left by one bit, we have 00011110. If 00001111 is
rotated right by one bit, we have 10000111. With rotate, we do not worry about
the sign bit.

In addition to shifts and rotates, some computer architectures have instruc-
tions for clearing specific bits, setting specific bits, and toggling specific bits.

5.3.5 Input/Output Instructions

I/O instructions vary greatly from architecture to architecture. The input (or read)
instruction transfers data from a device or port to either memory or a specific reg-
ister. The output (or write) instruction transfers data from a register or memory to
a specific port or device. There may be separate I/O instructions for numeric data
and character data. Generally, character and string data use some type of block
I/O instruction, automating the input of a string. The basic schemes for handling

00068_CH05_Null.qxd 10/13/10 1:30 PM Page 286

5.3 / Instruction Types 287

I/O are programmed I/O, interrupt-driven I/O, and DMA devices. These are cov-
ered in more detail in Chapter 7.

5.3.6 Instructions for Transfer of Control

Control instructions are used to alter the normal sequence of program execution.
These instructions include branches, skips, procedure calls, returns, and program
termination. Branching can be unconditional (such as jump) or conditional (such
as jump on condition). Skip instructions (which can also be conditional or uncon-
ditional) are basically branch instructions with implied addresses. Because no
operand is required, skip instructions often use bits of the address field to specify
different situations (recall the Skipcond instruction used by MARIE). Some lan-
guages include looping instructions that automatically combine conditional and
unconditional jumps.

Procedure calls are special branch instructions that automatically save the
return address. Different machines use different methods to save this address.
Some store the address at a specific location in memory, others store it in a regis-
ter, while still others push the return address on a stack.

5.3.7 Special Purpose Instructions

Special purpose instructions include those used for string processing, high-level
language support, protection, flag control, word/byte conversions, cache manage-
ment, register access, address calculation, no-ops, and any other instructions that
don’t fit into the previous categories. Most architectures provide instructions for
string processing, including string manipulation and searching. No-op instruc-
tions, which take up space and time but reference no data and basically do noth-
ing, are often used as placeholders for insertion of useful instructions at a later
time, or in pipelines (see Section 5.5).

5.3.8 Instruction Set Orthogonality

Regardless of whether an architecture is hard-coded or microprogrammed, it is
important that the architecture have a complete instruction set. However, design-
ers must be careful not to add redundant instructions, as each instruction trans-
lates either to a circuit or a procedure. Therefore, each instruction should perform
a unique function without duplicating any other instruction. Some people refer to
this characteristic as orthogonality. In actuality, orthogonality goes one step fur-
ther. Not only must the instructions be independent, but the instruction set must
be consistent. For example, orthogonality addresses the degree to which operands
and addressing modes are uniformly (and consistently) available with various
operations. This means the addressing modes of the operands must be independ-
ent from the operands (addressing modes are discussed in detail in Section 5.4.2).
Under orthogonality, the operand/opcode relationship cannot be restricted (there
are no special registers for particular instructions). In addition, an instruction set
with a multiply command and no divide instruction would not be orthogonal.
Therefore, orthogonality encompasses both independence and consistency in the

00068_CH05_Null.qxd 10/13/10 1:30 PM Page 287

288 Chapter 5 / A Closer Look at Instruction Set Architectures

instruction set. An orthogonal instruction set makes writing a language compiler
much easier; however, orthogonal instruction sets typically have quite long
instruction words (the operand fields are long due to the consistency require-
ment), which translates to larger programs and more memory use.

5.4 ADDRESSING

Although addressing is an instruction design issue and is technically part of the
instruction format, there are so many issues involved with addressing that it mer-
its its own section. We now present the two most important of these addressing
issues: the types of data that can be addressed and the various addressing modes.
We cover only the fundamental addressing modes; more specialized modes are
built using the basic modes in this section.

5.4.1 Data Types

Before we look at how data is addressed, we will briefly mention the various
types of data an instruction can access. There must be hardware support for a par-
ticular data type if the instruction is to reference that type. In Chapter 2 we dis-
cussed data types, including numbers and characters. Numeric data consist of
integers and floating-point values. Integers can be signed or unsigned and can be
declared in various lengths. For example, in C++ integers can be short (16 bits),
int (the word size of the given architecture), or long (32 bits). Floating-point
numbers have lengths of 32, 64, or 128 bits. It is not uncommon for ISAs to have
special instructions to deal with numeric data of varying lengths, as we have seen
earlier. For example, there might be a MOVE for 16-bit integers and a different
MOVE for 32-bit integers.

Nonnumeric data types consist of strings, Booleans, and pointers. String
instructions typically include operations such as copy, move, search, or modify.
Boolean operations include AND, OR, XOR, and NOT. Pointers are actually
addresses in memory. Even though they are, in reality, numeric in nature, pointers
are treated differently than integers and floating-point numbers. MARIE allows
for this data type by using the indirect addressing mode. The operands in the
instructions using this mode are actually pointers. In an instruction using a
pointer, the operand is essentially an address and must be treated as such.

5.4.2 Address Modes

We saw in Chapter 4 that the 12 bits in the operand field of a MARIE instruction
can be interpreted in two different ways: the 12 bits represent either the memory
address of the operand or a pointer to a physical memory address. These 12 bits
can be interpreted in many other ways, thus providing us with several different
addressing modes. Addressing modes allow us to specify where the instruction
operands are located. An addressing mode can specify a constant, a register, or a
location in memory. Certain modes allow shorter addresses and some allow us to
determine the location of the actual operand, often called the effective address

00068_CH05_Null.qxd 10/13/10 1:30 PM Page 288

5.4 / Addressing 289

of the operand, dynamically. We now investigate the most basic addressing
modes.

Immediate addressing is so-named because the value to be referenced imme-
diately follows the operation code in the instruction. That is to say, the data to
be operated on is part of the instruction. For example, if the addressing mode of
the operand is immediate and the instruction is Load 008, the numeric value 8
is loaded into the AC. The 12 bits of the operand field do not specify an
address—they specify the actual operand the instruction requires. Immediate
addressing is very fast because the value to be loaded is included in the instruc-
tion. However, because the value to be loaded is fixed at compile time, it is not
very flexible.

Direct addressing is so-named because the value to be referenced is obtained by
specifying its memory address directly in the instruction. For example, if the
addressing mode of the operand is direct and the instruction is Load 008, the data
value found at memory address 008 is loaded into the AC. Direct addressing is
typically quite fast because, although the value to be loaded is not included in the
instruction, it is quickly accessible. It is also much more flexible than immediate
addressing because the value to be loaded is whatever is found at the given
address, which may be variable.

In register addressing, a register, instead of memory, is used to specify the
operand. This is very similar to direct addressing, except that instead of a mem-
ory address, the address field contains a register reference. The contents of that
register are used as the operand.

Indirect addressing is a very powerful addressing mode that provides an excep-
tional level of flexibility. In this mode, the bits in the address field specify a mem-
ory address that is to be used as a pointer. The effective address of the operand is
found by going to this memory address. For example, if the addressing mode of
the operand is indirect and the instruction is Load 008, the data value found at
memory address 008 is actually the effective address of the desired operand. Sup-
pose we find the value 2A0 stored in location 008. 2A0 is the “real” address of
the value we want. The value found at location 2A0 is then loaded into the AC.

In a variation on this scheme, the operand bits specify a register instead of a
memory address. This mode, known as register indirect addressing, works
exactly the same way as indirect addressing mode, except it uses a register
instead of a memory address to point to the data. For example, if the instruction is
Load R1 and we are using register indirect addressing mode, we would find the
effective address of the desired operand in R1.

In indexed addressing mode, an index register (either explicitly or implicitly
designated) is used to store an offset (or displacement), which is added to the
operand, resulting in the effective address of the data. For example, if the operand
X of the instruction Load X is to be addressed using indexed addressing, assuming

00068_CH05_Null.qxd 10/13/10 1:30 PM Page 289

290 Chapter 5 / A Closer Look at Instruction Set Architectures

R1
900

1000

Memory

500

600

700

800
800

900

1000

1100

1600

...

...

...

...

FIGURE 5.4 Contents of Memory When Load 800 Is Executed

R1 is the index register and holds the value 1, the effective address of the operand
is actually X + 1. Based addressing mode is similar, except a base address regis-
ter, rather than an index register, is used. In theory, the difference between these
two modes is in how they are used, not how the operands are computed. An index
register holds an index that is used as an offset, relative to the address given in the
address field of the instruction. A base register holds a base address, where the
address field represents a displacement from this base. These two addressing
modes are quite useful for accessing array elements as well as characters in
strings. In fact, most assembly languages provide special index registers that are
implied in many string operations. Depending on the instruction-set design, gen-
eral-purpose registers may also be used in this mode.

If stack addressing mode is used, the operand is assumed to be on the stack. We
have already seen how this works in Section 5.2.4.

Many variations on the above schemes exist. For example, some machines have
indirect indexed addressing, which uses both indirect and indexed addressing at
the same time. There is also base/offset addressing, which adds an offset to a
specific base register and then adds this to the specified operand, resulting in the
effective address of the actual operand to be used in the instruction. There are
also auto-increment and auto-decrement modes. These modes automatically
increment or decrement the register used, thus reducing the code size, which can
be extremely important in applications such as embedded systems. Self-relative
addressing computes the address of the operand as an offset from the current
instruction. Additional modes exist; however, familiarity with immediate, direct,
register, indirect, indexed, and stack addressing modes goes a long way in under-
standing any addressing mode you may encounter.

Let’s look at an example to illustrate these various modes. Suppose we have
the instruction Load 800, and the memory and register R1 shown in Figure 5.4.
Applying the various addressing modes to the operand field containing the 800,
and assuming R1 is implied in the indexed addressing mode, the value actually
loaded into AC is seen in Table 5.1. The instruction Load R1, using register

00068_CH05_Null.qxd 10/13/10 1:30 PM Page 290

5.5 / Instruction Pipelining 291

Mode
Value Loaded

into AC

900

800

1000

700

Direct

Immediate

Indirect

Indexed

TABLE 5.1 Results of Using Various Addressing Modes on Memory in Figure 5.4

Immediate

Direct

Register

Indirect

Register Indirect

Indexed or Based

Stack

Operand value present in the instruction

Effective address of operand in address field

Operand value located in register

Address field points to address of the actual operand

Register contains address of actual operand

Effective address of operand generated by adding
value in address field to contents of a register

Operand located on stack

Addressing Mode To Find Operand

TABLE 5.2 A Summary of the Basic Addressing Modes

addressing mode, loads an 800 into the accumulator, and using register indirect
addressing mode, loads a 900 into the accumulator.

We summarize the addressing modes in Table 5.2.
How does the computer know which addressing mode is supposed to be used

for a particular operand? We have already seen one way to deal with this issue. In
MARIE, there are two JUMP instructions—a JUMP and a JUMPI. There are also two
add instructions—an ADD and an ADDI. The instruction itself contains information
the computer uses to determine the appropriate addressing mode. Many lan-
guages have multiple versions of the same instruction, where each variation indi-
cates a different addressing mode and/or a different data size.

Encoding the address mode in the opcode itself works well if there is a small
number of addressing modes. However, if there are many addressing modes, it is
better to use a separate address specifier, a field in the instruction with bits to
indicate which addressing mode is to be applied to the operands in the instruction.

The various addressing modes allow us to specify a much larger range of
locations than if we were limited to using one or two modes. As always, there are
trade-offs. We sacrifice simplicity in address calculation and limited memory ref-
erences for flexibility and increased address range.

5.5 INSTRUCTION PIPELINING

By now you should be reasonably familiar with the fetch–decode–execute cycle
presented in Chapter 4. Conceptually, each pulse of the computer’s clock is used

00068_CH05_Null.qxd 10/13/10 1:30 PM Page 291

292 Chapter 5 / A Closer Look at Instruction Set Architectures

to control one step in the sequence, but sometimes additional pulses can be
used to control smaller details within one step. Some CPUs break the fetch-
decode–execute cycle down into smaller steps, where some of these smaller steps
can be performed in parallel. This overlapping speeds up execution. This method,
used by all current CPUs, is known as pipelining. Instruction pipelining is one
method used to exploit instruction level parallelism (ILP). (Other methods
include superscalar and VLIW.) We include it in this chapter because the ISA of a
machine affects how successful instruction pipelining can be.

Suppose the fetch–decode–execute cycle were broken into the following
“ministeps”:

1. Fetch instruction
2. Decode opcode
3. Calculate effective address of operands
4. Fetch operands
5. Execute instruction
6. Store result

Pipelining is analogous to an automobile assembly line. Each step in a com-
puter pipeline completes a part of an instruction. Like the automobile assembly
line, different steps are completing different parts of different instructions in par-
allel. Each of the steps is called a pipeline stage. The stages are connected to
form a pipe. Instructions enter at one end, progress through the various stages,
and exit at the other end. The goal is to balance the time taken by each pipeline
stage (i.e., more or less the same as the time taken by any other pipeline stage). If
the stages are not balanced in time, after awhile, faster stages will be waiting on
slower ones. To see an example of this imbalance in real life, consider the stages
of doing laundry. If you have only one washer and one dryer, you usually end up
waiting on the dryer. If you consider washing as the first stage and drying as the
next, you can see that the longer drying stage causes clothes to pile up between
the two stages. If you add folding clothes as a third stage, you soon realize that
this stage would consistently be waiting on the other, slower stages.

Figure 5.5 provides an illustration of computer pipelining with overlapping
stages. We see each clock cycle and each stage for each instruction (where S1
represents the fetch, S2 represents the decode, S3 is the calculate state, S4 is the
operand fetch, S5 is the execution, and S6 is the store).

We see from Figure 5.5 that once instruction 1 has been fetched and is in the
process of being decoded, we can start the fetch on instruction 2. When instruc-
tion 1 is fetching operands, and instruction 2 is being decoded, we can start the
fetch on instruction 3. Notice these events can occur in parallel, very much like
an automobile assembly line.

Suppose we have a k-stage pipeline. Assume the clock cycle time is tp, that is,
it takes tp time per stage. Assume also we have n instructions (often called tasks)
to process. Task 1 (T1) requires k � tp time to complete. The remaining n � 1

00068_CH05_Null.qxd 10/13/10 1:30 PM Page 292

5.5 / Instruction Pipelining 293

S1 S2 S3 S4 S5 S6

S1 S2 S3 S4 S5 S6

S1 S2 S3 S4 S5 S6

S1 S2 S3 S4 S5 S6

Instruction 1

Instruction 2

Instruction 3

Instruction 4

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9

FIGURE 5.5 Four Instructions Going through a 6-Stage Pipeline

tasks emerge from the pipeline one per cycle, which implies a total time for these
tasks of (n � 1)tp. Therefore, to complete n tasks using a k-stage pipeline requires:

(k � tp) + (n � 1)tp = (k + n � 1)tp

or k + (n � 1) clock cycles.
Let’s calculate the speedup we gain using a pipeline. Without a pipeline, the

time required is ntn cycles, where tn = k � tp. Therefore, the speedup (time with-
out a pipeline divided by the time using a pipeline) is:

If we take the limit of this as n approaches infinity, we see that (k + n � 1)
approaches n, which results in a theoretical speedup of:

The theoretical speedup, k, is the number of stages in the pipeline.
Let’s look at an example.

EXAMPLE 5.11 Suppose we have a 4-stage pipeline, where:

• S1 = fetch instruction
• S2 = decode and calculate effective address
• S3 = fetch operand
• S4 = execute instruction and store results

Speedup �
k � tp

tp
� k

Speedup S �
ntn

1k � n � 12 tp

00068_CH05_Null.qxd 10/13/10 1:30 PM Page 293

294 Chapter 5 / A Closer Look at Instruction Set Architectures

We must also assume the architecture provides a means to fetch data and instruc-
tions in parallel. This can be done with separate instruction and data paths; how-
ever, most memory systems do not allow this. Instead, they provide the operand
in cache, which, in most cases, allows the instruction and operand to be fetched
simultaneously. Suppose, also, that instruction I3 is a conditional branch state-
ment that alters the execution sequence (so that instead of I4 running next, it
transfers control to I8). This results in the pipeline operation shown in Figure 5.6.

Note that I4, I5, and I6 are fetched and proceed through various stages, but
after the execution of I3 (the branch), I4, I5, and I6 are no longer needed. Only
after time period 6, when the branch has executed, can the next instruction to be
executed (I8) be fetched, after which, the pipe refills. From time periods 6
through 9, only one instruction has executed. In a perfect world, for each time
period after the pipe originally fills, one instruction should flow out of the
pipeline. However, we see in this example that this is not necessarily true.

Please note that not all instructions must go through each stage of the pipe. If
an instruction has no operand, there is no need for stage 3. To simplify pipelining
hardware and timing, all instructions proceed through all stages, whether neces-
sary or not.

From our preceding discussion of speedup, it might appear that the more
stages that exist in the pipeline, the faster everything will run. This is true to a
point. There is a fixed overhead involved in moving data from memory to regis-
ters. The amount of control logic for the pipeline also increases in size propor-
tional to the number of stages, thus slowing down total execution. In addition,
there are several conditions that result in “pipeline conflicts,” which keep us from
reaching the goal of executing one instruction per clock cycle. These include:

• Resource conflicts
• Data dependencies
• Conditional branch statements

Resource conflicts (also called structural hazards) are a major concern in instruc-
tion-level parallelism. For example, if one instruction is storing a value to memory
while another is being fetched from memory, both need access to memory.

Time Period 1 2 3 4 5 6 7 8 9 10 11 12 13
S1

2
Instruction: 1

(branch) 3
4
5
6
8
9

10

S2 S3 S4
S1 S2 S3 S4

S1 S2 S3 S4
S1 S2 S3

S1 S2
S1

S1 S2 S3 S4
S1 S2 S3 S4

S1 S2 S3 S4

FIGURE 5.6 Example Instruction Pipeline with Conditional Branch

00068_CH05_Null.qxd 10/13/10 1:30 PM Page 294

5.5 / Instruction Pipelining 295

Typically this is resolved by allowing the instruction executing to continue, while
forcing the instruction fetch to wait. Certain conflicts can also be resolved by pro-
viding two separate pathways: one for data coming from memory and another for
instructions coming from memory.

Data dependencies arise when the result of one instruction, not yet avail-
able, is to be used as an operand to a following instruction.

For example, consider the two sequential statements X = Y + 3 and Z =
2 * X.

The problem arises at time period 4. The second instruction needs to fetch X, but
the first instruction does not store the result until the execution is finished, so X is
not available at the beginning of the time period.

There are several ways to handle these types of pipeline conflicts. Special
hardware can be added to detect instructions whose source operands are destina-
tions for instructions further up the pipeline. This hardware can insert a brief
delay (typically a no-op instruction that does nothing) into the pipeline, allowing
enough time to pass to resolve the conflict. Specialized hardware can also be
used to detect these conflicts and route data through special paths that exist
between various stages of the pipeline. This reduces the time necessary for the
instruction to access the required operand. Some architectures address this prob-
lem by letting the compiler resolve the conflict. Compilers have been designed
that reorder instructions, resulting in a delay of loading any conflicting data but
having no effect on the program logic or output.

Branch instructions allow us to alter the flow of execution in a program,
which, in terms of pipelining, causes major problems. If instructions are fetched
one per clock cycle, several can be fetched and even decoded before a preceding
instruction, indicating a branch, is executed. Conditional branching is particularly
difficult to deal with. Many architectures offer branch prediction, using logic to
make the best guess as to which instructions will be needed next (essentially, they
are predicting the outcome of a conditional branch). Compilers try to resolve
branching issues by rearranging the machine code to cause a delayed branch. An
attempt is made to reorder and insert useful instructions, but if that is not possi-
ble, no-op instructions are inserted to keep the pipeline full. Another approach
used by some machines given a conditional branch is to start fetches on both
paths of the branch and save them until the branch is actually executed, at which
time the “true” execution path will be known.

In an effort to squeeze even more performance out of the chip, modern CPUs
employ superscalar design (introduced in Chapter 4), which is one step beyond
pipelining. Superscalar chips have multiple ALUs and issue more than one
instruction in each clock cycle. The clock cycles per instruction can actually go

Time Period 1 2 3 4 5
 S

X = Y + 3 fetch instruction decode fetch Y execute & store X

Z = 2 * X fetch instruction decode fetch X

00068_CH05_Null.qxd 10/13/10 1:30 PM Page 295

296 Chapter 5 / A Closer Look at Instruction Set Architectures

below one. But the logic to keep track of hazards becomes even more complex;
more logic is needed to schedule operations than to do them. But even with com-
plex logic, it is hard to schedule parallel operations “on the fly.”

The limits of dynamic scheduling have led machine designers to consider a
very different architecture, explicitly parallel instruction computers (EPIC),
exemplified by the Itanium architecture discussed in Chapter 4. EPIC machines
have very large instructions (recall the instructions for the Itanium are 128 bits),
which specify several operations to be done in parallel. Because of the paral-
lelism inherent in the design, the EPIC instruction set is heavily compiler
dependent (which means a user needs a sophisticated compiler to take advantage
of the parallelism to gain significant performance advantages). The burden of
scheduling operations is shifted from the processor to the compiler, and much
more time can be spent in developing a good schedule and analyzing potential
pipeline conflicts.

To reduce the pipelining problems due to conditional branches, the IA-64 intro-
duced predicated instructions. Comparison instructions set predicate bits, much
like they set condition codes on the x86 machine (except that there are 64 predicate
bits). Each operation specifies a predicate bit; it is executed only if the predicate bit
equals 1. In practice, all operations are performed, but the result is stored into the
register file only if the predicate bit equals 1. The result is that more instructions are
executed, but we don’t have to stall the pipeline waiting for a condition.

There are several levels of parallelism, varying from the simple to the more
complex. All computers exploit parallelism to some degree. Instructions use
words as operands (where words are typically 16, 32, or 64 bits in length), rather
than acting on single bits at a time. More advanced types of parallelism require
more specific and complex hardware and operating system support.

Although an in-depth study of parallelism is beyond the scope of this text, we
would like to take a brief look at what we consider the two extremes of paral-
lelism: program-level parallelism (PLP) and instruction-level parallelism (ILP).
PLP actually allows parts of a program to run on more than one computer. This
may sound simple, but it requires coding the algorithm correctly so that this par-
allelism is possible, in addition to providing careful synchronization between the
various modules.

ILP involves the use of techniques to allow the execution of overlapping
instructions. Essentially, we want to allow more than one instruction within a single
program to execute concurrently. There are two kinds of ILP. The first type decom-
poses an instruction into stages and overlaps these stages. This is exactly what
pipelining does. The second kind of ILP allows individual instructions to overlap
(that is, instructions can be executed at the same time by the processor itself).

In addition to pipelined architectures, superscalar, superpipelining, and very
long instruction word (VLIW) architectures exhibit ILP. Superscalar architectures
(as you may recall from Chapter 4) perform multiple operations at the same time
by employing parallel pipelines. Examples of superscalar architectures include
IBM’s PowerPC, Sun’s UltraSparc, and DEC’s Alpha. Superpipelining architec-
tures combine superscalar concepts with pipelining, by dividing the pipeline
stages into smaller pieces. The IA-64 architecture exhibits a VLIW architecture,

00068_CH05_Null.qxd 10/13/10 1:30 PM Page 296

5.6 / Real-World Examples of ISAs 297

which means each instruction can specify multiple scalar operations (the com-
piler puts multiple operations into a single instruction). Superscalar and VLIW
machines fetch and execute more than one instruction per cycle.

5.6 REAL-WORLD EXAMPLES OF ISAs

Let’s return to the two architectures we discussed in Chapter 4, Intel and MIPS, to
see how the designers of these processors chose to deal with the issues introduced
in this chapter: instruction formats, instruction types, number of operands,
addressing, and pipelining. We’ll also introduce the Java Virtual Machine to illus-
trate how software can create an ISA abstraction that completely hides the real
ISA of the machine.

5.6.1 Intel

Intel uses a little endian, two-address architecture, with variable-length instruc-
tions. Intel processors use a register-memory architecture, which means all
instructions can operate on a memory location, but the other operand must be a
register. This ISA allows variable-length operations, operating on data with
lengths of 1, 2, or 4 bytes.

The 8086 through the 80486 are single-stage pipeline architectures. The
architects reasoned that if one pipeline was good, two would be better. The Pen-
tium had two parallel five-stage pipelines, called the U pipe and the V pipe, to
execute instructions. Stages for these pipelines include Prefetch, Instruction
Decode, Address Generation, Execute, and Write Back. To be effective, these
pipelines must be kept filled, which requires instructions that can be issued in
parallel. It is the compiler’s responsibility to make sure this parallelism happens.
The Pentium II increased the number of stages to 12, including Prefetch, Length
Decode, Instruction Decode, Rename/Resource Allocation, UOP Scheduling/Dis-
patch, Execution, Write Back, and Retirement. Most of the new stages were
added to address Intel’s MMX technology, an extension to the architecture that
handles multimedia data. The Pentium III increased the stages to 14, and the Pen-
tium IV to 24. Additional stages (beyond those introduced in this chapter)
included stages for determining the length of the instruction, stages for creating
microoperations, and stages to “commit” the instruction (make sure it executes
and the results become permanent). The Itanium contains only a 10-stage instruc-
tion pipeline.

Intel processors allow for the basic addressing modes introduced in this chap-
ter, in addition to many combinations of those modes. The 8086 provided 17 dif-
ferent ways to access memory, most of which were variants of the basic modes.
Intel’s more current Pentium architectures include the same addressing modes as
their predecessors, but also introduce new modes, mostly to help with maintaining
backward compatibility. The IA-64 is surprisingly lacking in memory-addressing
modes. It has only one: register indirect (with optional post-increment). This
seems unusually limiting but follows the RISC philosophy. Addresses are calcu-
lated and stored in general-purpose registers. The more complex addressing

00068_CH05_Null.qxd 10/13/10 1:30 PM Page 297

298 Chapter 5 / A Closer Look at Instruction Set Architectures

modes require specialized hardware; by limiting the number of addressing modes,
the IA-64 architecture minimizes the need for this specialized hardware.

5.6.2 MIPS

The MIPS architecture (which originally stood for “Microprocessor without
Interlocked Pipeline Stages”) is a little endian, word-addressable, three-address,
fixed-length ISA. This is a load and store architecture, which means only the load
and store instructions can access memory. All other instructions must use regis-
ters for operands, which implies that this ISA needs a large register set. MIPS is
also limited to fixed-length operations (those that operate on data with the same
number of bytes).

Some MIPS processors (such as the R2000 and R3000) have five-stage
pipelines. The R4000 and R4400 have 8-stage superpipelines. The R10000 is
quite interesting in that the number of stages in the pipeline depends on the func-
tional unit through which the instruction must pass: there are five stages for inte-
ger instructions, six for load/store instructions, and seven for floating-point
instructions. Both the MIPS 5000 and 10000 are superscalar.

MIPS has a straightforward ISA with five basic types of instructions: simple
arithmetic (add, XOR, NAND, shift), data movement (load, store, move), control
(branch, jump), multicycle (multiply, divide), and miscellaneous instructions
(save PC, save register on condition). MIPS programmers can use immediate,
register, direct, indirect register, base, and indexed addressing modes. However,
the ISA itself provides for only one (base addressing). The remaining modes are
provided by the assembler. The MIPS64 has two additional addressing modes for
use in embedded systems optimizations.

The MIPS instructions in Chapter 4 had up to four fields: an opcode, two
operand addresses, and one result address. Essentially three instruction formats
are available: the I type (immediate), the R type (register), and the J type (jump).

R type instructions have a 6-bit opcode, a 5-bit source register, a second 5-bit
source register, a 5-bit target register, a 5-bit shift amount, and a 6-bit function. I
type instructions have a 6-bit operand, a 5-bit source register, a 5-bit target regis-
ter or branch condition, and a 16-bit immediate branch displacement or address
displacement. J type instructions have a 6-bit opcode and a 26-bit target address.

The MIPS ISA is different from the Intel ISA partially because the design
philosophies between the two are so different. Intel created its ISA for the 8086
when memory was very expensive, which meant designing an instruction set that
would allow for extremely compact code. This is the main reason Intel uses vari-
able-length instructions. The small set of registers used in the 8086 did not allow
for much data to be stored in these registers; hence the two-operand instructions
(as opposed to three as in MIPS). When Intel moved to the IA32 ISA, backwards
compatibility was a requirement for its large customer base.

5.6.3 Java Virtual Machine

Java, a language that is becoming quite popular, is very interesting in that it is plat-
form independent. This means that if you compile code on one architecture (say a

00068_CH05_Null.qxd 10/13/10 1:30 PM Page 298

5.6 / Real-World Examples of ISAs 299

Pentium) and you wish to run your program on a different architecture (say a Sun
workstation), you can do so without modifying or even recompiling your code.

The Java compiler makes no assumptions about the underlying architecture
of the machine on which the program will run, such as the number of registers,
memory size, or I/O ports, when you first compile your code. After compilation,
however, to execute your program, you will need a Java Virtual Machine
(JVM) for the architecture on which your program will run. (A virtual machine
is a software emulation of a real machine.) The JVM is essentially a “wrapper”
that goes around the hardware architecture and is very platform dependent. The
JVM for a Pentium is different from the JVM for a Sun workstation, which is dif-
ferent from the JVM for a Macintosh, and so on. But once the JVM exists on a
particular architecture, that JVM can execute any Java program compiled on any
ISA platform. It is the JVM’s responsibility to load, check, find, and execute
bytecodes at run time. The JVM, although virtual, is a nice example of a well-
designed ISA.

The JVM for a particular architecture is written in that architecture’s native
instruction set. It acts as an interpreter, taking Java bytecodes and interpreting
them into explicit underlying machine instructions. Bytecodes are produced
when a Java program is compiled. These bytecodes then become input for the
JVM. The JVM can be compared to a giant switch (or case) statement, analyzing
one bytecode instruction at a time. Each bytecode instruction causes a jump to a
specific block of code, which implements the given bytecode instruction.

This differs significantly from other high-level languages with which you
may be familiar. For example, when you compile a C++ program, the object code
produced is for that particular architecture. (Compiling a C++ program results in
an assembly language program that is translated to machine code.) If you want to
run your C++ program on a different platform, you must recompile it for the tar-
get architecture. Compiled languages are translated into runnable files of the
binary machine code by the compiler. Once this code has been generated, it can
be run only on the target architecture. Compiled languages typically exhibit
excellent performance and give very good access to the operating system. Exam-
ples of compiled languages include C, C++, Ada, FORTRAN, and COBOL.

Some languages, such as LISP, PhP, Perl, Python, Tcl, and most BASIC lan-
guages, are interpreted. The source must be reinterpreted each time the program
is run. The trade-off for the platform independence of interpreted languages is
slower performance—usually by a factor of 100 times. (We will have more to say
on this topic in Chapter 8.)

Languages that are a bit of both (compiled and interpreted) exist as well.
These are often called P-code languages. The source code written in these lan-
guages is compiled into an intermediate form, called P-code, and the P-code is
then interpreted. P-code languages typically execute from 5 to 10 times more
slowly than compiled languages. Python, Perl, and Java are actually P-code lan-
guages, even though they are typically referred to as interpreted languages.

Figure 5.7 presents an overview of the Java programming environment.
Perhaps more interesting than Java’s platform independence, particularly in

relationship to the topics covered in this chapter, is the fact that Java’s bytecode is

00068_CH05_Null.qxd 10/13/10 1:30 PM Page 299

300 Chapter 5 / A Closer Look at Instruction Set Architectures

Compile-time Environment

Program Class Files
(file. class)

The Actual Bytecode

Run-time Environment

Class
Loader

Execution
Engine

javac

JVM

java

Program Source Files
(file. java)

Java Compiler

Java
API
Files

FIGURE 5.7 The Java Programming Environment

a stack-based language, partially composed of zero address instructions. Each
instruction consists of a one-byte opcode followed by zero or more operands. The
opcode itself indicates whether it is followed by operands and the form the
operands (if any) take. Many of these instructions require zero operands.

Java uses two’s complement to represent signed integers but does not allow for
unsigned integers. Characters are coded using 16-bit Unicode. Java has four regis-
ters, which provide access to five different main memory regions. All references to
memory are based on offsets from these registers; pointers or absolute memory
addresses are never used. Because the JVM is a stack machine, no general registers
are provided. This lack of general registers is detrimental to performance, as more
memory references are generated. We are trading performance for portability.

Let’s take a look at a short Java program and its corresponding bytecode.
Example 5.12 shows a Java program that finds the maximum of two numbers.

EXAMPLE 5.12 Here is a Java program to find the maximum of two numbers.

public class Maximum {

public static void main (String[] Args)
{ int X,Y,Z;
X = Integer.parseInt(Args[0]);
Y = Integer.parseInt(Args[1]);
Z = Max(X,Y);
System.out.println(Z);

}

00068_CH05_Null.qxd 10/13/10 1:30 PM Page 300

5.6 / Real-World Examples of ISAs 301

public static int Max (int A, int B)
{ int C;
if (A > B)C = A;
else C = B;
return C;

}
}

After we compile this program (using javac), we can disassemble it to examine
the bytecode, by issuing the following command:

javap -c Maximum

You should see the following:

Compiled from Maximum.java
public class Maximum extends java.lang.Object {

public Maximum();
public static void main(java.lang.String[]);
public static int Max(int, int);

}

Method Maximum()
0 aload_0
1 invokespecial #1 <Method java.lang.Object()>
4 return

Method void main(java.lang.String[])
0 aload_0
1 iconst_0
2 aaload
3 invokestatic #2 <Method int parseInt(java.lang.String)>
6 istore_1
7 aload_0
8 iconst_1
9 aaload
10 invokestatic #2 <Method int parseInt(java.lang.String)>
13 istore_2
14 iload_1
15 iload_2
16 invokestatic #3 <Method int Max(int, int)>
19 istore_3
20 getstatic #4 <Field java.io.PrintStream out>
23 iload_3
24 invokevirtual #5 <Method void println(int)>
27 return

Method int Max(int, int)
0 iload_0

00068_CH05_Null.qxd 10/13/10 1:30 PM Page 301

302 Chapter 5 / A Closer Look at Instruction Set Architectures

1 iload_1
2 if_icmple 10
5 iload_0
6 istore_2
7 goto 12
10 iload_1
11 istore_2
12 iload_2
13 ireturn

Each line number represents an offset (or the number of bytes that an instruction
is from the beginning of the current method). Notice that

Z = Max (X,Y);

gets compiled to the following bytecode:

14 iload_1
15 iload_2
16 invokestatic #3 <Method int Max(int, int)>
19 istore_3

It should be very obvious that Java bytecode is stack-based. For example, the
iadd instruction pops two integers from the stack, adds them, and then pushes the
result back to the stack. There is no such thing as “add r0, r1, f 2” or “add AC,
X”. The iload_1 (integer load) instruction also uses the stack by pushing slot 1
onto the stack (slot 1 in main contains X, so X is pushed onto the stack). Y is
pushed onto the stack by instruction 15. The invokestatic instruction actually
performs the Max method call. When the method has finished, the istore_3
instruction pops the top element of the stack and stores it in Z.

We will explore the Java language and the JVM in more detail in Chapter 8.

CHAPTER SUMMARY

The core elements of an instruction set architecture include the memory model
(word size and how the address space is split), registers, data types, instruc-

tion formats, addressing, and instruction types. Even though most computers
today have general-purpose register sets and specify operands by combinations of
memory and register locations, instructions vary in size, type, format, and the
number of operands allowed. Instructions also have strict requirements for the
locations of these operands. Operands can be located on the stack, in registers, in
memory, or a combination of the three.

Many decisions must be made when ISAs are designed. Larger instruction
sets mandate longer instructions, which means a longer fetch and decode time.
Instructions having a fixed length are easier to decode but can waste space.

00068_CH05_Null.qxd 10/13/10 1:30 PM Page 302

Further Reading 303

Expanding opcodes represent a compromise between the need for large instruc-
tion sets and the desire to have short instructions. Perhaps the most interesting
debate is that of little versus big endian byte ordering.

There are three choices for internal storage in the CPU: stacks, an accumula-
tor, or general-purpose registers. Each has its advantages and disadvantages,
which must be considered in the context of the proposed architecture’s applica-
tions. The internal storage scheme has a direct impact on the instruction format,
particularly the number of operands the instruction is allowed to reference. Stack
architectures use zero operands, which fits well with RPN notation.

Instructions are classified into the following categories: data movement,
arithmetic, Boolean, bit manipulation, I/O, transfer of control, and special
purpose. Some ISAs have many instructions in each category, others have very
few in each category, and many have a mix of each. Orthogonal instruction sets
are consistent, with no restrictions on the operand/opcode relationship.

The advances in memory technology, resulting in larger memories, have
prompted the need for alternative addressing modes. The various addressing
modes introduced included immediate, direct, indirect, register, indexed, and
stack. Having these different modes provides flexibility and convenience for the
programmer without changing the fundamental operations of the CPU.

Instruction-level pipelining is one example of instruction-level parallelism. It
is a common but complex technique that can speed up the fetch–decode–execute
cycle. With pipelining we can overlap the execution of instructions, thus execut-
ing multiple instructions in parallel. However, we also saw that the amount of par-
allelism can be limited by conflicts in the pipeline. Whereas pipelining performs
different stages of multiple instructions at the same time, superscalar architectures
allow us to perform multiple operations at the same time. Superpipelining, a com-
bination of superscalar and pipelining, in addition to VLIW, was also briefly
introduced. There are many types of parallelism, but at the computer organization
and architecture level, we are really concerned mainly with ILP.

Intel and MIPS have interesting ISAs, as we have seen in this chapter as well
as in Chapter 4. However, the Java Virtual Machine is a unique ISA, because the
ISA is built-in software, thus allowing Java programs to run on any machine that
supports the JVM. Chapter 8 covers the JVM in great detail.

FURTHER READING

Instruction sets, addressing, and instruction formats are covered in detail in
almost every computer architecture book. The books by Patterson and Hennessy
(2009), Stallings (2010), and Tanenbaum (2006) all provide excellent coverage in
these areas. Many books, such as Brey (2003), Messmer (2001), Abel (2001) and
Jones (2001) are devoted to the Intel x86 architecture. For those interested in the
Motorola 68000 series, we suggest Wray, Greenfield, and Bannatyne (1999) or
Miller (1992).

Sohi (1990) gives a very nice discussion of instruction-level pipelining. Kaeli
and Emma (1991) provide an interesting overview of how branching affects
pipeline performance. For a nice history of pipelining, see Rau and Fisher (1993).

00068_CH05_Null.qxd 10/13/10 1:30 PM Page 303

304 Chapter 5 / A Closer Look at Instruction Set Architectures

To get a better idea of the limitations and problems with pipelining, see Wall
(1993).

We investigated specific architectures in Chapter 4, but there are many impor-
tant instruction set architectures worth mentioning. Atanasoff’s ABC computer
(Burks and Burks [1988]), Von Neumann’s EDVAC and Mauchly and Eckert’s
UNIVAC (Stern [1981] for information on both) had very simple instruction set
architectures but required programming to be done in machine language. The Intel
8080 (a one-address machine) was the predecessor to the 80x86 family of chips
introduced in Chapter 4. See Brey (2003) for a thorough and readable introduction
to the Intel family of processors. Hauck and Dent (1968) provide good coverage of
the Burroughs zero-address machine. Struble (1984) has a nice presentation of
IBM’s 360 family. Brunner (1991) gives details about DEC’s VAX systems, which
incorporated two-address architectures with more sophisticated instruction sets.
SPARC (1994) provides a great overview of the SPARC architecture. Meyer and
Downing (1991), Lindholm and Yellin (1999), and Venners provide very interesting
coverage of the JVM.

For an interesting article that charts the historical development from 32 to 64
bits, see Mashey (2009). The author shows how architectural decisions can have
unexpected and lasting consequences.

REFERENCES

Abel, P. IBM PC Assembly Language and Programming, 5th ed. Upper Saddle River, NJ: Prentice
Hall, 2001.

Brey, B. Intel Microprocessors 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium, and Pen-
tium Pro Processor, Pentium II, Pentium III, and Pentium IV: Architecture, Programming, and
Interfacing, 6th ed. Englewood Cliffs, NJ: Prentice Hall, 2003.

Brunner, R. A. VAX Architecture Reference Manual, 2nd ed. Herndon, VA: Digital Press, 1991.

Burks, A., & Burks, A. The First Electronic Computer: The Atanasoff Story. Ann Arbor, MI: Uni-
versity of Michigan Press, 1988.

Hauck, E. A., & Dent, B. A. “Burroughs B6500/B7500 Stack Mechanism.” Proceedings of AFIPS
SJCC:32, 1968, pp. 245–251.

Jones, W. Assembly Language Programming for the IBM PC Family, 3rd ed. El Granada, CA:
Scott/Jones Publishing, 2001.

Kaeli, D., & Emma, P. “Branch History Table Prediction of Moving Target Branches Due to Sub-
routine Returns.” Proceedings of the 18th Annual International Symposium on Computer Archi-
tecture, May 1991.

Lindholm, T., & Yellin, F. The Java Virtual Machine Specification, 2nd ed., 1999. Online at
java.sun.com/docs/books/jvms/index.html.

Mashey, J. “The Long Road to 64 Bits.” CACM 52:1, January 2009, pp. 45–53.

Messmer, H. The Indispensable PC Hardware Book. 4th ed. Reading, MA: Addison-Wesley, 2001.

Meyer, J., & Downing, T. Java Virtual Machine. Sebastopol, CA: O’Reilly & Associates, 1991.

Miller, M. A. The 6800 Microprocessor Family: Architecture, Programming, and Applications,
2nd ed. Columbus, OH: Charles E. Merrill, 1992.

Patterson, D. A., & Hennessy, J. L. Computer Organization and Design, The Hardware/Software
Interface, 4th ed. San Mateo, CA: Morgan Kaufmann, 2009.

00068_CH05_Null.qxd 10/13/10 1:30 PM Page 304

Review of Essential Terms and Concepts 305

Rau, B. Ramakrishna, & Fisher, J. A. “Instruction-Level Parallel Processing: History, Overview
and Perspective.” Journal of Supercomputing 7:1, January 1993, pp. 9–50.

Sohi, G. “Instruction Issue Logic for High-Performance Interruptible, Multiple Functional Unit,
Pipelined Computers.” IEEE Transactions on Computers, March 1990.

SPARC International, Inc., The SPARC Architecture Manual: Version 9. Upper Saddle River, NJ:
Prentice Hall, 1994.

Stallings, W. Computer Organization and Architecture, 8th ed. Upper Saddle River, NJ: Prentice
Hall, 2010.

Stern, N. From ENIAC to UNIVAC: An Appraisal of the Eckert-Mauchly Computers. Herndon,
VA: Digital Press, 1981.

Struble, G. W. Assembler Language Programming: The IBM System/360 and 370, 3rd ed. Reading,
MA: Addison-Wesley, 1984.

Tanenbaum, A. Structured Computer Organization, 5th ed. Upper Saddle River, NJ: Prentice Hall,
2006.

Venners, B. Inside the Java 2 Virtual Machine, 2000. Online at www.artima.com.

Wall, D. W. Limits of Instruction-Level Parallelism. DEC-WRL Research Report 93/6, November
1993.

Wray, W. C., Greenfield, J. D., & Bannatyne, R. Using Microprocessors and Microcomputers, the
Motorola Family, 4th ed. Englewood Cliffs, NJ: Prentice Hall, 1999.

REVIEW OF ESSENTIAL TERMS AND CONCEPTS

1. Explain the difference between register-to-register, register-to-memory, and mem-
ory-to-memory instructions.

2. Several design decisions exist with regard to instruction sets. Name four and explain.

3. What is an expanding opcode?

4. If a byte-addressable machine with 32-bit words stores the hex value 98765432, indi-
cate how this value would be stored on a little endian machine and on a big endian
machine. Why does “endian-ness” matter?

5. We can design stack architectures, accumulator architectures, or general-purpose reg-
ister architectures. Explain the differences between these choices and give some situ-
ations where one might be better than another.

6. How do memory-memory, register-memory, and load-store architectures differ?
How are they the same?

7. What are the pros and cons of fixed-length and variable-length instructions? Which is
currently more popular?

8. How does an architecture based on zero operands ever get any data values from
memory?

9. Which is likely to be longer (have more instructions): a program written for a zero-
address architecture, a program written for a one-address architecture, or a program
written for a two-address architecture? Why?

00068_CH05_Null.qxd 10/13/10 1:30 PM Page 305

306 Chapter 5 / A Closer Look at Instruction Set Architectures

10. Why might stack architectures represent arithmetic expressions in reverse Polish
notation?

11. Name the seven types of data instructions and explain each.

12. What is the difference between an arithmetic shift and a logical shift?

13. Explain what it means for an instruction set to be orthogonal.

14. What is an address mode?

15. Give examples of immediate, direct, register, indirect, register indirect, and indexed
addressing.

16. How does indexed addressing differ from based addressing?

17. Why do we need so many different addressing modes?

18. Explain the concept behind instruction pipelining.

19. What is the theoretical speedup for a 4-stage pipeline with a 20ns clock cycle if it is
processing 100 tasks?

20. What are the pipeline conflicts that can cause a slowdown in the pipeline?

21. What are the two types of ILP and how do they differ?

22. Explain superscalar, superpipelining, and VLIW architectures.

23. List several ways in which the Intel and MIPS ISAs differ. Name several ways in
which they are the same.

24. Explain Java bytecodes.

25. Give an example of a current stack-based architecture and a current GPR-based
architecture. How do they differ?

EXERCISES

1. Assume you have a byte-addressable machine that uses 32-bit integers and you are
storing the hex value 1234 at address 0:

� a) Show how this is stored on a big endian machine.

� b) Show how this is stored on a little endian machine.

c) If you wanted to increase the hex value to 123456, which byte assignment would
be more efficient, big or little endian? Explain your answer.

2. Show how the following values would be stored by byte-addressable machines with
32-bit words, using little endian and then big endian format. Assume each value
starts at address 1016. Draw a diagram of memory for each, placing the appropriate
values in the correct (and labeled) memory locations.

a) 456789A116

b) 0000058A16

c) 1414888816

00068_CH05_Null.qxd 10/13/10 1:30 PM Page 306

Exercises 307

3. Consider a 32-bit hexadecimal number stored in memory as follows:

a) If the machine is big endian and uses 2’s complement representation for integers,
write the 32-bit integer number stored at address 100 (you may write the number
in hex).

b) If the machine is big endian and the number is an IEEE single-precision floating-
point value, is the number positive or negative?

c) If the machine is big endian and the number is an IEEE single-precision floating-
point value, determine the decimal equivalent of the number stored at address
100 (you may leave your answer in scientific notation form, as a number times a
power of two).

d) If the machine is little endian and uses 2’s complement representation for inte-
gers, write the 32-bit integer number stored at address 100 (you may write the
number in hex).

e) If the machine is little endian and the number is an IEEE single-precision floating-
point value, is the number positive or negative?

f) If the machine is little endian and the number is an IEEE single-precision floating-
point value, determine the decimal equivalent of the number stored at address
100 (you may leave your answer in scientific notation form, as a number times a
power of two).

� 4. The first two bytes of a 2M � 16 main memory have the following hex values:

• Byte 0 is FE

• Byte 1 is 01

If these bytes hold a 16-bit two’s complement integer, what is its actual decimal
value if:

a) memory is big endian?

b) memory is little endian?

5. What kinds of problems do you think endian-ness can cause if you wished to transfer
data from a big endian machine to a little endian machine? Explain.

6. The Population Studies Institute monitors the population of the United States. In
2008, this institute wrote a program to create files of the numbers representing popu-
lations of the various states, as well as the total population of the United States. This
program, which runs on a Motorola processor, projects the population based on vari-
ous rules, such as the average number of births and deaths per year. The institute runs
the program and then ships the output files to state agencies so the data values can be
used as input into various applications. However, one Pennsylvania agency, running
all Intel machines, encountered difficulties, as indicated by the following problem.
When the 32-bit unsigned integer 1D2F37E816 (representing the overall U.S. popula-
tion prediction for 2013) is used as input, and the agency’s program simply outputs

Address Value

100 2A
101 C2
102 08
103 1B

00068_CH05_Null.qxd 10/13/10 1:30 PM Page 307

308 Chapter 5 / A Closer Look at Instruction Set Architectures

this input value, the U.S. population forecast for 2013 is far too large. Can you help
this Pennsylvania agency by explaining what might be going wrong? (Hint: They are
run on different processors.)

7. There are reasons for machine designers to want all instructions to be the same
length. Why is this not a good idea on a stack machine?

� 8. A computer has 32-bit instructions and 12-bit addresses. Suppose there are 250 2-
address instructions. How many 1-address instructions can be formulated? Explain
your answer.

9. Convert the following expressions from infix to reverse Polish (postfix) notation.

a) (8 – 6)/2

b) (2 + 3) � 8/10

c) (5 � (4 + 3) � 2 – 6)

10. Convert the following expressions from infix to reverse Polish (postfix) notation.

� a) X � Y + W � Z + V � U

b) W � X + W � (U � V + Z)

c) (W � (X + Y � (U � V)))/(U � (X + Y))

11. Convert the following expressions from reverse Polish notation to infix notation.

a) 12 8 3 1 + – /

b) 5 2 + 2 � 1 + 2 �

c) 3 5 7 + 2 1 – � 1 + +

12. Convert the following expressions from reverse Polish notation to infix notation.

a) W X Y Z � + �

b) U V W X Y Z + � + � +

c) X Y Z + V W � � Z + +

13. Explain how a stack is used to evaluate the RPN expressions from Exercise 11.

14. a) Write the following expression in postfix (reverse Polish) notation. Remember
the rules of precedence for arithmetic operators!

b) Write a program to evaluate the above arithmetic statement using a stack organ-
ized computer with zero-address instructions (so only pop and push can access
memory).

15. a) In a computer instruction format, the instruction length is 11 bits and the size of
an address field is 4 bits. Is it possible to have

5 2-address instructions

45 1-address instructions

32 0-address instructions

X �
A � B � C � 1D � E � F2

G � H � K

00068_CH05_Null.qxd 10/13/10 1:30 PM Page 308

Exercises 309

using the specified format? Justify your answer.

b) Assume that a computer architect has already designed 6 two-address and 24
zero-address instructions using the instruction format given in Problem 11. What
is the maximum number of one-address instructions that can be added to the
instruction set?

16. What is the difference between using direct and indirect addressing? Give an ex-
ample.

� 17. Suppose we have the instruction Load 1000. Given that memory and register R1
contain the values below:

Assuming R1 is implied in the indexed addressing mode, determine the actual value
loaded into the accumulator and fill in the table below:

18. Suppose we have the instruction Load 500. Given that memory and register R1 con-
tain the values below:

R1

Memory

200
600

300

100

500

800

100

400

500

600

700

...

...

...

...

Mode
Value Loaded

into AC

Direct

Immediate

Indirect

Indexed

R1
1400

400

Memory

1000

1100

1300

1000
200

1100

1200

1300

1400

...

...

...

...

00068_CH05_Null.qxd 10/13/10 1:30 PM Page 309

310 Chapter 5 / A Closer Look at Instruction Set Architectures

Assuming R1 is implied in the indexed addressing mode, determine the actual value
loaded into the accumulator and fill in the table below:

19. A nonpipelined system takes 200ns to process a task. The same task can be processed
in a 5-segment pipeline with a clock cycle of 40ns. Determine the speedup ratio of
the pipeline for 200 tasks. What is the maximum speedup that could be achieved with
the pipeline unit over the nonpipelined unit?

20. A nonpipelined system takes 100ns to process a task. The same task can be processed
in a 5-stage pipeline with a clock cycle of 20ns. Determine the speedup ratio of the
pipeline for 100 tasks. What is the theoretical speedup that could be achieved with
the pipeline system over a nonpipelined system?

21. Assuming the same stages as in Example 5.11, explain the potential pipeline hazards
(if any) in each of the following code segments.

a) X = R2 + Y

R4 = R2 + X

b) R1 = R2 + X

X = R3 + Y

Z = R1 + X

22. Write code to implement the expression A = (B + C) � (D + E) on 3-, 2-, 1-, and 0-
address machines. In accordance with programming language practice, computing
the expression should not change the values of its operands.

� 23. A digital computer has a memory unit with 24 bits per word. The instruction set con-
sists of 150 different operations. All instructions have an operation code part
(opcode) and an address part (allowing for only one address). Each instruction is
stored in one word of memory.

a) How many bits are needed for the opcode?

b) How many bits are left for the address part of the instruction?

c) What is the maximum allowable size for memory?

d) What is the largest unsigned binary number that can be accommodated in one
word of memory?

24. The memory unit of a computer has 256K words of 32 bits each. The computer has
an instruction format with 4 fields: an opcode field; a mode field to specify 1 of 7

Mode
Value Loaded

into AC

Direct

Immediate

Indirect

Indexed

00068_CH05_Null.qxd 10/13/10 1:30 PM Page 310

Exercises 311

addressing modes; a register address field to specify 1 of 60 registers; and a memory
address field. Assume an instruction is 32 bits long. Answer the following:

a) How large must the mode field be?

b) How large must the register field be?

c) How large must the address field be?

d) How large is the opcode field?

25. Suppose an instruction takes four cycles to execute in a nonpipelined CPU: one cycle
to fetch the instruction, one cycle to decode the instruction, one cycle to perform the
ALU operation, and one cycle to store the result. In a CPU with a 4-stage pipeline,
that instruction still takes four cycles to execute, so how can we say the pipeline
speeds up the execution of the program?

*26. Pick an architecture (other than those covered in this chapter). Do research to find out
how your architecture approaches the concepts introduced in this chapter, as was
done for Intel, MIPS, and Java.

True or False.

1. Most computers typically fall into one of three types of CPU organization: (1) general
register organization; (2) single accumulator organization; or (3) stack organization.

2. The advantage of zero-address instruction computers is that they have short pro-
grams; the disadvantage is that the instructions require many bits, making them very
long.

3. An instruction takes less time to execute on a processor using an instruction pipeline
than on a processor without an instruction pipeline.

00068_CH05_Null.qxd 10/13/10 1:30 PM Page 311

Intentional Blank 312

00068_CH05_Null.qxd 10/13/10 1:30 PM Page 312

