An Overview

The purpose of this section is to give you (1) the general vocabulary used to discuss and classify diseases, (2) a feeling for the general frequency and significance of particular diseases, and (3) an overview of the resources commonly used in diagnosis that bridge the gap between pathophysiology and the care of patients.
Introduction to Pathology

OUTLINE

Disease
Pathology
Manifestations of Disease
Structural Diseases
Functional Diseases
Causes of Disease
The Care of Patients
Obstacles to Patient Care
The Structure of This Text
Practice Questions
References

OBJECTIVES

1. Define disease and state the philosophic tenet of disease causation that forms the basis of allopathic medicine.
2. Define pathology and describe what pathologists do.
3. Define manifestation as used in the context of the workup of an ill patient, and describe the general categories of manifestations that healthcare practitioners use to identify diseases.
5. List, define, and give examples of the three major forms of organic disease.
6. Identify the three basic categories of exogenous causes of diseases.
7. Identify the three basic categories of endogenous causes of diseases.
8. Describe the steps involved in the workup, diagnosis, and treatment of a patient.
9. Describe some of the social, scientific, and economic obstacles to patient care.
10. Define and use in proper context all words and terms in this chapter that are in headings and in bold print.

KEY TERMS

Disease

allopathic medicine
anatomic pathologist
cellular basis of disease
clinical pathologist
clinicopathologic observations
complications
cytopathology
developmental disease
diagnosis
differential diagnosis
disease[endogenous etiology
evidence-based medicine
exogenous
experimental pathologist
external agents of injury follow-up
functional disease
genetic disease
history
homeostasis
hyperplasia
iatrogenic
idiopathic
immunologic disease
infection
inflammation
internal mechanism of injury
laboratory finding
lesion
metabolic disease
neoplasia
nosocomial
organic disease
pathogenesis
pathology
pathophysiology
physical examination
prognosis
repair
sign
surgical pathology
symptom
syndrome
trauma
vascular disease
workup

Disease

Disease is a structural or functional change in the body that is harmful to the organism. Some changes in the body are perfectly normal, such as puberty, pregnancy, or increasing muscle mass in an athlete undergoing training. Also, the cells and tissues in the body can adapt to minor fluctuations in their environment, thereby maintaining a state of homeostasis. Disease
occurs when the cellular environment changes to such a degree that tissues are no longer able to perform their function optimally. For example, with cataracts, the crystalline lens of the eye undergoes degenerative changes over the course of a person’s lifetime and becomes cloudy, obstructing the passage of light and causing decreased visual acuity. In diabetes, the extracellular tissue of blood vessel walls undergoes changes that lead to narrowing of the blood vessels, which in turn leads to decreased blood flow, decreased oxygen delivery, and eventually irreversible damage to tissues such as the retina, skin, heart, and kidney. In cancer, mutations accumulating in the nucleic acids of cells result in distorted structure and function of proteins, which in turn affect the way the cells interact with or react to other cells, growth factors, hormones, and the extracellular matrix in their environment. In multiple sclerosis, destruction of the protective myelin sheath around axons in the brain results in decreased electrical conduction, which manifests in neurologic signs and symptoms such as weakness, double vision, and incoordination. In each of these conditions, the ability of cells or tissues to optimally perform their function is compromised, with deleterious consequences to the organism.

Every society identifies conditions that are abnormal and has devised means of treating illness, but there is great variation between cultures and even within subcultures in what constitutes “normal,” “abnormal,” “disease,” or “feelings of ill health.” Over time and over place, the explanations that have been given for ill health have varied from spirit possession, witchcraft, sorcery, the anger of ancestors, balance or imbalance of energy, elements or “humors,” nutrition, and the will of God, to the bad influence of the climate, weather, or environment. Treatments have accordingly been as various as exorcism, prayer, shamanic rites, rituals that bring the ill person back into the social and universal order, herbs and foods that restore the balance of internal elements, physical manipulations that restore the flow of energy in the body, the “laying on of hands,” and arming the ill person with amulets that provide protection against potentially harmful forces. Obviously, the diseases identified or named by all these various systems are not comparable to one another. Imagine the perplexity of a Western medical doctor if s/he were confronted with a patient who claimed to have been possessed by an ancestor’s spirit, to be suffering a blockage in the flow of chi (the energy at the root of Chinese medicine, including acupuncture), or to be suffering an attack of “nerves” (Latin America: susto) brought on by witnessing the traumatic death of a close family member.

Although these conceptualizations of ill health are at variance with the definition of disease set forth in this textbook, it is necessary to recognize that they are millennia old, are based on a vast amount of experiential evidence, and are as real to the sufferers and the people who take care of them as are notions of cancer and infection to Western health practitioners. Though we may not understand them, and may argue that they have no basis in science, we have no right to dismiss them or belittle them as “superstitious” or “uneducated” because this does no service to the patient who is suffering. Instead, we need to attempt to translate the patient’s distress into something that does make sense in terms of our own notions of disease causation.

With the Enlightenment, people began to look at the workings of the body in a scientific manner—in other words, through repeated observations made under controlled circumstances. As knowledge about the way the body works accrued, scientifically oriented doctors began to formulate the idea that disease is not some external force that takes possession of the body, but rather arises from organs and tissues and leaves visible traces there. Physicians gained these insights by closely observing the course of disease on a patient’s body, often over weeks or months, and then correlating the clinical findings with the appearance of the organs after death, as seen at autopsy. On the basis of these clinicopathologic observations, a philosophy called the cellular basis of disease developed. This states that diseases can be traced to deranged structures or functions of organs, tissues, and cells. Nowadays, we have expanded the definition to include changes at the molecular level, including proteins and, ultimately, genes. The medical tradition that has evolved from this philosophy is variously called allopathic medicine, biomedicine, or Western medicine.

Pathology

The term pathology has several meanings. In the broadest sense, pathology is the study of disease. All people working in a health-related field are lifelong students of pathology because, in one way or another, all are interested in altering the course of disease through scientific understanding of its nature. A course in pathology, such as the one you are taking, provides a concentrated study of the nature of disease and lays the foundation for its further study within specific disciplines. Pathology includes the study of basic structural and functional changes associated with a disease, as well as the sequence of events that leads from structural and functional abnormalities to clinical manifestations. This sequence is referred to as the pathogenesis of disease; its study is called pathophysiology. The term etiology means the study of causes, but it is also commonly used simply to connote the cause of disease.

Pathology is also the name of one of the specialties of medicine, one that deals with analysis of body fluids and tissues for diagnostic purposes and with teaching and research relating to fundamental aspects of disease (Table 1–1). Pathologists usually practice laboratory medicine or study basic aspects of disease within a department of pathology associated with a hospital and/or medical school. The field of pathology is itself subspecialized. There are experimental pathologists,
TABLE 1–1 Roles of a Pathologist

<table>
<thead>
<tr>
<th>Role</th>
<th>Subject</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental pathology</td>
<td>Research</td>
</tr>
<tr>
<td>Academic pathology</td>
<td>Teaching, research, anatomic, and/or clinical pathology</td>
</tr>
<tr>
<td>Anatomic pathology</td>
<td>Teaching, research and/or clinical practice</td>
</tr>
<tr>
<td>Autopsy pathology</td>
<td>Postmortem examination of organs in the body</td>
</tr>
<tr>
<td>Surgical pathology</td>
<td>Gross and microscopic examination of tissues (biopsies and those removed during surgery)</td>
</tr>
<tr>
<td>Cytopathology</td>
<td>Microscopic examination of cells removed by scraping (e.g. cervical cells: Pap smear) or washing (e.g. bronchial cells).</td>
</tr>
<tr>
<td>Clinical pathology</td>
<td>Laboratory tests</td>
</tr>
<tr>
<td>Chemistry</td>
<td>Chemical analysis of urine, blood serum and secretions</td>
</tr>
<tr>
<td>Microbiology</td>
<td>Detection and identification of microorganisms from sites of infection</td>
</tr>
<tr>
<td>Hematology</td>
<td>Examination of blood cells and bone marrow, bone clotting</td>
</tr>
<tr>
<td>Blood banking</td>
<td>Blood transfusion services</td>
</tr>
<tr>
<td>Immunopathology</td>
<td>Antigen and antibody detection</td>
</tr>
<tr>
<td>Molecular diagnosis</td>
<td>Nucleic acid (DNA and RNA) analysis</td>
</tr>
</tbody>
</table>

Anatomic pathologists perform autopsies, examine all tissues removed from live patients (surgical pathology), and examine cell preparations to look for cancer cells (cytopathology). Clinical pathologists analyze various specimens removed from patients, such as blood, urine, feces, spinal fluid, or sputum, for chemical substances, microorganisms, antigens and antibodies, nucleic acids, atypical blood cells, and coagulation factors. Anatomic and clinical pathologists are primarily concerned with diagnosing diseases, but, especially at hospitals associated with medical schools, they may also be engaged in research and teaching.

Manifestations of Disease

We use the term manifestation to refer to all the data gathered about a disease as it occurs in a patient. The manifestations that are of interest to the allopathic doctor are symptoms, signs, and laboratory abnormalities (Table 1–2). Symptoms are evidence of disease perceived by the patient, such as pain, a lump, or diarrhea. Health practitioners carefully elicit these during an interview with the patient, and record them in the patient’s chart as the history. Signs are physical observations made by the person who examines the patient. Examples include tenderness, a mass, or abnormal heart sounds. Signs are elicited and observed during the physical examination, the results of which are also recorded in the patient’s chart. Laboratory findings are observations made by the application of tests or special procedures, such as X-rays, blood counts, or biopsies. Diagnosis is the process of assimilating the information from the history, physical examination, and laboratory findings to identify the condition causing the disease. Diagnosis also refers to the name given to that disease, such as “multiple sclerosis” or “diabetes.” This name is a shorthand way of communicating and thinking. It sums up all the essential information from the history, physical examination, and laboratory findings so that a prognosis can be rendered and appropriate therapy can be initiated. Underlying diagnosis and treatment is the assumption that diseases of the same name run a predictable course that can be altered, to lesser or greater degree, by medical or surgical intervention.

TABLE 1–2 Manifestations of Disease

<table>
<thead>
<tr>
<th>Type of Manifestation</th>
<th>Nature of Data</th>
<th>Name for Collection of Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symptoms</td>
<td>Patient’s perceptions</td>
<td>History</td>
</tr>
<tr>
<td>Signs</td>
<td>Examiner’s observations</td>
<td>Physical examination</td>
</tr>
<tr>
<td>Laboratory abnormalities</td>
<td>Results of tests and special procedures</td>
<td>Laboratory findings</td>
</tr>
<tr>
<td>Radiographic abnormality</td>
<td>Radiographic studies (X-ray, CT, MRI, ultrasound)</td>
<td>Radiographic findings</td>
</tr>
</tbody>
</table>
CHAPTER 1 Introduction to Pathology

Sometimes, a diagnosis cannot immediately be made. For example, Alzheimer disease cannot definitively be diagnosed until a patient’s brain is examined after his or her death. Obviously, it is too late to do anything about it then, so, while the patient is alive, the patient is given a provisional diagnosis of “Alzheimer-type dementia.” Other diseases, such as rheumatologic, neurologic, or gastrointestinal ones, may also be vaguely identified (for example, “paralysis of unknown cause”) and treated symptomatically until the disease “declares itself,” or develops some features that allow its unique identification. In such cases, the clinical problem—paralysis, dementia—is used as the focus of symptomatic treatment until the patient’s disease can definitively be identified.

Clusters of findings commonly encountered with more than one disease are called syndromes. For example, leakage of protein into the urine, low serum protein, and edema are a common set of findings in the “nephrotic syndrome,” which can be caused by a number of different diseases that affect renal tissue. The syndrome is a description of a constellation of symptoms, signs and/or laboratory tests, and though treatments can be initiated to alleviate these, specific treatment of the disease causing the syndrome is still necessary.

Structural Diseases

Structural diseases, or organic diseases, are characterized by structural changes within the body. Structural changes are called lesions. Until recently, lesions were visually identified, either by changes visible to the naked eye or changes visible through the light or electron microscope. With the advent of molecular medicine, health professionals also recognize lesions that occur at the level of proteins and genes. Three broad categories suffice to classify most structural diseases (Table 1–3).

As with all classification schemes, there are always some items that do not fall easily into just one category, and some items simply don’t fit the classification scheme. Nevertheless, the scheme does capture most structural diseases, so it is useful to start sorting the vast numbers of diseases you will learn about.

Genetic diseases are caused by abnormalities in the genetic makeup of the individual, either at the level of chromosomes, such as increased chromosome numbers or translocations, or at the genetic level, such as mutations. Developmental diseases are ones that originated during embryonic and fetal development. The range of genetic and developmental abnormalities is very broad, extending from deformities present at birth, to biochemical changes caused by genes but influenced by the environment so that they appear later in life, such as hemochromatosis. You will learn about genetic and developmental diseases in Chapter 6.

Degenerative and inflammatory diseases are caused by forces or agents that destroy cells or intercellular substances, deposit abnormal substances in cells and tissues, or cause injury by means of the inflammatory process. External agents of injury include physical and chemical substances and microbes. The major internal mechanisms of injury are vascular insufficiency, immunologic reactions, and metabolic disturbances. There are two general reactions to injury: inflammation and repair. Inflammation is a vascular and cellular reaction that attempts to localize the injury, destroy the offending agent, and remove damaged cells and other materials. Repair is the replacement of damaged tissue by new tissue of the same type and/or fibrous connective tissue. Typically, repair follows inflammation. How severe the associated tissue damage is depends on the nature of the insult. Whether the tissue will repair by regeneration or scar formation depends on characteristics of the tissue type itself. You will learn about the processes of inflammation and repair in Chapter 4.

Neoplastic diseases are characterized by an increase in cell populations. Hyperplasia is a proliferative reaction to a prolonged external stimulus and usually regresses when the stimulus is removed. Neoplasia results from genetic changes that favor the growth of a single population of cells. Neoplasms are divided into two groups, benign and malignant, based on whether the cells remain localized or develop the ability to grow into surrounding tissue or even migrate to other tissues. Cancer is the colloquial term for malignant neoplasm. You will learn about Neoplasia in Chapter 5.

Functional Diseases

Functional diseases are those in which there are no visible lesions, at least at the onset of the disease. The basic change is a physiologic one. Two of the most common functional disorders are tension headache and irritable bowel syndrome, disorders that may be the result of unconscious stimulation of the autonomic nervous system.

Other examples of common functional disorders are diabetes and hypertension. These diseases are diagnosed by laboratory evidence of increased circulating glucose in the blood and increased blood pressure readings, respectively. Only over time do structural changes become evident, first in blood vessels and then in the form of end-organ damage. By this time, the disease has progressed to such a degree that complications (stroke, heart disease, blindness, and kidney disease, among others) are inevitable. Many mental illnesses are considered functional disorders; however, there is increasing

TABLE 1–3 Major Categories of Structural Diseases

- Genetic and developmental diseases
- Degenerative and inflammatory diseases and trauma
- Hyperplasias and neoplasms
evidence that they may, indeed, have an organic basis. The same is true for many other functional disorders. In fact, most diseases have a genetic basis. Even how people respond to external stimuli such as infectious agents, alcohol, or environmental toxins is genetically based. The classification of such diseases as “functional” may therefore be an oversimplification, but it is of value in understanding how diseases come to clinical attention.

Causes of Disease

Diseases are initiated by injury, which may be either external or internal in origin. Agents acting from outside are termed **exogenous**; those acting from within are referred to as **endogenous**.

Exogenous causes of disease are divided into physical, chemical, and microbiologic (Table 1–4). Direct physical injury is called **trauma**. Physical agents causing disease include extremes of heat and cold, electricity, atmospheric pressure changes, and radiation (electromagnetic and particulate). Chemical injuries are generally subdivided by the manner of injury into poisoning (accidental, homicidal, or suicidal) and drug reactions (toxic effects of prescription or proprietary drugs taken to treat disease). Increasingly, the role of environmental toxins in causing disease is being recognized. Toxins can be encountered due to occupational exposure (e.g., asbestos, benzene or silica dust), in the environment (e.g., cockroach feces are a known trigger of asthma in children; smog and second-hand smoke are linked to some forms of cancer), or due to “recreational” use (e.g., cigarette smoke and alcohol). Microbiologic injuries are usually classified by the type of offending organism (bacteria, fungi, rickettsiae, viruses, protozoa, and helminths) and are called **infections**.

Endogenous causes of disease fall into three large categories (Table 1–5). **Vascular diseases** include obstruction of blood supply to an organ or tissue (e.g., myocardial ischemia secondary to atherosclerosis), hemorrhage (e.g., a ruptured abdominal aortic aneurysm), or altered blood flow (e.g., microvascular changes in diabetes or hypertension). **Immunologic diseases** are those caused by aberrations of the immune system. Failure of the immune system to work when it is needed results in immunodeficiency. Overreaction of the immune system causes allergic, or hypersensitivity, diseases. Abnormal reaction of the immune system to endogenous substances causes autoimmune diseases. The category of **metabolic diseases** encompasses a wide variety of biochemical disorders that may be genetically determined, or the secondary effects of acquired disease. Metabolic diseases are most commonly categorized by the type of molecule or substance involved, such as lipids, carbohydrates, proteins, minerals or vitamins.

Some diseases cannot be classified according to internal or external causes because the cause is not known. Diseases of unknown cause are termed **idiopathic**. Adverse reactions resulting from treatment by a health specialist produce **iatrogenic** disease. Nosocomial diseases are those acquired from a hospital environment.

The Care of Patients

The typical approach to disease in allopathic medicine is to wait for the patient to seek help because of worrisome symptoms. The health practitioner, presented with a sick patient, proceeds in a systematic fashion to determine the organic cause of the patient’s symptoms (Table 1–6). The **workup** of a patient encompasses three major steps: (1) taking the **history**, which involves listening to the patient or to the patient’s relatives to ascertain the patient’s symptoms, and reviewing any other past or present medical problems that might relate to them; (2) performing a **physical examination**, or systematically...
CHAPTER 1 Introduction to Pathology

TABLE 1–6 Steps in the Care of a Patient’s Illness

1. Gather facts:
 • History
 • Physical examination
 • Laboratory and radiology tests
2. Interpret the facts and render a diagnosis.
3. Treat the patient, if feasible.
4. Follow up on results of treatment.

Obstacles to Patient Care

The process of patient care described here is limited by availability of resources, the nature of particular diseases, and clinicians’ ability to understand disease processes. The greatest improvements in health, world-wide, have come from preventive measures, including sanitation, nutrition, immunization, control of infectious diseases, and avoidance of toxic substances. Whereas infections were once the major cause of death in Western nations, reducing life expectancy to the 40- to 50-year range, we now have the means to prevent, control, and eradicate these diseases. However, as the recent example of AIDS has shown, the initiative, time, and money that it takes to spread knowledge about diseases and convince people to adopt protective measures is exorbitant. This paints a very stark line between societies that have such resources and those that do not. In the United States we might claim that AIDS is more or less under control, the incidence of this disease having declined steadily since the late 1990s. However, while the incidence has decreased among whites, it is increasing among Hispanic and African American men. From 2005 to 2014, African American gay and bisexual men between the ages of 13 and 24 experienced an 87% increase in diagnosis. Worldwide, AIDS is one of the major killers: an estimated 1.1 million people died of AIDS in 2015, and almost three-quarters of these deaths occurred in poverty-stricken nations of sub-Saharan Africa. There, as in Asia, the people most vulnerable to contracting the disease are poor women, and, by extension, their children. The reasons for this are multifactorial, but they can be summarized as lack of resources: poverty driving women to trade sex for food, no health education to learn how to prevent contracting the disease, and no access to therapies that slow progression of the disease.

Moreover, the application of new knowledge about a disease process or therapeutic intervention lags far behind discoveries. Smoking is an illustrative example. As early as the 1920s, autopsy series documented the strong link between smoking and lung cancer. By 1964, a special commission set up by President John F. Kennedy was able to review more than 7000 scholarly articles, many of them meticulously researched and prepared by the American Cancer Society, on the effect of smoking cigarettes on health. The resultant Surgeon General’s report stunned the nation by detailing the magnitude of the effect of smoking on health, attributing 70% increased mortality and a 9- to 10-fold increase in the incidence of lung cancer in smokers as compared to non-smokers. Despite the incontrovertible scientific evidence
that smoking is harmful to health, cigarette consumption actually increased over the next decades. It was not until 1987 that the first anti-smoking law, banning smoking on airlines, was passed in the United States. It took another several years for cities and states to begin banning smoking in public places, such as the workplace, restaurants, and bars. Of course, there is a lot more to smoking, beginning to smoke, and quitting smoking than personal will and judgment based on scientific evidence: peer pressure, social expectations and values, and addiction are major influences, if not determinants, of smoking behaviors. But similar lag times are well known for other scientific insights, as well. It is estimated that it takes 15 to 20 years for a scientific discovery to be translated into a standard of practice.

Standards of allopathic practice, though based on scientific evidence, are not universally adhered to. It has been well documented now for several decades that hypertension is a major risk factor for stroke and heart disease, yet the percentage of Americans who are adequately treated for hypertension is only about 30–40%. It is senseless and possibly harmful and counterproductive to take antibiotics, which inhibit the growth of bacteria, for conditions not caused by bacteria, yet many doctors continue to prescribe antibiotics for diseases that are caused by a virus (for example, upper respiratory tract infections and middle ear infections in children). Variability in patient assessment and care is such a matter of fact that patients often visit more than one doctor—and may even be encouraged to do so by their first doctor—in order to hear a “second opinion” about their diagnosis and treatment options. While in some cases the second opinion is the same as the first, it may not always be so. This leads to frustration on the part of the patient, who is expecting a single “answer” based on scientific data. It also leads to frustration on the part of doctors who believe that, for the maximal benefit of patients, medicine should be practiced strictly along guidelines formulated on the basis of a thorough review of the scientific literature. These practice guidelines, issued by expert panels, form the core of evidence-based medicine.

Although evidence-based practice guidelines ensure that physicians know what the standard of care should be, there is still a great amount of variation in how patients are treated. Economic factors, including the resources available at a particular clinic or hospital, the patient’s insurance status, the age of the patient, other illnesses the patient has, religious beliefs, personal experiences of the physician in treating similar patients, and personal wishes of the patient all influence the treatment plan.

Moreover, the focus of treatment varies widely by clinic type and demographic factors. In large hospitals affiliated with universities, so-called academic hospitals, patients are treated at the forefront of scientific advances: organ transplantsations, experimental cancer treatments, and treatment of rare and complicated diseases are the main focus at such centers. Conversely, in inner-city clinics, the main focus is on preventive care, such as maternal and child health, and on management of diseases that are most common in that population, such as diabetes and heart disease.

Scientific and technical knowledge and progress are not the only factors affecting health and health care. The United States is one of the world leaders in scientific and technical advances in the healthcare field, and it spends more money than any other nation on health care, yet it ranks low in general measures of health, such as infant mortality and life expectancy. There is no doubt that the largest challenge faced by healthcare workers in the United States is inequitable distribution of resources. Health practitioners have the knowledge to prevent many diseases and delay, if not entirely avoid, complications of others, but a large percentage of the population is denied access to this knowledge, either because of lack of the ability to pay for it, lack of health education, or lack of clinics and healthcare workers willing to serve an underprivileged community. In addition, U.S. society must confront the issue of cost containment in terminally ill patients, for whom procedures are often performed with costs that are out of proportion to the benefit received. This will mean engaging in economic studies, ethical debates, and legal reforms that will hold the healthcare industry accountable for the money it consumes. Such debates need to be informed by a solid understanding of the pathophysiology of diseases. This text will provide you with background knowledge that will allow you to become an informed participant in the healthcare debate.

The Structure of This Text

This text presents a basic classification scheme for diseases and an introductory discussion of their causes. The first part of the text discusses disease processes that are applicable to all tissues in the body, such as genetics, inflammation, and neoplasia. The second part of the text discusses diseases by organ system. The third part presents diseases that affect many different organs simultaneously, such as infections and immunologic diseases.

Each chapter begins with a short review of the structure and function of the organ system under discussion. It should be stressed that this is a review: it is advisable for you to have had a course in physiology to better understand pathophysiology.

After the review of structure and function, we list the diseases of that organ system that are most common. This means there is a certain degree of redundancy in the text because we might explain some aspect of pathophysiology in this section and reiterate this or explain it in greater detail later in the chapter. This is intentional. Getting a sense of how common a disease is and what impact it has on a population enhances learning about the disease, and repetition is one of the key factors in retention of information.
Although the diseases included for discussion in this text are those that are most common, or classically illustrate a disease process, the list of diseases is long; because this is an introductory text, the pathophysiology of none of the diseases is presented in great detail. Several excellent resources are available that provide more information. Robbins and Cotran's Pathologic Basis of Disease (edited by Vinay Kumar, Abul Abbas, Nelson Fausto, and Jon Aster, Saunders, 10th ed., 2017) and Rubin's Pathology (edited by Raphael Rubin and David Strayer, Lippincott Williams and Wilkins, 7th ed., 2014) are pathology texts used in medical schools that have detailed explanations and many pictures and diagrams that aid in understanding disease processes. If you have access to a health library, the electronically published UpToDate (of which there is also a "patients" edition that is free to general readership) provides information on pathophysiology and gives much more detailed information on diagnostic and treatment strategies than we provide in this text. The Internet is also an invaluable resource. Numerous excellent web pages have been designed by disease interest groups. These are governmental, such as the National Institutes for Health (NIH) and the Centers for Disease Control and Prevention (CDC); private or nonprofit, such as the American Heart Association; and driven by physician (e.g., Mayo Clinic or Cleveland Clinic web pages) or patient groups (e.g., Susan G. Komen "for the [breast cancer] Cure" organization). Although you do need to be careful about believing everything you read on the Internet, by carefully searching and questioning the sources, you can gather much information from these web pages.

We hope that the information you find in this text helps you in your career. It is important to have a broad foundation of knowledge about basic pathophysiologic principles and causes of common diseases, such as is presented in this text, before becoming enmeshed in the details of an area of specialization. In addition, such knowledge should help you formulate your own informed opinions about how best to help patients and where to most effectively put our society's resources to prevent disease and alleviate patients' suffering.

Practice Questions

1. A 54-year-old woman detects a lump in her breast during a routine self-examination. A piece of the lump is removed during a biopsy procedure. Which of the following pathologists will look at the tissue microscopically and provide a diagnosis?
 A. Surgical pathologist
 B. Cytopathologist
 C. Clinical pathologist
 D. Research pathologist
 E. Microbiologist

2. The three categories of endogenous causes of disease are
 A. microbiologic, immunologic, and metabolic.
 B. physical, vascular, and metabolic.
 C. metabolic, immunologic, and vascular.
 D. chemical, microbiologic, and vascular.

3. A 34-year-old man has an ulcer ("sore") on the skin of his ankle. The man is a new patient at the clinic. Without knowing anything more about the man's medical history, including possible predisposing conditions, and before you've ordered any clinical tests (such as microbiology or radiology), the best way to describe this ulcer is
 A. an infection.
 B. a lesion.
 C. a functional change.
 D. a complication.

4. A 55-year-old man complains to his physician of extreme tiredness. This is an example of
 A. a symptom.
 B. a sign.
 C. a manifestation.
 D. a complication.

5. Which of the following is the basic philosophical tenet of allopathic medicine?
 A. Disease is caused by external agents that leave visible traces on organs and tissues.
 B. Disease is caused by deranged structure and/or function of tissues, cells, or molecules.
 C. Diseases cause visible changes in tissues and organs.
 D. Diseases are caused by structural changes in genes that result in functional changes in tissues.
 E. Diseases can be diagnosed by the scientific method.

6. Which of the following is not a manifestation of disease?
 A. Ultrasonographic evidence of abnormal heart chambers in a fetus
 B. Fever, leukocytosis, and abdominal pain in a child with appendicitis
 C. A history of breast cancer in a close family member
 D. A skin ulcer in a patient with diabetes
 E. A feeling of shortness of breath and abnormal lung sounds in a patient with pneumonia
7. Care of a symptomatic patient includes all of the following except which one?
 A. Taking a history
 B. Performing a physical exam
 C. Performing screening procedures
 D. Seeing the patient in follow-up
 E. Prescribing treatment plans

8. A differential diagnosis is
 A. a list of possible diseases a patient may have, generated during the workup of a patient.
 B. a constellation of symptoms that is not unique to a particular disease.
 C. a diagnosis that is made presumptively, without confirmatory laboratory tests.
 D. the opinion of a second physician, which is different from that of the first physician consulted.
 E. a diagnosis rendered by a practitioner of alternative medicine.

9. A patient is being treated with high-dose steroids for lupus erythematosus, which is an autoimmune disease. Over the past several months, she has gained 40 pounds, has developed a “buffalo hump” of tissue over her neck and shoulders, has developed acne and notices that she bruises very easily. She also has difficulty sleeping and always feels tired. These are known complications of steroid therapy. Her condition is an example of
 A. nosocomial disease.
 B. an iatrogenic complication.
 C. a complication of lupus.
 D. a syndrome.
 E. hyperplasia.

10. Pathogenesis refers to
 A. the scientific study of disease processes.
 B. the cause of disease.
 C. the sequence of events that leads from structural and functional abnormalities to clinical manifestations.
 D. the classification of disease in the allopathic medical system.

11. Practice guidelines that are based on results reported in the scientific literature form the basis of
 A. laboratory medicine.
 B. experimental pathology.
 C. clinical pathology.
 D. evidence-based medicine.
 E. academic medicine.

12. The biggest obstacle to health care in the United States is
 A. inequitable distribution of resources.
 B. lack of scientific research on cause and treatment of disease.
 C. poor health education.
 D. poor medical education.
 E. variability of practice guidelines between institutions.

13. A specific diagnosis includes
 A. a disease classification.
 B. a prediction about the prognosis.
 C. a guide for treatment.
 D. A and C only.
 E. all of the above.

REFERENCES