
 2.1 INTRODUCTION

T he organization of any computer depends considerably on how it represents 
numbers, characters, and control information. The converse is also true: Stan-

dards and conventions established over the years have determined certain aspects 
of computer organization. This chapter describes the various ways in which com-
puters can store and manipulate numbers and characters. The ideas presented in 
the following sections form the basis for understanding the organization and func-
tion of all types of digital systems.

The most basic unit of information in a digital computer is called a bit, which 
is a contraction of binary digit. In the concrete sense, a bit is nothing more than 
a state of “on” or “off ” (or “high” and “low”) within a computer circuit. In 1964, 
the designers of the IBM System/360 mainframe computer established a conven-
tion of using groups of 8 bits as the basic unit of addressable computer storage. 
They called this collection of 8 bits a byte.

Computer words consist of two or more adjacent bytes that are sometimes 
addressed and almost always are manipulated collectively. The word size repre-
sents the data size that is handled most efficiently by a particular architecture. 
Words can be 16 bits, 32 bits, 64 bits, or any other size that makes sense in the 
context of a computer’s organization (including sizes that are not multiples of 
eight). An 8-bit byte can be divided into two 4-bit halves called nibbles (or nyb-
bles). Because each bit of a byte has a value within a positional numbering sys-
tem, the nibble containing the least-valued binary digit is called the low-order 
nibble, and the other half the high-order nibble.

There are 10 kinds of people in the world—those who understand binary and 

those who don’t.

—Anonymous
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 2.2 POSITIONAL NUMBERING SYSTEMS

At some point during the middle of the sixteenth century, Europe embraced 
the decimal (or base 10) numbering system that the Arabs and Hindus had 
been using for nearly a millennium. Today, we take for granted that the num-
ber 243 means two hundreds, plus four tens, plus three units. Notwithstand-
ing the fact that zero means “nothing,” virtually everyone knows that there 
is a substantial difference between having 1 of something and having 10 of 
something.

The general idea behind positional numbering systems is that a numeric 
value is represented through increasing powers of a radix (or base). This is often 
referred to as a weighted numbering system because each position is weighted 
by a power of the radix.

The set of valid numerals for a positional numbering system is equal in 
size to the radix of that system. For example, there are 10 digits in the decimal 
system, 0 through 9, and 3 digits for the ternary (base 3) system, 0, 1, and 2.  
The largest valid number in a radix system is one smaller than the radix, so 
8 is not a valid numeral in any radix system smaller than 9. To distinguish 
among numbers in different radices, we use the radix as a subscript, such as 
in 3310 to represent the decimal number 33. (In this text, numbers written 
without a subscript should be assumed to be decimal.) Any decimal integer 
can be expressed exactly in any other integral base system (see Example 2.1).

EXAMPLE 2.1 Three numbers are represented as powers of a radix.

243.51 2 10 4 10 3 10 5 10 1 10

212 2 3 1 3 2 3 23

10110 1 2 0 2 1 2 1 2 0 2 22

10
2 1 0 –1 –2

3
2 1 0

10

2
4 3 2 1 0

10

= × + × + × + × + ×
= × + × + × =
= × + × + × + × + × =

The two most important radices in computer science are binary (base two) and 
hexadecimal (base 16). Another radix of interest is octal (base 8). The binary 
system uses only the digits 0 and 1; the octal system, 0 through 7. The hexa-
decimal system allows the digits 0 through 9 with A, B, C, D, E, and F being 
used to represent the numbers 10 through 15. Table 2.1 shows some of the 
radices.

 2.3 CONVERTING BETWEEN BASES

Gottfried Leibniz (1646−1716) was the first to generalize the idea of the (posi-
tional) decimal system to other bases. Being a deeply spiritual person, Leibniz 
attributed divine qualities to the binary system. He correlated the fact that any 
integer could be represented by a series of 1s and 0s with the idea that God (1) 
created the universe out of nothing (0). Until the first binary digital comput-
ers were built in the late 1940s, this system remained nothing more than a 
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mathematical curiosity. Today, it lies at the heart of virtually every electronic 
device that relies on digital controls.

Because of its simplicity, the binary numbering system translates easily into 
electronic circuitry. It is also easy for humans to understand. Experienced com-
puter professionals can recognize smaller binary numbers (such as those shown 
in Table 2.1) at a glance. Converting larger values and fractions, however, usually 
requires a calculator or pencil and paper. Fortunately, the conversion techniques 
are easy to master with a little practice. We show a few of the simpler techniques 
in the sections that follow.

 2.3.1 Converting Unsigned Whole Numbers
We begin with the base conversion of unsigned numbers. Conversion of signed 
numbers (numbers that can be positive or negative) is more complex, and it is 
important that you first understand the basic technique for conversion before con-
tinuing with signed numbers.

Conversion between base systems can be done by using either repeated sub-
traction or a division-remainder method. The subtraction method is cumbersome 
and requires a familiarity with the powers of the radix being used. Because it is 
the more intuitive of the two methods, however, we will explain it first.

As an example, let’s say we want to convert 53810 to base 8. We know that 
8 5123 =  is the highest power of 8 that is less than 538, so our base 8 number 
will be 4 digits wide (one for each power of the radix: 0 through 3). We make 
note that 512 goes once into 538 and subtract, leaving a difference of 26.  

TABLE 2.1 Some Numbers to Remember

Powers of 2

2 0.252 1
4= =−

2 0.51 1
2= =−

2 10 =
=2 21

2 42 =
2 83 =
2 164 =
2 325 =
2 646 =
2 1287 =
2 2568 =
2 5129 =
2 102410 =
2 32,76815 =
2 65,53616 =

Decimal 4-Bit Binary Hexadecimal

 0 0000 0

 1 0001 1

 2 0010 2

 3 0011 3

 4 0100 4

 5 0101 5

 6 0110 6

 7 0111 7

 8 1000 8

 9 1001 9

10 1010 A

11 1011 B

12 1100 C

13 1101 D

14 1110 E

15 1111 F
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We know that the next power of 8, 8 642 = , is too large to subtract, so we note 
the zero “placeholder” and look for how many times 8 81 =  divides 26. We see 
that it goes three times and subtract 24. We are left with 2, which is 2 80× . 
These steps are shown in Example 2.2.

EXAMPLE 2.2 Convert 53810 to base 8 using subtraction.

512

26

8 13− = ×

0

26
8 02− = ×

2

0

8 20− = ×

24

2

8 31− = ×

538

The division-remainder method is faster and easier than the repeated subtrac-
tion method. It employs the idea that successive divisions by the base are 
in fact successive subtractions by powers of the base. The remainders that 
we get when we sequentially divide by the base end up being the digits of 
the result, which are read from bottom to top. This method is illustrated in 
Example 2.3.

EXAMPLE 2.3 Convert 53810 to base 8 using the division-remainder method.

8 538 2 8 divides 538 67 times with a remainder of 2.

8 67 3 8 divides 67 8 times with a remainder of 3.

8 8 0 8 divides 8 1 time with a remainder of 0.

8 1 1 8 divides 1 0 times with a remainder of 1.

0

Reading the remainders from bottom to top, we have: 538 103210 8= .

This method works with any base, and because of the simplicity of the calcula-
tions, it is particularly useful in converting from decimal to binary. Example 2.4 
shows such a conversion.

538 103210 8=
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EXAMPLE 2.4 Convert 14710 to binary.

2 147 1 2 divides 147 73 times with a remainder of 1.

2 73 1 2 divides 73 36 times with a remainder of 1.

2 36 0 2 divides 36 18 times with a remainder of 0.

2 18 0 2 divides 18 9 times with a remainder of 0.

2 9 1 2 divides 9 4 times with a remainder of 1.

2 4 0 2 divides 4 2 times with a remainder of 0.

2 2 0 2 divides 2 1 time with a remainder of 0.

2 1 1 2 divides 1 0 times with a remainder of 1.

0
Reading the remainders from bottom to top, we have: 147 1001001110 2= .

A binary number with N bits can represent unsigned integers from 0 to 2 1N − .  
For example, 4 bits can represent the decimal values 0 through 15, whereas 8 bits 
can represent the values 0 through 255. The range of values that can be represented 
by a given number of bits is extremely important when doing arithmetic operations 
on binary numbers. Consider a situation in which binary numbers are 4 bits in 
length, and we wish to add 11112 (1510) to 11112. We know that 15 plus 15 is 30, but 
30 cannot be represented using only 4 bits. This is an example of a condition known 
as overflow, which occurs in unsigned binary representation when the result of an 
arithmetic operation is outside the range of allowable precision for the given num-
ber of bits. We address overflow in more detail when discussing signed numbers in  
Section 2.4.

 2.3.2 Converting Fractions
Fractions in any base system can be approximated in any other base system using 
negative powers of a radix. Radix points separate the integer part of a number 
from its fractional part. In the decimal system, the radix point is called a decimal 
point. Binary fractions have a binary point.

Fractions that contain repeating strings of digits to the right of the radix point 
in one base may not necessarily have a repeating sequence of digits in another 
base. For instance, 2

3  is a repeating decimal fraction, but in the ternary system, it 
terminates as 0.2 (2 3 2 )3

1 1
3× = ×− .

We can convert fractions between different bases using methods analogous to 
the repeated subtraction and division-remainder methods for converting integers. 
Example 2.5 shows how we can use repeated subtraction to convert a number 
from decimal to base 5.
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EXAMPLE 2.5 Convert 0.430410 to base 5.

0.4304

– 0.4000 5 2
0.0304

– 0.0000 5 0 (A placeholder)
0.0304

– 0.0240 5 3
0.0064

– 0.0064 5 4
0.0000

–1

–2

–3

–4

= ×

= ×

= ×

= ×

Reading from top to bottom, we have: 0.4304 0.203410 5= .

Because the remainder method works with positive powers of the radix for con-
version of integers, it stands to reason that we would use multiplication to convert 
fractions, because they are expressed in negative powers of the radix. However, 
instead of looking for remainders, as we did above, we use only the integer part 
of the product after multiplication by the radix. The answer is read from top to 
bottom instead of bottom to top. Example 2.6 illustrates the process.

EXAMPLE 2.6 Convert 0.430410 to base 5.

.4304

5
2.1520 The integer part is 2. Omit from subsequent multiplication.

.1520

5
0.7600 The integer part is 0. We’ll need it as a placeholder.

.7600

5
3.8000 The integer part is 3. Omit from subsequent multiplication.

.8000

5
4.0000 The fractional part is now zero, so we are done.

×

×

×

×

Reading from top to bottom, we have 0.4304 0.203410 5= .

This example was contrived so that the process would stop after a few steps. 
Often things don’t work out quite so evenly, and we end up with repeating frac-
tions. Most computer systems implement specialized rounding algorithms to 
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provide a predictable degree of accuracy. For the sake of clarity, however, we 
will simply discard (or truncate) our answer when the desired accuracy has been 
achieved, as shown in Example 2.7.

EXAMPLE 2.7 Convert 0.3437510 to binary with 4 bits to the right of the binary 
point.

.34375
2

0.68750 (Another placeholder)
.68750

2
1.37500

.37500
2

0.75000
.75000

2
1.50000 (This is our fourth bit. We will stop here.)

×

×

×

×

Reading from top to bottom, 0.34375 0.010110 2=  to four binary places.

The methods just described can be used to directly convert any number in any 
base to any other base, say from base 4 to base 3 (as in Example 2.8). However, in 
most cases, it is faster and more accurate to first convert to base 10 and then to the 
desired base. One exception to this rule is when you are working between bases 
that are powers of two, as you’ll see in the next section.

EXAMPLE 2.8 Convert 31214 to base 3.

First, convert to decimal:

3121 3 4 1 4 2 4 1 4

3 16 2 4 1 217
4

3 2 1 0

10

= × + × + × + ×
= × 64 + 1 × + × + =

Then convert to base 3:

=

3 217 1
3 72 0
3 24 0

3 8 2
3 2 2

0 We have 3121 22,001 .4 3
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 2.3.3 Converting Between Power-of-Two Radices
Binary numbers are often expressed in hexadecimal—and sometimes octal—to 
improve their readability. Because 16 24= , a group of 4 bits (called a hextet) is 
easily recognized as a hexadecimal digit. Similarly, with 8 23= , a group of 3 bits 
(called an octet) is expressible as one octal digit. Using these relationships, we 
can therefore convert a number from binary to octal or hexadecimal by doing lit-
tle more than looking at it.

EXAMPLE 2.9 Convert 1100100111012 to octal and hexadecimal.

=

=

110

6

010

2

011

3

101

5

Separate into groupsof 3bits for theoctal conversion.

110010011101 6235

1100

C

1001

9

1101

D

Separate into groupsof 4 for the hexadecimal conversion.

110010011101 C9D

2 8

2 16

If there are too few bits, leading 0s can be added.

 2.4 SIGNED INTEGER REPRESENTATION

We have seen how to convert an unsigned integer from one base to another. 
Signed numbers require that additional issues be addressed. When an integer 
variable is declared in a program, many programming languages automatically 
allocate a storage area that includes a sign as the first bit of the storage location. 
By convention, a 1 in the high-order bit indicates a negative number. The storage 
location can be as small as an 8-bit byte or as large as several words, depending 
on the programming language and the computer system. The remaining bits (after 
the sign bit) are used to represent the number itself.

How this number is represented depends on the method used. There are three 
commonly used approaches. The most intuitive method, signed magnitude, uses 
the remaining bits to represent the magnitude of the number. This method and 
the other two approaches, which both use the concept of complements, are intro-
duced in the following sections.

 2.4.1 Signed Magnitude
Up to this point, we have ignored the possibility of binary representations for 
negative numbers. The set of positive and negative integers is referred to as the 
set of signed integers. The problem with representing signed integers as binary 
values is the sign—how should we encode the actual sign of the number? Signed-
magnitude representation is one method of solving this problem. As its name 
implies, a signed-magnitude number has a sign as its leftmost bit (also referred 
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to as the high-order bit or the most significant bit), whereas the remaining bits 
represent the magnitude (or absolute value) of the numeric value. For example, 
in an 8-bit word, −1 would be represented as 10000001, and +1 as 00000001. In 
a computer system that uses signed-magnitude representation and 8 bits to store 
integers, 7 bits can be used for the actual representation of the magnitude of the 
number. This means that the largest integer an 8-bit word can represent is 2 – 17 , 
or 127 (a 0 in the high-order bit, followed by 7 1s). The smallest integer is 8 1s, or 
−127. Therefore, N bits can represent (2 1)( 1)− −−N  to 2 1( –1) −N .

Computers must be able to perform arithmetic calculations on integers 
that are represented using this notation. Signed-magnitude arithmetic is car-
ried out using essentially the same methods that humans use with pencil and 
paper, but it can get confusing very quickly. As an example, consider the rules 
for addition: (1) If the signs are the same, add the magnitudes and use that 
same sign for the result; (2) If the signs differ, you must determine which 
operand has the larger magnitude. The sign of the result is the same as the 
sign of the operand with the larger magnitude, and the magnitude must be 
obtained by subtracting (not adding) the smaller one from the larger one. If 
you consider these rules carefully, this is the method you use for signed arith-
metic by hand.

We arrange the operands in a certain way based on their signs, perform the 
calculation without regard to the signs, and then supply the sign as appropriate 
when the calculation is complete. When modeling this idea in an 8-bit word, we 
must be careful to include only 7 bits in the magnitude of the answer, discarding 
any carries that take place over the high-order bit.

EXAMPLE 2.10 Add 010011112 to 001000112 using signed-magnitude arithmetic.

( )
⇐1 1 1 1

0 1 0 0 1 1 1 1
0 + 0 1 0 0 0 1 1
0 1 1 1 0 0 1 0

carries
79

+ (35)
(114)

The arithmetic proceeds just as in decimal addition, including the carries, until 
we get to the seventh bit from the right. If there is a carry here, we say that we 
have an overflow condition and the carry is discarded, resulting in an incorrect 
sum. There is no overflow in this example.

We find that 01001111 00100011 011100102 2 2+ =  in signed-magnitude 
representation.

Sign bits are segregated because they are relevant only after the addition is com-
plete. In this case, we have the sum of two positive numbers, which is positive. 
Overflow (and thus an erroneous result) in signed numbers occurs when the sign 
of the result is incorrect.
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In signed magnitude, the sign bit is used only for the sign, so we can’t “carry 
into” it. If there is a carry emitting from the seventh bit, our result will be trun-
cated as the seventh bit overflows, giving an incorrect sum. (Example 2.11 illus-
trates this overflow condition.) Prudent programmers avoid “million-dollar” 
mistakes by checking for overflow conditions whenever there is the slightest pos-
sibility they could occur. If we did not discard the overflow bit, it would carry 
into the sign, causing the more outrageous result of the sum of two positive num-
bers being negative. (Imagine what would happen if the next step in a program 
were to take the square root or log of that result!)

EXAMPLE 2.11 Add 010011112 to 011000112 using signed-magnitude arithmetic.

Last carry
overflows and
is discarded.

1 1 1 1 1
0 1 0 0 1 1 1 1
0 1 1 0 0 0 1 1
0 0 1 1 0 0 1 0

carries
79

(99)
50

( )

( )

←

+

⇐

+

We obtain the erroneous result of 79 99 50+ = .

Dabbling on the Double

The fastest way to convert a binary number to decimal is a method called double-
dabble (or double-dibble). This method builds on the idea that a subsequent power 
of two is double the previous power of two in a binary number. The calculation starts 
with the leftmost bit and works toward the rightmost bit. The first bit is doubled and 
added to the next bit. This sum is then doubled and added to the following bit. The pro-
cess is repeated for each bit until the rightmost bit has been used.

EXAMPLE 1

Convert 100100112 to decimal.

Step 1: Write down the binary number, leaving space between the bits.

1 0 0 1 0 0 1 1

Step 2: Double the high-order bit and copy it under the next bit.

1 0 0 1 0 0 1 1
2

2
2

×
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Step 3 : Add the next bit and double the sum. Copy this result under the next bit.

1 0 0 1 0 0 1 1
2 4
0
2

2
2

2
4

Step 4 : Repeat Step 3 until you run out of bits.

+

× ×

+ + + + + + +
° =

× × × × × × ×

1 0 0 1 0 0 1 1
2 4 8 18 36 72 146
0
2

0
4

1
9

0
18

0
36

1
73

1
147 The answer: 10010011 147

2
2

2
4

2
8

2
18

2
36

2
72

2
146

2 10

When we combine hextet grouping (in reverse) with the double-dabble method, 
we find that we can convert hexadecimal to decimal with ease.

EXAMPLE 2

Convert 02CA16 to decimal.

First, convert the hex to binary by grouping into hextets.

0 2 C A

0000 0010 1100  1010

• • •

Then apply the double-dabble method on the binary form:

+ + + + + + + + +

× × × × × × × × ×

= =

1 0 1 1 0 0 1 0 1 0
2 4 10 22 44 88 178 356 714
0
2

1
5

1
11

0
22

0
44

1
89

0
178

1
357

0
714

2
2

2
4

2
10

2
22

2
44

2
88

2
178

2
356

2
714

02CA 1011001010 71416 2 10
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As with addition, signed-magnitude subtraction is carried out in a manner  similar 
to pencil-and-paper decimal arithmetic, where it is sometimes necessary to  
borrow from digits in the minuend.

EXAMPLE 2.12 Subtract 010011112 from 011000112 using signed-magnitude  
arithmetic.

0 1 1 2
0 1 1 0 0 0 1 1
0 1 0 0 1 1 1 1
0 0 0 1 0 1 0 0

borrows
99

(79)

20

( )

( )
−

⇐

−

We find that =01100011 – 01001111 000101002 2 2 in signed-magnitude 
representation.

EXAMPLE 2.13 Subtract 011000112 (99) from 010011112 (79) using signed-
magnitude arithmetic.

By inspection, we see that the subtrahend, 01100011, is larger than the minu-
end, 01001111. With the result obtained in Example 2.12, we know that the dif-
ference of these two numbers is 00101002. Because the subtrahend is larger than 
the minuend, all we need to do is change the sign of the difference. So we find 
that =01001111 – 01100011 100101002 2 2 in signed-magnitude representation.

We know that subtraction is the same as “adding the opposite,” which equates to 
negating the value we wish to subtract and then adding instead (which is often 
much easier than performing all the borrows necessary for subtraction, particu-
larly in dealing with binary numbers). Therefore, we need to look at some exam-
ples involving both positive and negative numbers. Recall the rules for addition: 
(1) If the signs are the same, add the magnitudes and use that same sign for the 
result; (2) If the signs differ, you must determine which operand has the larger 
magnitude. The sign of the result is the same as the sign of the operand with the 
larger magnitude, and the magnitude must be obtained by subtracting (not  adding) 
the smaller one from the larger one.

EXAMPLE 2.14 Add 100100112 (−19) to 000011012 (+13) using signed-
magnitude arithmetic.

The first number (the augend) is negative because its sign bit is set to 1.  
The  second number (the addend) is positive. What we are asked to do is in 
fact a subtraction. First, we determine which of the two numbers is larger in  
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magnitude and use that number for the augend. Its sign will be the sign of the 
result.

0 1 2
1 0 0 1 0 0 1 1
0 0 0 0 1 1 0 1
1 0 0 0 0 1 1 0

borrows
19
(13)

6

( )

( )
−

⇐
−

+
−

With the inclusion of the sign bit, we see that =10010011 – 00001101 100001102 2 2 
in signed-magnitude representation.

EXAMPLE 2.15 Subtract 100110002 (−24) from 101010112 (−43) using 
signed-magnitude arithmetic.

We can convert the subtraction to an addition by negating −24, which gives 
us 24, and then we can add this to −43, giving us a new problem of +–43 24.  
However, we know from the addition rules above that because the signs now 
differ, we must actually subtract the smaller magnitude from the larger magni-
tude (or subtract 24 from 43) and make the result negative (because 43 is larger 
than 24).

0 2

0 1 0 1 0 1 1

0 0 1 1 0 0 0

0 0 1 0 0 1 1

43

(24)

19

( )

( )
− −

Note that we are not concerned with the sign until we have performed the 
subtraction. We know the answer must be negative. So we end up with 

=10101011 – 10011000 100100112 2 2  in signed-magnitude representation.

While reading the preceding examples, you may have noticed how many ques-
tions we had to ask ourselves: Which number is larger? Am I subtracting a 
negative number? How many times do I have to borrow from the minuend? 
A computer engineered to perform arithmetic in this manner must make just as 
many decisions (though a whole lot faster). The logic (and circuitry) is further 
complicated by the fact that signed magnitude has two representations for 0, 
10000000 and 00000000. (And mathematically speaking, this simply shouldn’t 
happen!) Simpler methods for representing signed numbers would allow for 
simpler and less expensive circuits. These simpler methods are based on radix 
 complement systems.
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 2.4.2 Complement Systems
Number theorists have known for hundreds of years that one decimal number 
can be subtracted from another by adding the difference of the subtrahend from 
all nines and adding back a carry. This is called taking the nine’s complement of 
the subtrahend or, more formally, finding the diminished radix complement of  
the subtrahend. Let’s say we wanted to find 167 – 52. Taking the difference 
of 52 from 999, we have 947. Thus, in nine’s complement arithmetic, we have 

= + =167 – 52 167 947 1114. The “carry” from the hundreds column is added 
back to the units place, giving us a correct =167 – 52 115. This method was 
commonly called casting out 9s and has been extended to binary operations to 
simplify computer arithmetic. The advantage that complement systems give us 
over signed magnitude is that there is no need to process sign bits separately, but 
we can still easily check the sign of a number by looking at its high-order bit.

Another way to envision complement systems is to imagine an odometer on 
a bicycle. Unlike cars, when you go backward on a bike, the odometer will go 
backward as well. Assuming an odometer with three digits, if we start at zero 
and end with 700, we can’t be sure whether the bike went forward 700 miles or 
backward 300 miles! The easiest solution to this dilemma is simply to cut the 
number space in half and use 001−500 for positive miles and 501−999 for nega-
tive miles. We have, effectively, cut down the distance our odometer can measure. 
But now if it reads 997, we know the bike has backed up 3 miles instead of riding 
forward 997 miles. The numbers 501−999 represent the radix complements (the 
second of the two methods introduced below) of the numbers 001−500 and are 
being used to represent negative distance.

One’s Complement

As illustrated above, the diminished radix complement of a number in base 10 is 
found by subtracting the subtrahend from the base minus one, which is 9 in deci-
mal. More formally, given a number N in base r having d digits, the diminished 
radix complement of N is defined to be ( )− −1r Nd . For decimal numbers, = 10r ,  
and the diminished radix is =10 – 1 9. For example, the nine’s complement of 
2468 is =9999 – 2468 7531. For an equivalent operation in binary, we subtract 
from one less the base (2), which is 1. For example, the one’s complement of 01012 
is =1111 – 0101 10102 . Although we could tediously borrow and subtract as dis-
cussed above, a few experiments will convince you that forming the one’s comple-
ment of a binary number amounts to nothing more than switching all of the 1s with 
0s and vice versa. This sort of bit-flipping is very simple to implement in computer 
hardware.

It is important to note at this point that although we can find the nine’s com-
plement of any decimal number or the one’s complement of any binary number, 
we are most interested in using complement notation to represent negative num-
bers. We know that performing a subtraction, such as 10 – 7, can also be thought 
of as “adding the opposite,” as in ( )+10 –7 . Complement notation allows us to 
simplify subtraction by turning it into addition, but it also gives us a method to 
represent negative numbers. Because we do not wish to use a special bit to rep-
resent the sign (as we did in signed-magnitude representation), we need to 
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remember that if a number is negative, we should convert it to its complement. 
The result should have a 1 in the leftmost bit position to indicate that the number 
is negative.

Although the one’s complement of a number is technically the value obtained 
by subtracting that number from a large power of two, we often refer to a com-
puter using one’s complement for negative numbers as a one’s complement system 
or as a computer that uses one’s complement arithmetic. This can be somewhat 
misleading, as positive numbers do not need to be complemented; we only com-
plement negative numbers so we can get them into a format the computer will 
understand. Example 2.16 illustrates these concepts.

EXAMPLE 2.16 Express 2310 and −910 in 8-bit binary, assuming a computer is 
using one’s complement representation.

23 00010111 00010111

–9 – 00001001 11110110

10 2 2

10 2 2

( )
( )

= + =

= =

Unlike signed magnitude, in one’s complement addition there is no need to main-
tain the sign bit separate from the other bits. The sign takes care of itself. Com-
pare Example 2.17 with Example 2.10.

EXAMPLE 2.17 Add 010011112 to 001000112 using one’s complement addition.

1 1 1 1
0 1 0 0 1 1 1 1
0 0 1 0 0 0 1 1
0 1 1 1 0 0 1 0

carries
79

(35)
114

( )

( )
+

⇐

+

Suppose we wish to subtract 9 from 23. To carry out a one’s complement subtrac-
tion, we first express the subtrahend (9) in one’s complement, then add it to the 
minuend (23); we are effectively now adding −9 to 23. The high-order bit will 
have a 1 or a 0 carry, which is added to the low-order bit of the sum. (This is called 
end carry-around and results from using the diminished radix complement.)

EXAMPLE 2.18 Add 2310 to −910 using one’s complement arithmetic.

The last
carry is added

to the sum.

1 1 1 1 1 1
0 0 0 1 0 1 1 1
1 1 1 1 0 1 1 0
0 0 0 0 1 1 0 1

1
0 0 0 0 1 1 1 0

carries
23

( 9)

1410

( )
←

+

+

⇐

+ −
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EXAMPLE 2.19 Add 910 to −2310 using one’s complement arithmetic.

( )←
+ + −

The last
carry is 0

so we are done.

0 0 0 0 0 1 0 0 1
1 1 1 0 1 0 0 0
1 1 1 1 0 0 0 1

9
( 23)
–1410

How do we know that 111100012 is actually −1410? We simply need to take 
the one’s complement of this binary number (remembering it must be negative 
because the leftmost bit is negative). The one’s complement of 111100012 is 
000011102, which is 14.

The primary disadvantage of one’s complement is that we still have two rep-
resentations for 0: 00000000 and 11111111. For this and other reasons, computer 
engineers long ago stopped using one’s complement in favor of the more efficient 
two’s complement representation for binary numbers.

Two’s Complement

Two’s complement is an example of a radix complement. Given a number N in 
base r having d digits, the radix complement of N is defined as –r Nd  for ≠ 0N  
and 0 for = 0N . The radix complement is often more intuitive than the dimin-
ished radix complement. Using our odometer example, the ten’s complement of 
going forward 2 miles is =10 – 2 9983 , which we have already agreed indicates 
a negative (backward) distance. Similarly, in binary, the two’s complement of the 
4-bit number 00112 is = =2 – 0011 10000 – 0011 11014

2 2 2 2.
Upon closer examination, you will discover that two’s complement is nothing 

more than one’s complement incremented by 1. To find the two’s complement of a 
binary number, simply flip bits and add 1. This simplifies addition and subtraction 
as well. Because the subtrahend (the number we complement and add) is incre-
mented at the outset, however, there is no end carry-around to worry about. We 
simply discard any carries involving the high-order bits. Just as with one’s comple-
ment, two’s complement refers to the complement of a number, whereas a computer 
using this notation to represent negative numbers is said to be a two’s complement 
system, or a computer that uses two’s complement arithmetic. As before, positive 
numbers can be left alone; we only need to complement negative numbers to get 
them into their two’s complement form. Example 2.20 illustrates these concepts.

EXAMPLE 2.20 Express 2310, −2310, and −910 in 8-bit binary, assuming a com-
puter is using two’s complement representation.

( )
( )
( )

= + =
= = + =
= = + =

23 00010111 00010111

–23 – 00010111 11101000 1 11101001

–9 – 00001001 11110110 1 11110111

10 2 2

10 2 2 2

10 2 2 2
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Because the representation of positive numbers is the same in one’s complement 
and two’s complement (as well as signed-magnitude), the process of adding two 
positive binary numbers is the same. Compare Example 2.21 with Example 2.17 
and Example 2.10.

You should have a fairly good idea by now of why we need to study the different for-
mats. If numeric values will never be negative (only positive or zero values are used, 
such as for someone’s age), unsigned numbers are used. The advantage to using 
an unsigned format is that the number of positive values that can be represented is 
larger (no bits are used for the sign). For example, if we are using 4 bits to represent 
unsigned integers, we can represent values from 0 to 15. However, if we are using 
signed magnitude representation, the bits are interpreted differently, and the range 
becomes −7 to +7.

If the numeric values can be positive or negative, we need to use a format that 
can represent both. Converting unsigned whole numbers tends to be relatively 
straightforward, but for signed numbers, in particular, complement systems can be 
confusing. Because we talk about converting a binary number into a signed two’s 
complement by padding it with 0s to the proper length, and then flipping the bits and 
adding one, people often think that all numbers are converted this way. For example, 
if someone is asked how a computer, using two’s complement representation, would 
represent −6 (assuming 4-bit values), they answer: 1010 (take 0110, toggle each bit, 
and add 1). This is, of course, the correct answer. However, if that same person is 
asked how the computer, using two’s complement representation, would represent 
+6, they will often do exactly the same thing, giving the same answer, which is incor-
rect. The value +6 using 4 bits is 0110. The same is true if we are converting from two’s 
complement to decimal: If the binary value is 0111, then its equivalent decimal value 
is simply 7 (no bit flipping required!). However, if the value is 1010, this represents a 
negative value, so we would flip the bits (0101), add 1 (0110), and see that this binary 
value represents −6. 

It is important to realize that representing positive numbers does not require any 
“conversion” at all! It is only when a number is negative that two’s complement, signed 
magnitude, and one’s complement representations are necessary. A positive number 
on a computer that uses signed magnitude, a positive number on a computer that uses 
one’s complement, and a positive number on a computer that uses two’s complement 
will be exactly the same. If a computer uses n bits to represent integers, it can represent 
2n different values (because there are 2n different bit patterns possible); the computer 
(and even you!) have no way to know whether a particular bit pattern is unsigned or 
signed simply by looking at the number. It is up to the programmer to make sure the bit 
string is interpreted correctly.

Null Pointers: Tips and Hints
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EXAMPLE 2.21 Add 010011112 to 001000112 using two’s complement addition.

1 1 1 1
0 1 0 0 1 1 1 1
0 0 1 0 0 0 1 1
0 1 1 1 0 0 1 0

carries
79

(35)

114

( )

( )
+

⇐

+

Suppose we are given the binary representation for a number and we want to know 
its decimal equivalent. Positive numbers are easy. For example, to convert the 
two’s complement value of 000101112 to decimal, we simply convert this binary 
number to a decimal number to get 23. However, converting two’s complement 
negative numbers requires a reverse procedure similar to the conversion from 
decimal to binary. Suppose we are given the two’s complement binary value of 
111101112, and we want to know the decimal equivalent. We know this is a nega-
tive number but must remember it is represented using two’s complement nota-
tion. We first flip the bits and then add 1 (find the one’s complement and add 1).  
This results in the following: + =00001000 1 000010012 2. This is equivalent to 
the decimal value 9. However, the original number we started with was negative, 
so we end up with −9 as the decimal equivalent to 111101112.

The following two examples illustrate how to perform addition (and hence 
subtraction, because we subtract a number by adding its opposite) using two’s 
complement notation.

EXAMPLE 2.22 Add 910 to −2310 using two’s complement arithmetic.

0 0 0 0 1 0 0 1 (9)

1 1 1 0 1 0 0 1 ( 23)

1 1 1 1 0 0 1 0 1410

+ + −
−

It is left as an exercise for you to verify that 111100102 is actually −1410 using 
two’s complement notation.

EXAMPLE 2.23 Find the sum of 2310 and −910 in binary using two’s complement 
arithmetic.

( )
( )

←

+

⇐

+Discard
carry

1 1 1 1 1 1 1
0 0 0 1 0 1 1 1
1 1 1 1 0 1 1 1

0 0 0 0 1 1 1 0

carries
23
–9

1410

In two’s complement, the addition of two negative numbers produces a negative 
number, as we might expect.
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EXAMPLE 2.24 Find the sum of 111010012 (−23) and 111101112 (−9) using 
two’s complement addition.

( )
( )

←

+

⇐
−

+
−

Discard
carry

1 1 1 1 1 1 1 1
1 1 1 0 1 0 0 1
1 1 1 1 0 1 1 1

1 1 1 0 0 0 0 0

carries
23
–9

( 32)

Notice that the discarded carries in Examples 2.23 and 2.24 did not cause an erro-
neous result. An overflow occurs if two positive numbers are added and the result 
is negative, or if two negative numbers are added and the result is positive. It is 
not possible to have overflow when using two’s complement notation if a positive 
and a negative number are being added together.

Simple computer circuits can easily detect an overflow condition using a rule 
that is easy to remember. You’ll notice in both Examples 2.23 and 2.24 that the carry 
going into the sign bit (a 1 is carried from the previous bit position into the sign bit 
position) is the same as the carry going out of the sign bit (a 1 is carried out and 
discarded). When these carries are equal, no overflow occurs. When they differ, an 
overflow indicator is set in the arithmetic logic unit, indicating the result is incorrect.

A Simple Rule for Detecting an Overflow Condition in Signed 
Numbers:  If the carry into the sign bit equals the carry out of the bit, no 
overflow has occurred. If the carry into the sign bit is different from the 
carry out of the sign bit, overflow (and thus an error) has occurred.

The hard part is getting programmers (or compilers) to consistently check for the 
overflow condition. Example 2.25 indicates overflow because the carry into the sign 
bit (a 1 is carried in) is not equal to the carry out of the sign bit (a 0 is carried out).

EXAMPLE 2.25 Find the sum of 12610 and 810 in binary using two’s complement 
arithmetic.

( )
( )

←

+

⇐

+
−

Discard last
carry

0 1 1 1 1
0 1 1 1 1 1 1 0
0 0 0 0 1 0 0 0

1 0 0 0 0 1 1 0

carries
126

8

( 122???)

A 1 is carried into the leftmost bit, but a 0 is carried out. Because these carries are not 
equal, an overflow has occurred. (We can easily see that two positive numbers are 
being added but the result is negative.) We return to this topic in Section 2.4.6.

Two’s complement is the most popular choice for representing signed numbers. 
The algorithm for adding and subtracting is quite easy, has the best representa-
tion for 0 (all 0 bits), is self-inverting, and is easily extended to larger numbers 
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INTEGER MULTIPLICATION AND DIVISION

Unless sophisticated algorithms are used, multiplication and division can con-
sume a considerable number of computation cycles before a result is obtained. 

Here, we discuss only the most straightforward approach to these operations. In 
real systems, dedicated hardware is used to optimize throughput, sometimes carry-
ing out portions of the calculation in parallel. Curious readers will want to inves-
tigate some of these advanced methods in the references cited at the end of this 
chapter.

The simplest multiplication algorithms used by computers are similar to tra-
ditional pencil-and-paper methods used by humans. The complete multiplication 
table for binary numbers couldn’t be simpler: zero times any number is zero, and 
one times any number is that number.

To illustrate simple computer multiplication, we begin by writing the multipli-
cand and the multiplier to two separate storage areas. We also need a third storage 
area for the product. Starting with the low-order bit, a pointer is set to each digit 
of the multiplier. For each digit in the multiplier, the multiplicand is “shifted” one 
bit to the left. When the multiplier is 1, the “shifted” multiplicand  is added to a 
running sum of partial products. Because we shift the multiplicand by one bit for 
each bit in the multiplier, a product requires double the working space of either the 
multiplicand or the multiplier.

There are two simple approaches to binary division: We can either iteratively 
subtract the denominator from the divisor, or we can use the same trial-and-error 
method of long division that we were taught in grade school. As with multiplica-
tion, the most efficient methods used for binary division are beyond the scope of 
this text and can be found in the references at the end of this chapter.

Regardless of the relative efficiency of any algorithms that are used, divi-
sion is an operation that can always cause a computer to crash. This is the case 

of bits. The biggest drawback is in the asymmetry seen in the range of values 
that can be represented by N bits. With signed-magnitude numbers, for exam-
ple, 4 bits allow us to represent the values −7 through +7. However, using two’s 
complement, we can represent the values −8 through +7, which is often confus-
ing to anyone learning about complement representations. To see why +7 is the 
largest number we can represent using 4-bit two’s complement representation, 
we need only remember that the first bit must be 0. If the remaining bits are all 
1s (giving us the largest magnitude possible), we have 01112, which is 7. An 
immediate reaction to this is that the smallest negative number should then be 
11112, but we can see that 11112 is actually −1 (flip the bits, add 1, and make 
the number negative). So how do we represent −8 in two’s complement notation 
using 4 bits? It is represented as 10002. We know this is a negative number. If 
we flip the bits (0111), add 1 (to get 1000, which is 8), and make it negative, 
we get −8.
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particularly when division by zero is attempted or when two numbers of enor-
mously different magnitudes are used as operands. When the divisor is much 
smaller than the dividend, we get a condition known as divide underflow, which 
the computer sees as the equivalent of division by zero, which is impossible.

Computers make a distinction between integer division and floating-point 
division. With integer division, the answer comes in two parts: a quotient and 
a remainder. Floating-point division results in a number that is expressed as 
a binary fraction. These two types of division are sufficiently different from 
each other as to warrant giving each its own special circuitry. Floating-point 
calculations are carried out in dedicated circuits called floating-point units, 
or FPUs.

EXAMPLE Find the product of 000001102 and 000010112.

 2.4.3 Excess-M Representation for Signed Numbers
Recall the bicycle example that we discussed when introducing complement sys-
tems. We selected a particular value (500) as the cutoff for positive miles, and we 
assigned values from 501 to 999 to negative miles. We didn’t need signs because 
we used the range to determine whether the number was positive or negative. 
Excess-M representation (also called offset binary representation) does some-
thing very similar; unsigned binary values are used to represent signed integers. 
However, excess-M representation, unlike signed magnitude and the comple-
ment encodings, is more intuitive because the binary string with all 0s represents 
the smallest number, whereas the binary string with all 1s represents the largest 
value; in other words, ordering is preserved.

The unsigned binary representation for integer M (called the bias) represents 
the value 0, whereas all 0s in the bit pattern represents the integer −M. Essen-
tially, a decimal integer is “mapped” (as in our bicycle example) to an unsigned 

Multiplicand

0 0 0 0 0 1 1 0 +

+

+

+

=

0 0 0 0 1 1 0 0

0 0 0 1 1 0 0 0

0 0 1 1 0 0 0 0

Partial products

0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 0

0 0 0 1 0 0 1 0

0 0 0 1 0 0 1 0

0 1 0 0 0

1 0 1 1

1 0 1 1

1 0 1 1

1 0 1 1

Add multiplicand
and shift left.

Add multiplicand
and shift left.

Don’t add, just shift
multiplicand left.

Add multiplicand.

Product0 1 0
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binary integer, but interpreted as positive or negative depending on where it falls 
in the range. If we are using n bits for the binary representation, we need to select 
the bias in such a manner that we split the range equally. We typically do this 
by choosing a bias of 2 – 1–1n . For example, if we were using 4-bit representa-
tion, the bias should be =2 – 1 74 –1 . Just as with signed magnitude, one’s com-
plement, and two’s complement, there is a specific range of values that can be 
expressed in n bits.

The unsigned binary value for a signed integer using excess-M repre-
sentation is determined simply by adding M to that integer. For example, 
assuming that we are using excess-7 representation, the integer 010 would 
be represented as + = =0 7 7 011110 2; the integer 310 would be repre-
sented as + = =3 7 10 101010 2; and the integer −7 would be represented as 
–7 7 0 000010 2+ = = . Using excess-7 notation and given the binary number 
11112, to find the decimal value it represents, we simply subtract 7: =1111 152 10,  
and =15 – 7 8; therefore, the value 11112, using excess-7 representation, is +810.

Let’s compare the encoding schemes we have seen so far, assuming 8-bit 
numbers:

Integer Binary Strings Representing the Signed Integer

Decimal
Binary

(for absolute value)
Signed  

Magnitude
One’s  

Complement
Two’s  

Complement Excess-127

2 00000010 00000010 00000010 00000010 10000001

−2 00000010 10000010 11111101 11111110 01111101

100 01100100 01100100 01100100 01100100 11100011

−100 01100100 11100100 10011011 10011100 00011011

Excess-M representation allows us to use unsigned binary values to rep-
resent signed integers; it is important to note, however, that two parameters 
must be specified: the number of bits being used in the representation and 
the bias value itself. In addition, a computer is unable to perform addition 
on excess-M values using hardware designed for unsigned numbers; special 
circuits are required. Excess-M representation is important because of its use 
in representing integer exponents in floating-point numbers, as we will see in 
Section 2.5.

 2.4.4 Unsigned Versus Signed Numbers
We introduced our discussion of binary integers with unsigned numbers. Unsigned 
numbers are used to represent values that are guaranteed not to be negative. A 
good example of an unsigned number is a memory address. If the 4-bit binary 
value 1101 is unsigned, then it represents the decimal value 13, but as a signed 
two’s complement number, it represents −3. Signed numbers are used to represent 
data that can be either positive or negative.

A computer programmer must be able to manage both signed and unsigned 
numbers. To do so, the programmer must first identify numeric values as either 
signed or unsigned numbers. This is done by declaring the value as a specific 
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type. For instance, the C programming language has int and unsigned int 
as possible types for integer variables, defining signed and unsigned integers, 
respectively. In addition to different type declarations, many languages have 
different arithmetic operations for use with signed and unsigned numbers. A 
language may have one subtraction instruction for signed numbers and a differ-
ent subtraction instruction for unsigned numbers. In most assembly languages, 
programmers can choose from a signed comparison operator or an unsigned 
comparison operator.

It is interesting to compare what happens with unsigned and signed numbers 
when we try to store values that are too large for the specified number of bits. 
Unsigned numbers simply wrap around and start over at 0. For example, if we are 
using 4-bit unsigned binary numbers, and we add 1 to 1111, we get 0000. This 
“return to 0” wraparound is familiar—perhaps you have seen a  high-mileage car 
in which the odometer has wrapped back around to 0. However, signed numbers 
devote half their space to positive numbers and the other half to negative numbers. 
If we add 1 to the largest positive 4-bit two’s complement number 0111 (+7), we 
get 1000 (−8). This wraparound with the unexpected change in sign has been 
problematic to inexperienced programmers, resulting in multiple hours of debug-
ging time. Good programmers understand this condition and make appropriate 
plans to deal with the situation before it occurs.

 2.4.5 Computers, Arithmetic, and Booth’s Algorithm
Computer arithmetic as introduced in this chapter may seem simple and straight-
forward, but it is a field of major study in computer architecture. The basic focus 
is on the implementation of arithmetic functions, which can be realized in soft-
ware, firmware, or hardware. Researchers in this area are working toward design-
ing superior central processing units (CPUs), developing high-performance 
arithmetic circuits, and contributing to the area of embedded systems applica-
tion-specific circuits. They are working on algorithms and new hardware imple-
mentations for fast addition, subtraction, multiplication, and division, as well 
as fast floating-point operations. Researchers are looking for schemes that use 
nontraditional approaches, such as the fast carry look-ahead principle,  residue 
 arithmetic, and Booth’s algorithm. Booth’s algorithm is a good example of 
one such scheme and is introduced here in the context of signed two’s comple-
ment numbers to give you an idea of how a simple arithmetic operation can be 
enhanced by a clever algorithm.

Although Booth’s algorithm usually yields a performance increase when mul-
tiplying two’s complement numbers, there is another motivation for introducing 
this algorithm. In Section 2.4.2, we covered examples of two’s complement addi-
tion and saw that the numbers could be treated as unsigned values. We simply 
perform “regular” addition, as the following example illustrates:

1 0 0 1
0 0 1 1
1 1 0 0

( 7)
( 3)
( 4)

+
−
+
−
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The same is true for two’s complement subtraction. However, now consider the 
standard pencil-and-paper method for multiplying the following two’s  complement 
numbers:

1011 –5
1100 ( 4)

0000
0000

1011
1011

10000100 –124

( )

( )

× −

“Regular” multiplication clearly yields the incorrect result. There are a number of 
solutions to this problem, such as converting both values to positive numbers, per-
forming conventional multiplication, and then remembering if one or both values were 
negative to determine whether the result should be positive or negative. Booth’s algo-
rithm not only solves this dilemma, but also speeds up multiplication in the process.

The general idea of Booth’s algorithm is to increase the speed of multiplica-
tion when there are consecutive 0s or 1s in the multiplier. It is easy to see that 
consecutive 0s help performance. For example, if we use the tried and true pencil-
and-paper method and find ×978 1001, the multiplication is much easier than if 
we take ×978 999. This is because of the two 0s found in 1001. However, if we 
rewrite the two problems as follows:

( )
( )

× = × + = × +
× = × = ×

978 1001 978 1000 1 978 1000 978

978 999 978 1000 – 1 978 1000 – 978

we see that the problems are in fact equal in difficulty.
Our goal is to use a string of 1s in a binary number to our advantage in much 

the same way that we use a string of 0s to our advantage. We can use the rewrit-
ing idea from above. For example, the binary number 0110 can be rewritten 

= +1000 – 0010 –0010 1000. The two 1s have been replaced by a “subtract” 
(determined by the rightmost 1 in the string) followed by an “add” (determined 
by moving one position left of the leftmost 1 in the string).

Consider the following standard multiplication example:

×
+

+
+

+

simple shift
multiplicand and shift
multiplicand and shift

simple shift

0011
0110

0000 (0 in multiplier means )
0011 (1 in multiplier means add )

0011 (1 in multiplier means add )
0000 (0 in multiplier means )

00010010

The idea of Booth’s algorithm is to replace the string of 1s in the multiplier with 
an initial subtract when we see the rightmost 1 of the string (or subtract 0011) and 
then later add for the bit after the last 1 (or add 001100). In the middle of the string, 
we can now use simple shifting:
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×
+

−
+

+

shift
subtract multiplicand and shift

shift

0011
0000
0000

0011
0000

0011
00010010

(0 in multiplier means )
(first 1inmultiplier means )
(middle of string of 1s means )
(prior step had last1 so addmultiplicand)

In Booth’s algorithm, if the multiplicand and multiplier are n-bit two’s comple-
ment numbers, the result is a 2n-bit two’s complement value. Therefore, when 
we perform our intermediate steps, we must extend our n-bit numbers to 2n-bit 
numbers. If a number is negative and we extend it, we must extend the sign. For 
example, the value 1000 (−8) extended to 8 bits would be 11111000. We continue 
to work with bits in the multiplier, shifting each time we complete a step. How-
ever, we are interested in pairs of bits in the multiplier and proceed according to 
the following rules:

 1. If the current multiplier bit is 1 and the preceding bit was 0, we are at the begin-
ning of a string of 1s so we subtract the multiplicand from the product (or add 
the opposite).

 2. If the current multiplier bit is 0 and the preceding bit was 1, we are at the end 
of a string of 1s so we add the multiplicand to the product.

 3. If it is a 00 pair, or a 11 pair, do no arithmetic operation (we are in the middle 
of a string of 0s or a string of 1s). Simply shift. The power of the algorithm is in 
this step: We can now treat a string of 1s as a string of 0s and do nothing more 
than shift.

Note: The first time we pick a pair of bits in the multiplier, we should assume a 
mythical 0 as the “previous” bit. Then we simply move left one bit for our next pair.

Example 2.26 illustrates the use of Booth’s algorithm to multiply ×–3 5 
using signed 4-bit two’s complement numbers.

EXAMPLE 2.26 Negative 3 in 4-bit two’s complement is 1101. Extended to 8 bits, 
it is 11111101. Its complement is 00000011. When we see the rightmost 1 in the mul-
tiplier, it is the beginning of a string of 1s, so we treat it as if it were the string 10:

Ignore extended sign bits that go beyond 2

1 1 0 1
0 1 0 1

0 0 0 0 0 0 1 1
1 1 1 1 1 1 0 1

0 0 0 0 0 0 1 1
1 1 1 1 1 1 0 1

1 0 0 1 1 1 1 1 0 0 0 1

(for subtracting,we will add –3’s complement,or 00000011)

(10 subtract 1101 add 00000011)
(01 add 11111101 to product—note sign extension)
(10 subtract 1101 add 00000011)
(01 add multiplicand 11111101 to product)

(using the 8 rightmost bits,we have –3 5 –15)

n.

���

×
+

+
+

+

= =
=
= =
=

× =
↑

2.4 / Signed Integer Representation    85

9781284136852_CH02_Pass03.indd   85 03/02/18   2:25 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION



EXAMPLE 2.27 Let’s look at the larger example of 53 × 126:

00110101 (for subtracting, we will add the complement of 53, or
01111110 11001011)

0000000000000000 (00 simple shift)
111111111001011 (10 subtract add 11001011, extend sign)
00000000000000 (11 simple shift)
0000000000000 (11 simple shift)
000000000000 (11 simple shift)
00000000000 (11 simple shift)
0000000000 (11 simple shift)
000110101 (01 add)

10001101000010110 (53 126 6678)

×
+ =
+ = =
+ =
+ =
+ =
+ =
+ =
+ =

× =

Note that we have not shown the extended sign bits that go beyond what we need 
and use only the 16 rightmost bits. The entire string of 1s in the multiplier was 
replaced by a subtract (adding 11001011) followed by an add. Everything in the 
middle is simply shifting—something that is very easy for a computer to do (as we 
will see in Chapter 3). If the time required for a computer to do an add is sufficiently 
larger than that required to do a shift, Booth’s algorithm can provide a considerable 
increase in performance. This depends somewhat, of course, on the multiplier. If the 
multiplier has strings of 0s and/or 1s the algorithm works well. If the multiplier con-
sists of an alternating string of 0s and 1s (the worst case), using Booth’s algorithm 
might very well require more operations than the standard approach.

Computers perform Booth’s algorithm by adding and shifting values stored 
in registers. A special type of shift called an arithmetic shift is necessary to pre-
serve the sign bit. Many books present Booth’s algorithm in terms of arithme-
tic shifts and add operations on registers only, so it may appear quite different 
from the preceding method. We have presented Booth’s algorithm so that it more 
closely resembles the pencil-and-paper method with which we are all familiar, 
although it is equivalent to the computer algorithms presented elsewhere.

There have been many algorithms developed for fast multiplication, but many 
do not hold for signed multiplication. Booth’s algorithm not only allows multi-
plication to be performed faster in most cases, but it also has the added bonus of 
working correctly on signed numbers.

 2.4.6 Carry Versus Overflow
The wraparound referred to in the preceding section is really overflow. CPUs 
often have flags to indicate both carry and overflow. However, the overflow flag 
is used only with signed numbers and means nothing in the context of unsigned 
numbers, which use the carry flag instead. If carry (which means carry out of the 
leftmost bit) occurs in unsigned numbers, we know we have overflow (the new 
value is too large to be stored in the given number of bits) but the overflow bit is 
not set. Carry out can occur in signed numbers as well; however, its occurrence in 
signed numbers is neither sufficient nor necessary for overflow. We have already 
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seen that overflow in signed numbers can be determined if the carry in to the 
leftmost bit and the carry out of the leftmost bit differ. However, carry out of the 
leftmost bit in unsigned operations always indicates overflow.

To illustrate these concepts, consider 4-bit unsigned and signed numbers. If 
we add the two unsigned values 0111 (7) and 0001 (1), we get 1000 (8). There 
is no carry (out), and thus no error. However, if we add the two unsigned val-
ues 0111 (7) and 1011 (11), we get 0010 with a carry, indicating that there is an 
error (indeed, +7 11 is not 2). This wraparound would cause the carry flag in the 
CPU to be set. Essentially, carry out in the context of unsigned numbers means an 
overflow has occurred, even though the overflow flag is not set.

We said carry (out) is neither sufficient nor necessary for overflow in 
signed numbers. Consider adding the two’s complement integers 0101 (+5) and 
0011 (+3). The result is 1000 (−8), which is clearly incorrect. The problem is that 
we have a carry in to the sign bit, but no carry out, which indicates that we have 
an overflow (therefore, carry is not necessary for overflow). However, if we now 
add 0111 (+7) and 1011 (−5), we get the correct result: 0010 (+2). We have both 
a carry in to and a carry out of the leftmost bit, so there is no error (so carry is not 
sufficient for overflow). The carry flag would be set, but the overflow flag would 
not be set. Thus carry out does not necessarily indicate an error in signed num-
bers, nor does the lack of carry out indicate that the answer is correct.

To summarize, the rule of thumb used to determine when carry indicates an error 
depends on whether we are using signed or unsigned numbers. For unsigned num-
bers, a carry (out of the leftmost bit) indicates the total number of bits was not large 
enough to hold the resulting value, and overflow has occurred. For signed numbers, if 
the carry in to the sign bit and the carry (out of the sign bit) differ, then overflow has 
occurred. The overflow flag is set only when overflow occurs with signed numbers.

Carry and overflow clearly occur independently of each other. Examples 
using signed two’s complement representation are given in Table 2.2. Carry in to 
the sign bit is not indicated in the table.

 2.4.7 Binary Multiplication and Division Using Shifting
Shifting a binary number simply means moving the bits left or right by a certain 
amount. For example, the binary value 00001111 shifted left one place results in 
00011110 (if we fill with a 0 on the right). The first number is equivalent to deci-
mal value 15; the second is decimal 30, which is exactly double the first value. 
This is no coincidence!

When working with signed two’s complement numbers, we can use a spe-
cial type of shift, called an arithmetic shift, to perform quick and easy multiplica-
tion and division by 2. Recall that the leftmost bit in a two’s complement number 

TABLE 2.2 Examples of Carry and Overflow in Signed Numbers

Expression Result Carry? Overflow? Correct Result?

0100(+4)+0010(+2) 0110(+6) No No Yes
0100(+4)+0110(+6) 1010(–6) No Yes No
1100(–4)+1110(–2) 1010(–6) Yes No Yes
1100(–4)+1010(–6) 0110(+6) Yes Yes No
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determines its sign, so we must be careful when shifting these values that we 
don’t change the sign bit, as multiplying or dividing by 2 should not change the 
sign of the number.

We can perform a left arithmetic shift (which multiples a number by 2) or 
a  right arithmetic shift (which divides a number by 2). Assuming that bits are 
numbered right to left beginning with 0, we have the following definitions for left 
and right arithmetic shifts.

A left arithmetic shift inserts a 0 in for bit b0 and shifts all other bits left one 
position, resulting in bit bn−1 being replaced by bit bn−2. Because bit bn−1 is the 
sign bit, if the value in this bit changes, the operation has caused overflow. Mul-
tiplication by 2 always results in a binary number with the rightmost bit equal to 
0, which is an even number, and thus explains why we pad with a 0 on the right. 
Consider the following examples:

EXAMPLE 2.28 Multiply the value 11 (expressed using 8-bit signed two’s com-
plement representation) by 2.

We start with the binary value for 11:

0 0 0 0 1 0 1 1

and we shift left one place, resulting in:

0 0 0 1 0 1 1 0

which is decimal = ×2 11 2. No overflow has occurred, so the value is correct.

EXAMPLE 2.29 Multiply the value 12 (expressed using 8-bit signed two’s com-
plement representation) by 4.

We start with the binary value for 12:

0 0 0 0 1 1 0 0

and we shift left two places (each shift multiplies by 2, so two shifts is equivalent 
to multiplying by 4), resulting in:

0 0 1 1 0 0 0 0

which is decimal = ×48 12 4. No overflow has occurred, so the value is correct.

EXAMPLE 2.30 Multiply the value 66 (expressed using 8-bit signed two’s com-
plement representation) by 2.

We start with the binary value for 66:

0 1 0 0 0 0 1 0

and we shift left one place, resulting in:

1 0 0 0 0 1 0 0

but the sign bit has changed, so overflow has occurred ( × =66 2 132, which is 
too large to be expressed using 8 bits in signed two’s complement notation).
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A right arithmetic shift moves all bits to the right, but carries (copies) the sign 
bit from bit bn−1 to bn−2. Because we copy the sign bit from right to left, overflow 
is not a problem. However, division by 2 may have a remainder of 1; division 
using this method is strictly integer division, so the remainder is not stored in any 
way. Consider the following examples:

EXAMPLE 2.31 Divide the value 12 (expressed using 8-bit signed two’s com-
plement representation) by 2.

We start with the binary value for 12:

0 0 0 0 1 1 0 0

and we shift right one place, copying the sign bit of 0, resulting in:

0 0 0 0 0 1 1 0

which is decimal = ÷6 12 2.

EXAMPLE 2.32 Divide the value 12 (expressed using 8-bit signed two’s com-
plement representation) by 4.

We start with the binary value for 12:
0 0 0 0 1 1 0 0

and we shift right two places, resulting in:
0 0 0 0 0 0 1 1

which is decimal = ÷3 12 4.

EXAMPLE 2.33 Divide the value −14 (expressed using 8-bit signed two’s 
complement representation) by 2.

We start with the two’s complement representation for −14:
1 1 1 1 0 0 1 0

and we shift right one place (carrying across the sign bit), resulting in:
1 1 1 1 1 0 0 1

which is decimal = ÷–7 –14 2.

Note that if we had divided −15 by 2 (in Example 2.33), the result would be 
11110001 shifted one to the left to yield 11111000, which is −8. Because we are 
doing integer division, −15 divided by 2 is indeed equal to −8.

 2.5 FLOATING-POINT REPRESENTATION

If we wanted to build a real computer, we could use any of the integer represen-
tations that we just studied. We would pick one of them and proceed with our 
design tasks. Our next step would be to decide the word size of our system. If 
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we want our system to be really inexpensive, we would pick a small word size, 
say, 16 bits. Allowing for the sign bit, the largest integer this system could store 
is 32,767. So now what do we do to accommodate a potential customer who 
wants to keep a tally of the number of spectators paying admission to profes-
sional sports events in a given year? Certainly, the number is larger than 32,767. 
No problem. Let’s just make the word size larger. Thirty-two bits ought to do  
it. Our word is now big enough for just about anything that anyone wants to 
count. But what if this customer also needs to know the amount of money each 
spectator spends per minute of playing time? This number is likely to be a deci-
mal fraction. Now we’re really stuck.

The easiest and cheapest approach to this problem is to keep our 16-bit sys-
tem and say, “Hey, we’re building a cheap system here. If you want to do fancy 
things with it, get yourself a good programmer.” Although this position sounds 
outrageously flippant in the context of today’s technology, it was a reality in the 
earliest days of each generation of computers. There simply was no such thing 
as a floating-point unit in many of the first mainframes or microcomputers. For 
many years, clever programming enabled these integer systems to act as if they 
were, in fact, floating-point systems.

If you are familiar with scientific notation, you may already be thinking 
of how you could handle floating-point operations—how you could provide 
 floating-point emulation—in an integer system. In scientific notation, numbers 
are expressed in two parts: a fractional part and an exponential part that indicates 
the power of ten to which the fractional part should be raised to obtain the value 
we need. So to express 32,767 in scientific notation, we could write ×3.2767 104.  
Scientific notation simplifies pencil-and-paper calculations that involve very 
large or very small numbers. It is also the basis for floating-point computation in 
today’s digital computers.

 2.5.1 A Simple Model
In digital computers, floating-point numbers consist of three parts: a sign bit, an 
exponent part (representing the exponent on a power of 2), and a fractional part 
(which has sparked considerable debate regarding appropriate terminology). The 
term mantissa is widely accepted when referring to this fractional part. However, 
many people take exception to this term because it also denotes the fractional 
part of a logarithm, which is not the same as the fractional part of a floating-point 
number. The Institute of Electrical and Electronics Engineers (IEEE) introduced 
the term significand to refer to the fractional part of a floating-point number com-
bined with the implied binary point and implied 1 (which we discuss at the end of 
this section). Regrettably, the terms mantissa and significand have become inter-
changeable when referring to the fractional part of a floating-point number, even 
though they are not technically equivalent. Throughout this text, we refer to the 
fractional part as the significand, regardless of whether it includes the implied 1 
as intended by IEEE (see Section 2.5.4).

The number of bits used for the exponent and significand depends on whether 
we would like to optimize for range (more bits in the exponent) or precision 
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(more bits in the significand). (We discuss range and precision in more detail in 
Section 2.5.7.) For the remainder of this section, we will use a 14-bit model with 
a 5-bit exponent, an 8-bit significand, and a sign bit (see Figure 2.1). More gen-
eral forms are described in Section 2.5.2. 

Let’s say that we wish to store the decimal number 17 in our model. We 
know that 17 17.0 10 1.7 10 0.17 100 1 2= × = × = × . Analogously, in binary, 
17 10001 2 1000.1 2 100.01 2 10.001 2 1.0001 210 2

0
2

1
2

2
2

3
2

4= × = × = × = × = × =
0.10001 22

5× . If we use this last form, our fractional part will be 10001000  
and our exponent will be 00101, as shown here:

00 0 1 0 1 1 0 0 0 1 0 0 0

Using this form, we can store numbers of much greater magnitude than we could 
using a fixed-point representation of 14 bits (which uses a total of 14 binary 
digits plus a binary, or radix, point). If we want to represent 65536 0.1 22

17= ×  in 
this model, we have:

10 0 0 0 1 1 0 0 0 0 0 0 0

One obvious problem with this model is that we haven’t provided for nega-
tive exponents. If we wanted to store 0.25, we would have no way of doing so 
because 0.25 is 2−2 and the exponent −2 cannot be represented. We could fix 
the problem by adding a sign bit to the exponent, but it turns out that it is more 
efficient to use a biased exponent, because we can use simpler integer circuits 
designed specifically for unsigned numbers when comparing the values of two 
floating-point numbers.

Recall from Section 2.4.3 that the idea behind using a bias value is to 
convert every integer in the range into a nonnegative integer, which is then 
stored as a binary numeral. The integers in the desired range of exponents are 
first adjusted by adding this fixed bias value to each exponent. The bias value 
is a number near the middle of the range of possible values that we select to 
represent 0. In this case, we would select 15 because it is midway between 0 
and 31 (our exponent has 5 bits, thus allowing for 25 or 32 values). Any num-
ber larger than 15 in the exponent field represents a positive value. Values less 
than 15 indicate negative values. This is called an excess-15 representation 
because we have to subtract 15 to get the true value of the exponent. Note that 
exponents of all 0s or all 1s are typically reserved for special numbers (such 
as 0 or infinity). In our simple model, we allow exponents of all 0s and 1s.

FIGURE 2.1 A Simple Model Floating-Point Representation

Sign bit Exponent Significand

1 bit 5 bits 8 bits
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Returning to our example of storing 17, we calculated 17 0.10001 210 2
5= × . If 

we update our model to use a biased exponent, the biased exponent is + =15 5 20:

10 0 1 0 0 1 0 0 0 1 0 0 0

To calculate the value of this number, we would take the exponent field (binary 
value of 20) and subtract the bias (20 – 4), giving us a “real” exponent of 5, 
resulting in ×0.10001000 25.

If we wanted to store = ×0.25 0.1 2–1, we would have:

00 1 1 1 0 1 0 0 0 0 0 0 0

There is still one rather large problem with this system: We do not have a unique 
representation for each number. All of the following are equivalent:

10 0 1 0 1 1 0 0 0 1 0 0 0 =

10 0 1 1 0 0 1 0 0 0 1 0 0 =

10 0 1 1 1 0 0 1 0 0 0 1 0 =

10 1 0 0 0 0 0 0 1 0 0 0 1

Because synonymous forms such as these are not well-suited for digital comput-
ers, floating-point numbers must be normalized—that is, the leftmost bit of the 
significand must always be 1. This process is called normalization. This conven-
tion has the additional advantage that if the 1 is implied, we effectively gain an 
extra bit of precision in the significand. Normalization works well for every value 
except 0, which contains no nonzero bits. For that reason, any model used to rep-
resent floating-point numbers must treat 0 as a special case. We will see in the 
next section that the IEEE-754 floating-point standard makes an exception to the 
rule of normalization.

EXAMPLE 2.34 Express 0.0312510 in normalized floating-point form using 
the simple model with excess-15 bias.

0.03125 0.00001 2 0.0001 2 0.001 2 0.01 2 0.1 2 .10 2
0 –1 –2 –3 –4= × = × = × = × = ×  

Applying the bias, the exponent field is =15 – 4 11.

00 1 0 1 1 1 0 0 0 0 0 0 0

Note that in our simple model we have not expressed the number using the nor-
malization notation that implies the 1, which is introduced in Section 2.5.4.
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 2.5.2 Floating-Point Arithmetic
If we wanted to add two decimal numbers that are expressed in scientific nota-
tion, such as 1.5 10 3.5 102 3× + × , we would change one of the numbers so 
that both of them are expressed in the same power of the base. In our example, 
1.5 10 3.5 10 0.15 10 3.5 10 3.65 102 3 3 3 3× + × = × + × = × . Floating-point addi-
tion and subtraction work the same way, as illustrated below.

EXAMPLE 2.35 Add the following binary numbers as represented in a nor-
malized 14-bit format, using the simple model with a bias of 15.

10 0 0 0 1 1 1 0 0 1 0 0 0 +

00 1 1 1 1 1 0 0 1 1 0 1 0

We see that the addend is raised to the second power and that the augend is to the 
0 power. Alignment of these two operands on the binary point gives us:

+
11.001000

0.10011010

11.10111010

Renormalizing, we retain the larger exponent and truncate the low-order bit. 
Thus, we have:

10 0 0 0 1 1 1 1 0 1 1 1 0

However, because our simple model requires a normalized significand, we have 
no way to represent 0. This is easily remedied by allowing the string of all 0 (a 
0 sign, a 0 exponent, and a 0 significand) to represent the value 0. In the next 
section, we will see that IEEE-754 also reserves special meaning for certain bit 
patterns.

Multiplication and division are carried out using the same rules of exponents 
applied to decimal arithmetic, such as × =2 2 2–3 4 1, for example.

EXAMPLE 2.36 Assuming a 15-bit bias, multiply:

10 0 0 1 0 1 1 0 0 1 0 0 0 = 0.11001000 3 23

= 0.10011010 3 213 10 0 0 0 0 1 0 0 1 1 0 1 0
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Multiplication of 0.11001000 by 0.10011010 yields a product of 0.011110000 
1010000, and then multiplying by × =2 2 23 1 4 yields 111.10000101. Renormal-
izing and supplying the appropriate exponent, the floating-point product is:

10 0 0 1 0 1 1 1 1 0 0 0 0

 2.5.3 Floating-Point Errors
When we use pencil and paper to solve a trigonometry problem or compute the 
interest on an investment, we intuitively understand that we are working in the 
system of real numbers. We know that this system is infinite, because given any 
pair of real numbers, we can always find another real number that is smaller than 
one and greater than the other.

Unlike the mathematics in our imaginations, computers are finite systems, 
with finite storage. When we call upon our computers to carry out floating-point 
calculations, we are modeling the infinite system of real numbers in a finite sys-
tem of integers. What we have, in truth, is an approximation of the real number 
system. The more bits we use, the better the approximation. However, there is 
always some element of error, no matter how many bits we use.

Floating-point errors can be blatant, subtle, or unnoticed. The blatant 
errors, such as numeric overflow or underflow, are the 1s that cause programs 
to crash. Subtle errors can lead to wildly erroneous results that are often hard to 
detect before they cause real problems. For example, in our simple model, we 
can express normalized numbers in the range of ×–.11111111 22

16 through 
+ ×.11111111 216. Obviously, we cannot store 2−19 or 2128; they simply don’t fit. 
It is not quite so obvious that we cannot accurately store 128.5, which is well 
within our range. Converting 128.5 to binary, we have 10000000.1, which is  
9 bits wide. Our significand can hold only eight. Typically, the low-order bit is 
dropped or rounded into the next bit. No matter how we handle it, however, we 
have introduced an error into our system.

We can compute the relative error in our representation by taking the ratio of 
the absolute value of the error to the true value of the number. Using our example 
of 128.5, we find:

128.5 – 128

128.5
0.00389105 0.39%.= °

If we are not careful, such errors can propagate through a lengthy calculation, 
causing substantial loss of precision. Table 2.3 illustrates the error propagation as 
we iteratively multiply 16.24 by 0.91 using our 14-bit simple model. Upon con-
verting these numbers to 8-bit binary, we see that we have a substantial error from 
the outset.

As you can see, in six iterations, we have more than tripled the error in the prod-
uct. Continued iterations will produce an error of 100% because the product eventu-
ally goes to 0. Although this 14-bit model is so small that it exaggerates the error, all 
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TABLE 2.3 Error Propagation in a 14-Bit Floating-Point Number

Multiplier Multiplicand 14-Bit Product
Real  

Product Error

10000.001 
(16.125) 

× 0.11101000 = 
(0.90625)

1110.1001 
(14.5625)

14.7784 1.46%

1110.1001 
(14.5625) 

× 0.11101000 = 1101.0011 
(13.1885)

13.4483 1.94%

1101.0011 
(13.1885) 

× 0.11101000 = 1011.1111 
(11.9375)

12.2380 2.46%

1011.1111 
(11.9375) 

× 0.11101000 = 1010.1101 
(10.8125)

11.1366 2.91%

1010.1101 
(10.8125) 

× 0.11101000 = 1001.1100  
(9.75)

10.1343 3.79%

1001.1100  
(9.75) 

× 0.11101000 = 1000.1101 
(8.8125)

8.3922 4.44%

floating-point systems behave the same way. There is always some degree of error 
involved when representing real numbers in a finite system, no matter how large we 
make that system. Even the smallest error can have catastrophic results, particularly 
when computers are used to control physical events such as in military and medical 
applications. The challenge to computer scientists is to find efficient algorithms for 
controlling such errors within the bounds of performance and economics.

 2.5.4 The IEEE-754 Floating-Point Standard
The floating-point model we have been using in this section is designed for sim-
plicity and conceptual understanding. We could extend this model to include 
whatever number of bits we wanted. Until the 1980s, these kinds of decisions 
were purely arbitrary, resulting in numerous incompatible representations across 
various manufacturers’ systems. In 1985, the IEEE published a floating-point 
standard for both single- and double-precision floating-point numbers. This 
standard is officially known as IEEE-754 (1985) and includes two formats: 
 single precision and double precision. The IEEE-754 standard not only defines 
binary floating-point representations, but also specifies basic operations, excep-
tion conditions, conversions, and arithmetic. Another standard, IEEE 854-1987, 
provides similar specifications for decimal arithmetic. In 2008, IEEE revised the 
754 standard, and it became known as IEEE 754-2008. It carried over the single 
and double precision from 754, and added support for decimal arithmetic and 
formats, superseding both 754 and 854. We discuss only the single and double 
representation for floating-point numbers.

The IEEE-754 single-precision standard uses an excess 127 bias over an 8-bit 
exponent. The significand assumes an implied 1 to the left of the radix point and 
is 23 bits. This implied 1 is referred to as the hidden bit or hidden 1 and allows 
an actual significand of + =23 1 24 bits. With the sign bit included, the total word 
size is 32 bits, as shown in Figure 2.2.
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We mentioned earlier that IEEE-754 makes an exception to the rule of nor-
malization. Because this standard assumes an implied 1 to the left of the radix 
point, the leading bit in the significand can indeed be 0. For example, the number  

= = ×5.5 101.1 .1011 23. IEEE-754 assumes an implied 1 to the left of the radix 
point and thus represents 5.5 as ×1.011 22. Because the 1 is implied, the signifi-
cand is 011 and does not begin with a 1.

Table 2.4 shows the single-precision representation of several floating-point 
numbers, including some special 1s. Basically, the value represented by the bit 
sequence depends on the value of the exponent. The exponent can represent 
 normalized numbers (the most common), denormalized values (those with all 
0s in the exponent field, explained below), and special values (indicated when the 
exponent field is all 1s). These different cases are required to represent necessary 
values. For example, note that 0 is not directly representable in the given format, 
because of a required hidden bit in the significand. Therefore, 0 is a special value 
denoted using an exponent of all 0s and a significand of all 0s. IEEE-754 does 
allow for both −0 and +0, although they are equal  values. For this reason, pro-
grammers should use caution when comparing a floating-point value to 0.

When the exponent is 255 (all 1s), the quantity represented is ± infinity 
(which has a 0 significand and is used to represent values that overflow because 
the resulting value is too large to be represented in this format) or “not a number” 
(which has a nonzero significand and is used to represent a value that is not a real 
number, such as the square root of a negative number, or as an error indicator, 
such as in a “division by 0” error).

Under the IEEE-754 standard, most numeric values are normalized and have 
an implicit leading 1 in their significands (that is assumed to be to the left of 
the radix point) and the exponent is not all 0s or all 1s. As an example, consider 

Floating-Point Number Single-Precision Representation

1.0  0 01111111 00000000000000000000000
0.5  0 01111110 00000000000000000000000
19.5  0 10000011 00111000000000000000000
–3.75  1 10000000 11100000000000000000000
Zero  0 00000000 00000000000000000000000

± Infinity 0/1 11111111 00000000000000000000000

NaN 0/1 11111111 any nonzero significand
Denormalized Number 0/1 00000000 any nonzero significand

TABLE 2.4 Some Example IEEE-754 Single-Precision Floating-Point Numbers

FIGURE 2.2 IEEE-754 Single-Precision Floating-Point Representation

1 bit 8 bits 23 bits

Sign bit
Bias: 127

Exponent Significand
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the value 15212 11101101101100 1.1101101101100 210 2 2
13= = × . This is repre-

sented as:

0 1 0 0 0 1 1 0 0 1 1 0 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

Another important convention is when the exponent is all 0s but the significand 
is nonzero. This represents a denormalized number in which there is no hidden bit 
assumed. These numbers are typically used to represent values that are close to 0.

The largest magnitude value we can represent (forget the sign for the time 
being) with the single-precision floating-point format is 2127 × 1.11111111111
1111111111112 (let’s call this value MAX). We can’t use an exponent of all 1s 
because that is reserved for NaN. The smallest magnitude number we can repre-
sent is 2−127 × .000000000000000000000012 (let’s call this value MIN). We can 
use an exponent of all 0s (which means the number is denormalized) because 
the significand is nonzero (and represents 2−23). Due to the preceding special 
values and the limited number of bits, there are four numerical ranges that sin-
gle-precision floating-point numbers cannot represent: negative numbers less 
than MAX (negative overflow); negative numbers greater than MIN (negative 
underflow); positive numbers less than +MIN (positive underflow); and positive 
numbers greater than +MAX (positive overflow). Figure 2.3 represents a way to 
visualize the overall scheme of how the floating-point encoding works.

Double-precision numbers use a signed 64-bit word consisting of an 11-bit 
exponent and a 52-bit significand. The bias is 1023. The range of numbers that 
can be represented in the IEEE double-precision model is shown in Figure 2.4. 
NaN is indicated when the exponent is 2047. Representations for 0 and infinity 
correspond to the single-precision model.

FIGURE 2.3 How Floating Point Encoding Works

| NaN |  -∞  |   -Normalized ° s   |  -Denormalized ° s  |    |  +Denormalized ° s  |  +Normalized ° s  |  +∞  | NaN |

-0
0

0+

FIGURE 2.4 Range of IEEE-754 Double-Precision Numbers
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At a slight cost in performance, most FPUs use only the 64-bit model so that 
only one set of specialized circuits needs to be designed and implemented.

Virtually every recently designed computer system has adopted the IEEE-754 
floating-point model. Unfortunately, by the time this standard came along, many 
mainframe computer systems had established their own floating-point systems. 
Changing to the newer system has taken decades for well-established architectures 
such as IBM mainframes, which now support both their traditional floating-point 
system and IEEE-754. Before 1998, however, IBM systems had been using the 
same architecture for floating-point arithmetic that the original System/360 used 
in 1964. One would expect that both systems will continue to be supported, owing 
to the substantial amount of older software that is running on these systems.

 2.5.5 Range, Precision, and Accuracy
When discussing floating-point numbers it is important to understand the terms 
range, precision, and accuracy. Range is very straightforward, because it repre-
sents the interval from the smallest value in a given format to the largest value in 
that same format. For example, the range of 16-bit two’s complement integers is 
−32768 to +32767. The range of IEEE-754 double-precision floating-point num-
bers is given in Figure 2.4. Even with this large range, we know there are infi-
nitely many numbers that do not exist within the range specified by IEEE-754. 
The reason floating-point numbers work at all is that there will always be a num-
ber in this range that is close to the number you want.

People have no problem understanding range, but accuracy and precision are 
often confused with each other. Accuracy refers to how close a number is to its 
true value; for example, we can’t represent 0.1 in floating point, but we can find a 
number in the range that is relatively close, or reasonably accurate, to 0.1. Preci-
sion, on the other hand, deals with how much information we have about a value 
and the amount of information used to represent the value. 1.666 is a number with 
four decimal digits of precision; 1.6660 is the same exact number with five deci-
mal digits of precision. The second number is not more accurate than the first.

Accuracy must be put into context—to know how accurate a value is, one 
must know how close it is to its intended target or “true value.” We can’t look at 
two numbers and immediately declare that the first is more accurate than the sec-
ond simply because the first has more digits of precision.

Although they are separate, accuracy and precision are related. Higher preci-
sion often allows a value to be more accurate, but that is not always the case. For 
example, we can represent the value 1 as an integer, a single-precision floating 
point, or a double-precision floating point, but each is equally (exactly) accurate. 
As another example, consider 3.13333 as an estimate for pi. It has six digits of 
precision, yet is accurate to only two digits. Adding more precision will do noth-
ing to increase the accuracy.

On the other hand, when multiplying ×0.4 0.3, our accuracy depends on 
our precision. If we allow only one decimal place for precision, our result is 0.1 
(which is close to, but not exactly, the product). If we allow two decimal places of 
precision, we get 0.12, which accurately reflects the answer.
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It is important to note that because any floating-point representation has a lim-
ited number of values that can be represented, when performing floating-point arith-
metic the result is often the “closest value” that the machine can represent in the 
given format. This closest value is found by rounding. IEEE has five different round-
ing modes that it uses to perform rounding. The default mode, rounding to nearest, 
finds the closest value; the other modes can be used for upper and lower bounds. 
Rounding to nearest has two options: round to nearest, ties to even (if the number 
is halfway between values, it is rounded to an even value) and round to nearest, 
ties away from 0 (if the number is halfway between two values, it is rounded to the 
value furthest away from 0). The three remaining modes are directed modes, which 
allow directed rounding. Rounding can be done toward 0, toward positive infinity, or 
toward negative infinity. These modes are shown in Figure 2.5.

 2.5.6 Additional Problems with Floating-Point Numbers
We have seen that floating-point numbers can overflow and underflow. In addi-
tion, we know that a floating-point number may not exactly represent the value 
we wish, as is the case with the rounding error that occurs with the binary float-
ing-point representation for the decimal number 0.1. As we have seen, these 
rounding errors can propagate, resulting in substantial problems.

Although rounding is undesirable, it is understandable. In addition to this 
rounding problem, however, floating-point arithmetic differs from real number 
arithmetic in two relatively disturbing, and not necessarily intuitive, ways. First, 
floating-point arithmetic is not always associative. This means that for three 
floating-point numbers a, b, and c, 

+ + ° + +( ) ( )a b c a b c

The same holds true for associativity under multiplication. Although in many 
cases the left-hand side will equal the right-hand side, there is no guarantee. 
Floating-point arithmetic is also not distributive:

× + ≠ +( )a b c ab ac

Although results can vary depending on compiler (we used Gnu C), declaring the 
doubles a = 0.1, b = 0.2, and c = 0.3 illustrates the above inequalities nicely. We 
encourage you to find three additional floating-point numbers to illustrate that 
floating-point arithmetic is neither associative nor distributive.

FIGURE 2.5 Floating Point Rounding Modes 

Value

Rounding Mode +9.5 +10.5 −9.5 −10.5

Nearest ties to even +10.0 +10.0 −10.0 −10.0

Nearest ties away from 0 +10.0 +11.0 −10.0 −11.0

Directed toward 0 +9.0 +10.0 −9.0 −10.0

Directed toward +∞ +10.0 +11.0 −9.0 −10.0

Directed toward −∞ +9.0 +10.0 −10.0 −11.0

2.5 / Floating-Point Representation    99

9781284136852_CH02_Pass03.indd   99 03/02/18   2:26 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION



Floating-Point Ops or Oops?

In this chapter, we have introduced floating-point numbers and the means by which 
computers represent them. We have touched upon floating-point rounding errors 
(studies in numerical analysis will provide further depth on this topic) and the fact that 
floating-point numbers don’t obey the standard associative and distributive laws. But 
just how serious are these issues? To answer this question, we discuss three major 
floating-point blunders.

In 1994, when Intel introduced the Pentium microprocessor, number crunchers 
around the world noticed something weird was happening. Calculations involving 
double-precision divisions and certain bit patterns were producing incorrect results. 
Although the flawed chip was slightly inaccurate for some pairs of numbers, other 
instances were more extreme. For example, if x = 4,195,835 and y = 3,145,727, 
finding z = x − (x/y) × y should produce a z of 0. The Intel 286, 386, and 486 chips 
gave exactly that result. Even taking into account the possibility of floating-point 
round-off error, the value of z should have been about 9.3 × 10–10. But on the new 
Pentium, z was equal to 256!

Once Intel was informed of the problem, research and testing revealed the flaw to 
be an omission in the chip’s design. The Pentium was using the radix-4 SRT algorithm 
for speedy division, which necessitated a 1066-element table. Once implemented in 
silicon, 5 of those table entries were 0 and should have been +2.

Although the Pentium bug was a public relations debacle for Intel, it was not a 
catastrophe for those using the chip. In fact, it was a minor thing compared to the pro-
gramming mistakes with floating-point numbers that have resulted in disasters in areas 
from offshore oil drilling to stock markets to missile defense. The list of actual disas-
ters that resulted from floating-point errors is very long. The following two instances are 
among the worst of them.

During the Persian Gulf War of 1991, the United States relied on Patriot missiles 
to track and intercept cruise missiles and Scud missiles. One of these missiles failed to 
track an incoming Scud missile, allowing the Scud to hit an American army barracks, 

What does this all mean to you as a programmer? Programmers should use 
extra care when using the equality operator on floating-point numbers. This 
implies that they should be avoided in controlling looping structures such as 
do...while and for loops. It is good practice to declare a “nearness to x” epsilon 
(e.g., epsilon = 1.0 × 10−20) and then test an absolute value.

For example, instead of using:

if x = 2 then...

it is better to use:

if(abs(x – 2) < epsilon) then...\\ It’s close enough if we’ve 
                             \\ defined epsilon correctly!
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killing 28 people and injuring many more. After an investigation, it was determined that 
the failure of the Patriot missile was due to using too little precision to allow the missile 
to accurately determine the incoming Scud velocity.

The Patriot missile uses radar to determine the location of an object. If the inter-
nal weapons control computer identifies the object as something that should be inter-
cepted, calculations are performed to predict the air space in which the object should 
be located at a specific time. This prediction is based on the object’s known velocity 
and time of last detection.

The problem was in the clock, which measured time in tenths of seconds. But the 
time since boot was stored as an integer number of seconds (determined by multiply-
ing the elapsed time by 1/10). For predicting where an object would be at a specific 
time, the time and velocity needed to be real numbers. It was no problem to convert 
the integer to a real number; however, using 24-bit registers for its calculations, the 
Patriot was limited in the precision of this operation. The potential problem is easily 
seen when one realizes that 1/10 in binary is:

0.0001100110011001100110011001100 . . .

When the elapsed time was small, this “chopping error” was insignificant and 
caused no problems. The Patriot was designed to be on for only a few minutes at 
a time, so this limit of 24-bit precision would be of no consequence. The problem 
was that during the Gulf War, the missiles were on for days. The longer a missile was 
on, the larger the error became, and the more probable that the inaccuracy of the 
prediction calculation would cause an unsuccessful interception. And this is pre-
cisely what happened on February 25, 1991, when a failed interception resulted 
in 28 people killed—a failed interception caused by loss of precision (required for 
accuracy) in floating-point numbers. It is estimated that the Patriot missile had been 
operational for about 100 hours, introducing a rounding error in the time conversion 
of about 0.34 seconds, which translates to approximately half a kilometer of travel 
for a Scud missile.

Designers were aware of the conversion problem well before the incident occurred. 
However, deploying new software under wartime conditions is anything but trivial. 
Although the new software would have fixed the bug, field personnel could have simply 
rebooted the systems at specific intervals to keep the clock value small enough so that 
24-bit precision would have been sufficient.

One of the most famous examples of a floating-point numeric disaster is the 
explosion of the Ariane 5 rocket. On June 4, 1996, the unmanned Ariane 5 was 
launched by the European Space Agency. Forty seconds after liftoff, the rocket 
exploded, scattering a $500 million cargo across parts of French Guiana. Investi-
gation revealed perhaps one of the most devastatingly careless but efficient soft-
ware bugs in the annals of computer science—a floating-point conversion error. 
The rocket’s inertial reference system converted a 64-bit floating-point number 
(dealing with the horizontal velocity of the rocket) to a 16-bit signed integer. How-
ever, the particular 64-bit floating-point number to be converted was larger than 
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 2.6 CHARACTER CODES

We have seen how digital computers use the binary system to represent and manip-
ulate numeric values. We have yet to consider how these internal values can be 
converted to a form that is meaningful to humans. The manner in which this is 
done depends on both the coding system used by the computer and how the values 
are stored and retrieved.

 2.6.1 Binary-Coded Decimal
For many applications, we need the exact binary equivalent of the decimal sys-
tem, which means we need an encoding for individual decimal digits. This is 
precisely the case in many business applications that deal with money—we can’t 
afford the rounding errors that occur when we convert real numbers to floating 
point during financial transactions!

Binary-coded decimal (BCD) is very common in electronics, particularly 
those that display numerical data, such as alarm clocks and calculators. BCD 
encodes each digit of a decimal number into a 4-bit binary form. Each decimal 
digit is individually converted to its binary equivalent, as seen in Table 2.5. For 
example, to encode 146, the decimal digits are replaced by 0001, 0100, and 0110, 
respectively.

Because most computers use bytes as the smallest unit of access, most 
values are stored in 8 bits, not 4. That gives us two choices for storing 4-bit 
BCD digits. We can ignore the cost of extra bits and pad the high-order nibbles 

32,767 (the largest integer that can be stored in 16-bit signed representation), so 
the  conversion process failed. The rocket tried to make an abrupt course correc-
tion for a wrong turn that it had never taken, and the guidance system shut down. 
Ironically, when the guidance system shut down, control reverted to a backup unit 
installed in the rocket in case of just such a failure, but the backup system was run-
ning the same flawed software.

It seems obvious that a 64-bit floating-point number could be much larger than 
32,767, so how did the rocket programmers make such a glaring error? They decided 
the velocity value would never get large enough to be a problem. Their reasoning? It 
had never gotten too large before. Unfortunately, this rocket was faster than all previous 
rockets, resulting in a larger velocity value than the programmers expected. One of the 
most serious mistakes a programmer can make is to accept the old adage “But we’ve 
always done it that way.”

Computers are everywhere—in our washing machines, our televisions, our micro-
waves, even our cars. We certainly hope the programmers who work on computer 
software for our cars don’t make such hasty assumptions. With approximately 15 to 60 
microprocessors in all new cars that roll off the assembly line and innumerable proces-
sors in commercial aircraft and medical equipment, a deep understanding of floating-
point anomalies can quite literally be a lifesaver.
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with 0s (or 1s), forcing each decimal digit to be replaced by 8 bits. Using 
this approach, padding with 0s, 146 would be stored as 00000001 00000100 
00000110. Clearly, this approach is quite wasteful. The second approach, 
called packed BCD, stores two digits per byte. Packed decimal format allows 
numbers to be signed, but instead of putting the sign at the beginning, the sign 
is stored at the end. The standard values for this “sign digit” are 1100 for +, 
1101 for −, and 1111 to indicate that the value is unsigned (see Table 2.5). 
Using packed decimal format, +146 would be stored as 00010100 01101100. 
Padding would still be required for an even number of digits. Note that if a 
number has a decimal point (as with monetary values), this is not stored in 
the BCD representation of the number and must be retained by the application 
program.

Another variation of BCD is zoned-decimal format. Zoned-decimal repre-
sentation stores a decimal digit in the low-order nibble of each byte, which is 
exactly the same as unpacked decimal format. However, instead of padding the 
high-order nibbles with 0s, a specific pattern is used. There are two choices for 
the high-order nibble, called the numeric zone. EBCDIC zoned-decimal  format 
requires the zone to be all 1s (hexadecimal F). ASCII zoned-decimal format 
requires the zone to be 0011 (hexadecimal 3). (See the next two sections for 
detailed explanations of EBCDIC and ASCII.) Both formats allow for signed 
numbers (using the sign digits found in Table 2.5) and typically expect the sign 
to be located in the high-order nibble of the least significant byte (although the 
sign could be a completely separate byte). For example, +146 in EBCDIC zoned- 
decimal format is 11110001 11110100 11000110 (note that the high-order nibble 
of the last byte is the sign). In ASCII zoned-decimal format, +146 is 00110001 
00110100 11000110.

Digit BCD

0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001

Zones

1111 Unsigned
1100 Positive
1101 Negative

TABLE 2.5 Binary-Coded Decimal
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Note from Table 2.5 that six of the possible binary values are not used—
1010 through 1111. Although it may appear that nearly 40% of our values are 
going to waste, we are gaining a considerable advantage in accuracy. For exam-
ple, the number 0.3 is a repeating decimal when stored in binary. Truncated to an 
8-bit fraction, it converts back to 0.296875, giving us an error of approximately 
1.05%. In EBCDIC zoned-decimal BCD, the number is stored directly as 1111 
0011 (we are assuming the decimal point is implied by the data format), giving 
no error at all.

EXAMPLE 2.37 Represent −1265 using packed BCD and EBCDIC zoned 
decimal.

The 4-bit BCD representation for 1265 is:

0001 0010 0110 0101

Adding the sign after the low-order digit and padding the high-order bit with 
0000, we have:

0000 0001 0010 0110 0101 1101

The EBCDIC zoned-decimal representation requires 4 bytes:

1111 1111 110111110001 0110 01010010

The sign bit is shaded in both representations.

 2.6.2 EBCDIC
Before the development of the IBM System/360, IBM had used a 6-bit variation of 
BCD for representing characters and numbers. This code was severely limited in 
how it could represent and manipulate data; in fact, lowercase letters were not part 
of its repertoire. The designers of the System/360 needed more information pro-
cessing capability as well as a uniform manner in which to store both numbers and 
data. To maintain compatibility with earlier computers and peripheral equipment, 
the IBM engineers decided that it would be best to simply expand BCD from 6 bits 
to 8 bits. Accordingly, this new code was called Extended Binary Coded  Decimal 
Interchange Code (EBCDIC). IBM continues to use EBCDIC in IBM mainframe 
and midrange computer systems; however, IBM’s AIX operating system (found 
on the RS/6000 and its successors) and operating systems for the IBM PC use 
ASCII. The EBCDIC code is shown in Table 2.6 in zone-digit form. Characters 
are represented by appending digit bits to zone bits. For example, the character a is 
1000 0001 and the digit 3 is 1111 0011 in EBCDIC. Note that the only difference 
between uppercase and lowercase characters is in bit position 2, making a transla-
tion from uppercase to lowercase (or vice versa) a simple matter of flipping one bit. 
Zone bits also make it easier for a programmer to test the validity of input data.
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 2.6.3 ASCII
While IBM was busy building its iconoclastic System/360, other equipment 
 makers were trying to devise better ways for transmitting data between sys-
tems. The American Standard Code for Information Interchange (ASCII) 
is one outcome of those efforts. ASCII is a direct descendant of the coding 
schemes used for decades by teletype (telex) devices. These devices used 
a 5-bit (Murray) code that was derived from the Baudot code, which was 
invented in the 1880s. By the early 1960s, the limitations of the 5-bit codes 
were becoming apparent. The International Organization for Standardization 
devised a 7-bit coding scheme that it called International Alphabet Number 5. 
In 1967, a derivative of this alphabet became the official standard that we now 
call ASCII.

As you can see in Table 2.7, ASCII defines codes for 32 control characters, 
10  digits, 52 letters (uppercase and lowercase), 32 special characters (such as 
$ and #), and the space character. The high-order (eighth) bit was intended to be 
used for parity.

Parity is the most basic of all error-detection schemes. It is easy to imple-
ment in simple devices like teletypes. A parity bit is turned “on” or “off” depend-
ing on whether the sum of the other bits in the byte is even or odd. For example, 
if we decide to use even parity and we are sending an ASCII A, the lower 7 bits 
are 100 0001. Because the sum of the bits is even, the parity bit would be set to 
“off  ” and we would transmit 0100 0001. Similarly, if we transmit an ASCII C, 
100 0011, the parity bit would be set to “on” before we sent the 8-bit byte, 1100 
0011. Parity can be used to detect only single-bit errors. We will discuss more 
sophisticated error-detection methods in Section 2.7.

To allow compatibility with telecommunications equipment, computer 
manufacturers gravitated toward the ASCII code. As computer hardware 
became more reliable, however, the need for a parity bit began to fade. In the 
early 1980s, microcomputer and microcomputer-peripheral makers began to 
use the parity bit to provide an “extended” character set for values between 
12810 and 25510.

Depending on the manufacturer, the higher-valued characters could be any-
thing from mathematical symbols to characters that form the sides of boxes to 
foreign-language characters such as ñ. Unfortunately, no number of clever tricks 
can make ASCII a truly international interchange code.

 2.6.4 Unicode
Both EBCDIC and ASCII were built around the Latin alphabet. As such, they 
are restricted in their abilities to provide data representation for the non-Latin 
alphabets used by the majority of the world’s population. As all countries 
began using computers, each was devising codes that would most effectively 
represent their native languages. None of these was necessarily compatible 
with any others, placing yet another barrier in the way of the emerging global 
economy.
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TABLE 2.6 The EBCDIC Code (Values Given in Binary Zone-Digit Format)

Abbreviations

NUL Null TM Tape mark ETB End of transmission block

SOH Start of heading RES Restore ESC Escape

STX Start of text NL New line SM Set mode

ETX End of text BS Backspace CU2 Customer use 2

PF Punch off IL Idle ENQ Enquiry

HT Horizontal tab CAN Cancel ACK Acknowledge

LC Lowercase EM End of medium BEL Ring the bell (beep)

DEL Delete CC Cursor control SYN Synchronous idle

RLF Reverse line feed CU1 Customer use 1 PN Punch on

SMM Start manual message IFS Interchange file separator RS Record separator

VT Vertical tab IGS Interchange group separator UC Uppercase

FF Form feed IRS Interchange record separator EOT End of transmission

CR Carriage return IUS Interchange unit separator CU3 Customer use 3

SO Shift out DS Digit select DC4 Device control 4

SI Shift in SOS Start of significance NAK Negative acknowledgment

DLE Data link escape FS Field separator SUB Substitute

DC1 Device control 1 BYP Bypass SP Space

DC2 Device control 2 LF Line feed

Digit

Zone 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0000 NUL SOH STX ETX PF HT LC DEL RLF SMM VT FF CR SO SI

0001 DLE DC1 DC2 TM RES NL BS IL CAN EM CC CU1 IFS IGS IRS IUS

0010 DS SOS FS BYP LF ETB ESC SM CU2 ENQ ACK BEL

0011 SYN PN RS UC EOT CU3 DC4 NAK SUB

0100 SP [ . < ( + !

0101 & ] $ * ) ; ˆ

0110 − / ' : # @ ' = "

0111

1000 a b c d e f g h i

1001 j k l m n o p q r

1010 ~ s t u v w x y z

1011

1100 { A B C D E F G H I

1101 } J K L M N O P Q R

1110 / S T U V W X Y Z

1111 0 1 2 3 4 5 6 7 8 9
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NUL Null DLE Data link escape

SOH Start of heading DC1 Device control 1

STX Start of text DC2 Device control 2

ETX End of text DC3 Device control 3

EOT End of transmission DC4 Device control 4

ENQ Enquiry NAK Negative acknowledge

ACK Acknowledge SYN Synchronous idle

BEL Bell (beep) ETB End of transmission block

BS Backspace CAN Cancel

HT Horizontal tab EM End of medium

LF Line feed, new line SUB Substitute

VT Vertical tab ESC Escape

FF Form feed, new page FS File separator

CR Carriage return GS Group separator

SO Shift out RS Record separator

SI Shift in US Unit separator

DEL Delete/idle

 

Abbreviations:

0 NUL 16 DLE 32 48 0 64 @ 80 P 96 ` 112 p

1 SOH 17 DC1 33 ! 49 1 65 A 81 Q 97 a 113 q

2 STX 18 DC2 34 " 50 2 66 B 82 R 98 b 114 r

3 ETX 19 DC3 35 # 51 3 67 C 83 S 99 c 115 s

4 EOT 20 DC4 36 $ 52 4 68 D 84 T 100 d 116 t

5 ENQ 21 NAK 37 % 53 5 69 E 85 U 101 e 117 u

6 ACK 22 SYN 38 & 54 6 70 F 86 V 102 f 118 v

7 BEL 23 ETB 39 ' 55 7 71 G 87 W 103 g 119 w

8 BS 24 CAN 40 ( 56 8 72 H 88 X 104 h 120 x

9 HT 25 EM 41 ) 57 9 73 I 89 Y 105 i 121 y

10 LF 26 SUB 42 * 58 : 74 J 90 Z 106 j 122 z

11 VT 27 ESC 43 + 59 ; 75 K 91 [ 107 k 123 {

12 FF 28 FS 44 ’ 60 < 76 L 92 \ 108 l 124 |

13 CR 29 GS 45 − 61 − 77 M 93 ] 109 m 125 }

14 SO 30 RS 46 . 62 > 78 N 94 ˆ 110 n 126 ~

15 SI 31 US 47 / 63 ? 79 O 95 _ 111 o 127 DEL

TABLE 2.7 The ASCII Code (Values Given in Decimal)

2.6 / Character Codes    107

9781284136852_CH02_Pass03.indd   107 03/02/18   2:26 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION



TABLE 2.8 Unicode Codespace

In 1991, before things got too far out of hand, a consortium of industry 
and public leaders was formed to establish a new international information 
exchange code called Unicode. This group is appropriately called the Unicode 
Consortium.

Unicode is a 16-bit alphabet that is downward compatible with ASCII and the 
Latin-1 character set. It is conformant with the ISO/IEC 10646-1 international 
alphabet. Because the base coding of Unicode is 16 bits, it has the capacity to 
encode the majority of characters used in every language of the world. If this 
weren’t enough, Unicode also defines an extension mechanism that will allow for 
the coding of an additional million characters. This is sufficient to provide codes 
for every written language in the history of civilization.

The Unicode codespace consists of five parts, as shown in Table 2.8. A full 
Unicode-compliant system will also allow formation of composite characters 
from the individual codes, such as the combination of ´ and A to form Á. The 
algorithms used for these composite characters, as well as the Unicode exten-
sions, can be found in the references at the end of this chapter.

Although Unicode has yet to become the exclusive alphabet of  American 
computers, most manufacturers are including at least some limited support for 
it in their systems. Unicode is currently the default character set of the Java pro-
gramming language. Ultimately, the acceptance of Unicode by all  manufacturers 
will depend on how aggressively they wish to position themselves as interna-
tional players and how inexpensively disk drives can be  produced to support an 
alphabet with double the storage requirements of ASCII or EBCDIC.

Character  
Types

Character Set  
Description

Number of  
Characters

Hexadecimal  
Values

Alphabets Latin, Cyrillic, Greek, etc. 8192
0000

to
1FFF

Symbols
Dingbats, mathematical, 
etc.

4096
2000

to
2FFF

CJK
Chinese, Japanese, 
and Korean phonetic 
symbols and punctuation 

4096
3000

To
3FFF

Han
Unified Chinese, 
Japanese, and Korean

40,960
4000

to
DFFF

Expansion or spillover 
from Han

4096
E000

to
EFFF

User defined 4095
F000

to
FFFE
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 2.7 ERROR DETECTION AND CORRECTION

No communications channel or storage medium can be completely error-free. It 
is a physical impossibility. As transmission rates are increased, bit timing gets 
tighter. As more bits are packed per square millimeter of storage, magnetic flux 
densities increase. Error rates increase in direct proportion to the number of bits 
per second transmitted, or the number of bits per square millimeter of magnetic 
storage.

In Section 2.6.3, we mentioned that a parity bit could be added to an ASCII 
byte to help determine whether any of the bits had become corrupted during 
transmission. This method of error detection is limited in its effectiveness: Sim-
ple parity can detect only an odd number of errors per byte. If two errors occur, 
we are helpless to detect a problem. Nonsense could pass for good data. If such 
errors occur in sending financial information or program code, the effects can be 
disastrous.

As you read the sections that follow, you should keep in mind that just as 
it is impossible to create an error-free medium, it is also impossible to detect 
or correct 100% of all errors that could occur in a medium. Error detection and 
correction is yet another study in the trade-offs that one must make in design-
ing computer systems. The well-constructed error control system is therefore a 
system where a “reasonable” number of the “reasonably” expected errors can be 
detected or corrected within the bounds of “reasonable” economics. (Note: The 
word reasonable is implementation-dependent.)

 2.7.1 Cyclic Redundancy Check
Checksums are used in a wide variety of coding systems, from bar codes to Inter-
national Standard Book Numbers. These are self-checking codes that will quickly 
indicate whether the preceding digits have been misread. A cyclic redundancy 
check (CRC) is a type of checksum used primarily in data communications that 
determines whether an error has occurred within a large block or stream of infor-
mation bytes. The larger the block to be checked, the larger the checksum must 
be to provide adequate protection. Checksums and CRCs are types of  systematic 
error detection schemes, meaning that the error-checking bits are appended 
to the original information byte. The group of error-checking bits is called a 
 syndrome. The original information byte is unchanged by the addition of the 
error-checking bits.

The word cyclic in cyclic redundancy check refers to the abstract mathe-
matical theory behind this error control system. Although a discussion of this 
theory is beyond the scope of this text, we can demonstrate how the method 
works to aid in your understanding of its power to economically detect trans-
mission errors.

Arithmetic Modulo 2

You may be familiar with integer arithmetic taken over a modulus. Twelve-hour 
clock arithmetic is a modulo 12 system that you use every day to tell time. When 
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we add 2 hours to 11:00, we get 1:00. Arithmetic modulo 2 uses two binary 
operands with no borrows or carries. The result is likewise binary and is also a 
member of the modulo 2 system. Because of this closure under addition, and the 
existence of identity elements, mathematicians say that this modulo 2 system 
forms an algebraic field.

The addition rules are as follows:

0 0 0
0 1 1
1 0 1
1 1 0

+ =
+ =
+ =
+ =

EXAMPLE 2.38 Find the sum of 10112 and 1102 modulo 2.

1011 
110

1101 mod 22 ( )
+

This sum makes sense only in modulo 2.

Modulo 2 division operates through a series of partial sums using the modulo 2 
addition rules. Example 2.39 illustrates the process.

EXAMPLE 2.39 Find the quotient and remainder when 10010112 is divided 
by 10112.

)1011 1001011

1011

0010

001001
1011

0010
00101

The quotient is 10102.

Arithmetic operations over the modulo 2 field have polynomial equivalents that 
are analogous to polynomials over the field of integers. We have seen how posi-
tional number systems represent numbers in increasing powers of a radix, for 
example:

1.  Write the divisor directly beneath the first bit of the 
dividend.

2.  Add these numbers using modulo 2.
3.  Bring down bits from the dividend so that the first 1 of 

the difference can align with the first 1 of the divisor.
4.  Copy the divisor as in Step 1.
5.  Add as in Step 2.
6.  Bring down another bit.
7.  1012 is not divisible by 10112, so this is the remainder.
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1011 1 2 0 2 1 2 1 2 .2
3 2 1 0= × + × + × + ×

By letting X = 2, the binary number 10112 becomes shorthand for the polynomial:

1 0 1 1 .3 2 1 0X X X X× + × + × + ×

The division performed in Example 2.39 then becomes the polynomial operation:

1

1

6 3

3

X X X

X X

+ + +

+ +

Calculating and Using CRCs

With that lengthy preamble behind us, we can now proceed to show how CRCs 
are constructed. We will do this by example:

 1. Let the information byte I = 10010112. (Any number of bytes can be used to 
form a message block.)

 2. The sender and receiver agree upon an arbitrary binary pattern, say, P = 10112. 
(Patterns beginning and ending with 1 work best.)

 3. Shift I to the left by one less than the number of bits in P, giving a new 
I = 10010110002.

 4. Using I as a dividend and P as a divisor, perform the modulo 2 division  
(as shown in Example 2.39). We ignore the quotient and note that the 
 remainder is 1002. The remainder is the actual CRC checksum.

 5. Add the remainder to I, giving the message M:

+ =1001011000 100 10010111002 2 2

 6. M is decoded and checked by the message receiver using the reverse process. 
Only now P divides M exactly:

 

)1011 1001011100

1011

001001

1011

0010

001011

1011

0000

1010100

Note: The reverse process would include appending the remainder.
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A remainder other than 0 indicates that an error has occurred in the transmis-
sion of M. This method works best when a large prime polynomial is used. There 
are four standard polynomials used widely for this purpose:

• CRC-CCITT (ITU-T): 116 12 5X X X+ + +
• CRC-12: 112 11 3 2X X X X X+ + + + +
• CRC-16 (ANSI): 116 15 2X X X+ + +
• CRC-32: 32 26 23 22 16 12 11 10 8 7 5X X X X X X X X X X X+ + + + + + + + + +

14X X+ + +

CRC-CCITT, CRC-12, and CRC-16 operate over pairs of bytes; CRC-32 uses 
4 bytes, which is appropriate for systems operating on 32-bit words. It has been 
proven that CRCs using these polynomials can detect more than 99.8% of all sin-
gle-bit errors.

CRCs can be implemented effectively using lookup tables as opposed to 
 calculating the remainder with each byte. The remainder generated by each 
 possible input bit pattern can be “burned” directly into communications and 
 storage electronics. The remainder can then be retrieved using a 1-cycle lookup as 
compared to a 16- or 32-cycle division operation. Clearly, the trade-off is in speed 
versus the cost of more complex control circuitry.

 2.7.2 Hamming Codes
Data communications channels are simultaneously more error-prone and more 
tolerant of errors than disk systems. In data communications, it is sufficient to 
have only the ability to detect errors. If a communications device determines that 
a message contains an erroneous bit, all it has to do is request retransmission. 
Storage systems and memory do not have this luxury. A disk can sometimes be 
the sole repository of a financial transaction or other collection of nonreproduc-
ible real-time data. Storage devices and memory must therefore have the ability to 
not only detect but to correct a reasonable number of errors.

Error-recovery coding has been studied intensively over the past century. One 
of the most effective codes—and the oldest—is the Hamming code.  Hamming 
codes are an adaptation of the concept of parity, whereby error detection and 
 correction capabilities are increased in proportion to the number of parity bits 
added to an information word. Hamming codes are used in situations where 
 random errors are likely to occur. With random errors, we assume that each bit 
failure has a fixed probability of occurrence independent of other bit failures. It 
is common for computer memory to experience such errors, so in our following 
discussion, we present Hamming codes in the context of memory bit error detec-
tion and correction.

We mentioned that Hamming codes use parity bits, also called check bits or 
redundant bits. The memory word itself consists of m bits, but r redundant bits 
are added to allow for error detection and/or correction. Thus, the final word, 
called a code word, is an n-bit unit containing m data bits and r check bits. 
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There exists a unique code word consisting of n = m + r bits for each data word 
as follows:

m bits     r bits

The number of bit positions in which two code words differ is called the Ham-
ming distance of those two code words. For example, if we have the following 
two code words:

1 0 0 0 1 0 0 1
1 0 1 1 0 0 0 1

* * *

we see that they differ in 3 bit positions (marked by *), so the Hamming distance 
of these two code words is 3. (Please note that we have not yet discussed how to 
create code words; we will do that shortly.)

The Hamming distance between two code words is important in the context 
of error detection. If two code words are a Hamming distance d apart, d single-
bit errors are required to convert one code word to the other, which implies that 
this type of error would not be detected. Therefore, if we wish to create a code 
that guarantees detection of all single-bit errors (an error in only 1 bit), all pairs 
of code words must have a Hamming distance of at least 2. If an n-bit word is not 
recognized as a legal code word, it is considered an error.

Given an algorithm for computing check bits, it is possible to construct a 
complete list of legal code words. The smallest Hamming distance found among 
all pairs of the code words in this code is called the minimum Hamming 
 distance for the code. The minimum Hamming distance of a code, often  signified 
by the notation D(min), determines its error detecting and correcting  capability. 
Stated succinctly, for any code word X to be received as another valid code 
word Y, at least D(min) errors must occur in X. So, to detect k (or fewer) single-
bit errors, the code must have a Hamming distance of D(min) = k + 1. Hamming 
codes can always detect D(min) − 1 errors and correct (D(min) − 1)/2 errors.1 
Accordingly, the Hamming distance of a code must be at least 2k + 1 in order for 
it to be able to correct k errors.

Code words are constructed from information words using r parity bits. 
Before we continue the discussion of error detection and correction, let’s con-
sider a simple example. The most common error detection uses a single parity bit 
appended to the data (recall the discussion on ASCII character representation). A 
single-bit error in any bit of the code word produces the wrong parity.

1 The    brackets denote the integer floor function, which is the largest integer that is smaller than 
or equal to the enclosed quantity. For example, 8.3 = 8 and 8.9 = 8.
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EXAMPLE 2.40 Assume a memory with 2 data bits and 1 parity bit (appended 
at the end of the code word) that uses even parity (so the number of 1s in the code 
word must be even). With 2 data bits, we have a total of four possible words. We 
list here the data word, its corresponding parity bit, and the resulting code word 
for each of these four possible words:

Data Word Parity Bit Code Word

00 0 000

01 1 011

10 1 101

11 0 110

The resulting code words have 3 bits. However, using 3 bits allows for 8  different 
bit patterns, as follows (valid code words are marked with an *):

000* 100

001 101*

010 100*

011* 111

If the code word 001 is encountered, it is invalid and thus indicates that an 
error has occurred somewhere in the code word. For example, suppose the 
 correct code word to be stored in memory is 011, but an error produces 001. 
This error can be detected, but it cannot be corrected. It is impossible to deter-
mine exactly how many bits have been flipped and exactly which 1s are in error.  
Error-correcting codes require more than a single parity bit, as we see in the 
 following discussion.

What happens in the above example if a valid code word is subject to two-bit 
errors? For example, suppose the code word 011 is converted into 000. This error 
is not detected. If you examine the code in the above example, you will see that 
D(min) is 2, which implies that this code is guaranteed to detect only single-bit 
errors.

We have already stated that the error detecting and correcting capabili-
ties of a code are dependent on D(min), and from an error detection point 
of view, we have seen this relationship exhibited in Example 2.40. Error 
 correction requires the code to contain additional redundant bits to ensure a 
 minimum Hamming distance D(min) = 2k + 1 if the code is to detect and cor-
rect k errors. This Hamming distance guarantees that all legal code words are 
far enough apart that even with k changes, the original invalid code word is 
closer to one unique valid code word. This is important because the method 
used in error correction is to change the invalid code word into the valid 
code word that differs in the fewest number of bits. This idea is illustrated in 
Example 2.41.
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EXAMPLE 2.41 Suppose we have the following code (do not worry at this 
time about how this code was generated; we will address this issue shortly):

0 0 0 0 0
0 1 0 1 1
1 0 1 1 0
1 1 1 0 1

First, let’s determine D(min). By examining all possible pairs of code words, we 
discover that the minimum Hamming distance D(min) = 3. Thus, this code can 
detect up to two errors and correct one single-bit error. How is correction han-
dled? Suppose we read the invalid code word 10000. There must be at least one 
error because this does not match any of the valid code words. We now determine 
the Hamming distance between the observed code word and each legal code word: 
It differs in 1 bit from the first code word, 4 from the second, 2 from the third, and 
3 from the last, resulting in a difference vector of [1,4,2,3]. To make the correc-
tion using this code, we automatically correct to the legal code word closest to the 
observed word, resulting in a correction to 00000. Note that this “correction” is 
not necessarily correct! We are assuming that the minimum number of possible 
errors has occurred, namely, 1. It is possible that the original code word was sup-
posed to be 10110 and was changed to 10000 when two errors occurred.

Suppose two errors really did occur. For example, assume we read the invalid 
code word 11000. If we calculate the distance vector of [2,3,3,2], we see there is 
no “closest” code word, and we are unable to make the correction. The minimum 
Hamming distance of 3 permits correction of one error only, and cannot ensure 
correction, as evidenced in this example, if more than one error occurs.

In our discussion up to this point, we have simply presented you with various 
codes, but have not given any specifics as to how the codes are generated. There 
are many methods that are used for code generation; perhaps one of the more intu-
itive is the Hamming algorithm for code design, which we now present. Before 
explaining the actual steps in the algorithm, we provide some background material.

Suppose we wish to design a code with words consisting of m data bits and 
r check bits, which allows for single-bit errors to be corrected. This implies that 
there are 2m legal code words, each with a unique combination of check bits. 
Because we are focused on single-bit errors, let’s examine the set of invalid code 
words that are a distance of 1 from all legal code words.

Each valid code word has n bits, and an error could occur in any of these n posi-
tions. Thus, each valid code word has n illegal code words at a distance of 1. There-
fore, if we are concerned with each legal code word and each invalid code word 
consisting of one error, we have n + 1 bit patterns associated with each code word  
(1 legal word and n illegal words). Because each code word consists of n bits, where 
n = m + r, there are 2n total bit patterns possible. This results in the following inequality:

+ × ≤( 1) 2 2n m n

2.7 / Error Detection and Correction    115

9781284136852_CH02_Pass03.indd   115 03/02/18   2:26 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION



where n + 1 is the number of bit patterns per code word, 2m is the number of 
legal code words, and 2n is the total number of bit patterns possible. Because 
n = m + r, we can rewrite the inequality as:

( 1)  2 2 +m r m m r+ + × ≤
or

 + + °( 1) 2m r r

This inequality is important because it specifies the lower limit on the number of 
check bits required (we always use as few check bits as possible) to construct a 
code with m data bits and r check bits that corrects all single-bit errors.

Suppose we have data words of length m = 4. Then:

+ + °(4 1) 2r r

which implies that r must be greater than or equal to 3. We choose r = 3. This 
means to build a code with data words of 4 bits that should correct single-bit 
errors, we must add 3 check bits.

The Hamming Algorithm

The Hamming algorithm provides a straightforward method for designing codes 
to correct single-bit errors. To construct error-correcting codes for any size mem-
ory word, we follow these steps:

 1. Determine the number of check bits, r, necessary for the code and then number 
the n bits (where = +n m r), right to left, starting with 1 (not 0).

 2. Each bit whose bit number is a power of 2 is a parity bit—the others are 
data bits.

 3. Assign parity bits to check bit positions as follows: Bit b is checked by those 
parity bits b1, b2, . . . , bj such that b1 + b2 + . . . + bj = b (where “+” indicates 
the modulo 2 sum).

We now present an example to illustrate these steps and the actual process of 
error correction.

EXAMPLE 2.42 Using the Hamming code just described and even par-
ity, encode the 8-bit ASCII character K. (The high-order bit will be 0.) Induce a 
 single-bit error and then indicate how to locate the error.

We first determine the code word for K.

Step 1:  Determine the number of necessary check bits, add these bits to the data 
bits, and number all n bits.

Because m = 8, we have: + + °(8 1) 2r r, which implies that r must be greater 
than or equal to 4. We choose r = 4.

Step 2: Number the n bits right to left, starting with 1, which results in:

12 11 10 9 8 7 6 5 4 3 2 1
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The parity bits are marked by boxes.

Step 3:  Assign parity bits to check the various bit positions.

To perform this step, we first write all bit positions as sums of those numbers that 
are powers of 2:

=
=
= +
=

= +
= +
= + +
=

= +
= +
= + +
= +

1 1
2 2
3 1 2
4 4

5 1 4
6 2 4
7 1 2 4
8 8

9 1 8
10 2 8
11 1 2 8
12 4 8

The number 1 contributes to 1, 3, 5, 7, 9, and 11, so this parity bit will reflect the 
parity of the bits in these positions. Similarly, 2 contributes to 2, 3, 6, 7, 10, and 
11, so the parity bit in position 2 reflects the parity of this set of bits. Bit 4 pro-
vides parity for 4, 5, 6, 7, and 12, and bit 8 provides parity for bits 8, 9, 10, 11, 
and 12. If we write the data bits in the nonboxed blanks, and then add the parity 
bits, we have the following code word as a result:

12 11 10 9 8 7 6 5 4 3 2 1
0 1 0 0 1 1 0 1 0 1 1 0

Therefore, the code word for K is 010011010110.
Let’s introduce an error in bit position b9, resulting in the code word 

010111010110. If we use the parity bits to check the various sets of bits, we find 
the following:

Bit 1 checks 1, 3, 5, 7, 9, and 11: With even parity, this produces an error.
Bit 2 checks 2, 3, 6, 7, 10, and 11: This is okay.
Bit 4 checks 4, 5, 6, 7, and 12: This is okay.
Bit 8 checks 8, 9, 10, 11, and 12: This produces an error.

Parity bits 1 and 8 show errors. These two parity bits both check 9 and 11, so the 
single-bit error must be in either bit 9 or bit 11. However, because bit 2 checks 
bit 11 and indicates no error has occurred in the subset of bits it checks, the error 
must occur in bit 9. (We know this because we created the error; however, note 
that even if we have no clue where the error is, using this method allows us to 
determine the position of the error and correct it by simply flipping the bit.)

Because of the way the parity bits are positioned, an easier method to detect 
and correct the error bit is to add the positions of the parity bits that indicate an 
error. We found that parity bits 1 and 8 produced an error, and 1 + 8 = 9, which is 
exactly where the error occurred.

EXAMPLE 2.43 Use the Hamming algorithm to find all code words for a 3-bit 
memory word, assuming odd parity.

We have 8 possible words: 000, 001, 010, 011, 100, 101, 110, and 111. We 
first need to determine the required number of check bits. Because m = 3, we 
have + + °(3 1) 2r r, which implies that r must be greater than or equal to 3.  
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We choose r = 3. Therefore, each code word has 6 bits, and the check bits are in 
positions 1, 2, and 4, as shown here:

6 5 4 3 2 1

From our previous example, we know that:

• Bit 1 checks the parity over bits 1, 3, and 5.
• Bit 2 check the parity over bits 2, 3, and 6.
• Bit 4 checks the parity over bits 4, 5, and 6.

Therefore, we have the following code words for each memory word:

Memory Word Code Word

000 6 5 4 3 2 1Bit position

 0 0 1 0 1 1

001 6 5 4 3 2 1Bit position

 0 0 1 1 0 0

010 6 5 4 3 2 1Bit position

 0 1 0 0 1 0

011 6 5 4 3 2 1Bit position

 0 1 0 1 0 1

100 6 5 4 3 2 1Bit position

 1 0 0 0 0 1

101 6 5 4 3 2 1Bit position

 1 0 0 1 1 0

110 6 5 4 3 2 1Bit position

 1 1 1 0 0 0

111 6 5 4 3 2 1Bit position

 1 1 1 1 1 1

Our set of code words is 001011, 001100, 010010, 010101, 100001, 100110, 
111000, and 111111. If a single bit in any of these words is flipped, we can deter-
mine exactly which one it is and correct it. For example, to send 111, we actually 
send the code word 111111 instead. If 110111 is received, parity bit 1 (which 
checks bits 1, 3, and 5) is okay, and parity bit 2 (which checks bits 2, 3, and 6) is 
okay, but parity bit 4 shows an error, as only bits 5 and 6 are 1s, violating odd par-
ity. Bit 5 cannot be incorrect, because parity bit 1 checked out okay. Bit 6 cannot 
be wrong because parity bit 2 checked out okay. Therefore, it must be bit 4 that is 
wrong, so it is changed from a 0 to a 1, resulting in the correct code word 111111.

118    Chapter 2  /  Data Representation in Computer Systems

9781284136852_CH02_Pass03.indd   118 03/02/18   2:36 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION



In the next chapter, you will see how easy it is to implement a Hamming code 
using simple binary circuits. Because of its simplicity, Hamming code protection 
can be added inexpensively and with minimal effect on performance.

 2.7.3 Reed-Solomon
Hamming codes work well in situations where one can reasonably expect errors 
to be rare events. Fixed magnetic disk drives have error ratings on the order of 
1 bit in 100 million. The 3-bit Hamming code that we just studied will easily 
correct this type of error. However, Hamming codes are useless in situations 
where there is a likelihood that multiple adjacent bits will be damaged. These 
kinds of errors are called burst errors. Because of their exposure to mishandling 
and environmental stresses, burst errors are common on removable media such as 
magnetic tapes and compact discs.

If we expect errors to occur in blocks, it stands to reason that we should use 
an error-correcting code that operates at a block level, as opposed to a Hamming 
code, which operates at the bit level. A Reed-Solomon (RS) code can be thought 
of as a CRC that operates over entire characters instead of only a few bits. RS 
codes, like CRCs, are systematic: The parity bytes are appended to a block of 
information bytes. RS(n, k) codes are defined using the following parameters:

• s = The number of bits in a character (or “symbol”)
• k = The number of s-bit characters comprising the data block
• n = The number of bits in the code word

RS(n, k) can correct 
−( )

2

n k
 errors in the k information bytes.

The popular RS(255, 223) code, therefore, uses 223 8-bit information bytes 
and 32 syndrome bytes to form 255-byte code words. It will correct as many as 
16 erroneous bytes in the information block.

The generator polynomial for an RS code is given by a polynomial defined 
over an abstract mathematical structure called a Galois field. (A lucid discussion 
of Galois mathematics is beyond the scope of this text. See the references at the 
end of the chapter.) The RS-generating polynomial is:

– – . . . –1 2g x x a x a x ai i i t( ) ( )( )( ) = + +

where t = n − k and x is an entire byte (or symbol) and g(x) operates over the field 
GF(2s). (Note: This polynomial expands over the Galois field, which is consider-
ably different from the integer fields used in ordinary algebra.)

The n-byte RS code word is computed using the equation:

= ×( ) ( ) ( )c x g x i x

where i(x) is the information block.
Despite the daunting algebra behind them, RS error-correction algorithms lend 

themselves well to implementation in computer hardware. They are implemented in 
high-performance disk drives for mainframe computers as well as compact discs used 
for music and data storage. These implementations will be described in Chapter 7.
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information can be found at the American National Standards Institute website: 
www.ansi.org.

After you master the concepts of Boolean algebra and digital logic, you will 
enjoy reading Arazi’s book (1988). This well-written text shows how error detec-
tion and correction are achieved using simple digital circuits. Arazi’s appendix 
gives a remarkably lucid discussion of the Galois field arithmetic that is used in 
Reed-Solomon codes.

If you’d prefer a rigorous and exhaustive study of error-correction theory, 
Pretzel’s (1992) book is an excellent place to start. The text is accessible, well-
written, and thorough.

Detailed discussions of Galois fields can be found in the (inexpensive!) books 
by Artin (1998) and Warner (1990). Warner’s much larger book is a clearly writ-
ten and comprehensive introduction to the concepts of abstract algebra. A study 
of abstract algebra will be helpful should you delve into the study of mathemati-
cal cryptography, a fast-growing area of interest in computer science.
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REVIEW OF ESSENTIAL TERMS AND CONCEPTS

 1. The word bit is a contraction for what two words?

 2. Explain how the terms bit, byte, nibble, and word are related.

 3. Why are binary and decimal called positional numbering systems?

 4. Explain how base 2, base 8, and base 16 are related.

 5. What is a radix?

CHAPTER SUMMARY

We have presented the essentials of data representation and numerical opera-
tions in digital computers. You should master the techniques described for 

base conversion and memorize the smaller hexadecimal and binary numbers. This 
knowledge will be beneficial to you as you study the remainder of this text. Your 
knowledge of hexadecimal coding will be useful if you are ever required to read 
a core (memory) dump after a system crash or if you do any serious work in the 
field of data communications.

You have also seen that floating-point numbers can produce significant errors 
when small errors are allowed to compound over iterative processes. There are 
various numerical techniques that can be used to control such errors. These tech-
niques merit detailed study but are beyond the scope of this text.

You have learned that most computers use ASCII or EBCDIC to represent 
characters. It is generally of little value to memorize any of these codes in their 
entirety, but if you work with them frequently, you will find yourself learning a 
number of “key values” from which you can compute most of the others that you 
need.

Unicode is the default character set used by Java and recent versions of Win-
dows. It is likely to replace EBCDIC and ASCII as the basic method of character 
representation in computer systems; however, the older codes will be with us for 
the foreseeable future, owing both to their economy and their pervasiveness.

Error detecting and correcting codes are used in virtually all facets of com-
puting technology. Should the need arise, your understanding of the various 
error control methods will help you to make informed choices among the various 
options available. The method that you choose will depend on a number of fac-
tors, including computational overhead and the capacity of the storage and trans-
mission media available to you.

FURTHER READING

A brief account of early mathematics in Western civilization can be found in Bunt 
et al. (1988).

Knuth (1998) presents a delightful and thorough discussion of the evolution 
of number systems and computer arithmetic in Volume 2 of his series on com-
puter algorithms. (Every computer scientist should own a set of the Knuth books.)

A definitive account of floating-point arithmetic can be found in Goldberg 
(1991). Schwartz et al. (1999) describe how the IBM System/390 performs 
floating-point operations in both the older form and the IEEE standard. Soder-
quist and Leeser (1996) provide an excellent and detailed discussion of the prob-
lems surrounding floating-point division and square roots.

Detailed information about Unicode can be found at the Unicode Consor-
tium website, www.unicode.org, as well as in the Unicode Standard, Version 4.0 
(2003).

The International Standards Organization website can be found at www.iso.ch.  
You will be amazed at the span of influence of this group. A similar trove of 
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information can be found at the American National Standards Institute website: 
www.ansi.org.

After you master the concepts of Boolean algebra and digital logic, you will 
enjoy reading Arazi’s book (1988). This well-written text shows how error detec-
tion and correction are achieved using simple digital circuits. Arazi’s appendix 
gives a remarkably lucid discussion of the Galois field arithmetic that is used in 
Reed-Solomon codes.

If you’d prefer a rigorous and exhaustive study of error-correction theory, 
Pretzel’s (1992) book is an excellent place to start. The text is accessible, well-
written, and thorough.

Detailed discussions of Galois fields can be found in the (inexpensive!) books 
by Artin (1998) and Warner (1990). Warner’s much larger book is a clearly writ-
ten and comprehensive introduction to the concepts of abstract algebra. A study 
of abstract algebra will be helpful should you delve into the study of mathemati-
cal cryptography, a fast-growing area of interest in computer science.
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REVIEW OF ESSENTIAL TERMS AND CONCEPTS

 1. The word bit is a contraction for what two words?

 2. Explain how the terms bit, byte, nibble, and word are related.

 3. Why are binary and decimal called positional numbering systems?

 4. Explain how base 2, base 8, and base 16 are related.

 5. What is a radix?
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EXERCISES

 ◆1. Perform the following base conversions using subtraction or division-remainder:

 a) 45810 =  3
 b) 67710 =  5
 c) 151810 =  7
 d) 440110 =  9
 2. Perform the following base conversions using subtraction or division-remainder:

 a) 58810 =  3
 b) 225410 =  5
 c) 65210 =  7
 d) 310410 =  9
 3. Perform the following base conversions using subtraction or division-remainder:

 a) 13710 =  3
 b) 24810 =  5
 c) 38710 =  7
 d) 63310 =  9
 ◆4. Perform the following base conversions:

 a) 201013 =  10

 b) 23025 =  10

 c) 16057 =   10

 d) 6879 =  10

 5. Perform the following base conversions:

 a) 200123 =  10

 b) 41035 =  10

 c) 32367 =  10

 d) 13789 =  10

 6. Perform the following base conversions:

 a) 212003 =  10

 b) 32445 =  10

 c) 34027 =  10

 d) 76579 =  10

 ◆7. Convert the following decimal fractions to binary with a maximum of six places to the 
right of the binary point:

 a) 26.78125

 b) 194.03125

 c) 298.796875

 d) 16.1240234375

 6. How many of the “numbers to remember” (in all bases) from Table 2.1 can you remember?

 7. What does overflow mean in the context of unsigned numbers?

 8. Name the four ways in which signed integers can be represented in digital computers, 
and explain the differences.

 9. Which one of the four representations for signed integers is used most often by digital 
computer systems?

 10. How are complement systems similar to the odometer on a bicycle?

 11. Do you think that double-dabble is an easier method than the other binary-to-decimal 
conversion methods explained in this chapter? Why?

 12. With reference to the previous question, what are the drawbacks of the other two con-
version methods?

 13. What is overflow, and how can it be detected? How does overflow in unsigned num-
bers differ from overflow in signed numbers?

 14. If a computer is capable only of manipulating and storing integers, what difficulties 
present themselves? How are these difficulties overcome?

 15. What are the goals of Booth’s algorithm?

 16. How does carry differ from overflow?

 17. What is arithmetic shifting?

 18. What are the three component parts of a floating-point number?

 19. What is a biased exponent, and what efficiencies can it provide?

 20. What is normalization, and why is it necessary?

 21. Why is there always some degree of error in floating-point arithmetic when it is per-
formed by a binary digital computer?

 22. How many bits long is a double-precision number under the IEEE-754 floating-point 
standard?

 23. What is EBCDIC, and how is it related to BCD?

 24. What is ASCII, and how did it originate?

 25. Explain the difference between ASCII and Unicode.

 26. How many bits does a Unicode character require?

 27. Why was Unicode created?

 28. How do cyclic redundancy checks work?

 29. What is systematic error detection?

 30. What is a Hamming code?

 31. What is meant by Hamming distance, and why is it important? What is meant by mini-
mum Hamming distance?

 32. How is the number of redundant bits necessary for code related to the number of data 
bits?

 33. What is a burst error?

 34. Name an error-detection method that can compensate for burst errors.
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EXERCISES

 ◆1. Perform the following base conversions using subtraction or division-remainder:

 a) 45810 =  3
 b) 67710 =  5
 c) 151810 =  7
 d) 440110 =  9
 2. Perform the following base conversions using subtraction or division-remainder:

 a) 58810 =  3
 b) 225410 =  5
 c) 65210 =  7
 d) 310410 =  9
 3. Perform the following base conversions using subtraction or division-remainder:

 a) 13710 =  3
 b) 24810 =  5
 c) 38710 =  7
 d) 63310 =  9
 ◆4. Perform the following base conversions:

 a) 201013 =  10

 b) 23025 =  10

 c) 16057 =   10

 d) 6879 =  10

 5. Perform the following base conversions:

 a) 200123 =  10

 b) 41035 =  10

 c) 32367 =  10

 d) 13789 =  10

 6. Perform the following base conversions:

 a) 212003 =  10

 b) 32445 =  10

 c) 34027 =  10

 d) 76579 =  10

 ◆7. Convert the following decimal fractions to binary with a maximum of six places to the 
right of the binary point:

 a) 26.78125

 b) 194.03125

 c) 298.796875

 d) 16.1240234375
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 8. Convert the following decimal fractions to binary with a maximum of six places to the 
right of the binary point:

 a) 25.84375

 b) 57.55

 c) 80.90625

 d) 84.874023

 ◆9. Convert the following decimal fractions to binary with a maximum of six places to the 
right of the binary point:

 a) 27.59375

 b) 105.59375

 c) 241.53125

 d) 327.78125

 10. Convert the following binary fractions to decimal:

 a) 10111.1101

 b) 100011.10011

 c) 1010011.10001

 d) 11000010.111

 11. Convert the following binary fractions to decimal:

 a) 100001.111

 b) 111111.10011

 c) 1001100.1011

 d) 10001001.0111

 12. Convert the following binary fractions to decimal:

 a) 110001.10101

 b) 111001.001011

 c) 1001001.10101

 d) 11101001.110001

 13. Convert the hexadecimal number AC1216 to binary.

 14. Convert the hexadecimal number 7A0116 to binary.

 15. Convert the hexadecimal number DEAD BEEF16 to binary.

 16. Represent the following decimal numbers in binary using 8-bit signed magnitude, 
one’s complement, two’s complement, and excess-127 representations.

 ◆a) 77

 ◆b) −42

 c) 119

 d) −107
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 17. Represent the following decimal numbers in binary using 8-bit signed magnitude, 
one’s complement, two’s complement, and excess-127 representations:

 a) 60

 b) −60

 c) 20

 d) −20

 18. Represent the following decimal numbers in binary using 8-bit signed magnitude, 
one’s complement, two’s complement, and excess-127 representations:

 a) 97

 b) −97

 c) 44

 d) −44

 19. Represent the following decimal numbers in binary using 8-bit signed magnitude, 
one’s complement, two’s complement, and excess-127 representations:

 a) 89

 b) −89

 c) 66

 d) −66

 20. What decimal value does the 8-bit binary number 10011110 have if:

 a) It is interpreted as an unsigned number?

 b) It is on a computer using signed-magnitude representation?

 c) It is on a computer using one’s complement representation?

 d) It is on a computer using two’s complement representation?

 e) It is on a computer using excess-127 representation?

 ◆21. What decimal value does the 8-bit binary number 00010001 have if:

 a) It is interpreted as an unsigned number?

 b) It is on a computer using signed-magnitude representation?

 c) It is on a computer using one’s complement representation?

 d) It is on a computer using two’s complement representation?

 e) It is on a computer using excess-127 representation?

 22. What decimal value does the 8-bit binary number 10110100 have if:

 a) It is interpreted as an unsigned number?

 b) It is on a computer using signed-magnitude representation?

 c) It is on a computer using one’s complement representation?

 d) It is on a computer using two’s complement representation?

 e) It is on a computer using excess-127 representation?
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 23. Given the two binary numbers 11111100 and 01110000:

 a) Which of these two numbers is the larger unsigned binary number?

 b) Which of these two is the larger when it is being interpreted on a computer using 
signed two’s complement representation?

 c) Which of these two is the smaller when it is being interpreted on a computer using 
signed-magnitude representation?

 24. Using a “word” of 3 bits, list all the possible signed binary numbers and their decimal 
equivalents that are representable in:

 a) Signed magnitude

 b) One’s complement

 c) Two’s complement

 25. Using a “word” of 4 bits, list all the possible signed binary numbers and their decimal 
equivalents that are representable in:

 a) Signed magnitude

 b) One’s complement

 c) Two’s complement

 26. From the results of the previous two questions, generalize the range of values (in deci-
mal) that can be represented in any given x number of bits using:

 a) Signed magnitude

 b) One’s complement

 c) Two’s complement

 27. Fill in the following table to indicate what each binary pattern represents using the 
various formats.

Unsigned 
Integer

4-Bit Binary 
Value

Signed  
Magnitude

One’s  
Complement

Two’s  
Complement Excess-7

 0 0000
 1 0001
 2 0010
 3 0011
 4 0100
 5 0101
 6 0110
 7 0111
 8 1000
 9 1001
10 1010
11 1011
12 1100
13 1101
14 1110
15 1111
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 28. Given a (very) tiny computer that has a word size of 6 bits, what are the smallest nega-
tive numbers and the largest positive numbers that this computer can represent in each 
of the following representations?

 ◆a) One’s complement

 b) Two’s complement

 29. To add two two’s complement numbers together, what must be true?

 30. What is the most common representation used in most computers to store signed inte-
ger values and why?

 31. You have stumbled on an unknown civilization while sailing around the world. The 
people, who call themselves Zebronians, do math using 40 separate characters (proba-
bly because there are 40 stripes on a zebra). They would very much like to use comput-
ers, but would need a computer to do Zebronian math, which would mean a computer 
that could represent all 40 characters. You are a computer designer and decide to help 
them. You decide the best thing is to use BCZ, Binary-Coded Zebronian (which is 
like BCD except it codes Zebronian, not Decimal). How many bits will you need to 
 represent each character if you want to use the minimum number of bits?

 ◆32. Add the following unsigned binary numbers as shown.

 a) 
+

01110101
00111011

          b) 
+

00010101
00011011

          c) 
+

01101111
00010001

 33. Add the following unsigned binary numbers as shown.

 a) 01000100
10111011+

          b) 
+

01011011
00011111

          c) 
+

10101100
00100100

 ◆34. Subtract the following signed binary numbers as shown using two’s complement 
 arithmetic.

 a) 01110101
– 00111011

          b) 
−

00110101
00001011

          c) 01101111
– 00010001

 35. Subtract the following signed binary numbers as shown using two’s complement 
 arithmetic.

 a) 11000100
– 00111011

          b) 01011011
– 00011111

          c) 10101100
– 00100100

 36. Perform the following binary multiplications, assuming unsigned integers:

 ◆a) 1100
101×

 b) 10101
111×

 c) 11010
1100×

 Exercises    127

9781284136852_CH02_Pass03.indd   127 03/02/18   2:26 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION



 37. Perform the following binary multiplications, assuming unsigned integers:

 a) 1011
101×

 b) 10011
1011×

 c) 11010
1011×

 38. Perform the following binary divisions, assuming unsigned integers:

 ◆a) 101101 ÷ 101

 b) 10000001 ÷ 101

 c) 1001010010 ÷ 1011

 39. Perform the following binary divisions, assuming unsigned integers:

 a) 11111101 ÷ 1011

 b) 110010101 ÷ 1001

 c) 1001111100 ÷ 1100

 ◆40. Use the double-dabble method to convert 102123 directly to decimal. (Hint: You have 
to change the multiplier.)

 41. Using signed-magnitude representation, complete the following operations:

0 –0

    –0 0

         0 0

–0 –0

( )
( )

( ) ( )

+ + =

+ =
+ =

+ =

 ◆42. Suppose a computer uses 4-bit one’s complement representation. Ignoring overflows, 
what value will be stored in the variable j after the following pseudocode routine  
terminates?

0 → j  // Store 0 in j.
-3 → k // Store -3 in k.
while k ≠ 0
  j = j + 1
  k = k - 1
end while

 43. Perform the following binary multiplications using Booth’s algorithm, assuming 
signed two’s complement integers:

 a) 1011
0101×

          b) 0011
1011×

           c) 
×

1011
1100
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 44. Using arithmetic shifting, perform the following:

 a) Double the value 000101012.

 b) Quadruple the value 011101112.

 c) Divide the value 110010102 in half.

 45. If the floating-point number representation on a certain system has a sign bit, a 3-bit 
exponent, and a 4-bit significand:

 a) What is the largest positive and the smallest positive number that can be stored on 
this system if the storage is normalized? (Assume that no bits are implied, there is 
no biasing, exponents use two’s complement notation, and exponents of all 0s and 
all 1s are allowed.)

 b) What bias should be used in the exponent if we prefer all exponents to be non-
negative? Why would you choose this bias?

 ◆46. Using the model in the previous question, including your chosen bias, add the follow-
ing floating-point numbers and express your answer using the same notation as the 
addend and augend:

0 1 0 1 1 0 0 1
0 1 1 1 1 0 0 0

Calculate the relative error, if any, in your answer to the previous question.

 47. Assume we are using the simple model for floating-point representation as given in the 
text (the representation uses a 14-bit format, 5 bits for the exponent with a bias of 15, 
a normalized mantissa of 8 bits, and a single sign bit for the number):

 a) Show how the computer would represent the numbers 100.0 and 0.25 using this 
floating-point format.

 b) Show how the computer would add the two floating-point numbers in Part a  
by changing one of the numbers so they are both expressed using the same  
power of 2.

 c) Show how the computer would represent the sum in Part b using the given floating-
point representation. What decimal value for the sum is the computer actually stor-
ing? Explain.

 48. What causes divide underflow, and what can be done about it?

 49. Why do we usually store floating-point numbers in normalized form? What is the 
advantage of using a bias as opposed to adding a sign bit to the exponent?

 50. Let a = 1.0 × 29, b = −1.0 × 29 and c = 1.0 × 21. Using the simple floating-point 
model described in the text (the representation uses a 14-bit format, 5 bits for the 
exponent with a bias of 15, a normalized mantissa of 8 bits, and a single sign bit for 
the number), perform the following calculations, paying close attention to the order of 
operations. What can you say about the algebraic properties of floating-point arithme-
tic in our finite model? Do you think this algebraic anomaly holds under multiplication 
as well as addition?

+ + =
+ + =
( )

 ( )

b a c

b a c
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 51. Show how each of the following floating-point values would be stored using IEEE-754 
single precision (be sure to indicate the sign bit, the exponent, and the significand fields):

 a) 12.5         b) −1.5        c) 0.75        d) 26.625

 52. Show how each of the following floating-point values would be stored using  
IEEE-754 double precision (be sure to indicate the sign bit, the exponent, and the 
significand fields):

 a) 12.5         b) −1.5        c) 0.75        d) 26.625

 53. Suppose we have just found yet another representation for floating-point numbers. 
Using this representation, a 12-bit floating-point number has 1 bit for the sign of the 
number, 4 bits for the exponent, and 7 bits for the mantissa, which is normalized as 
in the simple model so that the first digit to the right of the radix points must be a 1. 
Numbers in the exponent are in signed two’s complement representation. No bias is 
used, and there are no implied bits. Show the representation for the smallest posi-
tive number this machine can represent using the following format (simply fill in the 
squares provided). What decimal number does this equate to?

Sign Exponent Mantissa

 54. Find three floating-point values to illustrate that floating-point addition is not associa-
tive. (You will need to run a program on specific hardware with a specific compiler.)

 55. a) Given that the ASCII code for A is 1000001, what is the ASCII code for J?

 b) Given that the EBCDIC code for A is 1100 0001, what is the EBCDIC code for J?

 56. a)  The ASCII code for the letter A is 1000001, and the ASCII code for the letter a is 
1100001. Given that the ASCII code for the letter G is 1000111, without looking 
at Table 2.7, what is the ASCII code for the letter g?

 b) The EBCDIC code for the letter A is 1100 0001, and the EBCDIC code for the 
letter a is 1000 0001. Given that the EBCDIC code for the letter G is 1100 0111, 
without looking at Table 2.6, what is the EBCDIC code for the letter g?

 c) The ASCII code for the letter A is 1000001, and the ASCII code for the letter a is 
1100001. Given that the ASCII code for the letter Q is 1010001, without looking 
at Table 2.7, what is the ASCII code for the letter q?

 d) The EBCDIC code for the letter J is 1101 0001, and the EBCDIC code for the 
letter j is 1001 0001. Given that the EBCDIC code for the letter Q is 1101 1000, 
without looking at Table 2.6, what is the EBCDIC code for the letter q? 

 e) In general, if you were going to write a program to convert uppercase ASCII char-
acters to lowercase, how would you do it? Looking at Table 2.6, could you use the 
same algorithm to convert uppercase EBCDIC letters to lowercase?

 f) If you were tasked with interfacing an EBCDIC-based computer with an ASCII or 
Unicode computer, what would be the best way to convert the EBCDIC characters 
to ASCII characters?
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 ◆57. Assume a 24-bit word on a computer. In these 24 bits, we wish to represent the  
value 295.

 a) How would the computer represent the decimal value 295?

 b) If our computer uses 8-bit ASCII and even parity, how would the computer repre-
sent the string 295?

 c) If our computer uses packed BCD with zero padding, how would the computer 
represent the number +295?

 58. Decode the following ASCII message, assuming 7-bit ASCII characters and no parity:
 1001010 1001111 1001000 1001110 0100000 1000100 1001111 1000101

 59. Why would a system designer wish to make Unicode the default character set for their 
new system? What reason(s) could you give for not using Unicode as a default? (Hint: 
Think about language compatibility versus storage space.)

 60. Assume we wish to create a code using 3 information bits, 1 parity bit (appended to the 
end of the information), and odd parity. List all legal code words in this code. What is 
the Hamming distance of your code?

 61. Suppose we are given the following subset of code words, created for a 7-bit memory 
word with one parity bit: 11100110, 00001000, 10101011, and 11111110. Does this 
code use even or odd parity? Explain.

 62. Are the error-correcting Hamming codes systematic? Explain.

 63. Compute the Hamming distance of the following code:
0011010010111100
0000011110001111
0010010110101101
0001011010011110

 64. Compute the Hamming distance of the following code:

 

0000000101111111
0000001010111111
0000010011011111
0000100011101111
0001000011110111
0010000011111011
0100000011111101
1000000011111110

 65. In defining the Hamming distance for a code, we choose to use the minimum  
(Hamming) distance between any two encodings. Explain why it would not be better 
to use the maximum or average distance.
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 66. Suppose we want an error-correcting code that will allow all single-bit errors to be 
corrected for memory words of length 10.

 a) How many parity bits are necessary?

 b) Assuming we are using the Hamming algorithm presented in this chapter to design 
our error-correcting code, find the code word to represent the 10-bit information 
word:

1 0 0 1 1 0 0 1 1 0.

 67. Suppose we want an error-correcting code that will allow all single-bit errors to be 
corrected for memory words of length 12.

 a) How many parity bits are necessary?

 b) Assuming we are using the Hamming algorithm presented in this chapter to design 
our error-correcting code, find the code word to represent the 12-bit information 
word: 

1 0 0 1 0 0 0 1 1 0 1 0.

 ◆68. Suppose we are working with an error-correcting code that will allow all single-bit 
errors to be corrected for memory words of length 7. We have already calculated that 
we need 4 check bits, and the length of all code words will be 11. Code words are cre-
ated according to the Hamming algorithm presented in the text. We now receive the 
following code word:

1 0 1 0 1 0 1 1 1 1 0

Assuming even parity, is this a legal code word? If not, according to our error-correct-
ing code, where is the error?

 69. Repeat exercise 68 using the following code word:

0 1 1 1 1 0 1 0 1 0 1

 70. Suppose we are working with an error-correcting code that will allow all single-bit 
errors to be corrected for memory words of length 12. We have already calculated that 
we need 5 check bits, and the length of all code words will be 17. Code words are cre-
ated according to the Hamming algorithm presented in the text. We now receive the 
following code word:

0 1 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1  
Assuming even parity, is this a legal code word? If not, according to our error-correct-
ing code, where is the error?

 71. Name two ways in which Reed-Solomon coding differs from Hamming coding.

 72. When would you choose a CRC code over a Hamming code? A Hamming code over a 
CRC?

 ◆73. Find the quotients and remainders for the following division problems modulo 2.

 a) 10101112 ÷ 11012

 b) 10111112 ÷ 111012

 c) 10110011012 ÷ 101012

 d) 1110101112 ÷ 101112
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 74. Find the quotients and remainders for the following division problems modulo 2.

 a) 11110102 ÷ 10112

 b) 10101012 ÷ 11002

 c) 11011010112 ÷ 101012

 d) 11111010112 ÷ 1011012

 75. Find the quotients and remainders for the following division problems modulo 2.

 a) 110010012 ÷ 11012

 b) 10110002 ÷ 100112

 c) 111010112 ÷ 101112

 d) 1111100012 ÷ 10012

 76. Find the quotients and remainders for the following division problems modulo 2.

 a) 10011112 ÷ 11012

 b) 10111102 ÷ 11002

 c) 10011011102 ÷ 110012

 d) 1111010102 ÷ 100112

 ◆77. Using the CRC polynomial 1011, compute the CRC code word for the information 
word 1011001. Check the division performed at the receiver.

 78. Using the CRC polynomial 1101, compute the CRC code word for the information 
word 01001101. Check the division performed at the receiver.

 79. Using the CRC polynomial 1101, compute the CRC code word for the information 
word 1100011.  Check the division performed at the receiver.

 80. Using the CRC polynomial 1101, compute the CRC code word for the information 
word 01011101.  Check the division performed at the receiver.

 81. Pick an architecture (such as 80486, Pentium, Pentium IV, SPARC, Alpha, or MIPS). 
Do research to find out how your architecture approaches the concepts introduced in 
this chapter. For example, what representation does it use for negative values? What 
character codes does it support?

 82. We have seen that floating-point arithmetic is neither associative nor distributive. Why 
do you think this is the case?

Null Pointer image: © iStockphoto/Getty Images
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