
The Arc de Triomphe in Paris, France, was commissioned
by Napoleon in 1806. He hired architect Jean-François
Thérèse Chalgrin to determine the perfect location for 
the arch: the Place de l’Étoile. It took many years and 
subsequent architects to construct and was completed 
in 1836.
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69

In this chapter we introduce operations of addition and multiplication for matrices. We

discuss the algebraic properties of these operations. We define powers of matrices and

inverses of matrices. These tools lead to further methods for solving linear systems

and insights into their behavior. We lay the foundation for using matrices to define func-

tions, called linear transformations, on vector spaces. These transformations include rota-

tions, expansions, and reflections. Their implementation in computer graphics is discussed.

The reader will see how matrices are used in a wide range of applications. They are

used in archaeology to determine the chronological order of artifacts, in cryptography

to ensure security, and in demography to predict population movement. The inverse of

a matrix is used in a model for analyzing the interdependence of economies. Wassily

Leontief received a Nobel Prize for his work in this field. This model is now a standard

tool for investigating economic structures ranging from cities and corporations to states

and countries. 

Throughout these discussions we shall be conscious of numerical implications. We

shall be aware of the need for efficiency and accuracy in implementing matrix models. 

Addition, Scalar Multiplication, and Multiplication of Matrices
A convenient notation has been developed for working with matrices. Matrices consist of
rows and columns. Rows are labeled from the top of the matrix, columns from the left. The
location of an element in a matrix is described by giving the row and column in which it
lies. The element in row i, column j of the matrix A is denoted aij.

2.1

2Matrices and Linear
Transformations

C H A P T E R

1st subscript 2nd subscript
indicates row indicates column

aij

We refer to as the th element of the matrix A. We can visualize an arbitrary
matrix A as in Figure 2.1. 

If the number of rows m is equal to the number of columns n, A is said to be a square
matrix. The elements of a square matrix A where the subscripts are equal, namely 

form the main diagonal. See Figure 2.2. a11, a22, . . . , ann,

aij 1 i, j 2 m 3 n
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70 CHAPTER 2 Matrices and Linear Transformations

For example, consider the matrix 

is the element in row 1, column 2. Thus We see that and A is
a square matrix. The main diagonal of A consists of the elements 

We now begin our development of an algebraic theory of matrices. Some of this follows
the same pattern as our development of vector algebra in the “Linear Equations, Vectors,
and Matrices” chapter. We extend the idea of equality, and operations of addition and scalar
multiplication to rectangular arrays. 

a12

a22 5 23, a33 5 5.a11 5 1,
a31 5 2.a23 5 4a12 5 22.

Figure 2.2

A =

a11 a12

a21 a22 a2n

a1n

an1 an2 ann

. . ...
.

..
.

..
.

. . .

. . .

. . .

square n × n matrix A

main diagonal

Figure 2.1

A =

a11 a12

a21 a22 a2n

a1n

am1 am2 amn

. . ...
.

..
.

..
.

. . .

. . .

. . .

m × n matrix A

A 5 £
1 22 21

3 23 4

2 7 5

§

DEFINITION

This definition will enable us to introduce equations involving matrices. It immedi-
ately allows us to define an operation of addition for matrices. 

Addition of Matrices

Two matrices are equal if they are of the same size and if their corresponding elements are equal. 
Thus if they are of the same size, and for all i and j.aij 5 bijA 5 B

DEFINITION Let A and B be matrices of the same size. Their sum is the matrix obtained by adding together
the corresponding elements of A and B. The matrix will be of the same size as A and B. If A
and B are not of the same size, they cannot be added, and we say that the sum does not exist. 

Thus if , then cij 5 aij 1 bij.C 5 A 1 B

A 1 B
A 1 B

For example, if and then

A and C are not of the same size. does not exist.

Scalar Multiplication of Matrices
When working with matrices, it is customary to refer to numbers as scalars. We shall use
uppercase letters to denote matrices and lowercase letters for scalars. The next step in the
development of a theory of matrices is to introduce a rule for multiplying matrices by
scalars.

C 5 c25 4

2 7
d ,A 5 c1 4 7

0 22 3
d , B 5 c 2 5 26

23 1 8
d ,

A 1 B 5 c1 1 2 4 1 5 7 2 6

0 2 3 22 1 1 3 1 8
d 5 c 3 9 1

23 21 11
d

A 1 C
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2.1 Addition, Scalar Multiplication, and Multiplication of Matrices 71

For example, if then 

Negation and Subtraction
The matrix is written and is called the negative of C. Thus, for example, if

then 

We now define subtraction in terms of addition and scalar multiplication. Let 

This definition implies that subtraction is performed between matrices of the same size by
subtracting corresponding elements. Thus if then

Suppose and Then

We now complete this discussion of matrix operations by defining matrix multiplication.
We give a rule for computing the arbitrary element of a matrix product. This, in effect,
defines the complete matrix product.

Matrix Multiplication
The most natural way of multiplying two matrices might seem to be to multiply corre-
sponding elements when the matrices are of the same size, and to say that the product does
not exist if they are of different size. However, mathematicians have introduced an alter-
native rule that is more useful. It involves multiplying the rows of the first matrix times the
columns of the second matrix in a systematic manner. 

A 2 B 5 c5 2 2 0 2 8 22 2 121 2
3 2 0 6 2 4 25 2 6

d 5 c3 28 21

3 2 211
d

2C121 2C

A 5 c1 22 4

7 23 0
d ,

cij 5 aij 2 bij.C 5 A 2 B,

A 2 B 5 A 1 121 2B

B 5 c2 8 21

0 4 6
d .A 5 c5 0 22

3 6 25
d

2C 5 c21 0 7

3 26 22
dC 5 c 1 0 27

23 6 2
d ,

3A 5 c 3 26 12

21 29 0
d .

DEFINITION Let A be a matrix and c be a scalar. The scalar multiple of A by c, denoted cA, is the matrix obtained
by multiplying every element of A by c. The matrix cA will be the same size as A.

Thus if then bij 5 caij.B 5 cA,

DEFINITION Let the number of columns in a matrix A be the same as the number of rows in a matrix B. The 
product C 5 AB then exists. The element in row i and column j of C is obtained by multiplying
the corresponding elements of row i of A and column j of B and adding the products.

If the number of columns in A does not equal the number of rows in B, the product does not exist.

Let A have r columns and B have r rows so that AB exists. Then the elements in the ith row of A

are and in the jth column of B are . Thus, if ,C 5 AB

cij 5 ai1b1j 1 ai2 b2j 1 # # # 1 airbrj

ai1, ai2, . . . , air,

b1j

b2j

(

brj
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72 CHAPTER 2 Matrices and Linear Transformations

Let Determine AB and BA if the 

products exist. 

SOLUTION 

A has two columns and B has two rows; thus AB exists. Interpret A in terms of its rows
and B in terms of its columns, and multiply the rows by the columns in the following
 systematic manner.

Multiply rows by columns.

Let us now look at the product BA.

When we try to compute the first element of this product, we get
. The elements do not match. The same shortcoming

applies to all the other elements of BA. We say that BA does not exist. 

Let Compute CD and DC. Comment

on your answer.

SOLUTION 

T
c
c1
6

1

6

d
d

31 34
32 0 4c

c 0

22

0

22

d
d

3 1 34
32 0 4

5 c 7 8

27 4
d

5 D 31 34
32 0 4 c

c5
3

5

3

d
d

5 c 14 3 1 2 1 121 3 23 2
12 3 1 2 1 13 3 23 2

11 3 21 2 1 12 3 3 2
123 3 21 2 1 10 3 3 2 d

DC 5 c4 21

2 3
d c 1 2

23 0
d 14 3 2 2 1 121 3 0 2

12 3 2 2 1 13 3 0 2 d

EXAMPLE 2

11 3 0 2 1 13 3 22 2
12 3 0 2 1 10 3 22 2

C 5 c 1 2

23 0
d and D 5 c4 21

2 3
d .

5 c 8 5

212 3
d

CD 5 c 1 2

23 0
d c4 21

2 3
d 5 c 11 3 4 2 1 12 3 2 2

123 3 4 2 1 10 3 2 2

EXAMPLE 1 A 5 c1 3

2 0
d , B 5 c5 0 1

3 22 6
d .

AB 5 c1 3

2 0
d c5 0 1

3 22 6
d

15 3 1 2 1 10 3 2 2 1 11 3 ? 2

BA 5 c5 0 1

3 22 6
d c1 3

2 0
d

5 c14 26 19

10 0 2
d

11 3 1 2 1 13 3 6 2
12 3 1 2 1 10 3 6 2 d5 c 11 3 5 2 1 13 3 3 2

12 3 5 2 1 10 3 3 2

Multiply 1st row times each 
column in turn.

Multiply 2nd row times each 
column in turn.
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2.1 Addition, Scalar Multiplication, and Multiplication of Matrices 73

Comment: Observe that CD and DC both exist but CD DC. We see that the order in
which two matrices are multiplied is important. Unlike the multiplication of real num-
bers, matrix multiplication is not commutative. Only rarely will CD and DC be equal.
Note that Example 1 further illustrates this noncommutativity of matrix multiplication.
In that example, AB BA because BA does not exist.2

2

Matrix multiplication is not commutative.

The following example illustrates that we can use the definition of matrix multiplication to
compute any desired element in a product matrix without computing the whole product.

Let for the following matrices A and B. Determine the element
of C.

SOLUTION

is the element in row 2, column 3 of C. It will be the product of row 2 of A and col-
umn 3 of B. We get

Size of a Product Matrix
Let us now discuss the size of a product matrix. Let A be an matrix and B be an

matrix. A has r columns and B has r rows. AB thus exists. The first row of AB is
obtained by multiplying the first row of A by each column of B in turn. Thus the number of
columns in AB is equal to the number of columns in B. The first column of AB results from
multiplying each row of A in turn with the first column of B. Thus the number of rows in
AB is equal to the number of rows in A. AB will be an matrix.

If A is an matrix and B is an matrix, then AB will be an matrix.

We can picture this result as follows:

A B AB

insides match
outsides give size of AB

For example, suppose A is a matrix and B is a matrix. Matrix A has six columns,
whereas B has six rows. Thus AB exists. AB will be a matrix.

Special Matrices
We now define three classes of matrices that play an important role in matrix theory.

5 3 7
5 3 6 6 3 7

m 3 r r 3 n m 3 n
5

m 3 r r 3 n m 3 n

EXAMPLE 3 C 5 AB
c23

m 3 n

m 3 r
r 3 n

c23 5 323 4 4 c2
1
d 5 123 3 2 2 1 14 3 1 2 5 22

c23

A 5 c 2 1

23 4
d and B 5 c27 3 2

5 0 1
d
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74 CHAPTER 2 Matrices and Linear Transformations

DEFINITION A zero matrix is a matrix all of whose elements are zeros. A diagonal matrix is a square matrix in
which all the elements not on the main diagonal are zeros. An identity matrix is a diagonal matrix
in which every diagonal element is 1. See the following figure. 

Zero matrix Diagonal matrix A Identity matrix 

Zero matrices play a role in matrix theory similar to the role of the number 0 for real num-
bers, and identity matrices play a role similar to the number 1. These roles are described in
the following theorem, which we illustrate by means of an example.

THEOREM 2.1

Let A be an matrix and be the zero matrix. Let B be an square
matrix, and and be the zero and identity matrices. Then

Let and .

We see that

Similarly, 

We have introduced matrix multiplication by giving the rule for determining individual ele-
ments of the product. This element approach is the most useful for computing products of
small matrices by hand. There are, however, numerous ways of looking at a product. We
now introduce column approaches that are useful in theory and in applications.

Matrix Multiplication in Terms of Columns
(a) Consider the product AB where A is an matrix and B is an matrix

(so that AB exists). Let the columns of B be the matrices Write B
as Thus

AB 5 A 3B1 B2 cBr 4
3B1 B2 cBr 4.

B1, B2, . . . , Br.
m 3 n n 3 r

O23 1 A 5 A, O2B 5 O2, I2B 5 B.

BI2 5 c 2 1

23 4
d c1 0

0 1
d 5 c 2 1

23 4
d 5 B

BO2 5 c 2 1

23 4
d c0 0

0 0
d 5 c0 0

0 0
d 5 O2

Omn In

Omn 5 ≥
0 0 c 0

0 0 c 0

( ( c (

0 0 c 0

¥ A 5 ≥
a11 0 c 0

0 a22
c 0

( ( c (

0 0 c ann

¥ In 5 ≥
1 0 c 0

0 1 c 0

( ( c (

0 0 c 1

¥

A 1 O23 5 c2 1 23

4 5 8
d 1 c0 0 0

0 0 0
d 5 c2 1 23

4 5 8
d 5 A

EXAMPLE 4 A 5 c2 1 23

4 5 8
d B 5 c 2 1

23 4
d

BIn 5 InB 5 B

BOn 5 OnB 5 On

A 1 Omn 5 Omn 1 A 5 A

On In n 3 n
m 3 n Omn m 3 n n 3 n
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2.1 Addition, Scalar Multiplication, and Multiplication of Matrices 75

Matrix multiplication implies that the columns of the product are 
We can write

For example, suppose and Then

(b) The matrix product AB, where B is a column matrix, often occurs in practice. Consider
the general case where A is an matrix and B is an matrix. Write A in
terms of its columns Then

Matrix multiplication gives

As for vectors, the expression is called a linear combi-
nation of It is computed by performing the scalar multiples and then
adding corresponding elements of the resulting matrices. 

For example, suppose Then 

This type of fluency in expressing the product in various ways is valuable when working
with matrices. We shall, for example, use the first of these approaches in arriving at a way
for finding the inverse of a matrix later in this chapter. 

Partitioning of Matrices
In the previous discussion we subdivided matrices into column matrices. We now extend
these ideas. A matrix can be subdivided into a number of submatrices (or blocks). For
 example, the following matrix A can be subdivided into the submatrices P, Q, R, and S.

where .P 5 c0
3
d , Q 5 c21 2

1 4
d , R 5 322 4, and S 5 35 3 4

A 5 £
0 21 2

3 1 4

22 5 23

§ 5 cP Q

R S
d

5 c 5

23
d

AB 5 3 c 2

24
d 2 2 c3

8
d 1 5 c1

5
d 5 c 6

212
d 2 c 6

16
d 1 c 5

25
d

A 5 c 2 3 1

24 8 5
d and B 5 £

3

22

5

§ .

A1, A2, c, An.
b1A1 1 b2A2 1 c1 bnAn

AB 5 b1A1 1 b2A2 1 c1 bnAn

AB 5 3A1 A2 cAn 4 £
b1

(

bn

§

3A1 A2 cAn 4.
m 3 n n 3 1

5 c8 2 6

4 11 22
d

AB 5 c c2 0

1 5
d c4

0
d c2 0

1 5
d c1

2
d c2 0

1 5
d c 3

21
d d

A 5 c2 0

1 5
d B 5 c4 1 3

0 2 21
d .

AB 5 3AB1 AB2 cABr 4
AB1, AB2, . . . , ABr.
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76 CHAPTER 2 Matrices and Linear Transformations

Provided appropriate rules are followed, matrix addition and multiplication can be
applied to submatrices as if they were elements of an ordinary matrix. Partitioning is used
to reduce memory requirements and also to speed up computation on computers, especially
when matrices have large blocks of zeros.1

Let us look at addition. Let A and B be matrices of the same kind. If A and B are parti-
tioned in the same way, into and as follows, for example, their sum
is the sum of the corresponding submatrices.

In multiplication, any partition of the first matrix in a product determines the row partition
of the second matrix. For example, let us consider the product of the following matrices AB,

and 

Let A be subdivided

where .
A is interpreted as having two columns in this form. B must be subdivided into a suitable
form having two rows for matrix multiplication to be possible. The following would be a
suitable partition for B.

where .

Then we get, .

This method of multiplying partitioned matrices is called block multiplication.

Let and Consider the following

 partition of A.

A 5 £
1 21

3 0

2 4

§

EXAMPLE 5 A 5 £
1 21

3 0

2 4

§ B 5 c1 2 21

1 3 1
d .

AB 5 cP Q

R S
d cM

N
d 5 cPM 1 QN

RM 1 SN
d

M 5 c21 0

2 1
d and N 5 35 4 4

B 5 £
21 0

2 1

5 4

§ 5 cM
N
d

P 5 31 2 4 , Q 5 321 4, R 5 c3 0

4 23
d , and S 5 c22

2
d

A 5 £
1 2 21

3 0 22

4 23 2

§ 5 cP Q

R S
d

A 5 £
1 2 21

3 0 22

4 23 2

§ B 5 £
21 0

2 1

5 4

§

A 1 B 5 cP Q R

S T U
d 1 cH I J

K L M
d 5 cP 1 H Q 1 I R 1 J

S 1 K T 1 L U 1 M
d

P, c, U H, c, M,

1We illustrate the ideas for small matrices. Results can be quickly checked using the standard element ways of adding and
multiplying matrices. 
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2.1 Addition, Scalar Multiplication, and Multiplication of Matrices 77

Under this partition, A is interpreted as a matrix. For the product AB to exist, B
must be partitioned into a matrix having two rows. 

One appropriate partition of B is 

B is interpreted as a matrix. 
Let us check these partitions to see that they do indeed work.

Multiply the submatrices, 

and

Thus the product is

It can be verified using elementwise multiplication that this is indeed the product of A
and B. There are three other possible partitions of B that can be used to compute AB for
this partition of A, namely 

and c1 2 21

1 3 1
d , c1 2 21

1 3 1
d , c1 2 21

1 3 1
d

AB 5 £
0 21 22

3 6 23

6 16 2

§

32 4 31 2 21 4 1 34 4 31 3 1 4 5 32 4 22 4 1 34 12 4 4 5 36 16 2 4

5 c0 21 22

3 6 23
d

c1
3
d 31 2 21 4 1 c21

0
d 31 3 1 4 5 c1 2 21

3 6 23
d 1 c21 23 21

0 0 0
d

AB 5 £
1 21

3 0

2 4

§ c1 2 21

1 3 1
d

2 3 1

B 5 c1 2 21

1 3 1
d

2 3 2

EXERCISE SET 2.1 

Matrix Operations

1. Let  

and 

Compute the following (if they exist).

(a) (b) 2B (c)
(d) (e) (f)
(g)

2. Let 

and 

Compute the following (if they exist).

(a) (b) 4B (c)
(d) (e) (f)
(g) A 1 D

B 2 3C 2A 3A 1 2D

A 1 B 23D

C 5 £
1 2 25

27 9 3

5 24 0

§ , D 5 £
23

0

2

§

A 5 £
9

2

21

§ , B 5 £
0 21 4

6 28 2

24 5 9

§ ,

A 5 £
5 4

21 7

9 23

§ , B 5 £
23 0

4 2

5 27

§ ,

A 2 B

C 1 D A 1 D 2A 1 B

A 1 B 2D

C 5 c1 2

3 4
d , D 5 c9 25

3 0
d
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78 CHAPTER 2 Matrices and Linear Transformations

3. Let 

and 

Compute the following (if they exist). 

(a) AB (b) BA (c) AC

(d) CA (e) AD (f) DC

(g) BD (h) [where ]

4. Let 

and 

Compute the following (if they exist).

(a) BA (b) AB (c) CB

(d) CA (e) DA (f) DB

(g) AC (h)

5. Let 

and 

Compute the following (if they exist).

(a) (b) AB (c)
(d) (e) BA (f)
(g) where 

6. Let and 

Let and be the zero and identity matrices.
Show that 

and 

7. (a) Let A be an matrix and X be an column
matrix of 1s. What can you say about the rows of A if

(We call such a matrix X an eigenvector of
A. We shall study eigenvectors in the “Determinants
and Eigenvectors” chapter.) 

(b) Let A be an matrix and X be a row matrix of
1s. What can you say about the columns of A if 

Sizes of Matrices
8. Let A be a matrix, B a matrix, C a matrix,

D a matrix, and E a matrix. Determine which

of the following matrix expressions exist and give the size
of the resulting matrices when they do exist.

(a) AB (b) EB

(c) AC (d)
(e) (f )
(g)

9. Let A be a matrix, B a matrix, C a matrix,
D a matrix, and E a matrix. Determine which
of the following matrix expressions exist and give the size
of the resulting matrices when they do exist.

(a) AB (b)
(c) (d)
(e) (f)
(g)

Computing Certain Elements of Matrices
10. Let and for the following matrices A

and B.

and 

Determine the following elements of C and D, without com-
puting the complete matrices. 

(a) (b) (c) (d)

11. Let and where 

and 

Determine the following elements (if they exist) of R and
S, without computing the complete matrices. 

(a) (b) (c) (d)

12. If , and 

, determine the following elements of 

without computing the complete matrix. 

(a) (b)

13. If and

determine the following elements of 

without computing the complete matrix. 

(a) (b) (c)d11 d21 d32

D 5 2 1AB 2 1 C2,

C 5 £
2 0 22

4 7 25

1 0 21

§ ,

A 5 £
1 23 0

4 5 1

3 8 0

§ , B 5 £
1 1 22

3 0 4

21 3 2

§ ,

d12 d23

D 5 AB 1 2C,

C 5 c2 24 5

7 1 0
d

A 5 c1 23

0 4
d , B 5 c1 2 23

5 0 21
d

r21 r33 s11 s23

P 5 £
1 22

4 6

21 3

§ Q 5 c0 1 3

0 21 4
d .

R 5 PQ S 5 QP,

c31 c23 d12 d22

A 5 £
0 3 25

2 6 3

1 0 22

§ B 5 £
21 2 23

5 7 2

0 1 6

§

C 5 AB D 5 BA

3 1BA 2 1CD 2 1 14A 2 1BC 2
DA 2 2 1DB 2 C 1 3D

B3 1 3 1CD 2 DC 1 BA

1A2 2C

3 3 2 3 3 1
2 3 2 2 3 2 2 3 3

2 1EB 2 1 DA

3 1EB 2 1 4D CD 2 2 1CE 2B
AB 1 CD

4 3 2 4 3 5
3 3 5 5 3 2 3 3 4

XA 5 X?
n 3 n 1 3 n

AX 5 X?

n 3 n n 3 1

BI3 5 I3B 5 B.

BO3 5 O3B 5 O3,

A 1 O3 5 O3 1 A 5 A,

O3 I3 3 3 3

A 5 £
1 28 4

5 26 3

2 0 21

§ , B 5 £
0 2 23

5 6 7

21 0 4

§ .

C3 1 2 1D2 2 1 C3 5 CCC 2 .
CD 2 2D AD 1 2 1DC 2
2A 2 3 1BC 2 AC 2 BD

C 5 c24 0

3 2
d , D 5 c 5 0

22 1
d

A 5 £
0 1

0 3

5 6

§ , B 5 £
21 0

3 5

2 6

§ ,

B2

C 5 322 0 5 4, D 5 £
9 25

3 0

24 2

§

A 5 £
21

2

5

§ , B 5 £
0 1 5

3 27 8

2 3 1

§ ,

A2 A2 5 AA

C 5 c2
3
d , D 5 c21 0 3

5 7 2
d

A 5 c1 0

0 1
d , B 5 c 0 1

22 5
d ,
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2.1 Addition, Scalar Multiplication, and Multiplication of Matrices 79

Using Columns and Rows of Matrices

14. Let 

Compute the following products using the columns of B and C. 

(a) AB (b) AC (c) BC

15. Let 

(a) Express the product AB as a linear combination of the
columns of A. 

(b) Express PQ as a linear combination of the columns
of P. 

16. Let A and B be the following matrices. Compute row 2 of
the matrix AB without computing the whole product. 

17. Let A be a matrix whose third row is all zeros. Let B be any
matrix such that the product AB exists. Prove that the third
row of AB is all zeros.

18. Let D be a matrix whose second column is all zeros. Let C
be any matrix such that CD exists. Prove that the second
column of CD is all zeros. 

19. Let A be an matrix, B an matrix, and 
Let the column submatrices of B be and of C
be We can write B in the form

and C as Prove that

20. Let A and B be the following matrices. Use the result of
Exercise 19 to compute column 3 of the matrix AB without
computing the whole product. 

Partitioning of Matrices
21. Use the given partitions of A and B below to compute AB.

(a)

(b)

(c)

22. Let and 

For each partition of A given below, find all the partitions 
of B that can be used to calculate AB. 

(a) (b)

(c) 

23. Let and 

For each partition of B given below, find all the partitions
of A that can be used to calculate AB. 

(a) (b) 

(c)

24. Suggest suitable partitions involving zero and identity sub-
matrices for computing the following products. Compute
the products using these partitions (show your work). Check
your answers using standard elementwise multiplication. 

(a)

(b)

(c) E

1 0 0 1

0 1 0 2

0 0 1 3

0 0 0 4

0 0 0 5

U ≥
21

2

6

3

¥

≥
1 0 0 2

0 1 0 3

0 0 1 4

1 1 1 22

¥ ≥
1 2

3 4

5 6

21 3

¥

≥
2 3 2 1

4 0 0 0

1 0 0 0

5 0 0 0

¥ ≥
1 2

21 3

4 0

2 5

¥

B 5 ≥
21 22 0

3 4 1

5 7 2

4 5 28

¥

B 5 ≥
21 22 0

3 4 1

5 7 2

4 5 28

¥B 5 ≥
21 22 0

3 4 1

5 7 2

4 5 28

¥

A 5 £
2 0 3 21

6 2 25 9

1 1 1 1

§ B 5 ≥
21 22 0

3 4 1

5 7 2

4 5 28

¥ .

A 5 £
1 2 3

21 1 4

0 1 2

§

A 5 £
1 2 3

21 1 4

0 1 2

§A 5 £
1 2 3

21 1 4

0 1 2

§

A 5 £
1 2 3

21 1 4

0 1 2

§ B 5 £
21 22

0 3

4 1

§ .

A 5 £
1 2 0

3 21 1

4 22 0

§ , B 5 £
3 21

2 5

0 1

§

A 5 c1 2 21

3 0 1
d , B 5 £

2 4

0 21

1 3

§

A 5 £
2 1

21 0

3 1

§ , B 5 c3 0

2 1
d

A 5 £
1 2 3

0 4 1

2 5 0

§ , B 5 £
2 1 4

6 0 1

2 3 5

§

Cj 5 ABj.
3B1 B2 . . . Bn 4 3C1 C2 . . . Cn 4.

C1, C2, . . . , Cn.
B1, B2, . . . , Bn

m 3 r r 3 n C 5 AB.

A 5 £
2 23 1

4 0 3

5 1 0

§ , B 5 £
8 1 3

2 1 0

4 6 3

§

P 5 c3 0 2 1

5 6 7 3
d , Q 5 ≥

23

2

1

5

¥

A 5 £
3 22 0

4 2 7

8 25 6

§ , B 5 £
4

3

25

§ ;

A 5 c1 2

3 0
d , B 5 c22 3

4 1
d , C 5 c1 22 3

4 0 5
d
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80 CHAPTER 2 Matrices and Linear Transformations

Miscellaneous Results
25. State (with a brief explanation) whether the following state-

ments are true or false for matrices A, B, and C.

(a) If the sums and exist, then
exists.

(b) If the products AB and BC exist, then AC exists.

(c) AB is never equal to BA.

(d) Let A be a column matrix and B a row matrix, both with
the same number of elements. Then AB is a square
matrix. 

(e) If the element of a square matrix A lies below the
main diagonal, then i . j.

aijA 1 B B 1 C A 1 C

Properties of Matrix Operations
We have defined operations of addition, scalar multiplication, and multiplication of matri-
ces.  We now list the most important properties of these operations. Since addition and scalar
multiplication are defined the same way for matrices and vectors, these properties will be
recognizable as ones that have their counterparts for vectors.

THEOREM 2.2

Let A, B, and C be matrices and r and s be scalars.  Assume that the sizes of the  matrices
are such that the operations can be performed. 

Properties of Matrix Addition and Scalar Multiplication 

1.
2.
3. (where O is the appropriate zero matrix)

4.
5.
6.

Properties of Matrix Multiplication 

1.
2.
3.
4. (where is the appropriate identity matrix)
5.

Note: in general. Multiplication of matrices is not commutative.

Each one of these results asserts an equality between matrices. We know that two matrices
are equal if they are of the same size and their corresponding elements are equal. Each result
is verified by showing this to be the case. We illustrate the method for the commutative
property of addition. The reader is asked to use the same approach to prove some of the
other results in the exercises that follow.

A B B A By the rule of matrix addition we know that and are both
matrices of the same size. It remains to show that their corresponding elements are equal.
Consider the th element of each matrix.

th element of 

th element of 

(addition of real numbers is commutative) 5 aij 1 bij

1 i, j 2 B 1 A 5 bij 1 aij

1 i, j 2 A 1 B 5 aij 1 bij

1 i, j 2
1 5 1 A 1 B B 1 A

r 1sC 2 5 1rs 2C

r 1AB 2 5 1rA 2B 5 A 1rB 2
IAI 5 IA 5 A

1A 1 B 2C 5 AC 1 BC
A 1B 1 C 2 5 AB 1 AC
A 1BC 2 5 1AB 2C

1r 1 s 2C 5 rC 1 sC

r 1A 1 B 2 5 rA 1 rB

A 1 O 5 O 1 A 5 A
A 1 1B 1 C 2 5 1A 1 B 2 1 C
A 1 B 5 B 1 A

2.2

AB 2 BA
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2.2 Properties of Matrix Operations 81

The corresponding elements of and are equal. Thus 
These properties enable us to extend addition, scalar multiplication, and multiplication

to more than two matrices. We can write sums and products such as and
ABC without parentheses. The following examples illustrate these concepts. We remind
you that we call an expression such as a linear combination of the matri-
ces A, B, and C. 

Compute the linear combination for the following three
matrices.

and  

SOLUTION 

We compute the scalar multiples first, then add or subtract corresponding elements in a
natural way. 

Certain products of matrices such as ABCD will of course exist while other products will
not. We can determine whether a product exists by comparing the numbers of rows and
columns in adjacent matrices of the product, to see if they match. 

If the product of a chain of matrices exists, the product matrix will have the same num-
ber of rows as the first matrix in the chain and the same number of columns as the last
matrix.

Compute the product ABC of the following three matrices.

SOLUTION 

Let us check to see if the product ABC exists before we start spending time multiplying
matrices. We get

A B C ABC

match match
size of product is 2 3 1

The product exists and will be a matrix. Since matrix multiplication is associa-
tive, the matrices in the product ABC can be grouped together in any manner for

2 3 1

2 3 2 2 3 3 3 3 1 2 3 1
5

A 5 c1 2

3 21
d , B 5 c 0 1 3

21 0 22
d , C 5 £

4

21

0

§

EXAMPLE 2

5 c 11 225

217 18
d

2 c 1 3

24 5
d 1 3 c3 27

2 1
d 2 5 c0 2

3 21
d 5 c 2 6

28 10
d 1 c9 221

6 3
d 2 c 0 10

15 25
d

A 5 c 1 3

24 5
d , B 5 c3 27

2 1
d , C 5 c0 2

3 21
d

EXAMPLE 1 2A 1 3B 2 5C

aA 1 bB 1 cC

aA 1 bB 1 cC

A 1 B B 1 A A 1 B 5 B 1 A.
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82 CHAPTER 2 Matrices and Linear Transformations

h
h h h

 multiplying, as long as the order is maintained. Let us use the grouping (AB)C. This is
probably the most natural. We get

and

Caution
In algebra we know that the following cancellation laws apply. 

• If and , then 
• If , then or 

However the corresponding results are not true for matrices. 

• does not imply that 
• does not imply that or 

We demonstrate these possibilities by means of examples.

Consider the matrices 

Observe that but 

Consider the matrices Observe that but 

and 

Powers of Matrices
A similar notation is used for the powers of matrices as for powers of real numbers. If A is
a square matrix, then A multiplied by itself k times is written 

k times

Familiar rules of exponents of real numbers hold for matrices.

THEOREM 2.3 

If A is an square matrix and r and s are nonnegative integers, then
1. 
2. 
3. (By definition.)

We verify the first rule. The proof of the second rule is similar.

A A     A A  5 A A    

r times s times timesr 1 s

ArAs 5 c c c 5 Ar1s

A0 5 In

1Ar 2 s 5 Ars
ArAs 5 Ar1s

n 3 n

Ak 5 AA cA

Ak.

P 2 O Q 2 O.

P 5 c 1 22

22 4
d , Q 5 c2 26

1 23
d . PQ 5 O,

AB 5 AC 5 c3 4

6 8
d , B 2 C.

A 5 c1 2

2 4
d , B 5 c21 2

2 1
d , C 5 c23 8

3 22
d .

PQ 5 O P 5 O Q 5 O.
AB 5 AC B 5 C.

pq 5 0 p 5 0 q 5 0.
ab 5 ac a 2 0 b 5 c.

1AB 2C 5 c22 1 21

1 3 11
d £

4

21

0

§ 5 c29

1
d

AB 5 c1 2

3 21
d c 0 1 3

21 0 22
d 5 c22 1 21

1 3 11
d ,
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If compute 

SOLUTION 

This example illustrates how the preceding rules can be used to reduce the amount of
computation involved in multiplying matrices. We know that We could
perform three matrix multiplications to arrive at However we can apply rule 2 to
write and thus arrive at the result using two products. We get

The following example illustrates that the properties of matrix operations can be used to
simplify matrix expressions in a similar way to the simplification of ordinary algebraic
expressions.

Simplify the following matrix expression. 

SOLUTION

Using the properties of matrix operations we get

Resist the temptation to simplify matrix multiplication is not  commutative!

We now introduce a valuable way of writing a system of linear equations as a  
single matrix equation. We will see how this technique is used in designing equipment
for controlling currents and voltages in electrical circuits. Furthermore it opens up the
possibility of using matrix algebra to further discuss the behavior of systems of linear
equations. 

Systems of Linear Equations
We can write a general system of m linear equations in n variables using matrix notation as
follows:

Write each side of this equation as a column matrix,

a11x1 1 c 1 a1nxn 5 b1

( c ( (
am1x1 1 c 1 amnxn 5 bm

23AB 1 6BA;

5 23AB 1 6BA 1 4B2

1 7B2 2 5AB
A 1A 1 2B2 1 3B 12A 2 B2 2 A2 1 7B2 2 5AB 5 A2 1 2AB 1 6BA 2 3B2 2 A2

A 1A 1 2B 2 1 3B 12A 2 B 2 2 A2 1 7B2 2 5AB

EXAMPLE 4

A4 5 c 3 22

21 2
d c 3 22

21 2
d 5 c 11 210

25 6
d .

A2 5 c 1 22

21 0
d c 1 22

21 0
d 5 c 3 22

21 2
d .

A4 5 1A2 2 2
A4.

A4 5 AAAA.

EXAMPLE 3 A 5 c 1 22

21 0
d , A4.
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84 CHAPTER 2 Matrices and Linear Transformations

The left matrix can be written as a product of the matrix of coefficients A and a column
matrix of variables X. Let the column matrix of constants be B. 

A X B

Thus we can write the system of equations in matrix form

For example, 

can be written

We now use this notation and the properties of matrices to examine sums and scalar mul-
tiples of solutions to systems of linear equations. 

Solutions to Systems of Linear Equations 
In Section 4 of the “Linear Equations, Vectors, and Matrices” chapter, we found that the set
of solutions to a specific system of homogeneous equations was closed under addition and
scalar multiplication and was therefore a subspace. We are now in a position to show that this
is true of all homogeneous systems of linear equations.

Consider a homogeneous system of linear equations Let and be solu-
tions. Then 

and  

Adding these equations, we get 

giving 

Thus satisfies the equation This means that is a solution. The
set of solutions is closed under addition. 

Furthermore, if c is a scalar, multiplying by c, 

giving 

Thus cX1 is a solution. The set of solutions is closed under scalar multiplication. 

The set of solutions to a homogeneous system of linear equations is closed under
 addition and under scalar multiplication. It is a subspace.

We now find that the set of solutions to a nonhomogeneous system of linear equations
on the other hand does not form a subspace. Let be such a non -
homogeneous system. Let and be solutions. Thus

AX1 5 B and AX2 5 B

X1 X2

AX 5 B 1B 2 0 2

cAX1 5 0, A 1cX1 2 5 0

AX1 5 0

X1 1 X2 AX 5 0. X1 1 X2

AX1 1 AX2 5 0, A 1X1 1 X2 2 5 0

AX1 5 0 AX2 5 0

AX 5 0. X1 X2

3x1 1 2x2 2 5x3 5 7

x1 2 8x2 1 4x3 5 9

2x1 1 6x2 2 7x3 5 22

£
3 2 25

1 28 4

2 6 27

§ £
x1

x2

x3

§ 5 £
7

9

22

§

AX 5 B

£
a11 c a1n

( c (
am1 c amn

§ £
x1

(
xn

§ 5 £
b1

(
bm

§

£
a11x1 1 c 1 a1nxn

(
c

(
am1x1 1 c1 amnxn

§ 5 £
b1

(
bm

§
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2.2 Properties of Matrix Operations 85

Adding these equations gives

Therefore does not satisfy . It is not a solution. The set of solutions is 
not closed under addition. It is not a subspace. It can also be shown that the set of solutions
is not closed under scalar multiplication. See Exercise 41. 

The set of solutions to a nonhomogeneous system of linear equations is not closed
under either addition or scalar multiplication. It is not a subspace.

Even though the sets of solutions to nonhomogeneous systems of linear equations
do not form subspaces, subspaces are still at the heart of understanding such solutions.
The following example illustrates the relationship between the set of solutions to a non-
homogeneous system of linear equations and the subspace of solutions to a correspon-
ding homogeneous system.

(a) Consider the following homogeneous system of linear equations: 

It can be shown that there are many solutions, , , . The
solutions are vectors in of the form , or . They make up a line
through the origin defined by the vector (1, 5, 3). The solutions form a subspace of

of dimension 1, with basis {(1, 5, 3)}. See Figure 2.3.
We discussed in Section 2 of the “Linear Equations, Vectors, and Matrices” chap-

ter that , is a solution to every homogeneous system of linear
equations in n variables. Geometrically this means that the space of solutions to
every homogeneous system passes through the origin, as in the case of this line. 

x1 5 0, . . . , xn 5 0

R3

R3 1r, 5r, 3r 2 r 11, 5, 3 2x1 5 r x2 5 5r x3 5 3r

3x2 2 5x3 5 0

x1 2 2x2 1 3x3 5 0

x1 1 x2 2 2x3 5 0

EXAMPLE 5

X1 1 X2 AX 5 B

A 1X1 1 X2 2 5 2B

AX1 1 AX2 5 2B

Figure 2.3

x2

x1

x3

(1, 5, 3)

Subspace of
solutions to the 
homogeneous system

O
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86 CHAPTER 2 Matrices and Linear Transformations

(b) Consider the following nonhomogeneous system of linear equations:

It can be shown that there are many solutions, , ,
It can be shown that this set is not closed under addition or scalar multiplication. It
is not a subspace.

Observe that this system differs from the homogeneous system of Part (a) 
only in the constant terms. Both systems have the same matrix of coefficients. We
say that (a) is the corresponding homogeneous system of (b). There will be a cor-
responding homogeneous system for every nonhomogeneous system. The corre-
sponding homogeneous system enables us to understand the solutions of the
nonhomogeneous system. Express the above general solution in vector form,

. This can be written as the sum of the solutions to the corre-
sponding homogeneous system and a constant vector.

The implication is that the set of solutions to the nonhomogeneous system is the
line defined by (1, 5, 3) slid in a manner described by the vector (1, 3, 0). This
gives the set of solutions to be the line through the point (1, 3, 0) parallel to the
line through the origin defined by the vector (1, 5, 3). See Figure 2.4.  
The solutions to all nonhomogeneous systems can be pictured in this way by
relating the systems to their corresponding homogeneous systems. If the set of
solutions to the homogeneous system is a line through the origin, the set of solu-
tions to the nonhom o gen eous system is a line parallel to this line. If the set of
solutions to the homogeneous system is a plane through the origin, the set of
solutions to the nonhomogeneous system is a plane parallel to this plane, and so
on. We shall be able to give further insight into this geometrical way of looking
at solutions to linear systems in Section 4 of the “General Vector Spaces” chap-
ter when we have some very elegant mathematical tools involving transforma-
tions available.

1r 1 1, 5r 1 3, 3r 2 5 r 11, 5, 3 2 1 11, 3, 0 2

1r 1 1, 5r 1 3, 3r 2

x1 5 r 1 1 x2 5 5r 1 3 x3 5 3r.

3x2 2 5x3 5 9

x1 2 2x2 1 3x3 5 25

x1 1 x2 2 2x3 5 4

Figure 2.4

x2

x1

x3

(1, 5, 3)

(1, 3, 0)

Subspace of solutions to the
nonhomogeneous system
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2.2 Properties of Matrix Operations 87

In this example we analyze a two-port in an electrical circuit. 
Many networks are designed to accept signals at certain points and to deliver a mod-

ified version of the signals. The usual arrangement is illustrated in Figure 2.5. A current
at voltage is delivered into a two-port and it in some way determines the output

 current at voltage In practice, the relationship between the input and output  currents
and voltages is usually linear—they are related by a matrix equation:

The matrix is called the transmission matrix of the port. This matrix defines

the two-port. 

ca11 a12

a21 a22
d

cV2

I2
d 5 ca11 a12

a21 a22
d cV1

I1
d

I2 V2.
V1I1

EXAMPLE 6

Figure 2.5

Two-port

I1

V1

I1

I2

I2

V2

I1

V1

I1

I2

I2

V2
R

Figure 2.6

Figure 2.6 is an example of a two-port. The interior consists of a resistance R connected
as shown. Let us show that the currents and voltages do indeed behave in a linear manner
and determine the transmission matrix. Our approach will be to construct two equations, one
expressing in terms of and and the other expressing in terms of and and
then combine these two equations into a single matrix equation. We use the following law.

Ohm’s Law
The voltage drop across a resistance is equal to the current times the resistance.

The voltage drop across the resistance R is The current through the 
resistance is Thus Ohm’s Law implies that The current passes
through the resistance R unchanged and exits unchanged as Thus Write 
these two equations in the following standard form. 

Combine the two equations into a single matrix equation,

The transmission matrix is Thus, for example, if R is 2 ohms and the input 

voltage and current are volts, amp, we get

The output voltage and current are 3 volts and 1 amp.

I2 5 I1.
I1

I1.
I1. V1 2 V2 5 I1R.

V1 2 V2.

V2 V1 I1, I2 V1 I1

cV2

I2
d 5 c1 22

0 1
d c5

1
d 5 c3

1
d

V1 5 5 I1 5 1

c1 2R

0 1
d .

cV2

I2
d 5 c1 2R

0 1
d cV1

I1
d

V2 5 V1 2 RI1

I2 5 0V1 1 I1
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88 CHAPTER 2 Matrices and Linear Transformations

In practice a number of standard two-ports such as the one above are placed in series
to provide a desired voltage and current change. Consider the three two-ports of Figure 2.7,
with transmission matrices A, B, and C.

Considering each port separately, we have 

Substituting for from the first equation into the second gives 

Substituting this into the third equation gives

The three ports are thus equivalent to a single two-port. The transmission matrix of this two-
port is the product CBA of the individual ports. Note that the placement of each port in the
sequence is important since matrices are not commutative under multiplication. 

cV2

I2
d cV3

I3
d 5 BA cV1

I1
d .

cV2

I2
d 5 A cV1

I1
d , cV3

I3
d 5 B cV2

I2
d , cV4

I4
d 5 C cV3

I3
d

cV4

I4
d 5 CBA cV1

I1
d

cV3

I3
d

EXERCISE SET 2.2 

Computation

1. Let 

Calculate, if possible,

(a) AB and BA (b) AC and CA

(c) AD and DA

Observe that since BA does not exist,
and , illustrating the different possibilities when
order is reversed in matrix multiplication. 

2. Compute and for the matrices 

Observe that these products are equal, illustrating the asso-
ciative property of matrix multiplication.

3. Compute the product ABC for the following three matrices
in two distinct ways.

4. Compute each of the following linear combinations for 

and  

(a) (b)
(c)

5. Compute each of the following expressions for 

and

(a) (b)
(c) (d)

A 5 £
1 2

21 0

1 1

§ , B 5 c 2 4

22 3
d , C 5 c1

2
d

A 1BC 2 1AB 2C

AB 2 BA AC 2 CA
AD 5 DA

C 5 c2 3

6 1
d , D 5 c2 22

1 3
d .

A 5 c 1 2

21 0
d , B 5 c0 5 4

2 1 3
d ,

3A 1 B 2 2C

2A 1 3B A 1 2B 1 4C

A 5 c1 2

3 4
d , B 5 c2 23

0 1
d , C 5 c22 0

3 4
d .

A 5 c 1 2

21 3
d , B 5 c3 1 2

4 3 1
d , C 5 £

1 2

3 4

1 0

§

A2B 1 2C3 2A2 2 2A 1 3I2

1AB 2 2 A 2 3B2

A 5 c 2 0

21 5
d , B 5 c21 1

2 4
d , C 5 c3 4

0 2
d .

I2 I2

V1

I1 I2 I2 I3 I3

I3 I3I1 I4

I4

V2 V3 V4
A B C

Figure 2.7
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2.2 Properties of Matrix Operations 89

Sizes of Matrix Products
6. Given that A is a matrix, B is C is and

D is determine the sizes of the following products,
if they exist. 

(a) ABC (b) ABD (c) CAB

(d) DCAB (e)

7. If P is Q is R is S is and T is 
determine the sizes of the following matrix

 expressions, if they exist.

(a) PQR (b) PQ TPQ

(c) 5QR 2TPR (d) 4SPQ 3PQ

(e) QRSR QR

Matrix Operations
8. Let A be an matrix. Prove that AB and BA both exist

only if B is an matrix. 

9. Verify the following properties of matrix operations given
in this section:

(a) the associative property of matrix addition 

(b) the distributive property 

(c) if A is an matrix

10. Let A be an matrix. Show that .

11. Let A be any matrix, be the zero matrix,
and c be a scalar. Show that if then either
or 

12. Simplify the following matrix expressions. 

(a)
(b)
(c)

13. Simplify the following matrix expressions.

(a)
(b)
(c)

14. Find all the matrices that commute with the following
 matrices.

(a) (b) (c) 

15. What is incorrect about the following proof? Let be
a system of linear equations with solutions and Thus

and  

Thus every system of linear equations has at most one
 solution.

Powers of Matrices
16. (a) Let A be an matrix. Prove that is an

matrix.

(b) Let A be an matrix, with Prove that
does not exist. 

Thus one can only talk about powers of square matrices. 

17. If A and B are square matrices of the same size, prove that
in general 

Under what condition does equality hold?

18. If A and B are square matrices of the same size such that
prove that By constructing an

example, show that this result does not hold for all square
matrices of the same size.

19. If n is a nonnegative integer and A and B are square matrices
of the same size such that prove that

By constructing an example, show that this
identity does not hold in general for all square matrices of the
same size. 

20. Show that nonnegative integer powers of the same matrix
commute. 

Diagonal Matrices
21. Let A and B be diagonal matrices of the same size and c a

scalar. Prove that (a) is diagonal, (b) cA is diagonal,
and (c) AB is diagonal.

22. If A and B are diagonal matrices of the same size, prove that

23. Prove that if a matrix A commutes with a diagonal matrix
that has no two diagonal elements the same, then A is a diag-
onal matrix.

Idempotent and Nilpotent Matrices
A square matrix A is said to be idempotent if A square
matrix A is said to nilpotent if there is a positive integer p such
that The least integer such that is called the
degree of nilpotency of the matrix.

24. Determine whether the following matrices are idempotent.

(a) (b)

(c) (d)

(e) (f)

1

2 1

1

3 3 3,
3 3 2, 2 3 1, 1 3 3, 3 3 1,

A2BDC

4 3 2 2 3 6, 3 3 4,
6 3 3,

£
1 2 2

0 0 21

0 0 1

§ £
1 3 0

0 0 1

0 0 0

§

c0 1

1 0
d c3 26

1 22
d

c1 0

0 1
d c1 0

0 0
d

AP 5 0. AP 5 0

A2 5 A.

AB 5 BA.

A 1 B

1ArAs 5 AsAr 2

1AB 2n 5 AnBn.
AB 5 BA,

AB 5 BA, 1AB 22 5 A2B2.

1A 1 B 2 2
2 A2 1 2AB 1 B2

m 3 n m 2 n. A2

n 3 n A2 n 3 n

X1 5 X2

AX1 5 AX2

AX1 5 B AX2 5 B

X1 X2.
AX 5 B

c 1 0

21 0
d c1 0

0 2
d £

0 1 0

0 0 1

0 0 0

§

1A 1 B 2 3 2 2A3 2 3ABA 2 A3B2 2 B3

A 1A 2 B 2B 1 B2AB 2 3A2
A 1A 1 B 2 2 B 1A 1 B 2

1A 2 B 2 1A 1 B 2 2 1A 1 B 22

B 12In 2 BA 2 1 B 14In 1 5A 2B 2 3BAB 1 7B2A

A 1A 2 4B 2 1 2B 1A 1 B 2 2 A2 1 7B2 1 3AB

A 5 Omn.
cA 5 Omn c 5 0

m 3 n Omn m 3 n

m 3 n AIn 5 A

AIn 5 InA 5 A n 3 n

c 1A 1 B 2 5 cA 1 cB

A 1 1B 1 C 2 5 1A 1 B 2 1 C

n 3 m
m 3 n
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90 CHAPTER 2 Matrices and Linear Transformations

25. Determine b, c, and d such that is idempotent. 

26. Determine a, c, and d such that is idempotent.

27. Prove that if A and B are idempotent and then
AB is idempotent.

28. Show that if A is idempotent, and if n is a positive integer,
then 

29. Show that the following matrices are nilpotent with degree
of nilpotency 2.

(a) (b) (c) 

30. Show that the following matrix is nilpotent with degree of
nilpotency 3.

Systems of Linear Equations
31. Write each of the following systems of linear equations as

a single matrix equation 

(a) (b)

(c)

32. Write each of the following systems of linear equations as
a single matrix equation 

(a)

(b)

(c)

(d)

33. Prove that if and are solutions to the homogene -
ous system of linear equations then the linear com-
bination is a solution for all scalars a and b. 

34. Consider the following system of equations. You are given
two solutions, and Generate four other solutions using
the operations of addition and scalar multiplication. Use the

result of Exercise 33 to find a solution for which and

35. Consider the following system of four equations. You are
given two solutions and Generate four other solu-
tions using the operations of addition and scalar multipli-
cation. Use the result of Exercise 33 to find a solution for
which and 

Consider the nonhomogeneous systems of linear equations
in Exercises 36–39. For convenience, their general solu-
tions are given. (a) Write down the corresponding homo-
geneous system and give its general solution. (b) Give a
basis for this subspace of solutions to the homogeneous sys-
tem and a written description of the subspace. (c) Give a
written description of the subspace of solutions to the non-
homogeneous system. 

36.

General solution  

37.

General solution 

38.

General solution 1r 2 1, 22r 1 3, r 2
x1 2 x2 2 3x3 5 4

2x1 2 x2 2 4x3 5 25

x1 1 x2 1 x3 5 2

122r 1 1, 23r 1 4, r 2
x1 1 2x2 1 8x3 5 9

x2 1 3x3 5 4

x1 1 x2 1 5x3 5 5

12r 1 2, 3r 1 3, r 2
2x1 1 x2 2 x3 5 7

x1 1 x2 2 2x3 5 5

x1 1 x3 5 2

X2 5 ≥
3

7

2

1

¥X1 5 ≥
0

21

1

21

¥ ,

2x1 2 x2 1 x4 5 0

5x1 2 4x2 1 3x3 1 7x4 5 0

3x1 2 2x2 1 x3 1 3x4 5 0

x1 2 x2 1 x3 1 2x4 5 0

x1 5 6 x2 5 9.

X1 X2.

X1 5 ≥
5

22

1

0

¥ , X2 5 ≥
11

24

1

1

¥

x1 1 3x2 1 x3 5 0

4x1 1 9x2 2 2x3 2 6x4 5 0

2x1 1 5x2 2 2x4 5 0

x1 1 2x2 2 x3 2 2x4 5 0

x2 5 0.
x1 5 1

X1 X2.

aX1 1 bX2

AX 5 0,
X1 X2

3x1 2 3x2 2 8x3 1 5x4 5 22
x1 1 9x3 1 5x4 5 12

2x1 1 5x2 2 3x3 1 4x4 5 4

7x1 1 5x2 1 x3 5 29
x1 2 3x2 1 6x3 5 2

3x1 1 x2 5 9
4x1 2 3x2 5 22
5x1 1 2x2 5 6

22x1 2 5x2 2 2x3 5 1
4x1 2 7x2 1 x3 5 23
x1 1 8x2 2 2x3 5 3

AX 5 B.

6x1 2 2x2 5 7
29x1 2 3x2 5 24

3x1 2 8x2 5 21 22x1 1 3x2 5 24

2x1 1 3x2 5 4 4x1 1 7x2 5 22

AX 5 B.

£
0 1 0

0 0 1

0 0 0

§

c 1 1

21 21
d c24 8

22 4
d c3 29

1 23
d

An 5 A.

AB 5 BA,

ca 0

c d
d

c1 b

c d
d
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2.2 Properties of Matrix Operations 91

39.

General solution 

40. Solve the following nonhomogeneous system of linear
 equations. Show that the set of solutions is not a subspace.
Give a geometrical description of the set of solutions. 

41. Show that a set of solutions to a system of nonhomogeneous
linear equations is not closed under scalar multiplication.

42. Prove that a system of linear equations has a solution
if B is a linear combination of the columns of the matrix A. 

Miscellaneous Results
43. State (with a brief explanation) whether the following

 statements are true or false for matrices A, B, C, and D.

(a)
(b)
(c) If A is an matrix, B is , and C is ,

then ABC has elements.

(d) If , then for all positive integer values
of r.

(e) If is a solution of and is a solution of
, then is a solution of

Two-Ports
44. Determine the transmission matrices of the two-ports in

Figure 2.8. 

Hints:
(a) since terminals are connected directly.

Current through resistance R is Drop in
 voltage across R is 

(b) Current through is . Drop in voltage across
is Current through is Drop in voltage

across is 

(c) Current through is Drop in voltage across R1 is
Current through is Drop in volt-

age across is 

45. The two-port in Figure 2.9 consists of three two-ports placed
in series. The transmission matrices are indicated. (a) What
is the transmission matrix of the composite two-port? (b) If
the input voltage is five volts and the current is two amps,
 determine the output voltage and current.

R2 V2.
V1 2 V2. R2 I1 2 I2.

R1 I1.

R2 V1 2 V2.
R1 V1. R2 I2.

R1 I1 2 I2

V1.
I1 2 I2.

V1 5 V2

AX 5 B2 X1 1 X2

AX 5 B1 1 B2.

X1 AX 5 B1 X2

A2 5 A Ar 5 A

m 1 q
m 3 n n 3 r r 3 q

A 1B 1 C 1 D 2 5 AB 1 AC 1 AD

A2 2 B2 5 1A 1 B 2 1A 2 B 2

AX 5 B

2x1 1 5x2 2 7x3 5 12

x2 2 x3 5 2

x1 1 2x2 2 3x3 5 5

122r 1 s 1 3, r, s 2
23x1 2 6x2 1 3x3 5 29

2x1 1 4x2 2 2x3 5 6

x1 1 2x2 2 x3 5 3

I2 I2

I2 I2 I3 I3

I3 I3 I4

I4

V2 V3 V45 volts

2 amps

1 –1
0   1

3 –11   0
1   1 –1   1

Figure 2.9

R

I1

V1

I1

I2

I2

V2

(a)

I1

V1 R1

R2

I1

I2

I2

V2

(b)

I1

V1

R1 R2

I1

I2

I2

V2

(c)

Figure 2.8
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92 CHAPTER 2 Matrices and Linear Transformations

Symmetric Matrices and Seriation in Archaeology 
In this section we continue the algebraic development of matrices and we see how the
t heory developed is used by archaeologists to determine the chronological order of graves
and artifacts.

2.3

The first row of A becomes the first column of , the second row of A becomes the second
column of and so on. The th element of A becomes the th element of If A
is an matrix, then is an matrix. 

Determine the transpose of each of the following matrices.

SOLUTION 

Writing rows as columns we get

Observe that the element of B namely , becomes the element of Note
also that B is a matrix while Bt is C is a matrix while is 

There are three operations that we have defined for matrices, namely addition, scalar
multiplication, and multiplication. The following theorem tells us how transpose works in
conjunction with these operations.

THEOREM 2.4

Properties of Transpose
Let A and B be matrices and c be a scalar. Assume that the sizes of the matrices are such
that the operations can be performed.

1. Transpose of a sum
2. Transpose of a scalar multiple
3. Transpose of a product 
4. 

We demonstrate the techniques that are used in verifying results involving transposes by
verifying the third property. The reader is asked to derive the other results in the exercises
that follow. 

1At 2 t 5 A

1AB 2 t 5 BtAt

1cA 2 t 5 cAt

1A 1 B 2 t 5 At 1 Bt

2 3 3 3 3 2, 1 3 3 Ct 3 3 1.
11, 3 2 27 13, 1 2 Bt.

At 5 c2 28

7 0
d , Bt 5 £

1 4

2 5

27 6

§ , Ct 5 £
21

3

4

§

A 5 c 2 7

28 0
d , B 5 c1 2 27

4 5 6
d , C 5 321 3 4 4

EXAMPLE 1

m 3 n At n 3 m
At, 1 i, j 2 1j, i 2 At.

At

DEFINITION The transpose of a matrix A, denoted is the matrix whose columns are the rows of the given
matrix A.

At,
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DEFINITION

2.3 Symmetric Matrices and Seriation in Archaeology 93

The expressions and will be matrices upon carrying out all the
products and transposes. We prove that these matrices are equal by showing that corre-
sponding elements are equal. 

th element of th element of AB

th element of 

The corresponding elements of and are equal, proving the result.
Remark: The results for the transpose of a sum and a product can be extended to any

number of matrices. For example, for three matrices A, B, and C,

and  

Note the reversal of the order of the matrices in the transpose of a product. (See the fol-
lowing exercises for the proofs.)

Comment: Let u � and v � be column vectors in Rn, interpreted as n � 1 

matrices. The product utv of a 1 � n matrix and an n � 1 matrix will be a 1 � 1 matrix. It is
often useful to drop the matrix brackets and treat this product as a real number. We find, as
follows, that utv then results in the dot product. 

utv � [u1, u1, c, un] � u1v1 � c� unvn � .

The dot product of two column vectors u and v in Rn can be written 

For example, if u � and v � then utv � � (3 � 0) �

(4 � 2) � (1 � �1) � 7, which is the dot product of u and v.

This result leads to useful identities. For example, � utu (since � �

). The vectors u and v are orthogonal if and only if utv � 0 (since utv � u � v � 0 if 
and only if u and v are orthogonal). If u and v are viewed as row matrices, then u � v � uvt.
We shall find that this matrix way of looking at the dot product is important in theoretical
work. See, for example, in the proof of Theorem 2.9, Section 2.5 on geometrical transforma-
tions.

We now introduce symmetric matrices. They are probably the single most important
class of matrices. They are used in areas of mathematics such as geometry, and in fields
such as theoretical physics, mechanical and electrical engineering, and sociology.

A symmetric matrix is a square matrix that is equal to its transpose.

1AB2 t 5 BtAt 1AB 2 t BtAt

"ut # u
7u 7 2 7u 7 "u # u

£
3

4

21

§ £
0

2

1

§ 33, 4, 21 4 £
0

2

1

§

u # v 5 utv

£
v1

(

vn

§ u # v

£
u1

(

un

§ £
v1

(

vn

§

1A 1 B 1 C 2 t 5 At 1 Bt 1 Ct 1ABC 2 t 5 CtBtAt

1AB 2 t BtAt

5 1j, i 2 th element of AB

5 1column i of B 2 3 1 row j of A 2
1 i, j 2 BtAt 5 1 row i of Bt 2 3 1column j of At 2

1 i, j 2 1AB 2 t 5 1j, i 2
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94 CHAPTER 2 Matrices and Linear Transformations

The following are examples of symmetric matrices. Note the symmetry of these matrices about
the main diagonal. All nondiagonal elements occur in pairs symmetrically located about the
main diagonal.

match

match

Consider the following matrix, which represents distances between  various
U.S. cities.

Chicago LA Miami NY

Observe that the matrix is symmetric. All elements occur in pairs, symmetrically located
about the main diagonal. There is a reason for this, namely that the distance from city X to
city Y is the same as the distance from city Y to city X. For example, the distance from
Chicago to Miami, which is 1374 miles (row 1, column 3) will be the same as the distance
from Miami to Chicago (row 3, column 1). All such mileage matrices will be symmetric. 

Let A and B be symmetric matrices of the same size. Let C be a linear com-
bination of A and B. Prove that C is symmetric. 

Proof  Let where a and b are scalars. We now use the results of
Theorem 2.4 to prove that C is symmetric. 

Transpose of sum

Transpose of scalar multiple

A and B are symmetric 

Thus C is symmetric.

The Expression “If and Only If”
The expressions “if and only if” and “necessary and sufficient” (they mean the same thing)
are frequently used in mathematics, and we shall use them periodically in this course. We
have already used if and only if intuitively in this section. Let p and q be statements. Suppose
that p implies q, written and that also The second implication is called the
converse of the first. We say that “p if and only if q” or “p is necessary and sufficient for
q.” The next example states a result using this language. 

p 1 q, q 1 p.

5 C

5 aA 1 bB

5 aAt 1 bBt

5 1aA 2 t 1 1bB 2 t

Ct 5 1aA 1 bB 2 t

C 5 aA 1 bB,

EXAMPLE 3

Chicago

Los Angeles

Miami

New York

≥
0 2092 1374 841

2092 0 2733 2797

1374 2733 0 1336

841 2797 1336 0

¥

EXAMPLE 2

c2 5

5 24
d £

0

1

24

1

7

8

24

8

3

§ ≥
1 0 22 4

0 7 3 9

22 3 2 23

4 9 23 6

¥

9781284120097_CH02.qxd  9/15/17  2:08 PM  Page 94

© Jones & Bartlett Learning, LLC.  NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION



2.3 Symmetric Matrices and Seriation in Archaeology 95

Let A and B be symmetric matrices of the same size. Prove that the  product
AB is symmetric if and only if 

Proof  Every “if and only if” situation such as this consists of two parts. We have to
show that (a) if AB is symmetric then and then conversely, (b) if
then AB is symmetric. 

(a) Let AB be symmetric. Then 

Definition of symmetric matrix

Transpose of a product

A and B are symmetric matrices

(b) Let Then

Transpose of a product

A and B are symmetric matrices

Therefore, AB is symmetric.
Thus, given two symmetric matrices of the same size, A and B, the product AB is

symmetric if and only if 
This result could also have been stated as follows: “Given two symmetric matrices

of the same size, A and B, then a necessary and sufficient condition for the product AB
to be symmetric is that ” 

We now introduce a number that is associated with every square matrix, called the trace
of the matrix.

AB 5 BA.

AB 5 BA.

5 AB

5 AtBt

1AB 2 t 5 1BA 2 t

AB 5 BA.

5 BA

5 BtAt

AB 5 1AB 2 t

AB 5 BA, AB 5 BA

AB 5 BA.
EXAMPLE 4

DEFINITION Let A be a square matrix. The trace of A, denoted is the sum of the diagonal elements of A.
Thus if A is an matrix,

tr 1A 2 5 a11 1 a22 1 c1 ann

n 3 n
tr 1A 2

Determine the trace of the matrix 

SOLUTION 

We get, 

The trace of a matrix plays an important role in matrix theory and matrix applications
because of its properties and the ease with which it can be evaluated. It is important in fields
such as statistical mechanics, general relativity, and quantum mechanics, where it has
 physical significance. 

The following theorem tells us how the operation of trace interacts with the operations
of matrix addition, scalar multiplication, multiplication, and transpose. 

tr 1A 2 5 4 1 125 2 1 0 5 21

EXAMPLE 5 A 5 £
4 1 22

2 25 6

7 3 0

§ .
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96 CHAPTER 2 Matrices and Linear Transformations

THEOREM 2.5

Properties of Trace
Let A and B be matrices and c be a scalar. Assume that the sizes of the matrices are such
that the operations can be performed.

1. 
2. 
3. 
4. 

Proof  We prove the first property, leaving the proofs of the other properties for the
reader to complete in the exercises. Since the diagonal elements of are

, we get

Matrices with Complex Elements (Optional)
The elements of a matrix may be complex numbers. A complex number is of the form

where a and b are real numbers and a is called the real part and b the imagi-
nary part of z. 

The rules of arithmetic for complex numbers are as follows:

Let be complex numbers.

Equality: and 

Addition:

Subtraction:

Multiplication:

The conjugate of a complex number is defined and written 

Consider the complex numbers and Compute 
and 

SOLUTION 

Using the above definitions we get

z1 5 2 2 3i

z1z2 5 12 1 3i 2 11 2 2i 2 5 2 11 2 2i 2 1 3i 11 2 2i 2 5 2 2 4i 1 3i 2 6i2 5 8 2 i

z1 1 z2 5 12 1 3i 2 1 11 2 2i 2 5 12 1 1 2 1 13 2 2 2 i 5 3 1 i

z1 1 z2, z1z2, z1.
EXAMPLE 6 z1 5 2 1 3i z2 5 1 2 2i.

z 5 a 1 bi z 5 a 2 bi.

5 ac 1 bdi2 1 1ad 1 bc 2 i 5 1ac 2 bd 2 1 1ad 1 bc 2 i
5 ac 1 adi 1 bci 1 bdi2

z1z2 5 1a 1 bi 2 1c 1 di 2 5 a 1c 1 di 2 1 bi 1c 1 di 2
z1 2 z2 5 1a 2 c 2 1 1b 2 d 2 i
z1 1 z2 5 1a 1 c 2 1 1b 1 d 2 i

z1 5 z2 if a 5 c b 5 d

z1 5 a 1 bi, z2 5 c 1 di

i 5 "21.

z 5 a 1 bi

5 tr 1A 2 1 tr 1B 2
5 1a11 1 a22 1 c1 ann 2 1 1b11 1 b22 1 c1 bnn 2

tr 1A 1 B 2 5 1a11 1 b11 2 1 1a22 1 b22 2 1 c1 1ann 1 bnn 2
1a11 1 b11 2 , 1a22 1 b22 2 , c, 1ann 1 bnn 2

A 1 B

tr 1At 2 5 tr 1A 2
tr 1cA 2 5 ctr 1A 2
tr 1AB 2 5 tr 1BA 2
tr 1A 1 B 2 5 tr 1A 2 1 tr 1B 2
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2.3 Symmetric Matrices and Seriation in Archaeology 97

Matrices having complex elements are added, subtracted, and multiplied using the same
rules as matrices having real elements. 

Let and Compute
2A, and AB.

SOLUTION 

We get

The conjugate of a matrix A is denoted and is obtained by taking the conjugate of each
element of the matrix. The conjugate transpose of A is written and defined by 

For example if then 

and  

A square matrix C is said to be hermitian if 

Let us show that the matrix is hermitian. We get 

Hermitian matrices are more important than symmetric matrices for matrices having com-
plex elements. 

The properties of conjugate transpose are similar to those of transpose. We list these
properties in the following theorem, leaving the proofs for the reader to do in the exercises
that follow.

C 5 c 2 3 1 4i

3 2 4i 6
d ; C* 5 Ct 5 c 2 3 2 4i

3 1 4i 6
d 5 C

C 5 c 2 3 2 4i

3 1 4i 6
d

C 5 C*.

A 5 c2 2 3i 1 1 4i

6 27i
d A* 5 A t 5 c2 2 3i 6

1 1 4i 27i
d

A 5 c2 1 3i 1 2 4i

6 7i
d

A* 5 A t.
A

5 c11 1 4i 10 1 9i

7 1 5i 215 1 8i
d

5 c 12 1 i 23 1 13 2 2i 2 11 1 i 2 12 1 i 2 12i 2 1 13 2 2i 2 12 1 3i 2
14 2 13 2 1 15i 2 11 1 i 2 4 12i 2 1 15i 2 12 1 3i 2 d

AB 5 c2 1 i 3 2 2i

4 5i
d c 3 2i

1 1 i 2 1 3i
d

2A 5 2 c2 1 i 3 2 2i

4 5i
d 5 c4 1 2i 6 2 4i

8 10i
d

5 c2 1 i 1 3 3 2 2i 1 2i

4 1 1 1 i 5i 1 2 1 3i
d 5 c5 1 i 3

5 1 i 2 1 8i
d

A 1 B 5 c2 1 i 3 2 2i

4 5i
d 1 c 3 2i

1 1 i 2 1 3i
d

A 1 B,

EXAMPLE 7 A 5 c2 1 i 3 2 2i

4 5i
d B 5 c 3 2i

1 1 i 2 1 3i
d .
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98 CHAPTER 2 Matrices and Linear Transformations

THEOREM 2.6

Properties of Conjugate Transpose
Let A and B be matrices with complex elements, and let z be a complex number.

1. Conjugate transpose of a sum

2. Conjugate transpose of a scalar multiple

3. Conjugate transpose of a product

4. 

The time is now ripe for a good application of matrix algebra!

Seriation in Archaeology
A problem confronting archaeologists is that of placing sites and artifacts in proper
chronological order. This branch of archaeology, called sequence dating or seriation,
began with the work of Sir Flinders Petrie in the late nineteenth century. Petrie studied
graves in the cemeteries of Nagada, Ballas, and Hu, all located in what was prehistoric
Egypt. (Recent carbon dating shows that all the graves ranged from 6000 B.C. to 2500 B.C.)
Petrie used the data from approximately 900 graves to order them and assign a time
period to each type of pottery found. 

Let us look at this general problem of seriation in terms of graves and varieties of
 pottery found in graves. An assumption usually made in archaeology is that two graves
that have similar contents are more likely to lie close together in time than are two
graves that have little in common. The mathematical model that we now construct
leads to information concerning the common contents of graves and thus to the chrono-
logical order of the graves.

We construct a matrix A, all of whose elements are either 1 or 0, that describes the pot-
tery content of the graves. Label the graves and the types of pottery Let
the matrix A be defined by

The matrix A contains all the information about the pottery content of the various graves.
The following result now tells us how information is extracted from A. 

The element of the matrix is equal to the number of types of pottery
common to both grave i and grave j. 

Thus, the larger , the closer grave i and grave j are in time. By examining the elements of
G, the archaeologist can arrive at the chronological order of the graves. Let us verify this result. 

5 ai1aj1 1 ai2aj2 1 c1 ainajn

5 3ai1 ai2 cain 4 ≥
aj1

aj2

(
ajn

¥

5 1 row i of A 2 3 1column j of At 2
gij 5 element in row i, column j of G

gij

gij G 5 AAt

aij 5 e1 if grave i contains pottery type j

0 if grave i does not contain pottery type j

1, 2, c, 1, 2, c.

1A* 2 * 5 A

1AB 2 * 5 B*A*

1zA 2 * 5 zA*

1A 1 B 2 * 5 A* 1 B*
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2.3 Symmetric Matrices and Seriation in Archaeology 99

Each term in this sum will be either 1 or 0. For example, the term and
are both 1; that is if pottery type 2 is common to graves i and j. It will be 0 if  pottery type

2 is not common to graves i and j. Thus the number of 1’s in this expression for the 
actual value of is the number of types of pottery common to graves i and j. 

The matrix leads in an analogous manner to information about the sequence
dating of the pottery. The assumption is made that the larger the number of graves in which
two types of pottery appear, the closer they are chronologically. The element of the matrix

gives the number of graves in which the ith and jth types of pottery both appear.
Thus the larger , the closer pottery types i and j are in time. By examining the  elements
of P, we can arrive at the chronological order of the pottery (see Exercise 30).

It can be shown mathematically that the matrices and are
 symmetric matrices. Furthermore, it can be argued from the physical interpretation that G
and P should be symmetric matrices (see Exercise 28). This illustrates the  compatibility of
the mathematics and the interpretation. The implication of this symmetry is that all the
information is contained in the elements above the main diagonals of these matrices. The
information is just duplicated in the elements below the main diagonals. 

We now illustrate this method by means of an example. Let the following matrix A
 represent the three pottery contents of four graves.

Thus, for example, implies that grave 1 contains pottery type 3; implies
that grave 2 does not contain pottery type 3. G is calculated: 

Observe that G is indeed symmetric. The information contained in the elements above the
main diagonal is duplicated in the elements below it. We systematically look at the ele-
ments above the main diagonal. 

––graves 1 and 2 have one type of pottery in common.

––graves 1 and 3 have one type of pottery in common.

––graves 1 and 4 have no pottery in common.

––graves 2 and 3 have no pottery in common.

––graves 2 and 4 have no pottery in common.

––graves 3 and 4 have one type of pottery in common.

Graves 1 and 2 have pottery in common; they are close together in time. Let us start with
graves 1 and 2 and construct a diagram.

Next add grave 3 to this diagram. while Thus grave 3 is close to grave 1
but not close to grave 2. We get

Finally, add grave 4 to the diagram. while and Grave 4 is close
to grave 3 but not close to grave 1 or to grave 2. We get

4 2 3 2 1 2 2

g34 5 1 g14 5 0 g24 5 0.

3 2 1 2 2

g13 5 1 g23 5 0.

1 2 2

g34 5 1

g24 5 0

g23 5 0

g14 5 0

g13 5 1

g12 5 1

G 5 AAt 5 ≥
1 0 1

1 0 0

0 1 1

0 1 0

¥ £
1 1 0 0

0 0 1 1

1 0 1 0

§ 5 ≥
2 1 1 0

1 1 0 0

1 0 2 1

0 0 1 1

¥

a13 5 1 a23 5 0

A 5 ≥
1 0 1

1 0 0

0 1 1

0 1 0

¥

G 15 AAt 2 P 15 AtA 2
pij

P 5 AtA
pij

P 5 AtA
gij 2 ,

gij 1
ai2aj2 will be 1 if ai2

aj2
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100 CHAPTER 2 Matrices and Linear Transformations

The mathematics does not tell us which way time flows in this diagram. There are two  pos-
sibilities:

and  

The archaeologist usually knows from other sources which of the two extreme graves (4
and 2 in our case) came first. Thus the chronological order of the graves is known. 

The matrices G and P contain information about the chronological order of the graves and
pottery, through the relative magnitudes of their elements. These matrices are, in  practice, large
and the information cannot be sorted out as easily or give results that are as unambiguous as
in the above illustration. For example, Petrie examined 900 graves; his matrix G would be a

matrix. Special mathematical techniques have been developed for extracting infor-
mation from these matrices; these methods are now being executed on  computers. Readers
who are interested in pursuing this topic further should consult “Some Problems and Methods
in Statistical Archaeology” by David G. Kendall, World Archaeology, 1, 61–76, 1969. 

In these sections we have developed the algebraic theory of matrices. This theory is
extremely important in applications of mathematics. We shall, for example, use matrices
in mathematical models of communication and of population movements. Albert Einstein
used a matrix equation to describe the relationship between geometry and matter in his gen-
eral theory of relativity:

T is a matrix that represents matter, R is a matrix that represents geometry, r is a scalar, and
G is a matrix that describes gravity. All the matrices are symmetric matrices. The
theory involves solving this matrix equation to determine a gravitational field. The German
physicist Werner Heisenberg made use of matrices in his development of quantum mechan-
ics, for which he received a Nobel Prize. The theory of matrices is a cornerstone of two of
the foremost  physical theories of the twentieth century. 

4 3 4

T 5 R 2
1
2rG

900 3 900

4 S 3 S 1 S 2 4 d 3 d 1 d 2

EXERCISE SET 2.3 

Computation
1. Determine the transpose of each of the following matrices.

Indicate whether or not the matrix is symmetric.

(a) (b)

(c) (d)

(e)

(f)

(g)

(h)

(i)

2. Each of the following matrices is to be symmetric. Determine
the elements indicated with 

(a) (b)

(c)

3. If A is B is C is and D is
 determine the sizes of the following matrices, if they exist.

(a) (b)
(c) (d)
(e) 1Bt C 2 t 2 AD

4CA 2 1CA 2 2 1ADBtC 2 2 1 I4

ADBt CtB 2 5AD

4 3 1, 2 3 3, 2 3 4, 1 3 3,

≥
23 # 8 9

24 7 # 7# 2 6 4# 7 # 9

¥

£
1 2 4# 6 #
4 5 2

§ £
3 5 ## 8 4

23 # 3

§
a #.

K 5 £
7 0 0

0 23 0

0 0 9

§

H 5 £
1 22 3

4 5 6

22 6 7

§

G 5 c22 4 5 7

1 0 3 27
d

F 5 £
1 21 3

21 2 0

3 0 4

§

E 5 £
4 5 6

21 2 3

0 1 2

§

C 5 c3 21

2 4
d D 5 £

4 5

22 3

7 0

§

A 5 c21 2

2 23
d B 5 c1 2

0 3
d

9781284120097_CH02.qxd  9/15/17  2:13 PM  Page 100

© Jones & Bartlett Learning, LLC.  NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION



2.3 Symmetric Matrices and Seriation in Archaeology 101

Transpose
4. Prove the following properties of transpose given in

Theorem 2.4.

(a) (b)
(c)

5. Prove the following properties of transpose using the results
of Theorem 2.4.

(a)
(b)

6. Let A be a diagonal matrix. Prove that 

7. Let A be a square matrix. Prove that .

Symmetric Matrices
8. Prove that a square matrix A is symmetric if and only if 

for all elements of the matrix. 

9. Let A be a symmetric matrix. Prove that is symmetric.

10. Prove that the sum of two symmetric matrices of the same
size is symmetric. Prove that the scalar multiple of a sym-
metric matrix is symmetric. Thus a set of all symmetric
matrices of the same size is closed under addition and under
scalar multiplication.

Antisymmetric Matrices
11. A square matrix A is said to be antisymmetric if 

(a) Give an example of an antisymmetric matrix. 

(b) Prove that the diagonal elements of an antisymmetric
matrix are zero. 

(c) Prove that the sum of two antisymmetric matrices of
the same size is an antisymmetric matrix.

(d) Prove that the scalar multiple of an antisymmetric
matrix is antisymmetric. 

12. If A is a square matrix, prove that

(a) is symmetric. (b) is antisymmetric.

13. Prove that any square matrix A can be decomposed into the
sum of a symmetric matrix B and an antisymmetric matrix

14. (a) Prove that if A is idempotent, then is also idempotent. 

(b) Prove that if is idempotent, then A is idempotent.

Trace of a Matrix
15. Determine the trace of each of the following matrices.

(a) (b)

(c)

16. Prove the following properties of trace given in Theorem 2.5.

(a) (b)
(c)

17. Prove the following property of trace using the results of
Theorem 2.5. 

If and Only If Condition
18. Consider two matrices A and B of the same size. Prove that

if and only if 

19. Prove that the matrix product AB exists if and only if the
number of columns in A is equal to the number of rows in B.

20. Prove that for all matrices B if and only
if 

Complex Matrices
21. Compute AB, and BA for the matrices

22. Compute AB, and BA for the matrices

23. Find the conjugate and conjugate transpose of each of the
following matrices. Determine which matrices are  hermitian.

24. Find the conjugate and conjugate transpose of each of the fol-
lowing matrices. Determine which matrices are hermitian.

25. Prove the following four properties of conjugate transpose.
(a) (b)
(c) (d)

26. Prove that the diagonal elements of a hermitian matrix are
real numbers. 

Applications
27. The following matrices describe the pottery contents of var-

ious graves. For each situation, determine possible chrono-
logical orderings of the graves and then the pottery types. 

(a) (b)£
1 0

0 1

1 1

§ ≥
0 0 1

1 1 0

1 0 1

0 1 0

¥

1AB 2 * 5 B*A* 1A* 2 * 5 A

1A 1 B 2 * 5 A* 1 B* 1zA 2 * 5 zA*

C 5 c1 2

2 4
d , D 5 c 9 23i

3i 8
d

A 5 c 3 7 1 2i

7 2 2i 5
d , B 5 c3 1 5i 1 2 2i

1 1 2i 5 1 6i
d ,

C 5 c 7i 4 2 3i

6 1 8i 29
d , D 5 c 22 3 2 5i

3 1 5i 9
d

A 5 c2 2 3i 5i

2 5 2 4i
d , B 5 c 4 5 2 i

5 1 i 6
d ,

A 5 c 4 1 i 2 2 3i

6 1 2i 1 2 i
d , B 5 c2 1 i 23

2 4 2 5i
d

A 1 B,

A 5 c 5 3 2 i

2 1 3i 25i
d , B 5 c22 1 i 5 1 2i

3 2 i 4 1 3i
d

A 1 B,

A 5 On.
AB 5 On n 3 n

A 5 B At 5 Bt.

tr 1A 1 B 1 C 2 5 tr 1A 2 1 tr 1B 2 1 tr 1C 2
tr 1At 2 5 tr 1A 2tr 1cA 2 5 ctr 1A 2 tr 1AB 2 5 tr 1BA 2

≥
0 21 2 3

24 5 3 2

1 6 27 2

3 9 2 1

¥

c 2 3

21 24
d £

5 1 2

4 23 5

27 2 8

§

At

At

C: A 5 B 1 C.

A 1 At A 2 At

A 5 2At.

At

aij 5 aji

1An 2 t 5 1At 2n

A 5 At.

1ABC 2 t 5 CtBtAt

1A 1 B 1 C 2 t 5 At 1 Bt 1 Ct

1At 2 t 5 A

1A 1 B 2 t 5 At 1 Bt 1cA 2 t 5 cAt

9781284120097_CH02.qxd  9/15/17  2:15 PM  Page 101

© Jones & Bartlett Learning, LLC.  NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION



(c) (d)

(e) (f)

28. Let and for an arbitrary matrix A. 

(a) Prove that G and P are both symmetric matrices. 

(b) G and P both have physical interpretation in the archae-
ological model. Use this physical interpretation to rea-
son that G and P should be symmetric. The mathematical
result and the physical interpretation are compatible.

29. Let A be an arbitrary matrix. What information does the ith
diagonal element of the matrix normally give? Discuss. 

30. Derive the result for analyzing the pottery in graves. Let A
describe the pottery contents of various graves. Prove that:

The element of the matrix gives the number of
graves in which the ith and jth types of pottery both appear. 

Thus the larger the closer pottery types i and j are in
time. By examining the elements of P the archaeologist can
arrive at the chronological order of the pottery. 

31. The model introduced here in archaeology is used in soci-
ology to analyze relationships within a group of people.
For example, consider the relationship of “friendship”
within a group. Assume that all friendships are mutual.
Label the people and define a square matrix A as
follows: for all i (diagonal elements of A are zero)

(a) Prove that if then is the number of friends
that i and j have in common.

(b) Suppose that all friendships are not mutual. How does
this affect the model?

E
0 1 0 0

1 0 1 1

0 0 1 0

0 1 0 0

1 1 0 1

U

F 5 AAt, fij

aij 5 e1 if i and j are friends

0 if i and j are not friends

aii 5 0
1, c, n

pij,

pij P 5 AtA

AAt

G 5 AAt P 5 AtA,

≥
1 0 1 0

1 0 0 0

0 1 0 1

0 1 1 0

¥

£
1 0 1 0

0 1 1 1

1 1 1 1

§ ≥
0 0 0 1

1 1 0 0

0 0 1 1

1 0 1 0

¥

102 CHAPTER 2 Matrices and Linear Transformations

The Inverse of a Matrix and Cryptography
In this section we introduce the concept of matrix inverse. We shall see how an inverse can
be used to solve certain systems of linear equations, and we shall see the role it plays in
implementing color on computer monitors, and in cryptography, the study of codes. 

We motivate the idea of the inverse of a matrix by looking at the multiplicative inverse
of a real number. If number b is the inverse of a, then

and

For example, is the inverse of 4 and we have

These are the ideas that we extend to matrices.

4 1 1
4 2 5 1 1

4 24 5 1.

1
4

ab 5 1 ba 5 1.

2.4

Prove that the matrix has an inverse 

SOLUTION

We have that 

AB 5 c1 2

3 4
d c22 1

3
2 21

2
d 5 c1 0

0 1
d 5 I2

EXAMPLE 1 A 5 c1 2

3 4
d B 5 c22 1

3
2 21

2
d .

DEFINITION Let A be an matrix. If a matrix B can be found such that then A is said to be
invertible and B is called an inverse of A. If such a matrix B does not exist, then A has no inverse.

n 3 n AB 5 BA 5 In,

9781284120097_CH02.qxd  9/15/17  6:28 PM  Page 102

© Jones & Bartlett Learning, LLC.  NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION



2.4 The Inverse of a Matrix and Cryptography 103

and

Thus proving that the matrix A has an inverse B.

We know that a real number can have at most one inverse. We now see that this is also
the case for a matrix. 

THEOREM 2.7 

If a matrix has an inverse, that inverse is unique.

Proof  Let B and C be inverses of A. Thus and Multiply
both sides of the equation by C and use the algebraic properties of matrices. 

Thus an invertible matrix has only one inverse.

Notation
The notation for the inverse of a matrix is similar to that used for the inverse of a real num-
ber. Let A be an invertible matrix. We denote its inverse Thus

Let k be a positive integer. We define to be Therefore

k times

Determining the Inverse of a Matrix
We now derive a method for finding the inverse of a matrix. The method is based on the
Gauss-Jordan algorithm. Let A be an invertible matrix. Then Let the columns
of be and the columns of be Express and in
terms of their columns,

and  

We shall find by finding Write the equation in the form 

Using the column form of matrix multiplication,

Thus 

AX1 5 C1, AX2 5 C2, c, AXn 5 Cn

3AX1 AX2cAXn 4 5 3C1 C2cCn 4

A 3X1 X2 cXn 4 5 3C1 C2 cCn 4
A21 X1, X2, c, Xn. AA21 5 In

A21 5 3X1 X2 cXn 4 In 5 3C1 C2 cCn 4
A21 X1, X2, c, Xn, In C1, C2, c, Cn. A21 In

AA21 5 In.

A2k 5 A21A21
cA21

A2k 1A21 2 k.

AA21 5 A21A 5 In

A21.

B 5 C

InB 5 C

1CA 2B 5 C

C 1AB 2 5 CIn

AB 5 In

AB 5 BA 5 In AC 5 CA 5 In.

AB 5 BA 5 I2,

BA 5 c22 1
3
2 21

2
d c1 2

3 4
d 5 c1 0

0 1
d 5 I2

∂
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Therefore are solutions to the systems
all of which have the same matrix of coefficients A. Solve these systems by using Gauss-
Jordan elimination on the large augmented matrix Since the solutions

are unique (they are the columns of ),

Thus, when exists, 

where 

On the other hand, if the reduced echelon form of is computed and the first part is
not of the form , then A has no inverse. 

We now summarize the results of this discussion. 

Finding the Inverse of a Matrix Using Elimination

Let A be an matrix. 

1. Adjoin the identity matrix to A to form the matrix 
2. Compute the reduced echelon form of If the reduced echelon form is of

the type then B is the inverse of A. If the reduced echelon form is not of the
type in that the first submatrix is not then A has no inverse. 

This discussion also leads to a result about the reduced echelon form of an invertible matrix.
Suppose A is invertible. Then as is transformed to , A is transformed to 
A is row equivalent to Conversly, if A is not row equivalent to , then is not row
equivalent to a matrix of the form and is not invertible. Thus

An matrix A is invertible if and only if it is row equivalent to 

The following example illustrates this method for finding the inverse of a matrix.

Determine the inverse of the matrix 

SOLUTION 

Applying the method of Gauss-Jordan elimination, we get

<
R1 1 R2

R3 1 122 2R2

£
1 0 21 3 21 0

0 1 1 2 21 0

0 0 1 23 2 1

§

3A:In 4 5 £
1 21 22 1 0 0

2 23 25 0 1 0

21 3 5 0 0 1

§
<

R2 1 122 2R1

R3 1 R1

£
1 21 22 1 0 0

0 21 21 22 1 0

0 2 3 1 0 1

§

A 5 £
1 21 22

2 23 25

21 3 5

§

EXAMPLE 2

n 3 n In.

3In: B 4In. In 3A: In 4
3A: In 4 3In: B 4 In.

3In: B 4, n 3 n In,
3In: B 4, 3A: In 4.

n 3 n In 3A: In 4.
n 3 n

In

3A: In 4
3A: In 4 < c< 3In: B 4 B 5 A21.

A21

3A: C1 C2 cCn 4 < c< 3In: X1 X2 cXn 4
X1, X2, c, Xn A21

3A: C1 C2 cCn 4.
X1, X2, c, Xn AX 5 C1, AX 5 C2, c, AX 5 Cn,

104 CHAPTER 2 Matrices and Linear Transformations

<
121 2R2 £

1 21 22 1 0 0

0 1 1 2 21 0

0 2 3 1 0 1

§
<

R1 1 R3

R2 1 121 2R3

£
1 0 0 0 1 1

0 1 0 5 23 21

0 0 1 23 2 1

§
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2.4 The Inverse of a Matrix and Cryptography 105

Thus 

The following example illustrates what happens when the method is used for a matrix that
does not have an inverse. 

Determine the inverse of the following matrix, if it exists. 

SOLUTION

Applying the method of Gauss-Jordan elimination, we get

There is no need to proceed further. The reduced echelon form cannot have a one in the
location. The reduced echelon form cannot be of the form Thus does

not exist. 

We now summarize some of the algebraic properties of matrix inverse. 

Properties of Matrix Inverse 
Let A and B be invertible matrices and c a nonzero scalar. Then 

1.
2.

3.

4.

5.

We verify results 1 and 3 to illustrate the techniques involved, leaving the remaining results
for the reader to verify in the exercises that follow.

This result follows directly from the definition of inverse of a matrix.
Since is the inverse of A we have 

This statement also tells us that A is the inverse of Thus A21. 1A21 221 5 A.

AA21 5 A21A 5 In

1A21221 5 A
A21

1At 221 5 1A21 2 t

1An 221 5 1A21 2n

1AB 221 5 B21A21

1cA 221 5 1
cA

21

1A21 221 5 A

13, 3 2 3In: B 4. A21

£
1 0 3 2 21 0

0 1 2 21 1 0

0 0 0 25 3 1

§

3A: I3 4 5 £
1 1 5 1 0 0

1 2 7 0 1 0

2 21 4 0 0 1

§ £
1 1 5 1 0 0

0 1 2 21 1 0

0 23 26 22 0 1

§

A 5 £
1 1 5

1 2 7

2 21 4

§

EXAMPLE 3

A21 5 £
0 1 1

5 23 21

23 2 1

§

<

R3 1 (22)R1

R2 1 (21)R1

R3 1 (3)R2

<
R1 1 (21)R2
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We want to show that the matrix is the inverse of the matrix
AB. We get, using the properties of matrices, 

Similarly, it can be shown that Thus is the inverse of the
matrix AB.

If then it can be shown that Use this

information to compute 

SOLUTION 

Result 5 above tells us that if we know the inverse of a matrix we also know the inverse
of its transpose. We get 

Systems of Linear Equations
We now see that matrix inverse enables us to conveniently express the solutions to certain
systems of linear equations. 

THEOREM 2.8

Let be a system of n linear equations in n variables. If exists, the solution
is unique and is given by 

Proof  We first prove that is a solution. 
Substitute into the matrix equation. Using the properties of matrices we get

satisfies the equation; thus it is a solution.
We now prove the uniqueness of the solution. Let be any solution. Thus

Multiplying both sides of this equation by gives

Thus there is a unique solution 

Solve the following system of equations using the inverse of the matrix
of coefficients.

2x1 1 3x2 1 5x3 5 22

2x1 2 3x2 2 5x3 5 3

x1 2 x2 2 2x3 5 1

EXAMPLE 5

X1 5 A21Y.

X1 5 A21Y

InX1 5 A21Y

A21AX1 5 A21Y

A21
X1 AX1 5 Y.

X 5 A21Y

AX 5 A(A21Y) 5 (AA21)Y 5 InY 5 Y

X 5 A21Y
X 5 A21Y

X 5 A21Y.
AX 5 Y A21

(At)21 5 (A21)t 5 c 1 21

23 4
d t

5 c 1 23

21 4
d

(At )21.

EXAMPLE 4 A 5 c4 1

3 1
d , A21 5 c 1 21

23 4
d .

1B21A21 2 1AB 2 5 In. B21A21

5 In

5 AA21

5 AInA
21

1AB 2 1B21A21 2 5 A 1BB21 2A21

1AB221 5 B21A21 B21A21

106 CHAPTER 2 Matrices and Linear Transformations
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2.4 The Inverse of a Matrix and Cryptography 107

SOLUTION

This system can be written in the following matrix form,

If the matrix of coefficients is invertible, the unique solution is 

This inverse has already been found in Example 2. Using that result we get

The unique solution is 

Numerical Considerations
The knowledge that if A is invertible the solution to the system of equations is

is primarily of theoretical importance. It gives an algebraic expression for the
solution. It is not usually used in practice to solve a specific system of equations. An elim-
ination method such as Gauss-Jordan elimination or Gaussian elimination of Section 1 of
the “Numerical Methods” chapter are more efficient. Most systems of equations are solved
on a computer. As mentioned earlier, two factors that are important when using a com-
puter are efficiency and accuracy. To solve a system of n equations, the matrix inverse
method requires multiplications and additions, while Gauss-Jordan elim-
ination requires multiplications (half as many) and additions. Thus,
for example, for a system of ten equations in ten variables, the matrix inverse method
would involve 1,100 multiplications and 900 additions, while Gauss-Jordan elimination
would involve 550 multiplications and 495 additions. Furthermore, the more operations
that are performed, the larger the possible round-off error. Thus Gauss-Jordan elimination
is in general also more accurate than the matrix inverse method. 

One may be tempted to assume that given a number of linear systems 
all having the same invertible matrix of coefficients A, that it

would be efficient to calculate and then compute the solutions using
This approach would involve only one computation of

and then a number of matrix multiplications. In general, however, it is more efficient
and accurate to solve such systems using a large augmented matrix that represents all  
systems, and an elimination method such as Gauss-Jordan elimination, as discussed 
earlier. 

In certain instances, the matrix inverse method is used to arrive at specific solutions.
In Section 2.7 we illustrate such a situation in a model for analyzing the interdependence
of industries. The elements of the matrix of coefficients in that example lend themselves to
an efficient algorithm for computing the inverse. 

X2 5 A21Y2,c, Xn 5 A21Yk. A21
A21 X1 5 A21Y1,

AX 5 Y2,c, AX 5 Yk,
AX 5 Y1,

1
2n3 2 1

2n
n3 2 n2

1
2n3 1 1

2n2
n3 1 n2

X 5 A21Y,
AX 5 Y

x1 5 1, x2 5 22, x3 5 1.

£
x1

x2

x3

§ 5 £
0 1 1

5 23 21

23 2 1

§ £
1

3

22

§ 5 £
1

22

1

§

£
x1

x2

x3

§ 5 £
1 21 22

2 23 25

21 3 5

§
21

£
1

3

22

§

£
1 21 22

2 23 25

21 3 5

§ £
x1

x2

x3

§ 5 £
1

3

22

§
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108 CHAPTER 2 Matrices and Linear Transformations

Elementary Matrices
We now introduce a very useful class of matrices called elementary matrices. Row opera-
tions and their inverses can be performed using these matrices. This way of implementing
row operations is particularly appropriate for computers.

An elementary matrix is one that can be obtained from the identity matrix through
a single elementary row operation. 

Illustration  Consider the following three row operations and on (one rep-
resenting each kind of row operation). They lead to the three elementary matrices
and 

Elementary Row Operation Corresponding Elementary Matrix 

interchange rows 2 and 3 of 

multiply row 2 of by 5.

add 2 times row 1 of to row 2.

Suppose we want to perform a row operation T on an matrix A. Let E be the
elementary matrix obtained from In through the operation T. This row operation can
be performed by multiplying A by E. 

Illustration Let be an arbitrary matrix. Consider the three 

row operations above. Let us show that the corresponding elementary matrices can indeed
be used to peform these operations. 

Interchange rows 2 and 3 of A: £
1 0 0

0 0 1

0 1 0

§ £
a b c

d e f

g h i

§ 5 £
a b c

g h i

d e f

§

A 5 £
a b c

d e f

g h i

§ 3 3 3

m 3 n

T3: I3 E3 5 £
1 0 0

2 1 0

0 0 1

§

T2: I3 E2 5 £
1 0 0

0 5 0

0 0 1

§

T1: I3. E1 5 £
1 0 0

0 0 1

0 1 0

§

I3 5 £
1 0 0

0 1 0

0 0 1

§

E3.
E1, E2,

T1, T2, T3 I3

In
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2.4 The Inverse of a Matrix and Cryptography 109

Multiply row 2 by 5:

Add 2 row 1 to row 2:

Each row operation has an inverse, namely the row operation that returns the original matrix.
The elementary matrices of a row operation and its inverse operation are inverse matrices. 

Each elementary matrix is square and invertible.

We now illustrate a way elementary matrices are used to arrive at theoretical results. Matrices
that can be obtained from one another by a finite sequence of elementary row operations
are said to be row equivalent. 

If A and B are row equivalent matrices and A is invertible, then B is invertible.

Let us prove this result. Since A and B are row equivalent, there exists a sequence of row
operations such that Let the elementary matrices of these
operations be Thus 

The matrices A, are all invertible. Repeatedly applying the property of matrix
inverse of a product to the following expression we get

Thus B is invertible and the inverse is given by 

Elementary matrices are used in arriving at the so-called LU decomposition of certain
square matrices. These are decompositions into products of lower (L) and upper (U) tri-
angular matrices—matrices that have zeros above or below the main diagonal. The
importance of this decomposition lies in the fact that once it is accomplished for a matrix
A, the LU form provides a powerful starting point for performing many matrix tasks
such as solving equations, computing matrix inverses, and finding determinants of matri-
ces. (See Section 2 of the “Numerical Methods” chapter.) LU decomposition is, for exam-
ple, used extensively in MATLAB® (discussed in the “MATLAB Manual” appendix).
MATLAB is probably the most widely used matrix software package. 

B21 5 A21E21
1 E21

2 cE21
n

5 1En cE1A 221 5 B21

5 1E2E1A 221E21
3 cE21

n 5 c

A21E21
1 E21

2 E21
3 cE21

n 5 1E1A 221E21
2 E21

3 cE21
n

E1, c, En

B 5 EncE1A

E1, c, En.
T1,c, Tn B 5 Tn + c+ T1 1A 2 .
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Color Models
A color model in the context of graphics is a method of implementing colors. There are
numerous models that are used in practice, such as the RGB model (Red, Green, Blue) used
in computer monitors, and the YIQ model used in television screens. An RGB computer
signal can be converted to a YIQ television signal using what is known as an NTSC encoder.
(NTSC stands for National Television System Committee.) The conversion is accomplished
by using the following matrix transformation*

Let us look at the RGB model for Microsoft® Word®. The default text color is black. Let
us find the RGB values for black, change the text color to a purple, and find the RGB val-
ues for this color. On the right of the tool bar of Microsoft Word, observe ▼. The bar under
the A is black, indicating the current text color. Point the cursor at this bar. It shows “Font
Color .” The RGB setting for black is To change the color, select
the sequence “▼ More Colors Custom.” A spectrum of colors is displayed. Select a
purple hue. The corresponding RGB values are seen to be
The bar under the A has now changed to purple and any text entered at the keyboard is in
purple. The range of values for each of R, G, and B is 0 to 255, the set of numbers that can
be represented by a byte on a computer note that You are asked to use the matrix
transformation to find the range of Y, I, and Q values in the exercises that follow. 

If we enter the RGB values for black, namely into the preced-
ing transformation, we find that Black has the same RGB and YIQ
values. The RGB values for purple become

These are the YIQ values that would be used to duplicate this
purple color on a television screen. 

A signal is converted from a television screen to a computer monitor using the inverse
of the above matrix, 

That is, 

Cryptography
In the previous application, we talked about two different ways colors are coded. We
now turn our attention to coding messages. Cryptography is the process of coding and

£
R
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B

§ 5 £
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I 5 45.746, Q 5 63.042.
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*Numbers in this field are usually written to three decimal places.
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2.4 The Inverse of a Matrix and Cryptography 111

decoding messages. The word comes from the Greek “kryptos,” meaning “hidden.” The
technique can be traced back to the ancient Greeks. Today governments use sophisti-
cated methods of coding and decoding messages. One type of code that is extremely
 difficult to break makes use of a large invertible matrix to encode a message. The receiver
of the message decodes it using the inverse of the matrix. This first matrix is called the
encoding matrix, and its inverse is called the decoding matrix. We illustrate the method
for a matrix. 

Let the message be 

BUY IBM STOCK

and the encoding matrix be 

We assign a number to each letter of the alphabet. For convenience, let us associate each
letter with its position in the alphabet. A is 1, B is 2, and so on. Let a space between words
be denoted by the number 27. The digital form of the message is

B U Y I B M S T O C K
2 21 25 27 9 2 13 27 19 20 15 3 11

Since we are going to use a matrix to encode the message, we break the digital mes-
sage up into a sequence of column matrices as follows.

Observe that it was necessary to add two spaces at the end of the message in order to com-
plete the last matrix. We now put the message into code by multiplying each of the above
column matrices by the encoding matrix. This can be conveniently done by writing the
given column matrices as columns of a matrix and premultiplying that matrix by the encod-
ing matrix. We get

The columns of this matrix give the encoded message. The message is transmitted in
the following linear form. 

2169, 46, 171, 2116, 11, 143, 2196, 46, 209, 2117, 18, 137, 2222, 54, 233

£
23 23 24

0 1 1

4 3 4

§ £
2 27 13 20 11

21 9 27 15 27

25 2 19 3 27

§ 5 £
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46 11 46 18 54
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§

£
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§ , £
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To decode the message, the receiver writes this string as a sequence of column
matrices and repeats the technique using the inverse of the encoding matrix. The inverse
of this encoding matrix, the decoding matrix is

Thus, to decode the message

The columns of this matrix, written in linear form, give the original message. 

2 21 25 27 9 2 13 27 19 20 15 3 11
B U Y I B M S T O C K

Readers who are interested in an introduction to cryptography are referred to Coding
Theory and Cryptography edited by David Joyner, Springer-Verlag, 2000. This is
an excellent collection of articles that contain historical, elementary, and advanced
 discussions. 

2 2

£
1 0 1

4 4 3

24 23 23

§ £
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§5 £
2 27 13 20 11

21 9 27 15 27

25 2 19 3 27
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£
1 0 1

4 4 3

24 23 23

§

3 3 1

112 CHAPTER 2 Matrices and Linear Transformations

EXERCISE SET 2.4 

Checking for Matrix Inverse 
1. Use the definition of inverse to check whether

B is the inverse of A, for each of the following matri-
ces A and B.

(a) A B

(b) A B

(c) A B

(d) A B

2. Use the definition of inverse to check whether
B is the inverse of A, for each of the following  matrices
A and B.

(a) A B

(b) A B

(c) A B

Finding the Inverse of a Matrix
3. Determine the inverse of each of the following matri-

ces, if it exists, using the method of Gauss-Jordan elimination. 

(a) (b)

(c) (d)

(e) (f)

4. Determine the inverse of each of the following matri-
ces, if it exists, using the method of Gauss-Jordan elimination. 

3 3 3

c1 2

3 6
d c2 23

6 27
d

c2 1

4 3
d c0 1

1 3
d

c1 0

2 1
d c1 2

9 4
d

2 3 2

5 £
0 1 21

2 22 21

21 1 1

§ , 5 £
1 2 3

1 1 2

0 1 1

§

5 £
1 1 21

23 2 21

3 23 2

§ , 5 £
1 1 1

3 5 4

3 6 5

§

5 £
5 0 0

0 1
3 0

0 0 22

§ , 5 £
1
5 0 0

0 3 0

0 0 21
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3 3 3
AB 5 BA 5 I3
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5 c 2 24
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d , 5 c3 1
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d , 5 c 7 24
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2.4 The Inverse of a Matrix and Cryptography 113

(a) (b)

(c) (d)

5. Determine the inverse of each of the following
 matrices, if it exists, using the method of Gauss-Jordan
elimination.

(a) (b)

(c) (d)

6. Determine the inverse of each of the following
 matrices, if it exists, using the method of Gauss-Jordan
elimination. 

(a) (b)

(c)

7. If show that 

This formula can be quicker than Gauss-Jordan  elimination
to compute the inverse of a matrix. Compute the
inverses of the following  matrices using both  methods
to see which you prefer.

(a) (b)

(c) (d)

Systems of Linear Equations
8. Solve the following systems of two equations in two  variables

by determining the inverse of the matrix of coefficients and
then using matrix multiplication. 

(a) (b)

(c) (d)

(e) (f)

9. Solve the following systems of three equations in three
 variables by determining the inverse of the matrix of
 coefficients and then using matrix multiplication. 

(a)

(b)

(c)

(d)

(e)

10. Solve the following system of four equations in four vari-
ables by determining the inverse of the matrix of coeffi-
cients and then using matrix multiplication.

11. Solve the following systems of equations, all having the
same matrix of coefficients, using the matrix inverse
method, 

for

in turn.

Miscellaneous Results
12. Prove the following properties of matrix inverse that were

listed in this section.

(a) (cA)21 5 1
cA

21

£
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b2

b3

§ 5 £
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x1 1 8x3 5 15
2x1 1 5x2 1 3x3 5 3
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(b)
(c)

13. If find A.

14. If find A.

15. Consider the matrix A having inverse

Determine 

(a) (b) (c) (d)
[Hint: Use the algebraic properties of matrix inverse.]

16. If A then Use this infor-

mation to determine 

(a) (b) (c)

17. Find x such that 

18. Find x such that 2

19. Find A such that 

20. Prove that 

21. Prove that 

22. Prove that, in general, 

23. Prove that if A has no inverse, then also has no inverse.

24. Prove that if A is an invertible matrix such that 

(a) AB AC, then B C (b) AB 0, then B 0 

25. Prove that a matrix has no inverse if

(a) two rows are equal. 

(b) two columns are equal. (Hint: Use the transpose.)

(c) it has a column of zeros. 

26. Prove that a diagonal matrix is invertible if and only if all
its diagonal elements are nonzero. Can you find a quick way
for determining the inverse of an invertible diagonal matrix?

27. Prove that the set of invertible matrices is not closed
under either addition or scalar multiplication. (Hint: Give
examples.)

28. State (with a brief explanation) whether the following state-
ments are true or false for a square matrix A.

(a) If A is invertible, is invertible. 

(b) If A is invertible, is invertible. 

(c) If A has a zero on the main diagonal, it is not invertible. 

(d) If A is not invertible, then AB is not invertible. 

(e) is row equivalent to 

Numerical Considerations
29. Let AX Y be a system of 25 linear equations in 25 vari-

ables, where A is invertible. Find the number of multipli-
cations and additions needed to solve this system using (a)
Gauss-Jordan elimination, (b) the matrix inverse method.

30. Let A be an invertible matrix. Show that it takes the
same amount of computation to find the solution to the
 system of equations AX Y using Gauss-Jordan elimina-
tion as it does to find the first column of the inverse of A.
This exercise emphasizes the fact that it is more efficient to
solve a system of equations by using Gauss-Jordan elimi-
nation than by using the inverse of the matrix of coefficients.

Elementary Matrices
31. Let A be a matrix and be the following row

operations. interchange rows 1 and 2; multiply row 3
by add 4row 1 to row 3. Show that can be
performed using the following elementary matrices 

32. Let be the following row operations. multiply
row 1 by add 3 times row 2 to row 1. Find the
 elementary matrices of 

33. Determine the row operation defined by each of the fol-
lowing elementary matrices. Find the inverse of that row
operation and use it to find the inverse of the elementary
matrix. Arrive at rules that will enable you to quickly write
down the inverse of any given elementary matrix. 

(a) (b)

(c) (d)

(e) (f)£
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2.5 Matrix Transformations, Rotations, and Dilations 115

Color Model
34. In the color model discussion we indicated that the range of

each of the RGB values is 0 to 255. The interval for each of
Y, I, and Q, however, is different. Use the encoding matrix
equation to find the range of each of Y, I, and Q. 

35. Consider the following YIQ values:
and 

(a) Use the inverse matrix transformation to find the corre-
sponding RGB values. (b) Use Microsoft® Word® to find
the colors corresponding to these YIQ values; describe them
in your own terms. 

36. Black-and-white television monitors use only the Y sig-
nal. (a) Show that every YIQ signal of the form (s, 0, 0)
transforms into an RGB signal of the form (s, s, s). What
is there about the matrix of the transformation from YIQ
to RGB that makes this happen? (b) Find the RGB signals
correponding to the YIQ signals 

of a black-and-white set.
Use Microsoft Word to investigate these signals. Describe
the effect of decreasing a in the television signal 
from 255 to zero.

Cryptography
In Exercises 37242 associate each letter with its position in the
alphabet.

37. Encode the message RETREAT using the matrix 

38. Encode the message THE BRITISH ARE COMING using
the matrix

39. Decode the message which was
encoded using the matrix of Exercise 37.

40. Decode the message 
which was

encoded using the matrix of Exercise 38.

41. Intelligence sources give the information that the message
BOSTON CAFE AT TWO was sent as 32, 47, 59, 79, 43,
57, 33, 36, 13, 19, 59, 86, 41, 61, 67, 87, 53, 68. (a) Find the
encoding matrix. (b) Decode the message 43, 64, 49, 70,
59, 79, 39, 45, 45, 63, 59, 79.

42. Base station sends messages to an agent using the encoding

matrix The agent sends messages to an 

informer using the encoding matrix Find the 

encoding matrix that is consistent with this communication
circle, that enables base to send messages directly to the
informer.

B 5 c3 8

4 11
d .

A 5 c4 23

3 22
d .

211, 63, 98, 227, 69, 102, 212, 88, 126, 23,
71, 100, 21, 28, 43, 25, 84, 122,

49, 38, 25, 23, 261, 239,

£
1 2 1

2 3 1

22 0 1

§ .

c4 23

3 22
d .

1a, 0, 0 2
1150, 0, 0 2 , 1100, 0, 0 2 , 10, 0, 0 2

1255, 0, 0 2 , 1200, 0, 0 2 ,

1184, 62, 218 2 , 1171, 5, 219 2 , 1165, 2103, 223 2 .
1176, 2111, 233 2 ,

Matrix Transformations, Rotations, and Dilations
A function, or transformation, is a rule that assigns to each element of a set a unique ele-
ment of another set. Transformations are used in many areas of mathematics and are impor-
tant in applications for describing the dependency of one variable upon another. We shall
be especially interested in linear transformations, which are transformations that preserve
the mathematical structure of a vector space. In this section and the next, we shall see how
linear transformations are used in computer graphics and in fractal geometry.

The reader will be familiar with functions such as The set of allowable
x values is called the domain of the function. The domain is often the set of real numbers,
as here. When for example, we see that We say that the image of 2 is
16. We extend these ideas to functions between vector spaces. We usually use the term
transformation rather than function in linear algebra.

For example, consider the transformation T of into defined by

T 1x, y, z 2 5 12x, y 2 z 2
R3 R2

x 5 2, f 12 2 5 16.

f 1x 2 5 3x2 1 4.

2.5
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116 CHAPTER 2 Matrices and Linear Transformations

The domain of T is and we say that the codomain is The image of a vector such as
can be found by letting and in this equation for T. We

get The image of 
We shall often find it convenient to write vectors in column form when discussing

 transformations. The preceding transformation can also be written

and the image of is T° £
x

y

z

§ ¢ 5 c 2x

y 2 z
d , £

1

4

22

§ c2
6
d .

T 11, 4, 22 2 5 12, 6 2 . 11, 4, 22 2 is 12, 6 2 .11, 4, 22 2 x 5 1, y 5 4, z 5 22
R3 R2.

We now introduce a number of useful geometric transformations and find that they can
be described by matrices.

Dilation and Contraction

Consider the transformation where r is a positive scalar. T maps every 

point in into a point r times as far from the origin. If T moves points away from
the origin and is called a dilation of factor r. If T moves points closer to the
 origin and is then called a contraction of factor r. See Figure 2.10. This equation can be
written in the following useful matrix form.

Ta cx
y
d b 5 c r 0

0 r
d cx

y
d

0 , r , 1,
R2 r . 1,

Ta cx
y
d b 5 r cx

y
d ,

DEFINITION A transformation T of into is a rule that assigns to each vector u in a unique vector v in 
is called the domain of T and is the codomain. We write v is the image of u

under T. The term mapping is also used for a transformation.
Rn Rm T 1u 2 5 v;

Rn Rm Rn Rm.

reflection in x-axis

Transformations defined by 0
01

–1

0

y

x

Figure 2.11

y

x0 0

Transformations defined by

r > 1, dilation 0 < r < 1, contraction

r
0

0
r

y

x

Figure 2.10
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2.5 Matrix Transformations, Rotations, and Dilations 117

For example, when we see in the following equation that an image is three times as
far from the  origin. When , an image is half the distance from the origin.

Reflection

Consider the transformation T maps every point in into its mirror

image in the x-axis. T is called a reflection. See Figure 2.11. This equation can be written
in the following matrix form.

For example, the image of under this reflection is 

We now find that a rotation about the origin is also a matrix transformation.

Rotation about the Origin
Consider a rotation T about the origin through an angle as shown in Figure 2.12. T maps

the point into the point 

The distance OA is equal to OB; let it be r. Let the angle AOC be We get

O

y

x

x
y

x
y
′
′

C

r

r
A

B

a
u

5 xsinu 1 ycosu

5 ycosu 1 xsinu

y r 5 BC 5 rsin 1a 1 u 2 5 rsina cosu 1 rcosa sinu

5 xcosu 2 ysinu

x r 5 OC 5 rcos 1a 1 u 2 5 rcosa cosu 2 rsina sinu

a.

Figure 2.12

A cx
y
d B cx r

y r
d .

u,

c3
2
d c1 0

0 21
d c3

2
d 5 c 3

22
d .

Ta cx
y
d b 5 c1 0

0 21
d cx

y
d

Ta cx
y
d b 5 c x

2y
d . R2

Ta cx
y
d b 5 c3 0

0 3
d cx

y
d 5 3 cx

y
d , Ta cx

y
d b 5 c 1

2 0

0 1
2
d cx

y
d 5

1

2
cx
y
d

r 5 1 ⁄ 2
r 5 3,
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These expressions for and can be combined into a single matrix equation

We thus get the following result.

A rotation through an angle is described by 

Consider a rotation of about the origin. Since and , the
transformation is

The image of for example, is 

Note that is positive for a counterclockwise rotation and negative for a clockwise rotation.

Matrix Transformations
In previous discussions we found that we could use matrices to define certain transfor-
mations. We now see that every matrix in fact defines a transformation. Let A be a matrix
and x be a column vector such that Ax exists. Then A defines the matrix transformation

For example,

defines the transformation 

The image of a vector such as is We write Similarly, for example,

We say that T maps into and write The domain of the trans-

formation is the codomain is We can convey this information in a diagram, Figure 2.13.

1
3
4

3
1
2

6
8

14
2

T →

R3

R2

cx r
y r
d 5 ccosu 2sinu

sinu cosu
d cx

y
d

x r y r

Figure 2.13

R3, R2.

£
3

1

2

§ A c14

2
d . R3 R2 T: R3 S R2.

£
1

3

4

§ c6
8
d . £

1

3

4

§ A c6
8
d .

A 5 c5 3 22

0 4 21
d T° £

x

y

z

§ ¢ 5 c5 3 22

0 4 21
d £

x

y

z

§
T 1x 2 5 Ax.

u

c3
2
d , c0 21

1 0
d c3

2
d 5 c22

3
d .

Ta cx
y
d b 5 c0 21

1 0
d cx

y
d

p⁄ 2 cos 1p⁄ 2 2 5 0 sin 1p⁄ 2 2 5 1

u Ta cx
y
d b 5 ccosu 2sinu

sinu cosu
d cx

y
d

118 CHAPTER 2 Matrices and Linear Transformations

9781284120097_CH02.qxd  9/15/17  2:36 PM  Page 118

© Jones & Bartlett Learning, LLC.  NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION



2.5 Matrix Transformations, Rotations, and Dilations 119

These transformations have the following geometrical properties (which we do not prove). 

Matrix transformations map line segments into line segments (or points). If the matrix
is invertible, the transformation also maps parallel lines into parallel lines.

The following example illustrates how a square is deformed.

Consider the transformation defined by the matrix

Determine the image of the unit square under this transformation.

SOLUTION

The unit square is the square whose vertices are the points

See Figure 2.14(a). Let us compute the images of these points under the transformation.
Multiplying each point by the matrix, we get

P P Q Q R R O O

The line segments are mapped as follows, Figure 2.14(b),

This matrix A is invertible. It thus maps parallel lines into parallel lines. The square
PQRO is mapped into the parallelogram 

Figure 2.14

O

R Q

P x

y

O

R

R′

P′

Q′

R′

P′

Q′

Q

P x

y

(a) (b)

P rQ rR rO.

OP A OP r, PQ A P rQ r, QR A Q rR r, OR A OR r

c1
0
d A c4

2
d , c1

1
d A c6

5
d , c0

1
d A c2

3
d , c0

0
d A c0

0
d

r r r

P c1
0
d , Q c1

1
d , R c0

1
d , O c0

0
d

A 5 c4 2

2 3
d .

EXAMPLE 1 T: R2 S R2

DEFINITION Let A be an matrix. Let x be an element of written in column matrix form. A defines a
matrix transformation of into The vector Ax is the image of x. The domain of
the transformation is and the codomain is Rn Rm.

Rm.T 1x 2 5 Ax Rn
m 3 n Rn
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Solid bodies can be described geometrically. When loads are applied to bodies, changes in
shape called deformations occur. For example, the square PQRO in Figure 2.15 could
 represent a physical body that is deformed into the shape Such deformations can
be modeled and analyzed on computers using these mathematical techniques. The fields of
science that investigate such problems are called elasticity and plasticity.

Composition of Transformations
The reader will be familiar with the concept of combining functions into composite func-
tions, Figure 2.15. Matrix transformations can be combined in a very useful way. Consider
the matrix transformations The composite transformation

is given by

Thus T is defined by the matrix product 

We can extend the results of this discussion in a natural way. Let be a
sequence of transformations defined by matrices The composite trans-
formation is defined by the matrix product (assuming this prod-
uct exists).

The following example illustrates how matrix transformations such as rotations and
 dilations can be used as building blocks to construct more intricate transformations.
(Movement in a video game, for example, is accomplished by using a sequence of such
transformations.)

Determine the single matrix that describes a reflection in the x-axis, fol-
lowed by a rotation through followed by a dilation of factor 3. Find the image of

the point under this sequence of mappings.

SOLUTION

The matrices that define the reflection, rotation, and dilation are

An ,c, A1T 5 Tn + c+ T1

A1, c, An.
T1, c, Tn,

c1 0

0 21
d , ccos 1p

2 2 2sin 1p
2 2

sin 1p
2 2 cos 1p

2 2 d , c
3 0

0 3
d

c1
2
d

p⁄ 2
EXAMPLE 2

Figure 2.15

T

x

T1

T1(x) T2(T1(x))

T2

The composite transformation T of T1
 and T2. T(x) = T2(T1(x)).  

T 1x 2 5 A2A1x

A2A1.

T 1x 2 5 T2 1T1 1x 2 2 5 T2 1A1x 2 5 A2A1x

T 5 T2 + T1

T1 1x 2 5 A1x and T2 1x 2 5 A2x.

P rQ rR rO.

120 CHAPTER 2 Matrices and Linear Transformations
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2.5 Matrix Transformations, Rotations, and Dilations 121

A reflection F followed by a rotation R and then a dilation D is the composite transfor-
mation The matrix of this transformation is

The image of the point is 

The reflection followed by the rotation and then dilation maps
in Figure 2.16. The composite transformation described by the single matrix maps
directly.

The next class of transformations are important in that they preserve the geometry of
Euclidean Space. (Section 6 of the “Linear Equations, Vectors, and Matrices” chapter is a
prerequisite.)

Orthogonal Transformation
An orthogonal matrix A is an invertible matrix that has the property

An orthogonal transformation is a transformation where A is an orthogonal
matrix.

An orthogonal transformation has the following geometrical properties.

THEOREM 2.9

Let T be an orthogonal transformation on Let u and v be  elements of Let P and
Q be the points in defined by u and v and let R and S be their images under T. Then

angle between u and v angle between and 

Orthogonal transformations preserve norms, angles, and distances.

D + R + F.

d 1P, Q 2 5 d 1R, S 2
5 T 1u 2 T 1v 2

iui 5 iT 1u 2 i
Rn

Rn. Rn.

T 1u 2 5 Au

A21 5 At

Figure 2.16

O

B

A

C

D

x

y

O

A

D

x

y

1
2

6
3

A A D
A A B, B A C, C A D

c1
2
d c0 3

3 0
d c1

2
d 5 c6

3
d .

c3 0

0 3
d ccos 1p

2 2 2sin 1p
2 2

sin 1p
2 2 cos 1p

2 2 d c
1 0

0 21
d 5 c3 0

0 3
d c0 21

1 0
d c1 0

0 21
d 5 c0 3

3 0
d
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122 CHAPTER 2 Matrices and Linear Transformations

See Figure 2.17.

Orthogonal transformations preserve the shapes of rigid bodies and are often referred to
as rigid motions.

Proof  We first show that orthogonal transformations preserve dot products,
Since norms, angles, and distances are defined in terms of dot products, this leads

to their preservation. Let the orthogonal transformation T be defined by an orthogonal
matrix A. We get

Thus ; orthogonal transformations preserve dot products.
We now look at norms.

since dot product is preserved

Thus norm is preserved.
We leave it for the reader to show that orthogonal transformations also preserve

angles and distances in Exercise 21.

Let T be the orthogonal transformation defined by the following  orthogonal
matrix A. Show that T preserves norms, angles, and distances for the vectors u and v.

SOLUTION

We have that

and 

It can be shown that Norms of u and v are
 preserved. The angle between u and v and the angle between are both
found to be The angle is preserved.53.13°.

T 1u 2 and T 1v 2iui 5 iT 1u 2 i 5 2 and ivi 5 iT 1v 2 i 5 5.

T 1u 2 5 Au 5 c !2

2!2
d T 1v 2 5 Av 5 c 7!2

1!2
d

A 5 c 1!2
1!2

2 1!2
1!2
d , u 5 c2

0
d , v 5 c3

4
d

EXAMPLE 3

5 iui
5 !u # u,

iT 1u 2 i 5 iAui 5 "1Au 2 # 1Au 2
T 1u 2 # T 1v 2 5 u # v

5 utAtAv 5 utIv 5 utv 5 u # v

T 1u 2 # T 1v 2 5 1Au 2 # 1Av 2 5 1Au 2 t 1Av 2 5 1utAt 2 1Av 2

u # v.
T 1u 2 # T 1v 2 5

Figure 2.17

O

R

S

Q

P

u

v

T(u)

T(v)

ab

T is orthogonal
||u|| = ||T(u)||, ||v|| = ||T(v)||

angle a = angle b
d(P, Q) = d(R, S)
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2.5 Matrix Transformations, Rotations, and Dilations 123

Furthermore,

Distance is preserved.
Observe that T defines a rotation of points in a plane through an angle of in a clock-

wise direction about the origin. Intuitively, we expect rotations to preserve norms, angles, and
distances. Rotation matrices do in fact define orthogonal transformations (see Exercise 20).

We complete this section with a discussion of transformations that, even though they
are not truly matrix transformations, are important in mathematics and in applications.

Translation
A translation is a transformation defined by

,

where v is a fixed vector.
A translation slides points in a direction and distance defined by the vector v. For

 example, consider the following translation on 

Let us determine the effect of T on the triangle PQR having vertices 
We see that

P P Q Q R R

The triangle PQR is transformed into the triangle in Figure 2.18.

Figure 2.18

O 1

1

2

3

4

5

6

7

8

9

10

2 3 4 5 6 7

R

Q

y

x

P

R′P′

Q′

Translation

P rQ rR r

c1
2
d A c5

4
d , c2

8
d A c 6

10
d , c3

2
d A c7

4
d

r r r

c1
2
d , c2

8
d , c3

2
d .

Ta cx
y
d b 5 cx

y
d 1 c4

2
d

R2:

T 1u 2 5 u 1 v

T: Rn S Rn

p⁄4

da c2
0
d , c3

4
d b 5 da c !2

2!2
d , c 7!2

1!2
d b 5 !17.
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Find the equation of the image of the line under the
translation 

SOLUTION

The equation describes points on the line of slope 2 and y-intercept 3. T will
slide this line into another line. We want to find the equation of this image line. We get

We see that y' 2x' for the image point. Thus the equation of the image line is 

Affine Transformation
An affine transformation is a transformation defined by

where A is a matrix and v is a fixed vector.
An affine transformation can be interpreted as a matrix transformation followed by a

translation.
For example, consider the following affine transformation on 

Let us find the image of the unit square in Figure 2.19. We get

P P Q Q R R O O

Figure 2.19

O 1

1

2

2 3 4

R Q

y

x
P

P′
R′

Q′

O′

3

4

Affine Transformation

c1
0
d A c3

3
d , c1

1
d A c4

4
d , c0

1
d A c2

3
d , c0

0
d A c1

2
d

r r r r

Ta cx
y
d b 5 c2 1

1 1
d cx

y
d 1 c1

2
d

R2.

T 1u 2 5 Au 1 v

T: Rn S Rn

5 y 5 2x.

Ta cx
y
d b 5 cx

y
d 1 c2

1
d 5 c x

2x 1 3
d 1 c2

1
d 5 c x 1 2

2x 1 4
d 5 cx r

y r
d

y 5 2x 1 3

Ta cx
y
d b 5 cx

y
d 1 c2

1
d .

EXAMPLE 4 y 5 2x 1 3
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2.5 Matrix Transformations, Rotations, and Dilations 125

Line segments are mapped into line segments. We get

The square PQR is transformed into the parallelogram 
We have introduced a number of fundamental transformations in this section. The reader

will meet other transformations—namely projection, scaling, and shear—in the following
section. These basic transformations are the building blocks for creating other transforma-
tions using composition.

P rQ rR rO r.

OP S O rP r, PQ S P rQ r, QR S Q rR r, OR S O rR r

EXERCISE SET 2.5 

Matrix Transformations
1. Consider the transformation T defined by the following

matrix A. Find T(x), T(y), and T(z). 

2. Consider the transformation T defined by the following
matrix A. Determine the images of the vectors x, y, and z.

3. The following matrix A defines a transformation T. Find the
images of the vectors x, y, and z.

Dilations, Reflections, Rotations
4. Determine the matrix that defines a reflection in the y-axis.

Find the image of under this transformation.

5. Find the matrix that defines a rotation of a plane about the
origin through each of the following angles. Determine the

image of the point under each transformation.

(a) (b) (c)

(d) p (e) (f)

(g)

6. Find the equation of the image of the unit circle,
under a dilation of factor 3.

7. Find the equation of the image of the ellipse

under a rotation through an angle of 

Geometry
8. Consider the transformations on defined by each of the

following matrices. Sketch the image of the unit square
under each transformation.

(a) (b)

(c) (d)

9. Sketch the image of the unit square under the transforma-
tion defined by each of the following transformations.

(a) (b)

(c) (d)

Composition of Transformations
10. Let and be defined by the fol-

lowing matrices and Let Find the matrix
that defines T and use it to determine the image of the vec-
tor x under T.

(a)

(b)

(c)

11. Let and be defined by the fol-
lowing matrices and Let Find the matrix
that defines T and use it to determine the image of the vector
x under T.

(a) A1 5 c1 1

1 1
d , A2 5 c2 3

0 24
d , x 5 c1

3
d

A1 A2. T 5 T2 + T1.
T1 1x 2 5 A1x T2 1x 2 5 A2x

A1 5 c3 22

0 1
d , A2 5 £

2 2

1 21

0 4

§ , x 5 c23

2
d

A1 5 c0 1 2

3 4 21
d , A2 5 c2 2

1 21
d , x 5 £

0

1

3

§

A1 5 c1 2

3 0
d , A2 5 c21 0

1 5
d , x 5 c5

2
d

A1 A2. T 5 T2 + T1.
T1 1x 2 5 A1x T2 1x 2 5 A2x

c0 22

2 0
d c 0 3

23 0
d

c22 23

0 4
d c22 24

24 21
d

c3 0

1 4
d c4 21

1 5
d

c0 21

1 0
d c2 0

0 2
d

R2

p/2.

x2

4
1

y2

9
5 1

x2 1 y2 5 1,

2
p

3

2
3p

2

p

6

p

2
2

p

2

p

4

c2
1
d

c3
2
d

A 5 £
1 2

21 3

1 2

§ ; x 5 c21

1
d , y 5 c2

3
d , z 5 c5

2
d

A 5 c3 22 0

4 2 6
d ; x 5 £

1

2

3

§ , y 5 £
2

3

0

§ , z 5 £
24

1

3

§

A 5 c0 24

1 2
d ; x 5 c 5

22
d , y 5 c4

0
d , z 5 c3

2
d
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(b)

(c)

12. Construct single matrices that define the following

transformations on Find the image of the point under

each transformation.

(a) A rotation through counterclockwise, then a
 contraction of factor 0.5.

(b) A dilation of factor of 4, then a reflection in the x-axis.

(c) A reflection about the x-axis, a dilation of factor 3,
then a rotation through p/2 in a clockwise direction.

13. Find a single matrix that defines a counterclockwise rota-
tion of the plane through an angle of about the origin,
while at the same time moves points to twice their original
distance from the origin.

14. Determine a single matrix that defines both a rotation about
the origin through an angle and a dilation of factor r.

15. Let A be the rotation matrix for Show that the
identity matrix. Give a geometrical reason for expect-
ing this result.

16. Show that I for the following matrices A and B.
Give a geometrical reason for expecting this result.

17. Determine a rotation through an angle followed by a dila-
tion of factor r. Show both algebraically and geometrically
that this is equivalent to the dilation followed by the rota-
tion. We say that the rotation and dilation transformations
are commutative.

18. Let be a rotation and be a reflection in the x-axis. Are
these transformations commutative? Discuss both algebraically
and geometrically.

Orthogonal Transformations
19. Show that the following matrix A is orthogonal. Show that

the transformation defined by A preserves the norms of the
vectors u and v, preserves the angle between these vectors,

and also preserves the distance between the points defined
by the vectors.

20. Prove that a rotation matrix is an orthogonal matrix.

21. Let A be an orthogonal matrix. A defines a trans-
formation of into itself. Let u and v be elements of
Let P and Q be the points defined by u and v, and let R
and S be the points defined by Au and Av. See Figure 2.18.
Prove that

(a) the angle between u and v is equal to the angle
between Au and Av.

(b) the distance between P and Q is equal to the distance
between R and S.

Thus the transformation defined by A preserves angles and
distances.

Translations and Affine Transformations
22. Find the image of the triangle having vertices

and under the translation that takes the point
to 

23. Find the image of the line under the translation

where (a) (b)

24. Find and sketch the image of the unit square and the unit
circle under the affine transformations 
defined by the following matrices and vectors.

(a)

(b)

(c)

(d) A 5 ≥
1

2
0

0
1

4

¥ , v 5 c3
3
d

A 5 ≥
1

"2
2

1

"2
1

"2

1

"2

¥ , v 5 c3
1
d

A 5 c3 0

0 2
d , v 5 c4

1
d

A 5 c2 0

0 2
d , v 5 c4

4
d

T 1u 2 5 Au 1 v

p 5 2, q 5 5 p 5 21, q 5 1.

T cx
y
d 5 cx

y
d 1 cp

q
d

y 5 3x 1 1

12, 23 2 .
14, 6 2 11, 2 2

11, 2 2 , 13, 4 2 ,

Rn Rn.
n 3 n

A 5 c0 21

1 0
d , u 5 c3

3
d , v 5 c1

5
d

T1 T2

u

A 5 ≥
1

"2
2

1

"2
1

"2

1

"2

¥ , B 5 c21 0

0 21
d

A2 BA2 5

2 3 2
p/4. A8 5 I,

u

p/2

p/2

R2. c2
1
d

2 3 2

A1 5 c5 22

3 6
d , A2 5 £

3 0

1 27

2 5

§ , x 5 c 4

25
d

A1 5 c2 1 0

3 22 5
d , A2 5 c3 1

0 2
d , x 5 £

3

22

1

§
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2.6 Linear Transformations, Graphics, and Fractals 127

DEFINITION

Linear Transformations, Graphics, and Fractals
Let us now examine the properties of a matrix transformation T. We know that a vector
space has two operations, namely addition and scalar multiplication. Let us look at how T
interacts with these operations. Consider the matrix transformation The
matrix properties of A imply that

and

The implication is that T maps the sum of two vectors into the sum of the images  (preserves
addition) and maps the scalar multiple of a vector into that same scalar multiple of the
image (preserves scalar multiplication). We say that T preserves  vector space struc-
ture. We call any transformation that has these properties a linear  transformation.

5 cT 1u 2
T 1cu 2 5 A 1cu 2 5 cAu

5 T 1u 2 1 T 1v 2
T 1u 1 v 2 5 A 1u 1 v 2 5 Au 1 Av

T 1u 2 5 A 1u 2 .

2.6

Let u and v be vectors in and let c be a scalar. A transformation is said to be a  linear
transformation if

(preserves addition)

(preserves scalar multiplication)T 1cu 2 5 cT 1u 2
T 1u 1 v 2 5 T 1u 2 1 T 1v 2

Rn T: Rn S Rm

Every matrix transformation is linear. Since dilations, contractions, reflections, and rota-
tions can all be described by matrices, these transformations are linear. Orthogonal trans-
formations are also linear, but translations and affine transformations are not linear (see
Exercise 39).

The structure-preserving ideas of a linear transformation are illustrated in Figure 2.20.

Rn Rm
u

u + v

cu

T (u)

T (cu)

T (v)

T (u + v)

v

T →

T is linear if
T (u + v) = T (u) + T (v)

T (cu) = cT (u)

Figure 2.20

We now give examples to show how the linearity conditions are in general checked.
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Prove that the following transformation T is linear.

SOLUTION 

T maps For example, . The image of is .
We first show that T preserves addition. Let and be elements of

Then

by vector addition

by definition of T

by vector addition

by definition of T

Thus T preserves vector addition. 
We now show that T preserves scalar multiplication. Let c be a scalar.

by scalar multiplication of a vector

by definition of T

by scalar multiplication of a vector

by definition of T

Thus T preserves scalar multiplication. T is linear.

Note that T in Example 1 maps into . The domain and codomain are the same. A
transformation for which the domain and codomain are the same is often referred to as an
operator.

The following example illustrates a transformation that is not linear.

Show that the following transformation is not linear.

SOLUTION 

Let us first test addition. Let and be elements of Then

and

Thus, in general,

Since vector addition is not preserved, T is not linear.
(It is not necessary to check the second linearity condition. The fact that one  condition

is not satisfied is sufficient to prove that T is not linear. It can be shown, in fact, that this
particular transformation does not preserve scalar multiplication either.)

T 1 1x1, y1, z1 2 1 1x2, y2, z2 2 2 2 T 1x1, y1, z1 2 1 T 1x2, y2, z2 2

5 1x1y1 1 x2y2, z1 1 z2 2
T 1x1, y1, z1 2 1 T 1x2, y2, z2 2 5 1x1y1, z1 2 1 1x2y2, z2 2

5 1x1y1 1 x2y2 1 x1y2 1 x2y1, z1 1 z2 2
5 1 1x1 1 x2 2 1y1 1 y2 2 , z1 1 z2 2

T 1 1x1, y1, z1 2 1 1x2, y2, z2 2 2 5 T 1x1 1 x2, y1 1 y2, z1 1 z2 2
1x1, y1, z1 2 1x2, y2, z2 2 R3.

T 1x, y, z 2 5 1xy, z 2
EXAMPLE 2 T: R3 S R2

R2 R2

5 cT 1x1, y1 2
5 c 1x1 2 y1, 3x1 2
5 1cx1 2 cy1, 3cx1 2

T 1c 1x1, y1 2 2 5 T 1cx1, cy1 2

5 T 1x1, y1 2 1 T 1x2, y2 2
5 1x1 2 y1, 3x1 2 1 1x2 2 y2, 3x2 2
5 1x1 1 x2 2 y1 2 y2, 3x1 1 3x2 2

T 1 1x1, y1 2 1 1x2, y2 2 2 5 T 1x1 1 x2, y1 1 y2 2
1x1, y1 2 1x2, y2 2 R2.

R2 S R2. T 15, 1 2 5 14, 15 2 15, 1 2 14, 15 2

T 1x, y 2 5 1x 2 y, 3x 2
EXAMPLE 1

128 CHAPTER 2 Matrices and Linear Transformations
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2.6 Linear Transformations, Graphics, and Fractals 129

In the previous section we used ad hoc ways of arriving at matrices that described certain
transformations such as rotations, dilations, and reflections. We now introduce a method
for constructing a matrix representation for any linear transformation on We pave the
way with the following example.

Determine a matrix A that describes the linear transformation

SOLUTION 

It can be shown that T is linear. The domain of T is We find the effect of T on the
standard basis of 

These vectors will be the columns of the matrix A that describe the transformation.
We get

T can be written as a matrix transformation,

(We can check that this matrix does work: )

We now arrive at the general result: We see why the above method works.

Matrix Representation
Let T be a linear transformation on Let be the standard basis of and
u be an arbitrary vector in written in column form.

We can express u in terms of 

u 5 c1e1 1 c1 cnen

5e1, e2, . . . , en6.

e1 5 ≥
1

0

(

0

¥ , e2 5 ≥
0

1

(

0

¥ , c, en 5 ≥
0

0

(

1

¥ , and u 5 ≥
c1

c2

(

cn

¥

Rn,
Rn. 5e1, e2, . . . , en6 Rn

c2 1

0 3
d cx

y
d 5 c2x 1 y

3y
d .

Ta cx
y
d b 5 c2 1

0 3
d cx

y
d

A 5 c2 1

0 3
d

Ta c1
0
d b 5 c2

0
d and Ta c0

1
d b 5 c1

3
d

R2.
R2.

Ta cx
y
d b 5 c2x 1 y

3y
d

EXAMPLE 3

Rn.

9781284120097_CH02.qxd  9/15/17  2:52 PM  Page 129

© Jones & Bartlett Learning, LLC.  NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION



Since T is a linear transformation

(see Exercise 36)

where is a matrix with columns .
Thus the linear transformation T is defined by the matrix

A is called the standard matrix of T.
In this discussion we see the importance of a basis for working with vector spaces. We

mentioned earlier how a basis, in a sense, represents the whole space. Here we see that the
effect of a linear transformation on a basis leads to a matrix representation, a representa-
tion of the transformation on the whole space.

We derived the matrix for a rotation in the last section using an ad hoc method. You are
asked to confirm this matrix in this standard manner, using bases, in the exercises that  follow.
We now use this method to derive the matrix of a reflection in the line 

The transformation defines a reflection in the line

Figure 2.21(a). It can be shown that T is linear. Determine the standard matrix 

of this transformation. Find the image of 

SOLUTION 

We find the effect of T on the standard basis.

The standard matrix is thus

A 5

The transformation can be written

Applying the transformation to the point we get 

See Figure 2.21(b).

c4
1
d , Ta c4

1
d b 5 c21

24
d .

Ta cx
y
d b 5 c 0 21

21 0
d cx

y
d

c 0 21

21 0
d

Ta c1
0
d b 5 c 0

21
d , and Ta c0

1
d b 5 c21

0
d

c4
1
d .

y 5 2x,

EXAMPLE 4 Ta cx
y
d b 5 c2y

2x
d

y 5 2x.

A 5 3T 1e1 2 c T 1en 2 4
3T 1e1 2 c T 1en 2 4 T 1e1 2 , c, T 1en 2

5 3T 1e1 2 cT 1en 2 4 £
c1

(
cn

§
5 c1T 1e1 2 1 c1 cnT 1en 2

T 1u 2 5 T 1c1e1 1 c1 cnen 2
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2.6 Linear Transformations, Graphics, and Fractals 131

We now discuss the use of these transformations in computer graphics.

Transformations in Computer Graphics
Computer graphics is the field that studies the creation and manipulation of pictures with
the aid of computers. The impact of computer graphics is felt in many homes through video
games; its uses in research, industry, and business are vast and are ever expanding. Architects
use computer graphics to explore designs, molecular biologists display and manipulate pic-
tures of molecules to gain insight into their structure, pilots are trained using graphics flight
simulators, and transportation engineers use computer-generated transforms in their plan-
ning work—to mention a few applications.

The manipulation of pictures in computer graphics is carried out using sequences of trans-
formations. Rotations, reflections, dilations, and contractions are defined by matrices. A sequence
of such transformations can be performed by a single transformation defined by the product
of the matrices. Unfortunately, translation, as it now stands, uses matrix addition, and any
sequence of transformations involving translations cannot be combined in this manner into a
single matrix. However, if coordinates called homogeneous coordinates are used to describe
points in a plane, then translations can also be accomplished through matrix multiplication,
and any sequence of these transformations can be defined in terms of a single matrix. In homo-
geneous coordinates, a third component of 1 is added to each coordinate, and rotation, reflec-
tion, dilation/contraction, and translation R, F, D, and T are defined by the following matrices.

X R F

point rotation reflection

D T

dilation/contraction translation
(r 0).

C 5 £
r 0 0

0 r 0

0 0 1

§ E 5 £
1 0 h

0 1 k

0 0 1

§

£
x

y

1

§ A 5 £
cosu 2sinu 0

sinu cosu 0

0 0 1

§ B 5 £
1 0 0

0 21 0

0 0 1

§

reflection in y = –x

(a)

O

y = –x

(b)

O

y = –x
–4
–1[ [

4
1[ [

y

x

y

x

Figure 2.21
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Thus, for example, a dilation D followed by a translation T and then a rotation R would be
defined by The composite transformation would
be described by the single matrix AEC.

Some programming languages provide subroutines for rotation, translation, and  dilation/
contraction (and also scale and shear, see Exercises 19 and 22 following) that can be used
to move pictures on the screen. To accomplish this movement, the subroutines convert
screen coordinates into homogeneous coordinates and use the matrices that define these
transformations in homogeneous coordinates.

We now illustrate how the transformations are used to rotate a geometrical figure about
a point other than the origin.

Determine the matrix that defines a rotation of points in a plane through
an angle about a point . Use this general result to find the matrix that defines
a rotation of the points through an angle of about the point . Find the image
of the triangle having the following vertices A , B and C under this
rotation. See Figure 2.22.

Figure 2.22

SOLUTION 

The rotation about P can be accomplished by a sequence of three of the above transfor-
mations:

(a) A translation that takes P to the origin O.
(b) A rotation R about the origin through an angle 
(c) A translation that takes O back to P.

The matrices that describe these transformations are as follows.

R

O

P

Rotation about P

y

x

B

A C

B ′

A′

C ′

£
1 0 2h

0 1 2k

0 0 1

§ £
cosu 2sinu 0

sinu cosu 0

0 0 1

§ £
1 0 h

0 1 k

0 0 1

§
T1 T2

T2

u.
T1

11, 2 2 12, 8 2 , 13, 2 2p⁄ 2 15, 4 2u P 1h, k 2EXAMPLE 5

R + T + D 1X 2 5 AEC 1X 2 . R + T + D
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2.6 Linear Transformations, Graphics, and Fractals 133

The rotation Rp about P can be accomplished as follows.

To get the specific matrix that defines the rotation of the plane through an angle about
the point for example, let The rotation matrix is

To find the images of the vertices of the triangle ABC, write these vertices in column
form as homogeneous coordinates and multiply by M. On performing the matrix multi-
plications, we get

A A B B C C

The triangle with vertices , is transformed into the triangle with
vertices See Figure 2.22.

Fractal Pictures of Nature
Computer graphics systems based on traditional Euclidean geometry are suitable for cre-
ating pictures of manmade objects such as machinery, buildings, and airplanes. Images of
such objects can be created using lines, circles, and so on. However, these techniques are
not appropriate when it comes to constructing images of natural objects such as animals,
trees, and landscapes. In the words of mathematician Benoit B. Mandelbrot, “Clouds are
not spheres, mountains are not cones, coastlines are not circles, and bark is not smooth, nor
does lightning travel in straight lines.” However, nature does wear its irregularities in an
unexpectedly orderly fashion; it is full of shapes that repeat themselves on different scales
within the same object. In 1975 Mandelbrot introduced a new geometry, which he called
fractal geometry, that can be used to describe natural phenomena. A fractal is a convenient
label for irregular and fragmented self-similar shapes. Fractal objects contain structures
nested within one another. Each smaller structure being a miniature, though not necessar-
ily identical version, of the larger form. The story behind the word fractal is interesting.

A r 17, 0 2 , B r 11, 1 2 , C r 17, 2 2 .A 11, 2 2 B 12, 8 2 , C 13, 2 2

£
1

2

1

§ A £
7

0

1

§ £
2

8

1

§ A £
1

1

1

§ £
3

2

1

§ A £
7

2

1

§
r r r

M 5 £
0 21 9

1 0 21

0 0 1

§

P 15, 4 2 , h 5 5, k 5 4, and u 5 p⁄ 2.
p⁄ 2

5 £
cosu 2sinu 2hcosu 1 ksinu 1 h

sinu cosu 2hsinu 2 kcosu 1 k

0 0 1

§ £
x

y

1

§

3 £
1 0 2h

0 1 2k

0 0 1

§ £
x

y

1

§

Rp° £
x

y

1

§ ¢ 5 T2 ° R ° T1° £
x

y

1

§ ¢ 5 £
1 0 h

0 1 k

0 0 1

§ £
cosu 2sinu 0

sinu cosu 0

0 0 1

§
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Mandelbrot came across the Latin adjective fractus, from the verb frangere, to break, in
his son’s Latin book. The resonance of the main English cognates fracture and fraction
seemed appropriate and he coined the word fractal!

We now discuss methods that have been developed by a research team at the Georgia
Institute of Technology for forming images of natural objects using fractals. These fractal
images of nature are generated using affine transformations. Figure 2.23 shows a fractal
image of a fern being gradually generated. Let us see how this is done.

Figure 2.23

Consider the following four affine transformations Associate probabilities
with these transformations.

The following algorithm is used on a computer to produce the image of the fern.

1. Let 
2. Use a random generator to select one of the affine transformations according to the

given probabilities.
3. Let 
4. Plot 
5. Let 
6. Repeat Steps 2, 3, 4, and 5 twenty thousand times.

As Step 4 is executed, each of twenty thousand times, the image of the fern gradually
appears.

Each affine transformation Ti involves six parameters a, b, c, d, e, f, and a probability
pi, as follows

Tia cxy d b 5 ca b

c d
d cx

y
d 1 c e

f
d , pi

1x, y 2 5 1x r, y r 2 .1x r, y r 2 .1x r, y r 2 5 Ti 1x, y 2 .
Ti

x 5 0, y 5 0.

T4a cxy d b 5 c0 0

0 0.17
d cx

y
d 1 c0

0
d , p4 5 0.01

T3a cxy d b 5 c20.15 0.27

0.25 0.26
d cx

y
d 1 c0

0.45
d , p3 5 0.08

T2a cxy d b 5 c0.2 20.25

0.21 0.23
d cx

y
d 1 c0

1.5
d , p2 5 0.08

T1a cxy d b 5 c 0.86 0.03

20.03 0.86
d cx

y
d 1 c0

1.5
d , p1 5 0.83

p1, . . . , p4

T1, . . . , T4.
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2.6 Linear Transformations, Graphics, and Fractals 135

The affine transformations and corresponding probabilities that generate a fractal are writ-
ten as rows of a matrix, called an iterated function system (IFS). The IFS for the fern is as
follows. 

IFS for a fern

T a b c d e f p

The appropriate affine transformations that produce a given fractal object are found by
determining transformations that map the object (called the attractor) into various disjoint
images, the union of which is the whole fractal. A theorem called the Collage Theorem then
guarantees that the transformations can be grouped into an IFS that produces the fractal.

Different probabilities do not in general lead to different images, but they do affect the
rate at which the image is produced. Appropriate probabilities are

These techniques are very valuable because they can be used to produce an image to any
desired degree of accuracy using a highly compressed data set. A fractal image containing
infinitely many points, whose organization is too complicated to describe directly, can be
reproduced using mathematical formulas.

pi 5
area of the image under transformation Ti

area of image of object

≥
1 0.86 0.03 20.03 0.86 0 1 .5 0.83

2 0.2 20.25 0.21 0.23 0 1 .5 0.08

3 20.15 0.27 0.25 0.26 0 0.45 0.08

4 0 0 0 0.17 0 0 0.01

¥

EXERCISE SET 2.6 

Check for Linearity
1. Prove that the transformation T: defined by 

is linear. Find the images of the ele-
ments and under this transformation.

2. Prove that defines a lin-
ear transformation T: Find the images of
and 

3. Prove that T: defined by is
linear. This transformation is also called a projection. Why
is this term appropriate?

4. Prove that the following transformations T: are
not linear.

(a)
(b)

5. Prove that T: defined by where
a is a nonzero scalar, is not linear.

In Exercises 6–11, determine whether the given transformations
are linear.

6. of 

7. of 

8. of when (a)
(b)

9. of 

10. of 

11. of 

Standard Matrix of a Linear Transformation
12. Find the standard matrix of each of the following linear 

transformations on 

(a) (b)

(c) (d)Ta cx
y
d b 5 c2x 2 5y

3y
d Ta cx

y
d b 5 c 2y

23x
d

Ta cx
y
d b 5 c 2x

x 2 y
d Ta cx

y
d b 5 cx 2 y

x 1 y
d

R2.

T 1x, y, z 2 5 1x 1 2y, x 1 y 1 z, 3z 2 R3 S R3.

T 1x, y 2 5 1x2, y 2 R2 S R2.

T 1x 2 5 1x, 2x, 3x 2 R S R3.

z 5 1.
T 1x, y 2 5 1x, y, z 2 R2 S R3, z 5 0,

T 1x, y 2 5 x 2 y R2 S R.

T 1x, y, z 2 5 12x, y 2 R3 S R2.

R2 S R T 1x, y 2 5 x 1 a,

T 1x, y, z 2 5 1x 1 2, 4y 2
T 1x, y, z 2 5 13x, y2 2

R3 S R2

R3 S R3 T 1x, y, z 2 5 10, y, 0 2
12, 25 2 . R2 S R3. 11, 2 2T 1x, y 2 5 13x 1 y, 2y, x 2 y 2
11, 2 2 121, 4 2T 1x, y 2 5 12x, x 2 y 2 R2 S R2
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13. Find the standard matrix A of each of the following linear

transformations. Verify your answers by computing

for (a) and (b), for (c) and (d). 

(a) (b)

(c) (d)

14. Derive the rotation matrix by finding the effect of a rotation
on the standard basis of 

15. We have seen examples of rotations, dilations, contractions,
and reflections. How would you describe the transformation 

T Show that T is linear. Determine the

standard matrix of T. Find the image of the point 

Projection

16. Find the standard matrix of the operator 

Observe that this transformation projects all points onto the 
x-axis. It is called a projection operator.

17. Determine the matrix that defines projection onto the y-axis.

18. Determine the matrix that defines projection onto the line 

Find the image of under this projection.

Scaling

19. Find the standard matrix of the operator 

where a and b are positive scalars. T is called a scaling of
factor a in the x-direction and factor b in the y-direction. A
scaling distorts a figure, since x and y do not change in the
same manner. Sketch the image of the unit square under this
transformation when and 

20. Find the equation of the image of the line under a
scaling of factor 2 in the x-direction and factor 3 in the
y-direction.

21. Find the equation of the image of the unit circle,
under a scaling of factor 4 in the x-direction and factor 3 in
the y-direction.

Shear

22. Find the standard matrix of the operator  

where c is a scalar. T is called a shear 

of factor c in the x-direction. Sketch the image of the unit
square under a shear of factor 2 in the x-direction. Observe
how the x-value of each point is increased by a factor of 2y,
 causing a shearing of the figure.

23. Sketch the image of the unit square under a shear of factor
0.5 in the y-direction.

24. Find the equation of the image of the line under a
shear of factor 5 in the x-direction.

General Matrix Transformations
25. Construct single matrices that define the following 

transformations on Find the image of the point under

each transformation.

(a) A dilation of factor 3, then a shear of factor 2 in the
x-direction.

(b) A scaling of factor 3 in the x-direction, of factor 2 in
the y-direction, then a reflection in the line 

(c) A dilation of factor 2, then a shear of factor 3 in the 
x-direction, then a rotation through counter-
clockwise.

26. Find the matrix that maps such that and

27. Transformations and are said to be commutative if
for all vectors u. Let R be a rota-

tion, D dilation, F reflection, S scaling, H shear, and A affine
transformation. Which pairs of transformations are
 commutative?

28. Find the matrix that defines a rotation of three-space through
an angle of about the z-axis. (You may consider either
direction.)

29. Find the matrix that defines an expansion of three-dimensional
space outward from the origin, so that each point moves to
three times as far away.

30. Determine the matrix that can be used to define a rotation
through about the point Find the image of the
unit square under this rotation.

31. Consider the general translation defined by the following
matrix T. Does this transformation have an inverse? If so,
find it.

T 5 £
1 0 h

0 1 k

0 0 1

§

p/2 15, 1 2 .

p/2

T2 + T1 1u 2 5 T1 + T2 1u 2
T1 T2

c21

1
dA c2

3
d .

R2 S R2 c1
2
dA c7

3
d

p/2

y 5 x.

R2. c3
2
d

2 3 2

y 5 3x

Ta cx
y
d b 5 cx 1 cy

y
d ,

x2 1 y2 5 1,

y 5 2x

a 5 3 b 5 2.

Ta cx
y
d b 5 cax

by
d ,

y 5 x. c4
2
d

Ta cx
y
d b 5 cx

0
d .

c23

5
d .

a cx
y
d b 5 c y

x
d ?

R2.

T° £
x

y

z

§ ¢ 5 c 2x

x 1 y
d T° £

x

y

z

§ ¢ 5 cx 1 2z

y 1 3z
d

Ta cx
y
d b 5 £

x

y

x 1 y

§ Ta cx
y
d b 5 £

x

2x

3x

§

A £
x

y

z

§
A cx

y
d
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2.7 The Leontief Input-Output Model in Economics 137

32. Consider the general scaling defined by the following matrix
Does this transformation have an inverse?

If so find it.

33. Find the image of the triangle having the following vertices
A, B, and C (in homogeneous coordinates), under the
sequence of transformations T followed by R, followed by
S. Sketch the original and final triangle.

Miscellaneous Results
34. Let T be a linear transformation. Use the fact that T pre-

serves addition and scalar multiplication to show that 

(a)
(b)

35. Let T be a transformation between vector spaces, u and v
vectors in the domain, and a and b scalars. Prove that T is
linear if and only if

This can be used as an alternative definition of linear
 transformation.

36. Let T be a linear transformation with domain U. Let
be vectors in U, and be scalars. Prove

that

(Can you prove this result by induction?)

37. Prove that the composition of two linear transformations is
a linear transformation.

38. State (with a brief explanation) whether the following state-
ments are true or false.

(a) is a linear transformation.

(b) Let T: be a linear transformation. Distinct vec-
tors in U always have distinct images in V.

(c) If the dimension of V is greater than that of U, there are
no linear transformations from U to V.

39. Prove that translations and affine transformations are not
linear.

U S V

T 1x, y 2 5 1x, y 2

T 1c1v1 1 c1 cmvm 2 5 c1T 1v1 2 1 c1 cmT 1vm 2
v1, . . . ,vm c1, . . . , cm

T 1au 1 bv 2 5 aT 1u 2 1 bT 1v 2

T 1v 2 w 2 5 T 1v 2 2 T 1w 2
T 12v 2 5 2T 1v 2

S 5 £
3 0 0

0 5 0

0 0 1

§

T 5 £
1 0 4

0 1 23

0 0 1

§ , R 5 £
0 1 0

21 0 0

0 0 1

§ ,

A £
1

6

1

§ , B £
3

0

1

§ , C £
4

6

1

§ ;

S 5 £
c 0 0

0 d 0

0 0 1

§

S 1c 2 0, d 2 0 2 .

The Leontief Input-Output Model in Economics
In this section we introduce the Leontief model that is used to analyze the interdependence
of economies. The importance of this model to current economic planning was mentioned
in the introduction to this chapter.

Consider an economic situation that involves n interdependent industries. The out-
put of any one industry is needed as input by other industries, and even possibly by the
industry itself. We shall see how a mathematical model involving a system of linear
equations can be constructed to analyze such a situation. Let us assume, for the sake of
simplicity, that each industry produces one commodity. Let denote the amount of
input of a certain commodity i to produce unit output of commodity j. In our model let
the amounts of input and output be measured in dollars. Thus, for example, 
means that 45 cents’ worth of commodity 3 is required to produce one dollar’s worth of
commodity 4.

amount of commodity i in one dollar of commodity j

The elements called input coefficients, define a matrix A called the input-output
matrix, which describes the interdependence of the industries.

aij,

aij 5

a34 5 0.45

aij

*2.7

* Sections and chapters marked with an asterisk are optional. The instructor can use these sections to build around the core
material to give the course the desired flavor.
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National input-output matrices are used to describe interindustry relations
that constitute the economic fabric of countries. We now display part of the matrix that
describes the interdependency of the U.S. economy for 1972. The economic structure is
actually described in terms of the flow among 79 producing sectors; the matrix is thus a

matrix. We cannot, of course, display the whole matrix. We list 10 sectors to
give the reader a feel for the catagories involved.

1. Livestock and livestock products
2. Agricultural crops
3. Forestry and fishery products
4. Agricultural, forestry, and fishery services
5. Iron and ferroalloy ores mining
6. Nonferrous metal ores mining
7. Coal mining
8. Crude petroleum and natural gas
9. Stone and clay mining and quarrying

10. Chemical and fertilizer mineral mining

The matrix A based on these sectors is

79 3 79

EXAMPLE 1

138 CHAPTER 2 Matrices and Linear Transformations

1 2 3 4 . . .

1 0.26110 0.02481 0 0.05278 
2 0.23277 0.03218 0 0.01444
3 0 0 0.00467 0.00294
4 0.02821 0.03673 0.02502 0.02959
5 0 0 0 0
6 0 0 0 0
7 0 0.00002 0 0
8 0 0 0 0
9 0.00001 0.00251 0 0.00034

10 0 0.00130 0 0
( (

c

Thus, for example, implies that $0.00002 from the coal mining sector
(sector 7) goes into producing each $1 from the the agricultural crops sector (sector 2).

We now extend the model to include an open sector. The products of industries may
go not only into other producing industries, but also into other nonproducing sectors
of the economy such as consumers and governments. All such nonproducing sectors
are grouped into what is called the open sector. The open sector in the above model
of the 1972 U.S. economy included, for example, federal, state, and local government
purchases. Let

demand of the open sector from industry i.

total output of industry i necessary to meet demands of all n 
industries and the open sector.

xi 5

di 5

a72 5 0.00002
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2.7 The Leontief Input-Output Model in Economics 139

is the amount required from industry i to produce unit output in industry j. Thus
will be the amount required to produce units of output in industry j. We get

total output demand of demand of demand of demand of
of industry i industry 1 industry 2 industry n open sector

The output levels required of the entire set of n industries in order to meet these demands
are given by the system of n linear equations

This system of equations can be written in matrix form

Let us introduce the following notation.

the output matrix the demand matrix

The system of equations can now be written as a single matrix equation with the terms hav-
ing the following significance:

total interindustry open sector
output portion of output portion of output

When the model is applied to the economy of a country, X represents the total output
of each of the producing sectors of the economy and AX describes the contributions
made by the various sectors to fulfilling the intersectional input requirements of the
economy. D is equal to the difference between total output X and industry
transaction AX.

D is thus the GNP of the economy

In practice, the equation is applied in a variety of ways, depending on
which variables are considered known and which are not known. For example, an analyst
seeking to determine the implications of a change in government purchases or consumer
demands on the economy described by A might assign values to D and solve the equation
for X. The equation could be used in this manner to predict the amount of outputs from each
sector needed to attain various GNPs. (Example 2 illustrates this application of the model.)
On the other hand, an economist knowing the limited production capacity of an economic

x1 5 a11x1 1 a12x2 1 c1 a1nxn 1 d1

x2 5 a21x1 1 a22x2 1 c1 a2nxn 1 d2

(
xn 5 an1x1 1 an2x2 1 c1 annxn 1 dn

X 5 AX 1 D

1X 2 AX 2 ,

X 5 AX 1 D

X 5 ≥
x1

x2

(
xn

¥ and D 5 ≥
d1

d2

(
dn

¥

≥
x1

x2

(
xn

¥ 5 ≥
a11 a12 c a1n

a21 a22 c a2n

(
an1 an2 c ann

¥ ≥
x1

x2

(
xn

¥ 1 ≥
d1

d2

(
dn

¥

xi 5 ai1x1 1 ai2x2 1 c1 ainxn 1 di

xi

aij aijxi
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system described by A would consider X as known and solve the equation for D, to predict
the maximum GNP the system can achieve. (Exercises 7, 8, and 9 following illustrate this
application of the model.)

Consider an economy consisting of three industries having the following
input-output matrix A. Determine the output levels required of the industries to meet the
demands of the other industries and of the open sector in each case.

and in turn

The units of D are millions of dollars.

SOLUTION

We wish to compute the output levels X that correspond to the various open sector de -
mands D. X is given by the equation Rewrite as follows.

To solve this equation for X, we can use either Gauss-Jordan elimination or the matrix
inverse method. In practice, the matrix inverse method is used; a discussion of the mer-
its of this approach is given below. We get

This is the equation that is used to determine X when A and D are known. For our matrix
A we get

(I 2 A)21 is computed using Gauss-Jordan elimination.

We can efficiently compute D for each of the three values of D by
 forming a matrix having the various values of D as columns:

various values corresponding 
of D outputs

1I 2 A 221
c c c c c c c

X 5 £
2 1 1

3 4 1.5

0 0 1.25

§ £
9 6 12

12 9 18

16 8 32

§ 5 £
46 29 74

99 66 156

20 10 40

§

X 5 1I 2 A 221

1I 2 A 221 5 £
2 1 1

3 4 1.5

0 0 1.25

§

I 2 A 5 £
1 0 0

0 1 0

0 0 1

§ 2 £
0.2 0.2 0.4

0.6 0.6 0

0 0 0.2

§ 5 £
0.8 20.2 20.4

20.6 0.4 0

0 0 0.8

§

X 5 1I 2 A 221D

1I 2 A 2X 5 D
X 2 AX 5 D

X 5 AX 1 D.

A 5 £
0.2 0.2 0.4

0.6 0.6 0

0 0 0.2

§ , D 5 £
9

12

16

§ , £
6

9

8

§ , £
12

18

32

§

EXAMPLE 2
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2.7 The Leontief Input-Output Model in Economics 141

The output levels necessary to meet the demands

respectively. The units are millions of dollars.

Numerical Considerations In practice, analyses of this type usually involve many
sectors (as we saw in the example of the U.S. economy), implying large input-output
matrices. There is usually a great deal of computation involved in implementing the
model and an efficient algorithm is needed. The elements of an input-output matrix A
are usually zero or very small. This characteristic of A has led to an appropriate numer-
ical method for computing that makes the matrix inverse method more effi-
cient for solving the system of equations than an elimination method.
We now describe this method for computing Consider the following matrix
multiplication for any positive integer m.

The elements of successive powers of A become small rapidly and approaches the
zero matrix. Thus, for an appropriately large m,

This implies that

This expression is used on a computer to compute in this model.
Readers who are interested in finding out more about applications of this model

should read “The World Economy of the Year 2000” by Wassily W. Leontief, page 166,
Scientific American, September 1980. The article describes the application of this 
model to a world economy. The model was commissioned by the United Nations with
special financial support from the Netherlands. In the model the world is divided 
into 15 distinct geographic regions, each one described by an individual input-output
matrix. The regions are then linked by a larger matrix that is used in an input-output
model. Overall more than 200 economic sectors are included in the model. By feeding
in  various values, economists use the model to create scenarios of future world  economic
 conditions.

1I 2 A 221

1I 2 A 221 5 I 1 A 1 A2 1 c1 Am

1I 2 A 2 1I 1 A 1 A2 1 c1 Am 2 5 I

Am11

5 I 2 Am11

5 1I 1 A 1 A2 1 c1 Am 2 2 1A 1 A2 1 A3 1 c1 Am11 2
5 I 1I 1 A 1 A2 1 c1 Am 2 2 A 1I 1 A 1 A2 1 c1 Am 2

1I 2 A 2 1I 1 A 1 A2 1 c1 Am 2

1I 2 A 221.
1I 2 A 2X 5 D

1I 2 A 221

£
9

12

16

§ , £
6

9

8

§ , and £
12

18

32

§ are £
46

99

20

§ , £
29

66

10

§ , and £
74

156

40

§
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142 CHAPTER 2 Matrices and Linear Transformations

1. Consider the following input-output matrix that defines the
interdependency of five industries.

Determine

(a) the amount of electricity consumed in producing $1
worth of steel.

(b) the amount of steel consumed in producing $1 worth
in the auto industry.

(c) the largest consumer of coal.

(d) the largest consumer of electricity.

(e) on which industry the auto industry is most dependent.

In Exercises 2–6 consider the economies consisting of either two
or three industries. Determine the output levels required of each
industry in each situation to meet the demands of the other indus-
tries and of the open sector.

2.

in turn

3.

in turn

4.

in turn

5.

in turn

6.

and in turn

In Exercises 7–9 consider the economies consisting of either two
or three industries. The output levels of the industries are given.
Determine the amounts available for the open sector from each
industry.

7.

8.

9.

10. Let be an arbitrary element of an input-output matrix.
Why would you expect to satisfy the condition 

11. In an economically feasible situation the sum of the  elements
of each column of the input-output matrix is less than or
equal to unity. Explain why this should be so.

12. Consider a two-industry economy described by an input-
output matrix A whose columns add up to one. We can express
such a matrix in the form

(a) Show that the matrix I 2 A has no inverse.

(b) Illustrate this result for the matrix 

(c) What is the implication for an economy described by
such a matrix A? (Hint: Consider the equation 
X 5 1I 2 A 221D. 2

A 5 c0.2 0.7

0.8 0.3
d .

A 5 c a 1 2 b

1 2 a b
d .

0 # aij # 1?
aij

aij

A 5 £
0.10 0.10 0.20

0.20 0.10 0.30

0.40 0.30 0.15

§ , X 5 £
6

4

5

§

A 5 £
0.10 0.20 0.30

0 0.10 0.40

0.50 0.40 0.20

§ , X 5 £
10

10

20

§

A 5 c0.20 0.40

0.50 0.10
d , X 5 c 8

10
d

D 5 £
36

72

36

§ , £
36

0

18

§ , £
36

0

0

§ , £
0

18

18

§

A 5 £
0.20 0.20 0

0.40 0.40 0.60

0.40 0.10 0.40

§ ,

D 5 £
4

8

8

§ , £
0

8

16

§ , and £
8

24

8

§

A 5 £
0.20 0.20 0.10

0 0.40 0.20

0 0.20 0.60

§ ,

D 5 c42

84
d , c 0

10
d , c14

7
d , and c42

42
d

A 5 c0.30 0.60

0.35 0.10
d ,

D 5 c 6

12
d , c18

6
d , and c24

12
d

A 5 c0.10 0.40

0.30 0.20
d ,

D 5 c24

12
d , c8

6
d , and c 0

12
d

A 5 c0.20 0.60

0.40 0.10
d ,

1. Auto

2. Steel

3. Electricity

4. Coal

5. Chemical

≥
0.15 0.10 0.05 0.05 0.10

0.40 0.20 0.10 0.10 0.10

0.10 0.25 0.20 0.10 0.20

0.10 0.20 0.30 0.15 0.10

0.05 0.10 0.05 0.02 0.05

¥

1 2 3 4 5

EXERCISE SET 2.7 
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2.8 Markov Chains, Population Movements, and Genetics 143

Markov Chains, Population Movements, and Genetics
Certain matrices, called stochastic matrices, are important in the study of random phenom-
ena where the exact outcome is not known but probabilities can be determined. In this section,
we introduce stochastic matrices, derive some of their properties, and give examples of their
application. One example is an analysis of population movement between cities and suburbs
in the United States. The second example illustrates the use of stochastic matrices in genetics.

At this time we remind the reader of some basic ideas of probability. If the outcome of
an event is sure to occur, we say that the probability of that outcome is 1. On the other hand,
if it will not occur, we say that the probability is 0. Other probabilities are represented by
fractions between 0 and 1; the larger the fraction, the greater the probability p of that out-
come occurring. Thus we have the restriction 0 p 1 on a probability p.

If any one of n completely independent outcomes is equally likely to happen, and if m
of these outcomes are of interest to us, then the probability p that one of these outcomes
will occur is defined to be the fraction m/n.

As an example, consider the event of drawing a single card from a deck of 52 playing
cards. What is the probability that the outcome will be an ace or a king? First of all we see
that there are 52 possible outcomes. There are 4 aces and 4 kings in the deck; there are 
8 outcomes of interest. Thus the probability of drawing an ace or a king is , or 

We now introduce matrices whose elements are probabilities.

8
52

2
13.

# #

*2.8

The following matrices are stochastic matrices.

The following matrices are not stochastic.

A general 2 3 2 stochastic matrix can be written

where and 
Stochastic matrices have the following useful property. (The reader is asked to prove

this result for 2 3 2 stochastic matrices in the exercises that follow.)

THEOREM 2.10

If A and B are stochastic matrices of the same size, then AB is a stochastic matrix.

Thus if A is stochastic, then are all stochastic.A2, A3, A4, c

0 # x # 1 0 # y # 1.

c x y

1 2 x 1 2 y
d

c 1
2 0
3
4 1

d c0 2

1 3
4
d

c 1
2

1
3

1
2

2
3
d c0 3

4

1 1
4
d £

1 0 3
4

0 1
2

1
8

0 1
2

1
8

§

DEFINITION A stochastic matrix is a square matrix whose elements are probabilities and whose columns
add up to 1.

the sum of the elements in the
first column is not 1

the 2 in the 1st row is not a proba-
bility since it is greater than 1
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Stochastic matrices are used by city planners to analyze trends in land use.
Such a matrix has been used by the city of Toronto, for example. The researchers collect data
and write them in the form of a stochastic matrix P. The rows and columns of P represent
land uses. We illustrate typical categories for a five-year period in the matrix that follows.
The element is the probability that land that was in use j in 2005 was in use i in 2010.

Let us interpret some of the information contained in this matrix. For example,
This tells us that land that was office space in 2005 had a probability of 0.30

of becoming a parking area by 2010. The fourth row of P gives the probabilities that var-
ious areas of the city have become parking areas by 2010. These relatively large figures
reveal the increasingly dominant role of parking in land use.

The diagonal elements give the probabilities that land use remained in the same cat-
egory. For example, is the probability that office land remained office land.
The relatively high figures of these diagonal elements reflect the tendency for land to
remain in the same broad category of usage.

Perhaps the most interesting statistic in the preceding matrix is that office land within
the city in 2005 has such a high probability of becoming residential in 2010; 

In this example we develop a model of population movement between
cities and surrounding suburbs in the United States. The numbers given are based on sta-
tistics in Statistical Abstract of the United States.

It is estimated that the number of people living in cities in the United States during
2015 was 83 million. The number of people living in the surrounding suburbs was  

178 million. Let us represent this information by the matrix 

Consider the population flow from cities to suburbs. During 2015 the probability
of a person staying in the city was 0.97. Thus the probability of moving to the suburbs
was 0.03 (assuming that all those who moved went to the suburbs). Consider now the
reverse population flow, from suburbia to city. The probability of a person moving to
the city was 0.01; the probability of remaining in suburbia was 0.99. These probabil-
ities can be written as the elements of a stochastic matrix P:

(from) (to)

The probability of moving from location A to location B is given by the element in col-
umn A and row B. In this context, the stochastic matrix is called a matrix of transition
probabilities.

E
.4 .15 .1 .05 .05

.1 .35 .3 .15 .35

.15 .15 .5 .35 .20

.1 .30 .1 .4 .25

.25 .05 0 .05 .15

U

X0 5 c 83

178
d .

P 5 c0.97 0.01

0.03 0.99
d city

suburb

city suburb

EXAMPLE 2

p12 5 0.15.

p22 5 0.35

p42 5 0.30.

1. Residential

2. Office

3. Commercial

4. Parking

5. Vacant

1 2 3 4 5 Use in 2010

Use in 2005

pij

EXAMPLE 1

144 CHAPTER 2 Matrices and Linear Transformations
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2.8 Markov Chains, Population Movements, and Genetics 145

Now consider the population distribution in 2016, one year later:

Note that we can arrive at these numbers using matrix multiplication:

Using 2015 as the base year, let be the population in 2016, one year later. We can write

Assume that the population flow represented by the matrix P is unchanged over the years.
The population distribution after 2 years is given by

After 3 years, the population distribution is given by

After n years, we get

The predictions of this model (displaying elements to four decimal places) are

,   

and so on.
Observe how the city population is decreasing annually, while that of the suburbs is

increasing. We return to this model in Section 5 of the “Determinants and Eigenvectors” 

chapter. There we find that the sequence approaches If con-

ditions do not change, city population will gradually approach 65.2500 million, while
the population of suburbia will approach 195.7500 million.

Further, note that the sequence can be directly computed from
as follows:

The matrix is a stochastic matrix that takes into in n steps. This result can be
generalized. That is, can be used in this manner to predict the distribution n stages
later, from any given distribution.

Xi1n 5 PnXi

X0, X1, X2, . . .

X4 5 c 80.3259

180.6741
d ,

5 10.97 3 83 2 1 10.01 3 178 2
city population in 2016 5 1

Pn
Pn X0 Xn,

X1 5 PX0, X2 5 P2X0, X3 5 P3X0, c, Xn 5 PnX0

X1, X2, X3, . . . Xn

X0,

c 65.2500

195.7500
d .

X2 5 c 81.6084

179.3916
d , X3 5 c 80.9541

180.0459
d ,

X0 5 c 83

178
d city

suburb X1 5 c 82.2900

178.7100
d ,

Xn 5 PXn21

X3 5 PX2

X2 5 PX1

X2

X1 5 PX0

X1

c0.97 0.01

0.03 0.99
d c 83

178
d 5 c 82.29

178.71
d

5 178.71 million.

5 10.03 3 83 2 1 10.99 3 178 2
suburban population in 2016 5 1

5 82.29 million.

people who remained
from 2015

people who moved
in from the suburbs

people who moved in
from the city

people who stayed
from 2015

9781284120097_CH02.qxd  9/15/17  4:37 PM  Page 145

© Jones & Bartlett Learning, LLC.  NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION



is called the n-step transition matrix. The th element of gives the probability
of going from state j to state i in n steps. For example, it can be shown that (writing to 
2 decimal places)

Thus, for instance, the probability of living in the city in 2015 and being in the suburbs
4 years later is 0.11.

The probabilities in this model depend only on the current state of a person—whether
the person is living in the city or in suburbia. This type of model, where the probability
of going from one state to another depends only on the current state rather than on a 
more complete historical description, is called a Markov Chain.*

A modification that allows for possible annual population growth or decrease would
give improved estimates of future population distributions. The reader is asked to build
such a factor into the model in the exercises that follow.

These concepts can be extended to Markov processes involving more than two states.
The following example illustrates a Markov chain involving three states.

Markov chains are useful tools for scientists in many fields. We now dis-
cuss the role of Markov chains in genetics.

Genetics is the branch of biology that deals with heredity. It is the study of units called
genes, which determine the characteristics living things inherit from their parents. The
inheritance of such traits as sex, height, eye color, and hair color of human beings, and such
traits as petal color and leaf shape of plants, are governed by genes. Because many dis-
eases are inherited, genetics is important in medicine. In agriculture, breeding methods
based on genetic principles led to important advances in both plant and animal breeding.
High-yield hybrid corn ranks as one of the most important contributions of genetics to
increasing food production. We shall discuss a mathematical model developed for ana-
lyzing the behavior of traits involving a pair of genes. We illustrate the concepts involved
in terms of crossing a pair of guinea pigs.

The traits that we shall study in guinea pigs are the traits of long hair and short hair.
The length of hair is governed by a pair of genes that we shall denote A and a. A guinea
pig may have any one of the combinations AA, Aa, or aa. (aA is genetically the same as
Aa.) Each of these classes is called a genotype. The AA type of guinea pig is indistin-
guishable in appearance from the Aa type—both have long hair—while the aa type has
short hair. The A gene is said to dominate the a gene. An animal is called dominant if
it has AA genes, hybrid with Aa genes, and recessive with aa genes.

Pn 1 i, j 2 Pn

EXAMPLE 3

P4 5 c .89 .04

.11 .96
d city

suburb

city suburb
1 from 2 1 to 2

146 CHAPTER 2 Matrices and Linear Transformations

*Andrei Andreyevich Markov (1856–1922) was educated and taught at the University of St. Petersburg, Russia. He made
contributions to the mathematical fields of number theory, probability, and function theory. It was said that “he gave distin-
guished lectures with irreproachable strictness of argument, and developed in his students that mathematical cast of mind
that takes nothing for granted.” Markov was personally interested in his students, being faculty advisor to a math circle. He
developed chains to analyze literary texts, where the states were vowels and consonants. Markov was a man of strong opin-
ions who was involved in politics. When the establishment celebrated the 300th anniversary of the House of Romanov,
Markov organized his own celebration of the 200th anniversary of the law of large numbers!

9781284120097_CH02.qxd  9/15/17  4:37 PM  Page 146

© Jones & Bartlett Learning, LLC.  NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION



2.8 Markov Chains, Population Movements, and Genetics 147

When two guinea pigs are crossed, the offspring inherits one gene from each parent
in a random manner. Given the genotypes of the parents, we can determine the proba-
bilities of the genotype of the offspring. Consider a given population of guinea pigs. Let
us perform a series of experiments in which we keep crossing offspring with dominant
animals only. Thus we keep crossing AA, Aa, and aa with AA. What are the probabili-
ties of the offspring being AA, Aa, or aa in each of these cases?

Consider the crossing of AA with AA. The offspring will have one gene from each par-
ent, so it will be of type AA. Thus the probabilities of AA, Aa, and aa resulting are 1, 0,
and 0, respectively. All offspring have long hair.

Next consider the crossing of Aa with AA. Taking one gene from each parent, we have
the possibilities of AA, AA (taking A from the first parent and each A in turn from the
 second parent), aA, and aA (taking the a from the first parent and each A in turn from the
second parent). Thus the probabilities of AA, Aa, and aa, respectively, are and 0,
respectively. All offspring again have long hair.

Finally, on crossing aa with AA there is only one possibility, namely aA. Thus the
probabilities of AA, Aa, and aa are 0, 1, and 0, respectively.

All offspring resulting from these experiments have long hair. This series of experi-
ments is a Markov chain having transition matrix

Consider an initial population of guinea pigs made up of an equal number of each geno-

type. Let the initial distribution be representing the fraction of guinea pigs 

of each type initially. The components of will give the fractions of  following
generations that are of types AA, Aa, and aa, respectively. We get

and so on.
Observe that the aa type disappears after the initial generation and that the Aa type

becomes a smaller and smaller fraction of each successive generation. The sequence in
fact approaches the matrix

The genotype AA in this model is called an absorbing state.
Here we have considered the case of crossing offspring with a dominant animal. The

reader is asked to construct a similar model that describes the crossing of offspring with a
hybrid in the exercises that follow. Some of the offspring will have long hair and some
short hair in that series of experiments.

X 5 £
1

0

0

§
AA

Aa

aa

X0 5 £
1
3
1
3
1
3

§
AA

Aa

aa

, X1 5 £
1
2
1
2

0

§ , X2 5 £
3
4
1
4

0

§ , X3 5 £
7
8
1
8

0

§ , X4 5 £
15
16
1
16

0

§ ,

X1, X2, X3, . . .

X0 5 £
1
3
1
3
1
3

§ ,

P 5 £
1 1

2 0

0 1
2 1

0 0 0

§
AA

Aa

aa

AA Aa aa

1
2,

1
2,
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148 CHAPTER 2 Matrices and Linear Transformations

EXERCISE SET 2.8 

Stochastic Matrices
1. State which of the following matrices are stochastic and

which are not. Explain why a matrix is not stochastic.

(a) (b)

(c) (d)

(e) (f)

2. Prove that the product of two stochastic matrices is
a stochastic matrix.

3. A stochastic matrix, the sum of whose rows is 1, is called a
doubly stochastic matrix. Give examples of and

doubly stochastic matrices. Is the product of two dou-
bly stochastic matrices doubly stochastic?

Population Movement Models
4. Use the stochastic matrix of Example 1 of this section to

answer the following questions:

(a) What is the probability that land used for residential in
2005 was used for offices in 2010?

(b) What is the probability that land used for parking in 2005
was in a residential area in 2010?

(c) Vacant land in 2005 had the highest probability of
becoming what kind of land in 2010?

(d) Which was the most stable usage of land over the period
2005–2010?

5. In the model of Example 2, determine

(a) the probability of moving from the city to the suburbs
in two years.

(b) the probability of moving from the suburbs to the city
in three years.

6. Construct a model of population flow between metropoli-
tan and nonmetropolitan areas of the United States, given
that their respective populations in 2015 were 261 million
and 48 million. The probabilities are given by the matrix

(from) (to)
metro nonmetro 

Predict the population distributions of metropolitan and
nonmetropolitan areas for the years 2016 through 2020 (in
millions, to four decimal places). If a person was living in

a metropolitan area in 2015, what is the probability that the
person will still be living in a metropolitan area in 2020?

7. Construct a model of population flows between cities, sub-
urbs, and nonmetropolitan areas of the United States. Their
respective populations in 2015 were 83 million, 178 mil-
lion, and 48 million. The stochastic matrix giving the prob-
abilities of the moves is

(from) (to)

This model is a refinement on the model of the previous
exercise in that the metropolitan population is broken down
into city and suburb. It is also a more complete model than
that of Example 2 of this section, which did not allow for
any population outside cities and suburbs.

Predict the populations of city, suburban, and nonmetro-
politan areas for 2016, 2017, and 2018. If a person was liv-
ing in the city in 2015, what is the probability that the person
will be living in a nonmetropolitan area in 2017?

8. In the period prior to 2015, the total population of the
United States increased by 1% per annum. Assume that
the population increases annually by 1% during the years
immediately following. Build this factor into the model of
Example 2 and predict the populations of city and subur-
bia in 2020.

9. Assume that births, deaths, and immigration increased
the population in U.S. cities by 1.2% during the period
prior to 2015, and that the populations of the suburbs
increased by 0.8% due to these factors. Allow for these
increases in the model of Example 2 and predict the pop-
ulations for the year 2020.

10. Consider the population movement model for flow
between cities and suburbs of Example 2 of this section.
Determine the population distributions for 2012 to 2014—
prior to 2015. Is the chain going from 2015 into the 
past a Markov Chain? What are the characteristics of the
matrix that takes one from distribution to distribution into
the past.

Miscellaneous Stochastic Models
11. The following stochastic matrix gives occupational transi-

tion probabilities.

(initial generation)

white-collar manual

(next generation)

c0.99 0.02

0.01 0.98
d metro

nonmetro

city suburb nonmetro

£
0.96 0.01 0.015

0.03 0.98 0.005

0.01 0.01 0.98

§
city

suburb

nonmetro

c 1 0.2

0 0.8
d

3 3 3
2 3 2

2 3 2

£
0 3

8 0
1
2

1
8 1

1
2

1
2 0

§ £
0 1

5
3
4

5
6

2
5

3
4

1
6

2
5 21

2

§

c 1
3

1
7

2
3

5
7
d £

1 0 0

0 1 0

0 0 1

§

c 1
4 0
3
4 1

d c 1
2 21
1
2 2

d

white-collar
manual
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2.9 A Communication Model and Group Relationships in Sociology 149

(a) If the father is a manual worker, what is the probabil-
ity that the son will be a white-collar worker?

(b) If there are 10,000 in the white-collar category and
20,000 in the manual category, what will the distribu-
tion be one generation later?

12. The following matrix gives occupational transition 
probabilities.

(initial generation)
nonfarming farming

(a) If the father is a farmer, what is the probability that the
son will be a farmer?

(b) If there are 10,000 in the nonfarming category and 1,000
in the farming category at a certain time, what will the
distribution be one generation later? Four generations
later?

(c) If the father is a farmer, what is the probability that the
grandson will be a farmer?

13. A market analysis of car purchasing trends in a certain region
has concluded that a family purchases a new car once every
3 years on an average. The buying patterns are described by
the matrix

small large

The elements of P are to be interpreted as follows: The first
column indicates that of the current small cars, 80% will be
replaced with small cars, 20% with a large car. The second
column implies that 40% of the current large cars will be
replaced with small cars while 60% will be replaced with
large cars. Write the elements of P as follows to get a sto-
chastic matrix that defines a Markov chain.

If there are currently 40,000 small cars and 50,000 large cars
in the region, what is your prediction of the distribution in
12 years’ time?

14. The conclusion of an analysis of voting trends in a certain
state is that the voting patterns of successive generations are
described by the following matrix P.

Among the Democrats of one generation, 80% of the next
generation are Democrats, 15% are Republican, and 5% are
Independents. Express P as a stochastic matrix that defines
a Markov chain model of the voting patterns. If there are
2.5 million registered Democrats, 1.5 million registered
Republicans, and 0.25 million registered Independents at a
certain time, what is the distribution likely to be in the next
generation?

15. Determine the transition matrix for a Markov chain that
describes the crossing of offspring of guinea pigs with 
hybrids only. There is no absorbing state in this model. Let

the initial matrix be the fraction of guinea pigs

of each type initially. Determine the distributions for the
next three generations.

16. Let P be a symmetric stochastic matrix. Prove that

P must be of the form where

If P describes population movement between
two states, what can you say about the movement?
0 # x # 1.

c x 1 2 x

1 2 x x
d ,

2 3 2

X0 5 £
1
3
1
3
1
3

§P 5 c80% 40%

20% 60%
d small

large

c 1 0.4

0 0.6
d nonfarming

farming
(next generation)

P 5 £
80% 20% 60%

15% 70% 30%

5% 10% 10%

§
Dem. Rep. Ind.

P 5 c 80
100

40
100

20
100

60
100

d 5 c0.8 0.4

0.2 0.6
d

A Communication Model and Group Relationships in Sociology
Many branches of the physical sciences, social sciences, and business use models from
graph theory to analyze relationships. We introduce the reader to this important area of
mathematics, which uses linear algebra, with an example from the field of communication.

Consider a communication network involving five stations, labeled The
communication links could be roads, phone lines, or Internet links, for example. Certain
stations are linked by two-way communication, others by one-way links. Still others may
have only indirect communication by way of intermediate stations. Suppose the network
of interest is described in Figure 2.24. Lines joining stations represent direct communi-
cation links; the arrows give the directions of those links. For example, stations andP1

P1, c, P5.

*2.9

Democrat
Republican
Independent
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150 CHAPTER 2 Matrices and Linear Transformations

have two-way direct communication. Station can send a message to by way of
stations and or by way of and This communication network is an example
of a digraph.

P2

P3 P2 P5 P2.
P4 P1

Figure 2.24

P1 P2

P5 P3

P4

In the above communication network, there are five vertices, namely Suppose
that we are interested in sending a message from From the figure we see that there
are various paths that can be taken. The path is of length 2 (a 2-path),
while the path is of length 3 (a 3-path). The path 

a 5-path, takes in the vertex twice. Such paths could be of interest if, for
example, wanted to consult with and before sending a message to In this sec-
tion, however, we shall be interested in finding the shortest route to send a message from
one station to another.

Communication networks can be vast, involving many stations. It is impractical to get
information about large networks from diagrams, as we have done here. The mathematical
theory that we now present, from graph theory, can be used to give information about large
networks. The mathematics can be implemented on the computer.

A digraph can be described by a matrix A, called its adjacency matrix. This matrix
consists of zeros and ones and is defined as follows.

P3 to P1.
P1, . . . , P5.

P4 P1.
P3

P3 P5

P3 S P5 S P4 S P3
S P2 S P1,

P3 S P2 S P1

P3 S P5 S P2 S P1

DEFINITION A digraph is a finite collection of vertices together with directed arcs joining cer-
tain pairs of vertices. A path between vertices is a sequence of arcs that allows one to proceed in a
continuous manner from one vertex to another. The length of a path is its number of arcs. A path of
length n is called an n-path.

P1, P2, c, Pn,

DEFINITION Consider a digraph with vertices The adjacency matrix A of the digraph is such that

aij 5 •
1 if there is an arc from vertex Pi to Pj

0 if there is no arc from vertex Pi to Pj

0 if i 5j

P1, . . . , Pn.
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2.9 A Communication Model and Group Relationships in Sociology 151

The adjacency matrix of the communication network is

For example, since there is an arc from to since there is no arc from
to 
The network is completely described by the adjacency matrix. This matrix is a mathe-

matical “picture” of the network that can be given to a computer. We could look at the sketch
of the network given in Figure 2.24 and decide how best to send a message from
How can we extract such information from the adjacency matrix? The following theorem
from graph theory gives information about paths within digraphs.

THEOREM 2.11

If A is the adjacency matrix of a digraph, let be the element in row i and column j
of 

The number of m-paths from 

Proof  Consider a digraph with n vertices. is the number of arcs from to and
a1j is the number of arcs from Thus is the number of 2-paths from
passing through Summing up over all such possible intermediate stations, we see
that the total number of 2-paths from is

This is the element in row i, column j of Thus is the number of 2-paths from

Let us now look at 3-paths. Interpret a 3-path as a 2-path followed by an arc. The
number of 2-paths from followed by an arc from is Summing
up over all such possible intermediate stations we see that the total number of 3-paths
from is

This is the element in row i, column j, of the matrix product that is of Thus
is the number of 3-paths from 

Continuing thus, we can interpret a 4-path as a 3-path followed by an arc, and so on,
arriving at the result that is the number of m-paths from 

We now illustrate the application of this theorem to the communication network of
Figure 2.24. Successive powers of the adjacency matrix are determined.

A2 5 E
1 0 0 0 1

0 2 0 1 0

1 1 0 1 1

0 2 0 1 1

1 0 1 0 2

UA 5 E
0 1 0 0 0

1 0 0 0 1

0 1 0 0 1

0 0 1 0 1

0 1 0 1 0

U

A 5 E
0 1 0 0 0

1 0 0 0 1

0 1 0 0 1

0 0 1 0 1

0 1 0 1 0

U

aij
1m2 Pi to Pj.

Pi to Pj.
A2A; A3. aij

132
ai1

122a1j 1 ai2
122a2j 1 c1 ain

122anj

Pi to Pj

Pi to P1 P1 to Pj ai1
122 a1j.

Pi to Pj.
A2. aij

122
ai1a1j 1 ai2a2j 1 c1 ainanj

Pi to Pj

P1.
P1 to Pj. ai1 a1j Pi to Pj,

ai1 Pi P1,

Pi to Pj 5 aij
1m2

Am.
aij

1m2

P3 to P1.

P3.
a12 5 1 P1 P2; a13 5 0

P1
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Let us use these matrices to discuss paths from 

A gives There is no direct communication.
gives There are no 2-paths from 

gives There are two distinct 3-paths from 

These are the shortest paths from If we check with Figure 2.24, we see that this is
the case. The two 3-paths are

and  

As a second example, let us determine the length of the shortest path from 

A gives There is no direct communication.

gives There are no 2-paths from 

gives There are no 3-paths from 

gives There is a single 4-path from 

This result is confirmed when we examine the digraph. The quickest way to send a mes-
sage from P1 to P3 is the 4-path

This model that we have discussed gives the lengths of the shortest paths of a digraph;
it does not give the intermediate stations that make up that path. Mathematicians have not,
as yet, been able to derive this information from the adjacency matrix. An algorithm for
finding the shortest paths for a specific digraph, using a search procedure, has been devel-
oped by a Dutch computer scientist named Edsger Dijkstra. See, for example, Algorithmics:
Theory and Practice by Gilles Brassard and Paul Bratley, Prentice Hall, 1988, for a dis-
cussion of this algorithm. The following discussion leads to an application where the lengths
of the shortest paths, not the actual paths, are important.

Distance in a Digraph
The distance from one vertex of a digraph to another is the length of the shortest path from
that vertex to the other. If there is no path from the one vertex to the other, we say that the
distance is undefined. The distances between the various vertices of a digraph form the
elements of a matrix. The distance matrix D is defined as follows:

A4 5 E
2 0 1 0 3

0 6 0 3 1

2 4 1 2 4

1 6 1 3 3

4 1 2 1 6

UA3 5 E
0 2 0 1 0

2 0 1 0 3

1 2 1 1 2

2 1 1 1 3

0 4 0 2 1

U

dij 5 •
number of arcs in shortest path from vertex Pi to vertex Pj

0 if i 5 j

x if there is no path from Pi to Pj

P1 S P2 S P5 S P4 S P3

A4 a13
142 5 1. P1 to P3.

A3 a13
132 5 0. P1 to P3.

A2 a13
122 5 0. P1 to P3.

a13 5 0.

P1 to P3.

P4 S P3 S P2 S P1 P4 S P5 S P2 S P1

P4 to P1.

A3 a41
132 5 2. P4 to P1.

A2 a41
122 5 0. P4 to P1.

a41 5 0.

P4 to P1.

A5 5 c

152 CHAPTER 2 Matrices and Linear Transformations
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2.9 A Communication Model and Group Relationships in Sociology 153

If the digraph is small, the distance matrix can be constructed by observation. Powers of
the adjacency matrix are used to construct the distance matrix of a large digraph. The dis-
tance matrix of the previous communication network in Figure 2.24 is

Note that the distance from is not necessarily equal to the distance from in
a digraph, implying that a distance matrix in graph theory is not necessarily symmetric.

We now illustrate how a digraph and a distance matrix can be used to analyze group
relationships in sociology.

Group Relationships in Sociology
Consider a group of five people. A sociologist is interested in finding out which one of the
five has the most influence over, or dominates, the other members. The group is asked to
fill out the following questionnaire:

• Your name _____________________

• Person whose opinion you value most  _____________________

These answers are then tabulated. Let us for convenience label the group members
Suppose the results are as given in Table 2.1.

D 5 E
0 1 4 3 2

1 0 3 2 1

2 1 0 2 1

3 2 1 0 1

2 1 2 1 0

U

M1, M2, . . . , M5.

Pi to Pj Pj to Pi

Table 2.1

Group Person whose
member opinion valued

M4

M2

M2

M1

M4

M5

M4

M3

M2

M1

The sociologist makes the assumption that the person whose opinion a member values
most is the person who influences that member most. Thus, influence goes from the right
column to the left column in the above table. We can represent these results by a digraph.
The group members are represented by vertices, direct influence by an arc, the direction of
influence being the direction of the arc. See Figure 2.25. Construct the distance matrix of
this digraph, and add up all the elements in each row.

D 5 E
0 1 2 2 3

2 0 1 1 2

x x 0 x x

1 2 3 0 1

x x x x 0

U
row sums

8

6

4x

7

4x
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In this graph, arcs correspond to direct influence, and 2-paths, 3-paths, etc., correspond to
indirect influence. Thus, presumably, the smaller the distance from , the greater
the influence has on The sum of the elements in row i gives the total distance of
to the other vertices. This leads to the following interpretation of row sums.

The smaller row sum i, the greater the influence of person on the group.

We see that the smallest row sum is 6, for row 2. Thus is the most influential
 person in the group, followed by and then have no influence on other
 members.

Readers who are interested in learning more about graph theory are referred to the fol-
lowing two books: Introduction to Graph Theory by Robin J. Wilson, John Wiley and Sons,
1987, and Discrete Mathematical Structures by Fred S. Roberts, Prentice Hall, 1976. The
former book is a beautiful introduction to the mathematics of graph theory; the latter has a
splendid collection of applications. “Predicting Chemistry by Topology” by Dennis H.
Rouvray, Scientific American, 40, September 1986, contains a fascinating account of how
graph theoretical methods are being used to predict chemical properties of molecules that
have not yet been synthesized.

We complete this section with a discussion of research that is currently being done in
the fields of transportation and sociology.

The Worldwide Air Transportation Network
The global structure of the worldwide air transportation network has been analyzed by
a team of researchers led by Luis Amaral of Northwestern University and published in
The Proceedings of the National Academy of Sciences, Volume 102, pages 7794–7799,
2005. The network is interpreted as a digraph with airports as nodes and nonstop  
passenger flights between airports as arcs. The study involved 3,883 airports with 531,574
flights. (When there is more than one major airport for a region, they are all
grouped together. For example, Newark, JFK, and LaGuardia airports are all assigned
to New York.)

The lengths of the shortest paths (distances) for pairs of airports were computed. The
average minimum number of flights that one needs to take to get from any airport to any
other airport in the world was found to be 4.4. The farthest cities in the network are Mount
Pleasant in the Falkland Islands and Wasu, Papua, New Guinea. A journey in either direc-
tion involves 15 different flights. (The diameter of the digraph is 15.)

The report discusses two other indexes for this network. The degree of an airport is the
number of nonstop flights leaving that airport (the number of arcs leaving the node). This is
taken to be a measure of the connectedness of the airport. The betweenness index of an  airport

M4 M1. M3 and M5

M2

Mi

Mi Mj. Mi

Mi to Mj

154 CHAPTER 2 Matrices and Linear Transformations

M5

M1 M2 M3

M4

Figure 2.25
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2.9 A Communication Model and Group Relationships in Sociology 155

is the number of shortest paths connecting two other airports that involve a transfer at the given
airport. This is a measure of the centrality of the airport. It is found that the most connected air-
ports are not necessarily the most central. Although most connected airports are located in west-
ern Europe and North America, the most central airports are distributed uniformly across all
of the continents. Significantly, each continent has at least one central airport—e.g., Johannesburg
in Africa, and Buenos Aires and Sao Paulo in South America. Interestingly Anchorage (Alaska)
and Port Moresby (Papua, New Guinea) have small degrees, as might be expected, but are
among the most central airports in the world; Anchorage has few flights out, but many short-
est paths between other airports would be disrupted if Anchorage closed down. A list of the
most central airports and their betweenness index and degree follows.

Rank Airport Betweenness Degree

1 Paris 58.8 250
2 Anchorage 55.2 39
3 London 54.7 242
4 Singapore 47.5 92
5 New York 47.2 179
6 Los Angeles 44.8 133
7 Port Moresby 43.4 38
8 Frankfurt 41.5 237
9 Tokyo 39.1 111

10 Moscow 34.5 186

Chicago is ranked 13th and Miami 25th, with betweenness indexes of 28.8 and 20.1, respec-
tively, and degrees of 184 and 110. Surprisingly, Atlanta is not listed in the top 25 airports.
Readers who are interested in reading more about connectivity of networks should read
Section 5 of the “Numerical Methods” chapter.

Distance in Social Networks*

A team of scientists at Columbia University—Duncan J. Watts, Peter Dodds, and Ruby
Muhamad—are studying communication on the Web. The Small World project is an
online experiment to test the idea that any two people in the world can be connected via
“six degrees of separation.” Their initial results indicate that most anyone can reach a
distant stranger in an average of six relays. Participants were given basic facts (name,
location, profession, some educational background) about 18 target individuals in 13
countries and asked to send a message to those targets. The participants sent the mes-
sage to someone they thought was “closer” (in a message sense) to the target. These
recipients were urged to do the same. Calculations based on the results of the experi-
ment, which allowed for attrition, predicted that on average it takes 5 message relays to
reach a target in the same country, while it takes 7 to find a target in another country and
6 worldwide. Thinking in terms of a graph, where the vertices are people and directed
arcs are transmitted  messages, the average distance between two people in the same
country is 5, the average distance between two people in different countries is 7, while
the worldwide average is 6. The experiment is now being refined and will be repeated.
Readers can find the report of this experiment in the journal Science, Volume 301, pages
827–829, 2003. 

* I am grateful to Duncan J. Watts for helpful comments on this project. 
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156 CHAPTER 2 Matrices and Linear Transformations

EXERCISE SET 2.9

Digraphs and Adjacency Matrices
1. Determine the adjacency matrix and the distance matrix of 

each of the digraphs in Figure 2.26.

2. The diameter of a digraph is the largest of the distances 
between the vertices. Determine the diameters of the digraphs
in Figure 2.26.

3. Sketch the digraphs that have the following adjacency  matrices.

(a) (b)

(c) (d)

(e)

Applications of Digraphs
4. The network given in Figure 2.27 describes a system of

streets in a city downtown area. Many of the streets are one-
way. Interpret the network as a digraph. Give its adjacency
matrix and distance matrix.

5. Graph theory is being used in mathematical models to better
understand the delicate balance of nature. Figure 2.28 gives
the digraph that describes the food web of an ecological

E
0 1 0 1 0

1 0 1 0 0

0 1 0 1 0

1 0 0 0 0

1 1 1 1 0

U

E
0 1 1 0 0

0 0 1 0 1

0 0 0 1 0

0 0 0 0 1

1 1 0 0 0

U
Figure 2.27

P1 P2 P3

P6 P5 P4

≥
0 1 1 0

1 0 1 0

0 0 0 1

1 1 0 0

¥

≥
0 1 1 1

1 0 0 0

1 0 0 0

1 0 0 0

¥ ≥
0 1 1 0

0 0 1 1

0 0 0 1

1 0 0 0

¥

Figure 2.26

(a) (b)

(c) (d)

P1 P1P2 P2

P4 P3

P5

P3

P3P2

P4

P1

P5

P3P2

P4

P1

P5
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2.9 A Communication Model and Group Relationships in Sociology 157

(a) (b)

(c) (d) 

A3 5 E
0 0 2 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

U

A2 5 E
0 0 1 2 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 0

0 0 1 0 0

U

A 5 E
0 1 0 0 1

0 0 1 1 0

0 0 0 0 0

0 0 1 0 0

0 0 0 1 0

U

A3 5 ≥
2 0 0 0

0 1 0 1

0 0 2 0

0 1 0 1

¥

A2 5 ≥
0 0 2 0

1 0 0 0

0 1 0 1

1 0 0 0

¥

A 5 ≥
0 1 0 1

0 0 1 0

1 0 0 0

0 0 1 0

¥

A3 5 ≥
0 1 0 0

1 0 0 0

0 1 0 0

1 0 0 0

¥ A3 5 ≥
0 0 1 0

0 0 1 0

0 1 0 0

0 0 1 0

¥

A2 5 ≥
1 0 0 0

0 1 0 0

1 0 0 0

0 1 0 0

¥ A2 5 ≥
0 1 0 0

0 1 0 0

0 0 1 0

0 1 0 0

¥

A 5 ≥
0 1 0 0

1 0 0 0

0 1 0 0

0 0 1 0

¥ A 5 ≥
0 0 1 0

0 0 1 0

0 1 0 0

0 0 1 0

¥

 community in the Ocala National Forest, in central Florida.
Determine the adjacency matrix.

6. When all arcs in a network are two-way, it is customary not
to include arrows, since they are not necessary. The term
graph is then used. Scientists are using graphs to predict the
chemical properties of molecules. The graphs in Figure 2.29
describe the molecular structures of butane and isobutane.
Both have the same chemical formula Determine the
adjacency matrices of these graphs. Note that the matrices
are symmetric. Would you expect the adjacency matrix of
any graph to be symmetric?

C4H10.

Figure 2.28

Raccoon Bird

Insect Grass Deer

H

C C C CH H

H

H

H

H

H

H

H

Butane

Isobutane

H

H
H H

H H H H

C

C

H H

C C

Figure 2.29

7. The following matrix defines a communication network.
Sketch the network. Determine the shortest path for send-
ing a message from

(a) (b)
Find the distance matrix of the digraph.

8. In each of the following exercises, the matrix A is the adja-
cency matrix for a communication network. Sketch the net-
works. Powers of the adjacency matrices are given. Interpret
the elements that have been circled.

E
0 1 1 0 0

1 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1 0 0 0 0

U
P2 to P5 P3 to P2
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158 CHAPTER 2 Matrices and Linear Transformations

12. Let A be the adjacency matrix of a digraph. Sketch all the
possible digraphs described by A if

Group Relationships
13. The following tables represent information obtained from

questionnaires given to groups of people. In each case con-
struct the digraph that describes the leadership structure
within the group. Rank the members according to their influ-
ence on the group.

(a) Group Person whose 
member opinion valued 

(b) Group Person whose
member opinion valued

(c) Group Person whose 
member opinion valued 

(d) Group Person whose
member opinion valued

14. The following matrices describe the relationship “friend-
ship” between groups of people. is a friend of

otherwise. Draw the digraphs that describe these
relationships. Note that all the matrices are symmetric. What
is the significance of this symmetry? Can such a relation-
ship be described by a matrix that is not symmetric?

Mj ; aij 5 0
aij 5 1 if Mi

M5 M3

M4 M5

M3 M1 and M4

M2 M1

M1 M5

M5 M1

M4 M3

M3 M2

M2 M1 and M5

M1 M4

M5 M4

M4 M3

M3 M2

M2 M1

M1 M5

M4 M2

M3 M2

M2 M1

M1 M4

A2 5 ≥
0 0 1 1

0 0 0 0

0 0 0 0

0 0 0 0

¥
(e) A2 5 E

0 0 0 0 0

0 0 1 0 1

1 0 1 1 1

1 2 0 1 0

1 0 0 1 0

U

A3 5 E
0 0 0 0 0

1 2 0 1 0

1 2 1 1 1

2 0 1 2 1

0 0 1 0 1

U

A 5 E
0 0 0 0 0

1 0 0 1 0

0 1 0 1 0

0 0 1 0 1

1 1 0 0 0

U

Information about Digraphs
9. Let A be the adjacency matrix of a digraph. What do you

know about the digraph in each of the following cases?

(a) The third row of A is all zeros.

(b) The fourth column of A is all zeros.

(c) The sum of the elements in the fifth row of A is 3.

(d) The sum of the elements in the second column of A
is 2.

(e) The second row of is all zeros.

(f) The third column of is all zeros.

10. Consider digraphs with adjacency matrices having the fol-
lowing characteristics. What can you tell about each digraph?

(a) The second row is all zeros.

(b) The third column is all zeros.

(c) The fourth row has all ones except for zero in the diag-
onal location.

(d) The fifth column has all ones except for zero in the diag-
onal location.

(e) The sum of the elements in the third row is 5.

(f) The sum of the elements in the second column is 4.

(g) The number of ones in the matrix is 7.

(h) The sum of the elements in row 2 of the fourth power
is 3.

(i) The sum of the elements in column 3 of the fifth power
is 4.

( j) The fourth row of the square of the matrix is all zeros.

(k) The third column of the fourth power is all zeros.

11. Let A be the adjacency matrix of a digraph. Sketch the digraph
if is as follows. Use the digraph to find 

[Hint: You are given all the 2-paths in the digraph.]

A2 5 ≥
0 1 0 0

0 0 1 0

0 0 0 1

0 1 0 0

¥

A2 A3.

A4

A3
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CHAPTER 2 Review Exercises 159

(a)

(b)

15. A structure in a digraph that is of interest to social scien-
tists is a clique. A clique is the largest subset of a digraph
consisting of three or more vertices, each pair of which is
mutually related. The application of this concept to the
relationship “friendship” is immediate: three or more peo-
ple form a clique if they are all friends and if they do not
all have any mutual friendships with any single person
outside that set. Give an example of a digraph that con-
tains a clique.

Miscellaneous Results
16. Prove that the adjacency matrix of a digraph is necessarily

square.

17. Let A be the adjacency matrix of a digraph. The matrix
is a square matrix consisting of zeros and ones. It is also the
adjacency matrix of a digraph. How are the digraphs of A
and related?

18. If the adjacency matrix of a digraph is symmetric, what does
this tell you about the digraph?

19. Prove that the shortest path from one vertex of a digraph to
another vertex cannot contain any repeated vertices.

20. In a graph with n vertices, what is the greatest possible dis-
tance between two vertices.

21. Let A be the adjacency matrix of a communication digraph.
Let Show that number of stations that can
receive a message directly from both stations i and j.

22. The reachability matrix R of a digraph is defined as follows:

Determine the reachability matrices of the digraphs of
Exercise 8.

23. The reachability matrix of a digraph can be constructed using
information from the adjacency matrix and its various pow-
ers. How many powers of the adjacency matrix of a digraph
having n vertices would have to be calculated to get all the
information needed?

24. (a) If the adjacency matrix of a digraph is symmetric, does
this mean that the reachability matrix is symmetric?

(b) If the reachability matrix of a digraph is symmetric,
does this mean that the adjacency matrix is symmetric?

25. Let R be the reachability matrix of a communication digraph.
Let be the sum of the elements of row i of R and
be the sum of the elements of column j of R. What infor-
mation about the digraph do and give?

26. Let R be the reachability matrix of a digraph. What infor-
mation about the digraph does the element in row i, column
j of give?

27. Let R be the reachability matrix of a digraph. What infor-
mation about the digraph does give?

28. The adjacency matrix A and reachability matrix R of a digraph
are both made up of elements that are either zero or one.
Can

(a) A and R have the same number of ones?

(b) A have more ones than R?

(c) A have fewer ones than R?

rij 5 c1 if there is a path from vertex Pi to Pj

1 if i 5 j

0 if there is no path from Pi to Pj

A 5 F
0 0 0 0 0 1

0 0 1 0 0 0

0 1 0 0 1 0

0 0 0 0 0 1

0 0 1 0 0 0

1 0 0 1 0 0

V

A 5 E
0 1 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 1 0 0

0 1 0 0 0

U

Rt

R2

r 1 i 2 c 1j 2
r 1 i 2 c 1j 2

C 5 AAt. cij 5

At

At

CHAPTER REVIEW EXERCISES2

1. Let 

and

Compute the following (if they exist).

(a) 2AB (b) (c)
(d) (e) (f)

2. Let A be a matrix, B a matrix, C a matrix,
D a matrix, and E a matrix. Determine which
of the following matrix expressions exist and give the sizes
of the resulting matrices when they do exist.

(a) AB (b)
(c) (d)
(e) (f)
(g) 3 1BA 2 1CD 2 1 14A 2 1BC 2D

DA 2 2 1DB 2 C 2 3D

B3 1 3 1CD 2 DC 1 BA

1A2 2C

3 3 2 3 3 1
2 3 2 2 3 2 2 3 3

AD 2 3D AC 1 BC 2DA 1 B

AB 1 C BA 1 AB

C 5 c6 21 3

5 0 22
d , D 5 c6

4
d .

A 5 c2 0

7 21
d , B 5 c 7 0

21 3
d ,
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160 CHAPTER 2 Matrices and Linear Transformations

3. If , and 

determine the following elements of

without computing the complete matrix. 

(a) (b)

4. (a)

Compute the product AB using the columns of B. 

(b)

Express the product PQ as a linear combination of the
columns of P.

(c)

Find all the partitions of B that can be used to
 calculate AB for the partition of A given here:

5. If 

compute each of the following.

(a) (b)
(c) (d)

6. Consider the following system of equations. You are given
two solutions, and Generate four other solutions using
the operations of addition and scalar multiplication. Find a
solution for which 

7. Find the subspace of solutions for the following homoge-
neous system of linear equations. Give a basis and the dimen-
sion of the subspace.

8. Consider the following nonhomogeneous system of linear
equations. For convenience, its general solution is given.
(a) Write down the corresponding homogeneous system 
and give its general solution. (b) Give a basis for this sub-
space of solutions to the homogeneous system and a written
description of the subspace. (c) Give a written description
of the subspace of solutions to the nonhomogeneous system. 

General solution 

9. Determine the inverse of each of the following matrices, if
it exists, using the method of Gauss-Jordan elimination.

(a) (b) (c)

10. Use the matrix inverse method to solve the following sys-
tem of equations.

11. Find A such that .

12. Verify the associative property of multiplication

13. (a) Let be the following row operations. inter-
change rows 1 and 3 of times row 2 of

to row 1. Give the elementary matrices correspon-
ding to 

(b) Determine the row operations defined by the elemen-
tary matrices

and  

14. If n is a nonnegative integer and c is a scalar, prove that

15. Let A be a matrix such that Show that 

16. A matrix is said to be normal if Prove that all
symmetric matrices are normal.

17. A matrix A is idempotent if Prove that if A is idem-
potent then At is also idempotent.

A2 5 A.

AAt 5 AtA.

AAt 5 O. A 5 O.

1cA 2n 5 cnAn.

£
1 0 0

0 1 0

2 0 1

§ £
1 0 0

0 0 1

0 1 0

§ .

T1 and T2.

I3. T2: add 24
I3

T1 and T2 T1:

1AB 2C.
A 1BC 2 5

3A21 5 c 5 26

22 3
d

23x1 1 2x2 2 4x3 5 7

2x1 1 5x2 2 3x3 5 5

x1 1 3x2 2 2x3 5 1

c1 4

2 21
d £

0 3 3

1 2 3

1 4 6

§ £
1 2 3

2 5 3

1 0 8

§

12r 1 4, 3r 1 2, r 2 .
x1 1 x2 2 5x3 5 6

x2 2 3x3 5 2

x1 1 2x2 2 8x3 5 8

3x1 1 2x2 1 2x3 1 7x4 5 0

x1 1 2x2 1 6x3 1 x4 5 0

x1 1 x2 1 2x3 1 2x4 5 0

X1 5 ≥
5

3

21

2

¥ , X2 5 ≥
3

21

1

2

¥

x 1 2y 1 5z 2 3w 5 0

x 2 2y 2 3z 2 w 5 0

5x 2 4y 2 3z 2 8w 5 0

24x 1 8y 1 12z 1 4w 5 0

x 5 1, y 5 9.

X1 X2.

AB3 2 2C2 A2 2 3A 1 4I2

1At 2 2 At 2 B2

A 5 c3 1

0 2
d , B 5 c22 1

3 1
d , and C 5 c0 1

3 2
d ,

A 5 £
3 21 2

0 4 1

2 5 0

§

Let A 5 £
3 21 2

0 4 1

2 5 0

§ and B 5 £
2 4 2

21 23 7

0 1 22

§ .

Let P 5 c1 2 3

5 21 4
d , Q 5 £

2

23

5

§ .

Let A 5 c3 1

7 2
d and B 5 c1 3 6

2 0 21
d .

d12 d23

D 5 2AB 2 3C,

C 5 c2 24 5

7 1 0
d ,

A 5 c1 23

0 4
d , B 5 c1 2 23

5 0 21
d
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CHAPTER 2 Review Exercises 161

18. A matrix A is nilpotent if for some positive integer
p. The least such integer p is called the degree of nilpotency.
Prove that if A is nilpotent, then is also nilpotent with the
same degree of nilpotency.

19. Prove that if A is symmetric and invertible, then is also
symmetric.

20. Prove that a matrix with a row of zeros or a column of zeros
has no inverse.

21. Consider the transformation T defined by the following
matrix A. Determine the images of the vectors x and y.

22. Determine whether the following transformations are linear.

(a) of 

(b) of 

23. Find the matrix that maps such that 

and 

24. Find a single matrix that defines a rotation of the plane through
an angle of about the origin, while at the same time moves
points to three times their original distance from the origin.

25. Determine the matrix that defines a reflection about the line

26. Determine the matrix that defines a projection onto the line

27. Find the equation of the image of the line under
a scaling of factor 5 in the x-direction and factor 2 in the 
y-direction.

28. Find the equation of the image of the line under
a shear of factor 3 in the y-direction.

29. Construct a matrix that defines a shear of factor 3 in
the y-direction, followed by a scaling of factor 2 in the 
x-direction, followed by a reflection about the y-axis.

30. Compute and AB for the following matrices, and
show that A is hermitian.

31. Prove that every real symmetric matrix is hermitian.

32. The following matrix A describes the pottery contents of
various graves. Determine possible chronological orderings
of the graves and then the pottery types.

33. The following stochastic matrix P gives the probabilities
for a certain region of college- and noncollege-educated
households having at least one college-educated child. By
a college-educated household we understand that at least
one parent is college educated, while by noncollege- educated
we mean that neither parent is college educated.

household
coll ed noncoll ed

If there are currently 300,000 college-educated house-
holds and 750,000 noncollege-educated households, what
is the predicted distribution for two generations hence?
What is the probability that a couple that has no college
education will have at least one grandchild with a college
education?

34. Let A be the adjacency matrix of a digraph. What do you
know about the digraph in each of the following cases?

(a) All the elements in the fourth column of A are zero.

(b) The sum of the elements in the third row of A is 2.

(c) The sum of the elements in the second row of is 4.

(d) The third column of is all zeros.

(e) The element in the location of is 2.

(f ) The number of nonzero elements in is 3. 

A 5 E
1 0 0 0

1 1 0 0

0 0 1 1

0 0 0 1

0 1 1 0

U

A4

14, 4 2 A3

A2

A3

P 5 c 0.9 0.25

0.1 0.75
d

A 5 c 2 4 2 3i

4 1 3i 21
d , B 5 c 3 1 i 1 2 2i

2 1 7i 22 1 i
d

A 1 B

2 3 2

y 5 2x 1 3

y 5 25x 1 1
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