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Measuring Disease 
Occurrence
2.1 Introduction
The outcomes of epidemiologic research have been traditionally defined in terms of disease, although 
the growing application of epidemiology to public health and preventive medicine increasingly 
requires the use of outcomes measuring health in general (e.g., outcome measures of functional 
status in epidemiologic studies related to aging). Outcomes can be expressed as either discrete (e.g., 
disease occurrence or severity) or continuous variables.

Continuous variables, such as blood pressure and glucose levels, are commonly used as outcomes 
in epidemiology. The main statistical tools used to analyze correlates or predictors of these types of 
outcomes are the correlation coefficients, analysis of variance, and linear regression analysis, which 
are discussed in numerous statistical textbooks. Linear regression is briefly reviewed in Chapter 7, 
Section 7.4.1, as a background for the introduction to multivariate regression analysis techniques 
in epidemiology. Other methodological issues regarding the analysis of continuous variables in 
epidemiology, specifically as they relate to quality control and reliability measures, are covered in 
Chapter 8.

Most of this chapter deals with categorical dichotomous outcome variables, which are the 
most often used in epidemiologic studies. The frequency of this type of outcome can be generically 
defined as the number of individuals with the outcome (the numerator) divided by the number of 
individuals at risk for that outcome (the denominator). Depending on the time frame of reference, 
there are two types of absolute measures of outcome frequency: incidence and prevalence (TABLE 2-1).

The term incidence has been traditionally used to indicate a proportion of newly developed 
(incident) cases of a disease over a specific time period. However, this measure can be used to char-
acterize the frequency of any new health- or disease-related event, including death, recurrent disease 
among patients, disease remission, menopause, and so forth. Incidence is a particularly important 
measure for analytical epidemiologic research, as it allows the estimation of risk necessary to assess 
causal associations (Chapter 10, Section 10.2.4).

CHAPTER 2
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52 Chapter 2 Measuring Disease Occurrence

Prevalence, on the other hand, measures the frequency of an existing outcome either at one point in 
time (point prevalence) or during a given period (period prevalence). A special type of period prevalence 
is lifetime prevalence, which measures the cumulative lifetime frequency of an outcome to the present 
time (i.e., the proportion of people who have had the event at any time in the past).

For both prevalence and incidence, it is necessary to have a clear definition of the outcome as 
an event (a “noteworthy happening,” as defined in an English dictionary1). In epidemiology, an event 
is typically defined as the occurrence of any disease or health phenomenon that can be discretely 
characterized. For incidence (see Section 2.2), this characterization needs to include a precise defi-
nition of the time of occurrence of the event in question. Some events are easily defined and located 
in time, such as “birth,” “death,” “surgery,” and “trauma.” Others are not easily defined and require 
a relatively arbitrary operational definition for study, such as “menopause,” “recovery,” “dementia,” 
or cytomegalovirus (CMV) disease (TABLE 2-2). An example of the complexity of defining certain 
clinical events is given by the widely adopted definition of a case of AIDS, which uses a number of 
clinical and laboratory criteria.2

The next two sections of this chapter describe the different alternatives for the calculation of 
incidence and prevalence. The last section describes the odds, another measure of disease frequency 
that is the basis for a measure of association often used in epidemiology, particularly in case-based 
case-control studies (Chapter 1, Section 1.4.2), namely, the odds ratio (Chapter 3, Section 3.4.1).

2.2 Measures of Incidence
Incidence is best understood in the context of prospective (cohort) studies (Chapter 1, Section 1.4.1). 
The basic structure of any incidence indicator is represented by the number of events occurring in 
a defined population over a specified period of time (numerator) divided by the population at risk 
for that event over that time (denominator). There are two types of measures of incidence defined 
by the type of denominator: (1) incidence based on persons at risk and (2) incidence based on 
person-time units at risk.

TABLE 2-1 Absolute measures of disease frequency.

Measure Expresses Types of events

Incidence Frequency of a new 
event over time

Newly developed disease
Death in the total population at risk (mortality)
Death in patients (case fatality)
Recurrence of a disease
Development of a side effect of a drug
Disease remission

Prevalence Frequency of an 
existing event

Point prevalence: cases at a given point in time
Period prevalence: cases during a given period 

 (e.g., 1 year)
Cumulative (lifetime) prevalence: cases at any time  

in the past (up to the present time)
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2.2 Measures of Incidence 53

TABLE 2-2 Examples of operational definitions of events in epidemiologic studies.

Event Definition Reference

Natural 
menopause

Date of last menstrual period after a woman has stopped 
menstruating for 12 months

Bromberger et al.  
1997*

Remission of 
diarrhea

At least 2 days free of diarrhea (diarrhea = passage of  ≥ 3 liquid 
or semisolid stools in a day)

Mirza et al.  
1997†

Dementia A hospital discharge, institutionalization, or admission to a 
day-care center in a nursing home or psychiatric hospital with 
a diagnosis of dementia (ICD-9-CM codes 290.0–290.4, 294.0, 
294.1, 331.0–331.2)

Breteler et al. 
1995‡

CMV disease Evidence of CMV infection (CMV antigen on white blood cells, 
CMV culture, or seroconversion) accompanied by otherwise 
unexplained spiking fever over 48 hours and either malaise or 
a fall in neutrophil count over 3 consecutive days.

Gane et al.  
1997§

*Data from Bromberger JT, Matthews KA, Kuller LH, Wing RR, Meilahn EN, Plantinga P. Prospective study of the determinants of age at menopause. 
Am J Epidemiol. 1997;145:124-133.
†Data from Mirza NM, Caulfield LE, Black RE, Macharia WM. Risk factors for diarrheal duration. Am J Epidemiol. 1997;146:776-785.
‡Data from Breteler MM, de Groot RR, van Romunde LK, Hofman A. Risk of dementia in patients with Parkinson’s disease, epilepsy, and severe head 
trauma: a register-based follow-up study. Am J Epidemiol. 1995;142:1300-1305.
§Data from Gane E, Saliba F, Valdecasas JC, et al. Randomised trial of efficacy and safety or oral ganciclovir in the prevention of cytomegalovirus disease 
in liver-transplant recipients. Lancet. 1997;350:1729-1733.

2.2.1 Incidence Based on Individuals at Risk
This is an index defined in terms of the probability of the event, also known as cumulative incidence 
(or incidence proportion3), which is the basis for the statistical techniques collectively known as 
survival analysis.

If follow-up is complete on every individual in the cohort, the estimation of the cumulative 
incidence is simply the number of events occurring during the follow-up time divided by the 
initial population. In epidemiologic studies, however, the follow-up is almost always incomplete 
for many individuals in the study. In a typical cohort study, there are individuals lost to follow-up, 
those  dying from causes other than the outcome of interest, and those whose follow-up is shorter 
because they are recruited later in the accrual period for the study. All these losses to follow-up are 
called censored observations, and they require special analytical approaches.*

The traditional techniques for the estimation of cumulative incidence (or its complement, 
 cumulative survival or survival function) in the presence of censored observations are the life 
table of the actuarial type (interchangeably referred to in this chapter as the classic, actuarial, or 
 interval-based life table) and the Kaplan–Meier method.4

*Duration of follow-up may be regarded as a confounder when it differs between the groups under comparison, as it is 
usually related to the outcome (e.g., death) (see Chapter 5, Section 5.2).
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54 Chapter 2 Measuring Disease Occurrence

As an example, FIGURE 2-1 provides a schematic representation of a study for which the out-
come of interest is death, in which 10 individuals are followed for up to 2 years (2015–2016). Each 
horizontal line in the figure represents the follow-up time of a single individual. Follow-up can 
be terminated either by the event (D) or by a loss (withdrawal) from the study, also referred to as 
censored observation (denoted in the figure as an arrow ending at the time when follow-up ended). 
Individuals are recruited at different points in time and also leave the study (because of either death 
or censoring) at different times. For example, individual 1 is recruited in November 2015 and dies 
in December 2015 after only 1 month of follow-up, and individual 5 lives throughout the entire 
follow-up period (2 years). FIGURE 2-2 shows a reorganization of the data from Figure 2-1, where the 
time scale has been changed to reflect follow-up time rather than calendar time. Thus, time 0 now 
represents the beginning of the follow-up for each individual (regardless of the actual date of the 
start of follow-up). Much of the discussion of incidence indexes that follows is based on Figure 2-2.
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FIGURE 2-1 Hypothetical cohort of 10 persons followed for up to 24 months from January 2015 through December 
2016. D, death; arrow, censored observation; ( ), duration of follow-up in months (all assumed to be exact whole numbers).
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2.2 Measures of Incidence 55

Cumulative Incidence Based on the Life-Table Interval Approach 
(Actuarial Life Table)
The cumulative probability of the event during a given interval (lasting m units of time and be-
ginning at time x) is the proportion of new events during that period of time (with events noted 
as mdx) in which the denominator is the initial population (lx) corrected for losses (mcx). In the 
classic life table, this measure corresponds to the interval-based probability of the event mqx.5 Its 
calculation is straightforward. As seen in Figure 2-2, six deaths occurred among the 10 individuals 
who were alive at the beginning of the follow-up. If no individual had been lost to observation, 2q0 
(with time specified in years) would simply be the number of deaths over this 2-year interval (2d0) 
divided by the number of individuals at the beginning of the interval (l0); that is, 6 ÷ 10 = 0.60, or 
60%. Because the three individuals lost to observation (censored, 2c0) were not at risk during the 
entire duration of the follow-up, however, their limited participation must be accounted for in the 
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FIGURE 2-2 Same cohort as in Figure 2-1, with person-time represented according to time since the beginning of the 
study. D, death; arrow, censored observation; ( ), duration of follow-up in months (all assumed to be exact whole numbers).
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56 Chapter 2 Measuring Disease Occurrence

denominator of the cumulative probability. By convention, half of these individuals are subtracted 
from the denominator, and the probability estimate is then calculated as follows:

 2 0
2 0

0 2 00 5
6

10 0 5 3
0 71q

d
l c

=
− ×

=
− ×

=
. .

.  (Eq. 2.1)

The conventional approach of subtracting one-half of the total number of censored observations 
from the denominator is based on the assumption that censoring occurred uniformly throughout that 
period and thus, on average, these individuals were at risk for only one-half of the follow-up period.

The complement of this cumulative probability of the event (q) is the cumulative probability 
of survival (p); that is,

2 0 2 01 290p q= =– .

It is important to note that the cumulative probability of an event (or the cumulative survival) has 
no time period intrinsically attached to it: Time must be specified. Thus, in this example, one has 
to describe q as the “2-year cumulative probability of death.”

Usually, the classic life table uses multiple intervals, for example, five intervals of 2 years for 
a total follow-up of 10 years. Within each interval, the probability of survival is calculated using 
as the denominator the number of individuals under observation at the beginning of the interval 
corrected for losses during the interval as described previously. To be part of the denominator for 
the calculation of the survival probability in the second interval (2p2), for example, one has to survive 
through the first interval; likewise, the survival probability for the third interval (starting at year 4, 
or 2p4) is calculated among only those who survived both the first and second time intervals. This 
is the reason these interval-specific probabilities are technically called “conditional probabilities”; 
that is, survival in a given interval is conditional upon survival in the previous intervals. A cumu-
lative probability of survival over more than one interval—for example, the full 10-year follow-up 
with five 2-year intervals—is obtained by multiplying the conditional survival probabilities over 
all the intervals:

10 0 2 0 2 2 2 4 2 6 2 8p p p p p p= × × × ×

The cumulative probability of having the event is the complement of this joint probability of 
survival:

 10 0 10 0 2 0 2 2 2 4 2 6 2 81 1q p p p p p p= = × × × ×– – ( )   (Eq. 2.2)

This is analogous to the calculation of the cumulative survival function using the Kaplan–Meier 
method illustrated in the following section.

It is not necessary that the intervals in a classic (interval-based) life table be of the same duration. 
The length of the interval should be determined by the pace at which incidence changes over time 
so that, within any given interval, events and withdrawals occur at an approximately uniform rate 
(discussed later). For example, to study survival after an acute myocardial infarction, the intervals 
should be very short soon after onset of symptoms when the probability of death is high and rapidly 
changing. Subsequent intervals could be longer, however, as the probability of a recurrent event and 
death tends to stabilize. If the sample size allows it and the pace of the event change is not known, 
it is reasonable to use shorter intervals when first analyzing survival; subsequently, intervals can 
be changed according to the shape of the survival curve.
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2.2 Measures of Incidence 57

Examples of the use of the actuarial life-table method can be found in reports from classic ep-
idemiologic studies (e.g., Pooling Project Research Group6). More details and additional examples 
can be found in other epidemiology textbooks (e.g., Gordis7 and Kahn and Sempos8).

Cumulative Incidence Based on the Kaplan–Meier (Exact Event 
Times) Approach
The Kaplan–Meier approach involves the calculation of the probability of each event at the time 
it occurs. The denominator for this calculation is the population at risk at the time of each event’s 
occurrence.4 As for the actuarial life table, the probability of each event is a “conditional probabil-
ity”; in other words, it is conditioned on being at risk (alive and not censored) at the event time. 
If each event (first, second, etc.) is designated by its time of occurrence i, then the formula for the 
conditional probability is simply as follows:

q
d
ni

i

i
=

where di is the number of deaths (or other type of event) occurring at time i, and ni is the number 
of individuals still under observation (i.e., at risk of the event) at time i. (Usually, di = 1 unless 
more than one event is occurring simultaneously—something that will occur only when nonexact 
discrete measures of time are used.)

To facilitate the calculations, FIGURE 2-3 shows the same data as in Figures 2-1 and 2-2 but with 
the individuals’ follow-up times arranged from shortest to longest. When the first death occurs 
exactly at the end of the first month (person 1), there are 10 individuals at risk; the conditional 
probability is then as follows:

q1
1

10
=

When the second death occurs after 3 months of follow-up (person 10), there are only eight 
persons at risk; this is because in addition to the one previous death (D), one individual had been 
lost to observation after 2 months (person 7) and therefore was not at risk when the second death 
occurred. Thus, the conditional probability at the time of the second death is estimated as follows:

q3
1
8

0 125= = .

These calculations are repeated for all the event times. For example, for the fifth event, when 
person 2 died at 17 months of follow-up, there were three individuals still under observation 
(Figure 2-3), and thus, the conditional probability of the death at month 17 can be estimated as follows:

q17
1
3

0 333= = .

TABLE 2-3 (column 4) shows the calculation of these conditional probabilities for each of the six 
event times in this example. The censored observations are skipped in these calculations, as they do 
not represent an identified event. Censored observations, however, are included in the denominator 
for the computation of conditional probabilities corresponding to events occurring up to the time 
when the censoring occurs. This represents the most efficient use of the available information.4

9781284116595_CH02_049_086.indd   57 27/03/18   3:06 PM



58 Chapter 2 Measuring Disease Occurrence

Column 5 in Table 2-3 shows the complements of the conditional probabilities of the event at each 
time, that is, the conditional probabilities of survival (pi), which, as in the classic life-table method, 
represent the probability of surviving beyond time i among those who were still under observation 
at that time (i.e., conditioned on having survived up to time i). Column 6, also shown graphically 
in FIGURE 2-4, presents the cumulative probabilities of survival, that is, the so-called Kaplan–Meier 
survival function (usually notated as Si). This represents the probability of surviving beyond time 
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FIGURE 2-3 Same cohort as in Figures 2-1 and 2-2, with individuals sorted according to follow-up time from shortest 
to longest. D, death; arrow, censored observation; ( ), duration of follow-up in months (all assumed to be exact whole 
numbers). As examples, the vertical arrows mark the individuals who were at risk for the calculations of the conditional 
probabilities of death at three of the event times: 1 month, 3 months, and 17 months (see text).
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2.2 Measures of Incidence 59

i for all those present at the beginning of follow-up, calculated as the product of all conditional 
survival probabilities up to time i. In the example, the cumulative probability of surviving beyond 
the end of the follow-up period of 2 years (Si, where i = 24 months) is as follows:

S24
9

10
7
8

6
7

4
5

2
3

1
2

0 18= × × × × × = .

Thus, the estimate of the cumulative probability of the event (1 – Si) is as follows:

1 1 0 18 0 8224– – . .S = =

As for the cumulative probability based on the actuarial life-table approach (Equation 2.2), 
the time interval for the cumulative probability using the Kaplan–Meier approach also needs to be 
specified (in this example, 24 months, or 2 years). For a method to calculate confidence limits for 
a cumulative survival probability estimate, see Appendix A, Section A.1.

Regardless of the method used in the calculation (actuarial or Kaplan–Meier), the cumulative 
incidence is a proportion in the strict sense of the term. It is unitless, and its value can range from 
0 to 1 (or 100%).

TABLE 2-3 Calculation of Kaplan–Meier survival estimates for the example in Figure 2-3.

Time 
(months) (1)
i

Number of 
individuals 

at risk
(2)
ni

Number of 
events

(3)
di

Conditional 
probability 

of the event
(4)

qi 5 di/ni

Conditional 
probability 
of survival

(5)
pi = 1 – qi

Cumulative 
probability 
of survival*

(6)
Si

1 10† 1 1/10 5 0.100 9/10 5 0.900 0.900

3 8† 1 1/8 5 0.125 7/8 5 0.875 0.788

9 7 1 1/7 5 0.143 6/7 5 0.857 0.675

13 5 1 1/5 5 0.200 4/5 5 0.800 0.540

17 3† 1 1/3 5 0.333 2/3 5 0.667 0.360

20 2 1 1/2 5 0.500 1/2 5 0.500 0.180

*Obtained by multiplying the conditional probabilities in column (5)—see text.
†Examples of how to determine how many individuals were at risk at three of the event times (1, 3, and 17 months) are shown with vertical arrows 
in Figure 2-3.
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60 Chapter 2 Measuring Disease Occurrence

Kaplan–Meier curves can be used to compare survival in different groups (e.g., exposed or un-
exposed or different degrees of exposure). These curves provide a visual tool to assess associations 
between an exposure and the risk of an outcome—complementary to the quantitative measures 
that are discussed in Chapters 3 and 7. For example, FIGURE 2-5 shows the survival curves in groups 
defined according to the presence/severity of sleep among participants in the  Wisconsin Sleep 
Cohort Study.9 The figure shows that survival was highest among participants without sleep apnea 
and gradually decreased with increasing severity of the condition—being lowest among those with 
“severe” sleep apnea.

Instead of the survival curve, investigators might choose to plot its complement, in other words, 
a curve depicting the cumulative probability of the event (1 – Si) as the follow-up progresses. As an 
example, FIGURE 2-6 displays the cumulative incidence of hypertension among individuals in different 
categories of alcohol consumption among participants in the Coronary Artery Risk Development 
in Young Adults (CARDIA) Study.10 This figure is like a mirror image of the survival curves shown 
in Figures 2-4 and 2-5, with an ordinate scale starting at zero at the beginning of the follow-up—as 
opposed to starting at 100% as in the typical survival curve. The figure shows how the incidence of 
hypertension is highest among “former” alcohol drinkers. Note also that in Figure 2-6, all events 
appear to be occurring at discrete follow-up times, coinciding with the examination times. This is 
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FIGURE 2-4 Kaplan–Meier curve corresponding to the data in Table 2-3, column 6.
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2.2 Measures of Incidence 61

FIGURE 2-5 Kaplan–Meier estimates of survival probability ac cording to sleep apnea severity as defined by the 
apnea-hypopnea index (AHI) (shown with the y-axis truncated at 50% survival). None (AHI , 5), mild (AHI . 5, , 15), 
moderate (AHI . 15, , 30), and severe (AHI $ 30), total sample (n = 1522); AHI is the mean number of apnea and 
hypopnea episodes/hour of sleep.
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FIGURE 2-6 Kaplan–Meier estimates of time to incident hypertension by drinking category, the Coronary Artery Risk 
Development in Young Adults (CARDIA) Study, 1985–2006.

Reprinted with permission from Young T, Finn L, Peppard PE, et al. Sleep disordered breathing and mortality: eighteen-year follow-up of the Wisconsin 
Sleep Cohort. Sleep. 2008;31:1071-1078.9 By permission of Oxford Press University.

Reprinted with permission from Halanych JH, Safford MM, Kertesz SG, et al. Alcohol consumption in young adults and incident hypertension: 20-year 
follow-up from the Coronary Artery Risk Development in Young Adults Study. Am J Epidemiol. 2010;171:532-539.10 By permission of Oxford University Press.
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62 Chapter 2 Measuring Disease Occurrence

because “incident hypertension” is determined at the time of each follow-up exam (i.e., participants 
with high blood pressure or taking anti-hypertensive medications among those who have no evi-
dence of hypertension in previous examinations). The exact time when hypertension first started 
in the interim time between exams (the actual event date) is unknown.

Assumptions in the Estimation of Cumulative Incidence Based on 
Survival Analysis
The following assumptions must be met when conducting survival analysis:

Uniformity of Events and Losses Within Each Interval (Classic Life Table). Implicit in the classic 
life-table calculation (discussed previously) is the generic assumption that events and losses are 
approximately uniform during each defined interval. If risk changes rapidly within a given interval, 
then calculating a cumulative risk over the interval is not very informative. The rationale underlying 
the method to correct for losses—that is, subtracting one-half of the losses from the denominator 
(Equation 2.1)—also depends on the assumption that losses occur uniformly. The assumption of 
uniformity of events and losses within a given interval is entirely related to the way the life table is 
defined and can be met by adjusting the interval definitions to appropriately uniform risk inter-
vals (e.g., by shortening them). Furthermore, this assumption does not apply to the Kaplan–Meier 
calculation, where intervals are not defined a priori.

Whereas this interval-based assumption applies only to classic life-table estimates, the following 
two assumptions apply to both classic life-table and Kaplan–Meier estimates and are key to survival 
analysis techniques and analyses of cohort data in general: (1) independence between censoring 
and survival and (2) lack of secular trends during the study’s accrual period.

Independence Between Censoring and Survival. For the calculations of the conditional and 
cumulative incidences using the previously described methods, censored individuals are included 
in the denominator during the entire time they are under observation; after being censored, they 
are ignored in subsequent calculations. Thus, if one wants to infer that the estimated overall cumu-
lative survival (e.g., S24 = 18%, as in Figure 2-4) is generalizable to the entire population present 
at the study’s outset (at time 0), one needs to assume that the censored observations have the same 
probability of the event after censoring as those remaining under observation—a phenomenon also 
known as “uninformative censoring.” In other words, censoring needs to be independent of survival; 
otherwise, bias will ensue. For example, if the risk were higher for censored than for noncensored 
observations (e.g., study subjects withdrew because they were sicker), then over time, the study 
population would include a progressively greater proportion of lower risk subjects; as a result, the 
(true) overall cumulative incidence would be underestimated (i.e., survival would be overestimated). 
The opposite bias would occur if censored observations tended to include healthier individuals. The 
likely direction of the bias according to the reason censoring occurred is summarized in TABLE 2-4. 
With regard to censored observations caused by death from other causes in cause-specific outcome 
studies, if the disease of interest shares strong risk factors with other diseases that are associated 
with mortality, censoring may not be independent of survival. An example is a study in which 
the outcome of interest is coronary heart disease death and participants dying from other causes, 
including respiratory diseases (such as lung cancer and emphysema), are censored at the time of 
their death (as they are no longer at risk of dying from coronary heart disease). Because coronary 
heart disease and respiratory diseases share an important risk factor (smoking) and, in addition, 
respiratory disease deaths are very common in smokers, individuals dying from respiratory diseases 
may have had a higher risk of coronary heart disease if they had not died from respiratory diseases, 
resulting in a violation of the assumption of independence between censoring and survival.
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Other frequent reasons for censoring include refusal or inability of study participants to allow 
subsequent follow-up contacts (in a study where assessment of the outcome events depends on such 
contacts) and loss of contact with participants due to migration out of the study area. Individuals 
who refuse or are unable to continue having follow-up contacts may have a less healthy lifestyle 
than individuals who agree to continuing participation in a prospective study; if that were the case, 
censoring for this reason may lead to an underestimation of the cumulative incidence. The direction 
of the bias resulting from the loss to follow-up of individuals because of migration is a function of 
the sociodemographic context in which the migration occurs, for example, whether the individuals 
who migrate are of higher or lower socioeconomic status (SES). If losses occurred mainly among 
those in the upper SES, who tend to be healthier, those remaining in the study would tend to have 
poorer survival. On the other hand, if the losses occurred primarily among individuals with a lower 
SES, and thus poorer health, the survival of those remaining in the study would be overestimated. 
Generally, censoring that results in bias is referred to as “informative censoring.” For the so-called 
administrative losses, defined as those that occur because the follow-up ends (e.g., persons 7 and 
9 in Figure 2-1), the assumption of independence between censoring and survival is regarded as 
more justified, as these losses are usually thought to be independent of the characteristics of the 
individuals per se. (Administrative losses are, however, amenable to temporal changes occurring 
during the accrual period; see the following section “Lack of Secular Trends.”)

In summary, whether the key assumption of independence between censoring and survival for 
the calculation of cumulative incidence/survival estimates is met depends on the reasons censoring 
occurred (Table 2-4). This assumption is particularly relevant when the magnitude of the absolute 
incidence estimate is the focus of the study; it may be less important if the investigator is primarily 
interested in a relative estimate (e.g., when comparing incidence/survival in two groups defined by 

TABLE 2-4 Relationship between reason for censoring and the assumption of independence between censoring  
and survival in survival analysis.

Type of censoring

May violate assumption of 
independence of censoring/

survival

If assumption is violated, 
likely direction of bias on the 

cumulative incidence estimate

Deaths from other causes 
when there are common risk 
factors*

Yes Underestimation

Participants’ refusal or inability 
to allow follow-up contacts

Yes Underestimation

Migration Yes Variable

Administrative censoring Unlikely† Variable

*In cause-specific incidence or mortality studies.
†More likely in studies with a prolonged accrual period in the presence of secular trends.
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exposure levels in a cohort study), provided that biases resulting from losses are reasonably similar 
in the groups being compared. (For a discussion of a related bias, the so-called compensating bias, 
see “Selection Bias” in Chapter 4, Section 4.2.) Finally, this assumption can often be verified. For 
example, it is usually possible to compare baseline characteristics related to the outcome of interest 
between individuals lost and those not lost to observation. In addition, if relevant study participant 
identifying information is available, linkage to the National Death Index can be used to compare 
the mortality experience of those lost and those not lost to follow-up.

Lack of Secular Trends. In studies in which the accrual of study participants occurs over an 
extended time period, the decision to pool all individuals at time 0 (as in Figure 2-2) assumes a lack 
of secular trends with regard to the characteristics of these individuals that affect the outcome of 
interest. This, however, may not be the case in the presence of birth cohort and period (calendar time) 
effects (see Chapter 1, Section 1.2). Changes over time in the characteristics of recruited participants 
as well as significant secular changes in relevant exposures and/or treatments may introduce bias in 
the cumulative incidence/survival estimates, the direction and magnitude of which depend on the 
characteristics of these cohort or period effects. Thus, for example, it would not have been appro-
priate to estimate survival from diagnosis of all patients identified with insulin-dependent diabetes 
from 1915 through 1935 as a single group, as this extended accrual period would inappropriately 
combine two very heterogeneous patient cohorts: those diagnosed before and those diagnosed after 
the introduction of insulin. Similarly, it would not be appropriate to carry out a survival analysis 
pooling at time 0 all HIV-seropositive individuals recruited into a cohort accrued between 1995 and 
1999, that is, both before and after a new effective treatment (protease inhibitors) became available.

2.2.2 Incidence Rate Based on Person-Time
Rather than individuals, the denominator for the incidence rate is formed by time units (t) contributed 
to the follow-up period by the individuals at risk (n). For example, consider a hypothetical cohort 
in which 12 events occur and the total amount of follow-up time for all individuals is 500 days. The 
incidence rate in this example is 12 ÷ 500 = 0.024 per person-day or 2.4 per 100 person-days. Notice 
that this rate was calculated even though the actual number of individuals included in this follow-up 
study was not provided; thus, the “person-time” estimate in the example could have originated from 
50 individuals seen during 10 days each (50 × 10), 5 individuals observed for 100 days (5 × 100), 
and so on.

Incidence rates are not proportions. They are obtained by dividing the number of events 
by the amount of time at risk (pooling all study participants) and are measured in units of 
time–1. As a result, a rate can range from 0 to infinity, depending on the unit of time being 
used. For example, the previously mentioned incidence rate could be expressed in a number 
of ways: 12 ÷ 500 person-days = 12 ÷ 1.37 person-years = 8.76 per person-year (or 876 per 
100 person-years). The latter value exceeds 1 (or 100%) only because of the arbitrary choice of 
the time unit used in the denominator. If a person has the event of interest after a follow-up of  
6 months and the investigator chooses to express the rate per person-years, the rate will be 1 ÷ 0.5,  
or 200 per 100 person-years.

The time unit used is at the discretion of the investigator and is usually selected on the basis 
of the frequency of the event under study. The main reason many epidemiologic studies use per-
son-years as the unit of analysis is that it is a convenient way to express rare events. On the other 
hand, when one is studying relatively frequent health or disease events, it may be more convenient 
to use some other unit of time (TABLE 2-5). The choice is entirely arbitrary and will not affect the 
inferences derived from the study.
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Rather than a unitless proportion of individuals who develop the event among those at risk 
(see cumulative incidence described previously in this chapter), incidence based on person-time 
expresses the “rate” at which the events occur in the population at risk at any given point in 
time. This type of rate is also called incidence density, a concept analogous to that of velocity: 
the instantaneous rate of change or the “speed” at which individuals develop the event (disease, 
death, etc.) in the population. This concept is the basis for some of the mathematic model-
ing techniques used for the analysis of incidence rates (e.g., Poisson regression models) (see 
Chapter 7, Section 7.4.5). Because the instantaneous rate for each individual cannot be directly 
calculated, however, the average incidence over a period of time for a population is usually used 
as a proxy. The average incidence can be calculated based on individual or aggregate follow-up 
data, as is discussed later in this chapter. Epidemiologists often use the terms rate and density 
interchangeably; however, in the discussion that follows, the term rate will be primarily used 
in the context of grouped data, whereas density will denote a rate based on data obtained from 
each individual in the study.

Incidence Rate Based on Aggregate Data
This type of incidence is typically obtained for a geographic location by using the average pop-
ulation estimated for a certain time period as the denominator. Provided that this period is not 
excessively long and that the population and its demographic composition in the area of interest 
are relatively stable, the average population can be estimated as the population at the middle of 
the period (e.g., July 1 for a 1-year period). In a cohort study, the average of the population at the 
beginning and the end of the period can be obtained for a given follow-up interval. Thus, for a 
given time interval,

Incidence rate = Number of events
Average populatiion

TABLE 2-5 Examples of person-time units according to the frequency of events under investigation.

Population Event studied
Person-time unit  
typically used

General Incident breast cancer Person-years

General Incident myocardial infarction Person-years

Malnourished children Incident diarrhea Person-months

Pancreatic cancer cases Death Person-months

Influenza epidemic Incident influenza Person-weeks

Infants with acute diarrhea Recovery Person-days
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In Figure 2-2, for example, 10 individuals are alive and present in the study at the beginning 
of the follow-up period (“point zero”). Only one person is alive and present in the study when the 
2-year follow-up ends (person 5). Thus, the average population (n) for the total 2-year follow-up 
period is as follows:

n = + =10 1
2

5 5.

The average population can also be calculated by subtracting one-half of the events (d) and 
losses (c) from the initial population:

n = − + =10 1
2

6 3 5 5( ) .

As for all mean values, the underlying assumption when using this approach is that, on average, 
there were 5.5 persons for the duration of the study (2 years). For this assumption to be met, events 
and withdrawals must occur uniformly throughout the follow-up period. The rate of new events in 
relationship to the average population is then calculated as follows:

Incidence rate = per person years6
5 5

1 09 2
.

.= −

In this example, the rate is based on a time unit of 2 years and not on the number of individ-
uals. The assumption underlying the use of the average population is that the same rate would 
have been obtained if 5.5 individuals had been followed for the entire 2-year period, during which 
six events were observed. This example again highlights the fact that this type of incidence is 
not a proportion and, thus, is not bound to be 1 (100%) or less. In this instance, the seemingly 
counterintuitive rate of 109 per 100 person-time obviously resulted from the fact that “2 years” 
is being used as the time unit; if a “person-year” unit had been used instead, the rate would have 
been 1.09 ÷ 2 years = 0.545 per person-year (or 54.5 per 100 person-years).

This example illustrates the estimation of the incidence rate using the average popula-
tion of a defined cohort (i.e., the hypothetical cohort represented in Figure 2-2); however, 
this is not its usual application. Instead, the calculation of incidence based on grouped data 
is typically used to estimate mortality based on vital statistics information or incidence of 
newly diagnosed disease obtained from population-based registries (e.g., cancer registries), 
in other words, when incidence needs to be estimated for a population or an aggregate de-
fined by residence in a given geographic area over some time period. These aggregates are 
called open or dynamic cohorts because they include individuals who are added or with-
drawn from the pool of the population at risk as they migrate in or out of the area (i.e.,  
a situation more clearly represented by the diagram in Figure 2-1 than that in Figure 2-2).

Incidence Density Based on Individual Data
When relatively precise data on the timing of events or losses are available for each individual from 
a defined cohort, it is possible to estimate incidence density. The total person-time for the study 
period is simply the sum of the person-time contributed by each individual. The average incidence 
density is then calculated as follows:

Incidence density = Number of events
Total personn-time
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For each individual in the example shown in Figures 2-1, 2-2, and 2-3, the length of the hor-
izontal line represents the length of time between the beginning of the follow-up and the point 
when the individual either had the event, which in this hypothetical example is death (D), or was 
lost to observation. For example, for individual 1, death occurred after exactly 1 month. Thus, 
this individual’s contribution to the total number of person-years in the first follow-up year (see 
Figure 2-3) would be 1 ÷ 12 = 0.083; obviously, this person made no contribution to the follow-up 
during the second year. On the other hand, individual 2 died after remaining in the study for  
17 months, or 1 year and 5 months. Thus, his or her contribution to the first follow-up year was  
12 ÷ 12 and to the second year was 5 ÷ 12, for a total of 1.417 person-years.

The contribution of censored individuals is calculated in an identical fashion. For example, 
the contribution of individual 6 to the total number of person-years was equivalent to 16 months, 
or 1 full person-year in the first year and 4 ÷ 12 person-years in the second year, for a total 
of 1.333 person-years. The calculation of person-years for all 10 study participants is shown 
in TABLE 2-6. In this example, the incidence density applicable to the total follow-up period is, 
therefore, 6 ÷ 9.583 = 0.63 per person-year (or 63 per 100 person-years). Alternatively, the 
 incidence density could be expressed as 6 ÷ (9.583 × 12 months) = 0.052 per person-month 
(or 5.2 per 100 person-months). For a method to estimate confidence limits of incidence rates, 
see Appendix A, Section A.2.

Assumptions in the Estimation of Incidence Based on Person-Time
The assumptions of independence between censoring and survival and of lack of secular trends 
discussed in Section 2.2.1 are also relevant in the context of person-time analysis. The former 
assumption relates to absence of selection bias resulting from losses to follow-up. Both assumptions 
apply to any type of cohort study analysis. Furthermore, as for incidence based on the actuarial 
life table (Equation 2.1), an important assumption when using the person-time approach is that 
the risk of the event remains approximately constant over time during the interval of interest, or, 
in other words, the estimated rate should apply equally to any point in time within the interval. 
This means that n persons followed during t units of time are equivalent to t persons observed 
during n units of time; for example, the risk of an individual living five units of time within the 
interval is equivalent to that of five individuals living one unit each (FIGURE 2-7). When individ-
uals are exposed to a given risk factor, another interpretation of this assumption is that the effect 
resulting from the exposure is not cumulative within the follow-up interval of interest. Often, 
this assumption is difficult to accept, as, for example, when doing studies of chronic respiratory 
disease in smokers: the risk of chronic bronchitis for 1 smoker followed for 30 years is certainly 
not the same as that of 30 smokers followed for 1 year in view of the strong cumulative effect 
of smoking and the latency period needed for disease initiation. To decrease the dependency of 
the person-time approach on this assumption, the follow-up period can be divided into smaller 
intervals and incidence densities calculated for each interval. For example, using data from 
Table 2-6 and Figure 2-3, it is possible to calculate densities separately for the first and second 
years of follow-up as follows:

First follow-up year: 3 ÷ 7.083 = 42.4 per 100 person-years
(or 3 ÷ 85 = 3.5 per 100 person-months)

Second follow-up year: 3 ÷ 2.500 = 120 per 100 person-years
(or 3 ÷ 30 = 10 per 100 person-months)
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2.2 Measures of Incidence 69

The fact that the densities differ markedly between the first and second follow-up years in this 
example strongly implies that it would not be reasonable to estimate an incidence density for the 
overall 2-year period.

Relationship Between Density (Based on Individual Data)  
and Rate (Based on Grouped Data)
It is of practical interest that when withdrawals (and additions in an open population or dynamic 
cohort) and events occur uniformly, rate (based on grouped data) and density (based on individual 
data) are virtually the same. The following equation demonstrates the equivalence between the rate 
per average population and the density (per person-time), when the former is averaged with regard 
to the corresponding time unit (e.g., yearly average).

 
Rate =

No. events
average population

time

( )
( )

x
n Density

( )t
x

n t
=

×
=

This idea can be understood intuitively. For a given time unit, such as 1 year, the denominator 
of the rate (the average population) is analogous to the total number of time units lived by all the 
individuals in the population in that given time period. An example is given in TABLE 2-7, based 
on data for four persons followed for a maximum of 2 years. One individual is lost to follow-up 
(censored) after 1 year; two individuals die, one after 0.5 year and the other after 1.5 years; and the 

Individual
no. Year 1 Year 2 Year 3 Year 4 Year 5

1

2

3

4

5

6

7

8

FIGURE 2-7 Follow-up time for eight individuals in a hypothetical study. It is assumed that the sum of the person-time 
units for individuals nos. 1 to 5 (with a short follow-up time of 1 year each) is equivalent to the sum for individuals nos. 6 
and 7 (with follow-up times of 2 and 3 years, respectively) and to the total time for individual no. 8 (who has the longest 
follow-up time, 5 years). For each group of individuals (nos. 1–5, 6 and 7, and 8), the total number of person-years of 
observation is 5.
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70 Chapter 2 Measuring Disease Occurrence

fourth individual survives through the end of the study. There is, therefore, perfect symmetry in the 
distribution of withdrawals or events, which occurred after 0.5, 1, 1.5, and 2 years after the onset of 
the study. Summing the contribution to the follow-up time made by each participant yields a total 
of 5 person-years. Density is thus two deaths per 5 person-years, or 0.40.

The average population (n) in this example can be estimated as [(initial population + final 
population) ÷ 2], or [(4 + 1) ÷ 2 = 2.5]. The rate for the total time (t = 2 years) is then 2 ÷ 2.5. 
The average yearly rate is thus equivalent to the density using person-time as the denominator:

Yearly rate =
person-years

Density =

x
n
t

x
n t

x=
×

= = 22
2 5 2

2
5

0 40
.

.
×

= =

On the other hand, when losses and events do not occur in an approximate uniform fashion, the 
incidence rate based on the average study population and the incidence density for a given population 
and time period may be discrepant. For example, based on the hypothetical data in Figure 2-3, the 
estimate of the mean yearly incidence based on the average population was 54.5/100 person-years, 
whereas that based on the incidence density was 63/100 person-years. In real life, when the sample 
size is large and provided that the time interval is reasonably short, the assumption of uniformity 
of events/losses is likely to be met.

The notion that the average population is equivalent to the total number of person-time when 
events and withdrawals are uniform is analogous to the assumption regarding uniformity of events 
and withdrawals in the actuarial life table (see Section 2.2.1, Equation 2.1). When it is not known 
exactly when the events occurred in a given time period, each person in whom the event occurs or 
who enters or withdraws from the study is assumed to contribute one-half of the follow-up time 
of the interval. (It is expected that this will be the average across a large number of individuals 
entering/exiting at different times throughout each time period for which person-time is estimated.)

The correspondence between rate (based on grouped data) and density (based on individual 
person-time) is conceptually appealing, as it allows the comparison of an average yearly rate based 
on an average population—which, in vital statistics, is usually the midpoint, or July 1, population 
estimate—with a density based on person-years. It is, for example, a common practice in occupational 

TABLE 2-7 Hypothetical data for four individuals followed for a maximum of 2 years.

Individual no. Outcome Timing of event/loss No. of person-years

1 Death At 6 months 0.5

2 Loss to observation At 1 year 1.0

3 Death At 18 months 1.5

4 Administrative 
censoring

At 2 years 2.0

Total no. of person-years: 5.0
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epidemiology studies to obtain an expected number of events needed for the calculation of the stan-
dardized mortality ratio by applying population vital statistics age-specific rates to the age-specific 
number of person-years accumulated by an exposed cohort (see Chapter 7, Section 7.3.2).

Stratifying Person-Time and Rates According to  
Follow-up Time and Covariates
The calculation of person-time contributed by a given population or group is simply the sum of 
the person-time contributed by each individual in the group during the follow-up period. In most 
analytical prospective studies relevant to epidemiology, the risk of the event changes with time. 
For example, the incidence of fatal or nonfatal events may increase with time, as when healthy in-
dividuals are followed up as they age. In other situations, risk diminishes as follow-up progresses, 
as in a study of complications after surgery or of case fatality after an acute myocardial infarction. 
Because calculating an overall average rate over a long time period when the incidence is not uni-
form violates the assumptions discussed previously in this chapter (and does not make much sense), 
it is necessary to estimate the event rate for time intervals within which homogeneity of risk can 
be assumed. Thus, it is often important to stratify the follow-up time and calculate the incidence 
rate for each time stratum (as seen in the example based on the data in Table 2-6). Furthermore, 
in a cohort study, one may additionally wish to control for potentially confounding variables (see 
Chapter 5). Time and other confounders can be taken into account by stratifying the follow-up time 
for each individual according to other time variables (e.g., age) and categories of the confounder(s) 
and then summing up the person-time within each stratum.

The following examples illustrate the calculation of person-time and the corresponding inci-
dence rates based on the data shown in TABLE 2-8, from a hypothetical study of four postmenopausal 

TABLE 2-8 Hypothetical data for four postmenopausal women followed for mortality after breast cancer surgery.

Woman no. 1 Woman no. 2 Woman no. 3 Woman no. 4

Date of surgery 2003 2005 2000 2002

Age at surgery 58 50 48 54

Age at 
menopause

54 46 47 48

Smoking at time 
of surgery

Yes No Yes No

Change in 
smoking status 
(year)

Quits (2006) No No Starts (2003)

Type of event Death Loss Withdrawal alive Death

Date of event 2009 2008 2010 2004

9781284116595_CH02_049_086.indd   71 27/03/18   3:07 PM



72 Chapter 2 Measuring Disease Occurrence

women followed for mortality after breast cancer surgery (2000 to 2010). Table 2-8 provides the 
dates of surgery (“entry”), the date of the event (death or censoring), ages at surgery and at meno-
pause, and smoking status.

One Time Scale. Based on the data from Table 2-8, the follow-up of these four women is displayed 
in FIGURE 2-8. The top panel of Figure 2-8 displays the follow-up according to calendar time for 
each of the four women; the bottom panel displays the follow-up time after surgery. In Figure 2-8 
(top), because the precise dates of surgery and events are not known, it is assumed that they occur 
in the middle of the corresponding year (discussed previously in this chapter).

If it could be assumed that the risk of the event was approximately uniform within 5-year 
intervals, it would be justified to calculate person-time separately for the first and second 5-year 
calendar periods (Figure 2-8, top); the calculation of the rates is shown in TABLE 2-9. Individuals 
whose follow-up starts or ends sometime during a given year are assigned one-half of a person-year. 
For example, a contribution of 0.5 person-year is made by woman 1 in 2003, as her surgery was 

A

B

2000 01 02 03 04 06 07 08 09 2010

D

D

D

D

2005

Time since surgery (years)

10

1

1

2

3

4

W
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W
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an

 n
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2

3

4

2 3 4 5 6 7 8 9 10

FIGURE 2-8 Schematic representation of person-time for the hypothetical data in Table 2-8, according to one time 
scale: calendar time (A) and follow-up time (B). Censored observations are shown with arrows; D 5 death.
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TABLE 2-9 Stratification of person-time and rates according to calendar time, based on Table 2-8 and Figure 2-8A.

Calendar time Person-years Events Incidence rate

2000–2004 8 1  0.125

2005–2009  12.5 1  0.080

(2010–2014)  (0.5) (0) (0)

carried out at some time in 2003. Thus, the total person-time for the period 2000 to 2004 is 1.5 years 
(woman 1) + 4.5 years (woman 3) + 2 years (woman 4) = 8 person-years.

Alternatively, one might be interested in examining the rates in this study according to follow-up 
time, as shown in TABLE 2-10. For example, because woman 1 was followed from 2003.5 to 2009.5, 
she can be assumed to have a full 6-year follow-up (Figure 2-8, bottom).

Two or More Time Scales. Epidemiologic cohorts are often constituted by free-living individuals 
who interact and are the subject of multiple and varying biological and environmental circumstances. 
Thus, it is frequently important to take into consideration more than one time scale; the choice of 
time scales used for the stratification of follow-up time varies according to the characteristics and 
goals of the study (TABLE 2-11).

In FIGURE 2-9, the person-time and outcomes of the four women from Table 2-8 are represented 
according to two time scales, age and calendar time. In this type of graphic representation (known 
as a Lexis diagram), each individual’s trajectory is represented by diagonals across the two time 
scales. As in the previous example and given that the time data are approximate (in whole years), it 
is assumed that entry, censoring, and event of interest occur at the midpoint of the 1-year interval.

TABLE 2-12 shows the corresponding estimates of total person-time in each two-dimensional 
stratum. They are obtained by adding up the total time lived by the individuals in the study in each 
age/calendar time stratum represented by eight squares in Figure 2-9; for example, for those 55 to 
59 years old between 2000 and 2004, it is the sum of the 1.5 years lived by woman 4 (between age 
55 and age 56.5 years, the assumed age of her death) and the 1.5 years lived by woman 1 in that 
stratum. The relevant events (deaths) are also assigned to each corresponding stratum, thus allowing 
the calculation of calendar- and age-specific incidence rates, also shown in Table 2-12.

TABLE 2-10 Stratification of person-time and rates according to follow-up time (time since surgery), based on 
Table 2-8 and Figure 2-8B.

Time since surgery Person-years Events Rate

0–4 years 15 1 0.0667

5–9 years 6 1 0.1667
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74 Chapter 2 Measuring Disease Occurrence

TABLE 2-11 Examples of time scales frequently relevant in the context of cohort studies.

Time scale Type of study

Follow-up time (time since recruitment) All studies

Age All studies

Calendar time All studies (especially if recruitment is done over 
an extended period)

Time since employment Occupational studies

Time since menarche Studies of reproductive outcomes

Time since seroconversion Follow-up of patients with HIV infection

Time since diagnosis Prognostic studies of cancer patients

2010

2005

2000

58.5

64.5

45 50 55 60 65

(3)

(3)

(3)

(2)

(1.5)

#3

#2

#4

#1

(1.5)
(1.5)

(0.5)

(4.5) 2009.5

2003.5

Age (years)

D

D

FIGURE 2-9 Schematic representation of person-time for the four women in Table 2-8 according to two time scales, age and 
calendar time, categorized in 5-year intervals. Because time data are given in whole years, entry, events, and withdrawals are 
assumed to occur exactly at the middle of the year. Censored observations are represented by an arrow. The total time within each 
time stratum for all four women is shown in parentheses. The entry and exit times for woman no. 1 are given in italics; D = death.
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Other time scales may be of interest. In occupational epidemiology, for example, it may be 
of interest to obtain incidence rates of certain outcomes taking into account three time scales 
simultaneously, for example, age (if the incidence depends on age), calendar time (if there have 
been secular changes in exposure doses), and time since employment (so as to consider a possible 
cumulative effect). For this situation, one could conceive a tridimensional analogue to Figure 2-9: 
cubes defined by strata of the three time scales and each individual’s person-time displayed across 
the tridimensional diagonals.

The layout for the calculation of person-time and associated incidence rates described in this 
section can be used for the internal or external comparison of stratified rates by means of standard-
ized mortality or incidence ratios (see Chapter 7, Section 7.3.2).

Time and Fixed or Time-Dependent Covariates. Stratification according to other variables, in 
addition to time, may be necessary in certain situations. For example, the data in Table 2-8 could be 
further stratified according to an additional time scale (e.g., time since menopause) and additional 
covariates (e.g., smoking status at the time of surgery). Thus, instead of eight strata, as in Figure 2-9 
and Table 2-12, one would need to stratify the person-time into 32 strata defined by the combination 
of all four variables (calendar time, age, time since menopause, and smoking). Individuals under 
observation would shift from stratum to stratum as their status changes. For example, woman 1 
(Table 2-8) is a smoker who enters the study in 2003 at the age of 58 years (that is assumed to be 
2003.5 and 58.5 years, respectively, as discussed previously), 4 years after menopause. Thus, as she 
enters the study in the stratum “2000–2004/55–59 years of age/smoker-at-baseline/menopause 
< 5 years,” after contributing 1 person-year to this stratum (i.e., in 2004.5 at age 59.5 years), she 
becomes “≥ 5 years after menopause” and thus shifts to a new stratum: “2000–2004/55–59 years 
of age/smoker-at-baseline/menopause ≥ 5 years.” Half a year later, she turns 60 and enters a new 
stratum (“2005–2009/60–64 years of age/smoker-at-baseline/menopause ≥ 5 years”) to contribute 
her last 4.5 person-years of observation before her death in 2009.5.

TABLE 2-12 Stratification of person-time and rates according to calendar time and age (see Figure 2-9).

Calendar time Age (years) Person-years Events Rate

2000–2004 45–49 1.5 0 0

50–54 3.5 0 0

55–59 3 1 0.3333

60–64 0 — —

2005–2009 45–49 0 — —

50–54 5 0 0

55–59 3 0 0

60–64 4.5 1 0.2222
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In the preceding example, smoking is treated as a fixed covariate, as only baseline status is considered; 
however, information on smoking status change is available in the hypothetical study data shown in 
Table 2-8. Changes in exposure status for certain covariates can easily be taken into account when using 
the person-time strategy. For example, using the information at baseline and change in smoking status 
shown in Table 2-8, assignment of person-time according to smoking as a time-dependent covariate can 
be represented as illustrated in FIGURE 2-10. Using this approach, each relevant event is assigned to the 
exposure status at the time of the event. Thus, woman 1’s death is assigned to the “nonsmoking” group, 
whereas that of woman 4 is assigned to the “smoking” group. (The latter assignments are opposite to 
those based on smoking status at baseline described in the preceding paragraph.)

To use the person-time approach to take into account changing exposures involves an as-
sumption akin to that used in crossover clinical trials, that after the exposure status changes, so 
does the associated risk. This is merely another way of stating that there is no accumulation of risk 
and thus that the effect of a given exposure is “instantaneous.” Whether this assumption is valid 
depends on the specific exposure or outcome being considered. For example, for smoking, the as-
sumption may be reasonable when studying thromboembolic events likely to result from the acute  
effects of smoking (e.g., those leading to sudden cardiac death). On the other hand, given the well-
known latency and cumulative effects leading to smoking-related lung cancer, the assumption of 
an instantaneous effect would be unwarranted if lung cancer were the outcome of interest. (The 
cumulative effect of smoking on lung cancer risk can be easily inferred from the fact that the 
risk in smokers who quit decreases yet never becomes the same as that in people who have never 
smoked.) If there is a cumulative effect, the approach illustrated in Figure 2-10 (e.g., assigning the 
event in woman 1 to the nonsmoking category) will result in misclassification of exposure status 
(see Chapter 4, Section 4.3).

The cumulative effects of exposure can be taken into account with more complex exposure defi-
nitions; for example, total pack-years of smoking could be considered even among former smokers. 
Moreover, lag or latency times could also be introduced in the definition of person-time in relation 
to events, a frequent practice in occupational or environmental epidemiology studies.11(pp150-155) 
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FIGURE 2-10 Schematic representation of person-time for the four women in Table 2-8 according to time-dependent 
smoking status. Solid lines represent smoking status; broken lines represent nonsmoking status.
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Obviously, when the study requires stratification according to more than one time scale and sev-
eral covariates, person-time and rates will need to be calculated for dozens or even hundreds of 
multidimensional strata, which will require the use of computer programs.12-14

2.2.3 Comparison Between Measures of Incidence
For the estimation of the different incidence measures, the numerator (number of deaths) is con-
stant; the differentiation between the measures is given by the way the denominator is calculated. 
The main features that distinguish cumulative probability on the one hand and density or rate on 
the other are shown in EXHIBIT 2-1. As discussed previously, the upper limit of values for a rate or a 
density may exceed 100%, whereas values for probabilities cannot be greater than 100%.

Rates are often calculated as yearly average rates or, for example, as rates per 1000 person-years. 
The latter implies an average rate per 1000 persons per year, which underscores the correspondence 
between a vital statistics–derived rate and a rate per person-time, as discussed previously. On the 
other hand, no time unit whatsoever is attached to a cumulative incidence (a probability), thus 
requiring that the relevant time period always be specified (e.g., “the cumulative probability for 
the initial 3 years of follow-up”).

With regard to their numerical value, a cumulative incidence and a rate can be compared only 
if they are based on the same time unit (e.g., cumulative incidence over a 1-year period and rate per 

EXHIBIT 2-1 Comparing measures of incidence: cumulative incidence vs incidence rate.

Cumulative incidence Incidence density/rate

If follow-up is 
complete

If follow-up is 
incomplete

Individual data 
(cohort)

Grouped 
data (area)

Numerator Number of cases

Classic life table 
Kaplan–Meier

Number of cases Number of 
cases

Denominator Initial population Person-time Average 
population*

Units Unitless Time–1

Range 0 to 1 0 to infinity

Synonyms Proportion  
Probability

Incidence density†

*Equivalent to person-time when events and losses (or additions) are homogeneously distributed over the time interval of interest.
†In the text, the term density is used to refer to the situation in which the exact follow-up time for each individual is available; in real life, however, 
the terms rate and density are often used interchangeably.
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78 Chapter 2 Measuring Disease Occurrence

person-year). Under this circumstance, the general rule is that, in absolute value, the rate will always 
be larger than the cumulative incidence. The rationale for this rule is best explained when comparing 
a rate with a cumulative incidence based on the classic life table, as illustrated in EXHIBIT 2-2. Although 
losses because of censoring are similarly taken into account in the denominator of both cumulative 
incidence and rate, the observation time “lost” by the cases is subtracted from the denominator of the 
rate but not from the probability-based cumulative incidence (which uses number of observations 
at the start of the interval corrected for losses regardless of how many cases occur subsequently). 
As a result, the denominator for the rate will always tend to be smaller than that of the cumulative 
incidence and thus the larger absolute value of the former when compared with the latter. When 

EXHIBIT 2-2 Comparing absolute numerical values of cumulative incidence based on the actuarial life table and rate 
(assuming that follow-up interval equals person-time unit). 

Notice that (as long as x . 0) the denominator of the rate will always be smaller than that of the 
cumulative incidence (960 vs 985 in the example), thus explaining the larger absolute value of  
the rate.

Cumulative
incidence

In the absence
of censoring

In the presence
of censoring (C )

Example: N = 1000 
individuals
followed for 1 year, 
x = 50 events,
C = 30 censored 
observations

(q) is calculated
based
on number
of individuals
at risk at the
beginning of
the interval
(N)

q
x

N
= q

x

N C
=

− 1
2

=
−

50

1000
1
2

30

= =50
985

0 0508.

Rate is calculated
based on
person-time
of observation
over
the follow-up,
subtracting
person-time
lost by the
cases (x)

Rate =
x

N x− 1
2

– –
Rate = x

N x C
1
2

1
2

=
− −

= =

50

1000
1
2

50
1
2

30

50
960

0 0521.
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events are relatively rare, the discrepancy is very small (e.g., example in Exhibit 2-2); as the frequency 
of the event increases, so will the numerical discrepancy between cumulative incidence and rate 
pertaining to the same time unit.

Finally, regarding assumptions, all methods for the calculation of incidence share the funda-
mental assumptions in the analysis of cohort data that were discussed in previous sections and 
are summarized in EXHIBIT 2-3: independence between censoring and survival and lack of secular 
trends. Additional assumptions are needed depending on the specific requirements of the method 
(e.g., uniformity of risk across defined interval in classic life-table and/or person-time–based 
analyses).

Experienced epidemiologists have learned that, whereas each approach has advantages and 
disadvantages, the ultimate choice of how to present incidence data is dictated by pragmatism (and/
or personal preference). Thus, in a cohort study without an “internal” comparison (e.g., unexposed) 
group—as may be the case in occupational epidemiology research—estimation of densities, rather 
than probabilities, allows using available population rates as control rates. On the other hand, 
probabilities are typically estimated in studies with a focus on the temporal behavior (or “natural 
history”) of a disease, as in studies of survival after diagnosis of disease.

2.2.4 The Hazard Rate
The instantaneous incidence rate (density) is the so-called hazard rate, also named instantaneous conditional 
incidence or force of morbidity (or mortality). In the context of a cohort study, the hazard rate is defined as 

EXHIBIT 2-3 Assumptions necessary for survival and person-time analyses.

Survival analysis Person-time

If there are losses
to follow-up:

Censored observations have an outcome probability that is 
similar to that of individuals remaining under observation.

If intervals are
used and there
are losses during
a given interval:

Losses are uniform over the interval.

If risk is calculated
over intervals:

Risk is uniform
during the interval.

N individuals followed
for T units of time

have the same risks as
T individuals followed

for N units of time.

If accrual of study
subjects is done
over a relatively
long time period:

There are no secular trends over the calendar period covered 
by the accrual.
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80 Chapter 2 Measuring Disease Occurrence

each individual’s instantaneous probability of the event at precisely time t (or at a small interval [t, t + Δt]),  
given (or “conditioned” on) the fact that the individual was at risk at time t. The hazard rate is de-
fined for each particular point in time during the follow-up. In mathematical terms, this is defined 
for a small time interval (Δt close to zero) as follows:

h t
P t t t( ) ( [ ] |= +event in interval between and ∆ aalive at t

t
)

∆

The hazard is analogous to the conditional probability of the event that is calculated at each 
event time using Kaplan–Meier’s approach (Table 2-3, column 4); however, because its denominator 
is “time-at-risk,” the rate is measured in units of time-1. Another important difference is that, in 
contrast to Kaplan–Meier’s conditional probability, the hazard rate cannot be directly calculated, 
as it is defined for an infinitely small time interval; however, the hazard function over time can be 
estimated using available parametric survival analysis techniques.15

The hazard rate is a useful concept when trying to understand some of the statistical techniques 
used in survival analysis, particularly those pertaining to proportional hazards regression (see 
Chapter 7, Section 7.4.4). It is outside the scope of this textbook, however, to discuss the complex 
mathematical properties of the hazard rate; the interested reader should consult more advanced 
statistical textbooks, such as Collett’s.15

2.3 Measures of Prevalence
Prevalence is defined as the frequency of existing cases of a disease or other condition in a given 
population at a certain time or period. Depending on how “time” is defined, there are two kinds of 
prevalence, point prevalence and period prevalence (Table 2-1). Point prevalence is the frequency 
of a disease or condition at a point in time; it is the measure estimated in the so-called prevalence 
or cross-sectional surveys, such as the National Health and Nutrition Examination Surveys con-
ducted by the U.S. National Center for Health Statistics.16 For the calculation of point prevalence, 
it is important to emphasize that all existing cases at a given point in time are considered prevalent 
regardless of whether they are old or more recent. Period prevalence is less commonly used and 
is defined as the frequency of an existing disease or condition during a defined time period. For 
example, the period prevalence of condition Y in year 2010 includes all existing cases on January 1, 
2010, plus the new (incident) cases occurring during the year. A special type of period prevalence 
is the cumulative lifetime prevalence, which provides an estimate of the occurrence of a condition at 
any time during an individual’s past (up to the present time). For example, the United States-based 
2003 National Youth Risk Behavior Survey estimated the lifetime prevalence of asthma among high 
school students to be 18.9%, whereas the estimated point prevalence at the time of the survey was 
estimated to be 16.1%.17

In the case of period prevalence, the denominator is defined as the average reference popula-
tion over the period. In general, when the term prevalence is not specified, it can be taken to mean 
point prevalence. As a descriptive measure, point prevalence is a useful index of the magnitude of 
current health problems and is particularly relevant to public health and health policy (Chapter 10).  
In addition, prevalence is often used as the basis for the calculation of the point prevalence rate 
ratio, a measure of association in cross-sectional studies or in cohort studies using baseline data.  
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Because the point prevalence rate ratio is often used as a “surrogate” of the incidence ratio in the 
absence of prospective cohort data (see Chapter 3, Section 3.3), it is important to understand prev-
alence’s dependence on both incidence and duration of the disease after onset; duration is, in turn, 
determined by either survival for fatal diseases or recovery for nonfatal diseases. In a population in 
a steady-state situation (i.e., no major migrations or changes over time in incidence/prevalence of 
the condition of interest), the relationship between prevalence and disease incidence and duration 
can be expressed by the following formula:*

 Point prevalence
Point prevalence

Incidence 
( )1 −

= ××  Duration  (Eq. 2.3)

The term [Point prevalence ÷ (1 – Point prevalence)] is the odds of point prevalence (see  
Section 2.4). Also, in this equation and those derived from it, the time unit for incidence and dura-
tion should be the same; that is, if incidence is given as a yearly average, duration should be given 
using year(s) or a fraction thereof. Equation 2.3 can be rewritten as follows:

 Point prevalence = Incidence Duration 1 – Point× × prevalence( )  (Eq. 2.4)

As discussed in Chapters 3 and 4, Equation 2.4 underscores the two elements of a disease that 
are responsible for the difference between incidence and point prevalence: its duration and the 
magnitude of its point prevalence. When the point prevalence is relatively low (e.g., 0.05 or less), 
the term (1 – Point prevalence) is almost equal to 1.0, and the following well-known simplified 
formula defining the relationship between prevalence and incidence is obtained:

Point prevalence Incidence Duration≈ 3

For example, if the incidence of the disease is 0.5% per year and its average duration (survival 
after diagnosis) is 10 years,  the point prevalence will be approximately 5%.

*The derivation of this formula is fairly straightforward. Under the assumption that the disease is in steady state, the 
incidence and number of existing cases at any given point (e.g., X) are approximately constant. For an incurable disease, 
this implies that the number of new cases during any given time period is approximately equal to the number of deaths 
among the cases. If N is the population size, I is the incidence, and F is the case fatality rate, the number of new cases can 
be estimated by multiplying the incidence times the number of potentially “susceptible” (N – X); in turn, the number of 
deaths can be estimated by multiplying the case fatality rate (F) times the number of prevalent cases. Thus, the assump-
tion that the number of new cases approximates the number of deaths among the cases in the period can be formulated 
as follows: I N X F X× ×≈( )– .  If there is no immigration, the case fatality rate is the inverse of the duration (D).3 
Thus, after a little arithmetical manipulation and dividing numerator and denominator of the right-hand side term by N, 
the following equation is obtained:

I D
X

N X
× ≈

−
=

−( ) (

Prevalence

Prevalence)1

An analogous reasoning can be applied to nonfatal diseases, for which F is the proportion cured.
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2.4 Odds
Odds are the ratio of the probability of the event of interest to that of the nonevent. This can be 
defined for both incidence and prevalence. For example, when dealing with incidence probabilities, 
the odds are as follows:

Incidence odds = q
q1 −

(Alternatively, knowing the odds allows the calculation of probability: q = Odds ÷ [1 + Odds].)
The point prevalence odds are as follows (see also Equation 2.3):

Point prevalence odds = Point prevalence
Point1 − prevalence

Both odds and proportions can be used to express “frequency” of the disease. An odds approx-
imates a proportion when the latter is small (e.g., less than 0.1). An example follows:

Proportion
Odds

=
= = =( )

0 05
0 05 1 0 05 0 05 0 95 0

.

. / – . . / . ..0526

It is easier to grasp the intuitive meaning of the proportion than that of the odds perhaps be-
cause, in a description of odds, the nature of the latter as a ratio is often not clearly conveyed. For 
example, if the proportion of smokers in a population is 0.20, the odds are as follows:

Odds = Proportion of smokers
Proportion of smo1 − kkers

Proportion of smokers
Proportion of nonsmo

=
kkers

or 0.20 ÷ (1 – 0.20) = 0.20 ÷ 0.80 = 1:4 = 0.25.

Thus, there are two alternative ways to describe an odds estimate: either as an isolated number, 
0.25, implying that the reader understands that it intrinsically expresses a ratio, 0.25:1.0, or clearly as 
a ratio—in the example, 1:4—conveying more explicitly the message that, in the study population, 
for every smoker there are four nonsmokers.

Traditionally and commonly used in certain venues (e.g., in the horse-race betting world), 
the odds are rarely if ever used by epidemiologists as measures of disease occurrence. However, 
the ratio of two odds (the odds ratio) is a very popular measure of association in epidemiology 
because the odds ratio allows the estimation of the easier-to-grasp relative risk in case-based 
case-control studies and it is the measure of association derived from logistic regression, one of 
the most widely used methods for multivariate analysis of epidemiologic data (see Chapter 1, 
Section 1.4.2; Chapter 3, Section 3.4.1; and Chapter 7, Section 7.4.3).
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84 Chapter 2 Measuring Disease Occurrence

Exercises
1. A prospective study with a 2-year (24-month) follow-up was conducted. Results are shown 

in the table for individuals who either died or were censored before the end of the follow-up 
period.

Survival data for 20 participants of a hypothetical prospective study.

Follow-up time (months) Event

2 Death

4 Censored

7 Censored

8 Death

12 Censored

15 Death

17 Death

19 Death

20 Censored

23 Death

a. Using the data from the table, for all deaths calculate (1) the probability of death at the 
exact time when each death occurred, (2) the probability of survival beyond the time 
when each death occurred, and (3) the cumulative probabilities of survival.

b. What is the cumulative survival probability at the end of the follow-up period?
c. Using arithmetic graph paper, plot the cumulative probabilities of survival.
d. What is the simple proportion of individuals apparently surviving (i.e., not observed to 

die) through the end of the study’s observation period?
e. Why are the simple proportion surviving and the cumulative probability of survival 

different?
f. Using the same data, calculate the overall death rate per 100 person-years. (To 

 facilitate your calculations, you may wish to calculate the number of person-months 
and then convert that to the number of person-years.)
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g. Calculate the rates separately for the first and second years of follow-up. (For this 
calculation, assume that the individual who withdrew at month 12 withdrew just after 
midnight on the last day of the month.)

h. Assuming that there was no random variability, was it appropriate to calculate the rate 
per person-year for the total 2-year duration of follow-up?

i. What is the most important assumption underlying the use of both survival analysis 
and the person-time approach?

j. Now, assume that the length of follow-up was the same for all individuals (except those 
who died). Calculate the proportion dying and the odds of death in this cohort.

k. Why are these figures so different in this study?
2. In a cohort study of individuals aged 65 years and older and free of dementia at baseline,* 

the associations of age and APOE ε4 with the risk of incident Alzheimer’s disease (AD) were 
investigated. The table shows the number of individuals, person-years, and probable cases 
of AD overall and according to age (< 80 and ≥ 80 years old) and, separately, to presence 
of APOE ε4.

Probable Alzheimer’s disease (AD) by age and APOE «4.

Number of
individuals

Number with
probable

AD/person-years

Density of
AD per 100

person-years

Average
duration of
follow-up

All subjects 3099 263/18,933

, 80 years 2343 157/15,529

$ 80 years 756 106/3404

APOE«4(1) 702 94/4200

APOE«4(2) 2053 137/12,894

a. Calculate the densities of AD per 100 person-years and the average durations of follow-up 
for all subjects and for each subgroup.

b. Why is it important that the follow-up durations be similar for the “exposed” and “un-
exposed” categories particularly in this study?

c. When calculating a density for a given long follow-up period, the assumption is that the 
risk remains the same throughout the duration of follow-up. Is this a good assumption 
in the case of Alzheimer’s disease? Why or why not?

*Li G, Shofer JB, Rhew IC, et al. Age-varying association between statin use and incident Alzheimer’s disease.  
J Am Geriatr Soc. 2010;58:1311-1317.
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3. In a case-based case-control study of risk factors for uterine leiomyoma, the authors assessed 
a history of hypertension in cases and controls, as shown in the table here.

Cases Controls

History of hypertension Number Percentage Number Percentage

Absent 248 78.0 363 92.4

Present 70 22.0 30 7.6

Total 318 100.0 393 100.0

a. Using the absolute numbers of cases and controls with and without a history of hyper-
tension, calculate the absolute odds of history of hypertension separately in cases and 
in controls.

b. Now, calculate the odds of hypertension using the percentages of cases and controls with 
a history of hypertension.

c. What can you conclude from comparing the response to Exercise 2a to the response to 
Exercise 2b?

d. Why are the odds of a history of hypertension more similar to the proportion of indi-
viduals with a history of hypertension in controls than in cases?

4. The baseline point prevalence of hypertension in African American women aged 45 to 64 
years included in the Atherosclerosis Risk in Communities (ARIC) cohort study was found 
to be 56%.† In this study, over a follow-up period of 6 years, the average yearly incidence of 
hypertension in African American women was estimated to be about 5% and stable over the 
years.‡ Using these data, estimate the average duration of hypertension in African American 
women in the ARIC Study.

5. Wakelee et al. reviewed lung cancer incidence rates in never smokers in several cohort stud-
ies with varying lengths of follow-up and found them to vary from 4.8 to 20.8 per 100,000 
person-years.§
a. How can rates per person-years in this review by Wakelee et al. be interpreted given the 

variation in the length of follow-up among the cohorts?
b. What are the conditions that render this interpretation incorrect?
c. Which are the assumptions common to survival analysis and the person-time strategy?

†Harris MM, Stevens J, Thomas N, Schreiner P, Folsom AR. Associations of fat distribution and obesity with hypertension 
in a bi-ethnic population: the ARIC Study. Obesity Res. 2000;8:516-524.
‡Fuchs FD, Chambless LE, Whelton PK, Nieto FJ, Heiss G. Alcohol consumption and the incidence of hypertension:  
the Atherosclerosis Risk in Communities Study. Hypertension. 2001;37:1242-1250.
§Wakelee HA, Chang ET, Gomez SL, et al. Lung cancer incidence in never smokers. J Clin Oncol. 2007;25:472-478.
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