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The purpose of this short chapter 
is twofold: to introduce the basic 
terminology of differential 

equations and to briefly examine 
how differential equations arise 
in an attempt to describe or 
model physical phenomena in 
mathematical terms.
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4 | CHAPTER 1 Introduction to Differential Equations

1.1 Definitions and Terminology

INTRODUCTION The words differential and equation certainly suggest solving some kind 

of equation that contains derivatives. But before you start solving anything, you must learn some 

of the basic defintions and terminology of the subject.

 A Definition The derivative dy/dx of a function y � f(x) is itself another function f�(x) 

found by an appropriate rule. For example, the function y � e0.1x2

 is differentiable on the interval 

(�q , q ), and its derivative is dy/dx � 0.2xe0.1x2

. If we replace e0.1x2

 in the last equation by the 

symbol y, we obtain

 
dy

dx
� 0.2xy. (1)

Now imagine that a friend of yours simply hands you the differential equation in (1), and that 

you have no idea how it was constructed. Your friend asks: “What is the function represented by 

the symbol y?” You are now face-to-face with one of the basic problems in a course in differen-

tial equations:

How do you solve such an equation for the unknown function y � f(x)?

The problem is loosely equivalent to the familiar reverse problem of differential calculus: Given 

a derivative, find an antiderivative.

Before proceeding any further, let us give a more precise definition of the concept of a dif-

ferential equation.

In order to talk about them, we will classify a differential equation by type, order, and linearity.

 Classification by Type If a differential equation contains only ordinary derivatives of 

one or more functions with respect to a single independent variable it is said to be an ordinary 
differential equation (ODE). An equation involving only partial derivatives of one or more 

functions of two or more independent variables is called a partial differential equation (PDE). 
Our first example illustrates several of each type of differential equation.

EXAMPLE 1 Types of Differential Equations
(a) The equations

 an ODE can contain more
 than one dependent variable

 T T

 
dy

dx
� 6y � e 

�x, 
d  2y

dx2
�

dy

dx
2 12y � 0, and 

dx

dt
�

dy

dt
� 3x � 2y (2)

are examples of ordinary differential equations.

(b) The equations

 
02u

0x2
�
02u

0y2
� 0, 

02u

0x2
�
02u

0t 2
2
0u

0t
, 
0u

0y
� � 

0v

0x
 (3)

are examples of partial differential equations. Notice in the third equation that there are two 

dependent variables and two independent variables in the PDE. This indicates that u and v 

must be functions of two or more independent variables.

Definition 1.1.1 Differential Equation

An equation containing the derivatives of one or more dependent variables, with respect to 

one or more independent variables, is said to be a differential equation (DE).
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1.1 Definitions and Terminology | 5

 Notation Throughout this text, ordinary derivatives will be written using either the Leibniz 
notation dy/dx, d 2y/dx 2, d 3y/dx 3, … , or the prime notation y�, y �, y �, … . Using the latter nota-

tion, the first two differential equations in (2) can be written a little more compactly as 

y� � 6y � e�x and y � � y� � 12y � 0, respectively. Actually, the prime notation is used to denote 

only the first three derivatives; the fourth derivative is written y(4) instead of y ��. In general, the 

nth derivative is d ny/dx n or y(n). Although less convenient to write and to typeset, the Leibniz 

notation has an advantage over the prime notation in that it clearly displays both the dependent 

and independent variables. For example, in the differential equation d 2x/dt 2 � 16x � 0, it is im-

mediately seen that the symbol x now represents a dependent variable, whereas the independent 

variable is t. You should also be aware that in physical sciences and engineering, Newton’s dot 
notation (derogatively referred to by some as the “flyspeck” notation) is sometimes used to 

denote derivatives with respect to time t. Thus the differential equation d 2s/dt 2 � �32 becomes 

s$ � �32. Partial derivatives are often denoted by a subscript notation indicating the indepen-

dent variables. For example, the first and second equations in (3) can be written, in turn, as 

uxx � uyy � 0 and uxx � utt � ut.

 Classification by Order The order of a differential equation (ODE or PDE) is the 

order of the highest derivative in the equation.

EXAMPLE 2 Order of a Differential Equation
The differential equations

 highest order highest order

 T T

 
d  2y

dx  2
� 5ady

dx
b3

2 4y � ex,  2
04u

0x4
�
02u

0t 2
� 0

are examples of a second-order ordinary differential equation and a fourth-order partial dif-

ferential equation, respectively.

A first-order ordinary differential equation is sometimes written in the differential form

 M(x, y) dx � N(x, y) dy � 0.

EXAMPLE 3 Differential Form of a First-Order ODE
If we assume that y is the dependent variable in a first-order ODE, then recall from calculus 

that the differential dy is defined to be dy � y9dx.

(a) By dividing by the differential dx an alternative form of the equation (y 2 x) dx 1 

4x dy � 0 is given by

 y 2 x � 4x 

dy

dx
� 0 or equivalently 4x 

dy

dx
� y � x.

(b) By multiplying the differential equation

6xy 

dy

dx
� x2 � y2 � 0

by dx we see that the equation has the alternative differential form

 (x2 � y2) dx � 6xy dy � 0.

In symbols, we can express an nth-order ordinary differential equation in one dependent vari-

able by the general form

 F(x, y, y�, … , y(n) ) � 0, (4)

where F is a real-valued function of n � 2 variables: x, y, y�, … , y(n). For both practical and 

theoretical reasons, we shall also make the assumption hereafter that it is possible to solve an 
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6 | CHAPTER 1 Introduction to Differential Equations

ordinary differential equation in the form (4) uniquely for the highest derivative y(n) in terms of 

the remaining n � 1 variables. The differential equation

d  ny

dx  n � f (x, y, y9, p  , y (n21) ), (5)

where f is a real-valued continuous function, is referred to as the normal form of (4). Thus, when 

it suits our purposes, we shall use the normal forms

 
dy

dx
� f (x, y) and 

d  2y

dx  2
� f (x, y, y9)

to represent general first- and second-order ordinary differential equations.

EXAMPLE 4 Normal Form of an ODE
(a) By solving for the derivative dy/dx the normal form of the first-order differential equation

4x  

dy

dx
� y � x is 

dy

dx
�

x 2 y

4x
.

(b) By solving for the derivative y0  the normal form of the second-order differential 

equation

 y� � y� � 6y � 0 is y� � y� � 6y.

 Classification by Linearity An nth-order ordinary differential equation (4) is said to 

be linear in the variable y if F is linear in y, y�, … , y(n). This means that an nth-order ODE is 

linear when (4) is an(x)y  (n) � an21(x)y( n21) � p � a1(x)y9 � a0(x)y 2 g(x) � 0 or

 an(x) 
d  ny

dx  n � an21(x) 
d  n21y

dxn21
� p � a1(x) 

dy

dx
� a0(x)y � g(x). (6)

Two important special cases of (6) are linear first-order (n � 1) and linear second-order
(n � 2) ODEs.

a1(x) 
dy

dx
� a0(x)y � g(x) and a2(x) 

d  2y

dx2
� a1(x) 

dy

dx
� a0(x)y � g(x). (7)

In the additive combination on the left-hand side of (6) we see that the characteristic two proper-

ties of a linear ODE are

•  The dependent variable y and all its derivatives y�, y�, … , y(n) are of the first degree; that 

is, the power of each term involving y is 1.

•  The coefficients a0, a1, … , an of y, y�, … , y(n) depend at most on the independent 

variable x.

A nonlinear ordinary differential equation is simply one that is not linear. If the coefficients 

of y, y�, … , y(n) contain the dependent variable y or its derivatives or if powers of y, y�, … , 

y(n), such as (y�)2, appear in the equation, then the DE is nonlinear. Also, nonlinear functions 

of the dependent variable or its derivatives, such as sin y or ey� cannot appear in a linear 

 equation.

 EXAMPLE 5 Linear and Nonlinear Differential Equations
(a) The equations

 (y 2 x) dx � 4x  dy � 0, y0 2 2y9 � y � 0, x3 
d  3y

dx 
3

� 3x 
dy

dx
2 5y � e 

x

are, in turn, examples of linear first-, second-, and third-order ordinary differential equations. 

We have just demonstrated in part (a) of Example 3 that the first equation is linear in y by 

writing it in the alternative form 4xy� � y � x.

Remember these two 

characteristics of a 

linear ODE.
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1.1 Definitions and Terminology | 7

(b) The equations

 nonlinear term: nonlinear term: nonlinear term:
 coefficient depends on y nonlinear function of y power not 1

 T T T

(1 2 y)y9 � 2y � ex,  
d  2y

dx2
�  sin y � 0,  

d  4y

dx4
� y2 � 0,

are examples of nonlinear first-, second-, and fourth-order ordinary differential equations, 

respectively.

 Solution As stated before, one of our goals in this course is to solve—or find solutions 

of—differential equations. The concept of a solution of an ordinary differential equation is 

defined next.

Definition 1.1.2 Solution of an ODE

Any function f, defined on an interval I and possessing at least n derivatives that are con-

tinuous on I, which when substituted into an nth-order ordinary differential equation reduces 

the equation to an identity, is said to be a solution of the equation on the interval.

In other words, a solution of an nth-order ordinary differential equation (4) is a function f
that possesses at least n derivatives and

 F(x, f(x), f�(x), … , f(n)(x)) � 0 for all x in I.

We say that f satisfies the differential equation on I. For our purposes, we shall also assume that 

a solution f is a real-valued function. In our initial discussion we have already seen that y � e0.1x2

is a solution of dy/dx � 0.2xy on the interval (�q , q ).

Occasionally it will be convenient to denote a solution by the alternative symbol y(x).

 Interval of Definition You can’t think solution of an ordinary differential equation 

without simultaneously thinking interval. The interval I in Definition 1.1.2 is variously called 

the interval of definition, the interval of validity, or the domain of the solution and can be an 

open interval (a, b), a closed interval [a, b], an infinite interval (a, q ), and so on.

EXAMPLE 6 Verification of a Solution
Verify that the indicated function is a solution of the given differential equation on the interval 

(�q , q ).

(a) 
dy

dx
� xy1>2; y � 1

16 x
4 (b) y� � 2y� � y � 0; y � xex

SOLUTION One way of verifying that the given function is a solution is to see, after substi-

tuting, whether each side of the equation is the same for every x in the interval (�q , q ).

(a) From left-hand side: 
dy

dx
� 4 �

x3

16
�

x3

4

   right-hand side: xy1>2 � x � a x4

16
b1>2

� x �
x2

4
�

x3

4
,

we see that each side of the equation is the same for every real number x. Note that y1/2 � 14x
2 is, 

by definition, the nonnegative square root of 1
16 x

4.

(b) From the derivatives y� � xex + ex and y� � xex � 2ex we have for every real number x,

 left-hand side: y� � 2y� � y � (xex � 2ex) � 2(xex � ex) � xex � 0

 right-hand side: 0.

Note, too, that in Example 6 each differential equation possesses the constant solution y � 0, 

defined on (�q , q ). A solution of a differential equation that is identically zero on an interval 

I is said to be a trivial solution.
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8 | CHAPTER 1 Introduction to Differential Equations

 Solution Curve The graph of a solution f of an ODE is called a solution curve. Since 

f is a differentiable function, it is continuous on its interval I of definition. Thus there may be a 

difference between the graph of the function f and the graph of the solution f. Put another way, 

the domain of the function f does not need to be the same as the interval I of definition (or 

 domain) of the solution f.

EXAMPLE 7 Function vs. Solution
(a) Considered simply as a function, the domain of y � 1/x is the set of all real numbers x
except 0. When we graph y � 1/x, we plot points in the xy-plane corresponding to a judicious 

sampling of numbers taken from its domain. The rational function y � 1/x is discontinuous 

at 0, and its graph, in a neighborhood of the origin, is given in FIGURE 1.1.1(a). The function 

y � 1/x is not differentiable at x � 0 since the y-axis (whose equation is x � 0) is a vertical 

asymptote of the graph.

(b) Now y � 1/x is also a solution of the linear first-order differential equation xy� � y � 0 

(verify). But when we say y � 1/x is a solution of this DE we mean it is a function defined on 

an interval I on which it is differentiable and satisfies the equation. In other words, 

y � 1/x is a solution of the DE on any interval not containing 0, such as (�3, �1), ( 12, 10), 

(�q, 0), or (0, q). Because the solution curves defined by y � 1/x on the intervals (�3, �1) 

and on (1
2, 10) are simply segments or pieces of the solution curves defined by 

y � 1/x on (�q, 0) and (0, q), respectively, it makes sense to take the interval I to be as large 

as possible. Thus we would take I to be either (�q, 0) or (0, q). The solution curve on the 

interval (0, q) is shown in Figure 1.1.1(b).

 Explicit and Implicit Solutions You should be familiar with the terms explicit and 

implicit functions from your study of calculus. A solution in which the dependent variable is 

expressed solely in terms of the independent variable and constants is said to be an explicit solution. 

For our purposes, let us think of an explicit solution as an explicit formula y � f(x) that we can 

manipulate, evaluate, and differentiate using the standard rules. We have just seen in the last two 

examples that y � 1
16 x 4, y � xex, and y � 1/x are, in turn, explicit solutions of dy/dx � xy1/2, 

y � � 2y� � y � 0, and xy� � y � 0. Moreover, the trivial solution y � 0 is an explicit solution 

of all three equations. We shall see when we get down to the business of actually solving some 

ordinary differential equations that methods of solution do not always lead directly to an explicit 

solution y � f(x). This is particularly true when attempting to solve nonlinear first-order dif-

ferential equations. Often we have to be content with a relation or expression G(x, y) � 0 that 

defines a solution f implicitly.

Definition 1.1.3 Implicit Solution of an ODE

A relation G(x, y) � 0 is said to be an implicit solution of an ordinary differential equation (4) 

on an interval I provided there exists at least one function f that satisfies the relation as well 

as the differential equation on I.

It is beyond the scope of this course to investigate the conditions under which a relation 

G(x, y) � 0 defines a differentiable function f. So we shall assume that if the formal implementa-

tion of a method of solution leads to a relation G(x, y) � 0, then there exists at least one function 

f that satisfies both the relation (that is, G(x, f(x)) � 0) and the differential equation on an in-

terval I. If the implicit solution G(x, y) � 0 is fairly simple, we may be able to solve for y in terms 

of x and obtain one or more explicit solutions. See (iv) in the Remarks.

EXAMPLE 8 Verification of an Implicit Solution
The relation x2 � y2 � 25 is an implicit solution of the nonlinear differential equation

 
dy

dx
� �

x
y

 (8)

y

x1

1

y

x1

1

(a) Function y = 1/x, x ≠ 0

(b) Solution y = 1/x, (0, ∞)

FIGURE 1.1.1 Example 7 illustrates 

the difference between the function 

y � 1/x and the solution y � 1/x
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1.1 Definitions and Terminology | 9

on the interval defined by �5 	 x 	 5. By implicit differentiation we obtain

d

dx
 x  2 �

d

dx
 y2 �

d

dx
 25  or  2x � 2y 

dy

dx
� 0. (9)

Solving the last equation in (9) for the symbol dy/dx gives (8). Moreover, solving x2 � y2 � 25 

for y in terms of x yields y � 
"25 2 x2. The two functions y � f1(x) � "25 2 x2 and 

y � f2(x) � �"25 2 x2 satisfy the relation (that is, x2 � f2
1 � 25 and x2 � f2

2 � 25) and are 

explicit solutions defined on the interval (�5, 5). The solution curves given in FIGURE 1.1.2(b) 
and 1.1.2(c) are segments of the graph of the implicit solution in Figure 1.1.2(a).

x

y

c > 0

c = 0
c < 0

FIGURE 1.1.3 Some solutions of 

xy� � y � x 2 sin x

Any relation of the form x2 � y2 � c � 0 formally satisfies (8) for any constant c. However, 

it is understood that the relation should always make sense in the real number system; thus, for 

example, we cannot say that x2 � y2 � 25 � 0 is an implicit solution of the equation. Why not?

Because the distinction between an explicit solution and an implicit solution should be intui-

tively clear, we will not belabor the issue by always saying, “Here is an explicit (implicit) 

solution.”

 Families of Solutions The study of differential equations is similar to that of integral 

calculus. When evaluating an antiderivative or indefinite integral in calculus, we use a single constant 

c of integration. Analogously, when solving a first-order differential equation F(x, y, y�) � 0, we 

usually obtain a solution containing a single arbitrary constant or parameter c. A solution contain-

ing an arbitrary constant represents a set G(x, y, c) � 0 of solutions called a one-parameter 
family of solutions. When solving an nth-order differential equation F(x, y, y�, … , y(n)) � 0, we 

seek an n-parameter family of solutions G(x, y, c1, c2, … , cn) � 0. This means that a single 

differential equation can possess an infinite number of solutions corresponding to the unlim-

ited number of choices for the parameter(s). A solution of a differential equation that is free 

of arbitrary parameters is called a particular solution. For example, the one-parameter family 

y � cx � x cos x is an explicit solution of the linear first-order equation xy� � y � x2 sin x on the 

interval (�q , q ) (verify). FIGURE 1.1.3, obtained using graphing software, shows the graphs of 

some of the solutions in this family. The solution y � �x cos x, the red curve in the figure, is a 

particular solution corresponding to c � 0. Similarly, on the interval (�q , q ), y � c1e x � c2xe x 
is a two-parameter family of solutions (verify) of the linear second-order equation y � � 2y� � y � 0 

in part (b) of Example 6. Some particular solutions of the equation are the trivial solution 

y � 0 (c1 � c2 � 0), y � xex (c1 � 0, c2 � 1), y � 5e x � 2xe x (c1 � 5, c2 � �2), and so on.

In all the preceding examples, we have used x and y to denote the independent and dependent 

variables, respectively. But you should become accustomed to seeing and working with other 

symbols to denote these variables. For example, we could denote the independent variable by t 
and the dependent variable by x.

EXAMPLE 9 Using Different Symbols
The functions x � c1 cos 4t and x � c2 sin 4t, where c1 and c2 are arbitrary constants or 

parameters, are both solutions of the linear differential equation

 x� � 16x � 0.

(a) Implicit solution

5

–5

x

y

–5

5

x2 + y2 = 25
(b) Explicit solution

y1 = √25 – x2, –5 < x < 5

5
x

y

–5

5

(c) Explicit solution

y2 = –√25 – x2, –5 < x < 5

5

–5

x

y

–5

5

FIGURE 1.1.2  An implicit solution and two explicit solutions in Example 8
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10 | CHAPTER 1 Introduction to Differential Equations

For x � c1 cos 4t, the first two derivatives with respect to t are x� � �4c1 sin 4t and 

x� � �16c1 cos 4t. Substituting x� and x then gives

 x� � 16x � �16c1 cos 4t � 16(c1 cos 4t) � 0.

In like manner, for x � c2 sin 4t we have x� � �16c2 sin 4t, and so

 x� � 16x � �16c2 sin 4t � 16(c2 sin 4t) � 0.

Finally, it is straightforward to verify that the linear combination of solutions for the two-

parameter family x � c1 cos 4t � c2 sin 4t is also a solution of the differential equation.

The next example shows that a solution of a differential equation can be a piecewise-defined 

function.

EXAMPLE 10 A Piecewise-Defined Solution
You should verify that the one-parameter family y � cx4 is a one-parameter family of solutions 

of the linear differential equation xy� � 4y � 0 on the interval (�q , q ). See FIGURE 1.1.4(a). 
The piecewise-defined differentiable function

 y � e�x4, x , 0

    x4, x $ 0

is a particular solution of the equation but cannot be obtained from the family y � cx4 by a 

single choice of c; the solution is constructed from the family by choosing c � �1 for x 	 0 

and c � 1 for x � 0. See Figure 1.1.4(b).

 Singular Solution Sometimes a differential equation possesses a solution that is not a 

member of a family of solutions of the equation; that is, a solution that cannot be obtained by 

specializing any of the parameters in the family of solutions. Such an extra solution is called a 

singular solution. For example, we have seen that y � 1
16x

4 and y � 0 are solutions of the dif-

ferential equation dy/dx � xy1/2 on (�q , q ). In Section 2.2 we shall demonstrate, by actually 

solving it, that the differential equation dy/dx � xy1/2 possesses the one-parameter family of 

solutions y � (1
4x

2 � c)2, c � 0. When c � 0, the resulting particular solution is y � 1
16x

4. But 

notice that the trivial solution y � 0 is a singular solution since it is not a member of the family 

y � (1
4x

2 � c)2; there is no way of assigning a value to the constant c to obtain y � 0.

 Systems of Differential Equations Up to this point we have been discussing sin-

gle differential equations containing one unknown function. But often in theory, as well as in 

many applications, we must deal with systems of differential equations. A system of ordinary 
differential equations is two or more equations involving the derivatives of two or more unknown 

functions of a single independent variable. For example, if x and y denote dependent variables 

and t the independent variable, then a system of two first-order differential equations is given by

  
dx

dt
� f (t, x, y)

  
dy

dt
� g(t, x, y). 

(10)

A solution of a system such as (10) is a pair of differentiable functions x � f1(t), y � f2(t) 
defined on a common interval I that satisfy each equation of the system on this interval. See 

Problems 41 and 42 in Exercises 1.1.

(a)

x

y
c = 1

c = –1

c = 1
x ≥ 0

c = –1
x < 0

(b)

x

y

FIGURE 1.1.4 Some solutions of 

xy� � 4y � 0 in Example 10

REMARKS

(i) It might not be apparent whether a first-order ODE written in differential form M(x, y) dx �
N(x, y) dy � 0 is linear or nonlinear because there is nothing in this form that tells us which 

symbol denotes the dependent variable. See Problems 9 and 10 in Exercises 1.1.

(ii) We will see in the chapters that follow that a solution of a differential equation may involve 

an integral-defined function. One way of defining a function F of a single variable x by 
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 1.1 Definitions and Terminology | 11

means of a definite integral is

 F(x) � #
x

a

g(t) dt. (11)

If the integrand g in (11) is continuous on an interval [a, b] and a � x � b, then the derivative 

form of the Fundamental Theorem of Calculus states that F is differentiable on (a, b) and

 F9(x) �
d

dx#
x

a

g(t) dt � g(x). (12)

The integral in (11) is often nonelementary, that is, an integral of a function g that does 

not have an elementary-function antiderivative. Elementary functions include the familiar 

functions studied in a typical precalculus course:

constant, polynomial, rational, exponential, logarithmic, trigonometric, and inverse 
trigonometric functions,

as well as rational powers of these functions, finite combinations of these functions using 

addition, subtraction, multiplication, division, and function compositions. For example, even 

though e�t 
2

, "1 � t 3, and cos t2 are elementary functions, the integrals ee�t 
2

 dt, e"1 � t 3 dt, 
and ecos t 

2 dt are nonelementary. See Problems 25–28 in Exercises 1.1.

(iii) Although the concept of a solution of a differential equation has been emphasized in this 

section, you should be aware that a DE does not necessarily have to possess a solution. See 

Problem 43 in Exercises 1.1. The question of whether a solution exists will be touched on in 

the next section.

(iv) A few last words about implicit solutions of differential equations are in order. In Example 8 

we were able to solve the relation x2 � y2 � 25 for y in terms of x to get two explicit solutions, 

f1(x) � "25 2 x2 and f2(x) � �"25 2 x2, of the differential equation (8). But don’t 

read too much into this one example. Unless it is easy, obvious, or important, or you are in-

structed to, there is usually no need to try to solve an implicit solution G(x, y) � 0 for y ex-

plicitly in terms of x. Also do not misinterpret the second sentence following Definition 1.1.3. 

An implicit solution G(x, y) � 0 can define a perfectly good differentiable function f that is 

a solution of a DE, but yet we may not be able to solve G(x, y) � 0 using analytical methods 

such as algebra. The solution curve of f may be a segment or piece of the graph of G(x, y) � 0. 

See Problems 49 and 50 in Exercises 1.1. 

(v) If every solution of an nth-order ODE F(x, y, y�, … , y(n)) � 0 on an interval I can be obtained 

from an n-parameter family G(x, y, c1, c2, … , cn) � 0 by appropriate choices of the parameters 

ci, i � 1, 2, … , n, we then say that the family is the general solution of the DE. In solving 

linear ODEs, we shall impose relatively simple restrictions on the coefficients of the equation; 

with these restrictions one can be assured that not only does a solution exist on an interval but 

also that a family of solutions yields all possible solutions. Nonlinear equations, with the 

exception of some first-order DEs, are usually difficult or even impossible to solve in terms 

of familiar elementary functions. Furthermore, if we happen to obtain a family of solutions 

for a nonlinear equation, it is not evident whether this family contains all solutions. On a 

practical level, then, the designation “general solution” is applied only to linear DEs. Don’t 

be concerned about this concept at this point but store the words general solution in the back 

of your mind—we will come back to this notion in Section 2.3 and again in Chapter 3.

In Problems 1–8,  state the order of the given ordinary 

differential equation. Determine whether the equation is linear 

or nonlinear by matching it with (6).

 1. (1 � x)y� � 4xy� � 5y � cos x

 2. x 

d  3y

dx3
2 ady

dx
b4

� y � 0

 3. t 5y(4) � t 3y� � 6y � 0

 4. 
d  2u

dr  2
�

du

dr
� u �  cos (r � u)

 5. 
d  2y

dx  2
� Å1 � ady

dx
b2

Exercises Answers to selected odd-numbered problems begin on page ANS-1.1.1
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12 | CHAPTER 1 Introduction to Differential Equations

 6. 
d  2R

dt  2
� �

k

R2

 7. (sin u)y � � (cos u)y� � 2

 8. x$ 2 (1 2 1
3x
#

 2 ) x# � x � 0

In Problems 9 and 10, determine whether the given first-order 

differential equation is linear in the indicated dependent 

variable by matching it with the first differential equation 

given in (7).

 9. ( y2 � 1) dx � x dy � 0; in y; in x

 10. u  dv � (v � uv � ueu) du � 0; in v; in u

 In Problems 11–14, verify that the indicated function is an 

explicit solution of the given differential equation. Assume 

an appropriate interval I of definition for each solution.

 11. 2y� � y � 0; y � e�x/2

 12. 
dy

dt
� 20y � 24; y � 6

5 2 6
5 e�20t

 13. y� � 6y� � 13y � 0; y � e3x cos 2x

 14. y� � y � tan x; y � �(cos x) ln(sec x � tan x)

In Problems 15–18, verify that the indicated function y � f(x) 

is an explicit solution of the given first-order differential 

equation. Proceed as in Example 7, by considering f simply 

as a function, give its domain. Then by considering f as a 

solution of the differential equation, give at least one interval I 
of definition.

 15. (y 2 x)y9 � y 2 x � 8; y � x � 4"x � 2

 16. y� � 25 � y2; y � 5 tan 5x

 17. y� � 2xy2; y � 1/(4 � x2)

 18. 2y� � y3 cos x; y � (1 � sin x)�1/2

 In Problems 19 and 20, verify that the indicated expression is 

an implicit solution of the given first-order differential equation. 

Find at least one explicit solution y � f(x) in each case. Use a 

graphing utility to obtain the graph of an explicit solution. 

Give an interval I of definition of each solution f.

 19. 
dX

dt
� (X 2 1)(1 2 2X); lna2X 2 1

X 2 1
b � t

 20. 2xy dx � (x2 � y) dy � 0; �2x2y � y2 � 1

 In Problems 21–24, verify that the indicated family of functions 

is a solution of the given differential equation. Assume an 

appropriate interval I of definition for each solution.

 21. 
dP

dt
� P(1 2 P); P �

c1e
t

1 � c1e
t

 22. 
dy

dx
� 4xy � 8x3; y � 2x2 2 1 � c1e

�2x2

 23. 
d  2y

dx  2
2 4 

dy

dx
� 4y � 0; y � c1e

2x � c2xe2x

 24. x3 
d  3y

dx  3
� 2x2 

d  2y

dx  2
2 x 

dy

dx
� y � 12x  2;

  y � c1x
�1 � c2x � c3x ln x � 4x2

In Problems 25–28, use (12) to verify that the indicated function 

is a solution of the given differential equation. Assume an 

appropriate interval I of definition of each solution.

 25. x 

dy

dx
2 3xy � 1; y � e3x#

x

1

e�3t

t
 dt

 26. 2x 

dy

dx
2 y � 2x cos x; y � "x#

x

4

cos t"t
 dt

 27. x2
 

dy

dx
� xy � 10 sin x; y �

5

x
�

10

x #
x

1

sin t

t
 dt

 28. 
dy

dx
� 2xy � 1; y � e�x2

� e�x2#
x

0

et 
2

 dt

 29. Verify that the piecewise-defined function

 y � e�x  2, x , 0

x  2, x $ 0

  is a solution of the differential equation xy� � 2y � 0 on the 

interval (�q , q ).

 30. In Example 8 we saw that y � f1(x) � "25 2 x  2  and 

y � f2(x) � �"25 2 x  2  are solutions of dy/dx � �x/y 

on the interval (�5, 5). Explain why the piecewise-defined 

function

 y � e "25 2 x  2, �5 , x , 0

�"25 2 x  2, 0 # x , 5

  is not a solution of the differential equation on the interval 

(�5, 5).

In Problems 31–34, find values of m so that the function y � emx 

is a solution of the given differential equation.

 31. y� � 2y � 0 32. 3y� � 4y

 33. y� � 5y� � 6y � 0 34. 2y� � 9y� � 5y � 0

In Problems 35 and 36, find values of m so that the function 

y � xm is a solution of the given differential equation.

 35. xy� � 2y� � 0 36. x2y� � 7xy� � 15y � 0

In Problems 37–40, use the concept that y � c, �q  	 x 	 q , 

is a constant function if and only if y� � 0 to determine whether 

the given differential equation possesses constant solutions.

 37. 3xy� � 5y � 10 38. y� � y2 � 2y � 3

 39. ( y � 1)y� � 1 40. y� � 4y� � 6y � 10

In Problems 41 and 42, verify that the indicated pair of functions 

is a solution of the given system of differential equations on the 

interval (�q , q ).

 41. 
dx

dt
� x � 3y 42. 

d  2x

dt2
� 4y � et

  
dy

dt
� 5x � 3y;  

d  2y

dt  2
� 4x 2 et;

  x � e�2t � 3e6t,  x �  cos 2t � sin 2t � 1
5 et,

  y � �e�2t � 5e6t  y � �cos 2t � sin 2t � 1
5 et
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Discussion Problems
 43. Make up a differential equation that does not possess any real 

solutions.

 44. Make up a differential equation that you feel confident pos-

sesses only the trivial solution y � 0. Explain your reasoning.

 45. What function do you know from calculus is such that its first 

derivative is itself? Its first derivative is a constant multiple k 

of itself? Write each answer in the form of a first-order dif-

ferential equation with a solution.

 46. What function (or functions) do you know from calculus is 

such that its second derivative is itself? Its second derivative 

is the negative of itself? Write each answer in the form of a 

second-order differential equation with a solution.

 47. Given that y � sin x is an explicit solution of the first-order 

differential equation dy/dx � "1 2 y2. Find an interval I of 

definition. [Hint: I is not the interval (�q , q ).]

 48. Discuss why it makes intuitive sense to presume that the lin-

ear differential equation y� � 2y� � 4y � 5 sin t has a solution 

of the form y � A sin t � B cos t, where A and B are constants. 

Then find specific constants A and B so that y � A sin t � B cos t 
is a particular solution of the DE.

In Problems 49 and 50, the given figure represents the graph 

of an implicit solution G(x, y) � 0 of a differential equation 

dy/dx � f (x, y). In each case the relation G(x, y) � 0 implicitly 

defines several solutions of the DE. Carefully reproduce each 

figure on a piece of paper. Use different colored pencils to mark 

off segments, or pieces, on each graph that correspond to graphs 

of solutions. Keep in mind that a solution f must be a function 

and differentiable. Use the solution curve to estimate the 

interval I of definition of each solution f.

 49. 

FIGURE 1.1.5 Graph for 

Problem 49

x

y

1

1

 50. 

FIGURE 1.1.6   Graph for 

Problem 50

1

1
x

y

  51. The graphs of the members of the one-parameter family 

x3 � y3 � 3cxy are called folia of Descartes. Verify that this 

family is an implicit solution of the first-order differential 

equation

 
dy

dx
�

y(y3 2 2x3)

x(2y3 2 x3)
.

 52. The graph in FIGURE 1.1.6 is the member of the family of folia 

in Problem 51 corresponding to c � 1. Discuss: How can 

the DE in Problem 51 help in finding points on the graph of 

x3 � y3 � 3xy where the tangent line is vertical? How does 

knowing where a tangent line is vertical help in determining 

an interval I of definition of a solution f of the DE? Carry out 

your ideas and compare with your estimates of the intervals in 

Problem 50.

 53. In Example 8, the largest interval I over which the explicit 

solutions y � f1(x) and y � f2(x) are defined is the open 

interval (�5, 5). Why can’t the interval I of definition be the 

closed interval [�5, 5]?

 54. In Problem 21, a one-parameter family of solutions of the DE 

P� � P(1 � P) is given. Does any solution curve pass through 

the point (0, 3)? Through the point (0, 1)?

 55. Discuss, and illustrate with examples, how to solve differen-

tial equations of the forms dy/dx � f (x) and d 2y/dx2 � f (x).

 56. The differential equation x(y�)2 � 4y� � 12x3 � 0 has the form 

given in (4). Determine whether the equation can be put into 

the normal form dy/dx � f (x, y).

 57. The normal form (5) of an nth-order differential equation 

is equivalent to (4) whenever both forms have exactly the 

same solutions. Make up a first-order differential equation 

for which F(x, y, y�) � 0 is not equivalent to the normal form 

dy/dx � f (x, y).

 58. Find a linear second-order differential equation F(x, y, y�, y�) � 0 

for which y � c1x � c2x 2 is a two-parameter family of solu-

tions. Make sure that your equation is free of the arbitrary 

parameters c1 and c2.

Qualitative information about a solution y � f(x) of a 

differential equation can often be obtained from the equation 

itself. Before working Problems 59–62, recall the geometric 

significance of the derivatives dy/dx and d 2y/dx2.

 59. Consider the differential equation dy/dx � e�x2

.

(a) Explain why a solution of the DE must be an increasing 

function on any interval of the x-axis.

(b) What are lim
xS2q

dy/dx and lim
xSq

dy/dx? What does this 

suggest about a solution curve as x S
q?

(c) Determine an interval over which a solution curve is concave 

down and an interval over which the curve is concave up.

(d) Sketch the graph of a solution y � f(x) of the differential 

equation whose shape is suggested by parts (a)–(c).

 60. Consider the differential equation dy/dx � 5 � y.

(a) Either by inspection, or by the method suggested in 

Problems 37–40, find a constant solution of the DE.

(b) Using only the differential equation, find intervals on the 

y-axis on which a nonconstant solution y � f(x) is in-

creasing. Find intervals on the y-axis on which y � f(x) 

is decreasing.

 61. Consider the differential equation dy/dx � y(a � by), where 

a and b are positive constants.

(a) Either by inspection, or by the method suggested in 

Problems 37–40, find two constant solutions of the DE.

(b) Using only the differential equation, find intervals on the 

y-axis on which a nonconstant solution y � f(x) is 

 increasing. On which y � f(x) is decreasing.

(c) Using only the differential equation, explain why y � a/2b 

is the y-coordinate of a point of inflection of the graph of 

a nonconstant solution y � f(x).
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14 | CHAPTER 1 Introduction to Differential Equations

(d) On the same coordinate axes, sketch the graphs of the two 

constant solutions found in part (a). These constant solu-

tions partition the xy-plane into three regions. In each re-

gion, sketch the graph of a nonconstant solution y � f(x) 

whose shape is suggested by the results in parts (b) and (c).

 62. Consider the differential equation y� � y2 � 4.

(a) Explain why there exist no constant solutions of the DE.

(b) Describe the graph of a solution y � f(x). For example, 

can a solution curve have any relative extrema?

(c) Explain why y � 0 is the y-coordinate of a point of inflec-

tion of a solution curve.

(d) Sketch the graph of a solution y � f(x) of the differential 

equation whose shape is suggested by parts (a)–(c).

Computer Lab Assignments
In Problems 63 and 64, use a CAS to compute all derivatives 

and to carry out the simplifications needed to verify that the 

indicated function is a particular solution of the given differen-

tial equation.

 63. y(4) � 20y� � 158y� � 580y� � 841y � 0;

  y � xe5x cos 2x

 64. x3y� � 2x2y� � 20xy� � 78y � 0;

  y � 20 
 cos (5 ln x)

x
2 3 

 sin (5 ln x)

x

1.2 Initial-Value Problems

INTRODUCTION We are often interested in problems in which we seek a solution y(x) of a 

differential equation so that y(x) satisfies prescribed side conditions—that is, conditions that are 

imposed on the unknown y(x) or on its derivatives. In this section we examine one such problem 

called an initial-value problem.

 Initial-Value Problem On some interval I containing x0, the problem

 Solve: 
d  n

 y

dxn � f (x, y, y9, p  , y(n21))
 (1)

 Subject to: y(x0) � y0, y9(x0) � y1, p  , y(n21)(x0) � yn21,

where y0, y1, … , yn�1 are arbitrarily specified real constants, is called an initial-value problem (IVP). 
The values of y(x) and its first n�1 derivatives at a single point x0: y(x0) � y0, y�(x0) � y1, … , 

y(n�1)(x0) � yn�1, are called initial conditions (IC).

 First- and Second-Order IVPs The problem given in (1) is also called an nth-order 
initial-value problem. For example,

 Solve: 
dy

dx
� f (x, y)

 Subject to: y(x0) � y0 

(2)

and Solve: 
d 

2y

dx2
� f (x, y, y9)

 Subject to: y(x0) � y0, y9(x0) � y1 

(3)

are first- and second-order initial-value problems, respectively. These two problems are easy 

to interpret in geometric terms. For (2) we are seeking a solution of the differential equation on 

an interval I containing x0 so that a solution curve passes through the prescribed point (x0, y0). 

See FIGURE 1.2.1. For (3) we want to find a solution of the differential equation whose graph not 

only passes through (x0, y0) but passes through so that the slope of the curve at this point is y1. 

See FIGURE 1.2.2. The term initial condition derives from physical systems where the independent 

variable is time t and where y(t0) � y0 and y�(t0) � y1 represent, respectively, the position and 

velocity of an object at some beginning, or initial, time t0.

Solving an nth-order initial-value problem frequently entails using an n-parameter family of 

solutions of the given differential equation to find n specialized constants so that the resulting 

particular solution of the equation also “fits”—that is, satisfies—the n initial conditions.

y

x

solutions of the DE

I

(x0, y0)

FIGURE 1.2.1 First-order IVP

y
solutions of the DE

I
x

m = y1

(x0, y0)

FIGURE 1.2.2 Second-order IVP
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1.2 Initial-Value Problems | 15

EXAMPLE 1 First-Order IVPs
(a) It is readily verified that y � cex is a one-parameter family of solutions of the simple 

first-order equation y� � y on the interval (�q , q ). If we specify an initial condition, say, 

y(0) � 3, then substituting x � 0, y � 3 in the family determines the constant 3 � ce0 � c. 
Thus the function y � 3ex is a solution of the initial-value problem

 y� � y, y(0) � 3.

(b) Now if we demand that a solution of the differential equation pass through the point 

(1, �2) rather than (0, 3), then y(1) � �2 will yield �2 � ce or c � �2e�1. The function

y � �2e x�1 is a solution of the initial-value problem

 y� � y, y(1) � �2.

The graphs of these two solutions are shown in blue in FIGURE 1.2.3.

The next example illustrates another first-order initial-value problem. In this example, notice 

how the interval I of definition of the solution y(x) depends on the initial condition y(x0) � y0.

EXAMPLE 2 Interval I of Definition of a Solution
In Problem 6 of Exercises 2.2 you will be asked to show that a one-parameter family of solutions 

of the first-order differential equation y� � 2xy2 � 0 is y � 1/(x2 � c). If we impose the initial 

condition y(0) � �1, then substituting x � 0 and y � �1 into the family of solutions gives 

�1 � 1/c or c � �1. Thus, y � 1/(x2 � 1). We now emphasize the following three distinctions.

•  Considered as a function, the domain of y � 1/(x2 � 1) is the set of real numbers x for 

which y(x) is defined; this is the set of all real numbers except x � �1 and 

x � 1. See FIGURE 1.2.4(a).
•  Considered as a solution of the differential equation y� � 2xy2 � 0, the interval I 

of definition of y � 1/(x2 � 1) could be taken to be any interval over which y(x) is 

defined and differentiable. As can be seen in Figure 1.2.4(a), the largest intervals on which 

y � 1/(x2 � 1) is a solution are (�q , �1), (�1, 1), and (1, q ).

•  Considered as a solution of the initial-value problem y� � 2xy2 � 0, y(0) � �1, the interval 

I of definition of y � 1/(x2 � 1) could be taken to be any interval over which y(x) is defined, 

differentiable, and contains the initial point x � 0; the largest interval for which this is true 

is (–1, 1). See Figure 1.2.4(b).

See Problems 3–6 in Exercises 1.2 for a continuation of Example 2.

EXAMPLE 3 Second-Order IVP
In Example 9 of Section 1.1 we saw that x � c1 cos 4t � c2 sin 4t is a two-parameter family 

of solutions of x� � 16x � 0. Find a solution of the initial-value problem

 x0 � 16x � 0, x(p/2) � �2, x�(p/2) � 1. (4)

SOLUTION  We first apply x(p/2) � �2 to the given family of solutions: c1 cos 2p � c2 sin 2p �
�2. Since cos 2p � 1 and sin 2p � 0, we find that c1 � �2. We next apply x�(p/2) � 1 to 

the one-parameter family x(t) � �2 cos 4t � c2 sin 4t. Differentiating and then setting 

t � p/2 and x� � 1 gives 8 sin 2p � 4c2 cos 2p � 1, from which we see that c2 � 1
4. Hence 

x � �2 cos 4t � 1
4 sin 4t is a solution of (4).

 Existence and Uniqueness Two fundamental questions arise in considering an initial-

value problem:

Does a solution of the problem exist? If a solution exists, is it unique?

For a first-order initial-value problem such as (2), we ask:

Existence
 �  Does the differential equation dy/dx � f (x, y) possess solutions?

Do any of the solution curves pass through the point (x0, y0)?

Uniqueness �  When can we be certain that there is precisely one solution curve passing through 
the point (x0, y0)?

x

y

(1, –2)

(0, 3)

FIGURE 1.2.3 Solutions of IVPs in 

Example 1

FIGURE 1.2.4 Graphs of function and 

 solution of IVP in Example 2

y

x–1 1

y

x–1 1

(a) Function defined for all x
     except x = ±1

(b) Solution defined on interval 
      containing x = 0

(0, –1)
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16 | CHAPTER 1 Introduction to Differential Equations

Note that in Examples 1 and 3, the phrase “a solution” is used rather than “the solution” of the 

problem. The indefinite article “a” is used deliberately to suggest the possibility that other solu-

tions may exist. At this point it has not been demonstrated that there is a single solution of each 

problem. The next example illustrates an initial-value problem with two solutions.

EXAMPLE 4 An IVP Can Have Several Solutions
Each of the functions y � 0 and y � 1

16 x4 satisfies the differential equation dy/dx � xy1/2 and 

the initial condition y(0) � 0, and so the initial-value problem dy/dx � xy1/2, y(0) � 0, has at 

least two solutions. As illustrated in FIGURE 1.2.5, the graphs of both functions pass through 

the same point (0, 0).

Within the safe confines of a formal course in differential equations one can be fairly con-

fident that most differential equations will have solutions and that solutions of initial-value 

problems will probably be unique. Real life, however, is not so idyllic. Thus it is desirable to 

know in advance of trying to solve an initial-value problem whether a solution exists and, when 

it does, whether it is the only solution of the problem. Since we are going to consider first-

order differential equations in the next two chapters, we state here without proof a straight-

forward theorem that gives conditions that are sufficient to guarantee the existence and 

uniqueness of a solution of a first-order initial-value problem of the form given in (2). We 

shall wait until Chapter 3 to address the question of existence and uniqueness of a second-order 

initial-value problem.

Theorem 1.2.1 Existence of a Unique Solution

Let R be a rectangular region in the xy-plane defined by a � x � b, c � y � d, that contains 

the point (x0, y0) in its interior. If f (x, y) and f/y are continuous on R, then there exists some 

interval I0: (x0 � h, x0 � h), h � 0, contained in [a, b], and a unique function y(x) defined on 

I0 that is a solution of the initial-value problem (2).

The foregoing result is one of the most popular existence and uniqueness theorems for first-

order differential equations, because the criteria of continuity of f (x, y) and f/y are relatively 

easy to check. The geometry of Theorem 1.2.1 is illustrated in FIGURE 1.2.6.

EXAMPLE 5 Example 4 Revisited
We saw in Example 4 that the differential equation dy/dx � xy1/2 possesses at least two solu-

tions whose graphs pass through (0, 0). Inspection of the functions

f ( x, y) � xy1>2 and 
0f

0y
�

x

2y1>2
shows that they are continuous in the upper half-plane defined by y � 0. Hence Theorem 1.2.1 

enables us to conclude that through any point (x0, y0), y0 � 0, in the upper half-plane there 

is some interval centered at x0 on which the given differential equation has a unique 

solution. Thus, for example, even without solving it we know that there exists some 

interval centered at 2 on which the initial-value problem dy/dx � xy1/2, y(2) � 1, has a 

unique solution.

In Example 1, Theorem 1.2.1 guarantees that there are no other solutions of the initial-value 

problems y� � y, y(0) � 3, and y� � y, y(1) � �2, other than y � 3e x and y � �2e x–1, respec-

tively. This follows from the fact that f (x, y) � y and f/y � 1 are continuous throughout the 

entire xy-plane. It can be further shown that the interval I on which each solution is defined 

is (–q , q ).

 Interval of Existence/Uniqueness Suppose y(x) represents a solution of the 

initial-value problem (2). The following three sets on the real x-axis may not be the same: 

the domain of the function y(x), the interval I over which the solution y(x) is defined or ex-

ists, and the interval I0 of existence and uniqueness. In Example 7 of Section 1.1 we illustrated 

FIGURE 1.2.5 Two solutions of the same 

IVP in Example 4

y

x
(0, 0)

1

y = x4/16

y = 0

FIGURE 1.2.6 Rectangular region R

x

y
d

c

a b

R

(x0, y0)

I0
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 1.2 Initial-Value Problems | 17

the difference between the domain of a function and the interval I of definition. Now suppose 

(x0, y0) is a point in the interior of the rectangular region R in Theorem 1.2.1. It turns out that the 

continuity of the function f (x, y) on R by itself is sufficient to guarantee the existence of at least 

one solution of dy/dx � f (x, y), y(x0) = y0, defined on some interval I. The interval I of definition 

for this initial-value problem is usually taken to be the largest interval containing x0 over which 

the solution y(x) is defined and differentiable. The interval I depends on both f (x, y) and the 

initial condition y(x0) � y0. See Problems 31–34 in Exercises 1.2. The extra condition of continu-

ity of the first partial derivative �f/�y on R enables us to say that not only does a solution exist 

on some interval I0 containing x0, but it also is the only solution satisfying y(x0) � y0. However, 

Theorem 1.2.1 does not give any indication of the sizes of the intervals I and I0; the interval I of 
definition need not be as wide as the region R and the interval I0 of existence and uniqueness 
may not be as large as I. The number h � 0 that defines the interval I0: (x0 � h, x0 � h), could 

be very small, and so it is best to think that the solution y(x) is unique in a local sense, that is, a 

solution defined near the point (x0, y0). See Problem 50 in Exercises 1.2.

In Problems 1 and 2, y � 1/(1 � c1e
–x) is a one-parameter family 

of solutions of the first-order DE y� � y � y2. Find a solution of 

the first-order IVP consisting of this differential equation and 

the given initial condition.

 1. y(0) � �1
3 2. y(�1) � 2

In Problems 3–6, y � 1/(x2 � c) is a one-parameter family of 

 solutions of the first-order DE y� � 2xy2 � 0. Find a solution 

of the first-order IVP consisting of this differential equation and 

the given initial condition. Give the largest interval I over which 

the solution is defined.

 3. y(2) � 1
3 4. y(�2) � 1

2

 5. y(0) � 1 6. y (1
2) � �4

In Problems 7–10, x � c1 cos t � c2 sin t is a two-parameter 

family of solutions of the second-order DE x � � x � 0. Find a 

solution of the second-order IVP consisting of this differential 

equation and the given initial conditions.

 7. x(0) � �1, x�(0) � 8

 8. x(p/2) � 0, x�(p/2) � 1

 9. x(p/6) � 12, x�(p/6) � 0

 10. x(p/4) � !2, x�(p/4) � 2!2

In Problems 11–14, y � c1e
x � c2e

–x is a two-parameter family 

of solutions of the second-order DE y � � y � 0. Find a solution 

of the second-order IVP consisting of this differential equation 

and the given initial conditions.

 11. y(0) � 1, y�(0) � 2 12. y(1) � 0, y�(1) � e

 13. y(�1) � 5, y�(�1) � �5 14. y(0) � 0, y�(0) � 0

In Problems 15 and 16, determine by inspection at least two 

solutions of the given first-order IVP.

 15. y� � 3y2/3, y(0) � 0 16. xy� � 2y, y(0) � 0

In Problems 17–24, determine a region of the xy-plane for which 

the given differential equation would have a unique solution 

whose graph passes through a point (x0, y0) in the region.

 17. 
dy

dx
� y2/3 18. 

dy

dx
� !xy

 19. x 
dy

dx
� y 20. 

dy

dx
2 y � x

Exercises Answers to selected odd-numbered problems begin on page ANS-1.1.2

REMARKS

(i) The conditions in Theorem 1.2.1 are sufficient but not necessary. When f (x, y) and �f/�y 

are continuous on a rectangular region R, it must always follow that a solution of (2) exists 

and is unique whenever (x0, y0) is a point interior to R. However, if the conditions stated 

in the hypotheses of Theorem 1.2.1 do not hold, then anything could happen: Problem (2) 

may still have a solution and this solution may be unique, or (2) may have several solutions, 

or it may have no solution at all. A rereading of Example 4 reveals that the hypotheses of 

Theorem 1.2.1 do not hold on the line y � 0 for the differential equation dy/dx � xy1/2, and 

so it is not surprising, as we saw in Example 4 of this section, that there are two solutions 

defined on a common interval (�h, h) satisfying y(0) � 0. On the other hand, the hypotheses 

of Theorem 1.2.1 do not hold on the line y � 1 for the differential equation dy/dx � | y � 1|. 

Nevertheless, it can be proved that the solution of the initial-value problem dy/dx � | y � 1|, 

y(0) � 1, is unique. Can you guess this solution?

(ii) You are encouraged to read, think about, work, and then keep in mind Problem 49 in 

Exercises 1.2.
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18 | CHAPTER 1 Introduction to Differential Equations

 21. (4 2 y2)y9 � x2 22. (1 � y3)y9 � x2

 23. (x2 � y2)y9 � y2 24. (y 2 x)y9 � y � x

In Problems 25–28, determine whether Theorem 1.2.1 guaran-

tees that the differential equation y9 � "y2 2 9 possesses a 

unique solution through the given point.

 25. (1, 4) 26. (5, 3)

 27. (2, �3) 28. (�1, 1)

 29. (a)  By inspection, find a one-parameter family of solutions 

of the differential equation xy� � y. Verify that each mem-

ber of the family is a solution of the initial-value problem 

xy� � y, y(0) � 0.

(b) Explain part (a) by determining a region R in the xy-plane 

for which the differential equation xy� � y would have a 

unique solution through a point (x0, y0) in R.

(c) Verify that the piecewise-defined function

 y � e0, x , 0

x, x $ 0

 satisfies the condition y(0) � 0. Determine whether this 

function is also a solution of the initial-value problem in 

part (a).

 30. (a)  Verify that y � tan (x � c) is a one-parameter family of 

solutions of the differential equation y� � 1 � y2.

(b) Since f (x, y) � 1 � y2 and f/y � 2y are continuous 

everywhere, the region R in Theorem 1.2.1 can be taken 

to be the entire xy-plane. Use the family of solutions in 

part (a) to find an explicit solution of the first-order initial-

value problem y� � 1 � y2, y(0) � 0. Even though x0 � 0 

is in the interval (�2, 2), explain why the solution is not 

defined on this interval.

(c) Determine the largest interval I of definition for the solu-

tion of the initial-value problem in part (b).

 31. (a)  Verify that y � –1/(x � c) is a one-parameter family of 

solutions of the differential equation y� � y2.

(b) Since f (x, y) � y2 and f/y � 2y are continuous every-

where, the region R in Theorem 1.2.1 can be taken to be 

the entire xy-plane. Find a solution from the family in 

part (a) that satisfies y(0) � 1. Find a solution from the 

family in part (a) that satisfies y(0) � �1. Determine the 

largest interval I of definition for the solution of each 

initial-value problem.

 32. (a)  Find a solution from the family in part (a) of Problem 31 

that satisfies y� � y2, y(0) � y0, where y0 � 0. Explain 

why the largest interval I of definition for this solution is 

either (�q , 1/y0) or (1/y0, q ).

(b) Determine the largest interval I of definition for the 

solution of the first-order initial-value problem y� � y2, 

y(0) � 0.

 33. (a)  Verify that 3x2 � y2 � c is a one-parameter family of 

solutions of the differential equation y dy/dx � 3x.

(b) By hand, sketch the graph of the implicit solution 

3x2 � y2 � 3. Find all explicit solutions y � f(x) of the 

DE in part (a) defined by this relation. Give the interval I 
of definition of each explicit solution.

(c) The point (�2, 3) is on the graph of 3x2 � y2 � 3, but 

which of the explicit solutions in part (b) satisfies 

y(�2) � 3?

 34. (a)  Use the family of solutions in part (a) of Problem 33 to 

find an implicit solution of the initial-value problem 

y  dy/dx � 3x, y(2) � �4. Then, by hand, sketch the graph 

of the explicit solution of this problem and give its inter-

val I of definition.

(b) Are there any explicit solutions of y dy/dx � 3x that pass 

through the origin?

In Problems 35–38, the graph of a member of a family of solu-

tions of a second-order differential equation d 2y/dx2 � f (x, y, y�) 
is given. Match the solution curve with at least one pair of the 

following initial conditions.

(a) y(1) � 1, y�(1) � –2 (b) y(�1) � 0, y�(�1) � �4

(c) y(1) � 1, y�(1) � 2 (d) y(0) � �1, y�(0) � 2

(e) y(0) � �1, y�(0) � 0 (f ) y(0) � �4, y�(0) � –2

 35. 

x

y

5

5

–5

FIGURE 1.2.7 Graph for 

Problem 35

 36. 

FIGURE 1.2.8 Graph for 

Problem 36

x

y

5

5

–5

 37. 

FIGURE 1.2.9 Graph for 

Problem 37

x

y

5

5

–5

 38. 

FIGURE 1.2.10 Graph for 

Problem 38

x

y

5

5

–5

In Problems 39–44, y � c1 cos 3x � c2 sin 3x is a two-parameter 

family of solutions of the second-order DE y� � 9y � 0. If pos-

sible, find a solution of the differential equation that satisfies the 

given side conditions. The conditions specified at two different 

points are called boundary conditions.

 39. y(0) � 0, y(p/6) � �1 40. y(0) � 0, y(p) � 0

 41. y�(0) � 0, y�(p/4) � 0 42. y(0) � 1, y�(p) � 5

 43. y(0) � 0, y(p) � 4 44. y�(p/3) � 1, y�(p) � 0

Discussion Problems
In Problems 45 and 46, use Problem 55 in Exercises 1.1 and (2) 

and (3) of this section.

 45. Find a function y � f (x) whose graph at each point (x, y) has 

the slope given by 8e2x � 6x and has the y-intercept (0, 9).
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1.3 Differential Equations as Mathematical Models | 19

 46. Find a function y � f (x) whose second derivative is y� � 

12x � 2 at each point (x, y) on its graph and y � �x � 5 is 

tangent to the graph at the point corresponding to x � 1.

 47. Consider the initial-value problem y� � x � 2y, y(0) � 1
2 . 

Determine which of the two curves shown in FIGURE 1.2.11 is 

the only plausible solution curve. Explain your reasoning.

  

x

y
1

1

(0, ¹⁄₂)

FIGURE 1.2.11 Graph for Problem 47

 48. Determine a plausible value of x0 for which the graph of the 

solution of the initial-value problem y� � 2y � 3x � 6, y(x0) � 0 

is tangent to the x-axis at (x0, 0). Explain your reasoning.

 49. Suppose that the first-order differential equation dy/dx � f (x, y) 

possesses a one-parameter family of solutions and that f (x, y) 

satisfies the hypotheses of Theorem 1.2.1 in some rectangular 

region R of the xy-plane. Explain why two different solution 

curves cannot intersect or be tangent to each other at a point 

(x0, y0) in R.

 50. The functions

 y(x) � 1
16 x4, �q , x , q

  and y(x) � e 0, x , 0
1

16 x4, x $ 0

  have the same domain but are clearly different. See FIGURES 1.2.12(a) 
and 1.2.12(b), respectively. Show that both functions are solu-

tions of the initial-value problem dy/dx � xy1/2, y(2) � 1 on the 

interval (–q , q). Resolve the apparent contradiction between 

this fact and the last sentence in Example 5.

  FIGURE 1.2.12 Two solutions of the IVP in Problem 50

y

x

(2, 1)1

(a)

y

x

(2, 1)1

(b)

 51. Show that

x � #
y

0

1"t3 � 1
 dt

  is an implicit solution of the initial-value problem

 2 

d 2y

dx2
2 3y2 � 0, y(0) � 0, y9(0) � 1.

  Assume that y $ 0. [Hint: The integral is nonelementary. See 

(ii) in the Remarks at the end of Section 1.1.]

1.3 Differential Equations as Mathematical Models

INTRODUCTION In this section we introduce the notion of a mathematical model. Roughly 

speaking, a mathematical model is a mathematical description of something. This description could 

be as simple as a function. For example, Leonardo da Vinci (1452–1519) was able to deduce the 

speed v of a falling body by a examining a sequence. Leonardo allowed water drops to fall, at equally 

spaced intervals of time, between two boards covered with blotting paper. When a spring mechanism 

was disengaged, the boards were clapped together. See FIGURE 1.3.1. By carefully examining the 

sequence of water blots, Leonardo discovered that the distances between consecutive drops increased 

in “a continuous arithmetic proportion.” In this manner he discovered the formula v � gt.
Although there are many kinds of mathematical models, in this section we focus only on dif-

ferential equations and discuss some specific differential-equation models in biology, physics, 

and chemistry. Once we have studied some methods for solving DEs, in Chapters 2 and 3 we 

return to, and solve, some of these models.

 Mathematical Models It is often desirable to describe the behavior of some real-life 

system or phenomenon, whether physical, sociological, or even economic, in mathematical terms. 

The mathematical description of a system or a phenomenon is called a mathematical model and 

is constructed with certain goals in mind. For example, we may wish to understand the mecha-

nisms of a certain ecosystem by studying the growth of animal populations in that system, or we 

may wish to date fossils by means of analyzing the decay of a radioactive substance either in the 

fossil or in the stratum in which it was discovered.

Construction of a mathematical model of a system starts with identification of the variables that 

are responsible for changing the system. We may choose not to incorporate all these variables into 

the model at first. In this first step we are specifying the level of resolution of the model. Next, 

FIGURE 1.3.1 Da Vinci’s apparatus for 

 determining the speed of falling body
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20 | CHAPTER 1 Introduction to Differential Equations

we make a set of reasonable assumptions or hypotheses about the system we are trying to describe. 

These assumptions will also include any empirical laws that may be applicable to the system.

For some purposes it may be perfectly within reason to be content with low-resolution models. 

For example, you may already be aware that in modeling the motion of a body falling near the surface 

of the Earth, the retarding force of air friction, is sometimes ignored in beginning physics courses; 

but if you are a scientist whose job it is to accurately predict the flight path of a long-range projectile, 

air resistance and other factors such as the curvature of the Earth have to be taken into account.

Since the assumptions made about a system frequently involve a rate of change of one or more 

of the variables, the mathematical depiction of all these assumptions may be one or more equa-

tions involving derivatives. In other words, the mathematical model may be a differential equation 

or a system of differential equations.

Once we have formulated a mathematical model that is either a differential equation or a 

system of differential equations, we are faced with the not insignificant problem of trying to solve 

it. If we can solve it, then we deem the model to be reasonable if its solution is consistent with 

either experimental data or known facts about the behavior of the system. But if the predictions 

produced by the solution are poor, we can either increase the level of resolution of the model or 

make alternative assumptions about the mechanisms for change in the system. The steps of the 

modeling process are then repeated as shown in FIGURE 1.3.2.

Assumptions
and hypotheses

Mathematical
formulation

Check model
predictions with

known facts

Obtain
solutions

Express assumptions
in terms of DEs

Display predictions
of the model

(e.g., graphically)

If necessary,
alter assumptions

or increase resolution
of the model

Solve the DEs

FIGURE 1.3.2 Steps in the modeling process

Of course, by increasing the resolution we add to the complexity of the mathematical model and 

increase the likelihood that we cannot obtain an explicit solution.

A mathematical model of a physical system will often involve the variable time t. A solution of 

the model then gives the state of the system; in other words, for appropriate values of t, the values 

of the dependent variable (or variables) describe the system in the past, present, and future.

 Population Dynamics One of the earliest attempts to model human population growth 

by means of mathematics was by the English economist Thomas Malthus (1776–1834) in 1798. 

Basically, the idea of the Malthusian model is the assumption that the rate at which a population 

of a country grows at a certain time is proportional* to the total population of the country at that 

time. In other words, the more people there are at time t, the more there are going to be in the 

future. In mathematical terms, if P(t) denotes the total population at time t, then this assumption 

can be expressed as

 
dP

dt
r P or 

dP

dt
� kP, (1)

where k is a constant of proportionality. This simple model, which fails to take into account many 

factors (immigration and emigration, for example) that can influence human populations to either 

grow or decline, nevertheless turned out to be fairly accurate in predicting the population of the 

United States during the years 1790–1860. Populations that grow at a rate described by (1) are 

rare; nevertheless, (1) is still used to model growth of small populations over short intervals of 
time, for example, bacteria growing in a petri dish.

*If two quantities u and v are proportional, we write u ~ v. This means one quantity is a constant multiple 

of the other: u � kv.
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1.3 Differential Equations as Mathematical Models | 21

 Radioactive Decay The nucleus of an atom consists of combinations of protons and 

neutrons. Many of these combinations of protons and neutrons are unstable; that is, the atoms 

decay or transmute into the atoms of another substance. Such nuclei are said to be radioactive. 

For example, over time, the highly radioactive radium, Ra-226, transmutes into the radioactive 

gas radon, Rn-222. In modeling the phenomenon of radioactive decay, it is assumed that the 

rate dA/dt at which the nuclei of a substance decays is proportional to the amount (more precisely, 

the number of nuclei) A(t) of the substance remaining at time t:

 
dA

dt
r A  or 

dA

dt
� kA. (2)

Of course equations (1) and (2) are exactly the same; the difference is only in the interpretation 

of the symbols and the constants of proportionality. For growth, as we expect in (1), k � 0, and 

in the case of (2) and decay, k 	 0.

The model (1) for growth can be seen as the equation dS/dt � rS, which describes the growth of 

capital S when an annual rate of interest r is compounded continuously. The model (2) for decay also 

occurs in a biological setting, such as determining the half-life of a drug—the time that it takes for 

50% of a drug to be eliminated from a body by excretion or metabolism. In chemistry, the decay 

model (2) appears as the mathematical description of a first-order chemical reaction. The point is this:

A single differential equation can serve as a mathematical model for many different 
 phenomena.

Mathematical models are often accompanied by certain side conditions. For example, in (1) 

and (2) we would expect to know, in turn, an initial population P0 and an initial amount of radio-

active substance A0 that is on hand. If this initial point in time is taken to be t � 0, then we know 

that P(0) � P0 and A(0) � A0. In other words, a mathematical model can consist of either an initial-

value problem or, as we shall see later in Section 3.9, a boundary-value problem.

 Newton’s Law of Cooling/Warming According to Newton’s empirical law of 
cooling—or warming—the rate at which the temperature of a body changes is proportional to the 

difference between the temperature of the body and the temperature of the surrounding medium, 

the so-called ambient temperature. If T(t) represents the temperature of a body at time t, Tm the 

temperature of the surrounding medium, and dT/dt the rate at which the temperature of the body 

changes, then Newton’s law of cooling/warming translates into the mathematical statement

 
dT

dt
r T 2 Tm or 

dT

dt
� k(T 2 Tm), (3)

where k is a constant of proportionality. In either case, cooling or warming, if Tm is a constant, 

it stands to reason that k 	 0.

 Spread of a Disease A contagious disease—for example, a flu virus—is spread through-

out a community by people coming into contact with other people. Let x(t) denote the number 

of people who have contracted the disease and y(t) the number of people who have not yet been 

exposed. It seems reasonable to assume that the rate dx/dt at which the disease spreads is pro-

portional to the number of encounters or interactions between these two groups of people. If we 

assume that the number of interactions is jointly proportional to x(t) and y(t), that is, proportional 

to the product xy, then

 
dx

dt
� kxy, (4)

where k is the usual constant of proportionality. Suppose a small community has a fixed population 

of n people. If one infected person is introduced into this community, then it could be argued that x(t) 
and y(t) are related by x � y � n � 1. Using this last equation to eliminate y in (4) gives us the model

 
dx

dt
� kx(n � 1 2 x). (5)

An obvious initial condition accompanying equation (5) is x(0) � 1.

 Chemical Reactions The disintegration of a radioactive substance, governed by the 

differential equation (2), is said to be a first-order reaction. In chemistry, a few reactions follow 

this same empirical law: If the molecules of substance A decompose into smaller molecules, it 
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22 | CHAPTER 1 Introduction to Differential Equations

is a natural assumption that the rate at which this decomposition takes place is proportional to 

the amount of the first substance that has not undergone conversion; that is, if X(t) is the amount 

of substance A remaining at any time, then dX/dt � kX, where k is a negative constant since X is 

decreasing. An example of a first-order chemical reaction is the conversion of t-butyl chloride 

into t-butyl alcohol:

 (CH3)3CCl � NaOH S (CH3)3COH � NaCl.

Only the concentration of the t-butyl chloride controls the rate of reaction. But in the reaction

 CH3Cl � NaOH S CH3OH � NaCl,

for every molecule of methyl chloride, one molecule of sodium hydroxide is consumed, thus 

forming one molecule of methyl alcohol and one molecule of sodium chloride. In this case the 

rate at which the reaction proceeds is proportional to the product of the remaining concentrations 

of CH3Cl and of NaOH. If X denotes the amount of CH3OH formed and a and b are the given 

amounts of the first two chemicals A and B, then the instantaneous amounts not converted to 

chemical C are a � X and b � X, respectively. Hence the rate of formation of C is given by

 
dX

dt
� k(a 2 X)(b 2 X), (6)

where k is a constant of proportionality. A reaction whose model is equation (6) is said to be 

second order.

 Mixtures The mixing of two salt solutions of differing concentrations gives rise to a first-

order differential equation for the amount of salt contained in the mixture. Let us suppose that a 

large mixing tank initially holds 300 gallons of brine (that is, water in which a certain number 

of pounds of salt has been dissolved). Another brine solution is pumped into the large tank at a 

rate of 3 gallons per minute; the concentration of the salt in this inflow is 2 pounds of salt per 

gallon. When the solution in the tank is well stirred, it is pumped out at the same rate as the enter-

ing solution. See FIGURE 1.3.3. If A(t) denotes the amount of salt (measured in pounds) in the tank 

at time t, then the rate at which A(t) changes is a net rate:

 
dA

dt
� ainput rate

of salt
b 2 aoutput rate

of salt
b � Rin 2 Rout. (7)

The input rate Rin at which the salt enters the tank is the product of the inflow concentration of 

salt and the inflow rate of fluid. Note that Rin is measured in pounds per minute:

 concentration
 of salt input rate input rate
 in inflow of brine of salt

 T T T

 Rin � (2 lb/gal) � (3 gal/min) � (6 lb/min).

Now, since the solution is being pumped out of the tank at the same rate that it is pumped in, the 

number of gallons of brine in the tank at time t is a constant 300 gallons. Hence the concentration 

of the salt in the tank, as well as in the outflow, is c(t) � A(t)/300 lb/gal, and so the output rate 

Rout of salt is

 concentration
 of salt output rate output rate
 in outflow of brine of salt

 T T T

 Rout � aA(t)

300
  lb/galb � (3 gal/min) �

A(t)

100
  lb/min.

The net rate (7) then becomes

 
dA

dt
� 6 2

A

100
  or  

dA

dt
�

1

100
 A � 6. (8)

If rin and rout denote general input and output rates of the brine solutions,* respectively, then 

there are three possibilities: rin � rout , rin � rout , and rin 	 rout . In the analysis leading to (8) we 

FIGURE 1.3.3 Mixing tank

constant
300 gal

input rate of brine
3 gal/min

output rate of brine
3 gal/min

*Don’t confuse these symbols with Rin and Rout , which are input and output rates of salt.
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1.3 Differential Equations as Mathematical Models | 23

have assumed that rin � rout . In the latter two cases, the number of gallons of brine in the tank is 

either increasing (rin � rout) or decreasing (rin 	 rout) at the net rate rin � rout . See Problems 10–12 

in Exercises 1.3.

 Draining a Tank In hydrodynamics, Torricelli’s law states that the speed v of efflux of 

water through a sharp-edged hole at the bottom of a tank filled to a depth h is the same as the 

speed that a body (in this case a drop of water) would acquire in falling freely from a height h; 

that is, v � !2gh, where g is the acceleration due to gravity. This last expression comes from 

equating the kinetic energy 12 mv2 with the potential energy mgh and solving for v. Suppose a tank 

filled with water is allowed to drain through a hole under the influence of gravity. We would like 

to find the depth h of water remaining in the tank at time t. Consider the tank shown in FIGURE 1.3.4. 

If the area of the hole is Ah (in ft2) and the speed of the water leaving the tank is v � !2gh 

(in ft/s), then the volume of water leaving the tank per second is Ah!2gh (in ft3/s). Thus if V(t) 
denotes the volume of water in the tank at time t,

 
dV

dt
� �Ah!2gh, (9)

where the minus sign indicates that V is decreasing. Note here that we are ignoring the possibil-

ity of friction at the hole that might cause a reduction of the rate of flow there. Now if the tank 

is such that the volume of water in it at time t can be written V(t) � Aw h, where Aw (in ft2) is the 

constant area of the upper surface of the water (see Figure 1.3.4), then dV/dt � Awdh/dt. Substituting 

this last expression into (9) gives us the desired differential equation for the height of the water 

at time t:

 
dh

dt
� � 

Ah

Aw

!2gh. (10)

It is interesting to note that (10) remains valid even when Aw is not constant. In this case we must 

express the upper surface area of the water as a function of h; that is, Aw � A(h). See Problem 14 

in Exercises 1.3.

 Series Circuits Consider the single-loop LRC-series circuit containing an inductor, resis-

tor, and capacitor shown in FIGURE 1.3.5(a). The current in a circuit after a switch is closed is denoted 

by i(t); the charge on a capacitor at time t is denoted by q(t). The letters L, R, and C are known 

as inductance, resistance, and capacitance, respectively, and are generally constants. Now ac-

cording to Kirchhoff’s second law, the impressed voltage E(t) on a closed loop must equal the 

sum of the voltage drops in the loop. Figure 1.3.5(b) also shows the symbols and the formulas 

for the respective voltage drops across an inductor, a resistor, and a capacitor. Since current i(t) 
is related to charge q(t) on the capacitor by i � dq/dt, by adding the three voltage drops

 Inductor Resistor Capacitor

 L 
di

dt
� L 

d 
2q

dt 
2

,  iR � R 
dq

dt
,  

1

C
 q

and equating the sum to the impressed voltage, we obtain a second-order differential equation

  L 
d 

2q

dt 
2

� R 
dq

dt
�

1

C
 q � E(t). (11)

We will examine a differential equation analogous to (11) in great detail in Section 3.8.

 Falling Bodies In constructing a mathematical model of the motion of a body moving 

in a force field, one often starts with Newton’s second law of motion. Recall from elementary 

physics that Newton’s first law of motion states that a body will either remain at rest or will 

continue to move with a constant velocity unless acted upon by an external force. In each case 

this is equivalent to saying that when the sum of the forces F � �Fk —that is, the net or resul-

tant force—acting on the body is zero, then the acceleration a of the body is zero. Newton’s 
second law of motion indicates that when the net force acting on a body is not zero, then the 

net force is proportional to its acceleration a, or more precisely, F � ma, where m is the mass 

of the body.

FIGURE 1.3.4 Water draining from a tank

Aw

Ah

h

FIGURE 1.3.5 Current i(t) and charge q(t) 
are measured in amperes (A) and 

coulombs (C), respectively

Inductor

di
dt

L
i

Resistor

C

i R

i

Capacitor

q1
C

(a) LRC-series circuit

(b) Symbols and voltage drops

L
R

C

E(t)

resistance R: ohms (Ω)

voltage drop across: iR

capacitance C: farads (f)

voltage drop across: 

inductance L: henrys (h)

voltage drop across: L
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24 | CHAPTER 1 Introduction to Differential Equations

Now suppose a rock is tossed upward from a roof of a building as illustrated in FIGURE 1.3.6. 

What is the position s(t) of the rock relative to the ground at time t ? The acceleration of the rock 

is the second derivative d 2s/dt 2. If we assume that the upward direction is positive and that no 

force acts on the rock other than the force of gravity, then Newton’s second law gives

 m 
d  2s

dt  2
� �mg  or  

d  2s

dt  2
� �g. (12)

In other words, the net force is simply the weight F � F1 � �W of the rock near the surface of 

the Earth. Recall that the magnitude of the weight is W � mg, where m is the mass of the body 

and g is the acceleration due to gravity. The minus sign in (12) is used because the weight of the 

rock is a force directed downward, which is opposite to the positive direction. If the height of the 

building is s0 and the initial velocity of the rock is v0, then s is determined from the second-order 

initial-value problem

 
d 

2s

dt  2
� �g, s(0) � s0, s9(0) � v0. (13)

Although we have not stressed solutions of the equations we have constructed, we note that (13) 

can be solved by integrating the constant �g twice with respect to t. The initial conditions de-

termine the two constants of integration. You might recognize the solution of (13) from elemen-

tary physics as the formula s(t) � �1
2 gt 2 � v0 t � s0.

 Falling Bodies and Air Resistance Prior to the famous experiment by Italian 

mathematician and physicist Galileo Galilei (1564–1642) from the Leaning Tower of Pisa, it 

was generally believed that heavier objects in free fall, such as a cannonball, fell with a greater 

acceleration than lighter objects, such as a feather. Obviously a cannonball and a feather, when 

dropped simultaneously from the same height, do fall at different rates, but it is not because a 

cannonball is heavier. The difference in rates is due to air resistance. The resistive force of air 

was ignored in the model given in (13). Under some circumstances a falling body of mass 

m—such as a feather with low density and irregular shape—encounters air resistance propor-

tional to its instantaneous velocity v. If we take, in this circumstance, the positive direction to 

be oriented downward, then the net force acting on the mass is given by F � F1 � F2 � mg � kv, 

where the weight F1 � mg of the body is a force acting in the positive direction and air resis-

tance F2 � �kv is a force, called viscous damping, or drag, acting in the opposite or upward 

direction. See FIGURE 1.3.7. Now since v is related to acceleration a by a � dv/dt, Newton’s second 

law becomes F � ma � m dv/dt. By equating the net force to this form of Newton’s second law, 

we obtain a first-order differential equation for the velocity v(t) of the body at time t,

  m 
dv

dt
� mg 2 kv. (14)

Here k is a positive constant of proportionality called the drag coefficient. If s(t) is the distance 

the body falls in time t from its initial point of release, then v � ds/dt and a � dv/dt � d  2s/dt 2. 
In terms of s, (14) is a second-order differential equation

 m 
d  2s

dt  2
� mg 2 k 

ds

dt
  or  m 

d  2s

dt  2
� k 

ds

dt
� mg. (15)

 Suspended Cables Suppose a flexible cable, wire, or heavy rope is suspended between 

two vertical supports. Physical examples of this could be a long telephone wire strung between 

two posts as shown in red in FIGURE 1.3.8(a), or one of the two cables supporting the roadbed of a 

suspension bridge shown in red in Figure 1.3.8(b). Our goal is to construct a mathematical model 

that describes the shape that such a cable assumes.

To begin, let’s agree to examine only a portion or element of the cable between its lowest point 

P1 and any arbitrary point P2. As drawn in blue in FIGURE 1.3.9, this element of the cable is the 

curve in a rectangular coordinate system with the y-axis chosen to pass through the lowest point 

P1 on the curve and the x-axis chosen a units below P1. Three forces are acting on the cable: the 

tensions T1 and T2 in the cable that are tangent to the cable at P1 and P2, respectively, and the 

portion W of the total vertical load between the points P1 and P2. Let T1 � | T1 |, 

T2 � | T2 |, and W � | W | denote the magnitudes of these vectors. Now the tension T2 resolves 

FIGURE 1.3.7 Falling body of mass m

kv

mg

positive
direction

gravity

air resistance

FIGURE 1.3.8 Cables suspended between 

vertical supports

(b) Suspension bridge

(a) Telephone wires

FIGURE 1.3.9 Element of cable

y

x
(x, 0)

(0, a)

wire

T1

T2
T2 sin 

P1

P2

W

θ

θ T2 cos θ

FIGURE 1.3.6 Position of rock measured 

from ground level

building

s0

rock

v0

ground

s(t)
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1.3 Differential Equations as Mathematical Models | 25

into horizontal and vertical components (scalar quantities) T2 cos u and T2 sin u. Because of static 

equilibrium, we can write

 T1 � T2 cos u and W � T2 sin u.

By dividing the last equation by the first, we eliminate T2 and get tan u � W/T1. But since 

dy/dx � tan u, we arrive at

 
dy

dx
�

W

T1

. (16)

This simple first-order differential equation serves as a model for both the shape of a flexible wire 

such as a telephone wire hanging under its own weight as well as the shape of the cables that 

support the roadbed. We will come back to equation (16) in Exercises 2.2 and in Section 3.11.

REMARKS

Each example in this section has described a dynamical system: a system that changes or evolves 

with the flow of time t. Since the study of dynamical systems is a branch of mathematics currently 

in vogue, we shall occasionally relate the terminology of that field to the discussion at hand.

In more precise terms, a dynamical system consists of a set of time-dependent variables, 

called state variables, together with a rule that enables us to determine (without ambiguity) the 

state of the system (this may be past, present, or future states) in terms of a state prescribed 

at some time t0. Dynamical systems are classified as either discrete-time systems or continuous-time 

systems. In this course we shall be concerned only with continuous-time dynamical systems—

systems in which all variables are defined over a continuous range of time. The rule or the 

mathematical model in a continuous-time dynamical system is a differential equation or a system 

of differential equations. The state of the system at a time t is the value of the state variables at 

that time; the specified state of the system at a time t0 is simply the initial conditions that ac-

company the mathematical model. The solution of the initial-value problem is referred to as the 

response of the system. For example, in the preceding case of radioactive decay, the rule is 

dA/dt � kA. Now if the quantity of a radioactive substance at some time t0 is known, say 

A(t0) � A0, then by solving the rule, the response of the system for t � t0 is found to be 

A(t) � A0e
t2 t0 (see Section 2.7). The response A(t) is the single-state variable for this  system. 

In the case of the rock tossed from the roof of the building, the response of the system, the solu-

tion of the differential equation d 2s/dt  2 � �g subject to the initial state s(0) � s0, s�(0) � v0, is 

the function s(t) � �1
2gt  2 � v0t � s0, 0 � t � T, where the symbol T represents the time when 

the rock hits the ground. The state variables are s(t) and s�(t), which are, respectively, the vertical 

position of the rock above ground and its velocity at time t. The acceleration s�(t) is not a state 

variable since we only have to know any initial position and initial velocity at a time t0 to uniquely 

determine the rock’s position s(t) and velocity s�(t) � v(t) for any time in the interval [t0, T ]. The 

acceleration s�(t) � a(t) is, of course, given by the differential equation s�(t) � �g, 0 	 t 	 T.
One last point: Not every system studied in this text is a dynamical system. We shall also 

examine some static systems in which the model is a differential equation.

Population Dynamics
 1. Under the same assumptions underlying the model in (1), de-

termine a differential equation governing the growing popula-

tion P(t) of a country when individuals are allowed to immigrate 

into the country at a constant rate r 
 0. What is the differen-

tial equation for the population P(t) of the country when indi-

viduals are allowed to emigrate at a constant rate r 
 0?

 2. The population model given in (1) fails to take death into 

consideration; the growth rate equals the birth rate. In another 

model of a changing population of a community, it is assumed 

that the rate at which the population changes is a net rate—that 

is, the difference between the rate of births and the rate of 

deaths in the community. Determine a model for the popula-

tion P(t) if both the birth rate and the death rate are proportional 

to the population present at time t.

 3. Using the concept of a net rate introduced in Problem 2, de-

termine a differential equation governing a population P(t) if 
the birth rate is proportional to the population present at time 

t but the death rate is proportional to the square of the popula-

tion present at time t.

Exercises Answers to selected odd-numbered problems begin on page ANS-1.1.3
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26 | CHAPTER 1 Introduction to Differential Equations

 4. Modify the model in Problem 3 for the net rate at which the 

population P(t) of a certain kind of fish changes by also as-

suming that the fish are harvested at a constant rate h � 0.

Newton’s Law of Cooling/Warming
 5. A cup of coffee cools according to Newton’s law of cooling 

(3). Use data from the graph of the temperature T(t) in 

FIGURE 1.3.10 to estimate the constants Tm, T0, and k in a model 

of the form of the first-order initial-value problem

 
dT

dt
� k(T 2 Tm), T(0) � T0.

FIGURE 1.3.10 Cooling curve in Problem 5

200

150

100

50

T

0 50 100 t
min

 6. The ambient temperature Tm in (3) could be a function of 

time t. Suppose that in an artificially controlled environment, 

Tm(t) is periodic with a 24-hour period, as illustrated in 

FIGURE 1.3.11. Devise a mathematical model for the temperature 

T(t) of a body within this environment.

  FIGURE 1.3.11 Ambient temperature in Problem 6

100
120

80
60
40
20

0 12 24 36 48 t

Tm(t)

Midnight Noon Midnight Noon Midnight

Spread of a Disease/Technology
 7. Suppose a student carrying a flu virus returns to an isolated 

college campus of 1000 students. Determine a differential 

equation governing the number of students x(t) who have con-

tracted the flu if the rate at which the disease spreads is pro-

portional to the number of interactions between the number 

of students with the flu and the number of students who have 

not yet been exposed to it.

 8. At a time t � 0, a technological innovation is introduced into 

a community with a fixed population of n people. Determine 

a differential equation governing the number of people x(t) 
who have adopted the innovation at time t if it is assumed that 

the rate at which the innovation spreads through the commu-

nity is jointly proportional to the number of people who have 

adopted it and the number of people who have not adopted it.

Mixtures
 9. Suppose that a large mixing tank initially holds 300 gallons 

of water in which 50 pounds of salt has been dissolved. Pure 

water is pumped into the tank at a rate of 3 gal/min, and when 

the solution is well stirred, it is pumped out at the same rate. 

Determine a differential equation for the amount A(t) of salt 

in the tank at time t. What is A(0)?

 10. Suppose that a large mixing tank initially holds 300 gallons 

of water in which 50 pounds of salt has been dissolved. 

Another brine solution is pumped into the tank at a rate of 3 

gal/min, and when the solution is well stirred, it is pumped 

out at a slower rate of 2 gal/min. If the concentration of the 

solution entering is 2 lb/gal, determine a differential equation 

for the amount A(t) of salt in the tank at time t.

 11. What is the differential equation in Problem 10 if the well-

stirred solution is pumped out at a faster rate of 3.5 gal/min?

 12. Generalize the model given in (8) of this section by assuming 

that the large tank initially contains N0 number of gallons of brine, 

rin and rout are the input and output rates of the brine, respectively 

(measured in gallons per minute), cin is the concentration of the 

salt in the inflow, c(t) is the concentration of the salt in the tank 

as well as in the outflow at time t (measured in pounds of salt 

per gallon), and A(t) is the amount of salt in the tank at time t.

Draining a Tank
 13. Suppose water is leaking from a tank through a circular hole of 

area Ah at its bottom. When water leaks through a hole, friction 

and contraction of the stream near the hole reduce the volume 

of the water leaving the tank per second to cAh"2gh, where 

c (0 	 c 	 1) is an empirical constant. Determine a differential 

equation for the height h of water at time t for the cubical tank 

in FIGURE 1.3.12. The radius of the hole is 2 in and g � 32 ft/s2.

  FIGURE 1.3.12 Cubical tank in Problem 13

h
10 ft

circular
hole

Aw

 14. The right-circular conical tank shown in FIGURE 1.3.13 loses 

water out of a circular hole at its bottom. Determine a dif-

ferential equation for the height of the water h at time t. The 

radius of the hole is 2 in, g � 32 ft/s2, and the friction/contrac-

tion factor introduced in Problem 13 is c � 0.6. 

  FIGURE 1.3.13 Conical tank in Problem 14
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1.3 Differential Equations as Mathematical Models | 27

Series Circuits
 15. A series circuit contains a resistor and an inductor as shown 

in FIGURE 1.3.14. Determine a differential equation for the cur-

rent i(t) if the resistance is R, the inductance is L, and the 

impressed voltage is E(t). 

  FIGURE 1.3.14 LR-series circuit in Problem 15

R

L
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 16. A series circuit contains a resistor and a capacitor as shown 

in FIGURE 1.3.15. Determine a differential equation for the 

charge q(t) on the capacitor if the resistance is R, the capaci-

tance is C, and the impressed voltage is E(t).

  FIGURE 1.3.15 RC-series circuit in Problem 16

C

R
E

Falling Bodies and Air Resistance
 17. For high-speed motion through the air—such as the skydiver 

shown in FIGURE 1.3.16 falling before the parachute is opened—

air resistance is closer to a power of the instantaneous veloc-

ity v(t). Determine a differential equation for the velocity v(t) 
of a falling body of mass m if air resistance is proportional to 

the square of the instantaneous velocity.

  
FIGURE 1.3.16 Air resistance proportional to square 

of velocity in Problem 17

mg

kv2

Newton’s Second Law and Archimedes’ Principle
 18. A cylindrical barrel s ft in diameter of weight w lb is floating 

in water as shown in FIGURE 1.3.17(a). After an initial depres-

sion, the barrel exhibits an up-and-down bobbing motion along 

a vertical line. Using Figure 1.3.17(b), determine a differential 

equation for the vertical displacement y(t) if the origin is taken 

to be on the vertical axis at the surface of the water when the 

barrel is at rest. Use Archimedes’ principle: Buoyancy, or 

upward force of the water on the barrel, is equal to the weight 

of the water displaced. Assume that the downward direction 

is positive, that the weight density of water is 62.4 lb/ft3, and 

that there is no resistance between the barrel and the water.

  FIGURE 1.3.17 Bobbing motion of floating barrel in Problem 18

s/2

0

(a)

surface

s/2

0

(b)
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Newton’s Second Law and Hooke’s Law
 19. After a mass m is attached to a spring, it stretches s units and 

then hangs at rest in the equilibrium position as shown in 

FIGURE 1.3.18(b). After the spring/mass system has been set in 

motion, let x(t) denote the directed distance of the mass beyond 

the equilibrium position. As indicated in Figure 1.3.18(c), as-

sume that the downward direction is positive, that the motion 

takes place in a vertical straight line through the center of 

gravity of the mass, and that the only forces acting on the 

system are the weight of the mass and the restoring force of 

the stretched spring. Use Hooke’s law: The restoring force of 

a spring is proportional to its total elongation. Determine a 

differential equation for the displacement x(t) at time t. 

  FIGURE 1.3.18 Spring/mass system in Problem 19

m

m x = 0 
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(c)(b)
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 20. In Problem 19, what is a differential equation for the displace-

ment x(t) if the motion takes place in a medium that imparts 

a damping force on the spring/mass system that is proportional 

to the instantaneous velocity of the mass and acts in a direction 

opposite to that of motion?

Newton’s Second Law and Variable Mass
When the mass m of a body moving through a force field is variable, 

Newton’s second law of motion takes on the form: If the net force 

acting on a body is not zero, then the net force F is equal to the 

time rate of change of momentum of the body. That is,

 F �
d

dt
 (mv)

*
, (17)

where mv is momentum. Use this formulation of Newton’s second 

law in Problems 21 and 22.

*Note that when m is constant, this is the same as F � ma.
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28 | CHAPTER 1 Introduction to Differential Equations

 21. Consider a single-stage rocket that is launched vertically up-

ward as shown in the accompanying photo. Let m(t) denote 

the total mass of the rocket at time t (which is the sum of three 

masses: the constant mass of the payload, the constant mass 

of the vehicle, and the variable amount of fuel). Assume that 

the positive direction is upward, air resistance is proportional 

to the instantaneous velocity v of the rocket, and R is the upward 

thrust or force generated by the propulsion system. Use (17) 

to find a mathematical model for the velocity v(t) of the rocket.

  
© Sebastian Kaulitzki/ShutterStock, Inc.

  Rocket in Problem 21

 22. In Problem 21, suppose m(t) � mp � mv � mf (t) where mp is 

constant mass of the payload, mv is the constant mass of the 

vehicle, and mf (t) is the variable amount of fuel. 

(a) Show that the rate at which the total mass of the rocket 

changes is the same as the rate at which the mass of the 

fuel changes.

(b) If the rocket consumes its fuel at a constant rate l, find 

m(t). Then rewrite the differential equation in Problem 

21 in terms of l and the initial total mass m(0) � m0.

(c) Under the assumption in part (b), show that the burnout 

time tb � 0 of the rocket, or the time at which all the fuel 

is consumed, is tb � mf (0)/l, where mf (0) is the initial 

mass of the fuel.

Newton’s Second Law and the Law of Universal 
Gravitation
 23. By Newton’s law of universal gravitation, the free-fall accel-

eration a of a body, such as the satellite shown in FIGURE 1.3.19, 

falling a great distance to the surface is not the constant g. Rather, 

the acceleration a is inversely proportional to the square of the 

distance from the center of the Earth, a � k/r2, where k is the 

constant of proportionality. Use the fact that at the surface of 

the Earth r � R and a � g to determine k. If the positive direc-

tion is upward, use Newton’s second law and his universal law 

of gravitation to find a differential equation for the distance r.

  FIGURE 1.3.19 Satellite in Problem 23

satellite of
mass m

Earth of mass M

R
r

surface 

 24. Suppose a hole is drilled through the center of the Earth and a 

bowling ball of mass m is dropped into the hole, as shown in 

FIGURE 1.3.20. Construct a mathematical model that describes 

the motion of the ball. At time t let r denote the distance from 

the center of the Earth to the mass m, M denote the mass of the 

Earth, Mr denote the mass of that portion of the Earth within a 

sphere of radius r, and d denote the constant density of the Earth.

  FIGURE 1.3.20 Hole through Earth in Problem 24

m

R

r

surface

Additional Mathematical Models
 25. Learning Theory In the theory of learning, the rate at which a 

subject is memorized is assumed to be proportional to the amount 

that is left to be memorized. Suppose M denotes the total amount 

of a subject to be memorized and A(t) is the amount memorized 

in time t. Determine a differential equation for the amount A(t).

 26. Forgetfulness In Problem 25, assume that the rate at which 

material is forgotten is proportional to the amount memorized 

in time t. Determine a differential equation for A(t) when for-

getfulness is taken into account.

 27. Infusion of a Drug A drug is infused into a patient’s blood-

stream at a constant rate of r grams per second. Simultaneously, 

the drug is removed at a rate proportional to the amount x(t) 
of the drug present at time t. Determine a differential equation 

governing the amount x(t).

 28. Tractrix A motorboat starts at the origin and moves in the 

direction of the positive x-axis, pulling a waterskier along a 

curve C called a tractrix. See FIGURE 1.3.21. The waterskier, 

initially located on the y-axis at the point (0, s), is pulled by 

keeping a rope of constant length s, which is kept taut through-

out the motion. At time t . 0 the waterskier is at the point 

P(x, y). Find the differential equation of the path of motion C.

  FIGURE 1.3.21 Tractrix curve in Problem 28
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 29. Reflecting Surface Assume that when the plane curve C 

shown in FIGURE 1.3.22 is revolved about the x-axis it generates 

a surface of revolution with the property that all light rays L 

parallel to the x-axis striking the surface are reflected to a single 

point O (the origin). Use the fact that the angle of incidence is 

equal to the angle of reflection to determine a differential equa-

tion that describes the shape of the curve C. Such a curve C is 
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1.3 Differential Equations as Mathematical Models | 29

important in applications ranging from construction of telescopes 

to satellite antennas, automobile headlights, and solar collectors. 

[Hint: Inspection of the figure shows that we can write f � 2u. 

Why? Now use an appropriate trigonometric identity.]

  

C

θ

θ

L

O x

y tangent

φ

P(x, y)

FIGURE 1.3.22 Reflecting surface in Problem 29

Discussion Problems
 30. Reread Problem 45 in Exercises 1.1 and then give an explicit 

solution P(t) for equation (1). Find a one-parameter family of 

solutions of (1).

 31. Reread the sentence following equation (3) and assume that 

Tm is a positive constant. Discuss why we would expect 

k � 0 in (3) in both cases of cooling and warming. You might 

start by interpreting, say, T(t) � Tm in a graphical manner.

 32. Reread the discussion leading up to equation (8). If we assume 

that initially the tank holds, say, 50 lbs of salt, it stands to reason 

that since salt is being added to the tank continuously for t � 0, 

that A(t) should be an increasing function. Discuss how you 

might determine from the DE, without actually solving it, the 

number of pounds of salt in the tank after a long period of time.

 33. Population Model The differential equation dP/dt � (k cos t)P, 

where k is a positive constant, is a model of human population 

P(t) of a certain community. Discuss an interpretation for the 

solution of this equation; in other words, what kind of popu-

lation do you think the differential equation describes?

 34. Rotating Fluid As shown in FIGURE 1.3.23(a), a right-circular 

cylinder partially filled with fluid is rotated with a constant 

angular velocity v about a vertical y-axis through its center. The 

rotating fluid is a surface of revolution S. To identify S we first 

establish a coordinate system consisting of a vertical plane de-

termined by the y-axis and an x-axis drawn perpendicular to the 

y-axis such that the point of intersection of the axes (the origin) 

is located at the lowest point on the surface S. We then seek a 

function y � f (x), which represents the curve C of intersection 

of the surface S and the vertical coordinate plane. Let the point 

P(x, y) denote the position of a particle of the rotating fluid of 

mass m in the coordinate plane. See Figure 1.3.23(b).

(a) At P, there is a reaction force of magnitude F due to the 

other particles of the fluid, which is normal to the surface S. 

By Newton’s second law the magnitude of the net force 

acting on the particle is mv2x. What is this force? Use Figure 

1.3.23(b) to discuss the nature and origin of the equations

F cos u � mg,  F sin u � mv2x.

(b) Use part (a) to find a first-order differential equation that 

defines the function y � f (x). 

FIGURE 1.3.23 Rotating fluid in Problem 34
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 35. Falling Body In Problem 23, suppose r � R � s, where s is 

the distance from the surface of the Earth to the falling body. 

What does the differential equation obtained in Problem 23 

become when s is very small compared to R?

 36. Raindrops Keep Falling In meteorology, the term virga refers 

to falling raindrops or ice particles that evaporate before they 

reach the ground. Assume that a typical raindrop is spherical 

in shape. Starting at some time, which we can designate as 

t � 0, the raindrop of radius r0 falls from rest from a cloud 

and begins to evaporate.

(a) If it is assumed that a raindrop evaporates in such a manner 

that its shape remains spherical, then it also makes sense to 

assume that the rate at which the raindrop evaporates—that 

is, the rate at which it loses mass—is proportional to its 

surface area. Show that this latter assumption implies that 

the rate at which the radius r of the raindrop decreases is 

a constant. Find r(t). [Hint: See Problem 55 in Exercises 1.1.]

(b) If the positive direction is downward, construct a math-

ematical model for the velocity v of the falling raindrop 

at time t. Ignore air resistance. [Hint: Use the form of 

Newton’s second law as given in (17).]

 37. Let It Snow The “snowplow problem” is a classic and appears 

in many differential equations texts but was probably made 

famous by Ralph Palmer Agnew:

“One day it started snowing at a heavy and steady rate. A 
snowplow started out at noon, going 2 miles the first hour 
and 1 mile the second hour. What time did it start snowing?”

  If possible, find the text Differential Equations, Ralph Palmer 

Agnew, McGraw-Hill, and then discuss the construction and 

solution of the mathematical model.

© aetb/iStock/Thinkstock

  Snowplow in Problem 37
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30 | CHAPTER 1 Introduction to Differential Equations

 38. Reread this section and classify each mathematical model as 

linear or nonlinear.

 39. Population Dynamics Suppose that P�(t) � 0.15 P(t) repre-

sents a mathematical model for the growth of a certain cell 

culture, where P(t) is the size of the culture (measured in 

millions of cells) at time t (measured in hours). How fast is 

the culture growing at the time t when the size of the culture 

reaches 2 million cells?

 40. Radioactive Decay Suppose that 

 A�(t) � �0.0004332 A(t)

  represents a mathematical model for the decay of radium-226, 

where A(t) is the amount of radium (measured in grams) re-

maining at time t (measured in years). How much of the radium 

sample remains at time t when the sample is decaying at a rate 

of 0.002 grams per year?

In Problems 1 and 2, fill in the blank and then write this result as 

a linear first-order differential equation that is free of the symbol 

c1 and has the form dy/dx � f (x, y). The symbols c1 and k repre-

sent constants.

 1. 
d

dx
 c1e

kx �   

 2. 
d

dx
 (5 � c1e

�2x) �   

In Problems 3 and 4, fill in the blank and then write this result as 

a linear second-order differential equation that is free of the 

symbols c1 and c2 and has the form F( y, y�) � 0. The symbols 

c1, c2, and k represent constants.

 3. 
d  2

dx  2
 (c1 cos kx � c2 sin kx) �   

 4. 
d  2

dx  2
 (c1 cosh kx � c2 sinh kx) �   

In Problems 5 and 6, compute y� and y� and then combine 

these derivatives with y as a linear second-order differential 

equation that is free of the symbols c1 and c2 and has the form 

F(y, y�, y�) � 0. The symbols c1 and c2 represent constants.

 5. y � c1e
x � c2xex 6. y � c1e

x
 cos x � c2e

x
 sin x

In Problems 7–12, match each of the given differential equations 

with one or more of these solutions:

(a) y � 0, (b) y � 2, (c) y � 2x, (d) y � 2x2.

 7. xy� � 2y 8. y� � 2

 9. y� � 2y � 4 10. xy� � y
 11. y� � 9y � 18 12. xy� � y� � 0

In Problems 13 and 14, determine by inspection at least one 

solution of the given differential equation.

 13. y� � y� 14. y� � y( y � 3)

In Problems 15 and 16, interpret each statement as a differential 

equation.

 15. On the graph of y � f(x), the slope of the tangent line at a 

point P(x, y) is the square of the distance from P(x, y) to the 

origin.

 16. On the graph of y � f(x), the rate at which the slope changes 

with respect to x at a point P(x, y) is the negative of the slope 

of the tangent line at P(x, y).

 17. (a)  Give the domain of the function y � x2/3.

(b)  Give the largest interval I of definition over which 

y � x2/3 is a solution of the differential equation 

3xy� � 2y � 0.

 18. (a)  Verify that the one-parameter family y2 � 2y � x2 � 

x � c is an implicit solution of the differential equation 

(2y � 2)y� � 2x � 1.

(b)  Find a member of the one-parameter family in part (a) 

that satisfies the initial condition y(0) � 1.

(c)  Use your result in part (b) to find an explicit function 

y � f(x) that satisfies y(0) � 1. Give the domain of f. 
Is y � f(x) a solution of the initial-value problem? If so, 

give its interval I of definition; if not, explain.

 19. Given that y � �
2

x
� x is a solution of the DE xy� � y � 2x. 

  Find x0 and the largest interval I for which y(x) is a solution 

of the IVP

 xy9 � y � 2x,  y(x0) � 1.

 20. Suppose that y(x) denotes a solution of the initial-value prob-

lem y� � x2 � y2, y(1) � �1 and that y(x) possesses at least 

a second derivative at x � 1. In some neighborhood of 

x � 1, use the DE to determine whether y(x) is increasing or 

decreasing, and whether the graph y(x) is concave up or con-

cave down.

 21. A differential equation may possess more than one family of 

solutions.

(a)  Plot different members of the families y � f1(x) � 

x2 � c1 and y � f2(x) � �x2 � c2.

(b)  Verify that y � f1(x) and y � f2(x) are two solutions of 

the nonlinear first-order differential equation ( y�)2 � 4x2.

(c)  Construct a piecewise-defined function that is a solution 

of the nonlinear DE in part (b) but is not a member of 

either family of solutions in part (a).

 22. What is the slope of the tangent line to the graph of the  solution 

of y� � 6!y � 5x3 that passes through (�1, 4)?

In Problems 23–26, verify that the indicated function is an 

explicit solution of the given differential equation. Give an 

interval of definition I for each solution.

 23. y� � y � 2 cos x � 2 sin x; y � x sin x � x cos x

 24. y� � y sec x; y � x sin x � (cos x) ln(cos x)

1 Chapter in Review Answers to selected odd-numbered problems begin on page ANS-2.
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 25. x2y� � xy� � y � 0; y � sin(ln x)

 26. x2y� � xy� � y � sec(ln x);  

  y � cos(ln x) ln(cos(ln x)) � (ln x) sin(ln x)

In Problems 27–30, use (12) of Section 1.1 to verify that 

the indicated function is a solution of the given differential 

equation. Assume an appropriate interval I of definition of 

each solution.

 27. 
dy

dx
� (sin x)y � x; y � ecos x#

x

0

te�cos t dt

 28. 
dy

dx
2 2xy � ex; y � ex2#

x

0

et2 t2

 dt

 29. x2y0 � (x2 2 x)y9 � (1 2 x)y � 0; y � x#
x

1

e�t

t
 dt

 30. y0 � y � ex2

; y � sin x#
x

0

et2

cos t dt 2 cos x#
x

0

et2

sin t dt

In Problems 31–34, verify that the indicated expression is an 

implicit solution of the given differential equation.

 31. x
dy

dx
� y �

1

y 2
; x 3y 3 � x 3 � 5

 32. ady

dx
b2

� 1 �
1

y2
; (x 2 7)2 � y2 � 1

 33. y� � 2y( y�)3; y3 � 3y � 2 � 3x

 34. (1 � xy)y� � y2 � 0; y � e�xy

In Problems 35–38, y � c1e
�3x � c2e

x � 4x is a two-

parameter family of the second-order differential equation 

y0 � 2y9 2 3y � �12x � 8. Find a solution of the second-

order initial-value problem consisting of this differential 

equation and the given initial conditions.

 35. y(0) � 0, y9(0) � 0 36. y(0) � 5, y9(0) � �11

 37. y(1) � �2, y9(1) � 4 38. y(�1) � 1, y9(�1) � 1

In Problem 39 and 40, verify that the function defined by the 

definite integral is a particular solution of the given differential 

equation. In both problems, use Leibniz’s rule for the derivative 

of an integral:

d

dx#
v(x)

u(x)

F(x, t) dt � F(x, v(x)) 

dv

dx
2F(x, u(x)) 

du

dx
� #

v(x)

u(x)

0

0x
 F(x, t) dt.

 39. y� � 9y � f (x); y(x) �
1

3#
x

0

 f (t) sin 3(x � t) dt

 40. xy0 � y9 2 xy � 0; y � #
p

0

ex cos t dt [Hint: After computing 

y9 use integration by parts with respect to t.]

 41. The graph of a solution of a second-order initial-value problem 

d2y/dx2 � f (x, y, y�), y(2) � y0, y�(2) � y1, is given in 

FIGURE 1.R.1. Use the graph to estimate the values of y0 and y1. 

  FIGURE 1.R.1 Graph for Problem 41

y

x

5

–5

5

 42. A tank in the form of a right-circular cylinder of radius 2 feet 

and height 10 feet is standing on end. If the tank is initially 

full of water, and water leaks from a circular hole of radius 
1
2 inch at its bottom, determine a differential equation for the 

height h of the water at time t. Ignore friction and contraction 

of water at the hole.

 43. A uniform 10-foot-long heavy rope is coiled loosely on the 

ground. As shown in FIGURE 1.R.2 one end of the rope is pulled 

vertically upward by means of a constant force of 5 lb. The 

rope weighs 1 lb/ft. Use Newton’s second law in the form 

given in (17) in Exercises 1.3 to determine a differential equa-

tion for the height x(t) of the end above ground level at time t. 
Assume that the positive direction is upward.

  FIGURE 1.R.2 Rope pulled upward in Problem 43

x(t)

5 lb
upward
force
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