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Preface

Th s text is designed to be a fi st course in human biomechanics. Although it was 
written with an undergraduate kinesiology student audience in mind, I believe it 
is equally well-suited for students in a graduate-level clinical curriculum, such as 
athletic training, physical therapy, and chiropractic medicine. Th s is more of an 
“ideas” book than a “methods” book, and it is written under the assumption that 
students have a rudimentary knowledge of anatomy and algebra. Trigonometry 
and geometry are used throughout the book, but “refreshers” appear at the appro-
priate places. I do not make use of calculus.

Personally, I think many students have a hard time with biomechanics 
because it is taught in an intimidating manner, with an emphasis on getting the 
“right numbers” without an understanding of what the numbers actually mean. 
I have chosen to take a different approach in this text. First, I have used a con-
versational writing style because I believe that information presented this way is 
easier to understand without sacrifici g rigor. Second, I have tried to make the 
material less daunting and more meaningful by presenting a Section Question 
before each major section. Tying new concepts to everyday experience and high-
lighting research to show how information obtained in the lab can be applied in 
practice allows the student to better relate to the content. Thi d, I have placed an 
emphasis on concepts over computation and expressing these concepts physically, 
mathematically, and graphically. My hope is that students get an intuitive feel for 
which way the data should “go” before ever attempting to calculate a number. It 
might seem that my extensive use of equations contradicts this goal, but I wanted 
to introduce the symbolic logic behind the equations, and then draw a link 
between the concepts and the equations. Graph interpretation allows students to 
visualize this link. To further this goal, in this edition I have introduced “Process 
Boxes” to illustrate the link between inputs and outputs. I hope the process boxes 
serve as an additional way to express the link between the underlying concepts 
and the equations. Finally, nine case studies have been added to this edition. Each 
case study is gradually introduced after the requisite knowledge has been intro-
duced. The case studies are then summarized and completed in the last chapter. 

Each lesson opens with a set of Learning Objectives. Marginal Key Terms, 
Tables, Figures, Boxes, and Important Point boxed features are used throughout 
the text. Competency Checks are found after every major section and follow 
the fi st three areas of Bloom’s taxonomy: remember, understand, and apply. 

9781284293883_FMxx_Flanagan.indd   13 17/02/18   7:46 pm



An alphabetized Glossary has been placed at the end of the book for optimum review 
and study. My goal in organizing the content in such a fashion is to lead students to 
better comprehension and optimal retention.

As for the material itself, I have organized the book into 18 lessons that cover 
the three levels of biomechanical analysis: whole body, joint, and tissue (bone, carti-
lage, ligament, tendon, and muscle). I chose not to move sequentially from one level 
to the next but to use a “whole-part-whole” organization. I begin with elucidating 
mechanical principles using the whole body level (point mass, center of mass, and 
rigid body models) and then discuss the basic material mechanics of biological tissues 
and unique properties of the muscle–tendon complex. Th oughout my career, I have 
been influenced by a systems science perspective, which states that you cannot get 
a complete understanding of a system by examining the parts in isolation. For this 
reason, the muscle–tendon complex is then put into a joint system. After reviewing 
some mechanical properties of the individual joints of the musculoskeletal system, 
the mechanics of multijoint systems is then introduced. In Lesson 18, the three levels 
are integrated in the context of analyzing movement to improve performance and/or 
reduce the risk of injury.

I hope that this book provides you with an alternative perspective for teaching 
and learning the science of biomechanics. Comments and criticisms are welcomed 
and appreciated.

 
Sean P. Flanagan

New to the Second Edition
Some of the most signifi ant updates to the Second Edition include the following:

●● The use of vector diagrams has been greatly expanded throughout the text. 
These diagrams make it easier to visualize the material.

●● “Process Boxes” are added throughout the text. Changing biomechanical 
quantities can be thought of as a process that transforms inputs into outputs. 
They provide a visual depiction of the underlying mechanics, which aid in their 
understanding and serve as an intermediate step between concept formation 
and mathematical problem-solving.

●● Nine new, detailed case studies are added throughout the text. Rather than pro-
vide the case study all at once, each is gradually introduced after the requisite 
knowledge is presented in a lesson.

●● Linear Kinematics in One Dimension is now presented in two lessons. Lesson 
2 discusses Linear Kinematics in One Direction and Lesson 3 presents Linear 
Kinematics in Two Directions. Students fi st learn about position, displace-
ment, velocity, and acceleration without having to concern themselves with 
changing directions. Th s should make the transition to changing directions 
easier. 

●● In Lesson 2, an “Essential Math” box is added concerning the conversion 
between frames of reference.

●● A more complete treatment of vector addition is added to Chapter 4.
●● Sections relating linear and angular position and linear and angular displace-

ment are added to Lesson 5. 
●● An explanation of bicycle gears is presented in Lesson 5.

xiv Preface
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Remember that Newton’s laws apply to external, not 
internal, forces. Internal forces do not change the 
momentum of a system and perform no work (do not 
confuse internal forces with internal work). If you were 
to define a system as your leg, for example, there would 
be equal and opposite forces between your femur and 
tibia. Those forces would be equal in magnitude and 
opposite in direction, and therefore they would cancel. 
The forces between your femur and tibia would not 
change the momentum of your leg as a whole. The 
same is true with bodies A and B. Even though they 
may start relatively far apart, they are part of the same 
system, and any forces between them are considered 
to be internal forces. If there are no external forces 
acting on the system, then the change in momentum 
must be zero:

∆L 0
∆t� �extF�

 
(10.1)

As you will see, that does not mean that the momen-
tum of each body does not change—only that all 
changes of momentum must stay within the system. 
In other words, the increase in the momentum of one 
body must be compensated for with a decrease in the 
momentum of another body by the same exact amount. 
If the momentum of the system is not changing with 
time, it is conserved. Similarly, if there are no external 
forces doing work on the system, you can also say that 
the total energy within the system is conserved. Using 
the conservation of momentum and energy concepts, 
you can obtain a lot of information about what hap-
pens during impacts and collisions without needing 
detailed information about the forces involved. Pretty 
cool, huh?

Important Point! Forces internal to a system do 
not change the momentum of or perform work on 
that system.

10.1.2  Conservation of Momentum
After identifying your system, you need to identify 
your frame of reference. In this section, the frame of 
reference is going to be one dimension, so there is no 
need to specify any axes. The other thing you need to 
do is list your assumptions. For the collisions that you 
will be looking at, assume that there are no frictional 
(or other external) forces and the time of impact is 

extremely small. Because the change in momentum of 
the system is zero in each case, you know that

∆L 5 L 2 L 5 0 (10.2)
where the prime sign will indicate the time imme-
diately after impact and the momentum without the 
prime sign is the momentum immediately before 
impact. You know that momentum is the product of 
mass and velocity:

L 5 mv (10.3)
It is also important to note that the momentum of any 
system is the sum of the momentum of each body in 
a system:

L 5 ∑(mi 3 vi) (10.4)
The symbol i represents the number of bodies in the 
system. If there are two bodies (A and B) in your sys-
tem, then

L 5 mAvA 1 mBvB (10.5)
If you substitute Equation 10.5 into Equation 10.2, 

you get

∆L 5 (mA vA 1 mB vB) 2 (mA vA 1 mB vB) 5 0 (10.6)

Important Point! The conservation of momen-
tum law states that if there is no external, effective 
force, then the momentum of a system will not 
change.

Equation 10.6 is a very general equation for the 
conservation of momentum. In biomechanics, you will 
often make the assumption that the masses of objects 
do not change during the period of your analysis. So 
you can remove the primes from the masses:

∆L 5 (mAvA 1 mBvB) 2 (mAvA 1 mBvB) 5 0 (10.7)

By manipulating Equation 10.7, you can fi d out some 
pretty interesting things about what happened imme-
diately before or after an impact. Let us look at a few 
examples.

To begin, consider the case of two pennies with 
equal masses (you can try this experiment yourself) 
(Figure 10.4A). Before impact, penny B is motion-
less and has an initial momentum of 0. Penny A 
has  some momentum, mAvA, as it moves toward 
penny B. At impact, penny A comes to a complete 

 10.1 Simple Collisions of Point Masses 191

Learning Objectives
After finishing this lesson, you should be able to:

• Defi e abscissa, acceleration, average, axes, balance, body, cadence, chord, directions, displacement, 
distance, frame of reference, gait, instantaneous, kinematics, normalization, ordinate, orientation, 
origin, point, position, power, projectile, range of motion, rate, ratio, relative velocity, sense, slope, 
speed, step, strength, stride, system, tangent, and velocity.

• Explain the difference between speed and velocity.
• Write equations for distance, displacement, speed, velocity, and acceleration.
• Identify speed on a position–time curve.
• Identify velocity on a position–time curve.
• Identify acceleration on a velocity–time curve.
• Explain the difference between instantaneous and average kinematic measures.
• Describe situations in which velocity is more important than acceleration.
• Describe situations in which acceleration is more important than velocity.
• List the determinants of gait speed.

Describing Motion: 
Linear Kinematics in One 

Dimension and One Direction

The fi st key in unlocking the code to how 
we move in the world is to be able to describe the 
motion itself. Th s is the branch of mechanics called 
 kinematics, which is the study of motion without 
consideration for what is causing the motion. It 
involves both spatial and temporal characteristics 
of motion. In this lesson, we begin by discussing 
the simplest case of motion: motion in a straight 
line going in one direction. You cannot adequately 
explain motion without fi st being able to describe 
it in detail, so it is very important that you master 
these fundamental ideas.

Section Question

Three men race the 100 m sprint (Figure 2.1).1 
Runner A finishes first with a time of 9.83 sec, 
followed by runner B with a time of 9.93 sec. It 
took runner C 11.12 sec to complete the race. 
Why did runner A win the race? What would 
runners B and C have to do to beat runner A?

Kinematics The study of motion without 
considering what is causing the motion

©
 Guryanov Andrey/Shutterstock.

LESSON 2

Important Point! boxes clarify essential 
math concepts relevant to the content within 
the specific ection.

Each lesson starts 
with Learning 
Objectives, which 
highlight the criti-
cal points of each 
lesson.

●● A discussion of phase space is added to Lesson 6. Phase space is used rather 
than the time domain for some of the case studies.

●● Quantifying bone mineral density is important in understanding the mechan-
ics of bone. A box covering this material is included in Lesson 11.

●● The discussion of chain configur tion is expanded in Lesson 17 and the notion 
of configur tion space is added to the discussion.

●● The topic of compensatory motion is expanded in Lesson 17.
●● Chain stiffness is added to Lesson 17.
●● The inverted-U, along with a discussion of optimal versus maximal quantities 

of variables, is featured in Lesson 18.
●● A summary of all nine case studies presented throughout the text is provided 

in Lesson 18. The conclusions of these cases are then discussed.

Pedagogical Features
Biomechanics: A Case-Based Approach, Second Edition incorporates a number of 
engaging pedagogical features to aid the student’s understanding and retention of the 
material.

Section Questions present salient 
questions to address the point of 
focus for each section.

Equations are numbered 
throughout the lesson for 
easy referral.

 Preface xv
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several places along the curve, runner C appears to 
be slowing down. Th s can be verifi d by graphing 
the acceleration as a function of time (Figure 2.18).

Notice that, in three places along the race, runner 
C “lost” speed, or decelerated. Comparing runners A 
and B, we verify that runner A “out accelerated” runner 
B, which is why he won the race even though runner 
B had a greater instantaneous velocity. Runner A got 
too far ahead, and runner B simply did not have time 
to catch up.

Average velocity will tell you who won the race 
(and average speed will tell you how long it will take 
you to drive to Grandma’s house), but it will not tell 
you why someone won the race. And you cannot 
use it as an excuse to get out of a speeding ticket 

Remember:
1. Defi e acceleration, average, chord, instantaneous, 

rate, ratio, relative velocity, slope, speed, tangent, 
and velocity.

Understand:
1. Based on Equation 2.3, the time to complete 

a movement will decrease if the distance is 
 or the  is increased.

Competency Check

(“But, Offic , my average speed was only 40 miles 
per hour!”). To figu e out why someone won a race, 
you need to know the following: peak speed, instan-
taneous speed, the time it takes the runner to get to 
the peak speed (acceleration), the duration the run-
ner holds his peak speed, and the difference between 
peak speed and final speed.2

You are now armed with information that can 
assist runners B and C. Runner B needs to work on 
acceleration, and runner C needs to work on peak 
speed and speed endurance.

Section Question Answer

Several critical elements are involved in the 
race: peak speed, acceleration, length of time 
at peak speed, and the difference between 
peak speed and final speed. Runner A won the 
race because he had the best combination of 
these elements. Runner B needed to improve 
his acceleration, and Runner C needed to 
improve all but his acceleration. You would 
know these things only by examining the 
instantaneous velocities and accelerations of 
the entire race.

Table 2.2
Data for the First Four Points of Runners A and B

Runner A Runner B a Average a

t v Δt Δv a t v Δt Δv a
%

Difference
Runner

A
Runner

B
%

Difference
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1 0.92 5.43 0.92 5.43 5.90 0.97 5.15 0.97 5.15 5.31 11.17 5.90 5.31 11.17

2 2.35 9.80 1.43 4.37 3.06 2.45 9.80 1.48 4.65 3.14 –2.74 4.17 4.00 4.26

3 3.33 10.64 0.98 0.84 0.86 3.43 10.53 0.98 0.73 0.74 15.07 3.20 3.07 4.08

4 4.23 11.49 0.90 0.85 0.94 4.34 11.49 0.91 0.96 1.05 –10.47 2.72 2.65 2.60

Time (sec)
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A
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Figure 2.18 Runners’ acceleration versus time. In 
this case, the negative acceleration means the runner 
is slowing down. Can you identify where runner A 
and runner C slowed down?

28 Lesson 2 Describing Motion: Linear Kinematics in One Dimension and One Direction

form. Miles (kilometers) is a measure of distance cov-
ered, how far a thing traveled. Hour is a measure of 
how much time has elapsed (60 min). So in the general 
form

distancespeed
change in time

d
t

� �
Δ  

(2.3)

speed is the rate of change of distance.
Note that speed does not give you a sense of 

direction. Suppose you were to create a frame of 
reference where north on the freeway is positive and 
south is negative. Whether you were going north or 
south, your car’s speedometer would give you only 
a magnitude (55 mph), not a direction (positive or 
negative).

Speed is the time rate of change of the distance. 
In the last section, you learned that displacement and 
distance may not have the same value.  Velocity is the 

amount but over a different time period. In the case 
of the sprinters, you know that each one covered a 
distance of 100 m between the start and the end of 
the race, but you are no closer to understanding why 
runner A won the race. What is missing is how that 
change occurred with respect to time. Th s is called a 
rate (Box 2.1), and it gives you an indication of how 
a variable (such as position) is increasing or decreas-
ing with time.

The terms speed and velocity are often used inter-
changeably in everyday language, and in fact, they 
can be used interchangeably if you are talking about 
bodies moving in only one direction. You probably 
already have a notion about speed, so that would 
be a good place to start. Then, you will learn about 
velocity. Speed is how fast something is moving. If 
you cover a greater distance in the same amount 
of time or the same distance in a smaller amount 
of time, you have a greater speed. You are familiar 
with the concept every time you get into a car; the 
speedometer, or “speed meter,” measures the speed 
of the car. What values does the car’s speedometer 
give you? Miles per hour (or kilometers per hour). 
That gives you a clue that speed is a rate at which 
something is changing,

miles (kilometers)speed
hour�

 
(2.2)

but that is a very specific case. To make it useful in a 
greater number of situations, you need a more general 

Ratio One number divided by another number

Rate A ratio between a change in one quantity 
and a change in time

Speed How fast a body is moving

Velocity How fast something is moving in a 
particular direction

A ratio is simply one number divided by another 
number:

one quantityratio
another quantity

�

A rate is a ratio between a change in one quantity and 
a change in time:

one quantity
rate

time
�

Δ
Δ

The delta symbol (Δ) is shorthand for change in. 
Thi king of the dividing line as per, you can then think 

of a rate as a change in one quantity (e.g., position, 
velocity, force, or work) per a change in a unit of 
time (e.g., seconds, minutes, or hours). Rates are very 
important in biomechanics. From algebra, you should 
be able to recognize that the rate will be larger if the 
change in the quantity is increased and/or the change in 
time is decreased:

Increase this
one quantity

or  Larger ratio
time

Decrease this
↑

↑
�

Δ
Δ

Box 2.1
Essential Math: Ratios and Rates
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Using the fi st three levels of Bloom’s tax-
onomy, Competency Checks ask students 
conceptual and quantitative questions to 
assist in gauging their understanding of the 
material.

Section Question Answers provide contex-
tual responses to each section question.

Essential Math 
boxed features 
provide a review 
of mathematical 
material crucial to 
the understanding 
of biomechanics.
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average acceleration over this period, you will notice 
that there is a slight (2.6%) difference in acceleration 
between runners A and B. Yet if you shrink the time 
intervals, distinct differences in the acceleration pat-
terns emerge. Coming out of the blocks, runner A 
had an 11.17% greater acceleration than runner B, 
and this was crucial to his success. Th s important 
piece of information would have been lost had the 
intervals been too large. In fact, had you calculated 
the average acceleration of the two runners over 
the entire race, you would have found no differ-
ence between them! Th s fi ding again highlights 
the importance of a large number of data points: 
Crucial information can be lost if the intervals are 
too large. Large numbers of data can be confusing 
in tabular form—just look how confusing Table 2.2 
can be with only four points of data. Graphs are a 
great aid for this type of analysis.

Graphically, the acceleration is the slope of the 
velocity–time curve. Inspecting Figure 2.13 again, in 

but also as an important aspect of preventing injury 
(most injuries occur during the deceleration phase).

Again, we can use arrows to help us conceptual-
ize these ideas. In the top of Figure 2.17, as a body 
A moves from point p to point p′, there is a certain 
velocity, v. If there is a positive acceleration during this 
time, then a new velocity, v′, would be larger than v. 
We have stepped on the gas; the arrow is going in the 
same direction. The bottom part of the figu e shows 
what happens if there is a negative acceleration: v′ will 
be less than v. When a is in the opposite direction of 
v, we say that the body decelerates. We have applied 
brakes to the velocity; the arrow is going in the nega-
tive direction. Notice in both cases that v is still in the 
direction of travel. 

Just as there is a difference between the aver-
age and instantaneous velocity, there is a difference 
between the average and instantaneous acceleration. 
Compare the fi st four points on Figure 2.16 (the 
data are presented in Table 2.2). Calculating the 

x

∆t

pA

pA

p′A

v′AvA aA

v′AvA aA

x

∆t

p′A

Figure 2.17 Process boxes to show how velocity can either increase (top) or decrease (bottom). To have a 
change in velocity, there must be an acceleration and a change in time.
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where it is understood that m is the mass of the entire 
body and v is the velocity of the COM. When you are 
dealing with a multisegmented body and you want to 
know the momentum of the segment involved in a 
collision, then Equation 10.3 becomes

L 5 meffectivevsegment (10.16)

Subsequent equations (Equations 10.4–10.14) should 
make similar distinctions when dealing with bodies 
that are anything other than point masses.

In many activities, you may be striking an object, 
such as in baseball, soft all, tennis, golf, boxing, and 
martial arts. When striking an object, you actually 
want to create a large impact. Performance is gener-
ally improved if you transfer a large momentum to 
the object you are striking. So how would you transfer 
a larger momentum to the object? The beginning of 
the hierarchical model is presented in Figure 10.15. 
Momentum transfer depends on the effective mass 
and the velocity of the segment or implement that is 
actually striking the object. The velocity component 
needs no further elaboration. The effective mass can 
be increased in one of two ways.

First, the mass of the segment or implement 
can be increased. In some cases, this is not possible. 
A martial artist cannot appreciably increase the mass 
of his fist, although wearing a boxing glove could have 
this effect. In other cases, it comes with trade-off . 
Remember that momentum is the product of mass 
and velocity and the two affect each other. In general, 
as the mass of the object increases, it will be harder to 
increase its velocity. So these two  competing factors 
must be balanced. The optimal mass/velocity combi-
nation will be different for every activity and every 
individual participating in that activity.

Second, the effective mass can be increased by 
linking the mass of the segment/implement to the 
masses of other segments in the body. Th s is done by 
a proper positioning of the segments and the appro-
priate muscle activation to stiffen the extremity. Th s 
is similar to stiffening the legs during a hard landing.

Effective mass is an important concept in any 
physical activity that involves impacts either with a 
part of your body or with an implement. It can help 
explain why helmet-to-helmet contacts in football are 
so dangerous particularly to the defender (Box 10.1). 
It also explains the answer to the question at the begin-
ning of this section: Why is it that one boxer can hit 
harder than another even if they both have the same 
mass and can deliver a punch with the same velocity?

Section Question Answer

Just because two boxers have the same mass 
and punch with the same velocity does not 
mean that they can deliver the same momen-
tum to their intended target. Research4,6 has 
shown that highly skilled fighters do indeed 
impart more momentum to the objects they 
are striking than lesser-skilled fighters with the 
same mass and punching velocity. The investi-
gators determined that this must be due to the 
more highly skilled practitioners developing a 
greater effective mass by proper positioning 
of the arm and effectively stiffening the appro-
priate joints. Manny can hit harder than Floyd 
because he has a greater effective mass.

me�ective vsegment/implement

Momentum transfer

Figure 10.15 The beginning of a hierarchical 
model for a performance involving the impact of a 
multisegmented body.

Head injuries in American football are a serious problem, 
particularly those resulting from helmet-to-helmet 
contact. In many cases, the injury to the offensive player 
receiving the impact is greater than the injury sustained 
by the striking defensive player. In this investigation, the 
researchers provide an explanation for why this is the 
case. Reconstructing actual, recorded game-time head 
injuries using instrumented dummies in the laboratory, 
they found that the striking player aligned his head, neck, 
and torso (called spearing), thus increasing his effective 
mass to 1.67 times that of the player being hit. In a 
follow-up investigation, they compared these impacts to 
punches to the head delivered by Olympic-caliber boxers. 
They found that these impacts did not transfer as much 
linear momentum as the football head strikes due to the 
lower effective mass of the fist.

Data from Viano DC, Pellman EJ. Concussion in professional 
football: biomechanics of the striking player—Part 8. Neurosurgery. 
Feb 2005;56(2):266–278. Viano DC, Casson IR, Pellman EJ, Bir 
CA, Zhang LY, Boitano MA. Concussion in professional football: 
comparison with boxing head impacts—Part 10. Neurosurgery. 
Dec 2005;57(6):1154–1170.

Box 10.1
Applied Research: Effective Mass and Head 
Injuries in American Football

 10.3 Effective Mass 201

Applied Research boxed features 
provide examples that are helpful in 
illustrating biomechanical concepts 
and present evidence of the practi-
cal value of biomechanics.

Process Boxes show transformations between inputs 
and outputs. Process Boxes provide a visual depiction 
of the underlying mechanics, which aid in their under-
standing and serve as an intermediate step between 
concept formation and mathematical problem-solving.

stop (LA = 0). Meanwhile, penny B speeds off in the 
original direction that penny A was traveling. Because 
linear momentum was conserved, you know that 
penny B now has the same momentum as penny A. 
And because they have the same mass, you know that 
the final velocity of penny B is equal to the initial 
velocity of penny A.

In this case, penny B bounced off penny A without 
any deformation. In these cases, the collision is con-
sidered to be an elastic collision. Another example of 
an elastic collision would be two pennies going in the 
same direction but at different speeds (Figure 10.4B).

In this case, imagine that penny A is traveling at 
twice the speed of penny B and in the same direction. 
Because penny A is behind penny B, they will obvi-
ously collide. Momentum is transferred from penny A 
to penny B, and penny B speeds off at the higher veloc-
ity penny A originally had while penny A slows down 
to the original speed of penny B.

Important Point! If two objects with the same 
mass collide head-on in a perfectly elastic colli-
sion, the momentum of each body will transfer to 
the other.

For the final example, consider two pennies 
traveling in opposite directions at the same speed 
 (Figure 10.4C). What happens when these two pen-
nies collide? If it was a direct, head-on elastic collision, 
the two pennies would bounce off each other. They 
would return in the opposite directions from which 
they came with the same speed.

Pennies and billiard balls are good examples of 
objects that exhibit elastic collisions, but even these 
collisions are not perfectly elastic. That is an ideal that 
is never reached. On the opposite end of the  spectrum 
are two objects that stick together after they col-
lide. Such a collision is called an inelastic  collision. 
An example of an inelastic collision would be two 
 American football players colliding.

Important Point! A perfectly elastic collision 
is an ideal that is never quite reached in the real 
world.

Thi k about what would happen if two football 
players were running at each other and made a head-
on, inelastic collision (Figure 10.5). With inelastic 
collisions, both objects have the same velocity after 
impact. Equation 10.7 becomes

(mA 1 mB) vAB 2 (mAvA 1 mBvB) 5 0 (10.8)
where vAB is the velocity of the combined two bodies 
after impact. In cases like these, you often want to know 
what happens. Does player A keep making forward 
progress, or does player B drive him back? Rearranging 
Equation 10.8 helps you obtain the answer:

v mA � mB
AB�

mAvA � mBvB′
 

(10.9)

Easy examples are when the masses of the two 
players are equal. You should have an intuitive feel 
that, if player A is moving faster than player B before 
impact, player A continues to advance. Similarly, if 

LA = mv
Before:

A�er:

LB = 0

LA = 0 LB = mv

LA = m2v
Before:

A�er:

LB = mv

LA = mv LB = m2v

Before:

A�er:

LB = –mv

LA = –mv LB = mv

A

B

C LA = mv

Figure 10.4 Two pennies colliding in a perfectly 
elastic collision. (A) The momentum of penny A is 
transferred to the motionless penny B, and the 
momentum of penny A becomes zero. (B) The 
momentum of the faster penny A is transferred to 
the slower-moving penny B while penny A assumes 
the momentum of the slower-moving penny B. 
(C) Pennies A and B collide and go off in opposite 
directions.

Elastic collision A collision where two objects 
bounce off each other without any deformation 
or loss of heat

Inelastic collision A collision in which two 
objects stick together after they collide
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Key Terms are highlighted and 
defi ed in the margins throughout 
the lesson and compiled into a  
Glossary at the end of the book.
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10.1.1  Defini g Your System: Internal 
and External Forces

To help you understand the basic ideas behind colli-
sions and impacts, you will begin by studying a two-
point-mass system. Remember how important it is to 
defi e your system before you begin to analyze any 
problem from a biomechanical perspective. To illus-
trate this point, examine two bodies that collide with 
each other by defini g the system in two different ways.

Important Point! The first step in performing 
any type of biomechanical analysis is to define 
your system.

In the fi st case, let us defi e two systems: one for 
body A and one for body B (Figure 10.2). To distin-
guish them, you should draw dashed circles to rep-
resent the boundaries of each system. Before impact, 
body B is at rest, and body A is moving with some sort 
of linear momentum, LA. Because body B is at rest, you 
know its momentum must be zero. At impact, body 
A contacts body B. You also know that whenever two 
bodies are in contact, there are equal and opposite 
forces acting on them. In this case, a force from body 
A is acting on body B, and a force from body B is act-
ing on body A. After impact, would you expect the 
two momenta would be the same? Would you expect 
body A to be moving at the same speed and in the same 
direction as before it collided with body B? Probably 

not. How about body B? Unless its mass is huge com-
pared to body A, you would expect it to move. In fact, 
it probably would move regardless, but it just might be 
imperceptibly small. There was an external force acting 
on each body, and the result of that force was a change 
in momentum. These observations are in keeping with 
Newton’s laws of motion. Also, note that because there 
were external forces and changes in velocities, there 
was also work performed on each system.

Important Point! Effective forces external to a 
system change the momentum and perform work 
on that system.

In the second case, imagine that body A and 
body B are part of the same system (Figure 10.3). 

Figure 10.1 Assuming you actually hit the ball, 
would it go farther if the ball were pitched at 60 mph 
or 80 mph?
© Aspen Photo/Shutterstock.

Figure 10.2 Defining your system determines 
whether forces are internal or external to that system. 
In this case, bodies A and B are two separate systems. 
The reaction forces at impact (A on B and B on A) are 
external to the system.

Figure 10.3 When bodies A and B are part of the 
same system, the reaction forces between them are 
internal to the system and do not affect a change in 
momentum of that system.

LA = mAv LB = 0

A B

AA BB FA/BFB/A

Lsystem = mAv

No external forces

A B

A B Lsystem = mAv
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Using Equation 9.16, you can determine the average effective force for each landing as being equal to

∆ mv2
COM

1
2
∆ pCOM

y�
yFaverage–effective

And knowing the average effective force, you can determine the average ground reaction force (which is 
the actual force the body is subjected to) as

yFGRF 5 yFeffective 1 Fg

You can now see the effect of changing the amount her COM displaces on the average ground reaction 
force. The results are summarized in Table 9.1. The goal will now be to get her to displace her COM more 
upon landing.

Table 9.1
Effects of Changing Laura’s COM

∆ypCOM (cm) Average yFeffective Average yFGRF 

Magnitude (N) % Change Magnitude (N) % Change

0.15 1739.31 0 2319.08 0

0.25 1043.59 −40.00 1623.36 −30.00

0.35 745.42 −57.14 1325.19 −42.86

0.45 579.77 −66.67 1159.54 −50.00

0.55 474.36 −72.73 1054.13 −54.55

We are most interested in the FGRF values because her body is subjected to those loads. While a 30% reduc-
tion may not seem huge, it is a reduction every time she lands. If she jumps 200 times in a match, then that 
can really add up!

Summary
In this lesson, you learned about an alternative to 
Newton’s laws for analyzing human movement. Th s 
method involved the concepts of work, energy, and 
power (Table 9.2). Because of some issues with using 
these concepts with biological systems, mechanical 
energy expenditure was introduced. The fi st law of 
thermodynamics was compared to the center of mass 
equation, and effici cy and economy were introduced. 
Impulse–momentum and work–energy methods pro-
vide complementary information and a more complete 
analysis of movement for several different tasks.

Review Questions
1. Define efficiency, economy, energy, external 

(locomotor) work, gravitational potential energy, 
kinetic energy, mechanical energy expenditure, 
potential energy, power, strain potential energy, 
and work.

2. State the conservation of energy and the fi st law 
of thermodynamics.

3. What is meant by the term negative work or power?

Table 9.2
Key Concepts
• Energy
• Work
• Mechanical energy expenditure
• Effici cy
• Power

186 Lesson 9 Work–Energy

4. What information is provided by using work–
energy methods that is not provided by using 
impulse–momentum methods?

5. What information is provided by using impulse–
momentum methods that is not provided by using 
work–energy methods?

6. Which requires more work?
a. Increasing the velocity of a 10 kg object from 

5 m/sec to 10 m/sec
b. Decreasing the velocity of a 5 kg object from 

10 m/sec to 5 m/sec
c. Lifting a 10 kg object from the ground to 2 m 

above the ground
d. Holding a 100 kg object in place 1 m above 

the ground

7. Which requires greater power?
a. Increasing the velocity of a 10 kg object from 

5 m/sec to 10 m/sec in 1 sec

b. Decreasing the velocity of a 5 kg object from 
10 m/sec to 5 m/sec in 2 sec

c. Lifting a 10 kg object from the ground to 2 m 
above the ground in 0.5 sec

d. Holding a 100 kg object in place 1 m above the 
ground for 10 sec

8. Describe movements where you would primarily 
use work–energy methods to analyze them.

9. Describe movements where you would primar-
ily use impulse–momentum methods to analyze 
them.

10. Describe movements where effici cy is important.

11. Describe movements where efficiency is not 
important.

12. Describe movements where power is important.

13. Describe movements where power is not 
important.
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