Members of the genus *Neisseria* are small gram-negative diplococci with flattened adjacent sides. They sometimes give the appearance of two tiny beans lying face to face. The organisms grow on enriched media such as *blood agar* and *chocolate agar*, and produce oxidase, an enzyme that changes the color of a special reagent. There are several *Neisseria* species found in the human body. These are listed in **TABLE 43.1**. In this exercise, *Neisseria* species will be isolated from the throat and their properties observed.

THE GENUS NEISSERIA

PURPOSE: to identify *Neisseria* species isolated from the throat.
PROCEDURE

1. Blood agar plates are prepared according to the method explained in Exercise 41. Chocolate agar is prepared by heating a rich medium such as trypticase soy agar to 80°C for 10 minutes, and then adding defibrinated sheep blood to a 5% concentration. The heat lysed the red blood cells and releases the hemoglobin. The hemoglobin chars and causes the medium to become brown; hence, the name chocolate agar.

2. Select or prepare a plate of blood agar and/or one of chocolate agar. Label the bottom side of each plate with your name, the date, the name of the medium, and the designation “throat swab.”

3. Obtain a sterile cotton swab and a sterile tongue depressor.

 - Have a fellow student swab your pharynx (throat) according to the method outlined in Exercise 41.

 - Using a sterile loop, streak for isolated colonies as described in Exercises 5 and 41 (FIGURE 43.2).

 - Apply the bacteria on the swab to one small area of the agar plate by rubbing it gently.

 - Incubate the plate(s) at 37°C for 24 to 48 hours in the inverted position.

 - If a candle jar is available, it may be used as described in Exercise 41 to increase the CO₂ tension and encourage growth of the Neisseria species.

 - Wear gloves when adding the blood to the agar base to prepare blood or chocolate agar.

<table>
<thead>
<tr>
<th>TABLE 43.1</th>
<th>Neisseria Species Found in Humans</th>
</tr>
</thead>
<tbody>
<tr>
<td>N. gonorrhoeae</td>
<td></td>
</tr>
<tr>
<td>N. meningitidis</td>
<td></td>
</tr>
<tr>
<td>N. lactamica</td>
<td></td>
</tr>
<tr>
<td>N. sicca</td>
<td></td>
</tr>
<tr>
<td>N. subflava</td>
<td></td>
</tr>
<tr>
<td>N. mucosa</td>
<td></td>
</tr>
<tr>
<td>N. flavescens</td>
<td></td>
</tr>
<tr>
<td>N. cinerea</td>
<td></td>
</tr>
<tr>
<td>N. polysaccharea</td>
<td></td>
</tr>
<tr>
<td>N. elongata</td>
<td></td>
</tr>
<tr>
<td>N. kochii</td>
<td></td>
</tr>
</tbody>
</table>
4. Observe the plate(s) for grayish white and light yellow colonies, which may be *Neisseria* species. Some colonies may be wrinkled, others mucoid in texture.

- To verify the presence of *Neisseria*, perform the oxidase test as follows (Watch Microbiology Video: Oxidase Test to see this test performed):
 - Place several drops of freshly prepared oxidase reagent (tetramethyl- *p*-phenylenediamine dihydrochloride) onto the colonies (FIGURE 43.3).
 - The oxidase present in *Neisseria* colonies will cause the colonies to become pink, then maroon, and finally blue-black. These changes should occur rapidly, and they will be complete within several minutes.
- Identify colonies of *Neisseria* and prepare representations of the plates in the appropriate space in the Results section.

Oxidase Test

FIGURE 43.2 Streak the plate for isolated colonies.

FIGURE 43.3 Place several drops of oxidase reagent onto the colonies.
5. Select samples of possible Neisseria species, and prepare air-dried, heat-fixed smears for Gram staining. Small gram-negative diplococci should be observed.

- Draw labeled representations in the Results section.
- If transfers to agar slants are to be made, these should be done immediately after the oxidase reagent has been added, since the reagent will kill the cells in the colonies.
- It should be noted that rod-shaped organisms of the genera Alcaligenes and Pseudomonas will also give a positive oxidase reaction if present on the plates.
- When observed with the light microscope, these bacteria will appear as gram-negative rods.
The Genus *Neisseria*

EXERCISE RESULTS 43

RESULTS

NEISSERIA SPECIES FROM THE UPPER RESPIRATORY TRACT

Stained Smears of *Neisseria* Species

Chocolate Agar Plate

Blood Agar Plate

Source: [Image of microscope view]

Magnif.: [Image of magnification levels]
Observations and Conclusions

Questions

1. Does the isolation of *Neisseria* species from the pharynx (throat) necessarily mean that a person has gonorrheal pharyngitis or another disease caused by *Neisseria*?

2. What does the word “chocolate” refer to in chocolate agar?

3. Which medium—nutrient agar, blood agar, or chocolate agar—might be expected to yield better growth of *Neisseria* species? Why?
4. Would the observation of oxidase-positive colonies on chocolate agar necessarily represent final proof that *Neisseria* colonies were present?

5. What is the microscopic appearance of Gram-stained cells of *Neisseria* species?