
Software Engineering 
Principles

Goals
After studying this chapter, you should be able to

 � Describe the general activities in the software life cycle

 � Describe the goals for “quality” software

 � Explain the following terms: software requirements, software specifications, algorithm, information hiding, abstraction, stepwise 
refinement

 � Explain and apply the fundamental ideas of top-down design

 � Explain and apply the fundamental ideas of object-oriented design

 � Explain how CRC cards and UML diagrams can be used in software design

 � Identify several sources of program errors

 � Describe strategies to avoid software errors

 � Specify the preconditions and postconditions of a program segment or function

 � Show how deskchecking, code walk-throughs, and design and code inspections can improve software quality and reduce the  software 
development effort

 � Explain the following terms: acceptance tests, regression testing, verification, validation, functional domain, black-box testing, white-
box testing

 � State several testing goals and indicate when each would be appropriate

 � Describe several integration-testing strategies and indicate when each would be appropriate

 � Explain how program verification techniques can be applied throughout the software development process

 � Create a C++ test driver program to test a simple class
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A
t this point in your computing career, you have completed at least one computer sci-

ence course. You can take a problem of medium complexity, write an algorithm to solve 

the problem, code the algorithm in C++, and demonstrate the correctness of your solu-
tion. Now that you are starting a new class, it is time to stop and review those principles 

that, if adhered to, guarantee that you can indeed do what your previous syllabus claimed.

In this chapter, we review the software design process and the verification of software 

correctness. In Chapter 2, we review data design and implementation.

1.1 The Software Process
When we consider computer programming, we immediately think of writing a program 

for a computer to execute—the generation of code in some computer language. As a be-

ginning student of computer science, you wrote programs that solved relatively simple 

problems. Much of your initial effort went into learning the syntax of a programming lan-

guage such as C++: the language’s reserved words, its data types, its constructs for selec-
tion (if-else and switch) and looping (while, do while, and for), and its input/
output mechanisms (cin and cout).

You may have learned a programming methodology that took you from the problem 

description that your instructor handed out all the way through the delivery of a good 

software solution. Programmers have created many design techniques, coding standards, 

and testing methods to help develop high-quality software. But why bother with all that 

methodology? Why not just sit down at a computer and write code? Aren’t we wasting a 

lot of time and effort, when we could just get started on the “real” job?

If the degree of our programming sophistication never had to rise above the level of 

trivial programs (like summing a list of prices or averaging grades), we might get away 

with such a code-first technique (or, rather, lack of technique). Some new programmers 

work this way, hacking away at the code until the program works more or less correctly—

usually less.

As your programs grow larger and more complex, you must pay attention to other 

software issues in addition to coding. If you become a software professional, you may work 

as part of a team that develops a system containing tens of thousands, or even millions, 

of lines of code. The successful creation of com-

plex programs requires an organized approach. 

We use the term software  engineering to refer 

to the discipline concerned with all aspects of the 

development of high-quality software systems. 

It encompasses all variations of techniques used 

during the software life cycle plus supporting  

activities such as documentation and teamwork. 

A software process is a specific set of inter- 

related software engineering techniques, used 

by a person or organization to create a system.

Software engineering

The discipline devoted to the design, production, and 
maintenance of computer programs that are developed 
on time and within cost estimates, using tools that help 
to manage the size and complexity of the resulting soft-
ware products

Software process 

A standard, integrated set of software engineering tools 
and techniques used on a project or by an organization
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Software engineering is a broad field. Most computing education programs devote 

one or more advanced courses to the topic. In fact, there are several schools that offer 

degrees in the discipline. This section provides a brief introduction to this important field.

Software Life Cycles
The term “software engineering” was coined in the 1960s to emphasize that engineering-

like discipline is required when creating software. At that time software development was 

characterized by haphazard approaches with little organization. The primary early contri-

bution of the disciplined approach was the identification and study of the various activi-

ties involved in developing successful systems. These activities make up the “life cycle” of 

a software project and include

• Problem analysis  Understanding the nature of the problem to be solved

• Requirements elicitation  Determining exactly what the program must do

• Requirements specification  Specifying what the program must do (the functional 

 requirements) and the constraints on the solution approach (non-functional re-

quirements, such as what language to use)

• High- and low-level design  Recording how the program meets the requirements, 

from the “big picture” overview to the detailed design

• Implementation of the design  Coding a program in a computer language

• Testing and verification  Detecting and fixing errors and demonstrating the correct-

ness of the program

• Delivery  Turning over the tested program to the customer or user (or instructor!)

• Operation  Actually using the program

• Maintenance  Making changes to fix operational errors and to add or modify the 

function of the program

Classically, these activities were performed in the sequence shown above. Each stage 

would culminate in the creation of structured documentation, which would provide the 

foundation upon which to build the following stage. This became known as the “waterfall” 

life cycle, because its graphical depiction resembled a cascading waterfall, as shown in 

Figure 1.1a. Each stage’s documented output would be fed into the following stage, like 

water flowing down a river.

The waterfall approach was widely used for a number of years and was instrumental 

in organizing software development. However, software projects differ from one another 

in many important ways, for example size, duration, scope, required reliability, and appli-

cation area. It is not reasonable to expect that one life-cycle approach is best for all proj-

ects. The waterfall approach’s inflexible partitioning of projects into separate stages and 

its heavy emphasis on documentation caused it to lose popularity. It is still useful when 

requirements are well understood and unlikely to change, but that is often not the case for 

modern software development.

31.1 The Software Process
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Figure 1.1 Life-cycle models
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Alternate life-cycle approaches evolved for projects that did not conform well to 

the waterfall cycle. For example, the spiral model depicted in Figure 1.1b directly ad-

dresses major risks inherent in software development, for example, the risk of creating 

an  unneeded product, the risk of including unnecessary features, and the risk of creating 

a confusing interface. Important activities, such as objective-setting, risk assessment, de-

velopment, and validation, are repeated over and over in a spiral manner as the project 

moves from its original concept to its final form. Unlike the waterfall model, where devel-

opment blindly proceeds until the testing stage is reached, the spiral model emphasizes 

continual assessment and adjustment of goals.

Many other models of the software process have been defined. There are models 

that emphasize prototyping, models for real-time systems development, and models that  

emphasize creative problem solving. In one sense, there are as many models as there are 

organizations that develop software. All organizations, if they have wise management, 

pull ideas from the various standard approaches that best fit with their goals and create 

their own version of the life cycle, one that works best for them. The top organizations 

constantly measure how well their approach is working and attempt to continually im-

prove their process. Software development in the real world is not easy and requires good 

organization, flexibility, and vigilant management.

A Programmer’s Toolboxes
What makes our jobs as programmers or software engineers challenging is the tendency 

of software to grow in size and complexity and to change at every stage of its develop-

ment. Part of a good software process is the use of tools to manage this size and complex-

ity. Usually a programmer has several toolboxes, each containing tools that help to build 

and shape a software product.

Hardware One toolbox contains the hardware itself: the computers and their peripheral 

devices (such as displays, keyboards, trackpads, and network interfaces), on which and 

for which we develop software.

Software A second toolbox contains various software tools: operating systems to 

control the computer’s resources, development environments to help us enter programs, 

compilers to translate high-level languages like C++ into something that the computer 
can execute, interactive debugging programs, test-data generators, and so on. You’ve used 

some of these tools already.

Ideaware A third toolbox is filled with the shared body of knowledge that programmers 

have collected over time. This box contains the algorithms that we use to solve common 

programming problems as well as data structures for modeling the information processed 

by our programs. Recall that an algorithm 

is a step-by-step description of the solution 

to a problem. How we choose between two 

algorithms that carry out the same task 

often depends on the requirements of a 

Algorithm

A logical sequence of discrete steps that describes a com-
plete solution to a given problem, computable in a finite 
amount of time
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particular application. If no relevant requirements exist, the choice may be based on the 

programmer’s own style.

Ideaware contains programming methodologies such as top-down and object- 

oriented design and software concepts, including information hiding, data encapsulation, 

and abstraction. It includes aids for creating designs such as Classes, Responsibilities,  

and Collaborations (CRC) cards and methods for describing designs such as the Unified 

Modeling Language (UML). It also contains some tools for measuring, evaluating, and 

proving the correctness of our programs. We devote most of this book to exploring the 

contents of this third toolbox.

Some might argue that using these tools takes the creativity out of programming, but 

we don’t believe that to be true. Artists and composers are creative, yet their innovations 

are grounded in the basic principles of their crafts. Similarly, the most creative program-

mers build high-quality software through the disciplined use of basic programming tools.

Goals of Quality Software
Quality software entails much more than a program that somehow accomplishes the task 

at hand. A good program achieves the following goals:

1. It works.

2. It can be modified without excessive time and effort.

3. It is reusable.

4. It is completed on time and within budget.

It’s not easy to meet these goals, but they are all important.

Goal 1: Quality Software Works The program must do the task it was designed to 

perform, and it must do it correctly and completely. Thus the first step in the development 

process is to determine exactly what the program is required to do. To write a program 

that works, you first need to have a definition of 

the program’s requirements. For students, the 

requirements often are included in the instruc-

tor’s problem description: “Write a program 

that calculates. . . .” For programmers working 

on a govern ment con tract, the requirements 

document may be hundreds of pages long.

We develop programs that meet the user’s 

requirements using software  specifications. 

The specifications indicate the format of the in-

put and the expected output, details about processing, performance measures (how fast? 

how big? how accurate?), what to do in case of errors, and so on. The specifications tell 

exactly what the program does, but not how it is done. Sometimes your instructor will 

provide detailed specifications; other times you may have to write them yourself, based 

on the requirements definition, conversations with your instructor, or guesswork. (We 

discuss this issue in more detail later in this chapter.)

Requirements

A statement of what is to be provided by a computer sys-
tem or software product

Software specification

A detailed description of the function, inputs, processing, 
outputs, and special requirements of a software product; 
it provides the information needed to design and imple-
ment the program
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How do you know when the program is right? A program must be complete (it should 

“do everything” specified) and correct (it should “do it right”) to meet its requirements. 

In addition, it should be usable. For instance, if the program needs to receive data directly 

from a person, it must indicate when it expects input. The program’s outputs should be 

readable and understandable to users. Indeed, creating a good user interface is an impor-

tant subject in software engineering today.

Finally, Goal 1 means that the program should be as efficient as it needs to be. We 

would never deliberately write programs that waste time or space in memory, but not all 

programs demand great efficiency. When they do, however, we must meet these demands 

or else the programs will not satisfy the requirements. A space-launch control program, 

for instance, must execute in “real time”; that is, the software must process commands, 

perform calculations, and display results in coordination with the activities it is supposed 

to control. Closer to home, if a word processing program cannot update the screen as rap-

idly as the user can type, the program is not as efficient as it needs to be. In such a case, 

if the software isn’t efficient enough, it doesn’t meet its requirements; thus, according to 

our definition, it doesn’t work correctly. In Chapter 2, we introduce a way to compare the 

efficiency of different algorithms.

To summarize, a typical program needs to be

• complete: It should “do everything” needed.

• correct: It should “do it right.”

• usable: Its user interface should be “easy to work with.”

• efficient: It should finish in a “reasonable amount of time” considering the complex-

ity and size of the task.

Goal 2: Quality Software Can Be Modified When does software need to be modified? 

Changes occur in every phase of its existence.

Software gets changed in the design phase. When your instructor or employer gives 

you a programming assignment, you begin to think of how to solve the problem. The next 

time you meet, however, you may be notified of a small change in the problem description.

Software gets changed in the coding phase. You make changes in your program as a 

result of compilation errors. Sometimes you suddenly see a better solution to a part of the 

problem after the program has been coded, so you make changes.

Software gets changed in the testing phase. If the program crashes or yields wrong 

results, you must make corrections.

In an academic environment, the life of the software typically ends when a corrected 

program is turned in to be graded. When software is developed for real-world use, how-

ever, most of the changes take place during the “maintenance” phase. Someone may 

discover an error that wasn’t uncovered in testing, someone else may want to include ad-

ditional functions, a third party may want to change the input format, and a fourth person 

may want to run the program on another system.

As you see, software changes often and in all phases of its life cycle. Knowing this fact, 

software engineers try to develop programs that are modified easily. If you think it is a 

simple matter to change a program, try to make a “small change” in the last program you 
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wrote. It’s difficult to remember all the details of a program after some time has passed, 

isn’t it? Modifications to programs often are not even made by the original authors but 

rather by subsequent maintenance programmers. (Someday you may be the one making 

the modifications to someone else’s program.)

What makes a program easy to modify? First, it should be readable and understand-

able to humans. Before it can be changed, it must be understood. A well-designed, clearly 

written, well-documented program is certainly easier for human readers to understand. 

The number of pages of documentation required for “real-world” programs usually ex-

ceeds the number of pages of code. Almost every organization has its own policy for docu-

mentation. Reading a well-written program can teach you techniques that help you write 

good programs. In fact, it’s difficult to imagine how anyone could become a good program-

mer without reading good programs.

Second, the program should readily be able to withstand small changes. The key idea 

is to partition your programs into manageable pieces that work together to solve the 

problem, yet remain relatively independent. The design methodologies reviewed later in 

this chapter should help you write programs that meet this goal.

Goal 3: Quality Software Is Reusable It takes time and effort to create quality software. 

Therefore, it is important to realize as much value from the software as possible.

One way to save time and effort when building a software solution is to reuse pro-

grams, classes, functions, and other components from previous projects. By using previ-

ously designed and tested code, you arrive at your solution sooner and with less effort. 

Alternatively, when you create software to solve a problem, it is sometimes possible to 

structure that software so it can help solve future, related problems. By doing so, you gain 

more value from the software created.

Creating reusable software does not happen automatically. It requires extra effort 

during the specification and design phases. To be reusable, software must be well docu-

mented and easy to read, so that a programmer can quickly determine whether it can be 

used for a new project. It usually has a simple interface so that it can easily be plugged into 

another system. It is also modifiable (Goal 2), in case a small change is needed to adapt it 

to the new system.

When creating software to fulfill a narrow, specific function, you can sometimes make 

the software more generally usable with a minimal amount of extra effort. In this way, you 

increase the chances that you can reuse the software later. For example, if you are creating 

a routine that sorts a list of integers into increasing order, you might generalize the rou-

tine so that it can also sort other types of data. Furthermore, you could design the routine 

to accept the desired sort order, increasing or decreasing, as a parameter.

One of the main reasons for the rise in popularity of object-oriented approaches is 

that they lend themselves to reuse. Previous reuse approaches were hindered by inappro-

priate units of reuse. If the unit of reuse is too small, then the work saved is not worth the 

effort. If the unit of reuse is too large, then it is difficult to combine it with other system 

elements. Object-oriented classes, when designed properly, can be very appropriate units 

of reuse. A class encapsulates both data and actions on the data, making it ideal for reuse.
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Goal 4: Quality Software Is Completed on Time and Within Budget You know what 

happens in school when you turn in your program late. You probably have grieved over 

an otherwise perfect program that received only half credit—or no credit at all—because 

you turned it in one day late. 

Although the consequences of tardiness may seem arbitrary in the academic world, 

they are significant in the business world. The software for controlling a space launch 

must be developed and tested before the launch can take place. A patient database system 

for a new hospital must be installed before the hospital can open. In such cases, the pro-

gram doesn’t meet its requirements if it isn’t ready when needed.

“Time is money” may sound trite, but failure to meet deadlines is expensive. A com-

pany generally budgets a certain amount of time and money for the development of a 

piece of software. As a programmer, you are paid a salary or an hourly wage. If your part of 

the project is only 80% complete when the deadline arrives, the company must pay you—

or another programmer—to finish the work. The extra expenditure in salary is not the 

only cost, however. Other workers may be waiting to integrate your part of the program 

into the system for testing. If the program is part of a contract with a customer, monetary 

penalties may be assessed for missed deadlines. If it is being developed for commercial 

sales, the company may be beaten to the market by a competitor and eventually forced 

out of business.

Once you have identified your goals, what can you do to meet them? Where should 

you start? Software engineers use many tools and techniques. In the next few sections of 

this chapter, we review some of these techniques to help you understand, design, and code 

programs.

Specification: Understanding the Problem
No matter which programming design technique you use, the first steps are always the 

same. Imagine the following all-too-familiar situation. On the third day of class, you are 

given a 12-page description of Programming Assignment 1, which must be running per-

fectly and turned in by noon, one week from yesterday. You read the assignment and real-

ize that this program is three times larger than any program you have ever written. What 

is your first step?

The responses listed here are typical of those given by a class of computer science 

students in such a situation:

1. Panic 39%

2. Sit down at the computer and begin typing 30%

3. Drop the course 27%

4. Stop and think  4%

Response 1 is a predictable reaction from students who have not learned good pro-

gramming techniques. Students who adopt Response 3 will find their education progress-

ing rather slowly. Response 2 may seem to be a good idea, especially considering the 
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deadline looming ahead. Resist the temptation, though—the first step is to think. Before 

you can come up with a program solution, you must understand the problem. Read the as-

signment, and then read it again. Ask questions of your instructor (or manager, or client). 

Starting early affords you many opportunities to ask questions; starting the night before 

the program is due leaves you no opportunity at all.

The problem with writing first is that it tends to lock you into the first solution you 

think of, which may not be the best approach. We have a natural tendency to believe that 

once we’ve put something in writing, we have invested too much in the idea to toss it out 

and start over.

On the other hand, don’t agonize about all the possibilities until the day before your 

deadline. (Chances are that a disk, network, or your whole computer will fail that day!) 

When you think you understand the problem, you should begin writing your design.

Writing Detailed Specification
Many writers experience a moment of terror when faced with a blank piece of paper—

where to begin? As a programmer, however, you don’t have to wonder about where to 

begin. Using the assignment description ( your “requirements”), first write a complete 

definition of the problem, including the details of the expected inputs and outputs, the 

necessary processing and error handling, and all assumptions about the problem. When 

you finish this task, you have a detailed specification—a formal definition of the problem 

your program must solve, which tells you exactly what the program should do. In addition, 

the process of writing the specifications brings to light any holes in the requirements. For 

instance, are embedded blanks in the input significant or can they be ignored? Do you 

need to check for errors in the input? On which computer system(s) will your program 

run? If you get the answers to these questions at this stage, you can design and code your 

program correctly from the start.

Many software engineers work with user/operational scenarios to understand the re-

quirements. In software design, a scenario is a sequence of events for one execution of the 

program. For example, a designer might consider the following scenario when developing 

the software for a bank’s automated teller machine (ATM):

1. The customer inserts a bank card.

2. The ATM reads the account number on the card.

3. The ATM requests a personal identification number (PIN) from the customer.

4. The customer enters 5683.

5. The ATM successfully verifies the account number/PIN combination.

6. The ATM asks the customer to select a transaction type (deposit, show balance, 

withdrawal, or quit).

7. The customer selects the show balance option.

8. The ATM obtains the current account balance ($1,204.35) and displays it.
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9. The ATM asks the customer to select a transaction type (deposit, show balance, 

withdrawal, or quit).

10. The customer selects quit.

11. The ATM returns the customer’s bank card.

Scenarios allow us to get a feel for the behavior expected from the system. Of course, 

a single scenario cannot show all possible behaviors. For this reason, software engineers 

typically prepare many different scenarios to gain a full understanding of the system’s 

requirements.

You must know some details to write and run the program. Other details, if not explic-

itly stated in the program’s requirements, may be handled according to the programmer’s 

preference. Assumptions about unstated or ambiguous specifications should always be 

written explicitly in the program’s documentation.

The detailed specification clarifies the problem to be solved. But it does more than 

that: It also serves as an important piece of written documentation about the program. 

There are many ways in which specifications may be expressed and a number of differ-

ent sections that may be included, depending on the nature of the problem. Our recom-

mended program specification includes the following sections:

• Processing requirements

• Sample inputs with expected outputs

• Assumptions

If special processing is needed for unusual or error conditions, it should be specified 

as well. Sometimes it is helpful to include a section containing definitions of terms used. 

Likewise, it may prove useful to list any testing requirements so that verifying the pro-

gram is considered early in the development process. 

1.2 Program Design
Remember, the specification of the program tells what the program must do, but not how 

it does it. Once you have fully clarified the goals of the program, you can begin to develop 

and record a strategy for meeting them; in other words, you can begin the design phase 

of the software life cycle. In this section, we review some ideaware tools that are used 

for software design, including abstraction, information hiding, stepwise refinement, and 

visual tools.

Abstraction
The universe is filled with complex systems. We learn about such systems through models. 

A model may be mathematical, like equations describing the motion of satellites around 

the earth. A physical object such as a model airplane used in wind-tunnel tests is another 

form of model. In this approach to understanding complex systems, the important concept 
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is that we consider only the essential characteristics of the system; we ignore minor or 

irrelevant details. For example, although the earth is an oblate ellipsoid, globes (models 

of the earth) are spheres. The small difference between the earth’s equatorial diameter 

and polar diameter is not important to us in studying the political divisions and physical 

landmarks on the earth. Similarly, the model airplanes used to study aerodynamics do not 

include in-flight movies.

An abstraction is a model of a complex 

system that includes only the essential details. 

Abstractions are the fundamental way that we 

manage complexity. Different viewers use dif-

ferent abstractions of a particular system. Thus, 

while we may see a car as a means to transport 

us and our friends, the automotive brake engineer may see it as a large mass with a small 

contact area between it and the road (Figure 1.2).

What does abstraction have to do with software development? The programs we 

write are abstractions. A spreadsheet program that is used by an accountant models the 

books that were once used to record debits and credits. An educational computer game 

about wildlife models an ecosystem. Writing software is difficult because both the sys-

tems we model and the processes we use to develop the software are complex. One of our 

major goals is to convince you to use abstractions to manage the complexity of developing 

software. In nearly every chapter, we make use of abstraction to simplify our work.

Abstraction

A model of a complex system that includes only the 
details essential to the perspective of the viewer of the 
system

Figure 1.2 An abstraction includes the essential details relative to the perspective of the viewer
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Information Hiding
Many design methods are based on decomposing a problem’s solution into modules. 

A module is a cohesive system subunit that performs a share of the work. Decompos-

ing a system into modules helps us manage 

complexity. Additionally, the modules can 

form the basis of assignments for different 

programming teams working separately 

on a large system. One important feature 

of any design method is that the details 

that are specified in lower levels of the 

program design remain hidden from the 

higher levels. The programmer sees only 

the details that are relevant at a particular level of the design. This  information hiding 

makes certain details inaccessible to the programmer at higher levels.

Modules act as an abstraction tool. Because the complexity of its internal structure 

can be hidden from the rest of the system, the details involved in implementing a module 

remain isolated from the details of the rest of the system.

Why is hiding the details desirable? Shouldn’t the programmer know everything? No! 

In this situation, a certain amount of ignorance truly is advantageous. Information hiding 

prevents the higher levels of the design from becoming dependent on low-level design 

details that are more likely to be changed. For example, you can stop a car without know-

ing whether it has disc brakes or drum brakes. You don’t need to know these lower-level 

details of the car’s brake subsystem to stop it.

Furthermore, you don’t want to require a complete understanding of the complicated 

details of low-level routines for the design of higher-level routines. Such a requirement 

would introduce a greater risk of confusion and error throughout the whole program. For 

example, it would be disastrous if every time we wanted to stop our car, we had to think, 

“The brake pedal is a lever with a mechanical advantage of 10.6 coupled to a hydraulic 

system with a mechanical advantage of 7.3 that presses a semi-metallic pad against a steel 

disc. The coefficient of friction of the pad/disc contact is. . . .”

Information hiding is not limited to driving cars and programming computers. Try to 

list all the operations and information required to make a peanut butter and jelly sand-

wich. We normally don’t consider the details of planting, growing, and harvesting peanuts, 

grapes, and wheat as part of making a sandwich. Information hiding lets us deal with only 

those operations and information needed at a particular level in the solution of a problem.

The concepts of abstraction and information hiding are fundamental principles of 

software engineering. We will come back to them again and again throughout this book. 

Besides helping us manage the complexity of a large system, abstraction and information 

hiding support our quality-related goals of modifiability and reusability. In a well-designed 

system, most modifications can be localized to just a few modules. Such changes are much 

easier to make than changes that permeate the entire system. Additionally, a good system 

design results in the creation of generic modules that can be used in other systems.

Module

A cohesive system subunit that performs a share of the 
work

Information hiding

The practice of hiding the details of a function implemen-
tation or data structure with the goal of controlling ac-
cess to the details of a module or structure
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To achieve these goals, modules should be good abstractions with strong cohesion; 

that is, each module should have a single purpose or identity, and the module should stick 

together well. A cohesive module can usually be described by a simple sentence. If you 

have to use several sentences or one very convoluted sentence to describe your module, 

it is probably not cohesive. Each module should also exhibit information hiding so that 

changes within it do not result in changes in the modules that use it. This independent 

quality of modules is known as loose coupling. If your module depends on the internal 

details of other modules, it is not loosely coupled.

Stepwise Refinement
In addition to concepts such as abstraction and information hiding, software developers 

need practical approaches to conquer complexity. Stepwise refinement is a widely ap-

plicable approach. Many variations of it exist, such as top-down, bottom-up, functional 

decomposition, and even “round-trip gestalt design.” Undoubtedly you have learned a 

variation of stepwise refinement in your studies, as it is a standard method for organiz-

ing and writing essays, term papers, and books. For example, to write a book, an author 

first determines the main theme and the major subthemes. Next, the chapter topics can 

be identified, followed by section and subsection topics. Outlines can be produced and 

further refined for each subsection. At some point the author is ready to add detail—to 

actually begin writing sentences.

In general, with stepwise refinement, a problem is approached in stages. Similar steps 

are followed during each stage, with the only difference reflecting the level of detail in-

volved. The completion of each stage brings us closer to solving our problem. Let’s look at 

some variations of stepwise refinement:

• Top-down With this approach, the problem is first broken into several large parts. 

Each of these parts is, in turn, divided into sections, the sections are subdivided, 

and so on. The important feature is that details are deferred as long as possible as 

we move from a general to a specific solution. The outline approach to writing a 

book involves a form of top-down stepwise refinement.

• Bottom-up As you might guess, with this approach the details come first. Bottom-up 

development is the opposite of the top-down approach. After the detailed com-

ponents are identified and designed, they are brought together into increasingly 

higher-level components. This technique could be used, for example, by the author 

of a cookbook who first writes all the recipes and then decides how to organize 

them into sections and chapters.

• Functional decomposition This program design approach encourages programming 

in logical action units, called functions. The main module of the design becomes 

the main program (also called the main function), and subsections develop into 

functions. This hierarchy of tasks forms the basis for functional decomposition, 

with the main program or function controlling the processing. The general func-

tion of the method is continually divided into subfunctions until the level of detail 
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1Grady Booch, Object Oriented Design with Applications (Benjamin Cummings, 1991).

is considered fine enough to code. Functional decomposition is top-down stepwise 

refinement with an emphasis on functionality.

• Round-trip gestalt design This confusing term is used to define the stepwise refine-

ment approach to object-oriented design suggested by Grady Booch,
1
 one of the 

leaders of the “object” movement. First, the tangible items and events in the prob-

lem domain are identified and assigned to candidate classes and objects. Next, the 

external properties and relationships of these classes and objects are defined. Fi-

nally, the internal details are addressed; unless these are trivial, the designer must 

return to the first step for another round of design. This approach entails top-down 

stepwise refinement with an emphasis on objects and data.

Good software designers typically use a combination of the stepwise refinement tech-

niques described here.

Visual Tools
Abstraction, information hiding, and stepwise refinement are interrelated methods for 

controlling complexity during the design of a system. We now look at some tools that 

can help us visualize our designs. Diagrams are used in many professions. For example, 

architects use blueprints, investors use market trend graphs, and truck drivers use maps.

Software engineers use different types of diagrams and tables, such as the UML and CRC  

cards. The UML is used to specify, visualize, construct, and document the components of a 

software system. It combines the best practices that have evolved over the past several de-

cades for modeling systems, and it is particularly well suited to modeling object- oriented 

designs. UML diagrams represent another form of abstraction. They hide implementation de-

tails and allow systems designers to concentrate on only the major design components. UML  
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includes a large variety of interrelated diagram types, each with its own set of icons and 

connectors. A very powerful development and modeling tool, it is helpful for modeling 

and documenting designs after they have been developed. See Figure 1.3a.

In contrast, CRC cards are a notational tool that helps us determine our initial de-

signs. CRC cards were first described by Beck and Cunningham, in 1989, as a means to 

Class Name

<access modifier><attribute>:type = initialValue*
...
<access modifier><attribute>:type = initialValue

<access modifier><operation>(arg list):return type
...
<access modifier><operation>(arg list):return type

Subclasses:Superclass:Class Name:

Collaborations

Primary Responsibilities

Responsibilities

(b) A CRC Card

Figure 1.3 UML Class Diagram and CRC Card

a. A UML Diagram

*Shaded areas are optional.
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allow object-oriented programmers to identify a set of cooperating classes to solve a 

problem.

A programmer uses a physical 4” × 6” index card to represent each class that has been 
identified as part of a problem solution. Figure 1.3b shows a blank CRC card. If the class is 

of general use, the CRC card may have a place to record the class’s primary responsibility. 

It always contains room for the following information about a class:

1. Class name

2. Responsibilities of the class—usually represented by verbs and implemented by pub-

lic functions (called methods in object-oriented terminology)

3. Collaborations—other classes or objects that are used in fulfilling the responsibilities

CRC cards are great tools for refining an object-oriented design, especially in a team 

programming environment. They provide a physical manifestation of the building blocks 

of a system that allows programmers to walk through user scenarios, identifying and as-

signing responsibilities and collaborations. We discuss a problem-solving methodology 

using CRC cards in Chapter 3.

Covering all of UML is beyond the scope of this text. We will, however, use the UML 

class diagram as shown in Figure 1.3a to document our classes. We will use CRC cards 

throughout as a design tool.

1.3 Design Approaches
We have defined the concept of a module, described the characteristics of a good module, 

and presented the concept of stepwise refinement as a strategy for defining modules. But 

what should these modules be? How do we define them? One approach is to break the 

problem into functional subproblems (do this, then do this, then do that). Another ap-

proach is to divide the problem into the “things” or objects that interact to solve the prob-

lem. We explore both of these approaches in this section.

Top-Down Design
One method for designing software is based on the functional decomposition and top-

down strategies. First the problem is broken into several large tasks. Each of these tasks 

is, in turn, divided into sections, the sections are subdivided, and so on. As we said previ-

ously, the key feature is that details are deferred as long as possible as we move from a 

general to a specific solution.

To develop a computer program by this method, we begin with a “big picture” solution 

to the problem defined in the specification. We then devise a general strategy for solving 

the problem by dividing it into manageable functional modules. Next, each of the large 

functional modules is subdivided into several tasks. We do not need to write the top level 

of the functional design in source code (such as C++); rather, we can write it in English 
or “pseudocode.” (Some software development projects even use special design languages 
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that can be compiled.) This divide-and-conquer activity continues until we reach a level 

that can be easily translated into lines of code.

Once it has been divided into modules, the problem is simpler to code into a well-

structured program. The functional decomposition approach encourages programming in 

logical units, using functions. The main module of the design becomes the main program 

(also called the main function), and subsections develop into functions. This hierarchy of 

tasks forms the basis for functional decomposition, with the main program or function 

controlling the processing.

As an example, let’s start the functional design for making a cake.

Make Cake
Get ingredients
Mix cake ingredients
Bake
Cool
Apply icing

Get ingredients
Mix cake ingredients
Bake
Cool
Apply icing

The problem now is divided into five logical units, each of which might be further 

decomposed into more detailed functional modules. Figure 1.4 illustrates the hierarchy 

of such a functional decomposition.

Make cake

Get
ingredients

Mix cake
ingredients

Bake Cool
Apply
icing

Mix liquid
ingredients

Mix dry
ingredients

Combine
liquid and dry
ingredients

.

.

.

.
.
.

.

.

Figure 1.4 A portion of a functional design for baking a cake
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Object-Oriented Design
In object-oriented design, the first steps are to identify the simplest and most widely used 

objects and processes in the decomposition and to implement them faithfully. Once you 

have completed this stage, you often can reuse these objects and processes to implement 

more complex objects and processes. This hierarchy of objects forms the basis for object-

oriented design.

Object-oriented design, like top-down design, takes a divide-and-conquer approach. 

However, instead of decomposing the problem into functional modules, we divide it into 

entities or things that make sense in the context of the problem being solved. These enti-

ties, called objects, collaborate and interact to solve the problem. The code that allows 

these objects to interact is called a driver program.

Let’s list some of the objects in our baking problem. There are, of course, all of the 

various ingredients: eggs, milk, flour, butter, and so on. We also need certain pieces of 

equipment, such as pans, bowls, measuring spoons, and an oven. The baker is another im-

portant entity. All of these entities must collaborate to create a cake. For example, a spoon 

measures individual ingredients, and a bowl holds a mixture of ingredients.

Groups of objects with similar prop-

erties and behaviors are described by an 

object class (usually shortened to class). 

Each oven in the world is a unique object. 

We cannot hope to describe every oven, 

but we can group oven objects together 

into a class called oven that has certain properties and behaviors.

An object class is similar to a C++ class (see the sidebar on page 20 on class syntax 
and the discussion in Chapter 2). C++ types are templates for variables; classes are tem-
plates for objects. Like types, object classes have attributes and operations associated with 

them. For example, an oven class might have an attribute to specify whether it is gas or 

electric and operations to turn it on or off and to set it to maintain a desired temperature.

With object-oriented design, we determine the classes from the things in the problem 

as described in the problem statement. We record each object class using a CRC card. 

From this work, we determine a set of properties (attributes) and a set of responsibilities 

( operations) to associate with each class. With object-oriented design, the functionality of 

the program is distributed among a set of collaborating objects. Table 1.1 illustrates some 

of the object classes that participate in baking a cake.

Once we have defined an oven class, we can reuse it in other cooking problems, such 

as roasting a turkey. Reuse of classes is an important aspect of modern software develop-

ment. One major goal of this text is to introduce you to a number of classes that are par-

ticularly important in the development of software—abstract data types. We discuss the 

concept of an abstract data type in detail in Chapter 2. Throughout the book, we fully de-

velop many abstract data types, and we describe others, leaving you to develop them your-

self. As these classes are fundamental to computer science, we can often obtain the C++ 
code for them from a public or private repository or purchase it from vendors who market  

Object class (class)

The description of a group of objects with similar prop-
erties and behaviors; a pattern for creating individual 
objects
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C++ components. In fact, the C++ language standard includes components in the  
Standard Template Library (STL). You may wonder why, if they are already available, we 

spend so much time on their development. Our goal is to teach you how to develop software. 

As with any skill, you need to practice the fundamentals before you can become a virtuoso.

To summarize, top-down design methods focus on the process of transforming the in-

put into the output, resulting in a hierarchy of tasks. Object-oriented design focuses on the 

data objects that are to be transformed, resulting in a hierarchy of objects. Grady Booch puts 

it this way: “Read the specification of the software you want to build. Underline the verbs if 

you are after procedural code, the nouns if you aim for an object-oriented program.”
2

Table 1.1 Example of Object Classes That Participate in Baking a Cake

Class Attributes Responsibilities (Operations)

Oven Energy source Turn on

Size Turn off

Temperature Set desired temperature

Number of racks

Bowl Capacity Add to

Current amount Dump

Egg Size Crack

Separate (white from yolk)

2Grady Booch, “What Is and Isn’t Object Oriented Design.” American Programmer, special issue on object orientation, vol. 2, no. 7–8, 
 Summer 1989.

A C++ class contains both data and functions that operate on the data. A class is 
declared in two parts: the specification of the class and the implementation of the 

class functions.

class DateType 
{
public:
  void  Initialize(int, int, int);
  // Initializes month, day, and year.
  int GetMonth() const;   
  // Returns month.
  int GetDay() const;   
  // Returns day.
  int GetYear() const;
  // Returns year.

C++ Class Syntax
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private:
  int month;
  int day;
  int year;
};

A member function is defined like any function, but with one exception: The 

name of the class within which the member is declared precedes the member func-

tion name with a double colon in between (::).  The double colon operator is called 
the scope resolution operator. 

 

void DateType::Initialize(int newMonth, int newDay, int newYear)
// Post: month is set to newMonth; day is set to
//       newDay; year is set to newYear.
{
  month = newMonth;
  day = newDay;
  year = newYear;
}
  
int DateType::GetMonth) const
// Post: Class member month is returned.
{
  return month;
}
  
int DateType::GetDay() const
// Post: Class member day is returned.
{
  return day;
}
  
int DateType::GetYear() const
// Post: Class member year is returned.
{
  return year;
}

If date is a variable of type DateType, the following statement prints the data 
fields of date.

cout << "Month is "  << date.GetMonth() << endl; 
     << "Day is " << date.GetDay() << endl;
     << "Year is " << date.GetYear() << endl;
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We propose that you circle the nouns and underline the verbs. The nouns become 

objects; the verbs become operations. In a functional design, the verbs are the primary 

focus; in an object-oriented design, the nouns are the primary focus.

1.4 Verification of Software Correctness
At the beginning of this chapter, we discussed some characteristics of good programs. The 

first of these was that a good program works—it accomplishes its intended function. How 

do you know when your program meets that goal? The simple answer is, test it.

Let’s look at testing as it relates to the rest of 

the software development process. As program-

mers, we first make sure that we understand the 

requirements. We then come up with a general 

solution. Next, we design the solution in terms 

of a computer program, using good design prin-

ciples. Finally, we implement the solution, using 

good structured coding, with classes, functions, 

self-documenting code, and so on.

Once we have the program coded, we compile 

it repeatedly until no syntax errors appear. Then 

we run the program, using carefully selected test 

data. If the program doesn’t work, we say that it 

has a “bug” in it. We try to pinpoint the error and 

fix it, a process called debugging. Notice the dis-

tinction between testing and debugging. Testing is running the program with data sets 

designed to discover any errors; debugging is removing errors once they are discovered.

When the debugging is completed, the software is put into use. Before final delivery, 

software is sometimes installed on one or more customer sites so that it can be tested in 

a real environment with real data. After passing this acceptance test phase, the software 

can be installed at all customer sites. Is the verification process now finished? Hardly! 

More than half of the total life-cycle costs and effort generally occur after the program be-

comes operational, in the maintenance phase. Some changes correct errors in the original 

program; other changes add new capabilities to the software system. In either case, test-

ing must occur after any program modification. This phase is called regression testing.

Testing is useful in revealing the presence of bugs in a program, but it doesn’t prove 

their absence. We can only say for sure that the program worked correctly for the cases we 

tested. This approach seems somewhat haphazard. How do we know which tests or how 

many of them to run? Debugging a whole program at once isn’t easy. Also, fixing the errors 

found during such testing can sometimes be a messy task. Too bad we couldn’t have de-

tected the errors earlier—while we were designing the program, for instance. They would 

have been much easier to fix then.

We know how program design can be improved by using a good design methodology. 

Can we use something similar to improve our program verification activities? Yes, we can. 

Testing

The process of executing a program with data sets de-
signed to discover errors

Debugging

The process of removing known errors

Acceptance test

The process of testing the system in its real environment 
with real data

Regression testing

Reexecution of program tests after modifications have 
been made to ensure that the program still works 
correctly
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3B. W. Boehm, Software Engineering Economics (Englewood Cliffs, N.J.: Prentice-Hall, 1981).

Program verification activities don’t need to start when the program is completely coded; 

they can be incorporated into the entire software development process, from the require-

ments phase on. Program verification is more than just testing.

In addition to program verification, 

which involves fulfilling the requirement 

specifications, the software engineer has 

another important task—making sure the 

specified requirements actually solve the 

underlying problem. Countless times a 

programmer has finished a large project 

and delivered the verified software, only  

to be told, “Well, that’s what I asked for, but 

it’s not what I need.”

The process of determining that software accomplishes its intended task is called 

program validation. Program verification asks, “Are we doing the job right?”; program 

validation asks, “Are we doing the right job?”
3

Can we really “debug” a program before it has ever been run—or even before it has 

been written? In this section we review a number of topics related to satisfying the crite-

rion “quality software works.” The topics include

• Designing for correctness

• Performing code and design walk-throughs and inspections

• Using debugging methods

• Choosing test goals and data

• Writing test plans

• Structured integration testing

Origin of Bugs
When Sherlock Holmes goes off to solve a case, he doesn’t start from scratch every time; 

he knows from experience all kinds of things that help him find solutions. Suppose Holmes 

finds a victim in a muddy field. He immediately looks for footprints in the mud, for he can 

tell from a footprint what kind of shoe made it. The first print he finds matches the shoes 

of the victim, so he keeps looking. Now he finds another print, and from his vast knowl-

edge of footprints he can tell that it was made by a certain type of boot. He deduces that 

such a boot would be worn by a particular type of laborer, and from the size and depth of 

the print he guesses the suspect’s height and weight. Now, knowing something about the 

habits of laborers in this town, he guesses that at 6:30 p.m. the suspect might be found in 

Clancy’s Pub.

Program verification 

The process of determining the degree to which a soft-
ware product fulfills its specifications

Program validation

The process of determining the degree to which software 
fulfills its intended purpose
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In software verification we are often expected to play detective. Given certain clues, 

we have to find the bugs in programs. If we know what kinds of situations produce pro-

gram errors, we are more likely to be able to detect and correct problems. We may even 

be able to step in and prevent many errors entirely, just as Sherlock Holmes sometimes 

intervenes in time to prevent a crime from taking place.

Let’s look at some types of software errors that show up at various points in program 

development and testing and see how they might be avoided.

Specifications and Design Errors What would happen if, shortly before you were 

supposed to turn in a major class assignment, you discovered that some details in the 

professor’s program description were incorrect? To make matters worse, you also found 

out that the corrections were discussed at the beginning of class on the day you got there 

late, and somehow you never knew about the problem until your tests of the class data set 

came up with the wrong answers. What do you do now?

Writing a program to the wrong specifications is probably the worst kind of software 

error. How bad can it be? Let’s look at a true story. Some time ago, a computer company 

contracted to replace a government agency’s obsolete system with new hardware and 

software. A large and complicated program was written, based on specifications and al-

gorithms provided by the customer. The new system was checked out at every point in 

its development to ensure that its functions matched the requirements in the specifica-

tions document. When the system was complete and the new software was executed, us-

ers discovered that the results of its calculations did not match those of the old system. A 

careful comparison of the two systems showed that the specifications of the new software 

were erroneous because they were based on algorithms taken from the old system’s inac-

curate documentation. The new program was “correct” in that it accomplished its speci-

fied functions, but the program was useless to the customer because it didn’t accomplish 

its intended functions—it didn’t work. The cost of correcting the errors measured in the 

 millions of dollars.

How could correcting the error be so expensive? First, much of the conceptual and 

design effort, as well as the coding, was wasted. It took a great deal of time to pinpoint 
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which parts of the specification were in error and then to correct this document before 

the program could be redesigned. Then much of the software development activity (de-

sign, coding, and testing) had to be repeated. This case is an extreme one, but it illustrates 

how critical specifications are to the software process. In general, programmers are more 

expert in software development techniques than in the “application” areas of their pro-

grams, such as banking, city planning, satellite control, or medical research. Thus correct 

program specifications are crucial to the success of program development.

Most studies indicate that it costs 100 times as much to correct an error discovered 

after software delivery than it does if the problem is discovered early in the software life 

cycle. Figure 1.5 shows how fast the costs rise in subsequent phases of software develop-

ment. The vertical axis represents the relative cost of fixing an error; this cost might be 

measured in units of hours, hundreds of dollars, or “programmer months” (the amount of 

work one programmer can do in one month). The horizontal axis represents the stages 

in the development of a software product. As you can see, an error that would have taken 

one unit to fix when you first started designing might take 100 units to correct when the 

product is actually in operation!

Figure 1.5 This graph demonstrates the importance of early detection of software errors
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Good communication between the programmers (you) and the party who originated 

the problem (the professor, manager, or customer) can prevent many specification errors. 

In general, it pays to ask questions when you don’t understand something in the program 

specifications. And the earlier you ask, the better.

A number of questions should come to mind as you first read a programming assign-

ment. What error checking is necessary? What algorithm or data structure should be used 

in the solution? What assumptions are reasonable? If you obtain answers to these ques-

tions when you first begin working on an assignment, you can incorporate them into your 

design and implementation of the program. Later in the program’s development, unex-

pected answers to these questions can cost you time and effort. In short, to write a pro-

gram that is correct, you must understand precisely what your program is supposed to do.

Sometimes specifications change during the design or implementation of a program. 

In such cases, a good design helps you to pinpoint which sections of the program must 

be redone. For instance, if a program defines and uses type StringType to implement 
strings, changing the implementation of StringType does not require rewriting the 
entire program. We should be able to see from the design—either functional or object- 

oriented—that the offending code is restricted to the module where StringType is de-
fined. The parts of the program that require changes can usually be located more easily 

from the design than from the code itself.

Compile-Time Errors In the process of learning your first programming language, you 

probably made a number of syntax errors. These mistakes resulted in error messages 

(for example, “TYPE MISMATCH,” “ILLEGAL ASSIGNMENT,” “SEMICOLON EXPECTED,” 

and so on) when you tried to compile the program. Now that you are more familiar with 

the programming language, you can save your debugging skills for tracking down really 

important logical errors. Try to get the syntax right the first time. Having your program 

compile cleanly on the first attempt is not an unreasonable goal. A syntax error wastes 

programmer time, and it is preventable. Some programmers argue that looking for syntax 

errors is a waste of their time, that it is faster to let the compiler or the syntax checking in 

the editor catch all the typos and syntax errors. Don’t believe them! Sometimes a coding 

error turns out to be a legal statement, syntactically correct but semantically wrong. This 

situation may cause very obscure, hard-to-locate errors.

As you progress in your college career or move into a professional computing job, 

learning a new programming language is often the easiest part of a new software assign-

ment. This does not mean, however, that the language is the least important part. In this 

book we discuss abstract data types and algorithms that we believe are language indepen-

dent. That is, they can be implemented in almost any general-purpose programming lan-

guage. In reality, the success of the implementation depends on a thorough understanding 

of the features of the programming language. What is considered acceptable program-

ming practice in one language may be inadequate in another, and similar syntactic con-

structs may be just different enough to cause serious trouble.

For this reason, it is worthwhile to develop an expert knowledge of both the con-

trol and data structures and the syntax of the language in which you are programming. 
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In general, if you have a good knowledge of your programming language—and are care-

ful—you can avoid syntax errors. The ones you might miss are relatively easy to locate and 

correct. Most are flagged by the editor or the compiler with an error message. Once you 

have a “clean” compilation, you can execute your program.

Run-Time Errors Errors that occur during the execution of a program are usually 

more difficult to detect than syntax errors. Some run-time errors stop execution of the 

program. When this situation happens, we say that the program “crashed” or “terminated 

abnormally.”

Run-time errors often occur when the programmer makes too many assumptions. For 

instance,

result = dividend / divisor;

is a legitimate assignment statement, if we can assume that divisor is never zero.  
If divisor is zero, however, a run-time error results.

Sometimes run-time errors occur because the programmer does not fully understand 

the programming language. For example, in C++ the assignment operator is =, and the 
equality test operator is ==. Because they look so much alike, they often are miskeyed 
one for the other. You might think that this would be a syntax error that the compiler 

would catch, but it is actually a logic error. Technically, an assignment in C++ consists of 
an expression with two parts: The expression on the right of the assignment operator (=) 
is evaluated and the result is returned and stored in the place named on the left. The key 

word here is returned; the result of evaluating the right-hand side is the result of the ex-

pression. Therefore, if the assignment operator is miskeyed for the equality test operator, 

or vice versa, the code executes with surprising results.

Let’s look at an example. Consider the following two statements:

count == count + 1;
if (count = 10)
.
.
.

The first statement returns false; count can never be equal to count + 1. The semicolon 
ends the statement, so nothing happens to the value returned; count has not changed. 
In the next statement, the expression (count = 10) is evaluated, and 10 is returned 
and stored in count. Because a nonzero value (10) is returned, the if expression always 
evaluates to true.

Run-time errors also occur because of unanticipated user errors. For instance, if 

newValue is declared to be of type int, the statement

cin  >> newValue;

causes a stream failure if the user inputs a nonnumeric character. An invalid filename can 

cause a stream failure. In some languages, the system reports a run-time error and halts. 

In C++, the program doesn’t halt; the program simply continues with erroneous data. 

271.4 Verification of Software Correctness

9781284098167_CH01_001_066.indd   27 28/06/16   5:27 PM



In C++, input and output are considered streams of characters. The keyboard in-
put stream is cin; the screen output stream is cout. Important declarations relat-
ing to these streams are supplied in the library file <iostream>. If you plan to use 
the standard input and output streams, you must include this file in your program. 

You must also provide for access to the namespace with the using directive,

#include <iostream>
int main()
{
  using namespace std;
 
  int intValue;
  float realValue;
  cout  << "Enter an integer number followed by return."
        << endl;
  cin   >> intValue;
  cout  << "Enter a real number followed by return."
        << endl;
  cin   >> realValue;
  cout  << "You entered "  << intValue  << " and "
        << realValue << endl;
  return 0;
}

<< is called the insertion operator: The expressions on the right describe what is 

inserted into the output stream. >> is called the extraction operator: Values are ex-

tracted from the input stream and stored in the places named on the right. endl is a 
special language feature called a manipulator; it terminates the current output line.

If you are reading or writing to a file, you include <fstream>. You then have 
access to the data types ifstream (for input) and ofstream (for output). Declare 
variables of these types, use the open function to associate each with the external 
file name, and use the variable names in place of cin and cout, respectively.

#include <fstream>
int main()
{
  using namespace std;
 
  int intValue;
  float realValue;
  ifstream inData;

C++ Stream Input and Output
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  ofstream outData;
  inData.open("input.dat");
  outData.open("output.dat");
 
  inData  >> intValue;
  inData  >> realValue;
  outData << "The input values are "
          << intValue  << " and "
          << realValue   << endl;
  return 0;
}

On input, whether from the keyboard or from a file, the >> operator skips lead-
ing whitespace characters (blank, tab, line feed, form feed, carriage return) before 

extracting the input value. To avoid skipping whitespace characters, you can use the 

get function. You invoke it by giving the name of the input stream, a dot, and then 
the function name and parameter list:

cin.get(inputChar);

The get function inputs the next character waiting in the input stream, even if 
it is a whitespace character.

Stream Failure
The key to reading data in correctly (from either the keyboard or a file) is to ensure 

that the order and the form in which the data are keyed are consistent with the 

order and type of the identifiers on the input statement. If an error occurs while 

accessing an I/O stream, the stream enters the fail state, and any further references 

to the stream will be ignored. For example, if you misspell the name of the file that 

is the parameter to the function open (In.dat instead of Data.In, for example), 
the file input stream will enter the fail state. Alternatively, if you try to input a value 

when the stream is at the end of the file, the stream will enter the fail state. Your 

program may continue to execute while the stream remains in the fail state, but all 

further references to the stream will be ignored.

C++ gives you a way to test the state of a stream: The stream name used in an 
expression returns a value that is converted to true if the state is good and to false 

if the stream is in the fail state. For example, the following code segment prints an 

error message and halts execution if the proper input file is not found:

#include <fstream>
#include <iostream>
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int main()
{
  using namespace std;
  ifstream inData;
 
  inData.open("myData.dat");
  if (!inData)
  {
    cout  << "File myData.dat was not found."  << endl;
    return 1;
  }
  .
  .
  .
  return 0;
}

By convention, the main function returns an exit status of 0 if execution com-
pleted normally, whereas it returns a nonzero value (above, we used 1) otherwise.

Well-written programs should not stop unex-

pectedly (crash) or continue with bad data. They 

should catch such errors and stay in  control  until 

the user is ready to quit.

The ability of a program to recover when an 

error occurs is called  robustness. If a  commercial program is not robust, people do not 

buy it. Who wants a word processor that crashes if the user says “SAVE” when there is 

insufficient space on the drive? We want the program to tell us, “Delete some other files 

on the drive to make room, and try again.” For some types of software, robustness is a criti-

cal requirement. An airplane’s automatic pilot system or an intensive care unit’s patient-

monitoring program cannot afford to just crash. In such situations, a defensive posture 

produces good results.

In general, you should actively check for error-creating conditions rather than let them 

abort your program. For instance, it is generally unwise to make too many assumptions about 

the correctness of input, especially input from a keyboard. A better approach is to check ex-

plicitly for the correct type and bounds of such input. The programmer can then decide how 

to handle an error (request new input, display a message, or go on to the next data) rather 

than leave the decision to the system. Even the decision to quit should be made by a program 

that controls its own execution. If worse comes to worst, let your program die gracefully.

Of course, not everything that the program inputs must be checked for errors. 

Sometimes inputs are known to be correct—for instance, input from a file that has been 

Robustness

The ability of a program to recover following an error; 
the ability of a program to continue to operate within its 
environment
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verified. The decision to include error checking must be based upon the requirements of 

the program.

Some run-time errors do not stop execution but do produce the wrong results. 

You may have incorrectly implemented an algorithm or used a variable before it was 

assigned a value. You may have inadvertently swapped two parameters of the same 

type on a function call or forgotten to designate a function’s output data as a reference 

parameter. (See the Parameter Passing sidebar, page 78.) These “logical” errors are 

often the hardest to prevent and locate. Later we will talk about debugging techniques 

to help pinpoint run-time errors. We will also discuss structured testing methods that 

isolate the part of the program being tested. But knowing that the earlier we find an 

error, the easier it is to fix, we turn now to ways of catching run-time errors before 

run time.

Designing for Correctness
It would be nice if there were some tool that would locate the errors in our design or code 

without our even having to run the program. That sounds unlikely, but consider an anal-

ogy from geometry. We wouldn’t try to prove the Pythagorean Theorem by proving that it 

worked on every triangle; that result would merely demonstrate that the theorem works 

for every triangle we tried. We prove theorems in geometry mathematically. Why can’t we 

do the same for computer programs?

The verification of program correctness, independent of data testing, is an important 

area of theoretical computer science research. Such research seeks to establish a method 

for proving programs that is analogous to the method for proving theorems in geome-

try. The necessary techniques exist, but the proofs are often more complicated than the 

programs themselves. Therefore a major focus of verification research is the attempt to 

build automated program provers—verifiable programs that verify other programs. In 

the meantime, the formal verification techniques can be carried out by hand.

Assertions An assertion is a logical pro position that can be true or false. We can make 

assertions about the state of the program. For instance, with the assignment statement

sum = part + 1 ;  // sum and part are integers.

we might assert the following: “The value 

of sum is greater than the value of part.” 
That assertion might not be very useful or 

interesting by itself, but let’s see what we 

can do with it. We can demonstrate that the assertion is true by making a logical argu-

ment: No matter what value part has (negative, zero, or positive), when it is increased by 
1, the result is a larger value. Now note what we didn’t do. We didn’t have to run a program 

containing this assignment statement to verify that the assertion was correct.

The general concept behind formal program verification is that we can make asser-

tions about what the program is intended to do, based on its specifications, and then 

prove through a logical argument (rather than through execution of the program) that a 

Assertion

A logical proposition that can be true or false
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design or implementation satisfies the assertions. Thus the process can be broken down 

into two steps:

1. Correctly assert the intended function of the part of the program to be verified.

2. Prove that the actual design or implementation does what is asserted.

The first step, making assertions, sounds as if it might be useful to us in the process 

of designing correct programs. After all, we already know that we cannot write correct 

programs unless we know what they are supposed to do.

Preconditions and Postconditions Let’s take the idea of making assertions down a 

level in the design process. Suppose we want to design a module (a logical chunk of the 

program) to perform a specific operation. To ensure that this module fits into the program 

as a whole, we must clarify what happens at its boundaries—that is, what must be true 

when we enter the module and what must be true when we exit.

To make the task more concrete, picture the design module as it is eventually coded, 

as a function that is called within a program. To call the function, we must know its exact 

interface: the name and the parameter list, which indicates its inputs and outputs. But this 

information isn’t enough: We must also know any assumptions that must be true for the 

operation to function correctly. We call the asser-

tions that must be true on entry into the func-

tion preconditions. The preconditions act like a 

product disclaimer:

WARNING
If you try to execute this operation

when the preconditions are not true, 
the results are not guaranteed.

For instance, when we said that following the execution of

sum = part + 1;

we can assert that sum is greater than part, we made an assumption—a precondition—

that part is not INT_MAX. If this precondition were violated, our assertion would not be true.
We must also know what conditions are true when the operation is complete. The 

postconditions are assertions that describe the 

results of the operation. The postconditions do 

not tell us how these results are accomplished; 

rather, they merely tell us what the results 

should be.

Postconditions

Assertions that state what results are expected at the 
exit of an operation or function, assuming that the 
 preconditions are true 

Preconditions

Assertions that must be true on entry into an operation 
or function for the postconditions to be guaranteed
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Let’s consider the preconditions and postconditions for a simple operation, one 

that deletes the last element from a list and returns its value as an output. (We are using  

“list” in an intuitive sense here; we formally define it in Chapter 3.) The specification for 

GetLast is as follows:

GetLast(ListType list, ValueType lastValue)

Function: Remove the last element in the list and return its value in lastValue.

Precondition: The list is not empty.

Postconditions:  lastValue is the value of the last element in the list, the last element has 

been removed, and the list length has been decremented.

What do these preconditions and postconditions have to do with program verifica-

tion? By making explicit assertions about what is expected at the interfaces between mod-

ules, we can avoid making logical errors based on misunderstandings. For instance, from 

the precondition we know that we must check outside of this operation for the empty 

condition; this module assumes that at least one element is present in the list. The post-

condition tells us that when the value of the last list element is retrieved, that element is 

deleted from the list. This fact is an important one for the list user to know. If we just want 

to take a peek at the last value without affecting the list, we cannot use GetLast .
Experienced software developers know that misunderstandings about interfaces to 

someone else’s modules are one of the main sources of program problems. We use pre-

conditions and postconditions at the module or function level in this book because the 

information they provide helps us to design programs in a truly modular fashion. We 

can then use the modules we’ve designed in our programs, confident that we are not 

introducing errors by making mistakes about assumptions and about what the modules 

actually do.

Design Review Activities When an individual programmer is designing and im-

plementing a program, he or she can find many software errors with pencil and paper. 

Deskchecking the design solution is a very 

common method of manually verifying a 

program. The programmer writes down 

essential data (variables, input values, 

parameters of subprograms, and so on) and walks through the design, marking changes 

in the data on the paper. Known trouble spots in the design or code should be double-

checked. A checklist of typical errors (such as loops that do not terminate, variables that 

are used before they are initialized, and incorrect order of parameters on function calls) 

can be used to make the deskcheck more effective. A sample checklist for deskchecking a 

C++ program appears in Figure 1.6.

Have you ever been really stuck trying to debug a program and showed it to a class-

mate or colleague who detected the bug right away? It is generally acknowledged that 

Deskchecking

Tracing an execution of a design or program on paper
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someone else can detect errors in a program better than the original author can. In an ex-

tension of deskchecking, two programmers can trade code listings and check each other’s 

programs. Universities, however, frequently discourage students from examining each 

other’s programs for fear that this exchange will lead to cheating. Thus many students 

become experienced in writing programs but don’t have much opportunity to practice 

reading them.

Teams of programmers develop most sizable computer programs. Two extensions 

of deskchecking that are effectively used by programming teams are design or code 

The Design

1. Does each module in the design have a clear function or purpose?

2. Can large modules be broken down into smaller pieces? (A common rule of thumb is that a 

C++ function should fit on one page.)

3. Are all the assumptions valid? Are they well documented?

4. Are the preconditions and postconditions accurate assertions about what should be happen-

ing in the module they specify?

5. Is the design correct and complete as measured against the program specification? Are there 

any missing cases? Is there faulty logic?

6. Is the program designed well for understandability and maintainability?

The Code

7. Has the design been clearly and correctly implemented in the programming language? Are 

features of the programming language used appropriately?

8. Are all output parameters of functions assigned values?

9. Are parameters that return values marked as reference parameters (have & to the right of the 
type if the parameter is not an array)?

10. Are functions coded to be consistent with the interfaces shown in the design?

11. Are the actual parameters on function calls consistent with the parameters declared in the 

function prototype and definition?

12. Is each data object to be initialized set correctly at the proper time? Is each data object set  

before its value is used?

13. Do all loops terminate?

14. Is the design free of “magic” numbers? (A “magic” number is one whose meaning is not imme-

diately evident to the reader.)

15. Does each constant, type, variable, and function have a meaningful name? Are comments  

included with the declarations to clarify the use of the data objects?

Figure 1.6 Checklist for deskchecking a C++ program
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walk-throughs and inspections. The in-

tention of these formal team activities is 

to move the responsibility for uncovering 

bugs from the individual programmer to 

the group. Because testing is time consum-

ing and errors cost more the later they are 

discovered, the goal is to identify errors 

before testing begins.

In a walk-through, the team performs 

a manual simulation of the design or program with sample test inputs, keeping track of 

the program’s data by hand on paper or on a blackboard. Unlike thorough program testing, 

the walk-through is not intended to simulate all possible test cases. Instead, its purpose is 

to stimulate discussion about the way the programmer chose to design or implement the 

program’s requirements.

At an inspection, a reader (not the program’s author) goes through the design or code 

line by line. Inspection participants point out errors, which are recorded on an inspection 

report. Some errors are uncovered just by the process of reading aloud. Others may have 

been noted by team members during their preinspection preparation. As with the walk-

through, the chief benefit of the team meeting is the discussion that takes place among 

team members. This interaction among programmers, testers, and other team members 

can uncover many program errors long before the testing stage begins.

At the high-level design stage, the design should be compared to the program require-

ments to make sure that all required functions have been included and that this program 

or module correctly “interfaces” with other software in the system. At the low-level design 

stage, when the design has been filled out with more details, it should be reinspected be-

fore it is implemented. When the coding has been completed, the compiled listings should 

be inspected again. This inspection (or walk-through) ensures that the implementation 

is consistent with both the requirements and the design. Successful completion of this 

inspection means that testing of the program can begin.

For over 30 years, the Software Engineering Institute at Carnegie Mellon University 

has played a major role in supporting research into formalizing the inspection process in 

large software projects, including sponsoring workshops and conferences. A paper pre-

sented at the SEI Software Engineering Process Group (SEPG) Conference reported on a 

project that was able to reduce the number of product defects by 86.6% by using a two-

tiered inspection process of group walk-throughs and formal inspections. The process 

was applied to packets of requirements, design, or code at every stage of the life cycle. 

Table 1.2 shows the defects per 1,000 source lines of code (KSLOC) that were found in 

the various phases of the software life cycle in a maintenance project. This project added 

40,000 lines of source code to a software program of half a million lines of code. The for-

mal inspection process was used in all of the phases except testing activities.

Looking back at Figure 1.5, you can see that the cost of fixing an error is relatively 

cheap until you reach the coding phase. After that stage, the cost of fixing an error in-

creases dramatically. Using the formal inspection process clearly benefited this project.

Walk-through

A verification method in which a team performs a manual 
simulation of the program or design

Inspection

A verification method in which one member of a team 
reads the program or design line by line and the other 
members point out errors
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These design-review activities should be carried out in as nonthreatening a manner 

as possible. The goal is not to criticize the design or the designer, but rather to remove 

defects in the product. Sometimes it is difficult to eliminate the natural human emotion of 

pride from this process, but the best teams adopt a policy of egoless programming.

Exceptions At the design stage, you should 

plan how to handle exceptions in your program. 

Exceptions are just what the name implies: 

exceptional situations. When these situations 

occur, the flow of control of the program must 

be altered, usually resulting in a premature end to program execution. Working with 

exceptions begins at the design phase: What are the unusual situations that the program 

should recognize? Where in the program can the situations be detected? How should the 

situations be handled if they arise?

Where—indeed, whether—an exception is detected depends on the language, the 

software package design, the design of the libraries being used, and the platform (that is, 

the operating system and hardware). Where an exception should be detected depends on 

the type of exception, the software package design, and the platform. Where an exception 

is detected should be well documented in the relevant code segments.

An exception may be handled in any place in the software hierarchy—from the place 

in the program module where the exception is first detected through the top level of the 

program. In C++, as in most programming languages, unhandled built-in exceptions 
carry the penalty of program termination. Where in an application an exception should be 

handled is a design decision; however, exceptions should be handled at a level that knows 

what they mean.

An exception need not be fatal. In nonfatal exceptions, the thread of execution may 

continue. Although the thread of execution may be picked up at any point in the program, 

the execution should continue from the lowest level that can recover from the excep-

tion. When an error occurs, the program may fail unexpectedly. Some of the failure condi-

tions may possibly be anticipated; some may not. All such errors must be detected and 

managed.

Table 1.2 Defects Found in Different Phases*

Stage KSLOC

System Design  2

Software Requirements  8

Design 12

Code Inspection 34

Testing Activities  3

* Dennis Beeson, Manager, Naval Air Warfare Center, Weapons Division, F-18 Software Development Team.

Exception

An unusual, generally unpredictable event, detectable by 
software or hardware, that requires special  processing; 
the event may or may not be erroneous
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Exceptions can be written in any language. Some languages (such as C++ and Java) pro-
vide built-in mechanisms to manage exceptions. All exception mechanisms have three parts:

• Defining the exception

• Generating (raising) the exception

• Handling the exception

C++ gives you a clean way of implementing these three phases: the try-catch and 

throw statements. We cover these statements at the end of Chapter 2 after we have intro-

duced some additional C++ constructs.

Program Testing
Eventually, after all the design verification, deskchecking, and inspections have been  

completed, it is time to execute the code. At last, we are ready to start testing with the 

intention of finding any errors that may still remain.

The testing process is made up of a set of test cases that, taken together, allow us to 

assert that a program works correctly. We say “assert” rather than “prove” because testing 

does not generally provide a proof of program correctness.

The goal of each test case is to verify a particular program feature. For instance, we may 

design several test cases to demonstrate that the program correctly handles various classes 

of input errors. Alternatively, we may design cases to check the processing when a data 

structure (such as an array) is empty, or when it contains the maximum number of elements.

Within each test case, we perform a series of component tasks:

• We determine inputs that demonstrate the goal of the test case.

• We determine the expected behavior of the program for the given input. (This task 

is often the most difficult one. For a math function, we might use a chart of values 

or a calculator to figure out the expected result. For a function with complex pro-

cessing, we might use a deskcheck type of simulation or an alternative solution to 

the same problem.)

• We run the program and observe the resulting behavior.

• We compare the expected behavior and the actual behavior of the program. If they 

match, the test case is successful. If not, an error exists. In the latter case, we begin 

debugging.

For now we are talking about test cases at a module, or function, level. It’s much easier 

to test and debug modules of a program one at a time, rather than trying to get the whole 

program solution to work all at once. Testing at this level is called unit testing.

How do we know what kinds of unit 

test cases are appropriate and how many 

are needed? Determining the set of test 

cases that is sufficient to validate a unit of 

Unit testing

Testing a module or function by itself
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a program is in itself a difficult task. Two approaches to specifying test cases exist: cases 

based on testing possible data inputs and cases based on testing aspects of the code itself.

Data Coverage In those limited cases where 

the set of valid inputs, or the functional domain, 

is extremely small, we can verify a subprogram 

by testing it against every possible input element. 

This approach, known as “exhaustive” testing, can prove conclusively that the software 

meets its specifications. For instance, the functional domain of the following function 

consists of the values true and false:

void PrintBoolean(bool error)
// Prints the Boolean value on the screen.
{
  if (error)
    cout  << "true";
  else
    cout  << "false";
  cout  << endl;
}

It makes sense to apply exhaustive testing to this function because there are only two  

possible input values. In most cases, however, the functional domain is very large, so ex-

haustive testing is almost always impractical or impossible. What is the functional domain 

of the following function?

void PrintInteger(int intValue)
// Prints the integer value intValue on the screen.
{
  cout  << intValue;
}

It is not practical to test this function by running it with every possible data input; the 

number of elements in the set of int values is clearly too large. In such cases we do not 
attempt exhaustive testing. Instead, we pick some other measurement as a testing goal.

You can attempt program testing in a haphazard way, entering data randomly until 

you cause the program to fail. Guessing doesn’t hurt (except possibly by wasting time), but 

it may not help much either. This approach is likely to uncover some bugs in a program, 

but it is very unlikely to find all of them. Fortunately, strategies for detecting errors in a 

systematic way have been developed.

One goal-oriented approach is to cover general classes of data. You should test at least 

one example of each category of inputs, as well as boundaries and other special cases. For 

instance, in the function PrintInteger there are three basic classes of int data: nega-
tive values, zero, and positive values. You should plan three test cases, one for each class. 

You could try more than three, of course. For example, you might want to try INT_MAX  
and INT_MIN; because the program simply prints the value of its input, however, the  
additional test cases don’t accomplish much.

Functional domain

The set of valid input data for a program or function
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Other data coverage approaches exist as well. For example, if the input consists of com-

mands, you must test each command. If the input is a fixed-sized array containing a variable 

number of values, you should test the maximum number of values—that is, the boundary 

condition. It is also a good idea to try an array in which no values have been stored or one 

that contains a single element. Testing based on data coverage is called black-box testing. 

The tester must know the external interface to the  module—its inputs and expected out-

puts—but does not need to consider what is happening inside the module (the inside of 

the black box). (See Figure 1.7.)

Code Coverage A number of testing 

strategies are based on the concept of 

code coverage, the execution of statements 

or groups of statements in the program. 

This testing approach is called clear- (or 

white-) box testing. The tester must look 

inside the module (through the clear box) 

to see the code that is being tested.

One approach, called statement 

 coverage, requires that every statement in 

the program be executed at least once. An-

other approach requires that the test cases 

cause every branch, or code section, in the 

program to be executed. A single test case 

Figure 1.7 Testing approaches

Put in two
magic coins
Tap with
magic wand

Inputs

Clear box testing
How does the trick-work?

Black box testing
Does the trick-work?

Outputs

Pull out rabbit.

Black-box testing

Testing a program or function based on the possible input 
values, treating the code as a “black box”

Clear- (white-) box testing

Testing a program or function based on covering all the 
statements, branches, or paths of the code

Statement coverage

Every statement in the program is executed at least once

Branch

A code segment that is not always executed; for example, 
a switch statement has as many branches as there are 
case labels
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can achieve statement coverage of an if-then statement, but it takes two test cases to test 

both branches of the statement.

A similar type of code-coverage goal is to 

test program paths. A path is a combination of 

branches that might be traveled when the program 

is executed. In path testing, we try to execute all 

possible program paths in different test cases.

The code-coverage approaches are analogous to the ways forest rangers might check 

out the trails through the woods before the hiking season opens. If the rangers wanted to 

make sure that all trails were clearly marked and not blocked by fallen trees, they would 

check each branch of the trails (see Figure 1.8a). Alternatively, if they wanted to classify 

each of the various trails (which may be interwoven) according to its length and difficulty 

from start to finish, they would use path testing (see Figure 1.8b).

To create test cases based on code-coverage goals, we select inputs that drive the 

 execution into the various program paths. How can we tell whether a branch or a path is 

executed? One way to trace execution is to put debugging output statements at the begin-

ning of every branch, indicating that this particular branch was entered. Software projects 

often use tools that help programmers track program execution automatically.

These strategies lend themselves to measurements of the testing process. We can 

count the number of paths in a program, for example, and keep track of how many paths 

have been covered in our test cases. The numbers provide statistics about the current 

status of testing; for instance, we could say that 75% of the branches of a program have 

been executed or that 50% of the paths have been tested. When a single programmer is 

writing a single program, such numbers may be superfluous. In a software development 

environment with many programmers, however, such statistics are very useful for track-

ing the progress of testing.
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Figure 1.8a Checking out all the branches Figure 1.8b Checking out all the trails
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Path

A combination of branches that might be traversed when 
a program or function is executed
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These measurements can also indicate when a certain level of testing has been com-

pleted. Achieving 100% path coverage is often not a feasible goal. A software project might 

have a lower standard (say, 80% branch coverage) that the programmer who writes the mod-

ule is required to reach before turning the module over to the project’s testing team. Testing 

in which goals are based on certain measurable factors is called metric-based testing.

Test Plans Deciding on the goal of the test approach—data coverage, code coverage, or 

(most often) a mixture of the two—precedes the development of a test plan. Some test plans 

are very informal—the goal and a list of test 

cases, written by hand on a piece of paper. 

Even this type of test plan may be more 

than you have ever been required to write 

for a class programming project. Other 

test plans (particularly those submitted to 

management or to a customer for approval) 

are very formal, containing the details of 

each test case in a standardized format.

Implementing a test plan involves 

running the program with the input values 

listed in the plan and observing the results. 

If the answers are incorrect, the program is debugged and rerun until the observed output 

always matches the expected output. The process is complete when all test cases listed in 

the plan give the desired output.

Let’s develop a test plan for a function called Divide, which was coded from the fol-
lowing specifications:

Divide(int dividend, int divisor, bool& error, float& result)

Function: Divides one number by another and tests for a divisor of zero.

Preconditions: None.

Postconditions: error is true if divisor is 0.

 result is dividend / divisor, if error is false.

 result is undefined, if error is true.

Should we use code coverage or data coverage for this test plan? Because the code is 

so short and straightforward, let’s begin with code coverage. A code-coverage test plan is 

based on an examination of the code itself. Here is the code to be tested:

void Divide(int dividend, int divisor, bool& error, float& result)
// Set error to indicate if divisor is zero.
// If no error, set result to dividend / divisor.

Metric-based testing

Testing based on measurable  factors

Test plan

A document showing the test cases planned for a 
 program or module, their purposes, inputs, expected 
 outputs, and criteria for success

Implementing a test plan

Running the program with the test cases listed in the 
test plan
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Reason for Test Case Input Values Expected Output

divisor is zero

 (dividend can be anything) divisor is 0 error is true

dividend is 8 result is undefined

divisor is nonzero

 (dividend can be anything) divisor is 2 error is false

dividend is 8 result is 4.0

{

  if (divisor = 0)
    error = true;
  else
    result = float(dividend) / float(divisor);
}

The code consists of one if statement with two branches; therefore, we can do com-

plete path testing. There is a case where divisor is zero and the true branch is taken and 
a case where divisor is nonzero and the else branch is taken.

To implement this test plan, we run the pro-

gram with the listed input values and compare 

the results with the expected output. The func-

tion is called from a test driver, a program that 

sets up the parameter values and calls the func-

tions to be tested. A simple test driver is listed below. It is designed to execute both test 

cases: It assigns the parameter values for Test 1, calls Divide, and prints the results; then 
it repeats the process with new test inputs for Test 2. We run the test and compare the 

values output from the test driver with the expected values.

#include <iostream>
 
void Divide(int, int, bool&, float&);
// Function to be tested.
 
void Print(int, int, bool, float);
// Prints results of test case.
 
int main()
{
  using namespace std;
 

Test driver

A program that sets up the testing environment by  
declaring and assigning initial values to variables, then 
calls the subprogram to be tested
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  bool error;
  float result;
  int dividend = 8;         // Test 1
  int divisor = 0;
 
  Divide(dividend, divisor, error, result);
  cout  << "Test 1: "  << endl;
  Print(dividend, divisor, error, result);
  divisor = 2;             // Test 2
  Divide(dividend, divisor, error, result);
  cout  << "Test 2: " << endl;
  Print(dividend, divisor, error, result);
  return 0;
}

For Test 1, the expected value for error is true, and the expected value for result 
is undefined, but the division is carried out anyway! How can that be when divisor is 
zero? If the result of an if statement is not what you expect, the first thing to check is the 

relational operator: Did we use a single = rather than ==? Yes, we did. After fixing this 
mistake, we run the program again.

For Test 2, the expected value for error is false, yet the value printed is true! Our 
testing has uncovered another error, so we begin debugging. We discover that the value of 

error, set to true in Test 1, was never reset to false in Test 2. We leave development of 
the final correct version of this function as an exercise.

Now let’s design a data-coverage test plan for the same function. In a data-coverage 

plan, we know nothing about the internal working of the function; we know only the inter-

face that is represented in the documentation of the function heading.

void Divide(int dividend, int divisor, bool& error, float& result)
// Set error to indicate if divisor is zero.
// If no error, set result to dividend / divisor.

There are two input parameters, both of type int. A complete data-coverage plan 
would require that we call the function with all possible values of type int for each 
parameter—clearly overkill. The interface tells us that one thing happens if  divisor 
is zero and another thing happens if divisor is nonzero. Clearly, we must have at 
least two test cases: one where divisor is zero and one where divisor is nonzero. 
When divisor is zero, error is set to true and nothing else happens, so one test case 
should verify this result. When divisor is nonzero, a division takes place. How many 
test cases does it take to verify that the division is correct? What are the end cases? 

There are five possibilities:

• divisor and dividend are both positive

• divisor and dividend are both negative
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• divisor is positive and dividend is negative

• divisor is negative and dividend is positive

• dividend is zero

The complete test plan is shown below.

In this case the data-coverage test plan is more complex than the code-coverage plan: 

There are seven cases (two of which are combined) rather than just two. One case covers 

a zero divisor, and the other six cases check whether the division is working correctly 

with a nonzero divisor and alternating signs. If we knew that the function uses the built-in 

division operator, we would not need to check these cases—but we don’t. With a data-

coverage plan, we cannot see the body of the function.

Reason for Test Case Input Values

divisor is zero

 (dividend can be anything) divisor is 0 error is true

dividend is 8 result is undefined

divisor is nonzero

 (dividend can be anything) divisor is 2 error is false

combined with dividend is 8 result is 4.0

 divisor is positive

 dividend is positive

divisor is nonzero

 divisor is negative divisor is 2 error is false

 dividend is negative dividend is 8 result is 4.0

divisor is nonzero

 divisor is positive divisor is 2 error is false

 dividend is negative dividend is 8 result is 4.0

divisor is nonzero

 divisor is negative divisor is 2 error is false

 dividend is positive dividend is 8 result is 4.0

dividend is zero

 (divisor can be anything) divisor is 2 error is false

dividend is 0 result is 0.0
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For program testing to be effective, it must be planned. You must design your testing 

in an organized way, and you must put your design in writing. You should determine the 

required or desired level of testing and plan your general strategy and test cases before 

testing begins. In fact, you should start planning for testing before writing a single line 

of code.

Planning for Debugging In the previous section we discussed checking the output from 

our test and debugging when errors were detected. We can debug “on the fly” by adding 

output statements in suspected trouble spots when problems arise. But in an effort to 

predict and prevent problems as early as possible, can we also plan our debugging before 

we ever run the program?

By now you should know that the answer will be yes. When you write your design, 

you should identify potential trouble spots. You can then insert temporary debugging out-

put statements into your code in places where errors are likely to occur. For example, to 

trace the program’s execution through a complicated sequence of function calls, you might 

add output statements that indicate when you are entering and leaving each function. 

The debugging output is even more useful if it also indicates the values of key variables, 

especially parameters of the function. The following example shows a series of debugging 

statements that execute at the beginning and end of the function Divide:

void Divide(int dividend, int divisor, bool& error, float& result)
// Set error to indicate if divisor is zero.
// If no error, set result to dividend / divisor.
{
  using namespace std;
  // For debugging
  cout  << "Function Divide entered."  << endl;
  cout  << "Dividend = "  << dividend << endl;
  cout  << "Divisor = "  << divisor << endl;
  //*************************
  // Rest of code goes here.
  //*************************
  // For debugging
  if (error)
    cout  << "Error = true ";
  else
    cout  << "Error = false ";
  cout  << "and Result = " << result  << endl;
  cout  << "Function Divide terminated."  << endl;
}

If hand testing doesn’t reveal all the bugs before you run the program, well-placed  

debugging lines can at least help you locate the rest of the bugs during execution. Note 

that this output is intended only for debugging; these output lines are meant to be seen 
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only by the tester, not by the user of the program. Of course, it’s annoying for debugging 

output to show up mixed with your application’s real output, and it’s difficult to debug 

when the debugging output isn’t collected in one place. One way to separate the debug-

ging output from the “real” program output is to declare a separate file to receive these 

debugging lines, as shown in the following example:

#include <fstream>
 
std::ofstream debugFile;
 
debugFile  << "This is the debug output from Test 1."  << endl;

Usually the debugging output statements are removed from the program, or “com-

mented out,” before the program is delivered to the customer or turned in to the profes-

sor. (To “comment out” means to turn the statements into comments by preceding them 

with // or enclosing them between /* and */.) An advantage of turning the debugging 
statements into comments is that you can easily and selectively turn them back on for 

later tests. A disadvantage of this technique is that editing is required throughout the pro-

gram to change from the testing mode (with debugging) to the operational mode (without 

debugging).

Another popular technique is to make the debugging output statements dependent 

on a Boolean flag, which can be turned on or off as desired. For instance, a section of code 

known to be error-prone may be flagged in various spots for trace output by using the 

Boolean value debugFlag:

// Set debugFlag to control debugging mode.
const bool debugFlag = true;
.
.
.
if (debugFlag)
  debugFile  << "Function Divide entered."  << endl;

This flag may be turned on or off by assignment, depending on the programmer’s 

needs. Changing to an operational mode (without debugging output) involves merely re-

defining debugFlag as false and then recompiling the program. If a flag is used, the 
debugging statements can be left in the program; only the if checks are executed in an 
operational run of the program. The disadvantage of this technique is that the code for 

the debugging is always there, making the compiled program larger. If a lot of debugging 

statements are present, they may waste needed space in a large program. The debugging 

statements can also clutter up the program, making it more difficult to read. (This situa-

tion illustrates another tradeoff we face in developing software.)

46 Chapter 1 Software Engineering Principles

9781284098167_CH01_001_066.indd   46 28/06/16   5:27 PM



Some systems have online debugging programs that provide trace outputs, making 

the debugging process much simpler. If the system you are using has a run-time debugger, 

use it! Any tool that makes the task easier should be welcome, but remember that no tool 

replaces thinking.

A warning about debugging: Beware the quick fix! Program bugs often travel in swarms, 

so when you find a bug, don’t be too quick to fix it and run your program again. Often as 

not, fixing one bug generates another. A superficial guess about the cause of a program er-

ror usually does not produce a complete solution. In general, time devoted to considering 

all the ramifications of the changes you are making is time well spent.

If you constantly need to debug, your design process has flaws. Time devoted to con-

sidering all the ramifications of the design you are making is time spent best of all.

Integration Testing In the last two sections we discussed unit testing and planned 

debugging. In this section we explore many concepts and tools that can help you put your 

test cases for individual units together for 

structured testing of your whole program. 

The goal of this type of testing is to 

integrate the separately tested pieces, so it 

is called integration testing.

You can test a large, complicated program in a structured way by using a method very 

similar to the top-down approach to program design. The central idea is one of divide and 

conquer: test pieces of the program independently and then use the parts that have been 

verified as the basis for the next test. The testing can use either a top-down or a bottom-up 

approach, or a combination of the two.

With a top-down approach, we begin testing at the top levels. The purpose of the test 

is to ensure that the overall logical design works and that the interfaces between modules 

are correct. At each level of testing, the top-down approach is based on the assumption 

that the lower levels work correctly. We 

implement this assumption by replacing 

the lower-level subprograms with “place-

holder” modules called stubs. A stub may 

consist of a single trace output statement, 

indicating that we have reached the function, or a group of debug output statements, 

showing the current values of the parameters. It may also assign values to output param-

eters if values are needed by the calling function (the one being tested).

An alternative testing approach is to test from the bottom up. With this approach, we 

unit test the lowest-level subprograms first. A bottom-up approach can be useful in testing 

and debugging a critical module, one in which an error would have significant effects on 

other modules. “Utility” subprograms, such as mathematical functions, can also be tested 

with test drivers, independently of the programs that eventually call them. In addition, a 

bottom-up integration testing approach can prove effective in a group-programming envi-

ronment, where each programmer writes and tests separate modules. The smaller, tested 

pieces of the program are later verified together in tests of the whole program.

Integration testing

Testing performed to integrate program modules that 
have already been independently unit tested

Stub

A special function that can be used in top-down testing to 
stand in for a lower-level function
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Testing C11 Data Structures
The major topic of this textbook is data structures: what they are, how we use them, and 

how we implement them using C++. This chapter has provided an overview of software 
engineering; in Chapter 2 we begin to focus on data and ways to structure it. It seems ap-

propriate to end this section about verification with a look at how we test the data struc-

tures we implement in C++.
Throughout this book we implement data structures using C++ classes, so that many 

different application programs can use the resulting structures. When we first create a 

class that models a data structure, we do not necessarily have any application programs 

ready to use it. We need to test the class by itself first, before creating the applications. For 

this reason, we use a bottom-up testing approach utilizing test drivers.

Every data structure that we implement supports a set of operations. For each struc-

ture, we would like to create a test driver that allows us to test the operations in a vari-

ety of sequences. How can we write a single test driver that allows us to test numerous 

operation sequences? The solution is to separate the specific set of operations that we 

want to test from the test driver program itself. We list the operations, and the necessary 

parameters, in a text file. The test driver program reads the operations from the text file 

one line at a time, performs the specified operation by invoking the member function of 

the data structure being tested, and reports the results to an output file. The test program 

also reports its general results on the screen.

The testing approach described here allows us to easily change our test cases—we 

just change the contents of the input file. Testing would be even easier if we could dynami-

cally change the name of the input file whenever we run the program. We could then run 

another test case or rerun a previous test case whenever we needed. Therefore, we con-

struct our test driver to read the name of the input file from the console; we do the same 

for the output file. Figure 1.9 shows a model of our test architecture.

Our test drivers all follow the same basic algorithm. First, we prompt for and read the 

file names and prepare the files for input and output. Next, the name of the function to be 

executed is read from the input file. Because the name of the function drives the flow of 

control, let’s call it command. As long as command is not “quit,” we execute the function 
with that name, print the results, and read the next function name. We then close the files 

and quit. Did we forget anything? The output file should have some sort of a label. Let’s 

prompt the user to enter a label for the output file. We should also let the user know what 

is going on by keeping track of the number of commands and printing a closing message. 

Here, then, is the algorithm for our test driver program:

Declare an instance of the class being tested
Prompt for, read the input file name, and open the file
Prompt for, read the output file name, and open the file
Prompt for and read the label for the output file
Write the label on the output file
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Read the next command from the input file
Set numCommands to 0
While the command read is not ”quit”
 Execute the command by invoking the member function of the same name
 Print the results to the output file
 Increment numCommands by 1
 Print “Command  number“  numCommands   “completed” to the screen
 Read the next command from the input file
Close the input and output files
Print “Testing completed” to the screen

Figure 1.9 Model of test architecture
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This algorithm provides us with maximum flexibility for minimum extra work 

when we are testing our data structures. Once we implement the algorithm by creating 

a test driver for a specific data structure, we can easily create a test driver for a differ-

ent data structure by changing only the first two steps in the loop. Here is the code for 

the test driver with the data-structure-specific code left to be filled in. We demonstrate 

how this code can be written in the Case Study. The statements that must be filled in 

are shaded.

// Test driver
#include <iostream>
#include <fstream>
#include <string>

// #include file containing class to be tested

int main()
{
  using namespace std;  
  ifstream inFile;      // File containing operations
  ofstream outFile;   // File containing output
  string inFileName;    // Input file external name
  string outFileName;   // Output file external name
  string outputLabel;
  string command;     // Operation to be executed
  int numCommands;

 
  // Declare a variable of the type being tested

  // Prompt for file names, read file names, and prepare files
  cout << "Enter name of input file; press return." << endl;
  cin  >> inFileName;
  inFile.open(inFileName.c_str());
 
  cout << "Enter name of output file; press return." << endl;
  cin  >> outFileName;
  outFile.open(outFileName.c_str());
 
  cout << "Enter name of test run; press return." << endl;
  cin  >> outputLabel;
  outFile << outputLabel << endl;
 
  inFile >> command;
  numCommands = 0;
  while (command != "Quit")
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  { 

 

  // The following should be specific to the structure being tested
  // Execute the command by invoking the member function of the
  //  same name
  // Print the results to the output file

    numCommands++;
    cout << "Command number " << numCommands << " completed."
         << endl;
    inFile >> command;
  }
 
  cout << "Testing completed."  << endl;
  inFile.close();
  outFile.close();
  return 0;
}

Note that the test driver gets the test data and calls the member functions to be 

tested. It also provides written output about the effects of the member function calls, 

so that the tester can visually check the results. Sometimes test drivers are used to test 

hundreds or thousands of test cases. In such situations, the test driver should auto-

matically verify whether the test cases were handled successfully. We leave the expan-

sion of this test driver to include automatic test case verification as a programming 

assignment.

This test driver does not do any error checking to confirm that the inputs are valid. 

For instance, it doesn’t verify that the input command code is really a legal command.  

Remember that the goal of the test driver is to act as a skeleton of the real program, not 

to be the real program. Therefore, the test driver does not need to be as robust as the 

program it simulates.

By now you are probably protesting that these testing approaches are a lot of trouble 

and that you barely have time to write your programs, let alone “throwaway code” like 

stubs and drivers. Structured testing methods do require extra work. Test drivers and 

stubs are software items; they must be written and debugged themselves, even though 

they are seldom turned in to a professor or delivered to a customer. These programs are 

part of a class of software development tools that take time to create but are invaluable in 

simplifying the testing effort.

Such programs are analogous to the scaffolding that a contractor erects around a 

building. It takes time and money to build the scaffolding, which is not part of the final 

product; without it, however, the building could not be constructed. In a large program, 

where verification plays a major role in the software development process, creating these 

extra tools may be the only way to test the program.
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Practical Considerations
It is obvious from this chapter that program verification techniques are time consuming 

and, in a job environment, expensive. It would take a long time to do all of the things dis-

cussed in this chapter, and a programmer has only so much time to work on any particular 

program. Certainly not every program is worthy of such cost and effort. How can you tell 

how much and what kind of verification effort is necessary?

A program’s requirements may provide an indication of the level of verification 

needed. In the classroom, your professor may specify the verification requirements as 

part of a programming assignment. For instance, you may be required to turn in a writ-

ten, implemented test plan. Part of your grade may be determined by the completeness of 

your plan. In the work environment, the verification requirements are often specified by a 

customer in the contract for a particular programming job. For instance, a contract with a 

military customer may specify that formal reviews or inspections of the software product 

be held at various times during the development process.

The following code segment causes a compile-time error:

ifstream inFile;
string fileName;
 
cout << "Enter the name of the input file" << endl;
cin  >> fileName;
inFile.open(fileName);

Why does the error arise? Because C++ recognizes two types of strings. One is 
a variable of the string data type; the other is a limited form of string inherited 
from the C language. The open function expects its argument to be a so-called  
C string. The code segment shown above passes a string variable. Thus it gen-
erates a type conflict. To solve this problem, the string data type provides a 
value-returning function named c_str that can be applied to a string variable to 
convert it to a C string. Here is the corrected code segment:

ifstream inFile;
string fileName;
 
cout << "Enter the name of the input file" << endl;
cin  >> fileName;
inFile.open(fileName.c_str());

C++ Reading in File Names
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A higher level of verification effort may be indicated for sections of a program that 

are particularly complicated or error-prone. In these cases, it is wise to start the verifica-

tion process in the early stages of program development so as to avoid costly errors in the 

design.

A program whose correct execution is critical to human life is obviously a candidate 

for a high level of verification. For instance, a program that controls the return of as-

tronauts from a space mission would require a higher level of verification than would a 

program that generates a grocery list. As a more down-to-earth example, consider the 

potential for disaster if a hospital’s patient database system had a bug that caused it to 

lose information about patients’ allergies to medications. A similar error in a database 

program that manages a Christmas card mailing list, however, would have much less se-

vere consequences.

The error rates over various industries confirms this distinction. The more human-

critical, the lower the error rate (Table 1.3). 

Table 1.3 Error Rates upon Delivery by Application Domain1

Application Domain
Number of 
Projects

Error Range (Errors/
KESLOC2)

Normative Error Rate 
(Errors/ 
KESLOC2) Notes

Automation 55 2 to 8 5 Factory automation

Banking 30 3 to 10 6 Loan processing, ATM

Command & Control 45 0.5 to 5 1 Command centers

Data Processing 35 2 to 14 8 DB-intensive systems

Environment/Tools 75 5 to 12 8 CASE, compilers, etc.

Military—All 125 0.2 to 3 < 1.0 See subcategories

• Airborne 40 0.2 to 1.3 0.5 Embedded sensors

• Ground 52 0.5 to 4 0.8 Combat center

• Missile 15 0.3 to 1.5 0.5 GNC system

• Space 18 0.2 to 0.8 0.4 Attitude control system

Scientific 35 0.9 to 5 2 Seismic processing

Telecommunications 50 3 to 12 6 Digital switches

Test 35 3 to 15 7 Test equipment devices

Trainers/Simulations 25 2 to 11 6 Virtual reality simulator

Web Business 65 4 to 18 11 Client/server sites

Other 25 2 to 15 7 All others
1 Source: Donald J. Reifer, Industry Software Cost, Quality and Productivity Benchmarks, STN Vol. 7(2), 2004.
2 KESLOC: thousands of equivalent source lines of code.
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Case Study
Fraction Class

Write and test a C11 class that represents a fraction.

Logical Level

A fraction is made up of a numerator and a denominator, so our fraction class must have 

data members for each of these. What operations do we normally apply to fractions? First 

we must initialize a fraction by storing values into the numerator and the denominator, and 

we need member functions that return the numerator and the denominator. Another oper-

ation would reduce the fraction to its lowest terms. We should also be able to test whether 

the fraction is equal to zero or greater than 1. If the fraction is greater than or equal to 1 

(not a proper fraction), we should have an operation that converts the fraction to a whole 

number and a fraction. There are binary operations on fractions, but we are asked only to 

write and test a class that represents a fraction. Binary operations could be added later.

Let’s summarize what we have said so far using a CRC card. A CRC card is a 4” × 6” 
or a 5” × 8” card on which we record the name of the class, the responsibilities, and the 
classes with which the class collaborates. CRC cards are used frequently in object-oriented 

design, and we discuss them in more detail in later chapters. Here we use one to record 

what we have decided our fraction class must do. We call the actions that the class must 

perform the responsibilities of the class. We use a handwriting font to indicate that CRC 

cards are a pencil-and-paper tool. We change to a monospaced font for the operations 

when we are talking about their implementation.

Class Name: Superclass: Subclasses:

Collaborations

Primary Responsibilities

Responsibilities

Fraction Type

Initialize (numerator, denominator) Integers

Integers

Integers

Return numerator value

Represents a fraction

Return denominator value

Reduce to lowest terms

Is the fraction zero?

Is it greater than 1?

Convert to proper fraction
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Before we translate this CRC card into a class definition in C++, let’s examine each  
operation again. Let’s change the expressions for the responsibilities into function names. 

The Initialize operation takes two integer values and stores them into the data 
members of the class. Let’s call these data members num and denom.  getNumerator 
and getDenominator return the values of the data members. In object-oriented termi-
nology, functions that return the value of an item are usually called “get” appended to 

the item name.

Reduce checks whether the numerator and the denominator have a common factor 
and, if they do, divides both by the common factor. On second thought, should making 

sure that the fraction is in reduced form be left to the user of the fraction class? If a frac-

tion is not reduced to its lowest terms, binary arithmetic operations could cause overflow 

problems; the sizes of the numerator and denominator could become quite large. Let’s 

remove this operation as a member function and make it a precondition for instances of 

our fraction class. If binary operations are added to the class, it becomes the responsibility 

of these operations to reduce the resulting fraction to its reduced form.

IsZero tests whether the fraction is zero. How do we represent zero as a fraction? 
The numerator is zero and the denominator is 1, so IsZero tests whether the numera-
tor is zero. IsGreaterThanOrEqualToOne is too long an identifier. Let’s call the op-
eration that tests to see if the numerator is greater than or equal to the denominator 

IsNotProper. ConvertToProper returns the whole-number part and leaves the re-
maining part in the fraction.

We are now ready to write the class definition. We know what each operation 

should do. What about the preconditions for the operations? All fractions involved must 

be initialized before the member functions are called and must be in reduced form.  

ConvertToProper should be called only if the fraction is improper.

class FractionType

{

public:

  void Initialize(int numerator, int denominator);
  // Function: Initialize the fraction 
  // Pre:  Numerator and denominator are in reduced form
  // Post: Fraction is initialized  

  int GetNumerator();
  // Function: Returns the value of the numerator
  // Pre:  Fraction has been initialized
  // Post: Numerator is returned

  int GetDenominator();
  // Function: Returns the value of the denominator
  // Pre:  Fraction has been initialized
  // Post: Denominator is returned
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  bool IsZero();
  // Function: Determines if fraction is zero
  // Pre:  Fraction has been initialized
  // Post: Returns true if numerator is zero, false otherwise

  bool IsNotProper();
  // Function: Determines if fraction is a proper fraction
  // Pre:  Fraction has been initialized
  // Post: Returns true if fraction is greater than or equal to 1; false  
  //       otherwise

  int ConvertToProper();
  // Function: Converts the fraction to a whole number and a
  //  fractional part
  // Pre:  Fraction has been initialized, is in reduced form, and
  //       is not a proper fraction
  // Post: Returns whole number
  //       Remaining fraction is original fraction minus the
  //       whole number; fraction is in reduced form

private:

  int num;

  int denom;

};

Application Level (Test Driver)

At this stage, before we write any code for the member functions, we can write our 

test driver using the algorithm shown in the last section. Let’s call the instance of the 

 FractionType fraction. Here is the portion of the algorithm that we must write:

while . . .
    Execute the command by invoking the member function of the same name
     Print the results to the output file
. . .

We have six member functions to test. We can set up an if-then-else statement com-

paring the input operation to the member function names. When the name matches, the 

function is called and the result is written to the output file.

if (command is “Initialize”)
    Read numerator
    Read denominator
    fraction.Initialize(numerator, denominator)
    Write on outFile “Numerator: ”, fraction.GetNumerator( )
         “Denominator: “, fraction.GetDenominator( )

56 Chapter 1 Software Engineering Principles

9781284098167_CH01_001_066.indd   56 28/06/16   5:28 PM



else if (command is “GetNumerator”)
    Write on outFile “Numerator: ”, fraction.GetNumerator( )
else if (command is “GetDenominator”)
    Write on outFile ”Denominator: “, fraction.GetDenominator( )
else if (command is ”IsZero”)
    if (fraction.IsZero)
          Write on outFile “Fraction is zero”
    else
          Write on outFile “Fraction is not zero”
else if (command is “IsNotProper”)
    if (fraction.IsNotProper( ))
          Write on outFile “Fraction is improper”
    else
          Write on outFile “Fraction is proper”
else
    Write on outFile “ Whole number is “, (fraction.ConvertToProper( ))
    Write on outFile “Numerator: “, fraction.GetNumerator( )
    “Denominator:”, fraction.GetDenominator( )

The file containing the specification of class FractionType is in file "frac.h". 
Here are the pieces that must be added to the generalized test driver to test this class:

#include "frac.h"  // File containing the class to be tested
 
FractionType fraction; // Declaration of FractionType object
 
while (command != "Quit")
{
  if (command == "Initialize")
  {
    int numerator, denominator;
    inFile  >> numerator;
    inFile  >> denominator;
    fraction.Initialize(numerator, denominator);
    outFile << "Numerator: "  << fraction.GetNumerator()
      << " Denominator: " << fraction.GetDenominator()
      << endl;
  }
  else if (command == "GetNumerator")
    outFile << "Numerator: "  << fraction.GetNumerator()
      << endl;
  else if (command == "GetDenominator")
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    outFile << "Denominator: " << fraction.GetDenominator()
      << endl;
  else if (command == "IsZero")
    if (fraction.IsZero())
      outFile << "Fraction is zero " << endl;
    else
      outFile << "Fraction is not zero " << endl;
  else if (command == "IsNotProper")
    if (fraction.IsNotProper())
      outFile << "Fraction is improper " << endl;
    else
      outFile << "Fraction is proper " << endl;
  else
  {
    outFile << "Whole number is " << fraction.ConvertToProper()
      << endl;
    outFile <<  "Numerator: "  << fraction.GetNumerator()
      <<   " Denominator: " << fraction.GetDenominator()
      << endl;
  }

  :
}

Implementation Level

We have the test driver and the specification file containing the class. Now we must 

write the code for the function definitions and write and implement the test plan. The 

algorithms for the first five functions are so straightforward that they can be written 

with no further comment. The fifth function, ConvertToProper, must return the 
whole-number integer. It is extracted by taking the integer result of dividing the de-

nominator into the numerator. The integer remainder becomes the numerator of the 

remaining fraction, and the denominator remains the same. If the numerator of the re-

maining fraction is zero, we must set the denominator to 1 to be consistent with the 

definition of a zero fraction.

// Implementation file for class FractionType   
#include "frac.h"   
void FractionType::Initialize(int numerator, int denominator)
// Function: Initialize the fraction
// Pre:  numerator and denominator are in reduced form
// Post: numerator is stored in num; denominator is stored in
//       denom
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{
  num = numerator;
  denom = denominator;
}
 
int FractionType::GetNumerator()
// Function: Returns the value of the numerator
// Pre:  Fraction has been initialized
// Post: numerator is returned
{
  return num;
}
int FractionType::GetDenominator()
// Function: Returns the value of the denominator
// Pre:  Fraction has been initialized
// Post: denominator is returned
{
  return denom;
}
 
bool FractionType::IsZero()
// Function: Determines if fraction is zero
// Pre:  Fraction has been initialized
// Post: Returns true if numerator is zero; false otherwise
{
  return (num == 0);
}
 
bool FractionType::IsNotProper()
// Function: Determines if fraction is a proper fraction
// Pre:  Fraction has been initialized
// Post: Returns true if num is greater than or equal to denom; false
//       otherwise
{
  return (num >= denom);
}
 
int FractionType::ConvertToProper()
// Function: Converts the fraction to a whole number and a
//       fractional part
// Pre:  Fraction has been initialized, is in reduced form, and
//       is not a proper fraction
// Post: Returns num divided by denom
//       num is original num % denom; denom is not changed
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{
  int result;
  result = num / denom;
  num = num % denom;
  if (num == 0)
    denom = 1;
  return result;
}

Here is the UML diagram for class FractionType.

FractionType

–num: int
–denom: int

+Initialize (numerator: int, denominator: int): void
+GetNumerator(): int
+GetDenominator(): int
+IsZero(): bool
+IsNotProper(): bool
+ConvertToProper(): int

The negative sign indicates that the field is private; the plus sign indicates that the 

field is public. Look back at the CRC card and you see no information about the internal 

representation of the class. The CRC card is a notational tool used during the design phase. 

The UML diagram, on the other hand, does display the internal data fields and their types. 

The UML diagram is documentation for those responsible for maintaining a system.

Test Plan

We have six member functions to test. Two of the six are Boolean functions, so we need 

two test cases for each. Here, then, is a test plan that has eight cases. Note that we have to 

initialize the fraction three times: once for a proper fraction, once for an improper frac-

tion, and once for zero.

Here are the input file, the output file, and a screenshot from the run:

Input File Output File

Initialize Test_Run_for_FractionType

3 Numerator: 3 Denominator: 4

4 Fraction is not zero

IsZero Fraction is proper

IsNotProper Numerator: 3
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getNumerator Denominator: 4

getDenominator Numerator: 4 Denominator: 3

Initialize Fraction is improper

4 Whole number is 1

3 Numerator: 1 Denominator: 3

IsNotProper Numerator: 0 Denominator: 1

ConvertToProper Fraction is zero

Initialize

0

1

IsZero

Quit

Our test plan has been executed and the right results have been obtained. But we were 

lucky. All of the commands in the input file were correctly spelled. What would have hap-

pened if the command “Initialize” had been “initialize”? The program would have crashed. 

The misspelled command would have fallen through the sieve and the last else branch 
would have been executed. In this case the code would have tried to print an undefined 

proper fraction.  

This is an example of code that is not robust. To make the driver more robust, the 

names of the commands should be changed to all uppercase or all lowercase before com-

paring them. In addition, printing the fraction should be an explicit command; the default 

should always be used for a misspelled command. Remember, if there are N functions to 

be tested, there must be N 1 1 branches in the driver. 
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Summary
How are our quality software goals met by the strategies of abstraction and information 

hiding? When details are hidden at each level, the code becomes simpler and more read-

able, which makes the program easier to write and modify. Both functional decomposition 

and object-oriented design processes produce modular units that are also easier to test, 

debug, and maintain.

One positive side effect of modular design is that modifications tend to be localized in 

a small set of modules, so the cost of modifications is reduced. Remember that whenever 

a module is modified, it must be retested to make sure that it still works correctly in the 

program. By localizing the modules affected by changes to the program, we limit the ex-

tent of retesting needed.

We increase reliability by making the design conform to our logical picture and dele-

gating confusing details to lower levels of abstraction. An understanding of the wide range 

of activities involved in software development—from requirements analysis through 

maintenance of the resulting program—leads to an appreciation of a disciplined software 

engineering approach. Everyone knows some programming wizard who can sit down and 

hack out a program in an evening, working alone, coding without a formal design. But 

we cannot depend on wizardry to control the design, implementation, verification, and 

maintenance of large, complex software projects that involve the efforts of many program-

mers. As computers grow more powerful, the problems that people want to solve on them 

become larger and more complex. Some people refer to this situation as a software crisis. 

We’d like you to think of it as a software challenge.

It should be obvious by now that program verification is not something you begin the 

night before your program is due. Design verification and program testing go on through-

out the software life cycle.

Verification activities begin when the software specifications are developed. At 

this point, the overall testing approach and goals are formulated. Then, as program 

design work begins, these goals are applied. Formal verification techniques may be 

used for parts of the program, design inspections are conducted, and test cases are 

planned. During the implementation phase, the test cases are developed and test data 

to support them are generated. Code inspections give the programmer extra support 

in debugging the program before it is ever run. When the code has been compiled and 

is ready to be run, unit (module-level) testing is done, with stubs and drivers used 

for support. After these units have been completely tested, they are put together in 

integration tests. Once errors have been found and corrected, some of the earlier tests 

are rerun to make sure that the corrections have not introduced any new problems. 

Finally, acceptance tests of the whole system are performed. Figure 1.10 shows how 

the various types of verification activities fit into the software development life cycle. 

Throughout the life cycle, one thing remains constant: The earlier in this cycle program 

errors are detected, the easier (and less costly in time, effort, and money) they are to 

remove. Program verification is a serious subject; a program that doesn’t work isn’t 

worth the filespace it’s stored in.
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Exercises

1. Explain what we mean by “software engineering.”

2. Which of these statements is always true?

a. All of the program requirements must be completely defined before design begins.

b. All of the program design must be complete before any coding begins.

c. All of the coding must be complete before any testing can begin.

d. Different development activities often take place concurrently, overlapping in 

the software life cycle.

3. Name three computer hardware tools that you have used.

4. Name two software tools that you have used in developing computer programs.

5. Explain what we mean by “ideaware.”

6. Explain why software might need to be modified

a. in the design phase.

b. in the coding phase.

c. in the testing phase.

d. in the maintenance phase.

Figure 1.10 Life-cycle verification activities

Analysis

Speci�cation

Design

Code

Test

Delivery

Maintenance

Make sure that speci�cations are completely understood.
Understand testing requirements.

Verify the identi�ed requirements.
Perform requirements inspections with your client.

Design for correctness (using assertions such as preconditions
and postconditions).
Perform design inspections.
Plan the testing approach.

Understand the programming language well.
Perform code inspections.
Add debugging output statements to the program.
Write the test plan.
Construct test drivers and/or stubs.

Unit test according to the test plan.
Debug as necessary.
Integrate tested modules.
Retest after corrections.

Execute acceptance tests of the completed product.

Execute regression test whenever the delivered product is changed
to add new functionality or to correct detected problems.
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7. Software quality goal 4 says, “Quality software is completed on time and within 

budget.”

a. Explain some of the consequences of not meeting this goal for a student prepar-

ing a class programming assignment.

b. Explain some of the consequences of not meeting this goal for a team developing 

a highly competitive new software product.

c. Explain some of the consequences of not meeting this goal for a programmer 

who is developing the user interface (the screen input/output) for a spacecraft 

launch system.

8. For each of the following, describe at least two different abstractions for different 

viewers (see Figure 1.1).

a. A dress

b. An aspirin

c. A carrot

d. A key

e. A saxophone

f. A piece of wood

9. Functional decomposition is based on a hierarchy of ____________________, and object-

oriented design is based on a hierarchy of ____________________.

10. What is the difference between an object and an object class? Give some examples.

11. Make a list of potential objects from the description of the ATM scenario given in 

this chapter.

12. Have you ever written a programming assignment with an error in the specifica-

tions? If so, at what point did you catch the error? How damaging was the error to 

your design and code?

13. Explain why the cost of fixing an error is higher the later in the software cycle that 

the error is detected.

14. Explain how an expert understanding of your programming language can reduce the 

amount of time you spend debugging.

15. Give an example of a run-time error that might occur as the result of a programmer 

making too many assumptions.

16. Define “robustness.” How can programmers make their programs more robust by 

taking a defensive approach?

17. The following program has three separate errors, each of which would cause  

an infinite loop. As a member of the inspection team, you could save the pro-

grammer a lot of testing time by finding the errors during the inspection. Can  

you help?
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void Increment(int);
int main()
{
  int count = 1;
  while(count < 10)
  cout  << " The number after "  << count;  /* Function Increment
  Increment(count);             adds 1 to count */
  cout  << " is " << count << endl;
  return 0;
}
void Increment (int nextNumber)
// Increment the parameter by 1.
{
  nextNumber++;
}

18.  Is there any way a single programmer (for example, a student working alone on a 

programming assignment) can benefit from some of the ideas behind the inspec-

tion process?

19.  When is it appropriate to start planning a program’s testing?

a. During design or even earlier

b. While coding

c. As soon as the coding is complete

20.  Differentiate between unit testing and integration testing.

21.  Explain the advantages and disadvantages of the following debugging techniques:

a. Inserting output statements that may be turned off by commenting them out

b. Using a Boolean flag to turn debugging output statements on or off

c. Using a system debugger

22.  Describe a realistic goal-oriented approach to data-coverage testing of the function 

specified below:

FindElement(list,	targetItem,	index,	found)

Function: Search list for targetItem.

Preconditions: Elements of list are in no particular order; list may be empty.

Postconditions: found is true if targetItem is in list;  otherwise, found is false.

 index is the position of targetItem if found is true.
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23. A program is to read a numeric score (0 to 100) and display an appropriate letter 

grade (A, B, C, D, or F).

a. What is the functional domain of this program?

b. Is exhaustive data coverage possible for this program?

c. Devise a test plan for this program.

24. Explain how paths and branches relate to code coverage in testing. Can we attempt 

100% path coverage?

25. Differentiate between “top-down” and “bottom-up” integration testing.

26. Explain the phrase “life-cycle verification.”

27. Write the corrected version of the function Divide.

28. Why did we type cast dividend and divisor in the function Divide?

29. The solution to the Case Study did not consider negative fractions.

a. How should a negative fraction be represented?

b. Which of the member functions would have to be changed to represent negative 

fractions? What changes would be involved?

c. Rewrite the test plan to test for negative fractions.

30. One of the member functions in the Case Study needs an additional test. Which 

 function is it, and what should the data be?

31. Name four tools used in software design. 

32. Define information hiding. 

33. Name four types of step-wise refinement. 

34. What is the key feature of top-down design? 

35. What characterizes functional decomposition? 

36. Name two visual tools used by software developers. 

37. In reviews and inspections, what is being reviewed or inspected? 

38. Give the basic design of a test driver. 

39. Why is exhaustive code-coverage testing virtually impossible? 

40. Why is exhaustive data-coverage testing virtually impossible? 
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