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Preface

With this edition, two new authors come on board to carry forward the tradition of excellence in 

C++ Plus Data Structures, as Nell steps back from leading its future development. Chip Weems 

has been Nell’s coauthor on numerous other titles for 30 years, including Java Plus Data Structures, 

and contributed significantly to the pedagogical approach that set the tone for earlier versions of 

this text and its predecessors. Tim Richards was heavily involved with Chip and Nell in develop-

ing the most recent edition of Progamming and Problem Solving in C++. Together, they share a 

strong commitment to the success of students everywhere, which is, of course, the foundation for 

the love of teaching that motivates us all to walk into our classrooms each day.

Over the last two decades, the traditional data structures course has grown to include the 

broader topics of Abstract Data Types (ADTs), software engineering, and elementary analysis of 

algorithms.

The term data structures refers to the study of how to represent collections of data in orga-

nized relationships and how to write algorithms that manipulate them. The term Abstract Data 

Type (ADT) refers to a description of data in terms of a set of defining properties, as well as the 

operations that can be applied to the data. The shift in emphasis is representative of the move 

toward more abstraction in computer science education. We now study the abstract properties of 

classes of data objects, in addition to how the objects might be represented in a program. Johannes 

J. Martin puts it very succinctly: “[D]epending on the point of view, a data object is characterized 

by its type (for the user) or by its structure (for the implementor).”
1

The design of the abstraction and the implementation are both tied critically to software 

engineering, which seeks to apply engineering methodologies to the development of reliable, 

robust, and correct software. A poor abstraction can lead to a cumbersome set of use cases that 

force application programmers to either write unnecessarily complex code or neglect important 

validity checks. A poor implementation can be inefficient or prone to error. One aspect of designing 

1
 Johannes J. Martin, Data Types and Data Structures, Prentice-Hall International Series in Computer Science, 

C. A. R. Hoare, series editor, Prentice-Hall International (UK), Ltd., 1986, p. 1.
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xii	 Preface

an efficient implementation is being able to analyze the work done by a given algorithm. Thus, 

throughout this text, we distinguish between the engineering of abstractions and implementa-

tions as motivated by their applications, and we take the time to analyze the algorithms that we 

introduce.

Three Levels of Abstraction
The focus of C++ Plus Data Structures is on ADTs as viewed from three different perspectives: 

their specification, their application, and their implementation. The specification describes the 

logical or abstract level and is concerned with what the data type represents. The application 

level is concerned with the use of the data in solving problems. This level is concerned with why 

the data type has particular properties and operations. The implementation level is where the 

operations are actually coded; it is concerned with the how questions.

Within this focus, we stress computer science theory and software engineering principles, 

including modularization, data encapsulation, information hiding, data abstraction, object-oriented 

decomposition, functional decomposition, the analysis of algorithms, and life-cycle software 

verification methods. We feel strongly that these principles should be introduced to computer 

science students early in their education so they learn to practice good software techniques from 

the beginning.

To teach these concepts to students who may not have completed many college-level mathe

matics courses, we consistently use intuitive explanations, even for topics that have a basis in 

mathematics, like the analysis of algorithms. In all cases, our highest goal has been to make our 

explanations as readable and easily understandable as possible.

Prerequisite Assumptions
In this book, we assume that students are familiar with the following C++ constructs:

•	  Built-in simple data types

•	  Stream input/output (I/O), as provided in <iostream>
•	  Stream I/O, as provided in <fstream>
•	  Control structures while, do...while, for, if, and switch

•	  User-defined functions with value and reference parameters

•	  Built-in array types

•	  Class construct

We include sidebars within the text to review some of the details of these topics.

Updates to the Sixth Edition
General Changes and Reorganization  The key changes in this revised sixth edition are primarily 

focused on the second half of the book. In a previous revision, all the sorts were moved into one 

chapter to make it easier to analyze them together. But we find that quick sort is such a natural 

demonstration of recursion that we elected to move it back to Chapter 7, and now the sorting 

chapter, Chapter 12, simply reviews it as the basis for complexity analysis.
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Preface xiii

Chapter 9, which had become something of an ADT catchall, is now focused entirely on heaps 

and the closely related Priority Queue ADT. We have also moved coverage of the heap sort algorithm 

into this chapter, and Chapter 12 reviews it sufficiently to motivate its analysis and comparison 

with other sorts. Based on user feedback, we have added an entirely new Chapter 10, called 

“Trees Plus,” to address AVL, Red-Black, and B-trees. Chapter 11 then gathers together coverage 

of associative containers, adding a new section on the Map ADT to the existing material on the 

Set ADT, and hashing.

Sorting is covered in Chapter 12. But instead of introducing a wide range of algorithms, we 

limit the new sorts to merge sort and radix sort and emphasize the analysis of sorting complex-

ity, as well as other efficiency considerations, in choosing among sorting algorithms. New to this 

chapter is a discussion of caching and its effects on performance, along with coverage of the C++ 
thread library and a parallel version of merge sort. The latter is a key element of the 2013 ACM 

curriculum update, which was based in part on the curriculum recommendations of the IEEE 

Technical Committee on Parallel Processing, to which Chip was a key contributor.

We felt that this book’s extensive coverage of graphs warranted its own chapter, Chapter 13, 

rather than being lumped in with several unrelated ADTs. This also reflects a philosophy that the 

second half of a comprehensive data structures text must be more modular, so instructors can 

tailor coverage of the different ADTs to the circumstances of their particular classes.

C11 11  Since the fifth edition came out, the C++ 11 standard has become much more widely 
accessible. Thus, we have begun to incorporate some of its new features in this book. In particular, 

we now cover range-based for loops (in Chapter 6) and the new thread library (in Chapter 12).

Content and Organization
Chapter 1 outlines the basic goals of high-quality software and the basic principles of software 

engineering for designing and implementing programs to meet these goals. Abstraction, func-

tional decomposition, and object-oriented design are discussed. This chapter also addresses 

what we see as a critical need in software education: the ability to design and implement cor-

rect programs and to verify that they are actually correct. Topics covered include the concept 

of life-cycle verification; designing for correctness using preconditions and postconditions; the 

use of deskchecking and design/code walk-throughs and inspections to identify errors before 

testing; debugging techniques, data coverage (black box), and code coverage (clear or white-

box) approaches; and test plans, unit testing, and structured integration testing using stubs and 

drivers. The concept of a generalized test driver is presented and executed in a case study that 

develops the ADT Fraction.

Chapter 2 presents data abstraction and encapsulation, the software engineering concepts 

that relate to the design of the data structures used in programs. Three perspectives of data are 

discussed: abstraction, implementation, and application. These perspectives are illustrated us-

ing a real-world example (a library) and then are applied to built-in data structures that C++  
supports—namely, structs and arrays. The C++ class type is presented as the way to represent the 
ADTs that we examine in subsequent chapters. The principles of object-oriented programming— 

encapsulation, inheritance, and polymorphism—are introduced here, along with the accompanying 

C++ implementation constructs. The case study at the end of this chapter reinforces the ideas 
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xiv	 Preface

of data abstraction and encapsulation in designing and implementing a user-defined data type 

representing a date. This class is tested using a version of the generalized test driver.

Chapter 2 includes a discussion of two C++ constructs that help users write better software: 
namespace and exception handling using the try/catch statement. Various approaches to error 

handling are demonstrated in subsequent chapters.

Because there is more than one way to solve a problem, we discuss how competing solutions 

can be compared through the analysis of algorithms using Big-O notation. Throughout the rest of 

the book, the ADT implementations are compared using Big-O notation. The case study defines 

the ADT Date, implements the class, defines a test plan, and implements the test plan.

We would like to think that the material in Chapters 1 and 2 is a review for most students. 

However, the concepts in these two chapters are so crucial to the future of any and all students 

that we feel that we cannot rely on their having seen the material before.

Chapter 3 introduces the most fundamental ADT of them all: the unsorted list. The chapter 

begins with a general discussion of operations on ADTs and then presents the framework with 

which all the other data types are examined: a presentation and discussion of the specification, a 

brief application using the operations, and the design and coding of the operations. The specifica-

tion is of the ADT Unsorted List. An array-based implementation of the specification is developed.

The concept of dynamic allocation is introduced, along with the syntax for using C++ pointer 
variables. The concept of linking nodes to form lists is presented in clear detail, with many dia-

grams. This technique is then used to reimplement the unsorted list. The array-based and linked 

implementations are compared using Big-O notation. The case study designs the ADTs Card and 

Deck to represent a deck of playing cards. These are implemented as classes and tested.

Chapter 4 introduces the ADT Sorted List and develops an array-based implementation. The 

binary search is introduced as a way to improve the performance of the search operation in the 

sorted list. The ADT is then implemented using a linked implementation. These implementations 

are compared using Big-O notation.

Both the logical and physical distinctions between bound and unbound structures are dis-

cussed. The four-phase, object-oriented methodology is presented and demonstrated in the case 

study, which evaluates hands according to the rules of Texas hold ’em poker.

Chapter 5 introduces the ADTs Stack and Queue. Each ADT is first considered from its abstract 

perspective, and the idea of recording the logical abstraction in an ADT specification is stressed. 

The operations are used in an application program; then the set of operations is implemented in 

C++ using an array-based implementation, followed by a linked implementation. The case study 
simulates a solitaire game, using the classes created in the chapter.

Chapter 6 is a collection of advanced concepts and techniques. Templates are introduced as 

a way of implementing generic classes. Circular linked lists and doubly linked lists are discussed. 

The insertion, deletion, and list traversal algorithms are developed and implemented for each 

variation. An alternative representation of a linked structure, using static allocation (an array of 

structs), is designed. Class copy constructors, operator overloading, and dynamic binding are 

covered in detail. The concept of an iterator is introduced, and we see how the range-based for 

loop can be used to implement iteration over a list. The case study uses doubly linked lists to 

implement large integers.

Chapter 7 presents recursion, giving students an intuitive understanding of the concept, and 

then shows how recursion can be used to solve programming problems. Guidelines for writing 
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Preface xv

recursive functions are illustrated with many examples. After demonstrating that a by-hand simu-

lation of a recursive routine can be very tedious, a simple three-question technique is introduced 

for verifying the correctness of recursive functions. Because many students are wary of recursion, 

the introduction to this material is deliberately intuitive and nonmathematical. A more detailed 

discussion of how recursion works leads to an understanding of how it can be replaced with itera-

tion and stacks. As a concrete example of a significant algorithm that is simplified via recursion, we 

introduce quick sort. The case study develops and implements the process of escaping from a maze.

Chapter 8 introduces ADT Binary Search Tree as a way to arrange data, giving the flexibility 

of a linked structure with O(log
2
N) insertion and deletion time. In order to build on the previous 

chapter and exploit the inherent recursive nature of binary trees, the algorithms first are presented 

recursively. After all the operations have been implemented recursively, we code the insertion and 

deletion operations iteratively to show the flexibility of binary search trees. We conclude with a 

complexity-based comparison of operations on linear lists versus binary search trees. The case 

study discusses the process of building an index for a manuscript and implements the first phase.

Chapter 9 is motivated by the Priority Queue ADT, which can be implemented easily using 

the Heap ADT. The heap, in turn, is efficiently built using an array-based implementation of the 

Binary Tree ADT. Thus, we begin with an overview of priority queues at the abstract level and 

then consider how a complete binary tree can be implemented using a nonlinked, array-based 

representation. In introducing the shape property of the heap, which requires it to be a complete 

binary tree, it is clear that the preceding tree implementation is a perfect basis for a heap imple-

mentation. We then return to applying the heap as a means of implementing the priority queue. 

As a further demonstration of the utility of the heap, we introduce the heap sort algorithm.

Chapter 10 is entirely new. It extends the idea of the binary search tree to more advanced 

forms that are self-balancing. The basic concepts are introduced with the AVL Tree ADT, which 

maintains a strict balance. We then relax the balance constraint with the ADT Red-Black tree. 

Finally, the balanced tree concept is extended beyond the binary form to higher orders of tree 

structures, through a high-level exploration of the B-tree ADT. Although this chapter does refer 

to the heap, it is possible to introduce it immediately after Chapter 8 if an instructor has a strong 

preference to do so.

Chapter 11 gathers together the ADTs Set and Map, which are associative structures that are 

commonly used for lookup operations. In the case of the set, lookup determines whether an ele-

ment is in the structure, while with the map, we are interested in also retrieving a value that is 

paired with a specified key. Given that lookup is one of the motivations for these structures, it is 

natural to also introduce the idea of hashing here, as it can be used for efficient implementation 

of associative structures. Because the map implementation is based on binary search trees, this 

chapter can be covered at any point after Chapter 8.

Chapter 12 presents a number of sorting and searching algorithms and asks the question: 

Which are better? The comparison-based sorting algorithms that are illustrated include straight 

selection sort, two versions of bubble sort, quick sort, heap sort, and merge sort. The merge sort 

is the the only new algorithm in this section. We then compare the sorting algorithms using Big-O 

notation. Then we address other practical efficiency considerations in sorting, including the size 

of the data set, function call overhead, programmer time, memory space, stability of keys, sort-

ing pointer arrays, and caching. Radix sort is presented as an example of sorting wihout directly 

comparing values, and then it is analyzed. Finally, we return to the merge sort as an example 
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xvi	 Preface

of an algorithm that is easy to parallelize using the C++ thread library. The sorting discussion 
depends only on prior covereage of recursion, quick sort, and heap sort, so it can be used at any 

point after Chapter 9.

Chapter 13 relaxes the regularity that was present in the structures of the earlier ADTs by 

introducing the concept of the Graph ADT and then exploring an adjacency matrix implementation, 

as well as two approaches to creating an adjacency list. Breadth-first and depth-first searches are 

also introduced and compared. The coverage in this chapter depends only on stacks and queues, 

so it could be covered at any point after Chapter 5.

Additional Features
Chapter Goals  A set of goals presented at the beginning of each chapter helps the students assess 

what they have learned. These goals are tested in the exercises at the end of each chapter.

Chapter Exercises  Chapter exercises vary in levels of difficulty, including short programming 

problems, the analysis of algorithms, and problems to test the student’s understanding of concepts. 

The answer key for the exercises can be found in the Instructor’s Manual.

Case Studies  There are eight case studies. Each includes a problem description, an analysis of the 

problem input and required output, and a discussion of the appropriate data types to use. Most 

of the case studies are completely coded and tested. Two are left partially complete, requiring 

students to complete and test the final versions.

Student and Instructor Resources  Source code for all programs, partial programs, and case 

studies within the text is available for students and instructors to download at go.jblearning.com 

/c++plusds6e. In addition, instructors may access the following resources:

•	 The Instructor’s Manual, with goals, teaching notes, workouts (suggestions for  

in-class activities), programming assignments for each chapter, and answers to the 

end-of-chapter exercises

•	 Slides in Microsoft PowerPoint format

•	 A test bank
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