
Plus Data

Structures
Sixth Edition

C++
Nell Dale
University of Texas, Austin

Chip Weems
University of Massachusetts, Amherst

Tim Richards
University of Massachusetts, Amherst

9781284098167_FMxx_i_xviii.indd 1 28/06/16 7:53 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

World Headquarters

Jones & Bartlett Learning

5 Wall Street

Burlington, MA 01803

978-443-5000

info@jblearning.com

www.jblearning.com

Jones & Bartlett Learning books and products are available through most bookstores and online booksellers. To contact Jones & Bartlett

Learning directly, call 800-832-0034, fax 978-443-8000, or visit our website, www.jblearning.com.

Substantial discounts on bulk quantities of Jones & Bartlett Learning publications are available to corporations, professional associa-

tions, and other qualified organizations. For details and specific discount information, contact the special sales department at Jones &

Bartlett Learning via the above contact information or send an email to specialsales@jblearning.com.

Copyright © 2018 by Jones & Bartlett Learning, LLC, an Ascend Learning Company

All rights reserved. No part of the material protected by this copyright may be reproduced or utilized in any form, electronic or mechani-

cal, including photocopying, recording, or by any information storage and retrieval system, without written permission from the copyright

owner.

The content, statements, views, and opinions herein are the sole expression of the respective authors and not that of Jones & Bartlett Learn-

ing, LLC. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise

does not constitute or imply its endorsement or recommendation by Jones & Bartlett Learning, LLC and such reference shall not be used

for advertising or product endorsement purposes. All trademarks displayed are the trademarks of the parties noted herein. C++ Plus Data

Structures, Sixth Edition is an independent publication and has not been authorized, sponsored, or otherwise approved by the owners of the

trademarks or service marks referenced in this product.

There may be images in this book that feature models; these models do not necessarily endorse, represent, or participate in the activities

represented in the images. Any screenshots in this product are for educational and instructive purposes only. Any individuals and scenarios

featured in the case studies throughout this product may be real or fictitious, but are used for instructional purposes only.

09816-7

Production Credits

VP, Executive Publisher: David D. Cella

Executive Editor: Matt Kane

Acquisitions Editor: Laura Pagluica

Editorial Assistant: Taylor Ferracane

Senior Production Editor: Amanda Clerkin

Marketing Manager: Amy Langlais

VP, Manufacturing and Inventory Control: Therese Connell

Composition: S4Carlisle Publishing Services

Cover Design: Kristin E. Parker

Rights & Media Specialist: Merideth Tumasz

Media Development Editor: Shannon Sheehan

Cover Image: © Repina Valeriya/Shutterstock

Printing and Binding: Edwards Brothers Malloy

Cover Printing: Edwards Brothers Malloy

Library of Congress Cataloging-in-Publication Data

Names: Dale, Nell (Nell B.), author. | Weems, Chip, author. | Richards, Tim

 (Computer scientist), author.

Title: C++ plus data structures / Nell Dale, Chip Weems, Tim Richards, UMass
 Amherst, Dept of Computer Science, MA.

Description: Sixth edition. | Burlington, Massachusetts : Jones & Bartlett

 Learning, [2018] | Includes bibliographical references and index.

Identifiers: LCCN 2016009602 | ISBN 9781284089189 (casebound)

Subjects: LCSH: C++ (Computer program language) | Data structures (Computer
 science)

Classification: LCC QA76.73.C153 D334 2017 | DDC 005.13/3--dc23 LC

record available at http://lccn.loc.gov/2016009602

6048

Printed in the United States of America

20 19 18 17 16 10 9 8 7 6 5 4 3 2 1

9781284098167_FMxx_i_xviii.indd 2 21/07/16 10:34 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

©
 Shutterstock/Repina Valeriya

Contents

Preface  xi

1	 Software Engineering Principles  1
1.1	 The Software Process  2

Software Life Cycles  3

A Programmer’s Toolboxes  5

Goals of Quality Software  6

Specification: Understanding the Problem  9

Writing Detailed Specification  10

1.2	 Program Design  11

Abstraction  11

Information Hiding  13

Stepwise Refinement  14

Visual Tools  15

1.3	 Design Approaches  17

Top-Down Design  17

Object-Oriented Design  19

1.4	 Verification of Software Correctness  22

Origin of Bugs  23

Designing for Correctness  31

Program Testing  37

Testing C11 Data Structures  48

Practical Considerations  52

	 Case Study: Fraction Class  54

Summary  62

Exercises  63

9781284098167_FMxx_i_xviii.indd 3 29/06/16 12:50 AM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

iv	 Contents

2	 Data Design and Implementation  67
2.1	 Different Views of Data  68

What Do We Mean by Data?  68

Data Abstraction  68

Data Structures  70

Abstract Data Type Operator Categories  75

2.2	 Abstraction and Built-In Types  76

Records  77

One-Dimensional Arrays  81

Two-Dimensional Arrays  86

2.3	 Higher-Level Abstraction and the C++ Class Type  89

Class Specification  90

Class Implementation  92

Member Functions with Object Parameters  93

Difference Between Classes and Structs  95

2.4	 Object-Oriented Programming  95

Concepts  95

C++ Constructs for OOP  97

2.5	 Constructs for Program Verification  99

Exceptions  100

Namespaces  102

2.6	 Comparison of Algorithms  104

Big-O  106

Common Orders of Magnitude  107

Example 1: Sum of Consecutive Integers  108

Example 2: Finding a Number in a Phone Book  111

	 Case Study: User-Defined Date ADT  115

Summary  127

Exercises  128

3	 ADT Unsorted List  133
3.1	 Lists  134

3.2	 Abstract Data Type Unsorted List  135

Logical Level  135

Abstract Data Type Operations  135

Generic Data Types  137

Application Level  141

Implementation Level  143

3.3	 Pointer Types  160

Logical Level  160

9781284098167_FMxx_i_xviii.indd 4 29/06/16 12:50 AM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

Contents v

Application Level  166

Implementation Level  167

3.4	 Implementing Class UnsortedType as a Linked Structure  167

Linked Structures  168

Class UnsortedType  174

Function PutItem  175

Constructor  177

Observer Operations  178

Function MakeEmpty  179

Function GetItem  179

Function DeleteItem  181

Functions ResetList and GetNextItem  183

Class Destructors  188

3.5	 Comparing Unsorted List Implementations  189

	 Case Study: Creating a Deck of Playing Cards  190

Summary  204

Exercises  205

4	 ADT Sorted List  213
4.1	 Abstract Data Type Sorted List  214

Logical Level  214

Application Level  216

Implementation Level  216

4.2	 Dynamically Allocated Arrays  229

4.3	 Implementing the Sorted List as a Linked Structure  231

Function GetItem  231

Function PutItem  234

Function DeleteItem  238

Code  239

Comparing Sorted List Implementations  243

4.4	 Comparison of Unsorted and Sorted List ADT Algorithms  246

4.5	 Bounded and Unbounded ADTs  247

4.6	 Object-Oriented Design Methodology  248

Brainstorming  248

Filtering  249

Scenarios  250

Responsibility Algorithms  251

Final Word  251

	 Case Study: Evaluating Card Hands  252

Summary  273

Exercises  273

9781284098167_FMxx_i_xviii.indd 5 29/06/16 12:50 AM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

vi	 Contents

5	 ADTs Stack and Queue  277
5.1	 Stacks  278

Logical Level  278

Application Level  281

Implementation Level  285

Alternate Array-Based Implementation  290

5.2	 Implementing a Stack as a Linked Structure  293

Function Push  294

Function Pop  295

Function Top  297

Other Stack Functions  297

Comparing Stack Implementations  299

5.3	 Queues  300

Logical Level  300

Application Level  304

Implementation Level  307

Counted Queue  315

5.4	 Implementing a Queue as a Linked Structure  320

Function Enqueue   320

Function Dequeue   322

A Circular Linked Queue Design  326

Comparing Queue Implementations  327

	 Case Study: Simulating a Solitaire Game  329

Summary  340

Exercises  341

6	 Lists Plus  355
6.1	 More About Generics: C++ Templates  356

6.2	 Circular Linked Lists  360

Finding a List Item  362

Inserting Items into a Circular List  366

Deleting Items from a Circular List  369

6.3	 Doubly Linked Lists  371

Finding an Item in a Doubly Linked List  372

Operations on a Doubly Linked List  373

6.4	 Linked Lists with Headers and Trailers  375

6.5	 Copy Structures  376

Shallow Versus Deep Copies  378

Class Copy Constructors  378

Copy Function  381

Overloading Operators  383

9781284098167_FMxx_i_xviii.indd 6 29/06/16 12:50 AM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

Contents vii

6.6	 A Linked List as an Array of Records  387

Why Use an Array?  388

How Is an Array Used?  389

6.7	 Polymorphism with Virtual Functions  396

6.8	 A Specialized List ADT  401

Test Plan  406

6.9	 Range-Based Iteration  407

	 Case Study: Implementing a Large Integer ADT  413

Summary  426

Exercises  426

7	 Programming with Recursion  435
7.1	 What Is Recursion?	 436

7.2	 The Classic Example of Recursion  437

7.3	 Programming Recursively  440

Coding the Factorial Function  441

7.4	 Verifying Recursive Functions  443

Three-Question Method  443

7.5	 Writing Recursive Functions  444

Writing a Boolean Function  444

7.6	 Using Recursion to Simplify Solutions  447

7.7	 Recursive Linked List Processing  448

7.8	 A Recursive Version of Binary Search  452

7.9	 Recursive Versions of PutItem and DeleteItem  454

Function PutItem  454

Function DeleteItem  455

7.10	 How Recursion Works  456

Static Storage Allocation  456

Dynamic Storage Allocation  459

7.11	 Tracing the Execution of Recursive Function Insert  465

7.12	 Recursive Quick Sort  468

7.13	 Debugging Recursive Routines  475

7.14	 Removing Recursion  476

Iteration  476

Stacking  477

7.15	 Deciding Whether to Use a Recursive Solution  479

	 Case Study: Escaping from a Maze  481

Summary  494

Exercises  495

9781284098167_FMxx_i_xviii.indd 7 29/06/16 12:50 AM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

viii	 Contents

8	 Binary Search Trees  503
8.1	 Searching  504

Linear Searching  505

High-Probability Ordering  505

Key Ordering  506

Binary Searching  507

8.2	 Trees  507

8.3	 Logical Level  512

8.4	 Application Level  514

8.5	 Implementation Level  514

8.6	 Recursive Binary Search Tree Operations  515

Functions IsFull and IsEmpty  516

Function GetLength  516

Function GetItem  519

Function PutItem  522

Function DeleteItem  526

Function Print  533

The Class Constructor and Destructor  534

Copying a Tree  535

More About Traversals  540

Functions ResetTree and GetNextItem  542

8.7	 Iterative Insertion and Deletion  545

Searching a Binary Search Tree  545

Function PutItem  548

Function DeleteItem  551

Test Plan  552

Recursion or Iteration?  553

8.8	 Comparing Binary Search Trees and Linear Lists  553

Big-O Comparisons  554

	 Case Study: Building an Index  556

Summary  564

Exercises  564

9	 Heaps, Priority Queues, and Heap Sort  573
9.1	 ADT Priority Queue  574

Logical Level  574

Application Level  575

Implementation Level  576

9.2	 A Nonlinked Representation of Binary Trees  577

9.3	 Heaps  580

Logical Level  580

9781284098167_FMxx_i_xviii.indd 8 29/06/16 12:50 AM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

Contents ix

Application Level  584

Implementation Level  584

Application Level Revisited  589

Heaps Versus Other Priority Queue Representations  592

9.4	 Heap Sort  593

Summary  598

Exercises  599

10	 Trees Plus  607
10.1	 AVL Trees  608

Single Rotations on AVL Trees  609

Generalizing Single Rotations on AVL Trees  611

Double Rotations on AVL Trees  613

Generalizing Double Rotations on AVL Trees  616

Application Level  618

Logical Level  618

Implementation Level  619

10.2	 Red-Black Trees  625

Inserting into Red-Black Trees  626

Implementing Recoloring for Red-Black Trees  630

Red-Black Tree Summary  634

10.3	 B-Trees  634

Summary  638

Exercises  638

11	 Sets, Maps, and Hashing  641
11.1	 Sets  642

Logical Level  642

Application Level  646

Implementation Level  646

11.2	 Maps  650

Logical Level  651

Application Level  652

Implementation Level  653

11.3	 Hashing  654

Collisions  657

Choosing a Good Hash Function  665

Complexity  669

Summary  669

Exercises  670

9781284098167_FMxx_i_xviii.indd 9 29/06/16 12:50 AM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

x	 Contents

12	 Sorting  673
12.1	 Sorting Revisited  674

12.2	 Straight Selection Sort  675

12.3	 Bubble Sort  679

12.4	 Insertion Sort  683

12.5	 O(N log
2
 N) Sorts  686

Merge Sort  687

Quick Sort  694

Heap Sort  695

Testing  695

12.6	 Efficiency and Other Considerations  696

When N Is Small  696

Eliminating Calls to Functions  696

Programmer Time  697

Space Considerations  697

Keys and Stability  698

Sorting with Pointers  699

Caching  700

12.7	 Radix Sort  701

Analyzing the Radix Sort  705

12.8	 Parallel Merge Sort  705

Summary  713

Exercises  715

13	 Graphs  721
13.1	 Graphs  722

Logical Level  722

Application Level  728

Implementation Level  739

Summary  746

Exercises  746

Appendix A Reserved Words  751

Appendix B Operator Precedence  751

Appendix C A Selection of Standard Library Routines  753

Appendix D American Standard Code for Information

			 Interchange (ASCII) Character Sets  763

Appendix E The Standard Template Library (STL)  764

Glossary  809

Index  815

9781284098167_FMxx_i_xviii.indd 10 29/06/16 4:32 AM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

©
 Shutterstock/Repina Valeriya

Preface

With this edition, two new authors come on board to carry forward the tradition of excellence in

C++ Plus Data Structures, as Nell steps back from leading its future development. Chip Weems

has been Nell’s coauthor on numerous other titles for 30 years, including Java Plus Data Structures,

and contributed significantly to the pedagogical approach that set the tone for earlier versions of

this text and its predecessors. Tim Richards was heavily involved with Chip and Nell in develop-

ing the most recent edition of Progamming and Problem Solving in C++. Together, they share a

strong commitment to the success of students everywhere, which is, of course, the foundation for

the love of teaching that motivates us all to walk into our classrooms each day.

Over the last two decades, the traditional data structures course has grown to include the

broader topics of Abstract Data Types (ADTs), software engineering, and elementary analysis of

algorithms.

The term data structures refers to the study of how to represent collections of data in orga-

nized relationships and how to write algorithms that manipulate them. The term Abstract Data

Type (ADT) refers to a description of data in terms of a set of defining properties, as well as the

operations that can be applied to the data. The shift in emphasis is representative of the move

toward more abstraction in computer science education. We now study the abstract properties of

classes of data objects, in addition to how the objects might be represented in a program. Johannes

J. Martin puts it very succinctly: “[D]epending on the point of view, a data object is characterized

by its type (for the user) or by its structure (for the implementor).”
1

The design of the abstraction and the implementation are both tied critically to software

engineering, which seeks to apply engineering methodologies to the development of reliable,

robust, and correct software. A poor abstraction can lead to a cumbersome set of use cases that

force application programmers to either write unnecessarily complex code or neglect important

validity checks. A poor implementation can be inefficient or prone to error. One aspect of designing

1
 Johannes J. Martin, Data Types and Data Structures, Prentice-Hall International Series in Computer Science,

C. A. R. Hoare, series editor, Prentice-Hall International (UK), Ltd., 1986, p. 1.

9781284098167_FMxx_i_xviii.indd 11 29/06/16 12:50 AM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

xii	 Preface

an efficient implementation is being able to analyze the work done by a given algorithm. Thus,

throughout this text, we distinguish between the engineering of abstractions and implementa-

tions as motivated by their applications, and we take the time to analyze the algorithms that we

introduce.

Three Levels of Abstraction
The focus of C++ Plus Data Structures is on ADTs as viewed from three different perspectives:

their specification, their application, and their implementation. The specification describes the

logical or abstract level and is concerned with what the data type represents. The application

level is concerned with the use of the data in solving problems. This level is concerned with why

the data type has particular properties and operations. The implementation level is where the

operations are actually coded; it is concerned with the how questions.

Within this focus, we stress computer science theory and software engineering principles,

including modularization, data encapsulation, information hiding, data abstraction, object-oriented

decomposition, functional decomposition, the analysis of algorithms, and life-cycle software

verification methods. We feel strongly that these principles should be introduced to computer

science students early in their education so they learn to practice good software techniques from

the beginning.

To teach these concepts to students who may not have completed many college-level mathe

matics courses, we consistently use intuitive explanations, even for topics that have a basis in

mathematics, like the analysis of algorithms. In all cases, our highest goal has been to make our

explanations as readable and easily understandable as possible.

Prerequisite Assumptions
In this book, we assume that students are familiar with the following C++ constructs:

•	 Built-in simple data types

•	 Stream input/output (I/O), as provided in <iostream>
•	 Stream I/O, as provided in <fstream>
•	 Control structures while, do...while, for, if, and switch

•	 User-defined functions with value and reference parameters

•	 Built-in array types

•	 Class construct

We include sidebars within the text to review some of the details of these topics.

Updates to the Sixth Edition
General Changes and Reorganization  The key changes in this revised sixth edition are primarily

focused on the second half of the book. In a previous revision, all the sorts were moved into one

chapter to make it easier to analyze them together. But we find that quick sort is such a natural

demonstration of recursion that we elected to move it back to Chapter 7, and now the sorting

chapter, Chapter 12, simply reviews it as the basis for complexity analysis.

9781284098167_FMxx_i_xviii.indd 12 29/06/16 12:50 AM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

Preface xiii

Chapter 9, which had become something of an ADT catchall, is now focused entirely on heaps

and the closely related Priority Queue ADT. We have also moved coverage of the heap sort algorithm

into this chapter, and Chapter 12 reviews it sufficiently to motivate its analysis and comparison

with other sorts. Based on user feedback, we have added an entirely new Chapter 10, called

“Trees Plus,” to address AVL, Red-Black, and B-trees. Chapter 11 then gathers together coverage

of associative containers, adding a new section on the Map ADT to the existing material on the

Set ADT, and hashing.

Sorting is covered in Chapter 12. But instead of introducing a wide range of algorithms, we

limit the new sorts to merge sort and radix sort and emphasize the analysis of sorting complex-

ity, as well as other efficiency considerations, in choosing among sorting algorithms. New to this

chapter is a discussion of caching and its effects on performance, along with coverage of the C++
thread library and a parallel version of merge sort. The latter is a key element of the 2013 ACM

curriculum update, which was based in part on the curriculum recommendations of the IEEE

Technical Committee on Parallel Processing, to which Chip was a key contributor.

We felt that this book’s extensive coverage of graphs warranted its own chapter, Chapter 13,

rather than being lumped in with several unrelated ADTs. This also reflects a philosophy that the

second half of a comprehensive data structures text must be more modular, so instructors can

tailor coverage of the different ADTs to the circumstances of their particular classes.

C11 11  Since the fifth edition came out, the C++ 11 standard has become much more widely
accessible. Thus, we have begun to incorporate some of its new features in this book. In particular,

we now cover range-based for loops (in Chapter 6) and the new thread library (in Chapter 12).

Content and Organization
Chapter 1 outlines the basic goals of high-quality software and the basic principles of software

engineering for designing and implementing programs to meet these goals. Abstraction, func-

tional decomposition, and object-oriented design are discussed. This chapter also addresses

what we see as a critical need in software education: the ability to design and implement cor-

rect programs and to verify that they are actually correct. Topics covered include the concept

of life-cycle verification; designing for correctness using preconditions and postconditions; the

use of deskchecking and design/code walk-throughs and inspections to identify errors before

testing; debugging techniques, data coverage (black box), and code coverage (clear or white-

box) approaches; and test plans, unit testing, and structured integration testing using stubs and

drivers. The concept of a generalized test driver is presented and executed in a case study that

develops the ADT Fraction.

Chapter 2 presents data abstraction and encapsulation, the software engineering concepts

that relate to the design of the data structures used in programs. Three perspectives of data are

discussed: abstraction, implementation, and application. These perspectives are illustrated us-

ing a real-world example (a library) and then are applied to built-in data structures that C++
supports—namely, structs and arrays. The C++ class type is presented as the way to represent the
ADTs that we examine in subsequent chapters. The principles of object-oriented programming—

encapsulation, inheritance, and polymorphism—are introduced here, along with the accompanying

C++ implementation constructs. The case study at the end of this chapter reinforces the ideas

9781284098167_FMxx_i_xviii.indd 13 29/06/16 12:50 AM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

xiv	 Preface

of data abstraction and encapsulation in designing and implementing a user-defined data type

representing a date. This class is tested using a version of the generalized test driver.

Chapter 2 includes a discussion of two C++ constructs that help users write better software:
namespace and exception handling using the try/catch statement. Various approaches to error

handling are demonstrated in subsequent chapters.

Because there is more than one way to solve a problem, we discuss how competing solutions

can be compared through the analysis of algorithms using Big-O notation. Throughout the rest of

the book, the ADT implementations are compared using Big-O notation. The case study defines

the ADT Date, implements the class, defines a test plan, and implements the test plan.

We would like to think that the material in Chapters 1 and 2 is a review for most students.

However, the concepts in these two chapters are so crucial to the future of any and all students

that we feel that we cannot rely on their having seen the material before.

Chapter 3 introduces the most fundamental ADT of them all: the unsorted list. The chapter

begins with a general discussion of operations on ADTs and then presents the framework with

which all the other data types are examined: a presentation and discussion of the specification, a

brief application using the operations, and the design and coding of the operations. The specifica-

tion is of the ADT Unsorted List. An array-based implementation of the specification is developed.

The concept of dynamic allocation is introduced, along with the syntax for using C++ pointer
variables. The concept of linking nodes to form lists is presented in clear detail, with many dia-

grams. This technique is then used to reimplement the unsorted list. The array-based and linked

implementations are compared using Big-O notation. The case study designs the ADTs Card and

Deck to represent a deck of playing cards. These are implemented as classes and tested.

Chapter 4 introduces the ADT Sorted List and develops an array-based implementation. The

binary search is introduced as a way to improve the performance of the search operation in the

sorted list. The ADT is then implemented using a linked implementation. These implementations

are compared using Big-O notation.

Both the logical and physical distinctions between bound and unbound structures are dis-

cussed. The four-phase, object-oriented methodology is presented and demonstrated in the case

study, which evaluates hands according to the rules of Texas hold ’em poker.

Chapter 5 introduces the ADTs Stack and Queue. Each ADT is first considered from its abstract

perspective, and the idea of recording the logical abstraction in an ADT specification is stressed.

The operations are used in an application program; then the set of operations is implemented in

C++ using an array-based implementation, followed by a linked implementation. The case study
simulates a solitaire game, using the classes created in the chapter.

Chapter 6 is a collection of advanced concepts and techniques. Templates are introduced as

a way of implementing generic classes. Circular linked lists and doubly linked lists are discussed.

The insertion, deletion, and list traversal algorithms are developed and implemented for each

variation. An alternative representation of a linked structure, using static allocation (an array of

structs), is designed. Class copy constructors, operator overloading, and dynamic binding are

covered in detail. The concept of an iterator is introduced, and we see how the range-based for

loop can be used to implement iteration over a list. The case study uses doubly linked lists to

implement large integers.

Chapter 7 presents recursion, giving students an intuitive understanding of the concept, and

then shows how recursion can be used to solve programming problems. Guidelines for writing

9781284098167_FMxx_i_xviii.indd 14 29/06/16 12:50 AM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

Preface xv

recursive functions are illustrated with many examples. After demonstrating that a by-hand simu-

lation of a recursive routine can be very tedious, a simple three-question technique is introduced

for verifying the correctness of recursive functions. Because many students are wary of recursion,

the introduction to this material is deliberately intuitive and nonmathematical. A more detailed

discussion of how recursion works leads to an understanding of how it can be replaced with itera-

tion and stacks. As a concrete example of a significant algorithm that is simplified via recursion, we

introduce quick sort. The case study develops and implements the process of escaping from a maze.

Chapter 8 introduces ADT Binary Search Tree as a way to arrange data, giving the flexibility

of a linked structure with O(log
2
N) insertion and deletion time. In order to build on the previous

chapter and exploit the inherent recursive nature of binary trees, the algorithms first are presented

recursively. After all the operations have been implemented recursively, we code the insertion and

deletion operations iteratively to show the flexibility of binary search trees. We conclude with a

complexity-based comparison of operations on linear lists versus binary search trees. The case

study discusses the process of building an index for a manuscript and implements the first phase.

Chapter 9 is motivated by the Priority Queue ADT, which can be implemented easily using

the Heap ADT. The heap, in turn, is efficiently built using an array-based implementation of the

Binary Tree ADT. Thus, we begin with an overview of priority queues at the abstract level and

then consider how a complete binary tree can be implemented using a nonlinked, array-based

representation. In introducing the shape property of the heap, which requires it to be a complete

binary tree, it is clear that the preceding tree implementation is a perfect basis for a heap imple-

mentation. We then return to applying the heap as a means of implementing the priority queue.

As a further demonstration of the utility of the heap, we introduce the heap sort algorithm.

Chapter 10 is entirely new. It extends the idea of the binary search tree to more advanced

forms that are self-balancing. The basic concepts are introduced with the AVL Tree ADT, which

maintains a strict balance. We then relax the balance constraint with the ADT Red-Black tree.

Finally, the balanced tree concept is extended beyond the binary form to higher orders of tree

structures, through a high-level exploration of the B-tree ADT. Although this chapter does refer

to the heap, it is possible to introduce it immediately after Chapter 8 if an instructor has a strong

preference to do so.

Chapter 11 gathers together the ADTs Set and Map, which are associative structures that are

commonly used for lookup operations. In the case of the set, lookup determines whether an ele-

ment is in the structure, while with the map, we are interested in also retrieving a value that is

paired with a specified key. Given that lookup is one of the motivations for these structures, it is

natural to also introduce the idea of hashing here, as it can be used for efficient implementation

of associative structures. Because the map implementation is based on binary search trees, this

chapter can be covered at any point after Chapter 8.

Chapter 12 presents a number of sorting and searching algorithms and asks the question:

Which are better? The comparison-based sorting algorithms that are illustrated include straight

selection sort, two versions of bubble sort, quick sort, heap sort, and merge sort. The merge sort

is the the only new algorithm in this section. We then compare the sorting algorithms using Big-O

notation. Then we address other practical efficiency considerations in sorting, including the size

of the data set, function call overhead, programmer time, memory space, stability of keys, sort-

ing pointer arrays, and caching. Radix sort is presented as an example of sorting wihout directly

comparing values, and then it is analyzed. Finally, we return to the merge sort as an example

9781284098167_FMxx_i_xviii.indd 15 29/06/16 12:50 AM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

xvi	 Preface

of an algorithm that is easy to parallelize using the C++ thread library. The sorting discussion
depends only on prior covereage of recursion, quick sort, and heap sort, so it can be used at any

point after Chapter 9.

Chapter 13 relaxes the regularity that was present in the structures of the earlier ADTs by

introducing the concept of the Graph ADT and then exploring an adjacency matrix implementation,

as well as two approaches to creating an adjacency list. Breadth-first and depth-first searches are

also introduced and compared. The coverage in this chapter depends only on stacks and queues,

so it could be covered at any point after Chapter 5.

Additional Features
Chapter Goals  A set of goals presented at the beginning of each chapter helps the students assess

what they have learned. These goals are tested in the exercises at the end of each chapter.

Chapter Exercises  Chapter exercises vary in levels of difficulty, including short programming

problems, the analysis of algorithms, and problems to test the student’s understanding of concepts.

The answer key for the exercises can be found in the Instructor’s Manual.

Case Studies  There are eight case studies. Each includes a problem description, an analysis of the

problem input and required output, and a discussion of the appropriate data types to use. Most

of the case studies are completely coded and tested. Two are left partially complete, requiring

students to complete and test the final versions.

Student and Instructor Resources  Source code for all programs, partial programs, and case

studies within the text is available for students and instructors to download at go.jblearning.com

/c++plusds6e. In addition, instructors may access the following resources:

•	 The Instructor’s Manual, with goals, teaching notes, workouts (suggestions for

in-class activities), programming assignments for each chapter, and answers to the

end-of-chapter exercises

•	 Slides in Microsoft PowerPoint format

•	 A test bank

Acknowledgments
First, we would like to thank those who replied to our survey concerning this new edition.

Respondents included both users and nonusers of the previous editions:

Barbara Bracken, PhD

Associate Professor

Department of Mathematics and Computer Science

Wilkes University

Lionel L. Craddock

Bluefield State College

9781284098167_FMxx_i_xviii.indd 16 29/06/16 12:50 AM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

Preface xvii

John Dean

Professor of Computer Science and Chair

Department of Computer Science and Information Systems

Park University

Muhammad Ghanbari

California Polytechnic State University

Carolyn Golden, PhD

Associate Professor of Computer Science

Huston-Tillotson University

Terry R. Hostetler

Professor of Computer Science

Coe College

Amitava Karmaker

Associate Professor

University of Wisconsin-Stout

Fred L. Strickland, PhD

Adjunct Instructor

Computer Science Department

Troy University Montgomery Campus

Dr. Rajendran Swamidurai

Associate Professor of Computer Science

Alabama State University

Jiaofei Zhong, PhD

California State University, East Bay

Your comments were invaluable: Thank you.

Thanks to our families, who have been such a support over the last year and a half. As anyone

who has ever worked on a textbook knows, it involves many long hours and late nights that are

stolen from family time. We cannot begin to express our appreciation for your willingness to en-

able us to undertake this project.

A virtual bouquet of roses to the people who have worked on this book: Laura Pagluica, Taylor

Ferracane, Amanda Clerkin, and Escaline Charlette Aarthi.

N. D.

C. W.

T. R.

9781284098167_FMxx_i_xviii.indd 17 29/06/16 12:50 AM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

9781284098167_FMxx_i_xviii.indd 18 29/06/16 12:50 AM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

