
	 1.1	 Overview

D r. Negroponte is among many who see the computer revolution as if it were
a force of nature. This force has the potential to carry humanity to its digi-

tal destiny, allowing us to conquer problems that have eluded us for centuries, as
well as all of the problems that emerge as we solve the original problems. Com-
puters have freed us from the tedium of routine tasks, liberating our collective
creative potential so that we can, of course, build bigger and better computers.

As we observe the profound scientific and social changes that computers
have brought us, it is easy to start feeling overwhelmed by the complexity of it
all. This complexity, however, emanates from concepts that are fundamentally
very simple. These simple ideas are the ones that have brought us to where we are
today and are the foundation for the computers of the future. To what extent they
will survive in the future is anybody’s guess. But today, they are the foundation
for all of computer science as we know it.

Computer scientists are usually more concerned with writing complex program
algorithms than with designing computer hardware. Of course, if we want our algo-
rithms to be useful, a computer eventually has to run them. Some algorithms are so
complicated that they would take too long to run on today’s systems. These kinds of
algorithms are considered computationally infeasible. Certainly, at the current rate
of innovation, some things that are infeasible today could be feasible tomorrow, but
it seems that no matter how big or fast computers become, someone will think up a
problem that will exceed the reasonable limits of the machine.

To understand why an algorithm is infeasible, or to understand why the
implementation of a feasible algorithm is running too slowly, you must be able
to see the program from the computer’s point of view. You must understand what

“Computing is not about computers anymore. It is about living. . . . We have

seen computers move out of giant air-conditioned rooms into closets, then

onto desktops, and now into our laps and pockets. But this is not the

end. . . . Like a force of nature, the digital age cannot be denied or

stopped. . . . The information superhighway may be mostly hype today, but

it is an understatement about tomorrow. It will exist beyond people’s wildest

predictions. . . . We are not waiting on any invention. It is here. It is now. It is

almost genetic in its nature, in that each generation will become more digital

than the preceding one.”

—Nicholas Negroponte, professor of media technology at MIT

IntroductionChapterChapter

1

Chapter

1
Chapter

9781284033144_CH01.indd 1 1/15/14 8:19 PM

makes a computer system tick before you can attempt to optimize the programs
that it runs. Attempting to optimize a computer system without first understand-
ing it is like attempting to tune your car by pouring an elixir into the gas tank:
You’ll be lucky if it runs at all when you’re finished.

Program optimization and system tuning are perhaps the most important motiva-
tions for learning how computers work. There are, however, many other reasons. For
example, if you want to write compilers, you must understand the hardware environ-
ment within which the compiler will function. The best compilers leverage particular
hardware features (such as pipelining) for greater speed and efficiency.

If you ever need to model large, complex, real-world systems, you will need
to know how floating-point arithmetic should work as well as how it really works
in practice. If you wish to design peripheral equipment or the software that drives
peripheral equipment, you must know every detail of how a particular computer
deals with its input/output (I/O). If your work involves embedded systems, you
need to know that these systems are usually resource-constrained. Your under-
standing of time, space, and price trade-offs, as well as I/O architectures, will be
essential to your career.

All computer professionals should be familiar with the concepts of benchmark-
ing and be able to interpret and present the results of benchmarking systems. People
who perform research involving hardware systems, networks, or algorithms find
benchmarking techniques crucial to their day-to-day work. Technical managers
in charge of buying hardware also use benchmarks to help them buy the best sys-
tem for a given amount of money, keeping in mind the ways in which performance
benchmarks can be manipulated to imply results favorable to particular systems.

The preceding examples illustrate the idea that a fundamental relation-
ship exists between computer hardware and many aspects of programming and
software components in computer systems. Therefore, regardless of our areas of
expertise, as computer scientists, it is imperative that we understand how hard-
ware interacts with software. We must become familiar with how various circuits
and components fit together to create working computer systems. We do this
through the study of computer organization. Computer organization addresses
issues such as control signals (how the computer is controlled), signaling meth-
ods, and memory types. It encompasses all physical aspects of computer systems.
It helps us to answer the question: How does a computer work?

The study of computer architecture, on the other hand, focuses on the struc-
ture and behavior of the computer system and refers to the logical and abstract
aspects of system implementation as seen by the programmer. Computer archi-
tecture includes many elements such as instruction sets and formats, operation
codes, data types, the number and types of registers, addressing modes, main
memory access methods, and various I/O mechanisms. The architecture of a sys-
tem directly affects the logical execution of programs. Studying computer archi-
tecture helps us to answer the question: How do I design a computer?

The computer architecture for a given machine is the combination of its hard-
ware components plus its instruction set architecture (ISA). The ISA is the
agreed-upon interface between all the software that runs on the machine and the
hardware that executes it. The ISA allows you to talk to the machine.

2     Chapter 1    /   Introduction

9781284033144_CH01.indd 2 1/15/14 8:19 PM

The distinction between computer organization and computer architecture is
not clear-cut. People in the fields of computer science and computer engineering
hold differing opinions as to exactly which concepts pertain to computer orga-
nization and which pertain to computer architecture. In fact, neither computer
organization nor computer architecture can stand alone. They are interrelated and
interdependent. We can truly understand each of them only after we comprehend
both of them. Our comprehension of computer organization and architecture ulti-
mately leads to a deeper understanding of computers and computation—the heart
and soul of computer science.

	 1.2	 The Main Components of a Computer

Although it is difficult to distinguish between the ideas belonging to computer
organization and those ideas belonging to computer architecture, it is impossible
to say where hardware issues end and software issues begin. Computer scien-
tists design algorithms that usually are implemented as programs written in some
computer language, such as Java or C++. But what makes the algorithm run?
Another algorithm, of course! And another algorithm runs that algorithm, and so
on until you get down to the machine level, which can be thought of as an algo-
rithm implemented as an electronic device. Thus, modern computers are actually
implementations of algorithms that execute other algorithms. This chain of nested
algorithms leads us to the following principle:

Principle of Equivalence of Hardware and Software: Any task done by
software can also be done using hardware, and any operation performed
directly by hardware can be done using software.1

A special-purpose computer can be designed to perform any task, such as word
processing, budget analysis, or playing a friendly game of Tetris. Accordingly, pro-
grams can be written to carry out the functions of special-purpose computers, such
as the embedded systems situated in your car or microwave. There are times when a
simple embedded system gives us much better performance than a complicated com-
puter program, and there are times when a program is the preferred approach. The
Principle of Equivalence of Hardware and Software tells us that we have a choice.
Our knowledge of computer organization and architecture will help us to make the
best choice.

We begin our discussion of computer hardware by looking at the components
necessary to build a computing system. At the most basic level, a computer is a
device consisting of three pieces:

	 1.	A processor to interpret and execute programs

	 2.	A memory to store both data and programs

	 3.	A mechanism for transferring data to and from the outside world

1�What this principle does not address is the speed with which the equivalent tasks are carried out.
Hardware implementations are almost always faster.

1.2  /  The Main Components of a Computer     3

9781284033144_CH01.indd 3 1/15/14 8:19 PM

We discuss these three components in detail as they relate to computer hardware
in the following chapters.

Once you understand computers in terms of their component parts, you should
be able to understand what a system is doing at all times and how you could change
its behavior if so desired. You might even feel like you have a few things in common
with it. This idea is not as far-fetched as it appears. Consider how a student sitting in
class exhibits the three components of a computer: The student’s brain is the proces-
sor, the notes being taken represent the memory, and the pencil or pen used to take
notes is the I/O mechanism. But keep in mind that your abilities far surpass those of
any computer in the world today, or any that can be built in the foreseeable future.

	 1.3	 An Example System: Wading Through the Jargon

This text will introduce you to some of the vocabulary that is specific to comput-
ers. This jargon can be confusing, imprecise, and intimidating. We believe that
with a little explanation, we can clear the fog.

For the sake of discussion, we have provided a facsimile computer advertise-
ment (see Figure 1.1). The ad is typical of many in that it bombards the reader
with phrases such as “32GB DDR3 SDRAM,” “PCIe sound card,” and “128KB
L1 cache.” Without having a handle on such terminology, you would be hard-
pressed to know whether the stated system is a wise buy, or even whether the

Figure 1.1   A Typical Computer Advertisement

• Intel i7 Quad Core, 3.9GHz
• 1600MHz 32GB DDR3 SDRAM
• 128KB L1 cache, 2MB L2 cache
• 1TB SATA hard drive (7200 RPM)
• 10 USB ports, 1 serial port, 4 PCI expansion slots
 (1 PCI, 1 PCIx16, 2 PCIx1), Bluetooth, and HDMI
• 24" widescreen LCD monitor, 16:10 aspect ratio,
 1920x1200 WUXGA, 300 cd/m2, active matrix, 1000:1
 (static), 8ms, 24-bit color (16.7 million colors), VGA/DVI
 input, 2 USB ports
• 16x CD/DVD +/– RW drive
• 1GB PCIe video card
• PCIe sound card
• Integrated 10/100/1000 Ethernet

FOR SALE: OBSOLETE COMPUTER – CHEAP! CHEAP! CHEAP!

4     Chapter 1    /   Introduction

9781284033144_CH01.indd 4 1/15/14 8:19 PM

system is able to serve your needs. As we progress through this text, you will
learn the concepts behind these terms.

Before we explain the ad, however, we need to discuss something even more
basic: the measurement terminology you will encounter throughout your study of
computers.

It seems that every field has its own way of measuring things. The computer
field is no exception. For computer people to tell each other how big something is,
or how fast something is, they must use the same units of measure. The common
prefixes used with computers are given in Table 1.1. Back in the 1960s, someone
decided that because the powers of 2 were close to the powers of 10, the same
prefix names could be used for both. For example, 210 is close to 103, so “kilo”
is used to refer to them both. The result has been mass confusion: Does a given
prefix refer to a power of 10 or a power of 2? Does a kilo mean 103 of some-
thing or 210 of something? Although there is no definitive answer to this ques-
tion, there are accepted “standards of usage.” Power-of-10 prefixes are ordinarily
used for power, electrical voltage, frequency (such as computer clock speeds),
and multiples of bits (such as data speeds in number of bits per second). If your
antiquated modem transmits at 28.8kb/s, then it transmits 28,800 bits per second
(or 28.8 3 103). Note the use of the lowercase “k” to mean 103 and the lowercase
“b” to refer to bits. An uppercase “K” is used to refer to the power-of-2 prefix, or
1024. If a file is 2KB in size, then it is 2 3 210 or 2048 bytes. Note the uppercase
“B” to refer to byte. If a disk holds 1MB, then it holds 220 bytes (or one megabyte)
of information.

Not knowing whether specific prefixes refer to powers of 2 or powers of 10
can be very confusing. For this reason, the International Electrotechnical Com-
mission, with help from the National Institute of Standards and Technology, has
approved standard names and symbols for binary prefixes to differentiate them
from decimal prefixes. Each prefix is derived from the symbols given in Table 1.1
by adding an “i.” For example, 210 has been renamed “kibi” (for kilobinary) and

Kilo

Mega

Giga

Tera

Peta

Exa

Zetta

Yotta

K

M

G

T

P

E

Z

Y

m

m

n

p

f

a

z

y

1 thousand = 103

1 million = 106

1 billion = 109

1 trillion = 1012

1 quadrillion = 1015

1 quintillion = 1018

1 sextillion = 1021

1 septillion = 1024

1 thousandth = 10–3

1 millionth = 10–6

1 billionth = 10–9

1 trillionth = 10–12

1 quadrillionth = 10–15

1 quintillionth = 10–18

1 sextillionth = 10–21

1 septillionth = 10–24

210 = 1024

220

230

240

250

260

270

280

2–10

2–20

2–30

2–40

2–50

2–60

2–70

2–80

Milli

Micro

Nano

Pico

Femto

Atto

Zepto

Yocto

Prefix Symbol Power of 10 Power of 2 Prefix Symbol Power of 10 Power of 2

Table 1.1   Common Prefixes Associated with Computer Organization and Architecture

1.3  /  An Example System: Wading Through the Jargon     5

9781284033144_CH01.indd 5 1/15/14 8:19 PM

is represented by the symbol Ki. Similarly, 220 is mebi, or Mi, followed by gibi
(Gi), tebi (Ti), pebi (Pi), exbi (Ei), and so on. Thus, the term mebibyte, which
means 220 bytes, replaces what we traditionally call a megabyte.

There has been limited adoption of these new prefixes. This is unfortunate
because, as a computer user, it is important to understand the true meaning of
these prefixes. A kilobyte (1KB) of memory is typically 1024 bytes of memory
rather than 1000 bytes of memory. However, a 1GB disk drive might actually be
1 billion bytes instead of 230 (which means you are getting less storage than you
think). All 3.5" floppy disks are described as storing 1.44MB of data when in fact
they store 1440KB (or 1440 3 210 5 1474560 bytes). You should always read
the manufacturer’s fine print just to make sure you know exactly what 1K, 1KB,
or 1G represents. See the sidebar “When a Gigabyte Isn’t Quite . . .” for a good
example of why this is so important.

Who Uses Zettabytes and Yottabytes Anyway?

The National Security Agency (NSA), an intelligence-gathering organization in the
United States, announced that its new Intelligence Community Comprehensive
National Cybersecurity Initiative Data Center, in Bluffdale, Utah, was set to open in
October 2013. Approximately 100,000 square feet of the structure is utilized for the
data center, Whereas the remaining 900,0001 square feet houses technical support
and administration. The new data center will help the NSA monitor the vast volume of
data traffic on the Internet.

It is estimated that the NSA collects roughly 2 million gigabytes of data every hour,
24 hours a day, seven days a week. This data includes foreign and domestic emails,
cell phone calls, Internet searches, various purchases, and other forms of digital data.
The computer responsible for analyzing this data for the new data center is the Titan
supercomputer, a water-cooled machine capable of operating at 100 petaflops (or
100,000 trillion calculations each second). The PRISM (Planning Tool for Resource
Integration, Synchronization, and Management) surveillance program will gather, pro-
cess, and track all collected data.

Although we tend to think in terms of gigabytes and terabytes when buying stor-
age for our personal computers and other devices, the NSA’s data center storage
capacity will be measured in zettabytes (with many hypothesizing that storage will be
in thousands of zettabytes, or yottabytes). To put this in perspective, in a 2003 study
done at the University of California (UC) Berkeley, it was estimated that the amount
of new data created in 2002 was roughly 5EB. An earlier study by UC Berkeley esti-
mated that by the end of 1999, the sum of all information, including audio, video, and
text, created by humankind was approximately 12EB of data. In 2006, the combined
storage space of every computer hard drive in the world was estimated at 160EB; in
2009, the Internet as a whole was estimated to contain roughly 500 total exabytes, or
a half zettabyte, of data. Cisco, a U.S. computer network hardware manufacturer, has
estimated that by 2016, the total volume of data on the global internet will be 1.3ZB,
and Seagate Technology, an American manufacturer of hard drives, has estimated that
the total storage capacity demand will reach 7ZB in 2020.

6     Chapter 1    /   Introduction

9781284033144_CH01.indd 6 1/15/14 8:19 PM

When a Gigabyte Isn’t Quite . . .

Purchasing a new array of disk drives should be a relatively straightforward pro-
cess once you determine your technical requirements (e.g., disk transfer rate,
interface type, etc.). From here, you should be able to make your decision based
on a simple price/capacity ratio, such as dollars per gigabyte, and then you’ll be
done. Well, not so fast.

The first boulder in the path of a straightforward analysis is that you must make
sure that the drives you are comparing all express their capacities either in formatted
or unformatted bytes. As much as 16% of drive space is consumed during the for-
matting process. (Some vendors give this number as “usable capacity.”) Naturally, the
price–capacity ratio looks much better when unformatted bytes are used, although
you are most interested in knowing the amount of usable space a disk provides.

Your next obstacle is to make sure that the same radix is used when comparing
disk sizes. It is increasingly common for disk capacities to be given in base 10 rather
than base 2. Thus, a “1GB” disk drive has a capacity of 109 5 1,000,000,000 bytes,
rather than 230 5 1,073,741,824 bytes—a reduction of about 7%. This can make a
huge difference when purchasing multigigabyte enterprise-class storage systems.

As a concrete example, suppose you are considering purchasing a disk array from
one of two leading manufacturers. Manufacturer x advertises an array of 12 250GB

The NSA is not the only organization dealing with information that must be
measured in numbers of bytes beyond the typical “giga” and “tera.” It is estimated that
Facebook collects 500TB of new material per day; YouTube observes roughly 1TB of
new video information every four minutes; the CERN Large Hadron Collider generates
1PB of data per second; and the sensors on a single, new Boeing jet engine produce
20TB of data every hour. Although not all of the aforementioned examples require per-
manent storage of the data they create/handle, these examples nonetheless provide
evidence of the remarkable quantity of data we deal with every day. This tremendous
volume of information is what prompted the IBM Corporation, in 2011, to develop and
announce its new 120-PB hard drive, a storage cluster consisting of 200,000 conven-
tional hard drives harnessed to work together as a single unit. If you plugged your MP3
player into this drive, you would have roughly two billion hours of music!

In this era of smartphones, tablets, Cloud computing, and other electronic devices,
we will continue to hear people talking about petabytes, exabytes, and zettabytes
(and, in the case of the NSA, even yottabytes). However, if we outgrow yottabytes,
what then? In an effort to keep up with the astronomical growth of information and
to refer to even bigger volumes of data, the next generation of prefixes will most likely
include the terms brontobyte for 1027 and gegobyte for 1030 (although some argue for
geobyte and geopbyte as the prefixes for the latter). Although these are not yet univer-
sally accepted international prefix units, if history is any indication, we will need them
sooner rather than later.

1.3  /  An Example System: Wading Through the Jargon     7

9781284033144_CH01.indd 7 1/15/14 8:19 PM

When we want to talk about how fast something is, we speak in terms of
fractions of a second—usually thousandths, millionths, billionths, or trillionths.
Prefixes for these metrics are given in the right-hand side of Table 1.1. Generally,
negative powers refer to powers of 10, not powers of 2. For this reason, the new
binary prefix standards do not include any new names for the negative powers.
Notice that the fractional prefixes have exponents that are the reciprocal of the
prefixes on the left side of the table. Therefore, if someone says to you that an
operation requires a microsecond to complete, you should also understand that
a million of those operations could take place in one second. When you need to
talk about how many of these things happen in a second, you would use the prefix
mega-. When you need to talk about how fast the operations are performed, you
would use the prefix micro-.

Now to explain the ad. The microprocessor in the ad is an Intel i7 Quad
Core processor (which means it is essentially four processors) and belongs to
a category of processors known as multicore processors (Section 1.10 contains
more information on multicore processors). This particular processor runs at
3.9GHz. Every computer system contains a clock that keeps the system syn-
chronized. The clock sends electrical pulses simultaneously to all main com-
ponents, ensuring that data and instructions will be where they’re supposed to
be, when they’re supposed to be there. The number of pulsations emitted each
second by the clock is its frequency. Clock frequencies are measured in cycles
per second, or hertz. If computer system clocks generate millions of pulses
per second, we say that they operate in the megahertz (MHz) range. Most
computers today operate in the gigahertz (GHz) range, generating billions of

disks for $20,000. Manufacturer y is offering an array of 12 212.5GB disks for $21,000.
All other things being equal, the cost ratio overwhelmingly favors Manufacturer x:

Manufacturer x: $20,000 4 (12 3 250GB) > $6.67 per GB

Manufacturer y: $21,000 4 (12 3 212.5GB) > $8.24 per GB

Being a little suspicious, you make a few telephone calls and learn that Manufacturer
x is citing capacities using unformatted base 10 gigabytes and Manufacturer y is using
formatted base 2 gigabytes. These facts cast the problem in an entirely different light: To
start with, Manufacturer x’s disks aren’t really 250GB in the way that we usually think of
gigabytes. Instead, they are about 232.8 base 2 gigabytes. After formatting, the number
reduces even more to about 197.9GB. So the real cost ratios are, in fact:

Manufacturer x: $20,000 4 (12 3 197.9GB) > $8.42 per GB

Manufacturer y: $21,000 4 (12 3 212.5GB) > $8.24 per GB

Indeed, some vendors are scrupulously honest in disclosing the capabilities of
their equipment. Unfortunately, others reveal the facts only under direct questioning.
Your job as an educated professional is to ask the right questions.

8     Chapter 1    /   Introduction

9781284033144_CH01.indd 8 1/15/14 8:19 PM

pulses per second. And because nothing much gets done in a computer system
without microprocessor involvement, the frequency rating of the microproces-
sor is crucial to overall system speed. The microprocessor of the system in our
advertisement operates at 3.9 billion cycles per second, so the seller says that
it runs at 3.9GHz.

The fact that this microprocessor runs at 3.9GHz, however, doesn’t necessar-
ily mean that it can execute 3.9 billion instructions every second or, equivalently,
that every instruction requires 0.039 nanoseconds to execute. Later in this text,
you will see that each computer instruction requires a fixed number of cycles to
execute. Some instructions require one clock cycle; however, most instructions
require more than one. The number of instructions per second that a microproces-
sor can actually execute is proportionate to its clock speed. The number of clock
cycles required to carry out a particular machine instruction is a function of both
the machine’s organization and its architecture.

The next thing we see in the ad is “1600MHz 32GB DDR3 SDRAM.” The
1600MHz refers to the speed of the system bus, which is a group of wires that
moves data and instructions to various places within the computer. Like the
microprocessor, the speed of the bus is also measured in MHz or GHz. Many
computers have a special local bus for data that supports very fast transfer speeds
(such as those required by video). This local bus is a high-speed pathway that
connects memory directly to the processor. Bus speed ultimately sets the upper
limit on the system’s information-carrying capability.

The system in our advertisement also boasts a memory capacity of 32 giga-
bytes (GB), or about 32 billion characters. Memory capacity not only determines
the size of the programs you can run, but also how many programs you can run
at the same time without bogging down the system. Your application or operating
system manufacturer will usually recommend how much memory you’ll need to
run its products. (Sometimes these recommendations can be hilariously conserva-
tive, so be careful whom you believe!)

In addition to memory size, our advertised system provides us with a
memory type, SDRAM, short for synchronous dynamic random access
memory. SDRAM is much faster than conventional (nonsynchronous) mem-
ory because it can synchronize itself with a microprocessor’s bus. The sys-
tem in our ad has DDR3 SDRAM, or double data rate type three SDRAM
(for more information on the different types of memory, see Chapter 6).

A Look Inside a Computer

Have you ever wondered what the inside of a computer really looks like? The exam-
ple computer described in this section gives a good overview of the components of a
modern PC. However, opening a computer and attempting to find and identify the var-
ious pieces can be frustrating, even if you are familiar with the components and their
functions.

1.3  /  An Example System: Wading Through the Jargon     9

9781284033144_CH01.indd 9 1/15/14 8:19 PM

Super IO
Chip

DIMM Memory
Slots (X4)

CPU Fan
Connector

CPU Fan and
Heatsink Mount

CPU Socket
(Socket 939)

24-pin ATX Power
Connector

Floppy Drive
Connector

SATA Connector (X4)

IDE Connector (X2)

BIOS Flash Chip
in PLCC Socket Southbridge

(with heatsink)

CMOS Backup Battery

Integrated Graphics
Processor

(with heatsink)

PCI slot (X3)

Integrated Audio
Codec Chip

Integrated Gigabit
Ethernet Chip

PCI Express Slot

Connectors for
integrated peripherals

Photo courtesy of Moxfyre at en.wikipedia (from http://commons.wikimedia.org/
wiki/File:Acer_E360_Socket_939_motherboard_by_Foxconn.svg).

If you remove the cover on your computer, you will no doubt first notice a big
metal box with a fan attached. This is the power supply. You will also see various
drives, including a hard drive and a DVD drive (or perhaps an older floppy or CD drive).
There are many integrated circuits—small, black rectangular boxes with legs attached.
You will also notice electrical pathways, or buses, in the system. There are printed cir-
cuit boards (expansion cards) that plug into sockets on the motherboard, the large
board at the bottom of a standard desktop PC or on the side of a PC configured as
a tower or mini-tower. The motherboard is the printed circuit board that connects all
the components in the computer, including the CPU, and RAM and ROM, as well as
an assortment of other essential components. The components on the motherboard
tend to be the most difficult to identify. Above you see an Acer E360 motherboard
with the more important components labeled.

The Southbridge, an integrated circuit that controls the hard disk and I/O
(including sound and video cards), is a hub that connects slower I/O devices to
the system bus. These devices connect via the I/O ports at the bottom of the
board. The PCI slots allow for expansion boards belonging to various PCI devices.
This motherboard also has PS/2 and Firewire connectors. It has serial and paral-
lel ports, in addition to four USB ports. This motherboard has two IDE connector slots,
four SATA connector slots, and one floppy disk controller. The super I/O chip is a type
of I/O controller that controls the floppy disk, both the parallel and serial ports, and
the keyboard and mouse. The motherboard also has an integrated audio chip, as well

10     Chapter 1    /   Introduction

9781284033144_CH01.indd 10 1/15/14 8:19 PM

The next line in the ad, “128KB L1 cache, 2MB L2 cache” also describes
a type of memory. In Chapter 6, you will learn that no matter how fast a bus
is, it still takes “a while” to get data from memory to the processor. To provide
even faster access to data, many systems contain a special memory called cache.
The system in our advertisement has two kinds of cache. Level 1 cache (L1) is a
small, fast memory cache that is built into the microprocessor chip and helps speed
up access to frequently used data. Level 2 cache (L2) is a collection of fast, built-
in memory chips situated between the microprocessor and main memory. Notice
that the cache in our system has a capacity of kilobytes (KB), which is much
smaller than main memory. In Chapter 6, you will learn how cache works, and
that a bigger cache isn’t always better.

On the other hand, everyone agrees that the more fixed disk capacity you
have, the better off you are. The advertised system has a 1TB hard drive, an aver-
age size by today’s standards. The storage capacity of a fixed (or hard) disk is
not the only thing to consider, however. A large disk isn’t very helpful if it is too
slow for its host system. The computer in our ad has a hard drive that rotates at
7200 revolutions per minute (RPM). To the knowledgeable reader, this indicates
(but does not state outright) that this is a fairly fast drive. Usually, disk speeds are
stated in terms of the number of milliseconds required (on average) to access data
on the disk, in addition to how fast the disk rotates.

Rotational speed is only one of the determining factors in the overall perfor-
mance of a disk. The manner in which it connects to—or interfaces with—the
rest of the system is also important. The advertised system uses a SATA (serial
advanced technology attachment or serial ATA) disk interface. This is an evo-
lutionary storage interface that has replaced IDE, or integrated drive electron-
ics. Another common interface is EIDE, enhanced integrated drive electronics,
a cost-effective hardware interface alternative for mass storage devices. EIDE

as an integrated Ethernet chip and an integrated graphics processor. There are four
RAM memory banks. There is no processor currently plugged into this motherboard,
but we see the socket where the CPU is to be placed. All computers have an inter-
nal battery, as seen in the top middle of the picture. The power supply plugs into the
power connector. The BIOS flash chip contains the instructions in ROM that your com-
puter uses when it is first powered up.

A note of caution regarding looking inside the box: There are many safety issues,
for both you and your computer, involved with removing the cover. There are many
things you can do to minimize the risks. First and foremost, make sure the computer is
turned off. Leaving it plugged in is often preferred, as this offers a path for static elec-
tricity. Before opening your computer and touching anything inside, you should make
sure you are properly grounded so static electricity will not damage any components.
Many of the edges, both on the cover and on the circuit boards, can be sharp, so take
care when handling the various pieces. Trying to jam misaligned cards into sockets can
damage both the card and the motherboard, so be careful if you decide to add a new
card or remove and reinstall an existing one.

1.3  /  An Example System: Wading Through the Jargon     11

9781284033144_CH01.indd 11 1/15/14 8:19 PM

contains special circuits that allow it to enhance a computer’s connectivity, speed,
and memory capability. Most ATA, IDE, and EIDE systems share the main sys-
tem bus with the processor and memory, so the movement of data to and from the
disk is also dependent on the speed of the system bus.

Whereas the system bus is responsible for all data movement internal to the
computer, ports allow movement of data to and from devices external to the com-
puter. Our ad speaks of two different ports with the line, “10 USB ports, 1 serial
port.” Serial ports transfer data by sending a series of electrical pulses across one
or two data lines. Another type of port some computers have is a parallel port.
Parallel ports use at least eight data lines, which are energized simultaneously to
transmit data. Many new computers no longer come with serial or parallel ports,
but instead have only USB ports. USB (universal serial bus) is a popular exter-
nal bus that supports Plug-and-Play installation (the ability to configure devices
automatically) as well as hot plugging (the ability to add and remove devices
while the computer is running).

Expansion slots are openings on the motherboard where various boards can be
plugged in to add new capabilities to a computer. These slots can be used for such
things as additional memory, video cards, sound cards, network cards, and modems.
Some systems augment their main bus with dedicated I/O buses using these expan-
sion slots. Peripheral Component Interconnect (PCI) is one such I/O bus stan-
dard that supports the connection of multiple peripheral devices. PCI, developed by
the Intel Corporation, operates at high speeds and also supports Plug-and-Play.

PCI is an older standard (it has been around since 1993) and was superseded
by PCI-x in 2004. PCI-x basically doubled the bandwidth of regular PCI. Both PCI
and PCI-x are parallel in operation. In 2004, PCI express (PCIe) replaced PCI-x.
PCIe operates in serial and is currently the standard in today’s computers. In the ad,
we see the computer has 1 PCI slot, 1 PCI x 16 slot, and 2 PCI x 1 slots. This com-
puter also has Bluetooth (a wireless technology allowing the transfer of information
over short distances) and an HDMI port (High-Definition Multimedia Interface,
used to transmit audio and video).

PCIe has not only superseded PCI and PCI-x, but in the graphics world, it
has also progressively replaced the AGP (accelerated graphics port) graphics
interface designed by Intel specifically for 3D graphics. The computer in our ad
has a PCIe video card with 1GB of memory. The memory is used by a special
graphics processing unit on the card. This processor is responsible for perform-
ing the necessary calculations to render the graphics so the main processor of the
computer is not required to do so. This computer also has a PCIe sound card;
a sound card contains components needed by the system’s stereo speakers and
microphone.

In addition to telling us about the ports and expansion slots in the advertised
system, the ad supplies us with information on an LCD (liquid crystal display)
monitor, or “flat panel” display. Monitors have little to do with the speed or effi-
ciency of a computer system, but they have great bearing on the comfort of the user.
This LCD monitor has the following specifications: 24", 1920 3 1200 WUXGA,
300 cd/m2, active matrix, 1000:1 (static), 8ms, 24-bit color (16.7 million colors),
VGA/DVI input, and 2USB ports. LCDs use a liquid crystal material sandwiched

12     Chapter 1    /   Introduction

9781284033144_CH01.indd 12 1/15/14 8:19 PM

between two pieces of polarized glass. Electric currents cause the crystals to
move around, allowing differing levels of backlighting to pass through, creating
the text, colors, and pictures that appear on the screen. This is done by turning
on/off different pixels, small “picture elements” or dots on the screen. Monitors
typically have millions of pixels, arranged in rows and columns. This monitor has
1920 3 1200 (more than a million) pixels.

Most LCDs manufactured today utilize active matrix technology, Whereas
passive technology is reserved for smaller devices such as calculators and clocks.
Active matrix technology uses one transistor per pixel; passive matrix technol-
ogy uses transistors that activate entire rows and columns. Although passive tech-
nology is less costly, active technology renders a better image because it drives
each pixel independently.

The LCD monitor in the ad is 24", measured diagonally. This measurement
affects the aspect ratio of the monitor—the ratio of horizontal pixels to vertical
pixels that the monitor can display. Traditionally, this ratio was 4:3, but newer
widescreen monitors use ratios of 16:10 or 16:9. Ultra-wide monitors use a higher
ratio, around 3:1 or 2:1.

When discussing resolution and LCDs, it is important to note that LCDs have
a native resolution; this means LCDs are designed for a specific resolution (gen-
erally given in horizontal pixels by vertical pixels). Although you can change the
resolution, the image quality typically suffers. Resolutions and aspect ratios are
often paired. When listing resolutions for LCDs, manufacturers often use the fol-
lowing abbreviations: XGA (extended graphics array); XGA+ (extended graph-
ics array plus); SXGA (super XGA); UXGA (ultra XGA); W prefix (wide); and
WVA (wide viewing angle). The viewing angle specifies an angle, in degrees,
that indicates at which angle a user can still see the image on the screen; common
angles range from 120 to 170 degrees. Some examples of standard 4:3 native res-
olutions include XGA (1024 3 768), SXGA (1280 3 1024), SXGA+ (1400 3
1050), and UXGA (1600 3 1200). Common 16:9 and 16:10 resolutions include
WXGA (1280 3 800), WXGA+ (1440 3 900), WSXGA+ (1680 3 1050), and
WUXGA (1920 3 1200).

LCD monitor specifications often list a response time, which indicates the
rate at which the pixels can change colors. If this rate is too slow, ghosting and
blurring can occur. The LCD monitor in the ad has a response time of 8ms. Origi-
nally, response rates measured the time to go from black to white and back to
black. Many manufacturers now list the response time for gray-to-gray transitions
(which is generally faster). Because they typically do not specify which transition
has been measured, it is very difficult to compare monitors. One manufacturer
may specify a response time of 2ms for a monitor (and it measures gray-to-gray),
while another manufacturer may specify a response rate of 5ms for its moni-
tor (and it measures black-to-white-to-black). In reality, the monitor with the
response rate of 5ms may actually be faster overall.

Continuing with the ad, we see that the LCD monitor has a specification of
300 cd/m2, which is the monitor’s luminance. Luminance (or image brightness)
is a measure of the amount of light an LCD monitor emits. This measure is typi-
cally given in candelas per square meter (cd/m2). When purchasing a monitor,

1.3  /  An Example System: Wading Through the Jargon     13

9781284033144_CH01.indd 13 1/15/14 8:19 PM

the brightness level should be at least 250 (the higher the better); the average for
computer monitors is from 200 to 300 cd/m2. Luminance affects how easy a mon-
itor is to read, particularly in low light situations.

Whereas luminance measures the brightness, the contrast ratio measures the
difference in intensity between bright whites and dark blacks. Contrast ratios can
be static (the ratio of the brightest point on the monitor to the darkest point on the
monitor that can be produced at a given instant in time) or dynamic (the ratio of
the darkest point in one image to the lightest point in another image produced at
a separate point in time). Static specifications are typically preferred. A low static
ratio (such as 300:1) makes it more difficult to discern shades; a good static ratio
is 500:1 (with ranges from 400:1 to 3000:1). The monitor in the ad has a static
contrast ratio of 1000:1. LCD monitors can have dynamic ratios of 12,000,000:1
and higher, but a higher dynamic number does not necessarily mean the monitor
is better than a monitor with a much lower static ratio.

The next specification given for the LCD monitor in the ad is its color depth.
This number reflects the number of colors that can be displayed on the screen at
one time. Common depths are 8-bit, 16-bit, 24-bit, and 32-bit. The LCD monitor
in our ad can display 224, or roughly 16.7 million colors.

LCD monitors also have many optional features. Some have integrated
USB ports (as in this ad) and/or speakers. Many are HDCP (high bandwidth
digital content protection) compliant (which means you can watch HDCP-
encrypted materials, such as Blu-ray discs). LCD monitors may also come with
both VGA (video graphics array) and DVI (digital video interface) connec-
tions (as seen in the ad). VGA sends analog signals to the monitor from the
computer, which requires digital-to-analog conversion; DVI is already digital
in format and requires no conversion, resulting in a cleaner signal and crisper
image. Although an LCD monitor typically provides better images using a DVI
connection, having both connectors allows one to use an LCD with existing
system components.

Now that we have discussed how an LCD monitor works and we understand
the concept of a pixel, let’s go back and discuss graphics cards (also called video
cards) in more detail. With millions of pixels on the screen, it is quite challenging
to determine which ones should be off and which ones should be on (and in what
color). The job of the graphics card is to input the binary data from your computer
and “translate” it into signals to control all pixels on the monitor; the graphics card
therefore acts as a “middleman” between the computer’s processor and monitor. As
mentioned previously, some computers have integrated graphics, which means the
computer’s processor is responsible for doing this translation, causing a large work-
load on this processor; therefore, many computers have slots for graphics cards,
allowing the processor on the graphics card (called a graphics processing unit, or
GPU) to perform this translation instead.

The GPU is no ordinary processor; it is designed to most efficiently perform the
complex calculations required for image rendering and contains special programs
allowing it to perform this task more effectively. Graphics cards typically contain
their own dedicated RAM used to hold temporary results and information, includ-
ing the location and color for each pixel on the screen. A frame buffer (part of

14     Chapter 1    /   Introduction

9781284033144_CH01.indd 14 1/15/14 8:19 PM

this RAM) is used to store rendered images until these images are intended to be
displayed. The memory on a graphics card connects to a digital-to-analog con-
verter (DAC), a device that converts a binary image to analog signals that a monitor
can understand and sends them via a cable to the monitor. Most graphics cards today
have two types of monitor connections: DVI for LCD screens and VGA for the older
CRT (cathode ray tube) screens.

Most graphics cards are plugged into slots in computer motherboards, so are
thus powered by the computers themselves. However, some are very powerful and
actually require a connection directly to a computer’s power supply. These high-end
graphics cards are typically found in computers that deal with image-intensive appli-
cations, such as video editing and high-end gaming.

Continuing with the ad, we see that the advertised system has a 16x DVD 1/2
RW drive. This means we can read and write to DVDs and CDs. “16x” is a mea-
sure of the drive speed and measures how quickly the drive can read and write.
DVDs and CDs are discussed in more detail in Chapter 7.

Computers are more useful if they can communicate with the outside world.
One way to communicate is to employ an Internet service provider and a modem.
There is no mention of a modem for the computer in our ad, as many desktop
owners use external modems provided by their Internet service provider (phone
modem, cable modem, satellite modem, etc). However, both USB and PCI
modems are available that allow you to connect your computer to the Internet
using the phone line; many of these also allow you to use your computer as a fax
machine. I/O and I/O buses in general are discussed in Chapter 7.

A computer can also connect directly to a network. Networking allows com-
puters to share files and peripheral devices. Computers can connect to a network
via either a wired or a wireless technology. Wired computers use Ethernet tech-
nology, an international standard networking technology for wired networks, and
there are two options for the connection. The first is to use a network interface
card (NIC), which connects to the motherboard via a PCI slot. NICs typically
support 10/100 Ethernet (both Ethernet at a speed of 10Mbps and fast Ethernet
at a speed of 100Mbps) or 10/100/1000 (which adds Ethernet at 1,000Mbps).
Another option for wired network capability is integrated Ethernet, which means
that the motherboard itself contains all necessary components to support 10/100
Ethernet; thus no PCI slot is required. Wireless networking has the same two
options. Wireless NICs are available from a multitude of vendors and are avail-
able for both desktops and laptops. For installation in desktop machines, you need
an internal card that will most likely have a small antenna. Laptops usually use an
expansion (PCMCIA) slot for the wireless network card, and vendors have started
to integrate the antenna into the back of the case behind the screen. Integrated
wireless (such as that found in the Intel Centrino mobile technology) eliminates
the hassle of cables and cards. The system in our ad employs integrated Ethernet.
Note that many new computers may have integrated graphics and/or integrated
sound in addition to integrated Ethernet.

Although we cannot delve into all of the brand-specific components avail-
able, after completing this text, you should understand the concept of how most
computer systems operate. This understanding is important for casual users

1.3  /  An Example System: Wading Through the Jargon     15

9781284033144_CH01.indd 15 1/15/14 8:19 PM

as well as experienced programmers. As a user, you need to be aware of the
strengths and limitations of your computer system so you can make informed
decisions about applications and thus use your system more effectively. As a pro-
grammer, you need to understand exactly how your system hardware functions so
you can write effective and efficient programs. For example, something as sim-
ple as the algorithm your hardware uses to map main memory to cache and the
method used for memory interleaving can have a tremendous effect on your deci-
sion to access array elements in row versus column-major order.

Throughout this text, we investigate both large and small computers. Large
computers include mainframes, enterprise-class servers, and supercomputers.
Small computers include personal systems, workstations, and handheld devices.
We will show that regardless of whether they carry out routine chores or perform
sophisticated scientific tasks, the components of these systems are very similar.
We also visit some architectures that lie outside what is now the mainstream of
computing. We hope that the knowledge you gain from this text will ultimately
serve as a springboard for your continuing studies the vast and exciting fields of
computer organization and architecture.

Tablet Computers

Ken Olsen, the founder of Digital Equipment Corporation, has been unfairly ridiculed
for saying “There is no reason for any individual to have a computer in his home.” He
made this statement in 1977 when the word, computer, evoked a vision of the type of
machine made by his company: refrigerator-sized behemoths that cost a fortune and
required highly skilled personnel to operate. One might safely say that no one—except
perhaps a computer engineer—ever had such a machine in his or her home.

As already discussed, the “personal computing” wave that began in the 1980s
erupted in the 1990s with the establishment of the World Wide Web. By 2010,
decennial census data reported that 68% of U.S. households claimed to have a per-
sonal computer. There is, however, some evidence that this trend has peaked and
is now in decline, owing principally to the widespread use of smartphones and tab-
let computers. According to some estimates, as many as 65% of Internet users in the
United States connect exclusively via mobile platforms. The key to this trend is cer-
tainly the enchanting usability of these devices.

We hardly need the power of a desktop computer to surf the Web, read email,
or listen to music. Much more economical and lightweight, tablet computers give
us exactly what we need in an easy-to-use package. With its booklike form, one is
tempted to claim that a tablet constitutes the perfect “portable computer.”

The figure on the next page shows a disassembled Pandigital Novel tablet com-
puter. We have labeled several items common to all tablets. The mini USB port pro-
vides access to internal storage and the removable SD card. Nearly all tablets provide
Wi-Fi connection to the Internet, with some also supporting 2G, 3G, and 4G cellular
protocols. Battery life can be as much as 14 hours for the most efficient high-end tab-
let computers. Unlike the Pandigital, most tablets include at least one camera for still
photography and live video.

16     Chapter 1    /   Introduction

9781284033144_CH01.indd 16 1/15/14 8:19 PM

A Disassembled Tablet Computer
Courtesy of Julia Lobur.

A touchscreen dominates the real estate of all portable devices. For consumer
tablets and phones, touchscreens come in two general types: resistive and capacitive.
Resistive touchscreens respond to the pressure of a finger or a stylus. Capacitive
touchscreens react to the electrical properties of the human skin. Resistive screens are
less sensitive than capacitive screens, but they provide higher resolution. Unlike resis-
tive screens, capacitive screens support multitouch, which is the ability to detect the
simultaneous press of two or more fingers.

Military and medical computer touchscreens are necessarily more durable than
those intended for the consumer market. Two different technologies, surface acous-
tic wave touch sense and infrared touch sense, respectively, send ultrasonic and
infrared waves across the surface of a ruggedized touchscreen. The matrix of waves is
broken when a finger comes in contact with the surface of the screen.

Because of its high efficiency, cell phone CPU technology has been adapted for
use in the tablet platform. The mobile computing space has been dominated by ARM
chips, although Intel and AMD have been gaining market share. Operating systems
for these devices include variants of Android by Google and iOS by Apple. Microsoft’s
Surface tablets running Windows 8 provide access to the Microsoft Office suite of
products.

As tablet computers continue to replace desktop systems, they will also find uses
in places where traditional computers—even laptops—are impractical. Thousands of
free and inexpensive applications are available for all platforms, thereby increasing
demand even further. Educational applications abound. With a size, shape, and weight
similar to a paperback book, tablet computers are replacing paper textbooks in some
U.S. school districts. Thus, the elusive dream of “a computer for every student” is finally
coming true—thanks to the tablet. By 1985, people were already laughing at Olsen’s
“home computer” assertion. Would perhaps these same people have scoffed if instead
he would have predicted a computer in every backpack?

7.5"
19 cm

Removable SD Slot
Mini USB Port

Reset and On/Off

Headphone Jack

Bezel Surrounding
Protective Glass

Resistive
Screen

CPU

Wireless Network
Module

System Memory
(Micro SD)

Battery

Speakers

1.3  /  An Example System: Wading Through the Jargon     17

9781284033144_CH01.indd 17 1/15/14 8:19 PM

	 1.4	 Standards Organizations

Suppose you decide you’d like to have one of those nifty new LCD widescreen
monitors. You figure you can shop around a bit to find the best price. You make
a few phone calls, surf the Web, and drive around town until you find the one
that gives you the most for your money. From your experience, you know you
can buy your monitor anywhere and it will probably work fine on your system.
You can make this assumption because computer equipment manufacturers have
agreed to comply with connectivity and operational specifications established by
a number of government and industry organizations.

Some of these standards-setting organizations are ad hoc trade associations
or consortia made up of industry leaders. Manufacturers know that by establish-
ing common guidelines for a particular type of equipment, they can market their
products to a wider audience than if they came up with separate—and perhaps
incompatible—specifications.

Some standards organizations have formal charters and are recognized inter-
nationally as the definitive authority in certain areas of electronics and comput-
ers. As you continue your studies in computer organization and architecture, you
will encounter specifications formulated by these groups, so you should know
something about them.

The Institute of Electrical and Electronics Engineers (IEEE) is an organi-
zation dedicated to the advancement of the professions of electronic and computer
engineering. The IEEE actively promotes the interests of the worldwide engineer-
ing community by publishing an array of technical literature. The IEEE also sets
standards for various computer components, signaling protocols, and data repre-
sentation, to name only a few areas of its involvement. The IEEE has a demo-
cratic, albeit convoluted, procedure established for the creation of new standards.
Its final documents are well respected and usually endure for several years before
requiring revision.

The International Telecommunications Union (ITU) is based in Geneva,
Switzerland. The ITU was formerly known as the Comité Consultatif International
Télégraphique et Téléphonique, or the International Consultative Committee on
Telephony and Telegraphy. As its name implies, the ITU concerns itself with the
interoperability of telecommunications systems, including telephone, telegraph, and
data communication systems. The telecommunications arm of the ITU, the ITU-T,
has established a number of standards that you will encounter in the literature. You
will see these standards prefixed by ITU-T or the group’s former initials, CCITT.

Many countries, including the European Community, have commissioned
umbrella organizations to represent their interests in various international groups.
The group representing the United States is the American National Standards
Institute (ANSI). Great Britain has its British Standards Institution (BSI) in
addition to having a voice on the CEN (Comité Européen de Normalisation),
the European committee for standardization.

The International Organization for Standardization (ISO) is the entity that
coordinates worldwide standards development, including the activities of ANSI

18     Chapter 1    /   Introduction

9781284033144_CH01.indd 18 1/15/14 8:19 PM

with BSI, among others. ISO is not an acronym, but derives from the Greek word,
isos, meaning “equal.” The ISO consists of more than 2800 technical commit-
tees, each of which is charged with some global standardization issue. Its interests
range from the behavior of photographic film to the pitch of screw threads to the
complex world of computer engineering. The proliferation of global trade has been
facilitated by the ISO. Today, the ISO touches virtually every aspect of our lives.

Throughout this text, we mention official standards designations where
appropriate. Definitive information concerning many of these standards can be
found in excruciating detail on the website of the organization responsible for
establishing the standard cited. As an added bonus, many standards contain “nor-
mative” and informative references, which provide background information in
areas related to the standard.

	 1.5	 Historical Development

During their 60-year life span, computers have become the perfect example of
modern convenience. Living memory is strained to recall the days of steno pools,
carbon paper, and mimeograph machines. It sometimes seems that these magical
computing machines were developed instantaneously in the form that we now
know them. But the developmental path of computers is paved with accidental
discovery, commercial coercion, and whimsical fancy. And occasionally com-
puters have even improved through the application of solid engineering prac-
tices! Despite all the twists, turns, and technological dead ends, computers have
evolved at a pace that defies comprehension. We can fully appreciate where we
are today only when we have seen where we’ve come from.

In the sections that follow, we divide the evolution of computers into genera-
tions, each generation being defined by the technology used to build the machine.
We have provided approximate dates for each generation for reference purposes
only. You will find little agreement among experts as to the exact starting and
ending times of each technological epoch.

Every invention reflects the time in which it was made, so one might wonder
whether it would have been called a computer if it had been invented in the late
1990s. How much computation do we actually see pouring from the mysterious
boxes perched on or beside our desks? Until recently, computers served us only
by performing mind-bending mathematical manipulations. No longer limited to
white-jacketed scientists, today’s computers help us to write documents, keep
in touch with loved ones across the globe, and do our shopping chores. Mod-
ern business computers spend only a minuscule part of their time performing
accounting calculations. Their main purpose is to provide users with a bounty
of strategic information for competitive advantage. Has the word computer now
become a misnomer? An anachronism? What, then, should we call them, if not
computers?

We cannot present the complete history of computing in a few pages. Entire
texts have been written on this subject and even they leave their readers wanting

1.5  /  Historical Development     19

9781284033144_CH01.indd 19 1/15/14 8:19 PM

more detail. If we have piqued your interest, we refer you to some of the books
cited in the list of references at the end of this chapter.

	 1.5.1	G eneration Zero: Mechanical Calculating Machines (1642–1945)
Prior to the 1500s, a typical European businessperson used an abacus for calcula-
tions and recorded the result of his ciphering in Roman numerals. After the decimal
numbering system finally replaced Roman numerals, a number of people invented
devices to make decimal calculations even faster and more accurate. Wilhelm
Schickard (1592–1635) has been credited with the invention of the first mechani-
cal calculator, the Calculating Clock (exact date unknown). This device was able
to add and subtract numbers containing as many as six digits. In 1642, Blaise Pas-
cal (1623–1662) developed a mechanical calculator called the Pascaline to help his
father with his tax work. The Pascaline could do addition with carry and subtrac-
tion. It was probably the first mechanical adding device actually used for a practical
purpose. In fact, the Pascaline was so well conceived that its basic design was still
being used at the beginning of the twentieth century, as evidenced by the Lightning
Portable Adder in 1908 and the Addometer in 1920. Gottfried Wilhelm von Leibniz
(1646–1716), a noted mathematician, invented a calculator known as the Stepped
Reckoner that could add, subtract, multiply, and divide. None of these devices could
be programmed or had memory. They required manual intervention throughout each
step of their calculations.

Although machines like the Pascaline were used into the twentieth century,
new calculator designs began to emerge in the nineteenth century. One of the
most ambitious of these new designs was the Difference Engine by Charles Bab-
bage (1791–1871). Some people refer to Babbage as “the father of computing.”
By all accounts, he was an eccentric genius who brought us, among other things,
the skeleton key and the “cow catcher,” a device intended to push cows and other
movable obstructions out of the way of locomotives.

Babbage built his Difference Engine in 1822. The Difference Engine got its
name because it used a calculating technique called the method of differences.
The machine was designed to mechanize the solution of polynomial functions
and was actually a calculator, not a computer. Babbage also designed a general-
purpose machine in 1833 called the Analytical Engine. Although Babbage died
before he could build it, the Analytical Engine was designed to be more versatile
than his earlier Difference Engine. The Analytical Engine would have been capa-
ble of performing any mathematical operation. The Analytical Engine included
many of the components associated with modern computers: an arithmetic pro-
cessing unit to perform calculations (Babbage referred to this as the mill), a mem-
ory (the store), and input and output devices. Babbage also included a conditional
branching operation where the next instruction to be performed was determined
by the result of the previous operation. Ada, Countess of Lovelace and daughter of
poet Lord Byron, suggested that Babbage write a plan for how the machine would
calculate numbers. This is regarded as the first computer program, and Ada is con-
sidered to be the first computer programmer. It is also rumored that she suggested
the use of the binary number system rather than the decimal number system to
store data.

20     Chapter 1    /   Introduction

9781284033144_CH01.indd 20 1/15/14 8:19 PM

A perennial problem facing machine designers has been how to get data
into the machine. Babbage designed the Analytical Engine to use a type of
punched card for input and programming. Using cards to control the behavior of
a machine did not originate with Babbage, but with one of his friends, Joseph-
Marie Jacquard (1752–1834). In 1801, Jacquard invented a programmable weav-
ing loom that could produce intricate patterns in cloth. Jacquard gave Babbage
a tapestry that had been woven on this loom using more than 10,000 punched
cards. To Babbage, it seemed only natural that if a loom could be controlled by
cards, then his Analytical Engine could be as well. Ada expressed her delight
with this idea, writing, “[T]he Analytical Engine weaves algebraical patterns just
as the Jacquard loom weaves flowers and leaves.”

The punched card proved to be the most enduring means of providing input to
a computer system. Keyed data input had to wait until fundamental changes were
made in how calculating machines were constructed. In the latter half of the nine-
teenth century, most machines used wheeled mechanisms, which were difficult
to integrate with early keyboards because they were levered devices. But levered
devices could easily punch cards and wheeled devices could easily read them. So
a number of devices were invented to encode and then “tabulate” card-punched
data. The most important of the late-nineteenth-century tabulating machines was
the one invented by Herman Hollerith (1860–1929). Hollerith’s machine was
used for encoding and compiling 1890 census data. This census was completed in
record time, thus boosting Hollerith’s finances and the reputation of his invention.
Hollerith later founded the company that would become IBM. His 80-column
punched card, the Hollerith card, was a staple of automated data processing for
more than 50 years.

A Pre-Modern “Computer” Hoax

The latter half of the sixteenth century saw the beginnings of the first Industrial Revo-
lution. The spinning jenny allowed one textile worker to do the work of twenty, and
steam engines had power equivalent to hundreds of horses. Thus began our enduring
fascination with all things mechanical. With the right skills applied to the problems at
hand, there seemed no limits to what humankind could do with its machines!

Elaborate clocks began appearing at the beginning of the 1700s. Complex
and ornate models graced cathedrals and town halls. These clockworks eventually
morphed into mechanical robots called automata. Typical models played musical
instruments such as flutes and keyboard instruments. In the mid-1700s, the most
sublime of these devices entertained royal families across Europe. Some relied on
trickery to entertain their audiences. It soon became something of a sport to unravel
the chicanery. Empress Marie-Therese of the Austria-Hungarian Empire relied on a
wealthy courtier and tinkerer, Wolfgang von Kempelen, to debunk the spectacles
on her behalf. One day, following a particularly impressive display, Marie-Therese
challenged von Kempelen to build an automaton to surpass all that had ever been
brought to her court.

1.5  /  Historical Development     21

9781284033144_CH01.indd 21 1/15/14 8:19 PM

	 1.5.2	 The First Generation: Vacuum Tube Computers (1945–1953)
Although Babbage is often called the “father of computing,” his machines were
mechanical, not electrical or electronic. In the 1930s, Konrad Zuse (1910–1995)
picked up where Babbage left off, adding electrical technology and other improve-
ments to Babbage’s design. Zuse’s computer, the Z1, used electromechanical
relays instead of Babbage’s hand-cranked gears. The Z1 was programmable and
had a memory, an arithmetic unit, and a control unit. Because money and resources
were scarce in wartime Germany, Zuse used discarded movie film instead of
punched cards for input. Although his machine was designed to use vacuum tubes,
Zuse, who was building his machine on his own, could not afford the tubes. Thus,
the Z1 correctly belongs in the first generation, although it had no tubes.

von Kempelen took the chal-
lenge, and after several months’ work,
he delivered a turban-wearing, pipe-
smoking, chess-playing automaton.
For all appearances, “The Turk” was a
formidable opponent for even the best
players of the day. As an added touch,
the machine contained a set of baffles
enabling it to rasp “Échec!” as needed.
So impressive was this machine that
for 84 years it drew crowds across
Europe and the United States.

Of course, as with all similar
automata, von Kempelen’s Turk relied
on trickery to perform its prodigious
feat. Despite some astute debunk-
ers correctly deducing how it was
done, the secret of the Turk was never
divulged: A human chess player was
cleverly concealed inside its cabinet.
The Turk thus pulled off one of the
first and most impressive “computer”
hoaxes in the history of technology. It
would take another 200 years before
a real machine could match the Turk—
without the trickery.

The mechanical Turk
Reprinted from Robert Willis, An attempt to
Analyse the Automaton Chess Player of Mr. de
Kempelen. JK Booth, London. 1824.

22     Chapter 1    /   Introduction

9781284033144_CH01.indd 22 1/15/14 8:19 PM

Zuse built the Z1 in his parents’ Berlin living room while Germany was at
war with most of Europe. Fortunately, he couldn’t convince the Nazis to buy
his machine. They did not realize the tactical advantage such a device would
give them. Allied bombs destroyed all three of Zuse’s first systems, the Z1, Z2,
and Z3. Zuse’s impressive machines could not be refined until after the war and
ended up being another “evolutionary dead end” in the history of computers.

Digital computers, as we know them today, are the outcome of work done by
a number of people in the 1930s and 1940s. Pascal’s basic mechanical calculator
was designed and modified simultaneously by many people; the same can be said
of the modern electronic computer. Notwithstanding the continual arguments
about who was first with what, three people clearly stand out as the inventors of
modern computers: John Atanasoff, John Mauchly, and J. Presper Eckert.

John Atanasoff (1904–1995) has been credited with the construction of the
first completely electronic computer. The Atanasoff Berry Computer (ABC) was
a binary machine built from vacuum tubes. Because this system was built specifi-
cally to solve systems of linear equations, we cannot call it a general-purpose com-
puter. There were, however, some features that the ABC had in common with the
general-purpose ENIAC (Electronic Numerical Integrator and Computer), which
was invented a few years later. These common features caused considerable con-
troversy as to who should be given the credit (and patent rights) for the invention
of the electronic digital computer. (The interested reader can find more details on
a rather lengthy lawsuit involving Atanasoff and the ABC in Mollenhoff [1988].)

John Mauchly (1907–1980) and J. Presper Eckert (1929–1995) were the two
principal inventors of the ENIAC, introduced to the public in 1946. The ENIAC
is recognized as the first all-electronic, general-purpose digital computer. This
machine used 17,468 vacuum tubes, occupied 1800 square feet of floor space,
weighed 30 tons, and consumed 174 kilowatts of power. The ENIAC had a mem-
ory capacity of about 1000 information bits (about 20 10-digit decimal numbers)
and used punched cards to store data.

John Mauchly’s vision for an electronic calculating machine was born from
his lifelong interest in predicting the weather mathematically. While a professor
of physics at Ursinus College near Philadelphia, Mauchly engaged dozens of add-
ing machines and student operators to crunch mounds of data that he believed
would reveal mathematical relationships behind weather patterns. He felt that if
he could have only a little more computational power, he could reach the goal
that seemed just beyond his grasp. Pursuant to the Allied war effort, and with
ulterior motives to learn about electronic computation, Mauchly volunteered for a
crash course in electrical engineering at the University of Pennsylvania’s Moore
School of Engineering. Upon completion of this program, Mauchly accepted a
teaching position at the Moore School, where he taught a brilliant young stu-
dent, J. Presper Eckert. Mauchly and Eckert found a mutual interest in building
an electronic calculating device. In order to secure the funding they needed to
build their machine, they wrote a formal proposal for review by the school. They
portrayed their machine as conservatively as they could, billing it as an “auto-
matic calculator.” Although they probably knew that computers would be able to
function most efficiently using the binary numbering system, Mauchly and Eckert

1.5  /  Historical Development     23

9781284033144_CH01.indd 23 1/15/14 8:19 PM

U.S. Army, 1946.

24     Chapter 1    /   Introduction

9781284033144_CH01.indd 24 1/15/14 8:20 PM

designed their system to use base 10 numbers, in keeping with the appearance of
building a huge electronic adding machine. The university rejected Mauchly and
Eckert’s proposal. Fortunately, the U.S. Army was more interested.

During World War II, the army had an insatiable need for calculating the tra-
jectories of its new ballistic armaments. Thousands of human “computers” were
engaged around the clock cranking through the arithmetic required for these firing
tables. Realizing that an electronic device could shorten ballistic table calculation
from days to minutes, the army funded the ENIAC. And the ENIAC did indeed
shorten the time to calculate a table from 20 hours to 30 seconds. Unfortunately,
the machine wasn’t ready before the end of the war. But the ENIAC had shown
that vacuum tube computers were fast and feasible. During the next decade, vac-
uum tube systems continued to improve and were commercially successful.

What Is a Vacuum Tube?

The wired world that we know today was born from the invention of a
single electronic device called a vacuum tube by Americans and—more
accurately—a valve by the British. Vacuum tubes should be called valves
because they control the flow of electrons in electrical systems in much the
same way as valves control the flow of water in a plumbing system. In fact,
some mid-twentieth-century breeds of these electron tubes contain no
vacuum at all, but are filled with conductive gases, such as mercury vapor,
which can provide desirable electrical behavior.

The electrical phenomenon that makes tubes work was discovered by
Thomas A. Edison in 1883 while he was trying to find ways to keep the
filaments of his light bulbs from burning away (or oxidizing) a few min-
utes after electrical current was applied. Edison reasoned correctly that
one way to prevent filament oxidation would be to place the filament in
a vacuum. Edison didn’t immediately understand that air not only sup-
ports combustion, but also is a good insulator. When he energized the

electrodes holding a new tungsten filament, the filament soon became hot and burned
out as the others had before it. This time, however, Edison noticed that electricity con-
tinued to flow from the warmed negative terminal to the cool positive terminal within
the light bulb. In 1911, Owen Willans Richardson analyzed this behavior. He concluded
that when a negatively charged filament was heated, electrons “boiled off” as water mol-
ecules can be boiled to create steam. He aptly named this phenomenon thermionic
emission.

Thermionic emission, as Edison had documented it, was thought by many to be
only an electrical curiosity. But in 1905, a British former assistant to Edison, John A.
Fleming, saw Edison’s discovery as much more than a novelty. He knew that therm-
ionic emission supported the flow of electrons in only one direction: from the neg-
atively charged cathode to the positively charged anode, also called a plate. He
realized that this behavior could rectify alternating current. That is, it could change

Plate
(Anode)

Control
Grid

Cathode

Envelope

1.5  /  Historical Development     25

9781284033144_CH01.indd 25 1/15/14 8:20 PM

alternating current into the direct current that was essential for the proper opera-
tion of telegraph equipment. Fleming used his ideas to invent an electronic valve later
called a diode tube or rectifier.

Rectifier
+

–

The diode was well suited for changing alternating current into direct current, but
the greatest power of the electron tube was yet to be discovered. In 1907, an Ameri-
can named Lee DeForest added a third element, called a control grid. The control
grid, when carrying a negative charge, can reduce or prevent electron flow from the
cathode to the anode of a diode.

– +
–

Negative charge
on cathode and control
grid; positive on anode.
Electrons stay near
cathode.

When DeForest patented his device, he called it an audion tube. It was later
known as a triode. The schematic symbol for the triode is shown at the left.

A triode can act as either a switch or an amplifier. Small changes in the
charge of the control grid can cause much larger changes in the flow of elec-
trons between the cathode and the anode. Therefore, a weak signal applied
to the grid results in a much stronger signal at the plate output. A sufficiently
large negative charge applied to the grid stops all electrons from leaving the
cathode.

Additional control grids were eventually added to the triode to allow more
exact control of the electron flow. Tubes with two grids (four elements) are

called tetrodes; tubes with three grids are called pentodes. Triodes and pentodes
were the tubes most commonly used in communications and computer applications.
Often, two or three triodes or pentodes would be combined within one envelope so
they could share a single heater, thereby reducing the power consumption of a par-
ticular device. These latter-day devices were called “miniature” tubes because many
were about 2 inches (5cm) high and 0.5 inch (1.5cm) in diameter. Equivalent full-sized
diodes, triodes, and pentodes were a little smaller than a household light bulb.

Vacuum tubes were not well suited for building computers. Even the simplest
vacuum tube computer system required thousands of tubes. Enormous amounts

Cathode

GridFilament

Anode
(plate)

– +
+

Negative charge on
cathode; positive on
control grid and anode.
Electrons travel from
cathode to anode.

26     Chapter 1    /   Introduction

9781284033144_CH01.indd 26 1/15/14 8:20 PM

	 1.5.3	 The Second Generation: Transistorized Computers (1954–1965)
The vacuum tube technology of the first generation was not very dependable. In
fact, some ENIAC detractors believed that the system would never run because
the tubes would burn out faster than they could be replaced. Although system
reliability wasn’t as bad as the doomsayers predicted, vacuum tube systems often
experienced more downtime than uptime.

In 1948, three researchers with Bell Laboratories—John Bardeen, Walter
Brattain, and William Shockley—invented the transistor. This new technology
not only revolutionized devices such as televisions and radios, but also pushed
the computer industry into a new generation. Because transistors consume less
power than vacuum tubes, are smaller, and work more reliably, the circuitry in
computers consequently became smaller and more reliable. Despite using transis-
tors, computers of this generation were still bulky and quite costly. Typically only
universities, governments, and large businesses could justify the expense. Never-
theless, a plethora of computer makers emerged in this generation; IBM, Digital
Equipment Corporation (DEC), and Univac (now Unisys) dominated the indus-
try. IBM marketed the 7094 for scientific applications and the 1401 for business
applications. DEC was busy manufacturing the PDP-1. A company founded (but
soon sold) by Mauchly and Eckert built the Univac systems. The most success-
ful Unisys systems of this generation belonged to its 1100 series. Another com-
pany, Control Data Corporation (CDC), under the supervision of Seymour Cray,
built the CDC 6600, the world’s first supercomputer. The $10 million CDC 6600
could perform 10 million instructions per second, used 60-bit words, and had an
astounding 128 kilowords of main memory.

of electrical power were required to heat the cathodes of these
devices. To prevent a meltdown, this heat had to be removed from
the system as quickly as possible. Power consumption and heat dis-
sipation could be reduced by running the cathode heaters at lower
voltages, but this reduced the already slow switching speed of the
tube. Despite their limitations and power consumption, vacuum tube
computer systems, both analog and digital, served their purpose for
many years and are the architectural foundation for all modern com-
puter systems.

Although decades have passed since the last vacuum tube
computer was manufactured, vacuum tubes are still used in audio
amplifiers. These “high-end” amplifiers are favored by musicians who
believe that tubes provide a resonant and pleasing sound unattain-
able by solid-state devices.

Diode Triode

Tetrode Pentode

1.5  /  Historical Development     27

9781284033144_CH01.indd 27 1/15/14 8:20 PM

What Is a Transistor?

The transistor, short for transfer resistor, is the solid-state version of the triode.
There is no such thing as a solid-state version of the tetrode or pentode. Elec-
trons are better behaved in a solid medium than in the open void of a vacuum
tube, so there is no need for the extra controlling grids. Either germanium or sili-
con can be the basic “solid” used in these solid-state devices. In their pure form,
neither of these elements is a good conductor of electricity. But when they are
combined with trace amounts of elements that are their neighbors in the Peri-
odic Chart of the Elements, they conduct electricity in an effective and easily
controlled manner.

Boron, aluminum, and gallium can be found to the left of silicon and germa-
nium on the Periodic Chart. Because they lie to the left of silicon and germanium,

they have one less electron in their outer electron shell, or
valence. So if you add a small amount of aluminum to sili-
con, the silicon ends up with a slight imbalance in its outer
electron shell, and therefore attracts electrons from any
pole that has a negative potential (an excess of electrons).
When modified (or doped) in this way, silicon or germa-
nium becomes a P-type material.

Similarly, if we add a little boron, arsenic, or gallium to
silicon, we’ll have extra electrons in valences of the silicon

crystals. This gives us an N-type material. A small amount of current will flow through
the N-type material if we provide the loosely bound electrons in the N-type material
with a place to go. In other words, if we apply a positive potential to N-type material,
electrons will flow from the negative pole to the positive pole. If the poles are reversed,
that is, if we apply a negative potential to the N-type material and a positive potential to
the P-type material, no current will flow. This means we can make a solid-state diode
from a simple junction of N- and P-type materials.

The solid-state triode, the transistor, consists of three layers of semiconductor
material. Either a slice of P-type material is sandwiched between two N-type materials,
or a slice of N-type material is sandwiched between two P-type materials. The former
is called an NPN transistor, the latter a PNP transistor. The inner layer of the transistor
is called the base; the other two layers are called the collector and the emitter.

The figure at the left shows how current flows
through NPN and PNP transistors. The base in a transis-
tor works just like the control grid in a triode tube: Small
changes in the current at the base of a transistor result in
a large electron flow from the emitter to the collector.

A discrete-component transistor is shown in
“TO-50” packaging in the figure at the top of this side-
bar. There are only three wires (leads) that connect
the base, emitter, and collector of the transistor to the
rest of the circuit. Transistors are not only smaller than
vacuum tubes, but they also run cooler and are much

Emitter

Base

Collector

Large
Current Output

Electron Source

A Few
Electrons

Added

A Few
Electrons
Withdrawn

+–

28     Chapter 1    /   Introduction

9781284033144_CH01.indd 28 1/15/14 8:20 PM

	 1.5.4	 The Third Generation: Integrated Circuit Computers (1965–1980)
The real explosion in computer use came with the integrated circuit generation.
Jack Kilby invented the integrated circuit (IC), or microchip, made of germanium.
Six months later, Robert Noyce (who had also been working on integrated circuit
design) created a similar device using silicon instead of germanium. This is the sil-
icon chip upon which the computer industry was built. Early ICs allowed dozens of
transistors to exist on a single silicon chip that was smaller than a single “discrete
component” transistor. Computers became faster, smaller, and cheaper, bringing
huge gains in processing power. The IBM System/360 family of computers was
among the first commercially available systems to be built entirely of solid-state
components. The 360 product line was also IBM’s first offering in which all the
machines in the family were compatible, meaning they all used the same assem-
bly language. Users of smaller machines could upgrade to larger systems without
rewriting all their software. This was a revolutionary new concept at the time.

The IC generation also saw the introduction of time-sharing and multipro-
gramming (the ability for more than one person to use the computer at a time).
Multiprogramming, in turn, necessitated the introduction of new operating sys-
tems for these computers. Time-sharing minicomputers such as DEC’s PDP-8 and
PDP-11 made computing affordable to smaller businesses and more universities.

more reliable. Vacuum tube filaments, like light bulb filaments, run hot and eventu-
ally burn out. Computers using transistorized components will naturally be smaller
and run cooler than their vacuum tube predecessors. The ultimate miniaturization,
however, is not realized by replacing individual triodes with discrete transistors, but
in shrinking entire circuits onto one piece of silicon.

Integrated circuits, or chips, contain hundreds to bil-
lions of microscopic transistors. Several different tech-
niques are used to manufacture integrated circuits. One
of the simplest methods involves creating a circuit using
computer-aided design software that can print large
maps of each of the several silicon layers forming the chip.
Each map is used like a photographic negative where
light-induced changes in a photoresistive substance on

the chip’s surface produce the delicate patterns of the circuit when the silicon chip is
immersed in a chemical that washes away the exposed areas of the silicon. This tech-
nique is called photomicrolithography. After the etching is completed, a layer of
N-type or P-type material is deposited on the bumpy surface of the chip. This layer
is then treated with a photoresistive substance, exposed to light, and etched as was
the layer before it. This process continues until all the layers have been etched. The
resulting peaks and valleys of P- and N-type material form microscopic electronic
components, including transistors, that behave just like larger versions fashioned from
discrete components, except that they run a lot faster and consume a small fraction of
the power.

N

N

P

Collector

Base
N

N
P

Emitter Contacts

1.5  /  Historical Development     29

9781284033144_CH01.indd 29 1/15/14 8:20 PM

IC technology also allowed for the development of more powerful supercomput-
ers. Seymour Cray took what he had learned while building the CDC 6600 and
started his own company, the Cray Research Corporation. This company produced
a number of supercomputers, starting with the $8.8 million Cray-1, in 1976. The
Cray-1, in stark contrast to the CDC 6600, could execute more than 160 million
instructions per second and could support 8MB of memory. See Figure 1.2 for a
size comparison of vacuum tubes, transistors, and integrated circuits.

	 1.5.5	 The Fourth Generation: VLSI Computers (1980–????)
In the third generation of electronic evolution, multiple transistors were integrated
onto one chip. As manufacturing techniques and chip technologies advanced,
increasing numbers of transistors were packed onto one chip. There are now vari-
ous levels of integration: SSI (small-scale integration), in which there are 10 to
100 components per chip; MSI (medium-scale integration), in which there are
100 to 1000 components per chip; LSI (large-scale integration), in which there are

Figure 1.2   Comparison of Computer Components
Clockwise, starting from the top:
1)  Vacuum tube
2)  Transistor
3)  Chip containing 3200 2-input NAND gates
4) � Integrated circuit package (the small silver square in

the lower left-hand corner is an integrated circuit)
Courtesy of Linda Null.

30     Chapter 1    /   Introduction

9781284033144_CH01.indd 30 1/15/14 8:20 PM

1000 to 10,000 components per chip; and finally, VLSI (very-large-scale integra-
tion), in which there are more than 10,000 components per chip. This last level,
VLSI, marks the beginning of the fourth generation of computers. The complex-
ity of integraged circuits continues to grow, with more transistors being added
all the time. The term ULSI (ultra-large-scale integration) has been suggested for
integrated circuits containing more than 1 million transistors. In 2005, billions of
transistors were put on a single chip. Other useful terminology includes: (1) WSI
(wafer-scale integration, building superchip ICs from an entire silicon wafer;
(2) 3D-IC (three-dimensional integrated circuit); and (3) SOC (system-on-a-chip),
an IC that includes all the necessary components for the entire computer.

To give some perspective to these numbers, consider the ENIAC-on-a-chip
project. In 1997, to commemorate the fiftieth anniversary of its first public dem-
onstration, a group of students at the University of Pennsylvania constructed a
single-chip equivalent of the ENIAC. The 1800-square-foot, 30-ton beast that
devoured 174 kilowatts of power the minute it was turned on had been repro-
duced on a chip the size of a thumbnail. This chip contained approximately
174,569 transistors—an order of magnitude fewer than the number of compo-
nents typically placed on the same amount of silicon in the late 1990s.

VLSI allowed Intel, in 1971, to create the world’s first microprocessor, the
4004, which was a fully functional, 4-bit system that ran at 108KHz. Intel also
introduced the random access memory (RAM) chip, accommodating four kilobits
of memory on a single chip. This allowed computers of the fourth generation to
become smaller and faster than their solid-state predecessors.

VLSI technology, and its incredible shrinking circuits, spawned the develop
ment of microcomputers. These systems were small enough and inexpensive
enough to make computers available and affordable to the general public. The
premiere microcomputer was the Altair 8800, released in 1975 by the Micro
Instrumentation and Telemetry (MITS) corporation. The Altair 8800 was soon
followed by the Apple I and Apple II, and Commodore’s PET and Vic 20.
Finally, in 1981, IBM introduced its PC (Personal Computer).

The Personal Computer was IBM’s third attempt at producing an “entry-
level” computer system. Its Datamaster and its 5100 Series desktop computers
flopped miserably in the marketplace. Despite these early failures, IBM’s John
Opel convinced his management to try again. He suggested forming a fairly
autonomous “independent business unit” in Boca Raton, Florida, far from IBM’s
headquarters in Armonk, New York. Opel picked Don Estridge, an energetic and
capable engineer, to champion the development of the new system, code-named
the Acorn. In light of IBM’s past failures in the small-systems area, corporate
management held tight rein on the Acorn’s timeline and finances. Opel could get
his project off the ground only after promising to deliver it within a year, a seem-
ingly impossible feat.

Estridge knew that the only way he could deliver the PC within the wildly
optimistic 12-month schedule would be to break with IBM convention and use
as many “off-the-shelf” parts as possible. Thus, from the outset, the IBM PC was
conceived with an “open” architecture. Although some people at IBM may have
later regretted the decision to keep the architecture of the PC as nonproprietary

1.5  /  Historical Development     31

9781284033144_CH01.indd 31 1/15/14 8:20 PM

as possible, it was this very openness that allowed IBM to set the standard for the
industry. While IBM’s competitors were busy suing companies for copying their
system designs, PC clones proliferated. Before long, the price of “IBM-compati-
ble” microcomputers came within reach for just about every small business. Also,
thanks to the clone makers, large numbers of these systems soon began finding
true “personal use” in people’s homes.

IBM eventually lost its microcomputer market dominance, but the genie was
out of the bottle. For better or worse, the IBM architecture continues to be the
de facto standard for microcomputing, with each year heralding bigger and faster
systems. Today, the average desktop computer has many times the computational
power of the mainframes of the 1960s.

Since the 1960s, mainframe computers have seen stunning improvements
in price–performance ratios owing to VLSI technology. Although the IBM Sys-
tem/360 was an entirely solid-state system, it was still a water-cooled, power-
gobbling behemoth. It could perform only about 50,000 instructions per second
and supported only 16MB of memory (while usually having kilobytes of physical
memory installed). These systems were so costly that only the largest businesses
and universities could afford to own or lease one. Today’s mainframes—now
called “enterprise servers”—are still priced in the millions of dollars, but their pro-
cessing capabilities have grown several thousand times over, passing the billion-
instructions-per-second mark in the late 1990s. These systems, often used as Web
servers, routinely support hundreds of thousands of transactions per minute!

The processing power brought by VLSI to supercomputers defies comprehen-
sion. The first supercomputer, the CDC 6600, could perform 10 million instruc-
tions per second, and had 128KB of main memory. By contrast, supercomputers of
today contain thousands of processors, can address terabytes of memory, and will
soon be able to perform a quadrillion instructions per second.

What technology will mark the beginning of the fifth generation? Some say
the fifth generation will mark the acceptance of parallel processing and the use
of networks and single-user workstations. Many people believe we have already
crossed into this generation. Some believe it will be quantum computing. Some
people characterize the fifth generation as being the generation of neural network,
DNA, or optical computing systems. It’s possible that we won’t be able to define
the fifth generation until we have advanced into the sixth or seventh generations,
and whatever those eras will bring.

The Integrated Circuit and Its Production

Integrated circuits are found all around us, from computers to cars to refrigerators
to cell phones. The most advanced circuits contain hundreds of millions (and even
billions) of components in an area about the size of your thumbnail. The transistors
in these advanced circuits can be as small as 45nm, or 0.000045 millimeters, in size.
Thousands of these transistors would fit in a circle the diameter of a human hair.

32     Chapter 1    /   Introduction

9781284033144_CH01.indd 32 1/15/14 8:20 PM

How are these circuits made? They are manufactured in semiconductor fabrica-
tion facilities. Because the components are so small, all precautions must be taken to
ensure a sterile, particle-free environment, so manufacturing is done in a “clean room.”
There can be no dust, no skin cells, no smoke—not even bacteria. Workers must wear
clean room suits, often called “bunny suits,” to ensure that even the tiniest particle does
not escape into the air.

The process begins with the chip design, which eventually results in a mask, the
template or blueprint that contains the circuit patterns. A silicon wafer is then covered by
an insulating layer of oxide, followed by a layer of photosensitive film called photo-resist.
This photo-resist has regions that break down under UV light and other regions that do
not. A UV light is then shone through the mask (a process called photolithography). Bare
oxide is left on portions where the photo-resist breaks down under the UV light. Chem-
ical “etching” is then used to dissolve the revealed oxide layer and also to remove the
remaining photo-resist not affected by the UV light. The “doping” process embeds certain
impurities into the silicon that alters the electrical properties of the unprotected areas,
basically creating the transistors. The chip is then covered with another layer of both the
insulating oxide material and the photo-resist, and the entire process is repeated hun-
dreds of times, each iteration creating a new layer of the chip. Different masks are used
with a similar process to create the wires that connect the components on the chip. The
circuit is finally encased in a protective plastic cover, tested, and shipped out.

As components become smaller and smaller, the equipment used to make them
must be of continually higher quality. This has resulted in a dramatic increase in the
cost of manufacturing ICs over the years. In the early 1980s, the cost to build a semi-
conductor factory was roughly $10 million. By the late 1980s, that cost had risen to
approximately $200 million, and by the late 1990s, an IC fabrication factory cost more
or less around $1 billion. In 2005, Intel spent approximately $2 billion for a single fab-
rication facility and, in 2007, invested roughly $7 billion to retool three plants in order
to allow them to produce a smaller processor. In 2009, AMD begin building a $4.2 bil-
lion chip manufacturing facility in upstate New York.

The manufacturing facility is not the only high-dollar item when it comes to making
ICs. The cost to design a chip and create the mask can run anywhere from $1 million
to $3 million—more for smaller chips and less for larger ones. Considering the costs of
both the chip design and the fabrication facility, it truly is amazing that we can walk into
our local computer store and buy a new Intel i3 microprocessor chip for around $100.

	 1.5.6	 Moore’s Law
So where does it end? How small can we make transistors? How densely can
we pack chips? No one can say for sure. Every year, scientists continue to
thwart prognosticators’ attempts to define the limits of integration. In fact,
more than one skeptic raised an eyebrow when, in 1965, Intel founder Gordon
Moore stated, “The density of transistors in an integrated circuit will double
every year.” The current version of this prediction is usually conveyed as “the
density of silicon chips doubles every 18 months.” This assertion has become

1.5  /  Historical Development     33

9781284033144_CH01.indd 33 1/15/14 8:20 PM

known as Moore’s Law. Moore intended this postulate to hold for only 10 years.
However, advances in chip manufacturing processes have allowed this assertion
to hold for almost 40 years (and many believe it will continue to hold well into
the 2010s).

Yet, using current technology, Moore’s Law cannot hold forever. There are
physical and financial limitations that must ultimately come into play. At the current
rate of miniaturization, it would take about 500 years to put the entire solar system
on a chip! Clearly, the limit lies somewhere between here and there. Cost may be
the ultimate constraint. Rock’s Law, proposed by early Intel capitalist Arthur Rock,
is a corollary to Moore’s Law: “The cost of capital equipment to build semiconduc-
tors will double every four years.” Rock’s Law arises from the observations of a
financier who saw the price tag of new chip facilities escalate from about $12,000
in 1968 to $12 million in the mid-1990s. In 2005, the cost of building a new chip
plant was nearing $3 billion. At this rate, by the year 2035, not only will the size of a
memory element be smaller than an atom, but it would also require the entire wealth
of the world to build a single chip! So even if we continue to make chips smaller
and faster, the ultimate question may be whether we can afford to build them.

Certainly, if Moore’s Law is to hold, Rock’s Law must fall. It is evident that
for these two things to happen, computers must shift to a radically different tech-
nology. Research into new computing paradigms has been proceeding in earnest
during the last half decade. Laboratory prototypes fashioned around organic com-
puting, superconducting, molecular physics, and quantum computing have been
demonstrated. Quantum computers, which leverage the vagaries of quantum
mechanics to solve computational problems, are particularly exciting. Not only
would quantum systems compute exponentially faster than any previously used
method, but they would also revolutionize the way in which we define computa-
tional problems. Problems that today are considered ludicrously infeasible could
be well within the grasp of the next generation’s schoolchildren. These school-
children may, in fact, chuckle at our “primitive” systems in the same way that we
are tempted to chuckle at the ENIAC.

	 1.6	 The Computer Level Hierarchy

If a machine is to be capable of solving a wide range of problems, it must be
able to execute programs written in different languages, from Fortran and C to
Lisp and Prolog. As we shall see in Chapter 3, the only physical components we
have to work with are wires and gates. A formidable open space—a semantic
gap—exists between these physical components and a high-level language such
as C++. For a system to be practical, the semantic gap must be invisible to most
of the users of the system.

Programming experience teaches us that when a problem is large, we should
break it down and use a “divide and conquer” approach. In programming, we
divide a problem into modules and then design each module separately. Each
module performs a specific task, and modules need only know how to interface
with other modules to make use of them.

34     Chapter 1    /   Introduction

9781284033144_CH01.indd 34 1/15/14 8:20 PM

Computer system organization can be approached in a similar manner.
Through the principle of abstraction, we can imagine the machine to be built from
a hierarchy of levels, in which each level has a specific function and exists as a
distinct hypothetical machine. We call the hypothetical computer at each level a
virtual machine. Each level’s virtual machine executes its own particular set of
instructions, calling upon machines at lower levels to carry out the tasks when
necessary. By studying computer organization, you will see the rationale behind
the hierarchy’s partitioning, as well as how these layers are implemented and
interface with each other. Figure 1.3 shows the commonly accepted layers repre-
senting the abstract virtual machines.

Level 6, the User Level, is composed of applications and is the level with
which everyone is most familiar. At this level, we run programs such as word
processors, graphics packages, or games. The lower levels are nearly invisible
from the User Level.

Level 5, the High-Level Language Level, consists of languages such as C,
C++, Fortran, Lisp, Pascal, and Prolog. These languages must be translated

Level 6

Level 5

Level 4

Level 3

Level 2

Level 1

Level 0

User

High-Level LanguageAssembly LanguageSystem Software
Machine

Control

Digital Logic

Executable Programs

C++, Java, Fortran, etc.

Assembly Code

Operating System, Library Code

Instruction Set Architecture

Microcode or Hardwired

Circuits, Gates, etc.

Figure 1.3   The Abstract Levels of Modern Computing Systems

1.6  /  The Computer Level Hierarchy     35

9781284033144_CH01.indd 35 1/15/14 8:20 PM

(using either a compiler or an interpreter) to a language the machine can
understand. Compiled languages are translated into assembly language and then
assembled into machine code. (They are translated to the next lower level.) The
user at this level sees very little of the lower levels. Even though a programmer
must know about data types and the instructions available for those types, he or
she need not know about how those types are actually implemented.

Level 4, the Assembly Language Level, encompasses some type of assem-
bly language. As previously mentioned, compiled higher-level languages are
first translated to assembly, which is then directly translated to machine lan-
guage. This is a one-to-one translation, meaning that one assembly language
instruction is translated to exactly one machine language instruction. By hav-
ing separate levels, we reduce the semantic gap between a high-level language,
such as C++, and the actual machine language (which consists of 0s and 1s).

Level 3, the System Software Level, deals with operating system instructions.
This level is responsible for multiprogramming, protecting memory, synchronizing
processes, and various other important functions. Often, instructions translated from
assembly language to machine language are passed through this level unmodified.

Level 2, the Instruction Set Architecture (ISA), or Machine Level, con-
sists of the machine language recognized by the particular architecture of the
computer system. Programs written in a computer’s true machine language on
a hardwired computer (see below) can be executed directly by the electronic
circuits without any interpreters, translators, or compilers. We will study ISAs
in depth in Chapters 4 and 5.

Level 1, the Control Level, is where a control unit makes sure that instruc-
tions are decoded and executed properly and that data is moved where and when
it should be. The control unit interprets the machine instructions passed to it,
one at a time, from the level above, causing the required actions to take place.

Control units can be designed in one of two ways: They can be hardwired or
they can be microprogrammed. In hardwired control units, control signals ema-
nate from blocks of digital logic components. These signals direct all the data and
instruction traffic to appropriate parts of the system. Hardwired control units are
typically very fast because they are actually physical components. However, once
implemented, they are very difficult to modify for the same reason.

The other option for control is to implement instructions using a micropro-
gram. A microprogram is a program written in a low-level language that is imple-
mented directly by the hardware. Machine instructions produced in Level 2 are
fed into this microprogram, which then interprets the instructions by activating
hardware suited to execute the original instruction. One machine-level instruc-
tion is often translated into several microcode instructions. This is not the one-
to-one correlation that exists between assembly language and machine language.
Microprograms are popular because they can be modified relatively easily. The
disadvantage of microprogramming is, of course, that the additional layer of
translation typically results in slower instruction execution.

Level 0, the Digital Logic Level, is where we find the physical components
of the computer system: the gates and wires. These are the fundamental building

36     Chapter 1    /   Introduction

9781284033144_CH01.indd 36 1/15/14 8:20 PM

blocks, the implementations of the mathematical logic, that are common to all
computer systems. Chapter 3 presents the Digital Logic Level in detail.

	 1.7	 CLOUD COMPUTING: COMPUTING AS A SERVICE

We must never forget that the ultimate aim of every computer system is to deliver
functionality to its users. Computer users typically do not care about terabytes of
storage and gigahertz of processor speed. In fact, many companies and govern-
ment agencies have “gotten out of the technology business” entirely by outsourc-
ing their data centers to third-party specialists. These outsourcing agreements
tend to be highly complex and prescribe every aspect of the hardware configura-
tion. Along with the detailed hardware specifications, service-level agreements
(SLAs) provide penalties if certain parameters of system performance and avail-
ability are not met. Both contracting parties employ individuals whose main job
is to monitor the contract, calculate bills, and determine SLA penalties when
needed. Thus, with the additional administrative overhead, data center outsourc-
ing is neither a cheap nor an easy solution for companies that want to avoid the
problems of technology management.

Level 6

Level 5

Level 4

Level 3

Level 2

Level 1

Level 0

User

High-Level LanguageAssembly LanguageSystem Software
Machine

Control

Digital Logic

Executable Programs

C++, Java, Fortran, etc.

Assembly Code

Operating System, Library Code

Instruction Set Architecture

Microcode or Hardwired

Circuits, Gates, etc.

Software as a Service (SaaS)

Platform as a Service (PaaS)

Infrastructure as a Service (IaaS)

Figure 1.4   Levels of Computing as a Service

1.7  /  Cloud Computing: Computing as a Service     37

9781284033144_CH01.indd 37 1/15/14 8:20 PM

A somewhat easier approach may be found in the emerging field of Cloud
computing. Cloud computing is the general term for any type of virtual comput-
ing platform provided over the Internet. A Cloud computing platform is defined
in terms of the services that it provides rather than its physical configuration. Its
name derives from the cloud icon that symbolizes the Internet on schematic dia-
grams. But the metaphor carries well into the actual Cloud infrastructure, because
the computer is more abstract than real. The “computer” and “storage” appear to
the user as a single entity in the Cloud but usually span several physical servers.
The storage is usually located on an array of disks that are not directly connected
to any particular server. System software is designed to give this configura-
tion the illusion of being a single system; thus, we say that it presents a virtual
machine to the user.

Cloud computing services can be defined and delivered in a number of ways
based on levels of the computer hierarchy shown again in Figure 1.4. At the top
of the hierarchy, where we have executable programs, a Cloud provider might
offer an entire application over the Internet, with no components installed locally.
This is called Software as a Service, or SaaS. The consumer of this service does
not maintain the application or need to be at all concerned with the infrastruc-
ture in any way. SaaS applications tend to focus on narrow, non-business-critical
applications. Well-known examples include Gmail, Dropbox, GoToMeeting, and
Netflix. Specialized products are available for tax return preparation, payroll,
fleet management, and case management, to name only a few. Salesforce.com is
a pioneering, full-featured SaaS offering designed for customer relationship man-
agement. Fee-based SaaS is typically billed monthly according to the number of
users, sometimes with per-transaction fees added on as well.

A great disadvantage of SaaS is that the consumer has little control over the
behavior of the product. This may be problematic if a company has to make radi-
cal changes to its processes or policies in order to use a SaaS product. Companies
that desire to have more control over their applications, or that need applications
for which SaaS is unavailable, might instead opt to deploy their own applications
on a Cloud-hosted environment called Platform as a Service, or PaaS. PaaS
provides server hardware, operating systems, database services, security com-
ponents, and backup and recovery services. The PaaS provider manages perfor-
mance and availability of the environment, whereas the customer manages the
applications hosted in the PaaS Cloud. The customer is typically billed monthly
per megabytes of storage, processor utilization, and megabytes of data trans-
ferred. Well-known PaaS providers include Google App Engine and Microsoft
Windows Azure Cloud Services [as well as Force.com (PaaS provided by Sales-
force.com)].

PaaS is not a good fit in situations where rapid configuration changes are
required. This would be the case if a company’s main business is software devel-
opment. The formality of change processes necessary to a well-run PaaS opera-
tion impedes rapid software deployment [by forcing a company to play by the
service provider’s rules]. Indeed, in any company where staff is capable of man-
aging operating system and database software, the Infrastructure as a Service
(IaaS) Cloud model might be the best option. IaaS, [the most basic of the models,]

38     Chapter 1    /   Introduction

9781284033144_CH01.indd 38 1/15/14 8:20 PM

provides only server hardware, secure network access to the servers, and backup
and recovery services. The customer is responsible for all system software includ-
ing the operating system and databases. IaaS is typically billed by the number of
virtual machines used, megabytes of storage, and megabytes of data transferred,
but at a lower rate than PaaS. The biggest names in IaaS include Amazon EC2,
Google Compute Engine, Microsoft Azure Services Platform, Rackspace, and HP
Cloud.

Not only do PaaS and IaaS liberate the customer from the difficulties of data
center management, they also provide elasticity: the ability to add and remove
resources based on demand. A customer pays for only as much infrastructure as
is needed. So if a business has a peak season, extra capacity needs to be allocated
only for the duration of the peak period. This flexibility can save a company a
great deal of money when it has large variations in computing demands.

Cloud storage is a limited type of IaaS. The general public can obtain small
amounts of Cloud storage inexpensively through services such as Dropbox,
Google Drive, and Amazon.com’s Cloud Drive—to name only a few among a
crowded field. Google, Amazon, HP, IBM, and Microsoft are among several ven-
dors that provide Cloud storage for the enterprise. As with Cloud computing in
general, enterprise-grade Cloud storage also requires careful management of per-
formance and availability.

The question that all potential Cloud computing customers must ask them-
selves is whether it is less expensive to maintain their own data center or to buy
Cloud services—including the allowances for peak periods. Moreover, as with
traditional outsourcing, vendor-provided Cloud computing still involves con-
siderable contract negotiation and management on the part of both parties. SLA
management remains an important activity in the relationship between the ser-
vice provider and the service consumer. Moreover, once an enterprise moves its
assets to the Cloud, it might be difficult to transition back to a company-owned
data center, should the need arise. Thus, any notion of moving assets to the Cloud
must be carefully considered, and the risks clearly understood.

The Cloud also presents a number of challenges to computer scientists. First
and foremost is the technical configuration of the data center. The infrastruc-
ture must provide for uninterrupted service, even during maintenance activities.
It must permit expedient allocation of capacity to where it is needed without
degrading or interrupting services. Performance of the infrastructure must be
carefully monitored and interventions taken whenever performance falls below
certain defined thresholds; otherwise, monetary SLA penalties may be incurred.

On the consumer side of the Cloud, software architects and programmers
must be mindful of resource consumption, because the Cloud model charges fees
in proportion to the resources consumed. These resources include communica-
tions bandwidth, processor cycles, and storage. Thus, to save money, applica-
tion programs should be designed to reduce trips over the network, economize
machine cycles, and minimize bytes of storage. Meticulous testing is crucial prior
to deploying a program in the Cloud: An errant module that consumes resources,
say, in an infinite loop, could result in a “surprising” Cloud bill at the end of the
month.

1.7  /  Cloud Computing: Computing as a Service     39

9781284033144_CH01.indd 39 1/15/14 8:20 PM

With the cost and complexity of data centers continuing to rise—with no end
in sight—Cloud computing is almost certain to become the platform of choice for
medium- to small-sized businesses. But the Cloud is not worry-free. A company
might end up trading its technical challenges for even more vexing supplier man-
agement challenges.

	 1.8	 The Von Neumann Model

In the earliest electronic computing machines, programming was synonymous
with connecting wires to plugs. No layered architecture existed, so programming
a computer was as much of a feat of electrical engineering as it was an exercise
in algorithm design. Before their work on the ENIAC was complete, John W.
Mauchly and J. Presper Eckert conceived of an easier way to change the behav-
ior of their calculating machine. They reckoned that memory devices, in the
form of mercury delay lines, could provide a way to store program instructions.
This would forever end the tedium of rewiring the system each time it had a new
problem to solve, or an old one to debug. Mauchly and Eckert documented their
idea, proposing it as the foundation for their next computer, the EDVAC. Unfor-
tunately, while they were involved in the top secret ENIAC project during World
War II, Mauchly and Eckert could not immediately publish their insight.

No such proscriptions, however, applied to a number of people working at
the periphery of the ENIAC project. One of these people was a famous Hun-
garian mathematician named John von Neumann (pronounced von noy-man).
After reading Mauchly and Eckert’s proposal for the EDVAC, von Neumann
published and publicized the idea. So effective was he in the delivery of this
concept that history has credited him with its invention. All stored-program
computers have come to be known as von Neumann systems using the von
Neumann architecture. Although we are compelled by tradition to say that
stored-program computers use the von Neumann architecture, we shall not do
so without paying proper tribute to its true inventors: John W. Mauchly and
J. Presper Eckert.

Today’s version of the stored-program machine architecture satisfies at least
the following characteristics:

•	 Consists of three hardware systems: A central processing unit (CPU) with a
control unit, an arithmetic logic unit (ALU), registers (small storage areas),
and a program counter; a main memory system, which holds programs that
control the computer’s operation; and an I/O system.

•	 Capacity to carry out sequential instruction processing.
•	 Contains a single path, either physically or logically, between the main memory

system and the control unit of the CPU, forcing alternation of instruction and
execution cycles. This single path is often referred to as the von Neumann
bottleneck.

Figure 1.5 shows how these features work together in modern computer sys-
tems. Notice that the system shown in the figure passes all of its I/O through

40     Chapter 1    /   Introduction

9781284033144_CH01.indd 40 1/15/14 8:20 PM

the arithmetic logic unit (actually, it passes through the accumulator, which is
part of the ALU). This architecture runs programs in what is known as the von
Neumann execution cycle (also called the fetch-decode-execute cycle), which
describes how the machine works. One iteration of the cycle is as follows:

	 1.	The control unit fetches the next program instruction from the memory, using
the program counter to determine where the instruction is located.

	 2.	The instruction is decoded into a language the ALU can understand.

	 3.	Any data operands required to execute the instruction are fetched from mem-
ory and placed in registers in the CPU.

	 4.	The ALU executes the instruction and places the results in registers or memory.

The ideas present in the von Neumann architecture have been extended so that
programs and data stored in a slow-to-access storage medium, such as a hard disk,
can be copied to a fast-access, volatile storage medium such as RAM prior to execu-
tion. This architecture has also been streamlined into what is currently called the
system bus model, which is shown in Figure 1.6. The data bus moves data from
main memory to the CPU registers (and vice versa). The address bus holds the

Central Processing Unit

Main
Memory

Input/Output
System

Program Counter

Registers

Arithmetic Logic
Unit

Control
Unit

Figure 1.5   The von Neumann Architecture

1.8  /  The Von Neumann Model     41

9781284033144_CH01.indd 41 1/15/14 8:20 PM

CPU

(ALU, Registers,
and Control)

Memory
Input
and

Output

Data Bus

Address Bus

Control Bus

Figure 1.6   The Modified von Neumann Architecture, Adding a System Bus

Quantum Leap for Computers: How Small Can We Go?

VLSI technology has allowed us to put billions of transistors on a single chip, but there
is a limit to how small we can go with current transistor technology. Researchers at the
University of New South Wales’ Centre for Quantum Computer Technology and the
University of Wisconsin–Madison have taken “small” to an entirely new level. In May
2010, they announced the 7-atom transistor, a working transistor embedded in silicon
that is only 7 atoms in size. Transistors 1 atom in size that allowed the flows of elec-
trons were reported as early as 2002, but this transistor is different in that it provides
all the functionality of a transistor as we know it today.

The 7-atom transistor was created by hand, using a scanning tunneling micro-
scope. It’s a long way from being mass produced, but the researchers hope to make
it commercially available by 2015. The transistor’s tiny size means smaller but more
powerful computers. Experts estimate it may shrink microchips by a factor of 100,
while enabling an exponential speedup in processing. This means our computers
could become one hundred times smaller, but at the same time, also one hundred
times faster.

In addition to replacing traditional transistors, this discovery may be fundamental
in the efforts to build a quantum computer in silicon. Quantum computing is expected

address of the data that the data bus is currently accessing. The control bus carries
the necessary control signals that specify how the information transfer is to take
place.

Other enhancements to the von Neumann architecture include using index
registers for addressing, adding floating-point data, using interrupts and asynchro-
nous I/O, adding virtual memory, and adding general registers. You will learn a
great deal about these enhancements in the chapters that follow.

42     Chapter 1    /   Introduction

9781284033144_CH01.indd 42 1/15/14 8:20 PM

	 1.9	 Non–Von Neumann Models

Until recently, almost all general-purpose computers followed the von Neumann
design. That is, the architecture consisted of a CPU, memory, and I/O devices,
and they had single storage for instructions and data, as well as a single bus used
for fetching instructions and transferring data. von Neumann computers execute
instructions sequentially and are therefore extremely well suited to sequential
processing. However, the von Neumann bottleneck continues to baffle engineers
looking for ways to build fast systems that are inexpensive and compatible with
the vast body of commercially available software.

Engineers who are not constrained by the need to maintain compatibility with
von Neumann systems are free to use many different models of computing. Non–
von Neumann architectures are those in which the model of computation varies
from the characteristics listed for the von Neumann architecture. For example, an
architecture that does not store programs and data in memory or does not process

to be the next significant leap in computer technology. Small quantum computers now
exist that perform calculations millions of times faster than conventional computers,
but these computers are too small to be of much use. A large-scale, working quantum
computer would enable us to perform calculations and solve problems that would
take a conventional computer more than 13 billion years. That could change the way
we view the world. For one thing, every encryption algorithm employed today would
be useless against that kind of computing power. On the other hand, ultra-secure
communications would be possible using new quantum technologies.

Quantum computers have significant potential. Current applications, including
special effects for movies, cryptography, searching large data files, factoring large
numbers, simulating various systems (such as nuclear explosions and weather pat-
terns), military and intelligence gathering, and intensive, time-consuming compu-
tations (such as those found in astronomy, physics, and chemistry), would all see
tremendous performance increases if quantum computing were used. New applica-
tions we have not yet discovered are likely to evolve as well.

In addition to its potential to change computing as we know it today, this new
7-atom transistor is significant for another reason. Recall Moore’s Law; this law is not
so much a law of nature, but rather an expectation of innovation and a significant driv-
ing force in chip design. Moore’s Law has held since 1965, but in order to do so, chip
manufacturers have jumped from one technology to another. Gordon Moore him-
self has predicted that, if restricted to CMOS silicon, his law will fail sometime around
2020. The discovery of this 7-atom transistor gives new life to Moore’s Law—and we
suspect that Gordon Moore is breathing a sigh of relief over its discovery. However,
noted physicist Stephen Hawking has explained that chip manufacturers are limited
in their quest to “enforce” Moore’s Law by two fundamental constraints: the speed of
light and the atomic nature of matter, implying that Moore’s Law will eventually fail,
regardless of the technology being used.

1.9  /  Non–Von Neumann Models     43

9781284033144_CH01.indd 43 1/15/14 8:20 PM

a program sequentially would be considered a non–von Neumann machine. Also,
a computer that has two buses, one for data and a separate one for instructions,
would be considered a non–von Neumann machine. Computers designed using
the Harvard architecture have two buses, thus allowing data and instructions to
be transferred simultaneously, but also have separate storage for data and instruc-
tions. Many modern general-purpose computers use a modified version of the
Harvard architecture in which they have separate pathways for data and instruc-
tions but not separate storage. Pure Harvard architectures are typically used in
microcontrollers (an entire computer system on a chip), such as those found in
embedded systems, as in appliances, toys, and cars.

Many non–von Neumann machines are designed for special purposes. The
first recognized non–von Neumann processing chip was designed strictly for
image processing. Another example is a reduction machine (built to perform
combinatory logic calculations using graph reduction). Other non–von Neumann
computers include digital signal processors (DSPs) and media processors,
which can execute a single instruction on a set of data (instead of executing a
single instruction on a single piece of data).

A number of different subfields fall into the non–von Neumann category,
including neural networks (using ideas from models of the brain as a comput-
ing paradigm) implemented in silicon, cellular automata, cognitive computers
(machines that learn by experience rather than through programming, including
IBM’s SyNAPSE computer, a machine that models the human brain), quantum
computation (a combination of computing and quantum physics), dataflow
computation, and parallel computers. These all have something in common—
the computation is distributed among different processing units that act in paral-
lel. They differ in how weakly or strongly the various components are connected.
Of these, parallel computing is currently the most popular.

	 1.10	 Parallel Processors and Parallel Computing

Today, parallel processing solves some of our biggest problems in much the
same way that settlers of the Old West solved their biggest problems using par-
allel oxen. If they were using an ox to move a tree and the ox was not big enough
or strong enough, they certainly didn’t try to grow a bigger ox—they used two
oxen. If our computer isn’t fast enough or powerful enough, instead of trying to
develop a faster, more powerful computer, why not simply use multiple com-
puters? This is precisely what parallel computing does. The first parallel pro-
cessing systems were built in the late 1960s and had only two processors. The
1970s saw the introduction of supercomputers with as many as 32 processors,
and the 1980s brought the first systems with more than 1000 processors. Finally,
in 1999, IBM announced funding for the development of a supercomputer archi-
tecture called the Blue Gene series. The first computer in this series, the Blue
Gene/L, is a massively parallel computer containing 131,000 dual-core proces-
sors, each with its own dedicated memory. In addition to allowing researchers to
study the behavior of protein folding (by using large simulations), this computer

44     Chapter 1    /   Introduction

9781284033144_CH01.indd 44 1/15/14 8:20 PM

has also allowed researchers to explore new ideas in parallel architectures and
software for those architectures. IBM has continued to add computers to this
series. The Blue Gene/P appeared in 2007 and has quad-core processors. The
latest computer designed for this series, the Blue Gene/Q, uses 16-core proces-
sors, with 1024 compute nodes per rack, scalable up to 512 racks. Installations
of the Blue Gene/Q computer include Nostromo (being used for biomedical data
in Poland), Sequoia (being used at Lawrence Livermore National Laboratory for
nuclear simulations and scientific research), and Mira (used at Argonne National
Laboratory).

Dual-core and quad-core processors (and higher, as we saw in Blue Gene/Q)
are examples of multicore processors. But what is a multicore processor?
Essentially, it is a special type of parallel processor. Parallel processors are often
classified as either “shared memory” processors (in which processors all share the
same global memory) or “distributed memory” computers (in which each proces-
sor has its own private memory). Chapter 9 covers parallel processors in detail.
The following discussion is limited to shared memory multicore architectures—
the type used in personal computers.

Multicore architectures are parallel processing machines that allow for
multiple processing units (often called cores) on a single chip. Dual core means
2 cores; quad core machines have 4 cores; and so on. But what is a core? Instead
of a single processing unit in an integrated circuit (as found in typical von Neu-
mann machines), independent multiple cores are “plugged in” and run in paral-
lel. Each processing unit has its own ALU and set of registers, but all processors
share memory and some other resources. “Dual core” is different from “dual pro-
cessor.” Dual-processor machines, for example, have two processors, but each
processor plugs into the motherboard separately. The important distinction to
note is that all cores in multicore machines are integrated into the same chip. This
means that you could, for example, replace a single-core (uniprocessor) chip in
your computer with, for example, a dual-core processor chip (provided your com-
puter had the appropriate socket for the new chip). Many computers today are
advertised as dual core, quad core, or higher. Dual core is generally considered
the standard in today’s computers. Although most desktop and laptop computers
have limited cores (fewer than 8), machines with hundreds of cores are available
for the right price, of course.

Just because your computer has multiple cores does not mean it will run your
programs more quickly. Application programs (including operating systems)
must be written to take advantage of multiple processing units (this statement is
true for parallel processing in general). Multicore computers are very useful for
multitasking—when users are doing more than one thing at a time. For example,
you may be reading email, listening to music, browsing the Web, and burning a
DVD all at the same time. These “multiple tasks” can be assigned to different
processors and carried out in parallel, provided the operating system is able to
manipulate many tasks at once.

In addition to multitasking, multithreading can also increase the perfor-
mance of any application with inherent parallelism. Programs are divided into

1.10  /  Parallel Processors and Parallel Computing     45

9781284033144_CH01.indd 45 1/15/14 8:20 PM

threads, which can be thought of as mini-processes. For example, a Web browser
is multithreaded; one thread can download text, while each image is controlled
and downloaded by a separate thread. If an application is multithreaded, separate
threads can run in parallel on different processing units. We should note that even
on uniprocessors, multithreading can improve performance, but this is a discus-
sion best left for another time. For more information, see Stallings (2012).

To summarize, parallel processing refers to a collection of different architec-
tures, from multiple separate computers working together, to multiple processors
sharing memory, to multiple cores integrated onto the same chip. Parallel proces-
sors are technically not classified as von Neumann machines because they do not
process instructions sequentially. However, many argue that parallel processing
computers contain CPUs, use program counters, and store both programs and data
in main memory, which makes them more like an extension to the von Neumann
architecture rather than a departure from it; these people view parallel processing
computers as sets of cooperating von Neumann machines. In this regard, perhaps
it is more appropriate to say that parallel processing exhibits “non–von Neumann-
ness.” Regardless of how parallel processors are classified, parallel computing
allows us to multitask and to solve larger and more complex problems, and is
driving new research in various software tools and programming.

Even parallel computing has its limits, however. As the number of proces-
sors increases, so does the overhead of managing how tasks are distributed to
those processors. Some parallel processing systems require extra processors just
to manage the rest of the processors and the resources assigned to them. No mat-
ter how many processors we place in a system, or how many resources we assign
to them, somehow, somewhere, a bottleneck is bound to develop. The best we
can do, however, is make sure the slowest parts of the system are the ones that
are used the least. This is the idea behind Amdahl’s Law. This law states that the
performance enhancement possible with a given improvement is limited by the
amount that the improved feature is used. The underlying premise is that every
algorithm has a sequential part that ultimately limits the speedup that can be
achieved by multiprocessor implementation.

If parallel machines and other non–von Neumann architectures give such
huge increases in processing speed and power, why isn’t everyone using them
everywhere? The answer lies in their programmability. Advances in operating
systems that can utilize multiple cores have put these chips in laptops and desk-
tops that we can buy today; however, true multiprocessor programming is more
complex than both uniprocessor and multicore programming and requires people
to think about problems in a different way, using new algorithms and program-
ming tools.

One of these programming tools is a set of new programming languages.
Most of our programming languages are von Neumann languages, created for
the von Neumann architecture. Many common languages have been extended
with special libraries to accommodate parallel programming, and many new lan-
guages have been designed specifically for the parallel programming environ-
ment. We have very few programming languages for the remaining (nonparallel)
non–von Neumann platforms, and fewer people who really understand how to

46     Chapter 1    /   Introduction

9781284033144_CH01.indd 46 1/15/14 8:20 PM

program in these environments efficiently. Examples of non–von Neumann
languages include Lucid (for dataflow) and QCL (Quantum Computation Lan-
guage) for quantum computers, as well as VHDL or Verilog (languages used to
program FPGAs). However, even with the inherent difficulties in programming
parallel machines, we see in the next section that significant progress is being
made.

	 1.11	 PARALLELISM: ENABLER OF MACHINE INTELLIGENCE—DEEP
BLUE AND WATSON

It is evident by our sidebar on the Mechanical Turk that chess playing has long
been considered the ultimate demonstration of a “thinking machine.” The chess-
board is a battlefield where human can meet machine on more-or-less equal
terms—with the human always having the edge, of course. Real chess-playing
computers have been around since the late 1950s. Over the decades, they grad-
ually improved their hardware and software to eventually become formida-
ble opponents for reasonably skilled players. The problem of championship
chess playing, however, had long been considered so hard that many believed a
machine could never beat a human Grandmaster. On May 11, 1997, a machine
called Deep Blue did just that.

Deep Blue’s principal designers were IBM researchers Feng-hsiung Hsu,
Thomas Anantharaman, and Murray Campbell. Reportedly costing more than
$6 million and taking six years to build, Deep Blue was a massively parallel
system consisting of 30 RS/6000-based nodes supplemented with 480 chips
built especially to play chess. Deep Blue included a database of 700,000 com-
plete games with separate systems for opening and endgames. It evaluated 200
million positions per second on average. This enabled Deep Blue to produce a
12-move look ahead.

Having soundly beat an earlier version of Deep Blue, world chess champion
Garry Kasparov was overwhelmingly favored to win a rematch starting May 3,
1997. At the end of five games, Kasparov and Deep Blue were tied, 2½ to 2½.
Then Deep Blue quickly seized upon an error that Kasparov made early in the
sixth game. Kasparov had no choice but to concede, thus making Deep Blue the
first machine to ever defeat a chess Grandmaster.

With Deep Blue’s stunning win over Kasparov now in the history books,
IBM Research manager Charles Lickel began looking for a new challenge. In
2004, Lickel was among the millions mesmerized by Ken Jennings’s unprec-
edented 74-game winning streak on the American quiz show, Jeopardy! As he
watched Jennings win one match after another, Lickel dared to think that it was
possible to build a machine that could win at Jeopardy! Moreover, he believed
that IBM Research had the talent to build such a machine. He tapped Dr. David
Ferrucci to lead the effort.

IBM scientists were in no rush to sign on to Lickel’s audacious project. They
doubted—with good reason—that such a machine could be built. After all, creat-
ing Deep Blue was hard enough. Playing Jeopardy! is enormously more difficult
than playing chess. In chess, the problem domain is clearly defined with fixed,

1.11  /  Parallelism: Enabler of Machine Intelligence—Deep Blue and Watson     47

9781284033144_CH01.indd 47 1/15/14 8:20 PM

unambiguous rules, and a finite (although very large) solution space. Jeopardy!
questions, on the other hand, cover a nearly infinite problem space compounded
by the vagaries of human language, odd relations between concepts, puns, and
vast amounts of unstructured factual information. For example, a Jeopardy! cat-
egory could be titled “Doozy Twos” and relate to an African leader, an article of
clothing, an Al Jolson song, and an ammunition size (Benjamin Tutu, tutu skirt,
“Toot Toot Tootsie,” and .22 caliber). Whereas a human being has little trouble
seeing the relationship (especially once the answer is revealed), computers are
utterly baffled.

To make the game fair, Watson had to emulate a human player as closely
as possible. No connection to the Internet or any other computers was permit-
ted, and Watson was required to physically press a plunger to “buzz in” with an
answer. However, Watson wasn’t programmed to process sound or images, so
visual and strictly audio clues—such as musical selections—were not used during
the match.

Once a clue was read, Watson initiated several parallel processes. Each pro-
cess examined different aspects of the clue, narrowed the solution space, and for-
mulated a hypothesis as to the answer. The hypothesis included a probability of
its being correct. Watson selected the most likely of the hypotheses, or selected
no hypothesis at all if the probability of correctness didn’t reach a predetermined
threshold. Watson’s designers determined that if Watson were to attempt just
70% of the questions and respond correctly just 85% of the time, it would win the
contest. No human players had ever done as well.

Using Watson’s algorithms, a typical desktop computer would need about
two hours to come up with a good hypothesis. Watson had to do it in less than
three seconds. It achieved this feat through a massively parallel architecture
dubbed DeepQA (Deep Question and Answer). The system relied on 90 IBM
POWER 750 servers. Each server was equipped with four POWER7 processors,
and each POWER7 processor had eight cores, giving a total of 2880 processor
cores. While playing Jeopardy!, each core had access to 16TB of main memory
and 4TB of clustered storage.

Unlike Deep Blue, Watson could not be programmed to solve problems
through brute force: The problem space was much too large. Watson’s design-
ers, therefore, approached the situation just as a human being would: Watson
“learned” by consuming terabytes of unstructured data from thousands of news
sources, journals, and books. The DeepQA algorithms provided Watson with the
ability to synthesize information—in a humanlike manner—from this universe of
raw data. Watson drew inferences and made assumptions using hard facts and
incomplete information. Watson could see information in context: The same
question, in a different context, might well produce a different answer.

On the third day of its match, February 16, 2011, Watson stunned the world
by soundly beating both reigning Jeopardy! champs, Ken Jennings and Brad
Rutter. Watson’s winnings were donated to charity, but Watson’s service to
humanity was only beginning. Watson’s ability to absorb and draw inferences

48     Chapter 1    /   Introduction

9781284033144_CH01.indd 48 1/15/14 8:20 PM

from pools of unstructured data made it a perfect candidate for medical school.
Beginning in 2011, IBM, WellPoint, and Memorial Sloan-Kettering Cancer
Center set Watson to work absorbing more than 600,000 pieces of medical evi-
dence, and two million pages of text from 42 medical journals and oncology
research documents. Watson’s literature assimilation was supplemented with
14,700 hours of live training provided by WellPoint nurses. Watson was then
given 25,000 test case scenarios and 1500 real-life cases from which it dem-
onstrated that it had gained the ability to derive meaning from the mountain of
complex medical data, some of which was in informal natural language—such
as doctors’ notes, patient records, medical annotations, and clinical feedback.
Watson’s Jeopardy! success has now been matched by its medical school suc-
cess. Commercial products based on Watson technology, including “Interactive
Care Insights for Oncology” and “Interactive Care Reviewer,” are now avail-
able. They hold the promise to improve the speed and accuracy of medical care
for cancer patients.

Although Watson’s applications and abilities have been growing, Watson’s
footprint has been shrinking. In the span of only a few years, system performance
has improved by 240% with a 75% reduction in physical resources. Watson can
now be run on a single Power 750 server, leading some to claim that “Watson
on a chip” is just around the corner.

In Watson, we have not merely seen an amazing Jeopardy! player or crack
oncologist. What we have seen is the future of computing. Rather than people
being trained to use computers, computers will train themselves to interact with
people—with all their fuzzy and incomplete information. Tomorrow’s systems
will meet humans on human terms. As Dr. Ferrucci puts it, there simply is no other
future for computers except to become like Watson. It just has to be this way.

Chapter Summary

In this chapter, we have presented a brief overview of computer organization
and computer architecture and shown how they differ. We also have intro-

duced some terminology in the context of a fictitious computer advertisement.
Much of this terminology will be expanded on in later chapters.

Historically, computers were simply calculating machines. As comput-
ers became more sophisticated, they became general-purpose machines, which
necessitated viewing each system as a hierarchy of levels instead of one gigantic
machine. Each layer in this hierarchy serves a specific purpose, and all levels help
minimize the semantic gap between a high-level programming language or appli-
cation and the gates and wires that make up the physical hardware. Perhaps the
single most important development in computing that affects us as programmers
is the introduction of the stored-program concept of the von Neumann machine.
Although there are other architectural models, the von Neumann architecture is
predominant in today’s general-purpose computers.

Chapter Summary      49

9781284033144_CH01.indd 49 1/15/14 8:20 PM

Further Reading

We encourage you to build on our brief presentation of the history of comput-
ers. We think you will find this subject intriguing because it is as much about
people as it is about machines. You can read about the “forgotten father of the
computer,” John Atanasoff, in Mollenhoff (1988). This book documents the odd
relationship between Atanasoff and John Mauchly, and recounts the open court
battle of two computer giants, Honeywell and Sperry Rand. This trial ultimately
gave Atanasoff his proper recognition.

For a lighter look at computer history, try the book by Rochester and Gantz
(1983). Augarten’s (1985) illustrated history of computers is a delight to read
and contains hundreds of hard-to-find pictures of early computers and computing
devices. For a complete discussion of the historical development of computers,
you can check out the three-volume dictionary by Cortada (1987). A particularly
thoughtful account of the history of computing is presented in Ceruzzi (1998). If
you are interested in an excellent set of case studies about historical computers, see
Blaauw and Brooks (1997).

You will also be richly rewarded by reading McCartney’s (1999) book
about the ENIAC, Chopsky and Leonsis’s (1988) chronicle of the development
of the IBM PC, and Toole’s (1998) biography of Ada, Countess of Lovelace.
Polachek’s (1997) article conveys a vivid picture of the complexity of calculat-
ing ballistic firing tables. After reading this article, you will understand why the
army would gladly pay for anything that promised to make the process faster or
more accurate. The Maxfield and Brown book (1997) contains a fascinating look
at the origins and history of computing as well as in-depth explanations of how a
computer works.

For more information on Moore’s Law, we refer the reader to Schaller
(1997). For detailed descriptions of early computers as well as profiles and remi-
niscences of industry pioneers, you may wish to consult the IEEE Annals of the
History of Computing, which is published quarterly. The Computer Museum His-
tory Center can be found online at www.computerhistory.org. It contains vari-
ous exhibits, research, timelines, and collections. Many cities now have computer
museums and allow visitors to use some of the older computers.

A wealth of information can be found at the websites of the standards-making
bodies discussed in this chapter (as well as sites not discussed in this chapter).
The IEEE can be found at www.ieee.org; ANSI at www.ansi.org; the ISO at
www.iso.ch; the BSI at www.bsi-global.com; and the ITU-T at www.itu.int. The
ISO site offers a vast amount of information and standards reference materials.

The WWW Computer Architecture Home Page at www.cs.wisc.edu/~arch/
www/ contains a comprehensive index to computer architecture–related informa-
tion. Many USENET newsgroups are devoted to these topics as well, including
comp.arch and comp.arch.storage.

The entire May–June 2000 issue of MIT’s Technology Review magazine is
devoted to architectures that may be the basis of tomorrow’s computers. Reading
this issue will be time well spent. In fact, we could say the same of every issue.

50     Chapter 1    /   Introduction

9781284033144_CH01.indd 50 1/15/14 8:20 PM

For a truly unique account of human computers, we invite you to read
Grier’s When Computers Were Human. Among other things, he presents a stir-
ring account of the human computers who drove the mathematical tables project
under the Depression-era Works Progress Administration (WPA). The contribu-
tions made by these “table factories” were crucial to America’s victory in World
War II. A shorter account of this effort can also be found in Grier’s 1998 article
that appears in the IEEE Annals of the History of Computing.

The entire May–June 2012 issue of the IBM Journal of Research and Devel-
opment is dedicated to the building of Watson. The two articles by Ferrucci and
Lewis give great insight into the challenges and triumphs of this groundbreak-
ing machine. The IBM whitepaper, “Watson—A System Designed for Answers,”
provides a nice summary of Watson’s hardware architecture. Feng-hsiung Hsu
gives his first-person account of the building of Deep Blue in Behind Deep Blue:
Building the Computer that Defeated the World Chess Champion. Readers inter-
ested in the Mechanical Turk can find more information in the book of the same
name by Tom Standage.

References
Augarten, S. Bit by Bit: An Illustrated History of Computers. London: Unwin Paperbacks, 1985.

Blaauw, G., & Brooks, F. Computer Architecture: Concepts and Evolution. Reading, MA:
Addison-Wesley, 1997.

Ceruzzi, P. E. A History of Modern Computing. Cambridge, MA: MIT Press, 1998.

Chopsky, J., & Leonsis, T. Blue Magic: The People, Power and Politics Behind the IBM Personal
Computer. New York: Facts on File Publications, 1988.

Cortada, J. W. Historical Dictionary of Data Processing, Volume 1: Biographies; Volume 2: Orga-
nization; Volume 3: Technology. Westport, CT: Greenwood Press, 1987.

Ferrucci, D. A., “Introduction to ‘This is Watson.’ ” IBM Journal of Research and Development
56:3/4, May–June 2012, pp. 1:1–1:15.

Grier, D. A. “The Math Tables Project of the Work Projects Administration: The Reluctant Start
of the Computing Era.” IEEE Annals of the History of Computing 20:3, July–Sept. 1998, pp.
33–50.

Grier, D. A. When Computers Were Human. Princeton, NJ: Princeton University Press, 2007.

Hsu, F.-h. Behind Deep Blue: Building the Computer that Defeated the World Chess Champion.
Princeton, NJ: Princeton University Press, 2006.

IBM. “Watson—A System Designed for Answers: The future of workload optimized systems
design.” February 2011. ftp://public.dhe.ibm.com/common/ssi/ecm/en/pow03061usen/POW-
03061USEN.PDF. Retrieved June 4, 2013.

Lewis, B. L. “In the game: The interface between Watson and Jeopardy!” IBM Journal of Research
and Development 56:3/4, May–June 2012, pp. 17:1–17:6.

Maguire, Y., Boyden III, E. S., & Gershenfeld, N. “Toward a Table-Top Quantum Computer.” IBM
Systems Journal 39:3/4, June 2000, pp. 823–839.

Maxfield, C., & Brown, A. Bebop BYTES Back (An Unconventional Guide to Computers).
Madison, AL: Doone Publications, 1997.

References      51

9781284033144_CH01.indd 51 1/15/14 8:20 PM

McCartney, S. ENIAC: The Triumphs and Tragedies of the World’s First Computer. New York:
Walker and Company, 1999.

Mollenhoff, C. R. Atanasoff: The Forgotten Father of the Computer. Ames, IA: Iowa State Univer-
sity Press, 1988.

Polachek, H. “Before the ENIAC.” IEEE Annals of the History of Computing 19:2, June 1997,
pp. 25–30.

Rochester, J. B., & Gantz, J. The Naked Computer: A Layperson’s Almanac of Computer Lore,
Wizardry, Personalities, Memorabilia, World Records, Mindblowers, and Tomfoolery. New
York: William A. Morrow, 1983.

Schaller, R. “Moore’s Law: Past, Present, and Future.” IEEE Spectrum, June 1997, pp. 52–59.

Stallings, W. Operating Systems: Internals and Design Principles, 7th ed. Upper Saddle River, NJ:
Prentice Hall, 2012.

Standage, T. The Turk: The Life and Times of the Famous Eighteenth-Century Chess-Playing
Machine. New York: Berkley Trade, 2003.

Tanenbaum, A. Structured Computer Organization, 6th ed. Upper Saddle River, NJ: Prentice Hall, 2013.

Toole, B. A. Ada, the Enchantress of Numbers: Prophet of the Computer Age. Mill Valley, CA:
Strawberry Press, 1998.

Waldrop, M. M. “Quantum Computing.” MIT Technology Review 103:3, May/June 2000,
pp. 60–66.

Review of Essential Terms and Concepts

	 1.	 What is the difference between computer organization and computer architecture?

	 2.	 What is an ISA?

	 3.	 What is the importance of the Principle of Equivalence of Hardware and Software?

	 4.	 Name the three basic components of every computer.

	 5.	 To what power of 10 does the prefix giga- refer? What is the (approximate) equivalent
power of 2?

	 6.	 To what power of 10 does the prefix micro- refer? What is the (approximate) equiva-
lent power of 2?

	 7.	 What unit is typically used to measure the speed of a computer clock?

	 8.	 What are the distinguishing features of tablet computers?

	 9.	 Name two types of computer memory.

	 10.	 What is the mission of the IEEE?

	 11.	 What is the full name of the organization that uses the initials ISO? Is ISO an acronym?

	 12.	 ANSI is the acronym used by which organization?

	 13.	 What is the name of the Swiss organization that devotes itself to matters concerning
telephony, telecommunications, and data communications?

	 14.	 Who is known as the father of computing, and why?

	 15.	 What was the significance of the punched card?

52     Chapter 1    /   Introduction

9781284033144_CH01.indd 52 1/15/14 8:20 PM

	 16.	 Name two driving factors in the development of computers.

	 17.	 What is it about the transistor that made it such a great improvement over the vacuum
tube?

	 18.	 How does an integrated circuit differ from a transistor?

	 19.	 Explain the differences between SSI, MSI, LSI, and VLSI.

	 20.	 What technology spawned the development of microcomputers? Why?

	 21.	 What is meant by an “open architecture”?

	 22.	 State Moore’s Law.

	 23.	 How is Rock’s Law related to Moore’s Law?

	 24.	 Name and explain the seven commonly accepted layers of the Computer Level Hier-
archy. How does this arrangement help us to understand computer systems?

	 25.	 How does the term abstraction apply to computer organization and architecture?

	 26.	 What was it about the von Neumann architecture that distinguished it from its
predecessors?

	 27.	 Name the characteristics present in von Neumann architecture.

	 28.	 How does the fetch-decode-execute cycle work?

	 29.	 What is a multicore processor?

	 30.	 What are the key characteristics of Cloud computing?

	 31.	 What are the three types of Cloud computing platforms?

	 32.	 What are the main challenges of Cloud computing from a provider perspective as well
as a consumer perspective?

	 33.	 What are the advantages and disadvantages of service-oriented computing?

	 34.	 What is meant by parallel computing?

	 35.	 What is the underlying premise of Amdahl’s Law?

	 36.	 What makes Watson so different from traditional computers?

Exercises
◆	1.	 In what ways are hardware and software different? In what ways are they the same?

	 2.	 a)	 How many milliseconds (ms) are in 1 second?

	 b)	 How many microseconds (µs) are in 1 second?

	 c)	 How many nanoseconds (ns) are in 1 millisecond?

	 d)	 How many microseconds are in 1 millisecond?

	 e)	 How many nanoseconds are in 1 microsecond?

	 f)	 How many kilobytes (KB) are in 1 gigabyte (GB)?

	 g)	 How many kilobytes are in 1 megabyte (MB)?

  Exercises     53

9781284033144_CH01.indd 53 1/15/14 8:20 PM

	 h)	 How many megabytes are in 1 gigabyte?

	 i)	 How many bytes are in 20 megabytes?

	 j)	 How many kilobytes are in 2 gigabytes?

◆	3.	 By what order of magnitude is something that runs in nanoseconds faster than some-
thing that runs in milliseconds?

	 4.	 Pretend you are ready to buy a new computer for personal use. First, take a look at ads
from various magazines and newspapers and list terms you don’t quite understand.
Look up these terms and give a brief written explanation. Decide what factors are
important in your decision as to which computer to buy and list them. After you select
the system you would like to buy, identify which terms refer to hardware and which
refer to software.

	 5.	 Makers of tablet computers continually work within narrow constraints on cost, power
consumption, weight, and battery life. Describe what you feel would be the perfect
tablet computer. How large would the screen be? Would you rather have a longer-
lasting battery, even if it means having a heavier unit? How heavy would be too
heavy? Would you rather have low cost or fast performance? Should the battery be
consumer replaceable?

	 6.	 Pick your favorite computer language and write a small program. After compiling the
program, see if you can determine the ratio of source code instructions to the machine
language instructions generated by the compiler. If you add one line of source code,
how does that affect the machine language program? Try adding different source code
instructions, such as an add and then a multiply. How does the size of the machine
code file change with the different instructions? Comment on the result.

	 7.	 Respond to the idea presented in Section 1.5: If invented today, what name do you think
would be given to the computer? Give at least one good reason for your answer.

	 8.	 Briefly explain two breakthroughs in the history of computing.

	 9.	 Would it be possible to fool people with an automaton like the Mechanical Turk today?
If you were to try to create a Turk today, how would it differ from the eighteenth-
century version?

	 ◆ 10.	 Suppose a transistor on an integrated circuit chip were 2 microns in size. According
to Moore’s Law, how large would that transistor be in 2 years? How is Moore’s Law
relevant to programmers?

	 11.	 What circumstances helped the IBM PC become so successful?

	 12.	 List five applications of personal computers. Is there a limit to the applications of
computers? Do you envision any radically different and exciting applications in the
near future? If so, what?

	 13.	 In the von Neumann model, explain the purpose of the:

	 a)	 processing unit

	 b)	 program counter

54     Chapter 1    /   Introduction

9781284033144_CH01.indd 54 1/15/14 8:20 PM

	 14.	 Under the von Neumann architecture, a program and its data are both stored in mem-
ory. It is therefore possible for a program, thinking that a memory location holds a
piece of data when it actually holds a program instruction, to accidentally (or on pur-
pose) modify itself. What implications does this present to you as a programmer?

	 15.	 Explain why modern computers consist of multiple levels of virtual machines.

	 16.	 Explain the three main types of Cloud computing platforms.

	 17.	 What are the challenges facing organizations that wish to move to a Cloud platform?
What are the risks and benefits?

	 18.	 Does Cloud computing eliminate all of an organization’s concerns about its computing
infrastructure?

	 19.	 Explain what it means to “fetch” an instruction.

	 20.	 Read a popular local newspaper and search through the job openings. (You can also
check some of the more popular online career sites.) Which jobs require specific hard-
ware knowledge? Which jobs imply knowledge of computer hardware? Is there any
correlation between the required hardware knowledge and the company or its location?

	 21.	 List and describe some common uses and some not-so-common uses of computers in
business and other sectors of society.

	 22.	 The technologist’s notion of Moore’s Law is that the number of transistors per chip
doubles approximately every 18 months. In the 1990s, Moore’s Law started to be
described as the doubling of microprocessor power every 18 months. Given this new
variation of Moore’s Law, answer the following:

	 a)	 After successfully completing your computer organization and architecture class,
you have a brilliant idea for a new chip design that would make a processor six
times faster than the fastest ones on the market today. Unfortunately, it will take
you four and a half years to save the money, create the prototype, and build a fin-
ished product. If Moore’s Law holds, should you spend your money developing
and producing your chip or invest in some other venture?

	 b)	 Suppose we have a problem that currently takes 100,000 hours of computer time
using current technology to solve. Which of the following would give us the solu-
tion first: (1) Replace the algorithm used in the current solution with one that runs
twice as fast and run it on the current technology, or (2) Wait 3 years, assuming
Moore’s Law doubles the performance of a computer every 18 months, and find
the solution using the current algorithm with the new technology?

	 23.	 What are the limitations of Moore’s Law? Why can’t this law hold forever? Explain.

	 24.	 What are some technical implications of Moore’s Law? What effect does it have on
your future?

	 25.	 Do you share Dr. Ferrucci’s opinion that all computers will become like Watson some-
day? If you had a tablet-sized Watson, what would you do with it?

Exercises      55

9781284033144_CH01.indd 55 1/15/14 8:20 PM

9781284033144_CH01.indd 56 1/15/14 8:20 PM

