© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

his fifth edition of Foundations of Algorithms retains the features
that made the previous editions successful. As in those editions,
I still use pseudocode and not actual C++ code. The presentation
of complex algorithms using all the details of any programming
language would only cloud the students’ understanding of the algorithms.
Furthermore, the pseudocode should be understandable to someone versed
in any high-level language, which means it should avoid details specific to
any one language as much as possible. Significant deviations from C++ are
discussed on pages 5-7 of the text. This text is about designing algorithms,
complexity analysis of algorithms, and computational complexity (analysis
of problems). It does not cover other types of analyses, such as analysis of
correctness. My motivation for writing this book was my inability to find
a text that rigorously discusses complexity analysis of algorithms, yet is
accessible to computer science students at mainstream universities such as
Northeastern Illinois University. The majority of Northeastern’s students
have not studied calculus, which means that they are not comfortable with
abstract mathematics and mathematical notation. The existing texts that
I know of use notation that is fine for a mathematically sophisticated
student, but is a bit terse for Northeastern’s student body.
To make this text more accessible, I do the following:

assume that the student’s mathematics background includes only
college algebra and discrete structures;

e use more English description than is ordinarily used to explain mathe-
matical concepts;

give more detail in formal proofs than is usually done;

provide many examples.

This text is targeted to a one-semester upper-level undergraduate or
graduate course in the design and analysis of algorithms. It is intended to
provide students with a basic of understanding of how to write and analyze



vi

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

PREFACE

algorithms and to impart to them the skills needed to write algorithms using
the standard algorithm design strategies. Previously, these included divide-
and-conquer, dynamic programming, the greedy approach, backtracking,
and branch-and-bound. However, in recent years the use of genetic algo-
rithms has become increasingly important to the computer scientist. Yet
a student would only be introduced to such algorithms if the student took
a course related to artificial intelligence. There is nothing inherent in genetic
algorithms that relegates them to the domain of artificial intelligence.
So, to better provide a repertoire of current useful techniques, I have added
a chapter on genetic algorithms and genetic programming in this edition.

Because the vast majority of complexity analysis requires only a knowl-
edge of finite mathematics, in most of the discussions I am able to assume
only a background in college algebra and discrete structures. That is, for the
most part, I do not find it necessary to rely on any concepts learned only
in a calculus course. Often students without a calculus background are not
yet comfortable with mathematical notation. Therefore, wherever possible,
I introduce mathematical concepts (such as “big O”) using more English
description and less notation than is ordinarily used. It is no mean task
finding the right mix of these two; a certain amount of notation is neces-
sary to make a presentation lucid, whereas too much vexes many students.
Judging from students’ responses, I have found a good mix.

This is not to say that I cheat on mathematical rigor. I provide for-
mal proofs for all results. However, I give more detail in the presentation of
these proofs than is usually done, and I provide a great number of examples.
By seeing concrete cases, students can often more easily grasp a theoret-
ical concept. Therefore, if students who do not have strong mathematical
backgrounds are willing to put forth sufficient effort, they should be able to
follow the mathematical arguments and thereby gain a deeper grasp of the
subject matter. Furthermore, I do include material that requires knowledge
of calculus (such as the use of limits to determine order and proofs of some
theorems). However, students do not need to master this material to under-
stand the rest of the text. Material that requires calculus is marked with

a @ symbol in the table of contents and in the margin of the text; material
that is inherently more difficult than most of the text but that requires no

extra mathematical background is marked with a @ symbol.

Prerequisites

As mentioned previously, I assume that the student’s background in math-
ematics includes only college algebra and finite mathematics. The actual
mathematics that is required is reviewed in Appendix A. For computer
science background, I assume that the student has taken a data structures
course. Therefore, material that typically appears in a data structures text
is not presented here.



© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

PREFACE vii

Chapter Contents

For the most part, I have organized this text by technique used to solve prob-
lems, rather than by application area. I feel that this organization makes the
field of algorithm design and analysis appear more coherent. Furthermore,
students can more readily establish a repertoire of techniques that they can
investigate as possible ways to solve a new problem. The chapter contents
are as follows:

e Chapter 1 is an introduction to the design and analysis of algorithms. It
includes both an intuitive and formal introduction to the concept of order.

e Chapter 2 covers the divide-and-conquer approach to designing algo-
rithms.

e Chapter 3 presents the dynamic programming design method. I discuss
when dynamic programming should be used instead of divide-and-conquer.

o Chapter 4 discusses the greedy approach and ends with a comparison of
the dynamic programming and greedy approaches to solving optimization
problems.

e Chapters 5 and 6 cover backtracking and branch-and-bound algorithms
respectively.

o In Chapter 7 I switch from analyzing algorithms to computational
complexity, which is the analysis of problems. I introduce computation
complexity by analyzing the Sorting Problem. I chose that problem
because of its importance, because there are such a large variety of sorting
algorithms, and, most significantly, because there are sorting algorithms
that perform about as well as the lower bound for the Sorting Problem
(as far as algorithms that sort only by comparisons of keys). After compar-
ing sorting algorithms, I analyze the problem of sorting by comparisons
of keys. The chapter ends with Radix Sort, which is a sorting algorithm
that does not sort by comparison keys.

e In Chapter 8 I further illustrate computational complexity by analyzing
the Searching Problem. I analyze both the problem of searching for a key
in a list and the Selection Problem, which is the problem of finding the
kth-smallest key in a list.

o Chapter 9 is devoted to intractability and the theory of NP. To keep
this text accessible yet rigorous, I give a more complete discussion of
this material than is usually given in an algorithms text. I start out by
explicitly drawing the distinction between problems for which polynomial-
time algorithms have been found, problems that have been proven to be
intractable, and problems that have not been proven to be intractable
but for which polynomial-time algorithms have never been found. I then
discuss the sets P and NP, NP-complete problems, and NP-equivalent
problems. I have found that students are often left confused if they do
not explicitly see the relationships among these sets. I end the chapter
with a discussion of approximation algorithms.



viii

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

PREFACE

e Chapter 10 covers genetic algorithms and genetic programming. I pro-
vide both the theory and practical applications such as a financial trading
algorithm.

e Chapter 11 covers number-theoretic algorithms, including Euclid’s algo-
rithm, and the new polynomial-time algorithm for determining whether
a number is prime.

e Chapter 12 covers an introduction to parallel algorithms, including
parallel architectures and the PRAM model.

o Appendix A reviews the mathematics that is necessary for understand-
ing the text.

o Appendix B covers techniques for solving recurrences. The results in
Appendix B are used in our analyses of divide-and-conquer algorithms in
Chapter 2.

e Appendix C presents a disjoint set data structure that is needed to
implement two algorithms in Chapter 4.

Pedagogy

To motivate the student, I begin each chapter with a story that relates
to the material in the chapter. In addition, I use many examples and end
the chapters with ample exercises, which are grouped by section. Follow-
ing the section exercises are supplementary exercises that are often more
challenging.

To show that there is more than one way to attack a problem, I solve
some problems using more than one technique. For example, I solve the
Traveling Salesperson Problem using dynamic programming, branch-and-
bound, and an approximation algorithm. I solve the 0-1 Knapsack Problem
using dynamic programming, backtracking, and branch-and-bound. To fur-
ther integrate the material, I present a theme that spans several chapters,
concerning a salesperson named Nancy who is looking for an optimal tour
for her sales route.

Course Outlines

As mentioned previously this text is intended for an upper-level undergrad-
uate or graduate course in algorithms.

In a one semester course I recommend covering the following material
in this order:

Chapter 1: All

Appendix B: Sections B.1, B.3

Chapter 2: Sections 2.1-2.5, 2.8
Chapter 3: Sections 3.1-3.4, 3.6
Chapter 4: Sections 4.1, 4.2, 4.4
Chapter 5: Sections 5.1, 5.2, 5.4, 5.6, 5.7
Chapter 6: Sections 6.1, 6.2



© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

PREFACE ix

Chapter 7: Sections 7.1-7.5, 7.7, 7.8.1, 7.8.2, 7.9
Chapter 8: Sections 8.1.1, 8.5.1, 8.5.2

Chapter 9: Sections 9.1-9.4

Chapter 10: Sections 10.1-10.3.2

Chapters 2-6 contain several sections, each solving a problem using the
design method presented in the chapter. I cover the ones of most interest
to us, but you are free to choose any of the sections.

You may not be able to cover any of Chapters 11 and 12. However, the
material in Chapter 12 is quite accessible once students have studies the
first ten chapters. Students with a solid mathematics background, such as
that obtained by studying calculus, should be able to read Chapter 11 on
their own.

Instructor Resources

An Instructor’s Manual, PowerPoint presentations, and complete solutions
manual are available for qualified instructors. Jones & Bartlett Learning
reserves the right to evaluate all requests.

Acknowledgments

I would like to thank all those individuals who read the original manuscript
and provided many useful suggestions. In particular, I thank my colleagues
William Bultman, Jack Hade, Mary and Jim Kenevan, Stuart Kurtz, Don
La Budde, and Miguel Vian, all of whom quite readily and thoroughly
reviewed whatever was asked of them. I further thank the academic and
professional peer reviewers, who made this a far better text through their
insightful critiques. Many of them certainly did a much more thorough
job than we would have expected. They include David D. Berry, Xavier
University; David W. Boyd, Valdosta State University; Vladimir Drobot,
San Jose State University; Dan Hirschberg, University of California at Irvine;
Xia Jiang, Northeastern Illinois University; Raghu Karinthi, West Virginia
University; Peter Kimmel, Northeastern Illinois University; C. Donald La
Budde, Northeastern Illinois University; Y. Daniel Liang, Indiana Purdue
University at Fort Wayne; David Magagnosc, Drexel University; Robert
J. McGlinn, Southern Illinois University at Carbondale; Laurie C. Murphy,
University of Mississippi; Paul D. Phillips, Mount Mercy College; H. Norton
Riley, California State Polytechnic University, Pomona; Majid Sarrafzadeh,
Northwestern University; Cliff Shaffer, Virginia Polytechnical Institute and
State University; Nancy Van Cleave, Texas Tech University; and William
L. Ziegler, State University of New York, Binghamton. Finally, I would
like to thank Taylor and Francis, in particular Randi Cohen, for allowing
me to include material from my 2012 text Contemporary Artificial Intelli-
gence in this text’s new Chapter 10, titled Genetic Algorithms and Genetic
Programming.



© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

PREFACE

Errors

There are sure to be some errors in an endeavor of this magnitude. If you
find any errors or have any suggestions for improvements, I would certainly
like to hear from you. Please send your comments to Rich Neapolitan.

Email: RE-Neapolitan@neiu.edu. Thanks.
RPN





