
i
i

“9781284049190 CH01 Printer” — 2014/1/30 — 12:21 — page 1 — #1 i
i

i
i

i
i

Chapter 1
Algorithms: Efficiency,

Analysis, and Order

T his text is about techniques for solving problems using a computer.
By “technique” we do not mean a programming style or a pro-
gramming language but rather the approach or methodology used
to solve a problem. For example, suppose Barney Beagle wants to

find the name “Collie, Colleen” in the phone book. One approach is to check
each name in sequence, starting with the first name, until “Collie, Colleen”
is located. No one, however, searches for a name this way. Instead, Barney
takes advantage of the fact that the names in the phone book are sorted
and opens the book to where he thinks the C’s are located. If he goes too
far into the book, he thumbs back a little. He continues thumbing back
and forth until he locates the page containing “Collie, Colleen.” You may
recognize this second approach as a modified binary search and the first
approach as a sequential search. We discuss these searches further in Sec-
tion 1.2. The point here is that we have two distinct approaches to solving
the problem, and the approaches have nothing to do with a programming
language or style. A computer program is simply one way to implement
these approaches.

Chapters 2 through 6 discuss various problem-solving techniques and
apply those techniques to a variety of problems. Applying a technique to a
problem results in a step-by-step procedure for solving the problem. This
step-by-step procedure is called an algorithm for the problem. The pur-
pose of studying these techniques and their applications is so that, when
confronted with a new problem, you have a repertoire of techniques to con-
sider as possible ways to solve the problem. We will often see that a given
problem can be solved using several techniques but that one technique
results in a much faster algorithm than the others. Certainly, a modified
binary search is faster than a sequential search when it comes to finding
a name in a phone book. Therefore, we will be concerned not only with
determining whether a problem can be solved using a given technique but
also with analyzing how efficient the resulting algorithm is in terms of time

1

© Jones & Bartlett Learning LLC, an Ascend Learning Company. NOT FOR SALE OR DISTRIBUTION.© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

i
i

“9781284049190 CH01 Printer” — 2014/1/30 — 12:21 — page 2 — #2 i
i

i
i

i
i

2 Chapter 1 Algorithms: Efficiency, Analysis, and Order

and storage. When the algorithm is implemented on a computer, time means
CPU cycles and storage means memory. You may wonder why efficiency
should be a concern, because computers keep getting faster and memory
keeps getting cheaper. In this chapter, we discuss some fundamental con-
cepts necessary to the material in the rest of the text. Along the way, we
show why efficiency always remains a consideration, regardless of how fast
computers get and how cheap memory becomes.

1.1 Algorithms

So far we have mentioned the words “problem,” “solution,” and “algorithm.”
Most of us have a fairly good idea of what these words mean. However, to lay
a sound foundation, let’s define these terms concretely.

A computer program is composed of individual modules, understand-
able by a computer, that solve specific tasks (such as sorting). Our concern
in this text is not the design of entire programs, but rather the design of
the individual modules that accomplish the specific tasks. These specific
tasks are called problems. Explicitly, we say that a problem is a question
to which we seek an answer. Examples of problems follow.

E x a m p l e 1.1 The following is an example of a problem:

Sort a list S of n numbers in nondecreasing order. The answer is
the numbers in sorted sequence.

By a list we mean a collection of items arranged in a particular
sequence. For example,

S = [10, 7, 11, 5, 13, 8]

is a list of six numbers in which the first number is 10, the second is 7,
and so on. In Example 1.1 we say the list is to be sorted in “nondecreasing
order” instead of increasing order to allow for the possibility that the same
number may appear more than once in the list.

E x a m p l e 1.2 The following is an example of a problem:

Determine whether the number x is in the list S of n numbers. The
answer is yes if x is in S and no if it is not.

© Jones & Bartlett Learning LLC, an Ascend Learning Company. NOT FOR SALE OR DISTRIBUTION.© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

i
i

“9781284049190 CH01 Printer” — 2014/1/30 — 12:21 — page 3 — #3 i
i

i
i

i
i

1.1 Algorithms 3

A problem may contain variables that are not assigned specific values
in the statement of the problem. These variables are called parameters
to the problem. In Example 1.1 there are two parameters: S (the list)
and n (the number of items in S). In Example 1.2 there are three para-
meters: S, n, and the number x. It is not necessary in these two exam-
ples to make n one of the parameters because its value is uniquely
determined by S. However, making n a parameter facilitates our descriptions
of problems.

Because a problem contains parameters, it represents a class of prob-
lems, one for each assignment of values to the parameters. Each specific
assignment of values to the parameters is called an instance of the prob-
lem. A solution to an instance of a problem is the answer to the question
asked by the problem in that instance.

E x a m p l e 1.3 An instance of the problem in Example 1.1 is

S = [10, 7, 11, 5, 13, 8] and n = 6.

The solution to this instance is [5, 7, 8, 10, 11, 13].

E x a m p l e 1.4 An instance of the problem in Example 1.2 is

S = [10, 7, 11, 5, 13, 8], n = 6, and x = 5.

The solution to this instance is, “yes, x is in S.”

We can find the solution to the instance in Example 1.3 by inspecting S
and allowing the mind to produce the sorted sequence by cognitive steps
that cannot be specifically described. This can be done because S is so small
that at a conscious level, the mind seems to scan S rapidly and produce
the solution almost immediately (and therefore one cannot describe the
steps the mind follows to obtain the solution). However, if the instance had
a value of 1,000 for n, a person would not be able to use this method,
and it certainly would not be possible to convert such a method of sorting
numbers to a computer program. To produce a computer program that can
solve all instances of a problem, we must specify a general step-by-step
procedure for producing the solution to each instance. This step-by-step
procedure is called an algorithm. We say that the algorithm solves the
problem.

© Jones & Bartlett Learning LLC, an Ascend Learning Company. NOT FOR SALE OR DISTRIBUTION.© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

i
i

“9781284049190 CH01 Printer” — 2014/1/30 — 12:21 — page 4 — #4 i
i

i
i

i
i

4 Chapter 1 Algorithms: Efficiency, Analysis, and Order

E x a m p l e 1.5 An algorithm for the problem in Example 1.2 is as follows. Starting with
the first item in S, compare x with each item in S in sequence until x is
found or until S is exhausted. If x is found, answer yes; if x is not found,
answer no.

We can communicate any algorithm in the English language as we did
in Example 1.5. However, there are two drawbacks to writing algorithms
in this manner. First, it is difficult to write a complex algorithm this way,
and even if we did, a person would have a difficult time understanding
the algorithm. Second, it is not clear how to create a computer language
description of an algorithm from an English language description of it.

Because C++ is a language with which students are currently familiar,
we use a C++-like pseudocode to write algorithms. Anyone with program-
ming experience in an Algol-like imperative language such as C, Pascal, or
Java should have no difficulty with the pseudocode.

We illustrate the pseudocode with an algorithm that solves a general-
ization of the problem in Example 1.2. For simplicity, Examples 1.1 and 1.2
were stated for numbers. However, in general we want to search and sort
items that come from any ordered set. Often each item uniquely identifies
a record, and therefore we commonly call the items keys. For example, a
record may consist of personal information about an individual and have
the person’s social security number as its key. We write searching and sort-
ing algorithms using the defined data type keytype for the items. It means
the items are from any ordered set.

The following algorithm represents the list S by an array and, instead of
merely returning yes or no, returns x’s location in the array if x is in S and
returns 0 otherwise. This particular searching algorithm does not require
that the items come from an ordered set, but we still use our standard data
type keytype.

I Algorithm 1.1 Sequential Search

Problem: Is the key x in the array S of n keys?
Inputs (parameters): positive integer n, array of keys S indexed from 1 to n,
and a key x.
Outputs: location, the location of x in S (0 if x is not in S).

void s e q s e a r c h (int n ,
const keytype S [] ,
keytype x ,
index& l o c a t i o n)

© Jones & Bartlett Learning LLC, an Ascend Learning Company. NOT FOR SALE OR DISTRIBUTION.© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

i
i

“9781284049190 CH01 Printer” — 2014/1/30 — 12:21 — page 5 — #5 i
i

i
i

i
i

1.1 Algorithms 5

{
l o c a t i o n = 1 ;
while (l o c a t i o n <= n && S [l o c a t i o n] != x)

l o c a t i o n ++;
i f (l o c a t i o n > n)

l o c a t i o n =0;
}

The pseudocode is similar, but not identical, to C++. A notable excep-
tion is our use of arrays. C++ allows arrays to be indexed only by integers
starting at 0. Often we can explain algorithms more clearly using arrays
indexed by other integer ranges, and sometimes we can explain them best
using indices that are not integers at all. So in pseudocode we allow arbi-
trary sets to index our arrays. We always specify the ranges of indices in
the Inputs and Outputs specifications for the algorithm. For example, in
Algorithm 1.1 we specified that S is indexed from 1 to n. Since we are used
to counting the items in a list starting with 1, this is a good index range
to use for a list. Of course, this particular algorithm can be implemented
directly in C++ by declaring

keytype S [n + 1] ;

and simply not using the S[0] slot. Hereafter, we will not discuss the
implementation of algorithms in any particular programming language. Our
purpose is only to present algorithms clearly so they can be readily under-
stood and analyzed.

There are two other significant deviations from C++ regarding arrays
in pseudocode. First, we allow variable-length two-dimensional arrays as
parameters to routines. See, for example, Algorithm 1.4 on page 8. Second,
we declare local variable-length arrays. For example, if n is a parameter
to procedure example, and we need a local array indexed from 2 to n, we
declare

void example (int n)
{

keytype S [2 . . n] ;
...

}

The notation S[2..n] means an array S indexed from 2 to n is strictly
pseudocode; that is, it is not part of the C++ language.

Whenever we can demonstrate steps more succinctly and clearly using
mathematical expressions or English-like descriptions than we could using
actual C++ instructions, we do so. For example, suppose some instructions

© Jones & Bartlett Learning LLC, an Ascend Learning Company. NOT FOR SALE OR DISTRIBUTION.© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

i
i

“9781284049190 CH01 Printer” — 2014/1/30 — 12:21 — page 6 — #6 i
i

i
i

i
i

6 Chapter 1 Algorithms: Efficiency, Analysis, and Order

are to be executed only if a variable x is between the values low and high.
We write

i f (low ≤ x ≤ high) { i f (low <= x && x <= high){
... rather than

...
} }

Suppose we wanted the variable x to take the value of variable y and y
to take the value of x. We write

temp = x ;
exchange x and y ; rather than x = y ;

y = temp ;

Besides the data type keytype, we often use the following, which also
are not predefined C++ data types:

Data Type Meaning
index An integer variable used as an index.
number A variable that could be defined as integral (int) or real (float).
bool A variable that can take the values “true” or “false.”

We use the data type number when it is not important to the algorithm
whether the numbers can take any real values or are restricted to the
integers.

Sometimes we use the following nonstandard control structure:

repeat (n times){
...

}

This means repeat the code n times. In C++ it would be necessary to
introduce an extraneous control variable and write a for loop. We only use
a for loop when we actually need to refer to the control variable within
the loop.

When the name of an algorithm seems appropriate for a value it returns,
we write the algorithm as a function. Otherwise, we write the algorithm as
a procedure (void function in C++) and use reference parameters (that is,
parameters that are passed by address) to return values. If the parameter
is not an array, it is declared with an ampersand (&) at the end of the
data type name. For our purposes, this means that the parameter contains
a value returned by the algorithm. Because arrays are automatically passed
by reference in C++ and the ampersand is not used in C++ when passing
arrays, we do not use the ampersand to indicate that an array contains
values returned by thc algorithm. Instead, since the reserved word const

© Jones & Bartlett Learning LLC, an Ascend Learning Company. NOT FOR SALE OR DISTRIBUTION.© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

i
i

“9781284049190 CH01 Printer” — 2014/1/30 — 12:21 — page 7 — #7 i
i

i
i

i
i

1.1 Algorithms 7

is used in C++ to prevent modification of a passed array, we use const to
indicate that the array does not contain values returned by the algorithm.

In general, we avoid features peculiar to C++ so that the pseudocode is
accessible to someone who knows only another high-level language. However,
we do write instructions like i++, which means increment i by 1.

If you do not know C++, you may find the notation used for logical
operators and certain relational operators unfamiliar. This notation is as
follows:

Operator C++ symbol
and &&

or ‖
not !

Comparison C++ code
x = y (x == y)
x 6= y (x! = y)
(x ≤ y) (x <= y)
x ≥ y (x >= y)

More example algorithms follow. The first shows the use of a function.
While procedures have the keyword void before the routine’s name, func-
tions have the data type returned by the function before the routine’s name.
The value is returned in the function via the return statement.

I Algorithm 1.2 Add Array Members

Problem: Add all the numbers in the array S of n numbers.
Inputs: positive integer n, array of numbers S indexed from 1 to n.
Outputs: sum, the sum of the numbers in S.

number sum (int n , const number S [])
{

index i ;
number r e s u l t ;

r e s u l t = 0 ;
for (i = 1 ; i <= n ; i++)

r e s u l t = r e s u l t + S [i] ;
return r e s u l t ;

}

We discuss many sorting algorithms in this text. A simple one follows.

I Algorithm 1.3 Exchange Sort

Problem: Sort n keys in nondecreasing order.
Inputs: positive integer n, array of keys S indexed from 1 to n.
Outputs: the array S containing the keys in nondecreasing order.

© Jones & Bartlett Learning LLC, an Ascend Learning Company. NOT FOR SALE OR DISTRIBUTION.© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

i
i

“9781284049190 CH01 Printer” — 2014/1/30 — 12:21 — page 8 — #8 i
i

i
i

i
i

8 Chapter 1 Algorithms: Efficiency, Analysis, and Order

void exchangesor t (int n , keytype S [])
{

index i , j ;
for (i =1; i<=n ; i++)

for (j=i +1; j<=n ; j++)
i f (S [j] < S [i])

exchange S [i] and S [j] ;
}

The instruction

exchange S [i] and S [j] ;

means that S[i] is to take the value of S[j], and S[j] is to take the value of S[i].
This command looks nothing like a C++ instruction; whenever we can
state something more simply by not using the details of C++ instructions
we do so. Exchange Sort works by comparing the number in the ith slot
with the numbers in the (i + 1)st through nth slots. Whenever a number
in a given slot is found to be smaller than the one in the ith slot, the two
numbers are exchanged. In this way, the smallest number ends up in the
first slot after the first pass through for-i loop, the second-smallest number
ends up in the second slot after the second pass, and so on.

The next algorithm does matrix multiplication. Recall that if we have
two 2× 2 matrices,

A =

[
a11 a12

a21 a22

]
and B =

[
b11 b12

b21 b22

]
,

their product C = A×B is given by

cij = ai1b1j + ai2b2j .

For example,[
2 3
4 1

]
×

[
5 7
6 8

]
=

[
2× 5 + 3× 6 2× 7 + 3× 8
4× 5 + 1× 6 4× 7 + 1× 8

]
=

[
28 38
26 36

]
.

In general, if we have two n×n matrices A and B, their product C is given by

cij =
n∑

k=1

aikbkj for 1 ≤ i, j ≤ n.

Directly from this definition, we obtain the following algorithm for matrix
multiplication.

© Jones & Bartlett Learning LLC, an Ascend Learning Company. NOT FOR SALE OR DISTRIBUTION.© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

i
i

“9781284049190 CH01 Printer” — 2014/1/30 — 12:21 — page 9 — #9 i
i

i
i

i
i

1.2 The Importance of Developing Efficient Algorithms 9

I Algorithm 1.4 Matrix MuItiplication

Problem: Determine the product of two n× n matrices.
Inputs: a positive integer n, two-dimensional arrays of numbers A and B,
each of which has both its rows and columns indexed from 1 to n.
Outputs: a two-dimensional array of numbers C, which has both its rows
and columns indexed from 1 to n, containing the product of A and B.

void matrixmult (int n ,
const number A [] [] ,
const number B [] [] ,

number C [] [])
{

index i , j , k ;

for (i =1; i<=n ; i++)
for (j =1; j<=n ; j ++){

C [i] [j] = 0 ;
for (k=1; k<=n ; k++)

C [i] [j] = C [i] [j] + A [i] [k] ∗ B [k] [j] ;
}

}

1.2 The Importance of Developing
Efficient Algorithms

Previously we mentioned that, regardless of how fast computers become or
how cheap memory gets, efficiency will always remain an important consid-
eration. Next we show why this is so by comparing two algorithms for the
same problem.

• 1.2.1 Sequential Search Versus Binary Search

Earlier we mentioned that the approach used to find a name in the phone
book is a modified binary search, and it is usually much faster than a
sequential search. Next we compare algorithms for the two approaches to
show how much faster the binary search is.

We have already written an algorithm that does a sequential search—
namely, Algorithm 1.1. An algorithm for doing a binary search of an array
that is sorted in nondecreasing order is similar to thumbing back and forth
in a phone book. That is, given that we are searching for x, the algorithm
first compares x with the middle item of the array. If they are equal, the
algorithm is done. If x is smaller than the middle item, then x must be in the

© Jones & Bartlett Learning LLC, an Ascend Learning Company. NOT FOR SALE OR DISTRIBUTION.© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

i
i

“9781284049190 CH01 Printer” — 2014/1/30 — 12:21 — page 10 — #10 i
i

i
i

i
i

10 Chapter 1 Algorithms: Efficiency, Analysis, and Order

first half of the array (if it is present at all), and the algorithm repeats the
searching procedure on the first half of the array. (That is, x is compared
with the middle item of the first half of the array. If they are equal, the
algorithm is done, etc.) If x is larger than the middle item of the array,
the search is repeated on the second half of the array. This procedure is
repeated until x is found or it is determined that x is not in the array. An
algorithm for this method follows.

I Algorithm 1.5 Binary Search

Problem: Determine whether x is in the sorted array S of n keys.
Inputs: positive integer n, sorted (nondecreasing order) array of keys S
indexed from 1 to n, a key x.
Outputs: location, the location of x in S (0 if x is not in S).

void b i n s e a r c h (int n ,
const keytype S [] ,
keytype x ,
index& l o c a t i o n)

{
index low , high , mid ;

low = 1 ; high = n ;
l o c a t i o n = 0 ;
while (low <= high && l o c a t i o n = = 0){

mid = b(low + high)/2c ;
i f (x = = S [mid])

l o c a t i o n = mid ;
else i f (x < S [mid])

high = mid − 1 ;
else

low = mid + 1 ;
}

}

Let’s compare the work done by Sequential Search and Binary Search.
For focus we will determine the number of comparisons done by each algo-
rithm. If the array S contains 32 items and x is not in the array, Algorithm 1.1
(Sequential Search) compares x with all 32 items before determining that
x is not in the array. In general, Sequential Search does n comparisons to
determine that x is not in an array of size n. It should be clear that this
is the largest number of comparisons Sequential Search ever makes when
searching an array of size n. That is, if x is in the array, the number of
comparisons is no greater than n.

© Jones & Bartlett Learning LLC, an Ascend Learning Company. NOT FOR SALE OR DISTRIBUTION.© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

i
i

“9781284049190 CH01 Printer” — 2014/1/30 — 12:21 — page 11 — #11 i
i

i
i

i
i

1.2 The Importance of Developing Efficient Algorithms 11

Next consider Algorithm 1.5 (Binary Search). There are two compari-
sons of x with S[mid] in each pass through the while loop (except when x is
found). In an efficient assembler language implementation of the algorithm,
x would be compared with S[mid] only once in each pass, the result of that
comparison would set the condition code, and the appropriate branch would
take place based on the value of the condition code. This means that there
would be only one comparison of x with S[mid] in each pass through the
while loop. We will assume the algorithm is implemented in this manner.
With this assumption, Figure 1.1 shows that the algorithm does six com-
parisons when x is larger than all the items in an array of size 32. Notice
that 6 = lg 32 + 1. By “lg” we mean log2. The log2 is encountered so often
in analysis of algorithms that we reserve the special symbol lg for it. You
should convince yourself that this is the largest number of comparisons
Binary Search ever does. That is, if x is in the array, or if x is smaller than all
the array items, or if x is between two array items, the number of
comparisons is no greater than when x is larger than all the array items.

Suppose we double the size of the array so that it contains 64 items.
Binary Search does only one comparison more because the first comparison
cuts the array in half, resulting in a subarray of size 32 that is searched.
Therefore, when x is larger than all the items in an array of size 64, Binary
Search does seven comparisons. Notice that 7 = lg 64 + 1. In general, each
time we double the size of the array we add only one comparison. Therefore,
if n is a power of 2 and x is larger than all the items in an array of size n,
the number of comparisons done by Binary Search is lg n + 1.

Table 1.1 compares the number of comparisons done by Sequential
Search and Binary Search for various values of n, when x is larger than
all the items in the array. When the array contains around 4 billion items
(about the number of people in the world), Binary Search does only 33
comparisons, whereas Sequential Search compares x with all 4 billion items.
Even if the computer was capable of completing one pass through the while
loop in a nanosecond (one billionth of a second), Sequential Search would

Figure 1.1

The array items
that Binary Search
compares with x

when x is larger
than all the items
in an array of
size 32. The items
are numbered
according to the
order in which they
are compared.

S[16]

1st

S[24]

2nd

S[28]

3rd

S[30]

4th

S[31]

5th

S[32]

6th

© Jones & Bartlett Learning LLC, an Ascend Learning Company. NOT FOR SALE OR DISTRIBUTION.© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

i
i

“9781284049190 CH01 Printer” — 2014/1/30 — 12:21 — page 12 — #12 i
i

i
i

i
i

12 Chapter 1 Algorithms: Efficiency, Analysis, and Order

• Table 1.1 The number of comparisons done by Sequential Search and Binary Search when
x is larger than all the array items

Number of Comparisons Number of Comparisons
Array Size by Sequential Search by Binary Search

128 128 8

1, 024 1, 024 11

1, 048, 576 1, 048, 576 21

4, 294, 967, 296 4, 294, 967, 296 33

take 4 seconds to determine that x is not in the array, whereas Binary
Search would make that determination almost instantaneously. This differ-
ence would be significant in an online application or if we needed to search
for many items.

For convenience, we considered only arrays whose sizes were powers of
2 in the previous discussion of Binary Search. In Chapter 2 we will return
to Binary Search as an example of the divide-and-conquer approach, which
is the focus of that chapter. At that time we will consider arrays whose sizes
can be any positive integer.

As impressive as the searching example is, it is not absolutely compelling
because Sequential Search still gets the job done in an amount of time
tolerable to a human life span. Next we will look at an inferior algorithm
that does not get the job done in a tolerable amount of time.

• 1.2.2 The Fibonacci Sequence

The algorithms discussed here compute the nth term of the Fibonacci
sequence, which is defined recursively as follows:

f0 = 0
f1 = 1
fn = fn−1 + fn−2 for n ≥ 2 .

Computing the first few terms, we have

f2 = f1 + f0 = 1 + 0 = 1
f3 = f2 + f1 = 1 + 1 = 2
f4 = f3 + f2 = 2 + 1 = 3
f5 = f4 + f3 = 3 + 2 = 5, etc.

There are various applications of the Fibonacci sequence in computer science
and mathematics. Because the Fibonacci sequence is defined recursively, we
obtain the following recursive algorithm from the definition.

© Jones & Bartlett Learning LLC, an Ascend Learning Company. NOT FOR SALE OR DISTRIBUTION.© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

i
i

“9781284049190 CH01 Printer” — 2014/1/30 — 12:21 — page 13 — #13 i
i

i
i

i
i

1.2 The Importance of Developing Efficient Algorithms 13

I Algorithm 1.6 nth Fibonacci Term (Recursive)

Problem: Determine the nth term in the Fibonacci sequence.
Inputs: a nonnegative integer n.
Outputs: fib, the nth term of the Fibonacci sequence.

int f i b (int n)
{

i f (n <= 1)
return n ;

else
return f i b (n−1) + f i b (n−2);

}

By “nonnegative integer” we mean an integer that is greater than or
equal to 0, whereas by “positive integer” we mean an integer that is strictly
greater than 0. We specify the input to the algorithm in this manner to make
it clear what values the input can take. However, for the sake of avoiding
clutter, we declare n simply as an integer in the expression of the algorithm.
We will follow this convention throughout the text.

Although the algorithm was easy to create and is understandable, it is
extremely inefficient. Figure 1.2 shows the recursion tree corresponding to
the algorithm when computing fib(5). The children of a node in the tree
contain the recursive calls made by the call at the node. For example, to
obtain fib(5) at the top level we need fib(4) and fib(3); then to obtain fib(3)
we need fib(2) and fib(l), and so on. As the tree shows, the function is
inefficient because values are computed over and over again. For example,
fib(2) is computed three times.

How inefficient is this algorithm? The tree in Figure 1.2 shows that the
algorithm computes the following numbers of terms to determine fib(n) for
0 ≤ n ≤ 6:

Number of Terms
n Computed
0 1
1 1
2 3
3 5
4 9
5 15
6 25

The first six values can be obtained by counting the nodes in the subtree
rooted at fib(n) for 1 ≤ n ≤ 5, whereas the number of terms for fib(6) is

© Jones & Bartlett Learning LLC, an Ascend Learning Company. NOT FOR SALE OR DISTRIBUTION.© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

i
i

“9781284049190 CH01 Printer” — 2014/1/30 — 12:21 — page 14 — #14 i
i

i
i

i
i

14 Chapter 1 Algorithms: Efficiency, Analysis, and Order

Figure 1.2

The recursion tree
corresponding to
Algorithm 1.6 when
computing the fifth
Fibonacci term.

fib(1)fib(0)

fib(5)

fib(3) fib(4)

fib(1) fib(2) fib(2) fib(3)

fib(1)fib(0) fib(2)fib(1)

fib(1)fib(0)

the sum of the nodes in the trees rooted at fib(5) and fib(4) plus the one
node at the root. These numbers do not suggest a simple expression like
the one obtained for Binary Search. Notice, however, that in the case of the
first seven values, the number of terms in the tree more than doubles every
time n increases by 2. For example, there are nine terms in the tree when
n = 4 and 25 terms when n = 6. Let’s call T (n) the number of terms in the
recursion tree for n. If the number of terms more than doubled every time
n increased by 2, we would have the following for n even:

T (n) > 2× T (n− 2)
> 2× 2× T (n− 4)
> 2× 2× 2× T (n− 6)

...
> 2× 2× 2× 2× · · · × 2︸ ︷︷ ︸

n/2 terms

× T (0)

Because T (0) = 1, this would mean T (n) > 2n/2. We use induction to show
that this is true for n ≥ 2 even if n is not even. The inequality does not hold
for n = 1 because T (1) = 1, which is less than 21/2. Induction is reviewed
in Section A.3 in Appendix A.

© Jones & Bartlett Learning LLC, an Ascend Learning Company. NOT FOR SALE OR DISTRIBUTION.© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

i
i

“9781284049190 CH01 Printer” — 2014/1/30 — 12:21 — page 15 — #15 i
i

i
i

i
i

1.2 The Importance of Developing Efficient Algorithms 15

I Theorem 1.1

If T (n) is the number of terms in the recursion tree corresponding to
Algorithm 1.6, then, for n ≥ 2,

T (n) > 2n/2.

Proof: The proof is by induction on n.

Induction base: We need two base cases because the induction step assumes
the results of two previous cases. For n = 2 and n = 3, the recursion in
Figure 1.2 shows that

T (2) = 3 > 2 = 22/2

T (3) = 5 > 2.8323 ≈ 23/2

Induction hypothesis: One way to make the induction hypothesis is to assume
that the statement is true for all m < n. Then, in the induction step, show
that this implies that the statement must be true for n. This technique is
used in this proof. Suppose for all m such that 2 ≤ m < n

T (m) > 2m/2.

Induction step: We must show that T (n) > 2n/2. The value of T (n) is the
sum of T (n− 1) and T (n− 2) plus the one node at the root. Therefore,

T (n) = T (n− 1) + T (n− 2) + 1

> 2(n−1)/2 + 2(n−2)/2 + 1 by induction hypothesis

> 2(n−2)/2 + 2(n−2)/2 = 2× 2(n
2)−1 = 2n/2.

We established that the number of terms computed by Algorithm 1.6
to determine the nth Fibonacci term is greater than 2n/2. We will return
to this result to show how inefficient the algorithm is. But first let’s develop
an efficient algorithm for computing the nth Fibonacci term. Recall that
the problem with the recursive algorithm is that the same value is com-
puted over and over. As Figure 1.2 shows, fib(2) is computed three times in
determining fib(5). If when computing a value, we save it in an array, then
whenever we need it later we do not need to recompute it. The following
iterative algorithm uses this strategy.

© Jones & Bartlett Learning LLC, an Ascend Learning Company. NOT FOR SALE OR DISTRIBUTION.© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

i
i

“9781284049190 CH01 Printer” — 2014/1/30 — 12:21 — page 16 — #16 i
i

i
i

i
i

16 Chapter 1 Algorithms: Efficiency, Analysis, and Order

I Algorithm 1.7 nth Fibonacci Term (Iterative)

Problem: Determine the nth term in the Fibonacci sequence.
Inputs: a nonnegative integer n.
Outputs: fib2, the nth term in the Fibonacci sequence.

int f i b 2 (int n)
{

index i ;
int f [0 . . n] ;

f [0] = 0 ;
i f (n > 0)

f [1] = 1 ;
for (i =2; i<=n ; i++)

f [i] = f [i −1] + f [i −2] ;
}
return f [n] ;

}

Algorithm 1.7 can be written without using the array f because only
the two most recent terms are needed in each iteration of the loop. However,
it is more clearly illustrated using the array.

To determine fib2(n), the previous algorithm computes every one of
the first n + 1 terms just once. So it computes n + 1 terms to determine
the nth Fibonacci term. Recall that Algorithm 1.6 computes more than
2n/2 terms to determine the nth Fibonacci term. Table 1.2 compares these
expressions for various values of n. The execution times are based on the
simplifying assumption that one term can be computed in 10−9 second. The
table shows the time it would take Algorithm 1.7 to compute the nth term
on a hypothetical computer that could compute each term in a nanosecond,
and it shows a lower bound on the time it would take to execute Algo-
rithm 1.7. By the time n is 80, Algorithm 1.6 takes at least 18 minutes.
When n is 120, it takes more than 36 years, an amount of time intolerable
compared with a human life span. Even if we could build a computer one
billion times as fast, Algorithm 1.6 would take over 40,000 years to compute
the 200th term. This result can be obtained by dividing the time for the
200th term by one billion. We see that regardless of how fast computers
become, Algorithm 1.6 will still take an intolerable amount of time unless
n is small. On the other hand, Algorithm 1.7 computes the nth Fibonacci
term almost instantaneously. This comparison shows why the efficiency of
an algorithm remains an important consideration regardless of how fast
computers become.

© Jones & Bartlett Learning LLC, an Ascend Learning Company. NOT FOR SALE OR DISTRIBUTION.© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

i
i

“9781284049190 CH01 Printer” — 2014/1/30 — 12:21 — page 17 — #17 i
i

i
i

i
i

1.3 Analysis of Algorithms 17

• Table 1.2 A comparison of Algorithms 1.6 and 1.7

Lower Bound on

Execution Time Execution Time

n n+ 1 2n/2 Using Algorithm 1.7 Using Algorithm 1.6

40 41 1,048,576 41 ns∗ 1048 µs†

60 61 1.1× 109 61 ns 1 s

80 81 1.1× 1012 81 ns 18 min

100 101 1.1× 1015 101 ns 13 days

120 121 1.2× 1018 121 ns 36 years

160 161 1.2× 1024 161 ns 3.8× 107 years

200 201 1.3× 1030 201 ns 4× 1013 years
∗1 ns = 10−9 second.
†1 µs = 10−6 second.

Algorithm 1.6 is a divide-and-conquer algorithm. Recall that the divide-
and-conquer approach produced a very efficient algorithm (Algorithm 1.5:
Binary Search) for the problem of searching a sorted array. As shown in
Chapter 2, the divide-and-conquer approach leads to very efficient algorithms
for some problems, but very inefficient algorithms for other problems. Our
efficient algorithm for computing the nth Fibonacci term (Algorithm 1.7)
is an example of the dynamic programming approach, which is the focus of
Chapter 3. We see that choosing the best approach can be essential.

We showed that Algorithm 1.6 computes at least an exponentially large
number of terms, but could it be even worse? The answer is no. Using the
techniques in Appendix B, it is possible to obtain an exact formula for the
number of terms, and the formula is exponential in n. See Examples B.5
and B.9 in Appendix B for further discussion of the Fibonacci sequence.

1.3 Analysis of Algorithms

To determine how efficiently an algorithm solves a problem, we need to ana-
lyze the algorithm. We introduced efficiency analysis of algorithms when we
compared the algorithms in the preceding section. However, we did those
analyses rather informally. We will now discuss terminology used in analyz-
ing algorithms and the standard methods for doing analyses. We will adhere
to these standards in the remainder of the text.

• 1.3.1 Complexity Analysis

When analyzing the efficiency of an algorithm in terms of time, we do not
determine the actual number of CPU cycles because this depends on the
particular computer on which the algorithm is run. Furthermore, we do

© Jones & Bartlett Learning LLC, an Ascend Learning Company. NOT FOR SALE OR DISTRIBUTION.© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

i
i

“9781284049190 CH01 Printer” — 2014/1/30 — 12:21 — page 18 — #18 i
i

i
i

i
i

18 Chapter 1 Algorithms: Efficiency, Analysis, and Order

not even want to count every instruction executed, because the number of
instructions depends on the programming language used to implement the
algorithm and the way the programmer writes the program. Rather, we
want a measure that is independent of the computer, the programming lan-
guage, the programmer, and all the complex details of the algorithm such
as incrementing of loop indices, setting of pointers, and so forth. We learned
that Algorithm 1.5 is much more efficient than Algorithm 1.1 by comparing
the numbers of comparisons done by the two algorithms for various values
of n, where n is the number of items in the array. This is a standard tech-
nique for analyzing algorithms. In general, the running time of an algorithm
increases with the size of the input, and the total running time is roughly
proportional to how many times some basic operation (such as a compari-
son instruction) is done. We therefore analyze the algorithm’s efficiency by
determining the number of times some basic operation is done as a function
of the size of the input.

For many algorithms it is easy to find a reasonable measure of the
size of the input, which we call the input size. For example, consider
Algorithms 1.1 (Sequential Search), 1.2 (Add Array Members), 1.3 (Exchange
Sort), and 1.5 (Binary Search). In all these algorithms, n, the number of items
in the array, is a simple measure of the size of the input. Therefore, we can
call n the input size. In Algorithm 1.4 (Matrix Multiplication), n, the number
of rows and columns, is a simple measure of the size of the input. Therefore,
we can again call n the input size. In some algorithms, it is more appropriate
to measure the size of the input using two numbers. For example, when the
input to an algorithm is a graph, we often measure the size of the input in
terms of both the number of vertices and the number of edges. Therefore, we
say that the input size consists of both parameters.

Sometimes we must be cautious about calling a parameter the input
size. For example, in Algorithms 1.6 (nth Fibonacci Term, Recursive) and
1.7 (nth Fibonacci Term, Iterative), you may think that n should be called
the input size. However, n is the input; it is not the size of the input. For
this algorithm, a reasonable measure of the size of the input is the number
of symbols used to encode n. If we use binary representation, the input size
will be the number of bits it takes to encode n, which is blg nc + 1. For
example,

n = 13 = 1101︸︷︷︸
4 bits

2

Therefore, the size of the input n = 13 is 4. We gained insight into the
relative efficiency of the two algorithms by determining the number of terms
each computes as a function of n, but still n does not measure the size of
the input. These considerations will be important in Chapter 9, where we
will discuss the input size in more detail. Until then, it will usually suffice
to use a simple measure, such as the number of items in an array, as the
input size.

© Jones & Bartlett Learning LLC, an Ascend Learning Company. NOT FOR SALE OR DISTRIBUTION.© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

i
i

“9781284049190 CH01 Printer” — 2014/1/30 — 12:21 — page 19 — #19 i
i

i
i

i
i

1.3 Analysis of Algorithms 19

After determining the input size, we pick some instruction or group
of instructions such that the total work done by the algorithm is roughly
proportional to the number of times this instruction or group of instruc-
tions is done. We call this instruction or group of instructions the basic
operation in the algorithm. For example, x is compared with an item S
in each pass through the loops in Algorithms 1.1 and 1.5. Therefore, the
compare instruction is a good candidate for the basic operation in each of
these algorithms. By determining how many times Algorithms 1.1 and 1.5
do this basic operation for each value of n, we gained insight into the relative
efficiencies of the two algorithms.

In general, a time complexity analysis of an algorithm is the deter-
mination of how many times the basic operation is done for each value of
the input size. Although we do not want to consider the details of how an
algorithm is implemented, we will ordinarily assume that the basic opera-
tion is implemented as efficiently as possible. For example, we assume that
Algorithm 1.5 is implemented such that the comparison is done just once in
each pass through the while loop. In this way, we analyze the most efficient
implementation of the basic operation.

There is no hard-and-fast rule for choosing the basic operation. It is
largely a matter of judgment and experience. As already mentioned, we
ordinarily do not include the instructions that make up the control struc-
ture. For example, in Algorithm 1.1, we do not include the instructions that
increment and compare the index in order to control the passes through
the while loop. Sometimes it suffices simply to consider one pass through
a loop as one execution of the basic operation. At the other extreme, for
a very detailed analysis, one could consider the execution of each machine
instruction as doing the basic operation once. As mentioned earlier, because
we want our analyses to remain independent of the computer, we will never
do that in this text.

At times we may want to consider two different basic operations. For
example, in an algorithm that sorts by comparing keys, we often want to
consider the comparison instruction and the assignment instruction each
individually as the basic operation. By this we do not mean that these two
instructions together compose the basic operation, but rather that we have
two distinct basic operations, one being the comparison instruction and the
other being the assignment instruction. We do this because ordinarily a
sorting algorithm does not do the same number of comparisons as it does
assignments. Therefore, we can gain more insight into the efficiency of the
algorithm by determining how many times each is done.

Recall that a time complexity analysis of an algorithm determines how
many times the basic operation is done for each value of the input size. In
some cases the number of times it is done depends not only on the input size,
but also on the input’s values. This is the case in Algorithm 1.1 (Sequential
Search). For example, if x is the first item in the array, the basic operation
is done once, whereas if x is not in the array, it is done n times. In other

© Jones & Bartlett Learning LLC, an Ascend Learning Company. NOT FOR SALE OR DISTRIBUTION.© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

i
i

“9781284049190 CH01 Printer” — 2014/1/30 — 12:21 — page 20 — #20 i
i

i
i

i
i

20 Chapter 1 Algorithms: Efficiency, Analysis, and Order

cases, such as Algorithm 1.2 (Add Array Members), the basic operation is
always done the same number of times for every instance of size n. When
this is the case, T (n) is defined as the number of times the algorithm does
the basic operation for an instance of size n. T (n) is called the every-case
time complexity of the algorithm, and the determination of T (n) is called
an every-case time complexity analysis. Examples of every-case time
compiexity analyses follow.

�
�

�

Analysis of
Algorithm 1.2

I Every-Case Time Complexity (Add Array Members)

Other than control instructions, the only instruction in the loop is the
one that adds an item in the array to sum. Therefore, we will call that
instruction the basic operation.

Basic operation: the addition of an item in the array to sum.

Input size: n, the number of items in the array.
Regardless of the values of the numbers in the array, there are n passes
through the for loop. Therefore, the basic operation is always done n
times and

T (n) = n.

�
�

�

Analysis of
Algorithm 1.3

I Every-Case Time CompIexity (Exchange Sort)

As mentioned previously, in the case of an algorithm that sorts by com-
paring keys, we can consider the comparison instruction or the assign-
ment instruction as the basic operation. We will analyze the number of
comparisons here.

Basic operation: the comparison of S[j] with S[i].

Input size: n, the number of items to be sorted.
We must determine how many passes there are through the for-j loop.
For a given n there are always n − 1 passes through the for-i loop. In
the first pass through the for-i loop, there are n− 1 passes through the
for-j loop, in the second pass there are n− 2 passes through the for-j
loop, in the third pass there are n−3 passes through the for-j loop, . . . ,
and in the last pass there is one pass through the for-j loop. Therefore,
the total number of passes through the for-j loop is given by

T (n) = (n− 1) + (n− 2) + (n− 3) + · · ·+ 1 =
(n− 1)n

2
.

The last equality is derived in Example A.1 in Appendix A.

© Jones & Bartlett Learning LLC, an Ascend Learning Company. NOT FOR SALE OR DISTRIBUTION.© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

i
i

“9781284049190 CH01 Printer” — 2014/1/30 — 12:21 — page 21 — #21 i
i

i
i

i
i

1.3 Analysis of Algorithms 21

�
�

�

Analysis of
Algorithm 1.4

I Every-Case Time CompIexity (Matrix Multiplication)

The only instruction in the innermost for loop is the one that does
a multiplication and an addition. It is not hard to see that the algo-
rithm can be implemented in such a way that fewer additions are done
than multiplications. Therefore, we will consider only the multiplication
instruction to be the basic operation.

Basic operation: multiplication instruction in the innermost for loop.

Input size: n, the number of rows and columns.

There are always n passes through the for-i loop, in each pass there are
always n passes through the for-j loop, and in each pass through the
for-j loop there are always n passes through the for-k loop. Because
the basic operation is inside the for-k loop,

T (n) = n× n× n = n3.

As discussed previously, the basic operation in Algorithm 1.1 is not
done the same number of times for all instances of size n. So this algo-
rithm does not have an every-case time complexity. This is true for many
algorithms. However, this does not mean that we cannot analyze such algo-
rithms, because there are three other analysis techniques that can be tried.
The first is to consider the maximum number of times the basic operation
is done. For a given algorithm, W (n) is defined as the maximum number
of times the algorithm will ever do its basic operation for an input size of n.
So W (n) is called the worst-case time complexity of the algorithm, and
the determination of W (n) is called a worst-case time complexity anal-
ysis. If T (n) exists, then clearly W (n) = T (n). The following is an analysis
of W (n) in a case in which T (n) does not exist.

�
�

�

Analysis of
Algorithm 1.1

I Worst-Case Time Complexity (Sequential Search)

Basic operation: the comparison of an item in the array with x.

Input size: n, the number of items in the array.

The basic operation is done at most n times, which is the case if x is the
last item in the array or if x is not in the array. Therefore,

W (n) = n.

Although the worst-case analysis informs us of the absolute maximum
amount of time consumed, in some cases we may be more interested in

© Jones & Bartlett Learning LLC, an Ascend Learning Company. NOT FOR SALE OR DISTRIBUTION.© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

i
i

“9781284049190 CH01 Printer” — 2014/1/30 — 12:21 — page 22 — #22 i
i

i
i

i
i

22 Chapter 1 Algorithms: Efficiency, Analysis, and Order

knowing how the algorithm performs on the average. For a given algorithm,
A(n) is defined as the average (expected value) of the number of times the
algorithm does the basic operation for an input size of n (see Section A.8.2
in Appendix A for a discussion of average). A(n) is called the average-case
time complexity of the algorithm, and the determination of A(n) is called
an average-case time complexity analysis. As is the case for W (n), if
T (n) exists, then A(n) = T (n).

To compute A(n), we need to assign probabilities to all possible inputs of
size n. It is important to assign probabilities based on all available information.
For example, our next analysis will be an average-case analysis of Algorithm
1.1. We will assume that if x is in the array, it is equally likely to be in any
of the array slots. If we know only that x may be somewhere in the array,
our information gives us no reason to prefer one array slot over another.
Therefore, it is reasonable to assign equal probabilities to all array slots.
This means that we are determining the average search time when we search
for all items the same number of times. If we have information indicating
that the inputs will not arrive according to this distribution, we should not
use this distribution in our analysis. For example, if the array contains first
names and we are searching for names that have been chosen at random
from all people in the United States, an array slot containing the common
name “John” will probably be searched more often than one containing the
uncommon name “Felix” (see Section A.8.1 in Appendix A for a discussion
of randomness). We should not ignore this information and assume that all
slots are equally likely.

As the following analysis illustrates, it is usually harder to analyze the
average case than it is to analyze the worst case.

�
�

�

Analysis of
Algorithm 1.1

I Average-Case Time Complexity (Sequential Search)

Basic operation: the comparison of an item in the array with x.

Input size: n, the number of items in the array.
We first analyze the case in which it is known that x is in S, where the
items in S are all distinct, and where we have no reason to believe that
x is more likely to be in one array slot than it is to be in another. Based
on this information, for 1 ≤ k ≤ n, the probability that x is in the kth
array slot is 1/n. If x is in the kth array slot, the number of times the
basic operation is done to locate x (and, therefore, to exit the loop) is k.
This means that the average time complexity is given by

A (n) =
n∑

k=1

(
k × 1

n

)
=

1
n
×

n∑
k=1

k =
1
n
× n (n + 1)

2
=

n + 1
2

.

The third step in this quadruple equality is derived in Example A.1 of
Appendix A. As we would expect, on the average, about half the array
is searched.

© Jones & Bartlett Learning LLC, an Ascend Learning Company. NOT FOR SALE OR DISTRIBUTION.© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

i
i

“9781284049190 CH01 Printer” — 2014/1/30 — 12:21 — page 23 — #23 i
i

i
i

i
i

1.3 Analysis of Algorithms 23

Next we analyze the case in which x may not be in the array. To analyze
this case we must assign some probability p to the event that x is in the
array. If x is in the array, we will again assume that it is equally likely
to be in any of the slots from 1 to n. The probability that x is in the kth
slot is then p/n, and the probability that it is not in the array is 1− p.
Recall that there are k passes through the loop if x is found in the kth
slot, and n passes through the loop if x is not in the array. The average
time complexity is therefore given by

A (n) =
n∑

k=1

(
k × p

n

)
+ n(1− p)

=
p

n
× n(n + 1)

2
+ n(1− p) = n

(
1− p

2

)
+

p

2
.

The last step in this triple equality is derived with algebraic manipu-
lations. If p = 1, A(n) = (n + 1)/2, as before, whereas if p = 1/2,
A(n) = 3n/4 + 1/4. This means that about 3/4 of the array is searched
on the average.

Before proceeding, we offer a word of caution about the average. Although
an average is often referred to as a typical occurrence, one must be careful in
interpreting the average in this manner. For example, a meteorologist may
say that a typical January 25 in Chicago has a high of 22◦ F because 22◦ F
has been the average high for that date over the past 80 years. The paper
may run an article saying that the typical family in Evanston, Illinois earns
$50,000 annually because that is the average income. An average can be
called “typical” only if the actual cases do not deviate much from the average
(that is, only if the standard deviation is small). This may be the case for the
high temperature on January 25. However, Evanston is a community with
families of diverse incomes. It is more typical for a family to make either
$20,000 annually or $100,000 annually than to make $50,000. Recall in the
previous analysis that A(n) is (n + 1)/2 when it is known that x is in the
array. This is not the typical search time, because all search times between 1
and n are equally typical. Such considerations are important in algorithms
that deal with response time. For example, consider a system that monitors
a nuclear power plant. If even a single instance has a bad response time, the
results could be catastrophic. It is therefore important to know whether the
average response time is 3 seconds because all response times are around 3
seconds or because most are 1 second and some are 60 seconds.

A final type of time complexity analysis is the determination of the
smallest number of times the basic operation is done. For a given algorithm,
B(n) is defined as the minimum number of times the algorithm will ever do

© Jones & Bartlett Learning LLC, an Ascend Learning Company. NOT FOR SALE OR DISTRIBUTION.© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

i
i

“9781284049190 CH01 Printer” — 2014/1/30 — 12:21 — page 24 — #24 i
i

i
i

i
i

24 Chapter 1 Algorithms: Efficiency, Analysis, and Order

its basic operation for an input size of n. So B(n) is called the best-case
time complexity of the algorithm, and the determination of B(n) is
called a best-case time complexity analysis. As is the case for W (n)
and A(n), if T (n) exists, then B(n) = T (n). Let’s determine B(n) for
Algorithm 1.1.

�
�

�

Analysis of
Algorithm 1.1

I Best-Case Time Complexity (Sequential Search)

Basic operation: the comparison of an item in the array with x.

Input size: n, the number of items in the array.

Because n ≥ 1, there must be at least one pass through the loop, If
x = S[1], there will be one pass through the loop regardless of the size
of n. Therefore,

B(n) = 1.

For algorithms that do not have every-case time complexities, we do
worst-case and average-case analyses much more often than best-case anal-
yses. An average-case analysis is valuable because it tells us how much time
the algorithm would take when used many times on many different inputs.
This would be useful, for example, in the case of a sorting algorithm that
was used repeatedly to sort all possible inputs. Often, a relatively slow sort
can occasionally be tolerated if, on the average, the sorting time is good.
In Section 2.4 we will see an algorithm, named Quicksort, that does exactly
this. It is one of the most popular sorting algorithms. As noted previously,
an average-case analysis would not suffice in a system that monitored a
nuclear power plant. In this case, a worst-case analysis would be more use-
ful because it would give us an upper bound on the time taken by the
algorithm. For both the applications just discussed, a best-case analysis
would be of little value.

We have discussed only the analysis of the time complexity of an algo-
rithm. All the same considerations just discussed also pertain to analysis
of memory complexity, which is an analysis of how efficient the algo-
rithm is in terms of memory. Although most of the analyses in this text are
time complexity analyses, we will occasionally find it useful to do a memory
complexity analysis.

In general, a complexity function can be any function that maps the
positive integers to the nonnegative reals. When not referring to the time
complexity or memory complexity for some particular algorithm, we will
usually use standard function notation, such as f(n) and g(n), to represent
complexity functions.

© Jones & Bartlett Learning LLC, an Ascend Learning Company. NOT FOR SALE OR DISTRIBUTION.© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

i
i

“9781284049190 CH01 Printer” — 2014/1/30 — 12:21 — page 25 — #25 i
i

i
i

i
i

1.3 Analysis of Algorithms 25

E x a m p l e 1.6 The functions

f(n) = n

f(n) = n2

f(n) = lg n

f(n) = 3n2 + 4n

are all examples of complexity functions because they all map the positive
integers to the nonnegative reals.

• 1.3.2 Applying the Theory

When applying the theory of algorithm analysis, one must sometimes be
aware of the time it takes to execute the basic operation, the overhead
instructions, and the control instructions on the actual computer on which
the algorithm is implemented. By “overhead instructions” we mean instruc-
tions such as initialization instructions before a loop. The number of times
these instructions execute does not increase with input size. By “control
instructions” we mean instructions such as incrementing an index to control
a loop. The number of times these instructions execute increases with input
size. The basic operation, overhead instructions, and control instructions
are all properties of an algorithm and the implementation of the algorithm.
They are not properties of a problem. This means that they are usually
different for two different algorithms for the same problem.

Suppose we have two algorithms for the same problem with the following
every-case time complexities: n for the first algorithm and n2 for the second
algorithm. The first algorithm appears more efficient. Suppose, however, a
given computer takes 1,000 times as long to process the basic operation once
in the first algorithm as it takes to process the basic operation once in the
second algorithm. By “process” we mean that we are including the time it
takes to execute the control instructions. Therefore, if t is the time required
to process the basic operation once in the second algorithm, 1,000t is the
time required to process the basic operation once in the first algorithm.
For simplicity, let’s assume that the time it takes to execute the overhead
instructions is negligible in both algorithms. This means the times it takes
the computer to process an instance of size n are n × 1,000t for the first
algorithm and n2× t for the second algorithm. We must solve the following
inequality to determine when the first algorithm is more efficient:

n2 × t > n× 1,000t.

Dividing both sides by nt yields

n > 1,000.

© Jones & Bartlett Learning LLC, an Ascend Learning Company. NOT FOR SALE OR DISTRIBUTION.© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

i
i

“9781284049190 CH01 Printer” — 2014/1/30 — 12:21 — page 26 — #26 i
i

i
i

i
i

26 Chapter 1 Algorithms: Efficiency, Analysis, and Order

If the application never had an input size larger than 1,000, the second
algorithm should be implemented. Before proceeding, we should point out
that it is not always so easy to determine precisely when one algorithm is
faster than another. Sometimes we must use approximation techniques to
analyze the inequalities obtained by comparing two algorithms.

Recall that we are assuming that the time it takes to process the over-
head instructions is negligible. If this were not the case, these instructions
would also have to be considered to determine when the first algorithm
would be more efficient.

• 1.3.3 Analysis of Correctness

In this text, “analysis of an algorithm” means an efficiency analysis in terms
of either time or memory. There are other types of analyses. For example, we
can analyze the correctness of an algorithm by developing a proof that the
algorithm actually does what it is supposed to do. Although we will often
informally show that our algorithms are correct and will sometimes prove
that they are, you should see Dijkstra (1976), Gries (1981), or Kingston
(1990) for a comprehensive treatment of correctness.

1.4 Order

We just illustrated that an algorithm with a time complexity of n is more
efficient than one with a time complexity of n2 for sufficiently large values of
n, regardless of how long it takes to process the basic operations in the two
algorithms. Suppose now that we have two algorithms for the same problem
and that their every-case time complexities are 100n for the first algorithm
and 0.01n2 for the second algorithm. Using an argument such as the one
just given, we can show that the first algorithm will eventually be more
efficient than the second one. For example, if it takes the same amount of
time to process the basic operations in both algorithms and the overhead is
about the same, the first algorithm will be more efficient if

0.01n2 > 100n.

Dividing both sides by 0.01n yields

n > 10,000.

If it takes longer to process the basic operation in the first algorithm than
in the second, then there is simply some larger value of n at which the first
algorithm becomes more efficient.

Algorithms with time complexities such as n and 100n are called linear-
time algorithms because their time complexities are linear in the input
size n, whereas algorithms with time complexities such as n2 and 0.01n2

are called quadratic-time algorithms because their time complexities are

© Jones & Bartlett Learning LLC, an Ascend Learning Company. NOT FOR SALE OR DISTRIBUTION.© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

i
i

“9781284049190 CH01 Printer” — 2014/1/30 — 12:21 — page 27 — #27 i
i

i
i

i
i

1.4 Order 27

quadratic in the input size n. There is a fundamental principle here. That is,
any linear-time algorithm is eventually more efficient than any quadratic-
time algorithm. In the theoretical analysis of an algorithm, we are interested
in eventual behavior. Next we will show how algorithms can be grouped
according to their eventual behavior. In this way we can readily determine
whether one algorithm’s eventual behavior is better than another’s.

• 1.4.1 An Intuitive Introduction to Order

Functions such as 5n2 and 5n2 + 100 are called pure quadratic functions
because they contain no linear term, whereas a function such as 0.1n2 +
n + 100 is called a complete quadratic function because it contains a
linear term. Table 1.3 shows that eventually the quadratic term dominates
this function. That is, the values of the other terms eventually become
insignificant compared with the value of the quadratic term. Therefore,
although the function is not a pure quadratic function, we can classify it
with the pure quadratic functions. This means that if some algorithm has
this time complexity, we can call the algorithm a quadratic-time algorithm.
Intuitively, it seems that we should always be able to throw away low-order
terms when classifying complexity functions. For example, it seems that we
should be able to classify 0.1n3 + 10n2 + 5n + 25 with pure cubic functions.
We will soon establish rigorously that we can do this. First let’s try to gain
an intuitive feel for how complexity functions are classified.

The set of all complexity functions that can be classified with pure
quadratic functions is called Θ(n2), where Θ is the Greek capital letter
“theta.” If a function is a member of the set Θ(n2), we say that the function
is order of n2. For example, because we can throw away low-order terms,

g(n) = 5n2 + 100n + 20 ∈ Θ(n2),

which means that g(n) is order of n2. As a more concrete example, recall
from Section 1.3.1 that the time complexity for Algorithm 1.3 (Exchange
Sort) is given by T (n) = n(n− 1)/2. Because

n (n− 1)
2

=
n2

2
− n

2
,

throwing away the lower-order term n/2 shows that T (n) ∈ Θ(n2).

• Table 1.3 The quadratic term eventually dominates

n 0.1n2 0.1n2 + n + 100
10 10 120
20 40 160
50 250 400

100 1,000 1,200
1,000 100,000 101,100

© Jones & Bartlett Learning LLC, an Ascend Learning Company. NOT FOR SALE OR DISTRIBUTION.© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

i
i

“9781284049190 CH01 Printer” — 2014/1/30 — 12:21 — page 28 — #28 i
i

i
i

i
i

28 Chapter 1 Algorithms: Efficiency, Analysis, and Order

When an algorithm’s time complexity is in Θ(n2), the algorithm is called
a quadratic-time algorithm or a Θ(n2) algorithm. We also say that the
algorithm is Θ(n2). Exchange Sort is a quadratic-time algorithm.

Similarly, the set of complexity functions that can be classified with
pure cubic functions is called Θ(n3), and functions in that set are said to
be order of n3, and so on. We will call these sets complexity categories.
The following are some of the most common complexity categories:

Θ(lg n) Θ(n) Θ(n lg n) Θ(n2) Θ(n3) Θ(2n)

In this ordering, if f(n) is in a category to the left of the category con-
taining g(n), then f(n) eventually lies beneath g(n) on a graph. Figure 1.3
plots the simplest members of these categories: n, ln n, n ln n, and so on.
Table 1.4 shows the execution times of algorithms whose time complexities
are given by these functions. The simplifying assumption is that it takes 1
nanosecond (10−9 second) to process the basic operation for each algorithm.
The table shows a possibly surprising result. One might expect that as long
as an algorithm is not an exponential-time algorithm, it will be adequate.
However, even the quadratic-time algorithm takes 31.7 years to process an
instance with an input size of 1 billion. On the other hand, the Θ(n ln n)
algorithm takes only 29.9 seconds to process such an instance. Ordinarily an
algorithm has to be Θ(n ln n) or better for us to assume that it can process
extremely large instances in tolerable amounts of time. This is not to say
that algorithms whose time complexities are in the higher-order categories
are not useful. Algorithms with quadratic, cubic, and even higher-order
time complexities can often handle the actual instances that arise in many
applications.

Before ending this discussion, we stress that there is more information
in knowing a time complexity exactly than in simply knowing its order.
For example, recall the hypothetical algorithms, discussed earlier, that have
time complexities of 100n and 0.01n2. If it takes the same amount of time
to process the basic operations and execute the overhead instructions in
both algorithms, then the quadratic-time algorithm is more efficient for
instances smaller than 10,000. If the application never requires instances
larger than this, the quadratic-time algorithm should be implemented. If we
knew only that the time complexities were in Θ(n) and Θ(n2), respectively,
we would not know this. The coefficients in this example are extreme, and
in practice they are often less extreme. Furthermore, there are times when
it is quite difficult to determine the time complexities exactly. Therefore,
we are sometimes content to determine only the order.

• 1.4.2 A Rigorous Introduction to Order

The previous discussion imparted an intuitive feel for order (Θ). Here we
develop theory that enables us to define order rigorously. We accomplish
this by presenting two other fundamental concepts. The first is “big O.”

© Jones & Bartlett Learning LLC, an Ascend Learning Company. NOT FOR SALE OR DISTRIBUTION.© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

i
i

“9781284049190 CH01 Printer” — 2014/1/30 — 12:21 — page 29 — #29 i
i

i
i

i
i

1.4 Order 29

Figure 1.3

Growth rates of
some common
complexity
functions.

1

2

4

8

16

32

64

128

256

512

1,024

2,048

4,096

8,192

16,384

32,768

65,536

131,072

10 2 4 8 16 32 64 128 256 512 1024 2048
n

n2n3

 lgn

 n lgn

n

2n

Definition
For a given complexity function f(n), O(f(n)) is the set of complexity
functions g(n) for which there exists some positive real constant c and
some nonnegative integer N such that for all n ≥ N ,

g(n) ≤ c× f(n).

If g(n) ∈ O(f(n)), we say that g(n) is big O of f(n). Figure 1.4(a)
illustrates “big O.” Although g(n) starts out above cf(n) in that figure,

© Jones & Bartlett Learning LLC, an Ascend Learning Company. NOT FOR SALE OR DISTRIBUTION.© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

i
i

“9781284049190 CH01 Printer” — 2014/1/30 — 12:21 — page 30 — #30 i
i

i
i

i
i

30 Chapter 1 Algorithms: Efficiency, Analysis, and Order

• Table 1.4 Execution times for algorithms with the given time complexities

n f(n) = lgn f(n) = n f(n) = n lgn f(n) = n2 f(n) = n3 f(n) = 2n

10 0.003 µs∗ 0.01 µs 0.033 µs 0.10 µs 1.0 µs 1 µs

20 0.004 µs 0.02 µs 0.086 µs 0.40 µs 8.0 µs 1 ms†

30 0.005 µs 0.03 µs 0.147 µs 0.90 µs 27.0 µs 1 s

40 0.005 µs 0.04 µs 0.213 µs 1.60 µs 64.0 µs 18.3 min

50 0.006 µs 0.05 µs 0.282 µs 2.50 µs 125.0 µs 13 days

102 0.007 µs 0.10 µs 0.664 µs 10.00 µs 1.0 ms 4× 1013 years

103 0.010 µs 1.00 µs 9.966 µs 1.00 ms 1.0 s

104 0.013 µs 10.00 µs 130.000 µs 100.00 ms 16.7 min

105 0.017 µs 0.10 ms 1.670 ms 10.00 s 11.6 days

106 0.020 µs 1.00 ms 19.930 ms 16.70 min 31.7 years

107 0.023 µs 0.01 s 2.660 s 1.16 days 31,709 years

108 0.027 µs 0.10 s 2.660 s 115.70 days 3.17× 107 years

109 0.030 µs 1.00 s 29.900 s 31.70 years
∗1 µs = 10−6 second.
†1 ms = 10−3 second.

Figure 1.4

Illustrating
“big O,” Ω, and Θ.

cf (n)

g (n) g(n)

cf (n)
cf (n)

df (n)

g (n)

N
(a) g (n) ∈O(f (n))

n
N

(b) g (n) ∈Ω (f (n))

n
N

(c) g (n) ∈θ (f (n))

n

eventually it falls beneath cf(n) and stays there. Figure 1.5 shows a concrete
example. Although n2 + 10n is initially above 2n2 in that figure, for n ≥ 10

n2 + 10n ≤ 2n2.

We can therefore take c = 2 and N = 10 in the definition of “big O” to
conclude that

n2 + 10n ∈ O
(
n2
)
.

If, for example, g(n) is in O(n2), then eventually g(n) lies beneath some
pure quadratic function cn2 on a graph. This means that if g(n) is the time
complexity for some algorithm, eventually the running time of the algorithm
will be at least as fast as quadratic. For the purposes of analysis, we can say
that eventually g(n) is at least as good as a pure quadratic function. “Big O”

© Jones & Bartlett Learning LLC, an Ascend Learning Company. NOT FOR SALE OR DISTRIBUTION.© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

i
i

“9781284049190 CH01 Printer” — 2014/1/30 — 12:21 — page 31 — #31 i
i

i
i

i
i

1.4 Order 31

Figure 1.5

The function
n2 + 10n eventually
stays beneath the
function 2n2.

50

100

150

200

250

300

350

400

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2n 2

n2 + 10n

n

(and other concepts that will be introduced soon) are said to describe the
asymptotic behavior of a function because they are concerned only with
eventual behavior. We say that “big O” puts an asymptotic upper bound
on a function.

The following examples illustrate how to show “big O.”

E x a m p l e 1.7 We show that 5n2 ∈ O(n2). Because, for n ≥ 0,

5n2 ≤ 5n2,

we can take c = 5 and N = 0 to obtain our desired result.

E x a m p l e 1.8 Recall that the time complexity of Algorithm 1.3 (Exchange Sort) is given by

T (n) =
n (n− 1)

2
.

Because, for n ≥ 0,

n (n− 1)
2

≤ n (n)
2

=
1
2
n2,

we can take c = 1/2 and N = 0 to conclude that T (n) ∈ O(n2).

A difficulty students often have with “big O” is that they erroneously
think there is some unique c and unique N that must be found to show
that one function is “big O” of another. This is not the case at all. Recall

© Jones & Bartlett Learning LLC, an Ascend Learning Company. NOT FOR SALE OR DISTRIBUTION.© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

i
i

“9781284049190 CH01 Printer” — 2014/1/30 — 12:21 — page 32 — #32 i
i

i
i

i
i

32 Chapter 1 Algorithms: Efficiency, Analysis, and Order

that Figure 1.5 illustrates that n2 + 10n ∈ O(n2) using c = 2 and N = 10.
Alternatively, we could show it as follows.

E x a m p l e 1.9 We show that n2 + 10n ∈ O(n2). Because, for n ≥ 1,

n2 + 10n ≤ n2 + 10n2 = 11n2,

we can take c = 11 and N = 1 to obtain our result.

In general, one can show “big O” using whatever manipulations seem
most straightforward.

E x a m p l e 1.10 We show that n2 ∈ O(n2 + 10n). Because, for n ≥ 0,

n2 ≤ 1×
(
n2 + 10n

)
,

we can take c = 1 and N = 0 to obtain our result.

The purpose of this last example is to show that the function inside
“big O” does not have to be one of the simple functions plotted in Figure
1.3. It can be any complexity function. Ordinarily, however, we take it to
be a simple function like those plotted in Figure 1.3.

E x a m p l e 1.11 We show that n ∈ O(n2). Because, for n ≥ 1,

n ≤ 1× n2,

we can take c = 1 and N = 1 to obtain our result.

This last example makes a crucial point about “big O.” A complex-
ity function need not have a quadratic term to be in O(n2). It need only
eventually lie beneath some pure quadratic function on a graph. Therefore,
any logarithmic or linear complexity function is in O(n2). Similarly, any
logarithmic, linear, or quadratic complexity function is in O(n3), and so on.
Figure 1.6(a) shows some exemplary members of O(n2).

Just as “big O” puts an asymptotic upper bound on a complexity
function, the following concept puts an asymptotic lower bound on a
complexity function.

© Jones & Bartlett Learning LLC, an Ascend Learning Company. NOT FOR SALE OR DISTRIBUTION.© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

i
i

“9781284049190 CH01 Printer” — 2014/1/30 — 12:21 — page 33 — #33 i
i

i
i

i
i

1.4 Order 33

Figure 1.6

The sets O
(
n2

)
,

Ω
(
n2

)
, Θ

(
n2

)
.

Some exemplary
members are
shown.

4n2

6n2 + 9

5n2 + 2n

(a) O(n2) (b) W(n2)

4n2

6n2 + 9

5n2 + 2n

4n2

6n2 + 9

5n2 + 2n

4n3+ 3n2

q(n2)

6n6 + n4

2n + 4n

4n3+ 3n2

6n6 + n4

2n + 4n

3lgn + 8

5n + 7

2n lgn

3lgn + 8

5n + 7

2n lgn

(c) q(n2) = O(n2) ∩ W(n2)

Definition
For a given complexity function f(n), Ω(f(n)) is the set of complexity
functions g(n) for which there exists some positive real constant c and
some nonnegative integer N such that, for all n ≥ N ,

g (n) ≥ c× f (n) .

The symbol Ω is the Greek capital letter “omega.” If g(n) ∈ Ω(f(n)), we
say that g(n) is omega of f(n). Figure 1.4(b) illustrates Ω. Some examples
follow.

E x a m p l e 1.12 We show that 5n2 ∈ Ω(n2). Because, for n ≥ 0,

5n2 ≥ 1× n2,

we can take c = 1 and N = 0 to obtain our result.

E x a m p l e 1.13 We show that n2 + 10n ∈ Ω(n2). Because, for n ≥ 0,

n2 + 10n ≥ n2,

we can take c = 1 and N = 0 to obtain our result.

E x a m p l e 1.14 Consider again the time complexity of Algorithm 1.3 (Exchange Sort). We
show that

T (n) =
n (n− 1)

2
∈ Ω

(
n2
)
.

© Jones & Bartlett Learning LLC, an Ascend Learning Company. NOT FOR SALE OR DISTRIBUTION.© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

i
i

“9781284049190 CH01 Printer” — 2014/1/30 — 12:21 — page 34 — #34 i
i

i
i

i
i

34 Chapter 1 Algorithms: Efficiency, Analysis, and Order

For n ≥ 2,

n− 1 ≥ n

2
.

Therefore, for n ≥ 2,

n (n− 1)
2

≥ n

2
× n

2
=

1
4
n2,

which means we can take c = 1/4 and N = 2 to obtain our result.

As is the case for “big O,” there are no unique constants c and N for
which the conditions in the definition of Ω hold. We can choose whichever
ones make our manipulations easiest.

If a function is in Ω(n2), then eventually the function lies above some
pure quadratic function on a graph. For the purposes of analysis, this means
that eventually it is at least as bad as a pure quadratic function. However,
as the following example illustrates, the function need not be a quadratic
function.

E x a m p l e 1.15 We show that n3 ∈ Ω(n2). Because, if n ≥ 1,

n3 ≥ 1× n2,

we can take c = 1 and N = 1 to obtain our result.

Figure 1.6(b) shows some exemplary members of Ω
(
n2
)
.

If a function is in both O
(
n2
)

and Ω
(
n2
)
, we can conclude that eventu-

ally the function lies beneath some pure quadratic function on a graph and
eventually it lies above some pure quadratic function on a graph. That is,
eventually it is at least as good as some pure quadratic function and eventu-
ally it is at least as bad as some pure quadratic function. We can therefore
conclude that its growth is similar to that of a pure quadratic function. This
is precisely the result we want for our rigorous notion of order. We have the
following definition.

Definition
For a given complexity function f(n),

Θ (f (n)) = O (f (n)) ∩ Ω (f (n)).

© Jones & Bartlett Learning LLC, an Ascend Learning Company. NOT FOR SALE OR DISTRIBUTION.© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

i
i

“9781284049190 CH01 Printer” — 2014/1/30 — 12:21 — page 35 — #35 i
i

i
i

i
i

1.4 Order 35

Definition (continued)
This means that Θ(f(n)) is the set of complexity functions g(n) for which
there exists some positive real constants c and d and some nonnegative
integer N such that, for all n ≥ N ,

c× f (n) ≤ g (n) ≤ d× f (n).

If g(n) ∈ Θ(f(n)), we say that g(n) is order of f(n).

E x a m p l e 1.16 Consider once more the time complexity of Algorithm 1.3. Examples 1.8
and 1.14 together establish that

T (n) =
n (n− 1)

2
is in both O

(
n2
)

and Ω
(
n2
)
.

This means that T (n) ∈ O(n2) ∩ Ω(n2) = Θ(n2)

Figure 1.6(c) depicts that Θ(n2) is the intersection of O(n2) and Ω
(
n2
)
,

whereas Figure 1.4(c) illustrates Θ. Notice in Figure 1.6(c) that the func-
tion 5n + 7 is not in Ω

(
n2
)
, and the function 4n3 + 3n2 is not in O

(
n2
)
.

Therefore, neither of these functions is in Θ(n2). Although intuitively this
seems correct, we have not yet proven it. The following example shows how
such a proof proceeds.

E x a m p l e 1.17 We show that n is not in Ω
(
n2
)

by using proof by contradiction. In this
type of proof we assume something is true—in this case, that n ∈ Ω(n2)—
and then we do manipulations that lead to a result that is not true. That is,
the result contradicts something known to be true. We then conclude that
what we assumed in the first place cannot be true.

Assuming that n ∈ Ω(n2) means we are assuming that there exists some
positive constant c and some nonnegative integer N such that, for n ≥ N ,

n ≥ cn2.

If we divide both sides of this inequality by cn, we have, for n ≥ N ,

1
c
≥ n.

However, for any n > 1/c, this inequality cannot hold, which means that it
cannot hold for all n ≥ N . This contradiction proves that n is not in Ω

(
n2
)
.

© Jones & Bartlett Learning LLC, an Ascend Learning Company. NOT FOR SALE OR DISTRIBUTION.© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

i
i

“9781284049190 CH01 Printer” — 2014/1/30 — 12:21 — page 36 — #36 i
i

i
i

i
i

36 Chapter 1 Algorithms: Efficiency, Analysis, and Order

We have one more definition concerning order that expresses relation-
ships such as the one between the function n and the function n2.

Definition
For a given complexity function f(n), o(f(n)) is the set of all complexity
functions g(n) satisfying the following: For every positive real constant
c there exists a nonnegative integer N such that, for all n ≥ N ,

g (n) ≤ c× f (n) .

If g(n) ∈ o(f(n)), we say that g(n) is small o of f(n). Recall that
“big O” means there must be some real positive constant c for which the
bound holds. This definition says that the bound must hold for every real
positive constant c. Because the bound holds for every positive c, it holds
for arbitrarily small c. For example, if g(n) ∈ o(f(n)), there is an N such
that, for n > N ,

g(n) ≤ 0.00001× f(n).

We see that g(n) becomes insignificant relative to f(n) as n becomes large.
For the purposes of analysis, if g(n) is in o(f(n)), then g(n) is eventually
much better than functions such as f(n). The following examples illus-
trate this.

E x a m p l e 1.18 We show that

n ∈ o(n2).

Let c > 0 be given. We need to find an N such that, for n ≥ N ,

n ≤ cn2.

If we divide both sides of this inequality by cn, we get

1
c
≤ n.

Therefore, it suffices to choose any N ≥ 1/c.
Notice that the value of N depends on the constant c. For example,

if c = 0.00001, we must take N equal to at least 100,000. That is, for
n ≥ 100,000,

n ≤ 0.00001n2.

© Jones & Bartlett Learning LLC, an Ascend Learning Company. NOT FOR SALE OR DISTRIBUTION.© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

i
i

“9781284049190 CH01 Printer” — 2014/1/30 — 12:21 — page 37 — #37 i
i

i
i

i
i

1.4 Order 37

E x a m p l e 1.19 We show that n is not in o(5n). We will use proof by contradiction to show
this. Let c = 1

6 . If n ∈ o(5n), then there must exist some N such that, for
n ≥ N ,

n ≤ 1
6

5n =
5
6
n.

This contradiction proves that n is not in o(5n).

The following theorem relates “small o” to our other asymptotic notation.

I Theorem 1.2

If g(n) ∈ o(f(n)), then

g (n) ∈ O (f (n))− Ω (f (n)).

That is, g(n) is in O(f(n)) but is not in Ω(f(n)).

Proof: Because g(n) ∈ o(f(n)), for every positive real constant c there exists
an N such that, for all n ≥ N ,

g (n) ≤ c× f (n),

which means that the bound certainly holds for some c. Therefore,

g (n) ∈ O (f (n)).

We will show that g(n) is not in Ω (f (n)) using proof by contradiction. If
g(n) ∈ Ω(f(n)), then there exists some real constant c > 0 and some N1

such that, for all n ≥ N1,

g(n) ≥ c× f (n).

But, because g(n) ∈ o(f(n)), there exists some N2 such that, for all n ≥ N2,

g (n) ≤ c

2
× f (n).

Both inequalities would have to hold for all n greater than both N1 and N2.
This contradiction proves that g(n) cannot be in Ω(f(n)).

You may think that o(f(n)) and O(f(n))−Ω(f(n)) must be the same set.
This is not true. There are unusual functions that are in O(f(n))−Ω(f(n))
but that are not in o(f(n)). The following example illustrates this.

© Jones & Bartlett Learning LLC, an Ascend Learning Company. NOT FOR SALE OR DISTRIBUTION.© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

i
i

“9781284049190 CH01 Printer” — 2014/1/30 — 12:21 — page 38 — #38 i
i

i
i

i
i

38 Chapter 1 Algorithms: Efficiency, Analysis, and Order

E x a m p l e 1.20 Consider the function

g (n) =

{
n if n is even
1 if n is odd

It is left as an exercise to show that

g(n) ∈ O(n)− Ω(n) but that g(n) is not in o(n).

Example 1.20, of course, is quite contrived. When complexity functions
represent the time complexities of actual algorithms, ordinarily the functions
in O(f(n))− Ω(f(n)) are the same ones that are in o(f(n)).

Let’s discuss Θ further. In the exercises we establish that

g(n) ∈ Θ(f(n)) if and only if f(n) ∈ Θ(g(n)).

For example,

n2 + 10n ∈ Θ(n2) and n2 ∈ Θ(n2 + 10n).

This means that Θ separates complexity functions into disjoint sets. We will
call these sets complexity categories. Any function from a given category
can represent the category. For convenience, we ordinarily represent a cat-
egory by its simplest member. The previous complexity category is repre-
sented by Θ(n2).

The time complexities of some algorithms do not increase with n. For
example, recall that the best-case time complexity B(n) for Algorithm 1.1
is 1 for every value of n. The complexity category containing such func-
tions can be represented by any constant, and for simplicity we represent it
by Θ(1).

The following are some important properties of order that make it easy
to determine the orders of many complexity functions. They are stated
without proof. The proofs of some will be derived in the exercises, whereas
the proofs of others follow from results obtained in the next subsection. The
second result we have already discussed. It is included here for completeness.

Properties of Order:
1. g(n) ∈ O(f(n)) if and only if f(n) ∈ Ω(g(n)).
2. g(n) ∈ Θ(f(n)) if and only if f(n) ∈ Θ(g(n)).
3. If b > 1 and a > 1, then loga n ∈ Θ (logb n).

This implies that all logarithmic complexity functions are in the same
complexity category. We will represent this category by Θ(lg n).

© Jones & Bartlett Learning LLC, an Ascend Learning Company. NOT FOR SALE OR DISTRIBUTION.© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

i
i

“9781284049190 CH01 Printer” — 2014/1/30 — 12:21 — page 39 — #39 i
i

i
i

i
i

1.4 Order 39

4. If b > a > 0, then

an ∈ o (bn).

This implies that all exponential complexity functions are not in the
same complexity category.

5. For all a > 0

an ∈ o (n!).

This implies that n! is worse than any exponential complexity function.
6. Consider the following ordering of complexity categories:

Θ(lg n) Θ(n) Θ(n lg n) Θ
(
n2
)

Θ
(
nj
)

Θ
(
nk
)

Θ(an) Θ(bn) Θ(n!) ,

where k > j > 2 and b > a > 1. If a complexity function g(n) is in a
category that is to the left of the category containing f(n), then

g (n) ∈ o (f (n)).

7. If c ≥ 0, d > 0, g(n) ∈ O(f(n)), and h(n) ∈ Θ(f(n)), then

c× g (n) + d× h (n) ∈ Θ (f (n)).

E x a m p l e 1.21 Property 3 states that all logarithmic complexity functions are in the same
complexity category. For example,

Θ(log4 n) = Θ(lg n).

This means that the relationship between log4 n and lg n is the same as the
one between 7n2 + 5n and n2.

E x a m p l e 1.22 Property 6 states that any logarithmic function is eventually better than
any polynomial, any polynomial is eventually better than any exponential
function, and any exponential function is eventually better than the factorial
function. For example,

lg n ∈ o (n), n10 ∈ o (2n), and 2n ∈ o (n!).

© Jones & Bartlett Learning LLC, an Ascend Learning Company. NOT FOR SALE OR DISTRIBUTION.© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

i
i

“9781284049190 CH01 Printer” — 2014/1/30 — 12:21 — page 40 — #40 i
i

i
i

i
i

40 Chapter 1 Algorithms: Efficiency, Analysis, and Order

E x a m p l e 1.23 Properties 6 and 7 can be used repeatedly. For example, we can show
that 5n + 3 lg n + 10n lg n + 7n2 ∈ Θ(n2), as follows. Repeatedly applying
Properties 6 and 7, we have

7n2 ∈ Θ(n2),

which means

10n lg n + 7n2 ∈ Θ
(
n2
)
,

which means

3 lg n + 10n lg n + 7n2 ∈ Θ
(
n2
)
,

which means

5n + 3 lg n + 10n lg n + 7n2 ∈ Θ
(
n2
)
.

In practice, we do not repeatedly appeal to the properties, but rather
we simply realize that we can throw out low-order terms.

If we can obtain the exact time complexity of an algorithm, we can
determine its order simply by throwing out low-order terms. When this is
not possible, we can appeal back to the definitions of “big O” and Ω to
determine order. For example, suppose for some algorithm we are unable to
determine T (n) [or W (n), A(n), or B(n)] exactly. If we can show that

T (n) ∈ O (f (n)) and T (n) ∈ Ω (f (n))

by appealing directly to the definitions, we can conclude that T (n) ∈
Θ(f(n)).

Sometimes it is fairly easy to show that T (n) ∈ O(f(n)) but difficult to
determine whether T (n) is in Ω (f (n)). In such cases we may be content to
show only that T (n) ∈ O(f(n)), because this implies that T (n) is at least
as good as functions such as f(n). Similarly, we may be content to learn
only that T (n) ∈ Ω(f(n)), because this implies that T (n) is at least as bad
as functions such as f(n).

Before closing, we mention that many authors say

f(n) = Θ(n2) instead of f(n) ∈ Θ(n2).

Both mean the same thing—namely, that f(n) is a member of the set Θ(n2).
Similarly, it is common to write

f(n) = O(n2) instead of f(n) ∈ O(n2).

© Jones & Bartlett Learning LLC, an Ascend Learning Company. NOT FOR SALE OR DISTRIBUTION.© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

i
i

“9781284049190 CH01 Printer” — 2014/1/30 — 12:21 — page 41 — #41 i
i

i
i

i
i

1.4 Order 41

You are referred to Knuth (1973) for an account of the history of “order”
and to Brassard (1985) for a discussion of the definitions of order given
here. Our definitions of “big O,” Ω, and Θ are, for the most part, standard.
There are, however, other definitions of “small o.” It is not standard to call
the sets Θ(n), Θ(n2), and so on, “complexity categories.” Some authors call
them “complexity classes,” although this term is used more often to refer
to the sets of problems discussed in Chapter 9. Other authors do not give
them any particular name at all.

• 1.4.3 Using a Limit to Determine Order

We now show how order can sometimes be determined using a limit. This
material is included for those familiar with limits and derivatives. Knowl-
edge of this material is not required elsewhere in the text.

I Theorem 1.3

We have the following:

lim
n→∞

g (n)
f (n)

=


c implies g (n) ∈ Θ (f (n)) if c > 0
0 implies g (n) ∈ o (f (n))
∞ implies f (n) ∈ o (g (n))

Proof: The proof is left as an exercise.

E x a m p l e 1.24 Theorem 1.3 implies that

n2

2
∈ o

(
n3
)

because

lim
n→∞

n2/2
n3

= lim
n→∞

1
2n

= 0.

Using Theorem 1.3 in Example 1.24 is not very exciting because the
result could have easily been established directly. The following examples
are more interesting.

E x a m p l e 1.25 Theorem 1.3 implies that, for b > a > 0,

an ∈ o (bn)

© Jones & Bartlett Learning LLC, an Ascend Learning Company. NOT FOR SALE OR DISTRIBUTION.© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

i
i

“9781284049190 CH01 Printer” — 2014/1/30 — 12:21 — page 42 — #42 i
i

i
i

i
i

42 Chapter 1 Algorithms: Efficiency, Analysis, and Order

because

lim
n→∞

an

bn
= lim

n→∞

(a

b

)n

= 0.

The limit is 0 because 0 < a/b < 1.
This is Property 4 in the Properties of Order (near the end of Section

1.4.2).

E x a m p l e 1.26 Theorem 1.3 implies that, for a > 0,

an ∈ o (n!).

If a ≤ 1, the result is trivial. Suppose that a > 1. If n is so large that⌈n

2

⌉
> a4,

then

an

n!
<

an

a4a4 · · · a4︸ ︷︷ ︸
dn/2e times

≤ an

(a4)n/2
=

an

a2n
=
(

1
a

)n

.

Because a > 1, this implies that

lim
n→∞

an

n!
= 0.

This is Property 5 in the Properties of Order.

The following theorem, whose proof can be found in most calculus texts,
enhances the usefulness of Theorem 1.3.

I Theorem 1.4

L’Hôpital’s Rule If f(x) and g(x) are both differentiable with derivatives
f ′(x) and g′(x), respectively, and if

lim
x→∞

f (x) = lim
x→∞

g (x) =∞,

then

lim
x→∞

f (x)
g (x)

= lim
x→∞

f ′ (x)
g′ (x)

whenever the limit on the right exists.

© Jones & Bartlett Learning LLC, an Ascend Learning Company. NOT FOR SALE OR DISTRIBUTION.© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

i
i

“9781284049190 CH01 Printer” — 2014/1/30 — 12:21 — page 43 — #43 i
i

i
i

i
i

1.5 Outline of This Book 43

Theorem 1.4 holds for functions of real valuables, whereas our com-
plexity functions are functions of integer variables. However, most of our
complexity functions (for example, lg n, n, etc.) are also functions of real
variables. Furthermore, if a function f(x) is a function of a real variable x,
then

lim
n→∞

f (n) = lim
x→∞

f (x),

where n is an integer, whenever the limit on the right exists. Therefore, we
can apply Theorem 1.4 to complexity analysis, as the following examples
illustrate.

E x a m p l e 1.27 Theorems 1.3 and 1.4 imply that

lg n ∈ o (n)

because

lim
x→∞

lg x

x
= lim

x→∞

d (lg x) /dx

dx/dx
= lim

x→∞

1/ (x ln 2)
1

= 0.

E x a m p l e 1.28 Theorems 1.3 and 1.4 imply that, for b > 1 and a > 1,

loga n ∈ Θ (logb n)

because

lim
x→∞

loga x

logb x
= lim

x→∞

d (loga x) /dx

d (logb x) /dx
=

1/ (x ln a)
1/ (x ln b)

=
ln b

ln a
> 0.

This is Property 3 in the Properties of Order.

1.5 Outline of This Book

We are now ready to develop and analyze sophisticated algorithms. For the
most part, our organization is by technique rather than by application area.
As noted earlier, the purpose of this organization is to establish a reper-
toire of techniques that can be investigated as possible ways to approach a
new problem. Chapter 2 discusses a technique called “divide-and-conquer.”
Chapter 3 covers dynamic programming. Chapter 4 addresses “the greedy
approach.” In Chapter 5, the backtracking technique is presented. Chapter 6

© Jones & Bartlett Learning LLC, an Ascend Learning Company. NOT FOR SALE OR DISTRIBUTION.© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

i
i

“9781284049190 CH01 Printer” — 2014/1/30 — 12:21 — page 44 — #44 i
i

i
i

i
i

44 Chapter 1 Algorithms: Efficiency, Analysis, and Order

discusses a technique related to backtracking called “branch-and-bound.”
In Chapters 7 and 8, we switch from developing and analyzing algorithms
to analyzing problems themselves. Such an analysis, which is called a com-
putational complexity analysis, involves determining a lower bound for the
time complexities of all algorithms for a given problem. Chapter 7 ana-
lyzes the Sorting Problem, and Chapter 8 analyzes the Searching Problem.
Chapter 9 is devoted to a special class of problems. That class contains
problems for which no one has ever developed an algorithm whose time
complexity is better than exponential in the worst case. Yet no one has ever
proven that such an algorithm is not possible. It turns out that there are
thousands of such problems and that they are all closely related. The study
of these problems has become a relatively new and exciting area of computer
science. In Chapter 10 we revert back to developing algorithms. However,
unlike the methods presented in Chapters 2–6, we discuss algorithms for
solving a certain type of problem. That is, we discuss number-theoretic
algorithms, which are algorithms that solve problems involving the inte-
gers. All of the algorithms discussed in the first nine chapters are developed
for a computer containing a single processor that executes a single sequence
of instructions. Owing to the drastic reduction in the price of computer
hardware, there has been a recent increase in the development of paral-
lel computers. Such computers have more than one processor, and all the
processors can execute instructions simultaneously (in parallel). Algorithms
written for such computers are called “parallel algorithms.” Chapter 11 is
an introduction to such algorithms.

EXERCISES

Section 1.1

1. Write an algorithm that finds the largest number in a list (an array) of n
numbers.

2. Write an algorithm that finds the m smallest numbers in a list of n numbers.

3. Write an algorithm that prints out all the subsets of three elements of a set
of n elements. The elements of this set are stored in a list that is the input
to the algorithm.

4. Write an Insertion Sort algorithm (Insertion Sort is discussed in Section 7.2)
that uses Binary Search to find the position where the next insertion should
take place.

5. Write an algorithm that finds the greatest common divisor of two integers.

6. Write an algorithm that finds both the smallest and largest numbers in a list
of n numbers. Try to find a method that does at most 1.5n comparisons of
array items.

© Jones & Bartlett Learning LLC, an Ascend Learning Company. NOT FOR SALE OR DISTRIBUTION.© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

i
i

“9781284049190 CH01 Printer” — 2014/1/30 — 12:21 — page 45 — #45 i
i

i
i

i
i

Exercises 45

7. Write an algorithm that determines whether or not an almost complete binary
tree is a heap.

Section 1.2

8. Under what circumstances, when a searching operation is needed, would
Sequential Search (Algorithm 1.1) not be appropriate?

9. Give a practical example in which you would not use Exchange Sort (Algo-
rithm 1.3) to do a sorting task.

Section 1.3

10. Define basic operations for your algorithms in Exercises 1–7, and study the
performance of these algorithms. If a given algorithm has an every-case time
complexity, determine it. Otherwise, determine the worst-case time complex-
ity.

11. Determine the worst-case, average-case, and best-case time complexities for
the basic Insertion Sort and for the version given in Exercise 4, which uses
Binary Search.

12. Write a Θ(n) algorithm that sorts n distinct integers, ranging in size between
1 and kn inclusive, where k is a constant positive integer. (Hint: Use a kn-
element array.)

13. Algorithm A performs 10n2 basic operations, and algorithm B performs 300 lnn
basic operations. For what value of n does algorithm B start to show its better
performance?

14. There are two algorithms called Alg1 and Alg2 for a problem of size n. Alg1
runs in n2 microseconds and Alg2 runs in 100n logn microseconds. Alg1 can
be implemented using 4 hours of programmer time and needs 2 minutes of
CPU time. On the other hand, Alg2 requires 15 hours of programmer time
and 6 minutes of CPU time. If programmers are paid 20 dollars per hour
and CPU time costs 50 dollars per minute, how many times must a problem
instance of size 500 be solved using Alg2 in order to justify its development
cost?

Section 1.4

15. Show directly that f(n) = n2 + 3n3 ∈ Θ(n3). That is, use the definitions of
O and Ω to show that f(n) is in both O(n3) and Ω(n3).

16. Using the definitions of O and Ω, show that

6n2 + 20n ∈ O
(
n3) but 6n2 + 20n /∈ Ω

(
n3).

17. Using the Properties of Order in Section 1.4.2, show that

5n5 + 4n4 + 6n3 + 2n2 + n+ 7 ∈ Θ
(
n5).

© Jones & Bartlett Learning LLC, an Ascend Learning Company. NOT FOR SALE OR DISTRIBUTION.© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

i
i

“9781284049190 CH01 Printer” — 2014/1/30 — 12:21 — page 46 — #46 i
i

i
i

i
i

46 Chapter 1 Algorithms: Efficiency, Analysis, and Order

18. Let p(n) = akn
k + ak−1n

k−1 + · · · + a1n + a0, where ak > 0. Using the
Properties of Order in Section 1.4.2, show that p(n) ∈ Θ(nk).

19. The function f(x) = 3n2 +10n logn+1000n+4 logn+9999 belongs in which
of the following complexity categories:

(a) θ(lgn) (b) θ(n2 logn) (c) θ(n) (d) θ(n lgn)

(e) θ(n2) (f) None of these

20. The function f(x) = (logn)2 + 2n+ 4n+ logn+ 50 belongs in which of the
following complexity categories:

(a) θ(lgn) (b) θ((logn)2) (c) θ(n) (d) θ(n lgn)

(e) θ(n(lgn)2) (f) None of these

21. The function f(x) = n + n2 + 2n + n4 belongs in which of the following
complexity categories:

(a) θ(n) (b) θ(n2) (c) θ(n3) (d) θ(n lgn)

(e) θ(n4) (f) None of these

22. Group the following functions by complexity category.

n lnn (lgn)2 5n2 + 7n n5/2

n! 2n! 4n nn nn + lnn

5lg n lg (n!) (lgn)!
√
n en 8n+ 12 10n + n20

23. Establish Properties 1, 2, 6, and 7 of the Properties of Order in Section 1.4.2.

24. Discuss the reflexive, symmetric, and transitive properties for asymptotic
comparisons (O, Ω, Θ, o).

25. Suppose you have a computer that requires 1 minute to solve problem
instances of size n = 1,000. Suppose you buy a new computer that runs 1,000
times faster than the old one. What instance sizes can be run in 1 minute,
assuming the following time complexities T (n) for our algorithm?

(a) T (n) = n

(b) T (n) = n3

(c) T (n) = 10n

26. Derive the proof of Theorem 1.3.

27. Show the correctness of the following statements.

(a) lg n ∈ O (n)

(b) n ∈ O (n lgn)

(c) n lgn ∈ O
(
n2

)
(d) 2n ∈ Ω

(
5ln n

)
(e) lg3 n ∈ o

(
n0.5

)

© Jones & Bartlett Learning LLC, an Ascend Learning Company. NOT FOR SALE OR DISTRIBUTION.© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

i
i

“9781284049190 CH01 Printer” — 2014/1/30 — 12:21 — page 47 — #47 i
i

i
i

i
i

Exercises 47

Additional Exercises

28. Presently we can solve problem instances of size 30 in 1 minute using algo-
rithm A, which is a Θ(2n) algorithm. On the other hand, we will soon have
to solve problem instances twice this large in 1 minute. Do you think it would
help to buy a faster (and more expensive) computer?

29. Consider the following algorithm:

for (i = 1 ; i <= 1.5n ; i++)
cout << i ;

for (i = n ; i >= 1 ; i - -)
cout << i ;

(a) What is the output when n = 2, n = 4, and n = 6?

(b) What is the time complexity T (n)? You may assume that the
input n is divisible by 2.

30. Consider the following algorithm:

j = 1 ;
while (j <= n/2) {

i = 1 ;
while (i <= j) {

cout << j << i ;
i++;

}
j++;

}

(a) What is the output when n = 6, n = 8, and n = 10?

(b) What is the time complexity T (n)? You may assume that the
input n is divisible by 2.

31. Consider the following algorithm:

for (i = 2 ; i <= n ; i++) {
for (j = 0 ; j <= n) {

cout << i << j ;
j = j + bn/4c ;

}
}

(a) What is the output when n = 4, n = 16, n = 32?

(b) What is the time complexity T (n). You may assume that n is
divisible 4.

32. What is the time complexity T (n) of the nested loops below? For simplicity,
you may assume that n is a power of 2. That is, n = 2k for some positive
integer k.

© Jones & Bartlett Learning LLC, an Ascend Learning Company. NOT FOR SALE OR DISTRIBUTION.© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

i
i

“9781284049190 CH01 Printer” — 2014/1/30 — 12:21 — page 48 — #48 i
i

i
i

i
i

48 Chapter 1 Algorithms: Efficiency, Analysis, and Order

for (i = 1 ; i <= n ; i++){
j = n ;
while (j >= 1){

< body o f the while loop> //Needs Θ (1) .
j = b j /2c ;

}
}

33. Give an algorithm for the following problem and determine its time com-
plexity. Given a list of n distinct positive integers, partition the list into two
sublists, each of size n/2, such that the difference between the sums of the
integers in the two sublists is maximized. You may assume that n is a multi-
ple of 2.

34. What is the time complexity T (n) of the nested loops below? For simplicity,
you may assume that n is a power of 2. That is, n = 2k for some positive
integer k.

i = n ;
while (i >= 1){

j = i ;
while (j <= n){

< body o f the while loop> //Needs Θ (1) .
j = 2 ∗ j ;

}
i = b i /2c ;

}

35. Consider the following algorithm:

int add them (int n , int A [])
{

index i , j , k ;

j = 0 ;
for (i = 1 ; i <= n ; i++)

j = j +A[i] ;
k = 1 ;
for (i = 1 ; i <= n ; i++)

k = k + k ;
return j + k ;

}

(a) If n = 5 and the array A contains 2, 5, 3, 7, and 8, what is the
output?

(b) What is the time complexity T (n) of the algorithm?

(c) Try to improve the efficiency of the algorithm.

© Jones & Bartlett Learning LLC, an Ascend Learning Company. NOT FOR SALE OR DISTRIBUTION.© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

i
i

“9781284049190 CH01 Printer” — 2014/1/30 — 12:21 — page 49 — #49 i
i

i
i

i
i

Exercises 49

36. Consider the following algorithm:

int any equa l (int n , int A [] [])

{
index i , j , k ,m;

for (i = 1 ; i <= n ; i++)

for (j = 1 ; j <= n ; j++)
for (k = 1 ; k <= n ; k++)

for (m = 1 ; m <= n ; m++)

i f (A [i] [j]==A [k] [m] && ! (i==k && j==m))
return 1 ;

return 0 ;

}

(a) What is the best case time complexity of the algorithm (assuming
n > 1)?

(b) What is the worst case time complexity of the algorithm?

(c) Try to improve the efficiency of the algorithm.

(d) What property holds for the array A if the algorithm returns 0?

(e) What property holds for the array A if the algorithm returns 1?

37. Give a Θ(lgn) algorithm that computes the remainder when xn is divided
by p. For simplicity, you may assume that n is a power of 2. That is, n = 2k

for some positive integer k.

38. Explain in English what functions are in the following sets.

(a) nO(1)

(b) O
(
nO(1)

)
(c) O

(
O
(
nO(1)

))
39. Show that the function f (n) =

∣∣n2 sinn
∣∣ is in neither O(n) nor Ω (n).

40. Justify the correctness of the following statements assuming that f(n) and
g(n) are asymptotically positive functions.

(a) f (n) + g (n) ∈ O (max (f (n)) , g (n))

(b) f2(n) ∈ Ω(f(n))

(c) f(n) + o(f(n)) ∈ Θ(f(n)), where o(f(n)) means any function
g(n) ∈ o(f(n))

41. Give an algorithm for the following problem. Given a list of n distinct positive
integers, partition the list into two sublists, each of size n/2, such that the
difference between the sums of the integers in the two sublists is minimized.
Determine the time complexity of your algorithm. You may assume that n is
a multiple of 2.

© Jones & Bartlett Learning LLC, an Ascend Learning Company. NOT FOR SALE OR DISTRIBUTION.© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

i
i

“9781284049190 CH01 Printer” — 2014/1/30 — 12:21 — page 50 — #50 i
i

i
i

i
i

50 Chapter 1 Algorithms: Efficiency, Analysis, and Order

42. Algorithm 1.7 (nth Fibonacci Term, Iterative) is clearly linear in n, but is it
a linear-time algorithm? In Section 1.3.1 we defined the input size as the size
of the input. In the case of the nth Fibonacci term, n is the input, and the
number of bits it takes to encode n could be used as the input size. Using
this measure, the size of 64 is lg 64 = 6, and the size of 1,024 is lg 1,024 = 10.
Show that Algorithm 1.7 is exponential-time in terms of its input size. Show
further that any algorithm for computing the nth Fibonacci term must be an
exponential-time algorithm because the size of the output is exponential in
the input size. (See Section 9.2 for a related discussion of the input size.)

43. Determine the time complexity of Algorithm 1.6 (nth Fibonacci Term,
Recursive) in terms of its input size (see Exercise 34).

44. Can you verify the correctness of your algorithms for Exercises 1 to 7?

© Jones & Bartlett Learning LLC, an Ascend Learning Company. NOT FOR SALE OR DISTRIBUTION.© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

