
6.1 The 80x86 Stack

6.2 32-Bit Procedures with
Value Parameters

6.3 Additional 32-Bit
 Procedure Options

6.4 64-Bit Procedures

6.5 Macro Definition and
Expansion

6.6 Chapter Summary

The 80x86 architecture enables implementation of proce-

dures that are similar to those in a high-level language. In

fact, 80x86 procedures can be called from high-level lan-

guage programs or can call high-level language procedures.

There are three main concepts involved: (1) how to trans-

fer control from a calling program to a procedure and back,

(2) how to pass parameter values to a procedure and results

back from the procedure, and (3) how to write procedure

code that is independent of the calling program. In addition,

sometimes a procedure must allocate local variable space.

The hardware stack is used to accomplish each of these jobs.

This chapter begins with a discussion of the 80x86 stack.

Sections 6.1 to 6.3 cover operations in 32-bit mode only,

while Section 6.4 describes differences for 64-bit mode. The

final section discusses macros, sometimes used to substitute

for procedure calls, and used by the io.h file in windows32

and windows64 projects to call procedures.

Procedures

167

CHAPTER

6

9781284036121_CH06.indd 167 1/23/2014 11:11:05 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

6.1 The 80x86 Stack

32-bit programs in this text have allocated stacks with the code

.STACK 4096

This .STACK directive tells the assembler to reserve 4096 bytes of uninitialized storage.
The operating system initializes the stack pointer register ESP to the address of the first
byte above the 4096 bytes in the stack. A larger or smaller stack could be allocated,
depending on the anticipated usage in the program.

64-bit programs do not use the .STACK directive. Stack size is changed by specify-
ing new values for the Stack Reserve Size and Stack Commit Size properties found in
 PROJECT/project Properties/configuration properties/Linker/System. The default values
of 1MB and 4KB, respectively, are ample for our programs.

The stack is most often used by pushing doublewords on it, or by popping them off
it. This is done automatically as part of the execution of call and return instructions
(see Section 6.2). It is also done manually with push and pop instructions. This section
covers the mechanics of push and pop instructions, describing how they use the stack.

Source code for a push instruction has the syntax

push source

The source operand can be a register 16, a register 32, a segment register, a word in mem-
ory, a doubleword in memory, an immediate byte, an immediate word, or an immediate
doubleword. The only byte-size operand is immediate, and is sign-extended to a word or
doubleword to get the value actually pushed on the stack. Figure 6.1 lists some allowable
operand types, omitting segment registers that we will not use. The usual mnemonic for a
push instruction is just push. However, if there is ambiguity about the size of the operand
(as there would be with a small immediate value) then you can use pushw or pushd mne-
monics to specify word-size or doubleword-size operands, respectively. The WORD PTR
and DWORD PTR operators are used with memory operands when needed.

When a push instruction is executed for a doubleword-size operand, the stack pointer
ESP is decremented by 4. Recall that initially ESP contains the address of the byte just
above the allocated space. Subtracting 4 makes ESP point to the top doubleword in the
stack. The operand is then stored at the address in ESP, that is, at the high-memory end
of the stack space. Execution is similar for a word-size operand, except that ESP is dec-
remented by 2 before the operand is stored.

ExamplE

We now show an example of execution of two push instructions. It assumes that ESP initially
contains 00600200. The first push decrements ESP to 006001FC and then stores the con-
tents of EAX at that address. Notice that the low-order and high-order bytes are reversed
in memory. The second push decrements ESP to 006001F8 and stores FFFFFF10 (−24010)
at that address.

168 CHAPTER 6 | Procedures

9781284036121_CH06.indd 168 1/23/2014 11:11:05 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

Before

increasing

addresses

Instructions After

Stack
ESP: 00600200

ESP: 006001FC

ESP: 006001F8

Stack

FF

FF

10

FF

A2

47

B5

83

pushd –240

push eax

EAX: 83 B5 47 A2 EAX: 83 B5 47 A2

Operand Opcode Bytes of Object Code

EAX or AX 50 1
ECX or CX 51 1
EDX or DX 52 1
EBX or BX 53 1
ESP or SP 54 1
EBP or BP 55 1
ESI or SI 56 1
EDI or DI 57 1
memory word FF 2+
memory doubleword FF 2+
immediate byte 6A 2
immediate word 68 3
immediate doubleword 68 5

Figure 6.1

push instructions

6.1 The 80x86 Stack 169

9781284036121_CH06.indd 169 1/23/2014 11:11:05 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

You can use the debugger to watch these instructions actually execute. After you
assemble a program starting with

mov eax, 83b547a2h

push eax

pushd -240

the assembly listing displays

00000000 B8 83B547A2 mov eax, 83b547a2h

00000005 50 push eax

00000006 68 FFFFFF10 pushd -240

This is expected from the opcodes listed in Figure 4.1 for mov and Figure 6.1 for push.
Figure 6.2 gives the Visual Studio display after the EAX register has been initialized with
83B547A2. We just want to see the top few bytes of the stack, so we note that ESP con-
tains 0041FAAC. (It might have another value at another time or on another computer.)
To display the top 16 bytes, we open a memory view starting at address 0x0041FA9C.
These bytes are shown on the top two lines of the memory window. Notice that the stack
contains “junk” values, zeros in this case.

Figure 6.2

Stack test prior to push operation

170 CHAPTER 6 | Procedures

9781284036121_CH06.indd 170 1/23/2014 11:11:05 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

Now execute the push instruction. The resulting display is shown in Figure 6.3.
Notice that ESP now contains 0041FAA8, that is, it has been decremented by 4. The last
4 bytes on the second memory line (in gray) show the doubleword stored at the new stack
pointer address. The bytes from EAX have been stored backward in memory. Finally
execute the pushd instruction. The resulting display is shown in Figure 6.4. ESP now
contains 0041FAA4, again decremented by 4. The first 4 bytes of the second memory
line show the value of −240, again with the bytes of FFFFFF10 stored in reverse order.

If additional operands were pushed onto the stack, ESP would be decremented further
and the new values stored. No push instruction affects any flag bit.

Notice that a stack “grows downward,” contrary to the image that you may have
of a typical software stack.1 Also notice that the only value on the stack that is readily
available is the last one pushed; it is at the address in ESP. Furthermore, ESP changes
frequently as you push values and as procedure calls are made. In the next section you
will learn a way to establish a fixed reference point in the middle of the stack using the

1 Of course, if you draw the picture so that lower memory addresses are at the top, then it “grows
upward.” The author’s preference is to draw the pictures so that when ESP is decremented, its
“pointer” moves down.

Figure 6.3

EAX has been pushed onto the stack

1

6.1 The 80x86 Stack 171

9781284036121_CH06.indd 171 1/23/2014 11:11:05 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

EBP register, so that values near that point can be accessed without having to pop off all
the intermediate values.

Notice that the instruction add esp, 8 precedes the usual exit code. This effectively
removes the two values from the stack, allowing a normal exit from the program. You
will see more why this is necessary later in this chapter.

Pop instructions do the opposite job of push instructions. Each pop instruction has
the format

pop destination

where destination can reference a word or doubleword in memory, any register 16, any
register 32, or any segment register except CS. (The push instruction does not exclude
CS.) The pop instruction gets a doubleword-size value from the stack by copying the
doubleword at the address in ESP to the destination, then incrementing ESP by 4. The
operation for a word-size value is similar, except that ESP is incremented by 2. Figure 6.5
gives information about pop instructions for different destination operands. Segment
registers are again omitted. Pop instructions do not affect flags.

Figure 6.4

−240 has been pushed onto the stack

172 CHAPTER 6 | Procedures

9781284036121_CH06.indd 172 1/23/2014 11:11:05 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

ExamplE

Here is an example to show how pop instructions work. The doubleword at the address in
ESP is copied to ECX before ESP is incremented by 4. The values popped from the stack
are physically still there even though they logically have been removed. Note again that the
bytes of a doubleword are stored backward in memory in the 80x86 architecture.

Before

increasing

addresses

Instruction After

Stack

ESP: 006001F8

ESP: 006001FC

Stack

66

55

44

33

22

11

66

55

44

33

22

11

pop ecx

ECX: ?? ?? ?? ?? ECX: 33 44 55 66

Figure 6.5

pop instructions

Operand Opcode Bytes of Object Code

EAX or AX 58 1
ECX or CX 59 1
EDX or DX 5A 1
EBX or BX 5B 1
ESP or SP 5C 1
EBP or BP 5D 1
ESI or SI 5E 1
EDI or DI 5F 1
memory word 8F 2+
memory doubleword 8F 2+

6.1 The 80x86 Stack 173

9781284036121_CH06.indd 173 1/23/2014 11:11:06 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

We have noted previously that registers are a scarce resource when programming.
One use of push and pop instructions is to temporarily save the contents of a register on
the stack. Suppose, for example, that you are using EDX to store some program variable,
but need to do a division that requires you to extend a dividend into EDX:EAX prior to
the operation. One way to avoid losing the value in EDX is to push it on the stack.

push edx ; save variable

cdq ; extend dividend to quadword

idiv divisor ; divide

pop edx ; restore variable

This example assumes that you don’t need the remainder the division operation puts in
EDX. If you do need the remainder, it could be copied somewhere else before popping
the saved value back to EDX.

As the above example shows, push and pop instructions are often used in pairs. When
we examine how the stack is used to pass parameters to procedures, you will see a way to
logically discard values from the stack without popping them to a destination location.

In a 32-bit environment the stack is created on a doubleword boundary, that is, the
address in ESP will be a multiple of 4. It is important to keep the stack top on a dou-
bleword boundary for certain system calls. Therefore, with few exceptions, you should
always push doubleword values on the stack, even though the 80x86 architecture allows
words to be used.

In addition to the ordinary push and pop instructions, there are special mnemonics to
push and pop flag registers. These are pushf (pushfd for the extended flag register) and
popf (popfd for the extended flag register). These are summarized in Figure 6.6. They are
sometimes used in procedure code. Obviously, popf and popfd instructions change flag
values; these are the only push or pop instructions that change flags.

The 80x86 architecture has pushad and popad instructions that push or pop all gen-
eral-purpose registers with a single instruction. These are rarely useful and do not work
in 64-bit mode, so they are not used in this text.

Exercises 6.1

 1. For each instruction, give the opcode and the number of bytes of object code including prefix bytes.
Assume that double references a doubleword in memory.

 (a) push ax (b) pushd 10
 *(c) push ebp (d) pop ebx

Figure 6.6

pushf and popf instructions

Instruction Opcode Bytes of Object Code

pushf/pushfd 9C 1
popf/popfd 9D 1

174 CHAPTER 6 | Procedures

9781284036121_CH06.indd 174 1/23/2014 11:11:06 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

 (e) pop double (f) pop dx
 (g) pushfd

 2. For each part of this problem, assume the “before” values when the given instructions are executed.
Give the requested “after” values. Trace execution of the instructions by drawing pictures of the stack.

 Before Instructions After

 *(a) ESP: 06 00 10 00 push ecx ESP, ECX
 ECX: 01 A2 5B 74 pushd 10

 (b) ESP: 02 00 0B 7C pushd 20 ESP, EBX
 EBX: 12 34 56 78 push ebx

 (c) ESP: 00 10 F8 3A push eax ESP, EAX, EBX, ECX
 EAX: 12 34 56 78 pushd 30

 pop ebx

 pop ecx

 (d) ESP: 00 63 FB 60 push ebx ESP, EBX, ECX
 EBX: 22 33 44 55 push ecx

 ECX: 66 77 88 99
 (e) ESP: 00 63 FB 60 pushw 10 ESP, EAX
 EAX: BB CC DD EE pushw 20

 pop eax

 3. Many microprocessors do not have an instruction equivalent to xchg. With such systems, a sequence of
instructions like the following can be used to exchange the contents of two registers:

 push eax
 push ebx
 pop eax

 pop ebx

 Explain why this sequence works to exchange the contents of the EAX and EBX registers. Compare the
number of bytes of code required to execute this sequence with those required for the instruction xchg
eax,ebx.

 4. Another alternative to the xchg instruction is to use

 push eax
 mov eax, ebx
 pop ebx

 Explain why this sequence works to exchange the contents of the EAX and EBX registers. Compare the
number of bytes of code required to execute this sequence with those required for the instruction
xchg eax,ebx.

6.2 32-Bit Procedures with Value Parameters

The word procedure is used in high-level languages to describe a subprogram that
is almost a self-contained unit. The main program or another subprogram can call a
 procedure by including a statement that consists of the procedure name followed by a
parenthesized list of arguments to be associated with the procedure’s formal parameters.

Many high-level languages distinguish between a procedure that performs an action
and a function that returns a value. A function is similar to a procedure except that it is

6.2 32-Bit Procedures with Value Parameters 175

9781284036121_CH06.indd 175 1/23/2014 11:11:06 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

called by using its name and argument list in an expression. It returns a value associated
with its name; this value is then used in the expression. All subprograms in C/C++ are
technically functions in this sense, but these languages allow for functions that return no
value.

In assembly language and in some high-level languages the term procedure is used to
describe both types of subprograms: those that return values and those that do not. The
word procedure is used in both senses in this text.

Procedures are valuable in assembly language for the same reasons as in high-level
languages—they help divide programs into manageable tasks and they isolate code that
can be used multiple times within a single program, or that can be saved and reused in
other programs. Sometimes assembly language can be used to write more efficient code
than is produced by a high-level language compiler, and this code can be put in a pro-
cedure called by a high-level program that does tasks that don’t need to be as efficient.

Recall the major main concepts listed in the introduction to this chapter: (1) how
to transfer control from a calling program to a procedure and back, (2) how to pass
parameter values to a procedure and results back from the procedure, and (3) how to
write procedure code that is independent of the calling program. These can be handled
in many ways in assembly language, and this section describes one particular protocol,
called cdecl in Microsoft documentation. It is the default convention used in C programs
in the Visual Studio environment. Figure 6.7 gives a complete windows32 program that
is used to illustrate aspects of this protocol.

; Input x and y, call procedure to evaluate 3*x+7*y, display result
; Author: R. Detmer
; Date: 6/2013
.586
.MODEL FLAT
INCLUDE io.h
.STACK 4096

.DATA
number1 DWORD ?
number2 DWORD ?
prompt1 BYTE "Enter first number x", 0
prompt2 BYTE "Enter second number y", 0
string BYTE 20 DUP (?)
resultLbl BYTE "3*x+7*y", 0
result BYTE 11 DUP (?), 0

.CODE
_MainProc PROC
 input prompt1, string, 20 ; read ASCII characters
 atod string ; convert to integer
 mov number1, eax ; store in memory

Figure 6.7

Procedure example (continues)

176 CHAPTER 6 | Procedures

9781284036121_CH06.indd 176 1/23/2014 11:11:06 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

The code for a procedure always follows a .CODE directive. The body of a procedure is
bracketed by PROC and ENDP directives. Each of these directives has a label that gives the
name of the procedure. With windows32 programs _MainProc is a procedure. Additional
assembly language procedures can go in the same code segment before or after _MainProc.
They can even be in separate files; information for how to do this is in the next section.

Let’s first look at how to transfer control from _MainProc to the procedure fctn1.
This is done by the instruction

call fctn1

 input prompt2, string, 20 ; repeat for second number
 atod string
 mov number2, eax

 push number2 ; 2nd parameter
 push number1 ; 1st parameter
 call fctn1 ; fctn1(number1, number2)
 add esp, 8 ; remove parameters from stack

 dtoa result, eax ; convert to ASCII characters
 output resultLbl, result ; output label and result

 mov eax, 0 ; exit with return code 0
 ret
_MainProc ENDP

; int fctn1(int x, int y)
; returns 3*x+7*y
fctn1 PROC
 push ebp ; save base pointer
 mov ebp, esp ; establish stack frame
 push ebx ; save EBX

 mov eax, [ebp+8] ; x
 imul eax, 3 ; 3*x
 mov ebx, [ebp+12] ; y
 imul ebx, 7 ; 7*y
 add eax, ebx ; 3*x + 7*y

 pop ebx ; restore EBX
 pop ebp ; restore EBP
 ret ; return
fctn1 ENDP

END

Figure 6.7

Procedure example (continued)

6.2 32-Bit Procedures with Value Parameters 177

9781284036121_CH06.indd 177 1/23/2014 11:11:06 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

In general, a call instruction saves the address of the next instruction (the one imme-
diately following the call), then transfers control to the procedure code. It does this by
pushing EIP onto the stack and then changing EIP to contain the address of the first
instruction of the procedure.

Transferring control back from a procedure is accomplished by reversing the above
steps. A ret (return) instruction pops the stack into EIP, so that the next instruction to be
executed is the one at the address that was pushed on the stack by the call. There is almost
always at least one ret instruction in a procedure and there can be more than one. If
there is only one ret, it is ordinarily the last instruction in the procedure since subsequent
instructions would be unreachable without “spaghetti code.” Although a call instruction
must identify its destination, the ret does not—control will transfer to the instruction fol-
lowing the most recent call. The address of that instruction is stored on the 80x86 stack.

The syntax of the 80x86 call statement is

call destination

Figure 6.8 lists some of the 80x86 call instructions. No call instruction modifies any
flag. All of the procedure calls used in this text will be the first type, near relative. For a
near relative call, the 5 bytes of the instruction consist of the E8 opcode plus the displace-
ment from the next instruction to the first instruction of the procedure. The transfer of
control when a procedure is called is similar to the transfer of a relative jump, except that
the old contents of EIP are pushed.

Near indirect calls encode a register 32 or a reference to a doubleword in memory.
When the call is executed, the contents of that register or doubleword are used as the
address of the procedure. This makes it possible for a call instruction to go to different
procedures different times.

All far calls must provide both new CS contents and new EIP contents. With far direct
calls, both of these are coded in the instruction, and these 6 bytes plus the 1 for the opcode
make the 7 seen in Figure 6.8. With far indirect calls, these are located at a 6-byte block
in memory, and the address of that block is coded in the instruction. The extra byte is a
ModR/M byte. Far calls were very important when the segmented memory model was used.

The return instruction ret is used to transfer control from a procedure body back
to the calling point. Its basic operation is simple: it simply pops the address previously
stored on the stack and loads it into the instruction pointer EIP. Since the stack contains
the address of the instruction following the call, execution will continue at that point.

Figure 6.8

call instructions

Operand Opcode Bytes of Object Code

near relative E8 5
near indirect using register FF 2
near indirect using memory FF 2+
far direct 9A 7
far indirect FF 6+

178 CHAPTER 6 | Procedures

9781284036121_CH06.indd 178 1/23/2014 11:11:06 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

A near return just has to restore EIP. A far return instruction reverses the steps of a far
call, restoring both EIP and CS; both of these values are popped from the stack. No ret
instruction changes any flag.

There are two formats for the ret instruction. The more common form has no
 operand, and is simply coded

ret

The other version has a single operand, and is coded

ret count

The operand count is added to the contents of ESP after completion of the other steps of
the return process (popping EIP and, for a far procedure, CS). This can be useful if other
values (parameters in particular) have been saved on the stack just for the procedure call;
this is not used with the cdecl protocol, however. Figure 6.9 lists the various formats of
ret instructions.

Using a high-level language, a procedure definition often includes parameters (some-
times called formal parameters) that are associated with arguments (also called actual
parameters) when the procedure is called. For the procedure’s pass-by-value (in) param-
eters, values of the arguments (which may be expressions) are copied to the parameters
when the procedure is called, and these values are then referenced in the procedure using
their local names (the identifiers used to define the parameters). Reference (pass-by- location
or in-out) parameters associate a parameter identifier with an argument that is a single
variable, and can be used to pass a value either to the procedure from the caller or from
the procedure back to the caller. Reference parameters are covered in the next section.

Our example code in Figure 6.7 has two arguments (number1 and number2) in
_MainProc that are passed by value to two parameters (x and y) in fctn1. We now look
at how to pass parameter values to a procedure and results back from the procedure. The
second part of this is simple—if the procedure returns a single doubleword value, then
it puts that value in EAX to be used by the calling program. Notice that this is exactly
what fctn1 does in the program in Figure 6.7; after some preliminaries (explained next),
it computes the desired value in EAX where it is available back in _MainProc. With the
cdecl protocol, only the EAX register may be used for this purpose.

Doubleword parameters are passed to the procedure by pushing them on the stack. In
the cdecl protocol, the parameters are pushed on the stack in the opposite order in which

Figure 6.9

ret instructions

Type Operand Opcode Bytes of Object Code

near none C3 1
near immediate C2 3
far none CB 1
far immediate CA 3

6.2 32-Bit Procedures with Value Parameters 179

9781284036121_CH06.indd 179 1/23/2014 11:11:06 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

they appear in the parameter list—the last parameter value is pushed first and the first
parameter value is pushed last. The code that calls fctn1 in _MainProc is

push number2 ; 2nd parameter

push number1 ; 1st parameter

call fctn1 ; fctn1(number1, number2)

add esp, 8 ; remove parameters from stack

The first two statements obviously push the argument values on the stack prior to the
procedure call. The purpose of the last statement is to remove the values from the stack
following return from the procedure. If the stack is not cleaned up and a program repeat-
edly calls a procedure, eventually the stack will fill up causing a run-time error with
modern operating systems. Arguments could be removed using the alternative form of
the ret statement that specifies an operand, but the cdecl protocol specifically leaves the
stack cleanup task to the calling program. The arguments could be removed by popping
the values off the stack, but it is more efficient to simply add the number of bytes of
parameters to ESP, moving the stack pointer above the values.

Now, we look at how a procedure retrieves parameter values from the stack. Upon
entry to the procedure, the stack looks like the left illustration in Figure 6.10. The two
arguments—now the parameter values—have been pushed on the stack by the calling
program and the return address has been pushed on the stack by the call instruction.
The first instructions executed by the procedure are

push ebp ; save base pointer

mov ebp, esp ; establish stack frame

push ebx ; save EBX

This is known as entry code. The first two instructions will always be the pair shown. They
preserve EBP so that it can be restored before returning, and set EBP to point at a fixed place
in the stack that can be used to locate parameters. The third instruction is needed in this pro-
cedure so that EBX can be used for computations within the procedure and then restored
before return; this makes its use in the procedure transparent to the calling program. After
these three instructions are executed, the stack looks like the right illustration in Figure 6.10.

There are 8 bytes stored between the address stored in EBP and the first parameter
(x) value. Parameter 1 can be referenced using based addressing by [ebp+8]. The second
parameter (y) value is 4 bytes higher on the stack; its reference is [ebp+12]. The code

mov eax, [ebp+8] ; x

imul eax, 3 ; 3*x

mov ebx, [ebp+12] ; y

imul ebx, 7 ; 7*y

add eax, ebx ; 3*x + 7*y

copies the value of the first parameter from the stack into EAX and the value of the sec-
ond parameter from the stack into EBX in order to compute the desired promised result.

You may wonder why EBP is used at all. Why not just use ESP as a base register?
The principal reason is that ESP is likely to change, but the instruction mov ebp,esp

180 CHAPTER 6 | Procedures

9781284036121_CH06.indd 180 1/23/2014 11:11:06 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

stack upon

procedure entry

p
ar

am
et

er
 2

 (
y)

p
ar

am
et

er
 1

 (
x)

re
tu

rn
 a

d
d

re
ss

ESP

stack after

entry code

p
ar

am
et

er
 2

 (
y)

p
ar

am
et

er
 1

 (
x)

re
tu

rn
 a

d
d

re
ss

ol
d

 v
al

u
e

of
 E

B
X

EBP

increasing

addresses

ol
d

 v
al

u
e

of
 E

B
P

ESP

Figure 6.10

Establishing base pointer in procedure entry code

6.2 32-Bit Procedures with Value Parameters 181

9781284036121_CH06.indd 181 1/23/2014 11:11:06 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

loads EBP with a fixed reference point in the stack. This fixed reference point will not
change as other instructions in the procedure are executed, even if the stack is used for
other purposes, for example, to push additional registers or to call other procedures.

We now come to the third major concept, how to write procedure code that is inde-
pendent of and preserves the environment for the calling program. You have already seen
most of the code for this. Basically, the entry code pushes each register that will be used
by the procedure, and the exit code pops them in the opposite order. Obviously, you must
not save and restore EAX when a value is being returned in EAX. The exit code for our
example consists of

pop ebx ; restore EBX

pop ebp ; restore EBP

ret ; return

EBP is always restored last since it is always saved first. This example only used EBX
for computations, but it is not unusual to save and restore several registers. Figure 6.11
summarizes the cdecl protocol.

Exercises 6.2

 *1. Suppose that the procedure exercise1 is called by the instruction

 call exercise1

 If this call statement is at address 00402000 and ESP contains 00406000 before the call, what return
address will be on the stack when the first instruction of procedure exercise1 is executed? What will
be the value in ESP?

calling program code
• push arguments on stack in right-to-left order
• call procedure

• add number of bytes of parameters to ESP

• for value-returning procedure, use value in EAX

procedure code

• save EBP and establish stack frame
• save registers used by procedure

• access parameter values using based
 addressing in procedure body
• return value, if any, goes in EAX

• restore saved registers and EBP
• return

Figure 6.11

cdecl protocol

182 CHAPTER 6 | Procedures

9781284036121_CH06.indd 182 1/23/2014 11:11:06 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

 2. Suppose that a procedure begins with this entry code

push ebp ; save EBP

mov ebp,esp ; new base pointer
push ecx ; save registers
push esi

...

 Assume that this procedure has three doubleword parameters whose formal order is first x, then y, and
last z. Draw a picture of the stack following execution of the above code. Include parameters, return
address, and show the bytes to which EBP and ESP point. Give the based address with which each
parameter can be referenced.

Programming Exercises 6.2

 For each of these exercises follow the cdecl protocol for the specified procedure and write a short
 console32 or windows32 test-driver program to test the procedure.

 1. Write a procedure discr that could be described in C/C++ by

int discr(int a, int b, int c)

// return the discriminant b*b-4*a*c

 that is, its name is discr, it has three doubleword integer parameters, and it is a value-returning proce-
dure.

 2. Write a value-returning procedure min2 to find the smaller of two doubleword integer parameters.
 3. Write a value-returning procedure max3 to find the largest of three doubleword integer parameters.
 4. Programming Exercise 5.3.6 has an algorithm for finding the greatest common divisor of two posi-

tive integers. Write a procedure gcd to implement this algorithm. It might be described in C/C++ by
int gcd(int number1, int number2), that is, its name is gcd, it has two doubleword integer
parameters, and it is a value-returning procedure.

 5. The volume of a pyramid with a rectangular base is given by the formula h*x*y/3 where h is the height
of the pyramid, x is the length, and y is the width of the base. Write a procedure pVolume that imple-
ments the function described by the following C/C++ function header:

int pVolume(int height, int length, int width);

// return volume of pyramid with rectangular base

6.3 Additional 32-Bit Procedure Options

The previous section’s main example showed how to pass arguments to parameters by
value. With a reference parameter, the address of the argument instead of its value is
passed to the procedure. Reference parameters are used for several purposes, two of
which are to send a large argument (for example, an array or a structure) to a procedure,
or to send results back to the calling program as argument values. This section begins
with an example that illustrates both of these uses of reference parameters.

6.3 Additional 32-Bit Procedure Options 183

9781284036121_CH06.indd 183 1/23/2014 11:11:06 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

Consider the procedure for which the C++ function prototype could be written

void minMax(int arr[], int count, int& min, int& max);

// Set min to smallest value in arr[0],..., arr[count−1]

// Set max to largest value in arr[0],..., arr[count−1]

In C++, the notation int arr[] indicates that the address of the integer array arr will
be passed, and int& instead of int says that the addresses of integer variables min
and max will be passed. Figure 6.12 shows an implementation of this procedure in a
 console32 program. It also includes a simple test driver that establishes locations for an
array and the smallest and largest numbers to be stored, and calls minMax, pushing the
four parameters, three of which are addresses. Note that there are 16 bytes of parameters
to remove after the call.

Figure 6.12

Procedure using address parameters (continues)

; procedure minMax to find smallest and largest elements in an
; array and test driver for minMax
; author: R. Detmer
; date: 6/2013

.586
.MODEL FLAT
.STACK 4096

.DATA
minimum DWORD ?
maximum DWORD ?
nbrArray DWORD 25, 47, 95, 50, 16, 95 DUP (?)

.CODE
main PROC
 lea eax, maximum ; 4th parameter
 push eax
 lea eax, minimum ; 3rd parameter
 push eax
 pushd 5 ; 2nd parameter (number of elements)
 lea eax, nbrArray ; 1st parameter
 push eax
 call minMax ; minMax(nbrArray, 5, minimum, maximum)
 add esp, 16 ; remove parameters from stack
quit: mov eax, 0 ; exit with return code 0
 ret
main ENDP

184 CHAPTER 6 | Procedures

9781284036121_CH06.indd 184 1/23/2014 11:11:07 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

Figure 6.12

Procedure using address parameters (continued)

; void minMax(int arr[], int count, int& min, int& max);
; Set min to smallest value in arr[0],..., arr[count−1]
; Set max to largest value in arr[0],..., arr[count−1]
minMax PROC
 push ebp ; save base pointer
 mov ebp,esp ; establish stack frame
 push eax ; save registers
 push ebx
 push ecx
 push edx
 push esi
 mov esi,[ebp+8] ; get address of array arr
 mov ecx,[ebp+12] ; get value of count
 mov ebx, [ebp+16] ; get address of min
 mov edx, [ebp+20] ; get address of max

 mov DWORD PTR [ebx], 7fffffffh ; largest possible integer
 mov DWORD PTR [edx], 80000000h ; smallest possible integer
 jecxz exitCode ; exit if there are no elements

forLoop:
 mov eax, [esi] ; a[i]
 cmp eax, [ebx] ; a[i] < min?
 jnl endIfSmaller ; skip if not
 mov [ebx], eax ; min := a[i]
endIfSmaller:
 cmp eax, [edx] ; a[i] > max?
 jng endIfLarger ; skip if not
 mov [edx], eax ; max := a[i]
endIfLarger:
 add esi, 4 ; point at next array element
 loop forLoop ; repeat for each element of array

exitCode:
 pop esi ; restore registers
 pop edx
 pop ecx
 pop ebx
 pop eax
 pop ebp
 ret ; return
minMax ENDP
END

6.3 Additional 32-Bit Procedure Options 185

9781284036121_CH06.indd 185 1/23/2014 11:11:07 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

The minMax procedure follows a straightforward design that is in the comments of the
procedure. Notice that several registers are used and their contents are saved in the entry
code and restored in the exit code. The reader should draw the stack picture to see where
the parameters are placed on the stack. Immediately after the entry code, the various param-
eters are copied into registers. The minMax procedure uses indirect addressing extensively,
based addressing to retrieve the parameters, and register indirect addressing to access the
array sequentially. Register indirect addressing is also used as EBX and EDX point at min
and max, in this case the doublewords allocated for minimum and maximum, respectively,
in the test driver. As an alternative to starting min at the largest possible integer and max
at the smallest possible integer, each could have been initialized to the first array element’s
value. This takes slightly more code. Figure 6.13 shows a debugger window with the pro-
gram paused following the call; the memory window has been set to start at the address of
minimum.

Procedure minMax required the use of several registers in its implementation. Using
registers is almost always preferable to using memory but there simply aren’t enough
of them to implement complex algorithms. Some procedures need to have local vari-
ables in memory. The standard way to do this is to allocate space for them on the stack.

Figure 6.13

Procedure using address parameters

186 CHAPTER 6 | Procedures

9781284036121_CH06.indd 186 1/23/2014 11:11:07 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

Figure 6.14 outlines procedure code to do this. It is a minor modification of the right
side of Figure 6.11 with the new steps shown in bold.

Here is a simplified, not-to-scale picture of the stack with local storage reserved.

parameters

return address

old EBP

local variable space

saved registers

EBP

Just as doubleword parameters above the reference point can be referenced by [ebp+8],
[ebp+12], and so on, the first doubleword in the local variable space below the reference
point can be accessed by [ebp-4], the next below by [ebp-8], and so on. C and C++
compilers normally allocate all local variables on the stack. There are several difficulties
with doing this in assembly language, not the least of which is remembering where a
particular local variable is stored in the stack.

The two new steps are obviously implemented by sub esp,n and mov esp,ebp,
where n is the number of bytes of local storage you want to reserve. You may be wonder-
ing why the “deallocation” step isn’t add esp,n. The answer is that it could be, but the
mov instruction is both simpler and safer. It is safer because it will still restore the correct
value to ESP even if the saved registers were not properly popped off the stack.

A recursive procedure or function is one that calls itself, either directly or indirectly. The
best algorithms for manipulating many data structures are recursive. It is frequently very dif-
ficult to code certain algorithms in a programming language that does not support recursion.

•	 save EBP and establish stack frame

•	 subtract number of bytes of local space from ESP
•	 save registers used by procedure

•	 access parameter values using based addressing in procedure body

•	 return value, if any, goes in EAX

•	 restore saved registers

•	 copy EBP to ESP
•	 restore EBP

•	 return

Figure 6.14

Procedure code with local variable space

6.3 Additional 32-Bit Procedure Options 187

9781284036121_CH06.indd 187 1/23/2014 11:11:07 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

It is almost as easy to code a recursive procedure in 80x86 assembly language as it is
to code a non-recursive procedure. If parameters are passed on the stack and local vari-
ables are stored on the stack, then each call of the procedure gets new storage allocated
for its parameters and local variables. There is no danger of the arguments passed to one
call of a procedure being confused with those for another call because each call has its
own stack frame. If registers are properly saved and restored, then the same registers can
be used by each call of the procedure.

This section gives one example of a recursive procedure in 80x86 assembly language.
It solves the Towers of Hanoi puzzle, pictured in Figure 6.15 with four disks. The object
of the puzzle is to move all disks from source spindle A to destination spindle B, one at a
time, never placing a larger disk on top of a smaller disk. Disks can be moved to spindle
C, a spare spindle. For instance, if there are only two disks, the small disk can be moved
from spindle A to C, the large one can be moved from A to B, and finally the small one
can be moved from C to B.

In general, the Towers of Hanoi puzzle is solved by looking at two cases. If there is
only one disk, then the single disk is simply moved from the source spindle to the destina-
tion. If the number of disks nbrDisks is greater than one, then the top (nbrDisks-1) disks
are moved to the spare spindle, the largest one is moved to the destination, and finally
the (nbrDisks-1) smaller disks are moved from the spare spindle to the destination. Each
time (nbrDisks-1) disks are moved, exactly the same procedure is followed, except that
different spindles have the roles of source, destination, and spare. Figure 6.16 expresses
the algorithm in pseudocode.

Figure 6.17 lists 80x86 code that implements the design as a windows32 program.
The code is a fairly straightforward translation of the pseudocode design, with each
recursive procedure call in move implemented just like the call in the main program.
Note that although the spindles are designated by single characters, these characters
are passed in doublewords to ensure that the stack stays on a doubleword boundary. A
high-level language compiler would probably calculate nbrDisks-1 twice—once for each
recursive call where it is used—but we can be a little more efficient and calculate it just
one time. This value is computed in EAX and will be there after the intervening code
because subsequent calls save and restore EAX. The last thing to note is that variables
in the data section are used by procedure move. In general, use of global variables is dis-
couraged, but here it is simpler and more efficient than allocating local variables on the
stack. They are only being used for display of a single instruction and do not need to be
preserved between calls. Figure 6.18 shows a sample run of this program.

Spindle A Spindle B Spindle C

Figure 6.15

Towers of Hanoi puzzle

188 CHAPTER 6 | Procedures

9781284036121_CH06.indd 188 1/23/2014 11:11:07 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

procedure move(nbrDisks, source, destination, spare);
begin
 if NbrDisks = 1
 then
 display "Move disk from ", source, " to ", destination
 else
 move(nbrDisks-1, source, spare, destination);
 move(1, source, destination, spare);
 move(nbrDisks-1, spare, destination, source);
 end if;
end procedure move;

begin {main program}
 prompt for and input number;
 move(number, 'A', 'B', 'C');
end;

Figure 6.16

Pseudocode for Towers of Hanoi Solution

; program to display instructions for "Towers of Hanoi" puzzle
; author: R. Detmer
; revised: 6/2013
.586
.MODEL FLAT
INCLUDE io.h
.STACK 4096

.DATA
prompt BYTE "How many disks?",0
number BYTE 16 DUP (?)
outLbl BYTE "Move disk", 0
outMsg BYTE "from spindle "
source BYTE ?, 0ah, 0dh
 BYTE 'to spindle '
dest BYTE ?, 0

.CODE
_MainProc PROC
 mov al,'C' ; argument 4: 'C'
 push eax
 mov al,'B' ; argument 3: 'B'
 push eax
 mov al,'A' ; argument 2: 'A'

Figure 6.17

Towers of Hanoi solution (continues)

6.3 Additional 32-Bit Procedure Options 189

9781284036121_CH06.indd 189 1/23/2014 11:11:07 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

 push eax
 input prompt, number,16 ; read ASCII characters
 atod number ; convert to integer
 push eax ; argument 1: number
 call move ; Move(number,Source,Dest,Spare)
 add esp,16 ; remove parameters from stack

 mov eax, 0 ; exit with return code 0
 ret
_MainProc ENDP

move PROC
; procedure move(nbrDisks : integer; { number of disks to move }
; source, dest, spare : character { spindles to use })
; all parameters are passed in doublewords on the stack

 push ebp ; save base pointer
 mov ebp,esp ; establish stack frame
 push eax ; save registers
 push ebx

 cmp DWORD PTR [ebp+8],1 ; nbrDisks = 1?
 jne elseMore ; skip if more than 1
 mov ebx,[ebp+12] ; source
 mov source,bl ; copy character to output
 mov ebx,[ebp+16] ; destination
 mov dest,bl ; copy character to output
 output outLbl, outMsg ; display move instruction
 jmp endIfOne ; return
elseMore:
 mov eax,[ebp+8] ; get nbrDisks
 dec eax ; nbrDisks - 1
 push DWORD PTR [ebp+16] ; par 4: old destination is new spare
 push DWORD PTR [ebp+20] ; par 3: old spare is new destination
 push DWORD PTR [ebp+12] ; par 2: source does not change
 push eax ; par 1: nbrDisks−1
 call move ; move(nbrDisks−1,source,spare,destination)
 add esp,16 ; remove parameters from stack

 push DWORD PTR [ebp+20] ; par 4: spare unchanged
 push DWORD PTR [ebp+16] ; par 3: destination unchanged
 push DWORD PTR [ebp+12] ; par 2: source does not change
 pushd 1 ; par 1: 1
 call move ; move(1,source,destination,spare)
 add esp,16 ; remove parameters from stack
 push DWORD PTR [ebp+12] ; par 4: original source is spare
 push DWORD PTR [ebp+16] ; par 3: original destination

Figure 6.17

Towers of Hanoi solution (continues)

190 CHAPTER 6 | Procedures

9781284036121_CH06.indd 190 1/23/2014 11:11:07 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

 push DWORD PTR [ebp+20] ; par 2: source is original spare
 push eax ; parameter 1: nbrDisks−1
 call move ; move(nbrDisks−1,spare,destination,source)
 add esp,16 ; remove parameters from stack
endIfOne:
 pop ebx ; restore registers
 pop eax
 pop ebp ; restore base pointer
 ret ; return
move ENDP
END

Figure 6.17

Towers of Hanoi solution (continued)

Figure 6.18

Towers of Hanoi sample run

6.3 Additional 32-Bit Procedure Options 191

9781284036121_CH06.indd 191 1/23/2014 11:11:08 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

One of the reasons for using procedures is so that code that performs a useful task
can be reused in other programs. Although you can always just copy and paste code from
one program to another, it is often more convenient to package a procedure in a sepa-
rate file, and then simply include the file in another project. We now return to the first
example of this section and show how it can be split into separate files. The test-driver
code is shown in Figure 6.19 and the procedure code is in Figure 6.20. There is little new
here except that the test-driver file needs an EXTERN directive to identify minMax as a
procedure. The procedure file must repeat directives that are also used in the test-driver
file: .586, .MODEL FLAT, .CODE, and END. It is not necessary to have another .STACK
directive, and in a windows32 program INCLUDE io.h is only needed if the procedure
is using the macros defined in io.h. In the Visual Studio environment the two .asm files
will be separate source files.

; and test driver for minMax
; author: R. Detmer
; date: 6/2013

.586
.MODEL FLAT
.STACK 4096

.DATA
minimum DWORD ?
maximum DWORD ?
nbrArray DWORD 25, 47, 95, 50, 16, 84 DUP (?)

EXTERN minMax:PROC

.CODE
main PROC
 lea eax, maximum ; 4th parameter
 push eax
 lea eax, minimum ; 3rd parameter
 push eax
 pushd 5 ; 2nd parameter (number of elements)
 lea eax, nbrArray ; 1st parameter
 push eax
 call minMax ; minMax(nbrArray, 5, minimum, maximum)
 add esp, 16 ; remove parameters from stack

quit: mov eax, 0 ; exit with return code 0
 ret
main ENDP
END

Figure 6.19

Test driver for minMax in separate file

192 CHAPTER 6 | Procedures

9781284036121_CH06.indd 192 1/23/2014 11:11:08 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

; procedure minMax to find smallest and largest elements in an array
; author: R. Detmer date: 6/2013
.586
.MODEL FLAT
.CODE
; void minMax(int arr[], int count, int& min, int& max);
; Set min to smallest value in arr[0],..., arr[count−1]
; Set max to largest value in arr[0],..., arr[count−1]
minMax PROC
 push ebp ; save base pointer
 mov ebp,esp ; establish stack frame
 push eax ; save registers
 push ebx
 push ecx
 push edx
 push esi

 mov esi,[ebp+8] ; get address of array arr
 mov ecx,[ebp+12] ; get value of count
 mov ebx, [ebp+16] ; get address of min
 mov edx, [ebp+20] ; get address of max

 mov DWORD PTR [ebx], 7fffffffh ; largest possible integer
 mov DWORD PTR [edx], 80000000h ; smallest possible integer
 jecxz exitCode ; exit if there are no elements

forLoop:
 mov eax, [esi] ; a[i]
 cmp eax, [ebx] ; a[i] < min?
 jnl endIfSmaller ; skip if not
 mov [ebx], eax ; min := a[i]
endIfSmaller:
 cmp eax, [edx] ; a[i] > max?
 jng endIfLarger ; skip if not
 mov [edx], eax ; max := a[i]
endIfLarger:
 add esi, 4 ; point at next array element
 loop forLoop ; repeat for each element of array

exitCode:
 pop esi ; restore registers
 pop edx
 pop ecx
 pop ebx
 pop eax
 pop ebp
 ret ; return
minMax ENDP
END

Figure 6.20

minMax in separate file

6.3 Additional 32-Bit Procedure Options 193

9781284036121_CH06.indd 193 1/23/2014 11:11:08 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

How can you call a high-level language procedure from assembly language or an
assembly language procedure from a high-level language? The answer is by carefully
following the calling protocol used by the compiler for the high-level language. The
Visual Studio C compiler uses the cdecl protocol. The windows32 projects that you have
been using for programs with input and output already do this. For example, the file
framework.c contains the code

int MainProc(void);

// prototype for user’s main program

int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE

hPrevInstance,

 LPSTR lpCmdLine, int nCmdShow)

{

 _hInstance = hInstance;

 return MainProc();

}

Execution begins with WinMain that basically just calls your assembly language pro-
cedure MainProc. However, recall that the name of your procedure is not MainProc,
but _MainProc. The code generated by the C compiler follows the cdecl text decoration
convention of appending a leading underscore. In general, to call an assembly language
procedure from a Visual Studio C program, prototype the function to describe it, name
the assembly language procedure with the same name prefixed with an underscore, and
follow the cdecl protocols in the assembly language code.

A windows32 project also calls C functions in framework.c from expansions of the
output and input macros. For example, the definition code for the output macro contains

lea eax,outStr ; string address

push eax ; string parameter on stack

lea eax,outLbl ; label address

push eax ; string parameter on stack

call _showOutput ; showOutput(outLbl, outStr)

add esp, 8 ; remove parameters

This is clearly a call to procedure _showOutput, which is showOutput in framework.c.
The assembly language code must add the underscore to the name because the assembler
does not decorate the name, but the C compiler will. In general, text decoration is only
a concern when you are mixing high-level and assembly language procedures, not when
you are entirely writing in assembly language where no text decoration is generated or in
C where the compiler takes care of text decoration automatically.

The Visual Studio programming environment uses several other procedure proto-
cols, one of which is stdcall. The stdcall protocol is similar to cdecl, the biggest dif-
ferences being that the procedure rather than the caller must remove parameters from

194 CHAPTER 6 | Procedures

9781284036121_CH06.indd 194 1/23/2014 11:11:08 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

the stack (which makes the ret instruction with an operand very handy!) and the text
decoration convention is much more complex, involving not only a leading underscore
but a trailing at sign (@) followed by a decimal number that is the number of bytes of
parameters. The fastcall protocol gives yet another set of conventions. With fastcall,
parameters are passed in registers. The important point here is that when you are mix-
ing assembly language and a high-level language, you must know what protocol the
high-level language compiler is using and follow it carefully.

Exercises 6.3

 *1. Give entry code and exit code for a procedure that reserves 8 bytes of storage on the stack for local
variables. Assuming that this space is used for two doublewords, give the based address with which
each local variable can be referenced.

 2. Figure 6.11 gave the steps for calling code and procedure code using the cdecl protocol. Write down the
corresponding lists for the stdcall protocol.

Programming Exercises 6.3

 For each of these exercises follow the cdecl protocol for the specified procedure and write a short
 console32 or windows32 test-driver program to test the assembly language procedure.

 1. Suppose that a procedure is described in C/C++ by void toUpper(char str[]), that is, its name is
toUpper, and it has a single parameter that is the address of an array of characters. Assuming that the
character string is null-terminated, implement toUpper so that it changes each lowercase letter in the
string to its uppercase equivalent, leaving all other characters unchanged.

 2. Suppose that a procedure is described in C/C++ by int upperCount(char str[]), that is, its name
is upperCount, it has a single parameter that is the address of an array of characters, and it returns
an integer. Assuming that the character string is null- terminated, implement upperCount so that it
returns a count of how many uppercase letters appear in the string.

 3. Programming Exercise 5.5.5 gave the selection sort algorithm. Implement this algorithm in a procedure
whose C/C++ description could be

void selectionSort(int nbrArray[], int nbrElts)

; sort nbrArray[0] .. nbrArray[nbrElts−1]

; into increasing order using selection sort

 The first parameter will be the address of the array.
 4. Write a procedure avg to find the average of a collection of doubleword integers in an array. Procedure

avg will have three parameters in the following order:
 (1) The address of the array.
 (2) The number of integers in the array (passed as a doubleword).
 (3) The address of a doubleword at which to store the result.

 5. Write a value-returning procedure search to search an array of doublewords for a specified doubleword
value. Procedure search will have three parameters:

 (1) The value for which to search (a doubleword integer).
 (2) The address of the array.
 (3) The number n of doublewords in the array (passed as a doubleword).

 Return the position (1,2, . . . ,n) at which the value is found, or return 0 if the value does not appear in
the array.

6.3 Additional 32-Bit Procedure Options 195

9781284036121_CH06.indd 195 1/23/2014 11:11:08 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

 6. The factorial function is defined for a nonnegative integer argument n by

factorial n
n

n factorial n if n

()

1 if 0

(1) 0
 =

=
× − >

 Write a value-returning procedure named factorial that implements this recursive definition.
 7. The greatest common divisor (GCD) of two positive integers m and n can be calculated recursively by

the function described below in pseudocode.

function gcd(m, n : integer) : integer;

if n = 0
then
 return m;
else
 remainder := m mod n;
 return gcd(n, remainder);

end if;

 Write a value-returning procedure named gcd that implements this recursive definition.
 8. Write a procedure arrMax that implements the function described by the following C/C++ function

header:

int arrMax(int arr[], int nbrElts);

// if nbrElts <= 0 returns −99999
// otherwise returns maximum of the first nbrElts

// elements of arr

 The first parameter of arrMax is the address of the first doubleword of the array arr.
 9. Write a procedure hasLower that implements the function described by the following C/C++ function

header:

int hasLower(char str[]);

// precondition: str is a null terminated string
// postcondition: returns true (−1) if str contains at least

// one lowercase letter; otherwise returns false (0)

 The parameter of hasLower is the address of the first byte of the string str.
 10. Programming Exercise 5.5.7 gave an algorithm for merging two sorted integer arrays into a third sorted

array. Write a procedure arrayMerge that implements that design in a procedure described by the fol-
lowing C/C++ function header:

void arrayMerge(int array1[], int count1,

 int array2[], int count2,
 int array3[]);
// precondition: array1 and array2 are sorted arrays with
// count1 and count2 elements, respectively.
// Each has at least one unused slot.
// array3 has at least count1+count2 slots
// postcondition: array1 and array2 have been merged into
// the sorted array3

 Parameters 1, 3, and 5 are the addresses of the three arrays.

196 CHAPTER 6 | Procedures

9781284036121_CH06.indd 196 1/23/2014 11:11:08 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

 11. The inner product of two vectors is the sum of the products of corresponding terms. For instance, given
[3, 6, 5] and [2, −4, 1] (each stored as an array with 3 elements), the inner product is 3*2 + 6*(−4) +
5*1 = −13. Write a procedure innerProduct that implements the function described by the following
C/C++ function header:

int innerProduct(int vector1[], int vector2[], int vLength);

// returns the inner product of vector1 and vector2,

// each with vLength components

 The first two parameters are the addresses of the two arrays.

6.4 64-Bit Procedures

This section describes the differences in the 32-bit procedure protocol and the 64-bit proce-
dure protocol. First we look at the additional push and pop instructions available in 64-bit
mode. These are shown in Figures 6.21 and 6.22. The entries in these tables are very similar
to those for 32-bit mode instructions (see Figures 6.1 and 6.5 in this chapter’s first section).
There are entries for all 16 64-bit general registers. The REX prefix 41 is used for R8–R15.

One important difference in 32- and 64-bit modes is that you cannot use 32-bit regis-
ter or memory operands with 64-bit push and pop instructions. The available immediate
operand sizes for push remain byte, word, and doubleword—quadword is not added.
Also, the pushad and popad instructions in 32-bit mode do not exist in 64-bit mode, nor
are there instructions to push and pop all 16 64-bit registers.

Figure 6.21

 64-bit mode push instructions

Operand Opcode Bytes of Object Code

64-bit mode
RAX or R8 50 1
RCX or R9 51 1
RDX or R10 52 1
RBX or R11 53 1
RSP or R12 54 1
RBP or R13 55 1
RSI or R14 56 1
RDI or R15 57 1
memory word FF 2+
memory quadword FF 2+
immediate byte 6A 2
immediate word 68 3
immediate doubleword 68 5

6.4 64-Bit Procedures 197

9781284036121_CH06.indd 197 1/23/2014 11:11:08 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

Just as it is important to keep the stack on a doubleword boundary in a 32-bit envi-
ronment, it is important to keep it on a quadword boundary in a 64-bit environment.
Therefore, you almost always push and pop quadwords.

The 64-bit versions of instructions call and ret are very similar to the 32-bit ver-
sions. The tables for call and ret instructions are not repeated since they are exactly the
same tables as in 32-bit instructions mode shown in Figures 6.8 and 6.9. A push instruc-
tion pushes a 64-bit return address onto the stack before loading RIP with the procedure’s
address, and a pop instruction pops the 64-bit return address from the stack into RIP.

Where the 64-bit protocol is most different is in parameter conventions. With the
32-bit architecture, registers are often a scarce resource. The 64-bit architecture dou-
bles the number of available registers, making it more practical to pass arguments in
registers, and the 64-bit protocol takes advantage of this. Arguments that can be passed
as quadwords (including bytes, words, and doublewords) are extended to quadword
length, if necessary. The first four arguments are always passed in the registers shown in
Figure 6.23. Additional arguments, if any, are passed on the stack.

In a 64-bit environment, a calling procedure must reserve space on the stack for argu-
ments. Normally, the procedure does this in entry code. The windows64 programs in this
text start with

sub rsp, 120 ; reserve stack space for MainProc

that generates enough space for 15 quadwords. The bottom part of the reserved space is
reserved for arguments. If there is a fifth argument, then it is copied to [RSP+32], a sixth
to [RSP+40], and so on. After the return address (8 bytes) is pushed on the stack, the
called procedure will then find these values at [RSP+40], [RSP+48], and so on. Why start

Operand Opcode Bytes of Object Code

64-bit mode
RAX or R8 58 1
RCX or R9 59 1
RDX or R10 5A 1
RBX or R11 5B 1
RSP or R12 5C 1
RBP or R13 5D 1
RSI or R14 5E 1
RDI or R15 5F 1
memory word 8F 2+
memory quadword 8F 2+

Figure 6.22

64-bit mode pop instructions

198 CHAPTER 6 | Procedures

9781284036121_CH06.indd 198 1/23/2014 11:11:08 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

32 bytes from the bottom? This is to leave space in the stack for the first four parameters,
even though they are in the registers. The called procedure can use this space to copy any
of the first four argument values.

Registers can be pushed by entry code and popped by exit code similar to the way
they are done in the 32-bit environment. However, this is usually done before the local
stack space is reserved. Once the local stack space is established, there should be no
change to RSP before a subsequent procedure is called. This makes it possible to use RSP
and based addressing to locate parameters and local variables. However, you can use
RBP as a frame pointer if needed.

RAX is used to return a single quadword value. Microsoft documentation labels
registers RAX, RCX, RDX, and R8–R11 as volatile, meaning that the called procedure
is free to change them. Similarly, RBX, RDI, RSI, RBP, RSP, and R12–R15 are called
nonvolatile, meaning that a called procedure has the responsibility of preserving them.
In practice, sometimes it is safest to preserve any register that you don’t want destroyed
by a called procedure. For example, in windows64 projects, the atod macro includes
the code

mov [rsp+32], rcx ; save register used to pass parameters

mov [rsp+40], rbx ; save registers destroyed by atodproc

mov [rsp+48], rdx

lea rcx,source ; source address to rcx

call atodproc ; call atodproc(source)

mov rcx, [rsp+32] ; restore register used to pass parameters

mov rbx, [rsp+40] ; restore registers destroyed by atodproc

mov rdx, [rsp+48]

Notice that the registers are saved in the stack area above the area reserved for copying
the first four parameters. This code preserves RBX even though it should be nonvolatile.

Figure 6.24 shows the listing of a console64 version of the program whose console32
version appeared in Figure 6.12. It is noticeably simpler than the 32-bit version. The four
arguments are simply placed in registers and then used in the procedure. The procedure
minMax itself does not call additional procedures, so it does not need to establish local

Argument Register

1 RCX
2 RDX
3 R8
4 R9

Figure 6.23

64-bit registers used to pass arguments

6.4 64-Bit Procedures 199

9781284036121_CH06.indd 199 1/23/2014 11:11:08 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

stack space. One difference is that the 32-bit minMax simply places the largest and small-
est possible values in the caller’s data at the addresses passed in the third and fourth
parameters, respectively, but since there is no immediate quadword to memory mov in the
64-bit architecture, the immediate values are first placed in RAX and then copied to their
destinations.

; procedure minMax to find smallest and largest elements in an
; array and test driver for minMax — 64-bit version
; author: R. Detmer
; date: 6/2013

.DATA
minimum QWORD ?
maximum QWORD ?
nbrArray QWORD 25, 47, 95, 50, 16, 95 DUP (?)

.CODE
main PROC
 sub rsp, 32 ; local stack space
 lea rcx, nbrArray ; 1st parameter
 mov rdx, 5 ; 2nd parameter (number of elements)
 lea r8, minimum ; 3rd parameter
 lea r9, maximum ; 4th parameter
 call minMax ; minMax(nbrArray, 5, minimum, maximum)

quit: add rsp, 32 ; clean up stack
 mov rax, 0 ; exit with return code 0
 ret
main ENDP

; void minMax(int arr[], int count, int& min, int& max);
; Set min to smallest value in arr[0],..., arr[count–1]
; Set max to largest value in arr[0],..., arr[count–1]
minMax PROC
 push rax ; save registers
 push rsi
 mov rsi,rcx ; get address of array arr (1st parameter)
 mov rcx,rdx ; get value of count (2nd parameter)

 mov rax, 7fffffffffffffffh ; largest possible integer
 mov QWORD PTR [r8], rax

Figure 6.24

64-bit procedure using address parameters (continues)

200 CHAPTER 6 | Procedures

9781284036121_CH06.indd 200 1/23/2014 11:11:08 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

We conclude this section with an example of an assembly language procedure called
from a C main program. The C test driver is shown in Figure 6.25 and the assembly lan-
guage procedure is shown in Figure 6.26. These are separate source files in a console64
project. One of the satisfying things about this program is that if you launch it with
control-F5, you can actually see the output in the console window!

You may wonder why add5 uses EAX instead of RAX to accumulate the sum.
With the Visual Studio 2012 C compiler, an int is a 32-bit integer. The C compiler
passes the five arguments in quadwords, but the high-order half of each quadword
is undefined, so add5 just adds the low-order doublewords that contain the integers.
This C compiler uses long long to designate a quadword integer; long int is still
32 bits.

Another point of this example is to show how a fifth argument is handled in a
 procedure—in this case it is located at [RSP+40] since no registers needed to be saved in
add5. Finally, note that the C compiler did not use text decoration in the 64-bit environ-
ment so that the called procedure could be named simply add5.

 mov rax, 8000000000000000h ; smallest possible integer
 mov QWORD PTR [r9], rax
 jrcxz exitCode ; exit if there are no elements

forLoop:
 mov rax, [rsi] ; a[i]
 cmp rax, [r8] ; a[i] < min?
 jnl endIfSmaller ; skip if not
 mov [r8], rax ; min := a[i]
endIfSmaller:
 cmp rax, [r9] ; a[i] > max?
 jng endIfLarger ; skip if not
 mov [r9], rax ; max := a[i]
endIfLarger:
 add rsi, 8 ; point at next array element
 loop forLoop ; repeat for each element of array

exitCode:
 pop rsi ; restore registers
 pop rax
 ret ; return
minMax ENDP
END

Figure 6.24

64-bit procedure using address parameters (continued)

6.4 64-Bit Procedures 201

9781284036121_CH06.indd 201 1/23/2014 11:11:08 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

/* C test driver for assembly language procedure add5 */
/* author: R. Detmer */
/* date: 6/2013 */

int add5(int x1, int x2, int x3, int x4, int x5);
/* returns sum of arguments */

#include <stdio.h>

int main()
{
 int a=5;
 int b=7;
 int c=9;

 int sum;

 sum = add5(a, 6, b, 8, c);
 printf("The sum is %d\n", sum);
 return 0;
}

Figure 6.25

C test driver for 64-bit procedure

; procedure add5 to add five parameters
; 64-bit version
; author: R. Detmer
; date: 6/2013

.CODE

; void add5(int x1, int x2, int x3, int x4, int x5);
; returns sum of arguments
add5 PROC
 mov eax, ecx ; x1
 add eax, edx ; x2
 add eax, r8d ; x3
 add eax, r9d ; x4
 add eax, DWORD PTR [rsp+40] ; x5
 ret ; return
add5 ENDP
END

Figure 6.26

64-bit procedure to add five integers

202 CHAPTER 6 | Procedures

9781284036121_CH06.indd 202 1/23/2014 11:11:08 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

Exercises 6.4

 1. Suppose that the entry code for a 64-bit procedure saves no register and reserves no local stack
space. How do you find each of the following quadword parameter values in the body of the proce-
dure?

 (a) parameter 1 *(b) parameter 3
 (c) parameter 5 *(d) parameter 7

 2. Suppose that the entry code for a 64-bit procedure is
 push rsi
 push r12

 How do you find each of the following quadword parameter values in the body of the procedure?
 (a) parameter 1 *(b) parameter 3
 (c) parameter 5 *(d) parameter 7
 3. Suppose that the entry code for a 64-bit procedure is
 push rsi
 push r12
 sub rsp, 48

 How do you find each of the following quadword parameter values in the body of the procedure?
 (a) parameter 1 *(b) parameter 3
 (c) parameter 5 *(d) parameter 7

Programming Exercises 6.4

 For each of these exercises follow the 64-bit protocol for the specified procedure. Embed the procedure
and a test-driver program in a console64 project. The test-driver program may be written either in
assembly language or C.

 1. Write a value-returning procedure min2 to find the smaller of two quadword integer parameters.
 2. Write a value-returning procedure max6 to find the largest of six quadword integer parameters.
 3. Suppose that a value-returning procedure is described in C/C++ by int alphaCount(char

str[]), that is, its name is alphaCount, it has a single parameter that is the address of an array of
characters, and it returns a doubleword integer. Assuming that the character string is null-terminated,
implement alphaCount so that it returns a count of how many letters (lowercase or uppercase) appear
in the string.

 4. Programming Exercise 5.5.5 gave the selection sort algorithm. Implement this algorithm in a procedure
whose C/C++ description could be

void selectionSort(long long nbrArray[], int nbrElts)

// sort nbrArray[0] .. nbrArray[nbrElts–1]

// into increasing order using selection sort

 The first parameter will be the address of the array. Notice that the array is an array of quadwords and
the count of how many elements is a doubleword.

 5. Write a procedure avg to find the average of a collection of quadword integers in an array. Procedure
avg will have three parameters in the following order:

 (1) The address of the array.
 (2) The number of integers in the array (passed as a doubleword).
 (3) The address of a quadword at which to store the result.

6.4 64-Bit Procedures 203

9781284036121_CH06.indd 203 1/23/2014 11:11:08 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

 6. The factorial function is defined for a nonnegative integer argument n by

factorial n
n

n factorial n if n

()

1 if 0

(1) 0
 =

=
− >

 ×

 Write a value-returning procedure named factorial that implements this recursive definition. Pass the
argument as a doubleword integer, but return a quadword result.

 7. Programming Exercise 5.5.7 gave an algorithm for merging two sorted integer arrays into a third sorted
array. Write a procedure arrayMerge that implements that design in a procedure described by the fol-
lowing C/C++ function header:

void arrayMerge(int array1[], int count1,

 int array2[], int count2),
 int array3[];
// precondition: array1 and array2 are sorted arrays with
// count1 and count2 elements, respectively.
// Each has at least one unused slot.
// array3 has at least count1+count2 slots
// postcondition: array1 and array2 have been merged into

// the sorted array3

 Each of the arrays is an array of doublewords; count1 and count2 are also doublewords. Parameters 1, 3,
and 5 are the addresses of the three arrays.

 8. Programming Exercise 6.3.11 defined the inner product of two vectors. Write a procedure innerProduct
that implements the function described by the following C/C++ function header:

int innerProduct(int vector1[], int vector2[], int vLength);

// returns the inner product of vector1 and vector2,

// each with vLength components

 Each of the vectors is an array of doublewords; vLength is also a doubleword. The first two parameters
are the addresses of the two arrays.

6.5 Macro Definition and Expansion

A macro was defined in Chapter 3 as a statement that is shorthand for a sequence of
other statements. The assembler expands a macro to the statements it represents, and
then assembles these new statements. The windows32 and windows64 programs in pre-
vious chapters have made extensive use of macros defined in the file io.h. This section
explains how to write macro definitions and tells how the assembler uses these defini-
tions to expand macros into other statements.

A macro definition resembles a procedure definition in a high-level language. The first
line gives the name of the macro being defined and a list of parameters; the main part
of the definition consists of a collection of model statements that describe the action of
the macro in terms of the parameters. A macro is called much like a high-level language
procedure, too—the name of the macro is followed by a list of arguments.

These similarities are superficial. A procedure call in a high-level language is com-
piled into a sequence of instructions to push parameters on the stack followed by a call

204 CHAPTER 6 | Procedures

9781284036121_CH06.indd 204 1/23/2014 11:11:09 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

instruction, whereas a macro call actually expands into statements given in the macro,
with the arguments substituted for the parameters used in the macro definition. Code in
a macro is repeated every time a macro is called, but there is just one copy of the code
for a procedure. Macros may execute more rapidly than procedure calls since there is no
overhead for passing parameters or for call and ret instructions, but this is usually at
the cost of more bytes of object code.

Every macro definition is bracketed by MACRO and ENDM directives. The format of a
macro definition is

name MACRO list of parameters

 assembly language statements

 ENDM

The parameters in the MACRO directive are ordinary symbols, separated by commas. The
assembly language statements may use the parameters as well as registers, immediate
operands, or symbols defined outside the macro. The statements may even include macro
calls.

A macro definition can appear anywhere in an assembly language source code file
as long as the definition comes before the first statement that calls the macro. It is good
programming practice to place macro definitions near the beginning of a source file or in
a separate file that is included with the INCLUDE directive.

This section gives several examples of macro definitions and macro calls. Figure 6.27
lists the definition of a macro add2 that finds the sum of two parameters, putting the
result in the EAX register. The parameters used to define the macro are nbr1 and nbr2.
These labels are local to the definition. The same names could be used for other purposes
in the program, although some human confusion might result.

The statements to which add2 expands depends on the arguments used in a call. For
example, the macro call

add2 value, 30 ; value + 30

expands to

; put sum of two doubleword parameters in EAX

mov eax, value

add eax, 30

add2 MACRO nbr1, nbr2
; put sum of two doubleword parameters in EAX
 mov eax, nbr1
 add eax, nbr2
 ENDM

Figure 6.27

Macro to add two integers

6.5 Macro Definition and Expansion 205

9781284036121_CH06.indd 205 1/23/2014 11:11:09 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

The statement

add2 value1, value2 ; value1 + value2

expands to

; put sum of two doubleword parameters in EAX

mov eax, value1

add eax, value2

The macro call

add2 eax, ebx ; sum of two values

expands to

; put sum of two doubleword parameters in EAX

mov eax, eax

add eax, ebx

Note that the instruction mov eax, eax is legal, even if it accomplishes nothing.
However, the macro call

add2 ebx, eax ; sum of two values

expands to

; put sum of two doubleword parameters in EAX

mov eax, ebx

add eax, eax

that will double the value in EBX, not add the values in EBX and EAX.
In each of these examples the first argument is substituted for the first parameter

nbr1 and the second argument is substituted for the second parameter nbr2. Each macro
results in mov and add instructions, but because the types of arguments differ, the object
code will vary.

If one of the arguments is missing, the macro will still be expanded. For instance, the
macro

add2 value

expands to

; put sum of two doubleword parameters in EAX

mov eax, value

add eax,

The argument value replaces nbr1 and an empty string replaces nbr2. The assembler will
report an error, but it will be for the illegal add instruction that results from the macro
expansion, not directly because of the missing argument.

206 CHAPTER 6 | Procedures

9781284036121_CH06.indd 206 1/23/2014 11:11:09 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

Similarly, the macro call

add2 , value

expands to

; put sum of two doubleword parameters in EAX

mov eax,

add eax, value

The comma in the macro call separates the first missing argument from the second argu-
ment, value. An empty argument replaces the parameter nbr1. The assembler will again
report an error, this time for the illegal mov instruction.

Note again that the definition and expansion for the add2 macro contain no ret
instruction. Although macros look much like procedures, they generate in-line code
when the macro call is expanded at assembly time.

Figure 6.28 shows the definition of a macro swap that will exchange the contents of
two doublewords in memory. It is very similar to the 80x86 xchg instruction that will
not work with two memory operands.

As with the add2 macro, the code generated by calling the swap macro depends on
the arguments used. For example, the call

swap [ebx], [ebx+4] ; swap adjacent words in array

expands to

; exchange two doublewords in memory

 push eax

 mov eax, [ebx]

 xchg eax, [ebx+4]

 mov [ebx], eax

 pop eax

It might not be obvious to the user that the swap macro uses the EAX register, so the
push and pop instructions in the macro protect the user from unexpectedly losing the
contents of this register.

swap MACRO dword1, dword2
; exchange two doublewords in memory
 push eax
 mov eax, dword1
 xchg eax, dword2
 mov dword1, eax
 pop eax
 ENDM

Figure 6.28

 Macro to swap two memory words

6.5 Macro Definition and Expansion 207

9781284036121_CH06.indd 207 1/23/2014 11:11:09 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

Figure 6.29 gives a definition of a macro min2 that finds the minimum of two dou-
bleword signed integers, putting the smaller in the EAX register. The code for this macro
must implement a design with an if statement, and such a design usually has at least one
assembly language statement with a label. If an ordinary label were used, then it would
appear every time a min2 macro call was expanded and the assembler would produce
error messages because of duplicate labels. The solution is to use a LOCAL directive to
define a symbol endIfMin that is local to the min2 macro.

The LOCAL directive is used only within a macro definition and goes at the begin-
ning of the definition. It lists one or more symbols, separated by commas, that are used
within the macro definition. Each time the macro is expanded and one of these symbols is
needed, it is replaced by a symbol starting with two question marks and ending with four
hexadecimal digits (??0000, ??0001, etc.). The same ??dddd symbol replaces the local
symbol each instance the local symbol is used in one particular expansion of a macro
call. The same symbols may be listed in LOCAL directives in different macro definitions or
may be used as regular symbols in code outside of macro definitions.

The macro call

min2 [ebx], ecx ; find smaller of two values

might expand to the code

; put smaller of two doublewords in the EAX register

 mov eax, [ebx]

 cmp eax, ecx

 jle ??000C

 mov eax, ecx

??000C:

Here, endIfMin has been replaced the two instances it appears within the macro defini-
tion by ??000C in the expansion. Another expansion of the same macro in a single file
would have a different number after the question marks.

min2 MACRO first, second
; put smaller of two doublewords in the EAX register
 LOCAL endIfMin
 mov eax, first
 cmp eax, second
 jle endIfMin
 mov eax, second
endIfMin:
 ENDM

Figure 6.29

Macro to find smaller of two memory words

208 CHAPTER 6 | Procedures

9781284036121_CH06.indd 208 1/23/2014 11:11:09 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

The assembler has several directives that control how macros and other statements
are shown in listing files. The most useful are

• .LIST that causes statements to be included in the listing file,

• .NOLIST that completely suppresses the listing of all statements, and

• .NOLISTMACRO that selectively suppresses macro expansions while allowing the
programmer’s original statements to be listed.

The file io.h starts with a .NOLIST directive so that macro definitions do not clutter the
listing of a program that includes it. Similarly io.h ends with .NOLISTMACRO and .LIST
directives so that macro expansion listings do not obscure the programmer’s code, but
original statements are listed.

We conclude this section by looking at two of the macro definitions in io.h. Figure 6.30
shows the atod and dtoa macro definitions. Like the other macro definitions in io.h,
these simply expand to procedure calls, and the real work is done by the procedures.
The expansion of atod is simpler, both because it has only one parameter, and because
 atodproc returns the needed value in EAX. This means that EAX can also be used tem-
porarily to push the necessary parameter onto the stack.

The situation is more complicated with dtoa. There is no safe choice of a register to
use to push parameter values onto the stack. You can save and restore any register—
here EBX is used—but if that register contains the source value, then its contents will
be destroyed when the destination parameter is handled. To ensure that the expansion

atod MACRO source ; convert ASCII string to integer in EAX
 lea eax,source ; source address to AX
 push eax ; source parameter on stack
 call atodproc ; call atodproc(source)
 add esp, 4 ; remove parameter
 ENDM

dtoa MACRO dest,source ; convert double to ASCII string
 push ebx ; save EBX
 lea ebx, dest ; destination address
 push ebx ; destination parameter
 mov ebx, [esp+4] ; in case source was EBX
 mov ebx, source ; source value
 push ebx ; source parameter
 call dtoaproc ; call dtoaproc(source,dest)
 add esp, 8 ; remove parameters
 pop ebx ; restore EBX
 ENDM

Figure 6.30

atod and dtoa macro definitions

6.5 Macro Definition and Expansion 209

9781284036121_CH06.indd 209 1/23/2014 11:11:09 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

works even when the original source argument is EBX, the instruction mov ebx,[esp+4]
restores the original value of EBX after handling the destination parameter and before
handling the source parameter. This could have been accomplished by a pair of pop and
push instructions.

Exercises 6.5

 1. Using the macro definition for add2 given in Figure 6.27, show the sequence of statements to which
each of the following macro calls expands.

 *(a) add2 25, ebx
 (b) add2 ecx, edx
 (c) add2 ; no argument

 2. Using the macro definition for swap given in Figure 6.28, show the sequence of statements to which
each of the following macro calls expands.

 *(a) swap value1, value2
 (b) swap temp, [ebx]
 (c) swap value

 3. Using the macro definition for min2 given in Figure 6.29, show the sequence of statements to which
each of the following macro calls expands.

 *(a) min2 value1, value2
 (Assume the local symbol counter is at 000A.)
 (b) min2 ecx, value
 (Assume the local symbol counter is at 0019.)

Programming Exercises 6.5

 Assemble each macro definition below in a short console32 or console64 test-driver program.
 1. Write a definition of a macro add3 that has three doubleword integer parameters and puts the sum of

the three numbers in the EAX register.
 2. Write a definition of a macro max2 that has two doubleword integer parameters and puts the maxi-

mum of the two numbers in the EAX register.
 3. Write a definition of a macro min3 that has three doubleword integer parameters and puts the mini-

mum of the three numbers in the EAX register.
 4. Write a definition of a macro toUpper with one parameter, the address of a byte in memory. The code

generated by the macro will examine the byte, and if it is the ASCII code for a lowercase letter, replace
it by the ASCII code for the corresponding uppercase letter.

6.6 Chapter Summary

This chapter has discussed protocols for implementing procedures in the 80x86 architec-
ture. There are three main concepts involved: (1) how to transfer control from a calling
program to a procedure and back, (2) how to pass parameter values to a procedure and
results back from the procedure, and (3) how to write procedure code that is indepen-
dent of the calling program. The stack serves several important purposes in procedure
implementation. When a procedure is called, the address of the next instruction is stored

210 CHAPTER 6 | Procedures

9781284036121_CH06.indd 210 1/23/2014 11:11:09 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

on the stack before control transfers to the first instruction of the procedure. A return
instruction retrieves this address from the stack in order to transfer control back to the
correct point in the calling program. Argument values (or their addresses) can be pushed
onto the stack to pass them to a procedure; when this is done, the base pointer EBP and
based addressing provide a convenient mechanism for accessing the values in the proce-
dure. The stack can be used to provide space for a procedure’s local variables. The stack
is also used to “preserve the environment”—for example, register contents can be pushed
onto the stack when a procedure begins and popped off before returning to the calling
program so that the calling program does not need to worry about what registers might
be altered by the procedure.

In the 32-bit environment there are several protocols used for procedures. This chap-
ter emphasized the cdecl protocol that is also used by the Visual Studio C compiler. Fol-
lowing this protocol makes it possible to have a C function call an assembly language
procedure, or an assembly language procedure call a C function.

There is just one standard procedure protocol in the 64-bit environment. It uses reg-
isters rather than the stack to pass the first four argument values.

A macro is a statement that is shorthand for a sequence of other statements. The
assembler expands a macro to the statements it represents, and then assembles these new
statements.

6.6 Chapter Summary 211

9781284036121_CH06.indd 211 1/23/2014 11:11:09 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

9781284036121_CH06.indd 212 1/23/2014 11:11:09 PM

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION

