Software Process Models

Chapter Objectives

Introduce the generic concept of software engineering process
models.

Discuss the three traditional process models.

= Waterfall

» Incremental

= Spiral

Discuss the chief programming team approach.

Describe the rational unified process along with the significance of
entry and exit criteria for all the processes.

Assess processes in terms of the capability maturity model (CMM)
and capability maturity model integrated (CMMI).

Discuss the need to modify and refine a standard process.

© Jones and Bartlett Publishers, LLC. NOT FOR SALE OR DISTRIBUTION.

. 74

CHAPTER 4 Software Process Models

4.1 Software Processes

We have mentioned processes in earlier chapters and have indicated the
significant roles they play in software engineering. As shown in Chapter 2,
the process of developing and supporting software often requires many dis-
tinct tasks to be performed by different people in some related sequences.
When software engineers are left to perform tasks based on their own
experience, background, and values, they do not necessarily perceive and
perform the tasks the same way or in the same order. They sometimes do
not even perform the same tasks. This inconsistency causes projects to take
alonger time with poor end products and, in worse situations, total project
failure. Watts Humphrey has written extensively on software processes and
process improvement in general and has also introduced the personal
software process at the individual level in his book Introduction to the
Personal Software Process (1997).

In this chapter we will cover the traditional software processes, and leave
the emerging processes, such as the Agile processes, to the next chapter. We
will also cover the general evaluation and assessment of processes in this
chapter.

4.1.1 Goal of Software Process Models

The goal of a software process model is to provide guidance for systemati-
cally coordinating and controlling the tasks that must be performed in
order to achieve the end product and the project objectives. Similar to the
definition provided in Chapter 2 for software development process, a
process model defines the following:

= A set of tasks that need to be performed

= The input to and output from each task

» The preconditions and postconditions for each task
» The sequence and flow of these tasks

We might ask whether a software development process is necessary if there
is only one person developing the software. The answer is that it depends. If
the software development process is viewed as only a coordinating and
controlling agent, then there is no need since there is only one person.
However, if the process is viewed as a prescriptive roadmap for generating
various intermediate deliverables in addition to the executable code—for

© Jones and Bartlett Publishers, LLC. NOT FOR SALE OR DISTRIBUTION.

4.1 Software Processes

Problem
statement

..... »| Code >»| Compile —>

Problem Problem

Debug

example, a design document, a user guide, test cases—then even a one-per-
son software development project may need a process.

4.1.2 The”“Simplest” Process Model

When programmers are left alone, they naturally gravitate to what is often
perceived as the single most important task, coding. As indicated in Chap-
ter 1, most of the people involved with the information technology field,
including the software engineers, start in the profession by learning how to
write code in some programming language. Figure 4.1 shows this perhaps
simple process. It depicts the tasks involved in the code-compile-unit test
cycle. Because coding is usually considered the central task in this process,
the model is sometimes known as the code-and-fix model. When there is a
problem detected in compilation or in the unit testing, debugging, which is
problem analysis and resolution, is performed. The code is then modified
to reflect the problem correction and recompiled. Unit testing then follows.
When unit testing is completed and all the detected problems resolved, the
code is released.

Two areas of Figure 4.1 deserve some attention. The first is the problem
statement, the precursor to what we now call requirements specifications in
software engineering. The significance of this area was neither recognized
nor appreciated in the early days. The second area is testing. Unit testing
the code was performed in an informal way by the author of the code. Since
the problem statement was often allowed to be incomplete or unclear, the
testing of the code to ensure that it met the problem statement was also
itself often incomplete. The testing effort often reflected what the program-
mer understood the problem to be.

Figure 4.1
A simple process.

© Jones and Bartlett Publishers, LLC. NOT FOR SALE OR DISTRIBUTION.

I 76

CHAPTER 4 Software Process Models

Even with all the shortcomings, this simple process model served many
early projects. As software projects increased in complexity, more tasks,
such as design and integration, were introduced. As more people partici-
pated in a software project, better coordination was introduced. The tasks
in the process, the relationship among them, and the flow of these tasks
become better defined.

As software engineers gained more experience, different software develop-
ment models were introduced to solve different concerns. Today there is an
understanding that there is no one process model that will fit all the soft-
ware projects. In this chapter, some of the earlier process models and asso-
ciated topics will be introduced. The more recently developed process
models will be discussed in Chapter 5.

4.2 Traditional Process Models

In this section, several of the earlier software development models will be
presented. Each of these models has also been adapted and modified to fit
different situations. We will present the models only in their generic form.

4.2.1 Waterfall Model

The waterfall software development process model is probably the oldest
publicized model. It is sometimes referred to as the classic software life
cycle model. Although many organizations utilized this model, Royce
(1970) is one of the earliest people to write about this model. The name of
the waterfall model is derived from the process it represents: tasks occur
sequentially one after another, with the output from one task dropping into
the next task, as shown in Figure 4.2.

Resembling a multilayered waterfall, the model provided many advantages,
especially to the software project managers in the early 1970s. It served as a
tool for managing software projects and represented the software life cycle
as the software went through different and distinct stages of development.
It gave the project managers a way to describe the status more precisely
than just saying the software is “almost complete.” Although we now recog-
nize many shortcomings to this process, the waterfall model also has many
positive aspects:

© Jones and Bartlett Publishers, LLC. NOT FOR SALE OR DISTRIBUTION.

4.2 Traditional Process Models

Requirements

Design

Code

Test

Integrate and
package

= Requirements must be specified in the first step.

» Four main tasks must be completed before the software can be
packaged for release: requirements, design, code, and test.

= The output from each stage is fed into the next stage in sequence.

» The software project may be tracked as it moves sequentially
through specific and identifiable stages.

Because of the heavy amount of documents that were generated with
requirements, design, and testing, the waterfall model also became known
as the document-driven approach.

Many modifications to the basic waterfall model have been applied through-
out the years since its early definition, each addressing some of its shortcom-
ings. For example, the model was usually viewed as a single iteration model
that provided very little task overlapping. Thus backward arrows were intro-
duced in the diagram to depict the addition of iterative activities. The waterfall
model has also been criticized for its limited interaction with users at only the
requirements phase and at the delivery of the software. The implementers of
the waterfall model included the users and the customers in the design phase
with techniques such as joint application development (JAD) and in the test-
ing phase.

Figure 4.2
A waterfall model.

© Jones and Bartlett Publishers, LLC. NOT FOR SALE OR DISTRIBUTION.

I 73

CHAPTER 4 Software Process Models

The single most important contribution of the waterfall model is probably
that it gave software engineering a process upon which software develop-
ment could focus its attention. As a result of this focus on process, the
waterfall model as well as the software quality problems in general, started
to be resolved through the years.

4.2.2 Chief Programmer Team Approach

The chief programmer team approach is a type of coordination and man-
agement methodology rather than a software process. The concept was a
popular organizational idea in the mid 1970s.

In his book, The Mythical Man Month (1975), Fred Brooks described a
small-team approach to coordinate the activities of software development.
He attributed the original proposal to Harlan Mills of IBM. The proposed
approach mimics a surgical team organization where there is a chief sur-
geon and other specialists to support the chief surgeon. Instead of a large
number of people all working on smaller pieces of the problem, there is a
chief programmer who plans, divides, and assigns the work to the different
specialists. The chief programmer acts just like a chief surgeon in a surgical
team and directs all the work activities. The team size should be about 7 to
10 people, composed of specialists such as designer, programmers, tester,
documentation editors, and the chief programmer. This approach made
sense and is a precursor to dividing a large problem into multiple compo-
nents, then having the small chief programming teams develop the compo-
nents.

4.2.3 Incremental Model

The incremental model may be viewed as a modification to the waterfall
model. As software projects increased in size, it was recognized that it is
much easier, and sometimes necessary, to develop the software if the large
projects are subdivided into smaller components, which may thus be devel-
oped incrementally and iteratively. In the early days, each component fol-
lowed a waterfall process model, passing through each step iteratively. In
the incremental model the components were developed in an overlapping
fashion, as shown in Figure 4.3. The components all had to be integrated
and then tested as a whole in a final system test. The incremental model
provided a certain amount of risk containment. If any one component ran
into trouble, the other components were able to still continue to be devel-

© Jones and Bartlett Publishers, LLC. NOT FOR SALE OR DISTRIBUTION.

4.2 Traditional Process Models

Requirement | | Requirement |, . ., |Requirement
1 2 n
Design Design LRI Design

Code Code| = = = = =«

NN

Test Test Test
Sttt l----, System
! Integration bucket —> test
___________________________________ 4

oped independently. Unless the problem was a universal one, such as the
underlying technology being faulty, one problem would not hold up the
entire development process.

Another perspective in utilizing the incremental model is to first develop
the “core” software that contains most of the required functionality. The
first increment may be delivered to users and customers as Release 1. Addi-
tional functionality and supplemental features are then developed and
delivered separately as they are completed, becoming Release 2, Release 3,
and so on. Utilizing the incremental model in this fashion provides an
approach that is more akin to an evolutionary software product develop-
ment. When utilized in this development mode, the model in Figure 4.3
would not have the integration bucket.

The incremental model in Figure 4.3 would have individual releases. For
example, Requirement 1 would be the core functionality release. Other
requirements would each depict different deliveries. Figure 4.4 depicts the
incremental, multiple release scenario where the first release, Release 1, is
the core function, followed by subsequent releases that may include fixes of
bugs from previous releases along with new functional features. The multi-
ple release incremental model also makes it possible to evolve the first
release, which may have flaws, into an ideal solution through subsequent

Figure 4.3

A multiple components
incremental model.

© Jones and Bartlett Publishers, LLC. NOT FOR SALE OR DISTRIBUTION.

- Kl CHAPTER 4 Software Process Models

Figure 4.4

A multiple release incre-
mental model.

Requirements Design Code Test Package |Releasel >
Requirements Design Code Test Package |Release n >

releases. Thus it facilitates evolutionary software development and man-

agement, a model that has been advocated by many, especially by Tom Gilb
who has written recently about the “evo” process (2004). The number of
releases for a software project will depend on the nature and goals of the
project. Although each release is independently built, there is a link
between releases because the existing design and code of the previous
release is the basis upon which future releases are built.

Both incremental models utilize the “divide and conquer” methodology
where a large, complex problem is decomposed into parts. The difficulty
with this model is that such problems are also intertwined, making the
decoupling of the parts into independently implementable components
difficult. It will require a deep understanding of the problem, the solution,
and the usage environment. Overlapping the different increments is
another area of difficulty in that there may be some amount of sequential
dependency of information among the components. How much overlap-
ping can take place depends on how much prerequisite information is
required.

4.2.4 Spiral Model

Another evolutionary approach to software development is the spiral
model, proposed by Barry Boehm at a time when there were concerns with
the waterfall model’s document-driven approach. The early spiral model is
based on experiences with various large government software projects at
TRW. An important aspect of the spiral model is its emphasis in the reduc-
tion of risks in software development. The model is thus a risk-driven
approach to software process. It provides a cyclic approach to incremen-
tally develop the software system while reducing the project risk as the
project goes through cycles of development, as illustrated in Figure 4.5.

The spiral model has four quadrants, and the software project traverses
through the quadrants as it is incrementally developed. As shown in the fig-

© Jones and Bartlett Publishers, LLC. NOT FOR SALE OR DISTRIBUTION.

4.2 Traditional Process Models

Determine objectives Evaluate alternatives
alternatives, constraints identify, resolve risks

Risk
analysis

Design
Proto model
type

Require‘ment plan Requirlement

Spec.
Development plan| =P

Review

Design code

Design

Test plan validation

Plan next phase Develop, verify

next-level product

ure, the spiral path may not be very smooth. Each cycle involves the same
sequence of steps for each of the concerns, components, or artifacts.

Equally applicable to software development and software enhancement
projects, the spiral model is based on some objective. The spiral process
then involves the continuous “testing” or iterations of this objective or
requirement until either the end result is achieved or shown to be
unachievable. A typical traversal through the four quadrants is as follows:

1. Identify the objectives, alternatives, or constraints for each cycle of
the spiral.

2. Evaluate the alternatives relative to the objectives and constraints. In
performing this step, many of the risks are identified and evaluated.

Figure 4.5
A spiral model.

© Jones and Bartlett Publishers, LLC. NOT FOR SALE OR DISTRIBUTION.

____ R

CHAPTER 4 Software Process Models

3. Depending on the amount of and type of identified risks, develop
a prototype, more detailed evaluation, an evolutionary develop-
ment, or some other step to further reduce the risk of achieving
the identified objective. On the other hand, if the risk is substan-
tially reduced, the next step may just be a task such as require-
ments, design, or code.

4. Validate the achievement of the objective and plan for the next
cycle.

An integral part of the cycle is the review of all the activities and products
completed in the cycle by all the major stakeholders involved in the project.
The review’s major objective here is to ensure that all the parties are con-
tinuously committed to the project and concur with the approach for the
next phase of the project.

Because the spiral model is based on risk reduction of the project through
iterations, several convenient features are built into it.

= The model incorporates prototyping and modeling as an integral
part of the process.

» It allows iterative and evolutionary approaches to all activities
based on the amount of risks involved.

» The model does not preclude the rework of an earlier activity if a
better alternative or a new risk is identified.

The ironic part of the spiral model is that one of its risks is the reliance on
risk assessment expertise. Not all software engineers are trained or experi-
enced in risk identification and risk analysis.

4.3 A More Modern Process

In recent years, many newer processes have been introduced. A fairly recent
and popular process, which was initially developed by Rational Software
Corporation, is described in this section.

4.3.1 General Foundations of Rational Unified Process Framework

The Rational Unified Process (RUP) is a software process framework,
rather than a single process, developed by Rational Software Corporation,
which was acquired by IBM. The origin of RUP is rooted in the original
1987 Objectory Process and the 1997 Rational Objectory Process as well as

© Jones and Bartlett Publishers, LLC. NOT FOR SALE OR DISTRIBUTION.

4.3 A More Modern Process

the Unified Modeling Language (UML). Fowler and Scott (1999) provide
extensive coverage of UML in their book, UML Distilled. In many ways,
RUP has incorporated many of the earlier experiences from the incremen-
tal and iterative process model and the spiral model. This process frame-
work is driven by three major concepts:

» Use case and requirements driven
= Architecture centric
= [terative and incremental

Use cases have been used mainly to capture requirements, but they may be
used to describe any interaction between the software system and anything
external such as a user of the system. This approach is different from the
traditional functional specification approach where the functionality of the
system is described but the complete interaction between the system and its
users is not. The emphasis is on the users and the values to the users. Use
case driven means that the development process is initiated by the use case,
that the designs are developed from the use cases, and that the test cases are
derived from the use cases. Thus use cases drive this software development
process.

Architecture plays a significant role in RUP, describing the static and the
dynamic aspects of the overall system, with the more important aspects
highlighted and the less important details left out. In RUP, the architecture
initially provides what Jacobson, Booch, and Rumbaugh (1999) call the
“form” of the system, which is use case independent. It describes the high-
level design, such as the user interface standard or error processing, which
transcends all the use cases. From this baseline, the architecture is refined to
accommodate the important major use cases. Each of the important use
cases represents a key component of the software system, providing more
details to the design. As more details of the use cases are considered, the
architecture also evolves into a more mature and stable design. The use
cases drive the architecture and the architecture influences the choices of
use cases.

RUP is also iterative and incremental in that it promotes large software to
be developed in smaller pieces or increments. In developing the chosen
increment, RUP promotes the iterative approach. The first iteration would
include all the use cases or requirements representing that increment or

© Jones and Bartlett Publishers, LLC. NOT FOR SALE OR DISTRIBUTION.

&

Unified Modeling
Language (UML)

An object-oriented model-
ing language that provided
the elements and relation-
ships to model software
requirements and design.

_____RI

CHAPTER 4 Software Process Models

slice of the product. The second iteration would handle all the most impor-
tant risks in the chosen increment. Successive iterations would then build
upon the results of the previous iterations.

These three concepts of use case, architecture, and iterative and incremen-
tal form the basis of RUP. For more comprehensive studies on RUP, refer to
the books in the Suggested Readings at the end of this chapter.

4.3.2 ThePhases of RUP

The phases in RUP are not named after the activities such as design, testing,
or coding; an iteration may include many activities in varying degrees.
There are four phases in RUP:

= Inception

» Elaboration

= Construction
= Transition

As an increment of the product is developed, it may go through several iter-
ations within each phase. The degree of the activities such as requirements
specifications, testing, or coding that takes place within each phase is also
different.

The inception phase may be viewed as the beginning stage when the prod-
uct increment is still in an early stage of uncertainty. An initial idea is being
developed during this phase. During the elaboration phase, the detailed use
cases are being formulated, and the architecture and design are getting
firmed up. The product increment is built, coded, and tested during the
construction phase. Finally, the product increment is released to a small
restricted group of users during the transition phase for further testing and
correction. It is then released to the general public. Figure 4.6 provides a
view of the four phases of the rational unified process and how the devel-
opment activities relate to the phases. The software development activities
on the left in the figure all flow through the four phases. Each activity will
be in “peak mode” in different phases. The extent of each activity is repre-
sented by the thickness of the bar with relative approximations showing
where the activities will peak. Although not explicitly shown in this figure,
any activity such as design may also iterate several times within a phase.
RUP not only provides incremental development but also includes iterative

© Jones and Bartlett Publishers, LLC. NOT FOR SALE OR DISTRIBUTION.

4.3 A More Modern Process

Phases

Activities Inception | Elaboration | Construction | Transition

Requirements

Design

Implement

Test

Integrate

development. The four phases provide a mechanism to track project mile-
stones.

Inception Phase

Inception is a planning phase that includes the following primary objec-
tives:

= Establish the scope and clarify the goals of the software project.

» Establish the critical use cases and the major scenarios that will
drive the architecture and design.

= Establish some architecture and early design alternatives.
» Estimate the schedule and required resources.

» Plan the implementation, testing, integration, and configuration
methodologies.

= Estimate the potential risks.

In order to accomplish these primary objectives, the requirements activities
must be building up to a full crescendo. The architecture of the software
system is narrowed down and various design alternatives must be consid-
ered during this phase. Implementation, testing, integration methodolo-
gies, tools, etc. are being planned during the inception phase. The overall
project schedule, needed resources, and potential risks are estimated based
on the major requirements and early architecture. The project goals and
measurement are established. The stakeholders should all concur with the
estimates and the plan for the project.

Figure 4.6

The rational unified
process (RUP).

© Jones and Bartlett Publishers, LLC. NOT FOR SALE OR DISTRIBUTION.

I 36

CHAPTER 4 Software Process Models

Elaboration Phase

Elaboration may be the most critical phase of the Rational Unified Process.
At the end of this phase, most of the “unknowns” should be resolved. The
primary objectives of this phase include the following:

= Establish all the major and critical requirements for the system.
= Establish and demonstrate the baseline design.

= Establish the implementation, test, and integration platforms and
methodologies.

= Establish the major test scenarios.
» Establish the measurement and metrics for the agreed-upon goals.

= Organize and set up all the needed resources for implementation,
testing, and integration.

In order to achieve these objectives, all the requirements must be gathered,
analyzed, understood, documented, and agreed to by all parties during the
elaboration phase. Any prototyping of requirements must be completed, as
well as the architecture and most of the design. Any design feasibility ques-
tions must be prototyped and answered. Major test scenarios are identified
during this phase. Plans for implementation, testing, and integration are
completed. Resources needed for implementation, testing, and integration
are acquired and organized. Education for any new methodology or tools
for implementation, testing, or integration is completed. A clear metric and
measurement system is accepted and resources for measurement are
acquired. That is, the project control for the rest of the phases is set in place.
At the end of the elaboration phase, the software project is ready to go into
full implementation and testing mode.

Construction Phase

The construction phase is equal to the production phase in manufacturing.
At the end of this phase, the code for the software should be complete and
all the major requirements tested. The following objectives are the key
points of this phase:

» Complete the implementation in a timely manner within esti-
mated cost.

© Jones and Bartlett Publishers, LLC. NOT FOR SALE OR DISTRIBUTION.

4.3 A More Modern Process

» Achieve the version of the code that is releasable to a restricted set
of Alpha test sites.

= Establish the remaining activities that need to be completed to
achieve the goals of the project.

In order to meet these objectives, the coding of the design must be com-
pleted in the construction phase. All the planned test cases must be exe-
cuted and most of the discovered problems are fixed in this phase. The
software must meet most of the established goals of the project and the
measurements taken must validate that. Assessment must be made of how
much and what remaining activities are needed to achieve the planned
goals. For example, an assessment of whether the software product quality
goal is met needs to be performed. Any necessary activities to follow up on
this goal, such as additional testing and fixes, must be set up.

Transition Phase

The transition phase is the last phase prior to the release of the software to
general users. All the fixes and components are integrated. The noncode arti-
facts, such as manuals and educational materials, are also integrated into the
complete product. The key objectives of this phase are the following:

» Establish the final software product for general release.

Establish user readiness and acceptance of the software.

Establish support readiness.

» Gain concurrence for release and deployment.

All Alpha and Beta tests with a restricted number of users must be completed
and the fixes to the discovered problems are integrated into the final release
during this phase. Users must be trained. All transitional activities, such as
data migration and usage process modifications, are completed prior to the
end of this phase. The software support group is trained and must stand
ready to service users. If this is a software product for external sale, the sales
organization must be educated, and the marketing material must be created
and be available for distribution. A final assessment of the software, in terms
of its goals, is performed and a decision on release is made.

© Jones and Bartlett Publishers, LLC. NOT FOR SALE OR DISTRIBUTION.

R

Figure 4.7
Entry and exit criteria.

CHAPTER 4 Software Process Models

4.4 Entry and Exit Criteria

The processes discussed so far have emphasized the sequencing and coordi-
nation of activities. The Rational Unified Process does, however, go further
and provide some guidelines on what artifacts need to be developed by
whom. Still, there are very few guidelines on how much of each activity
must be performed. That is, what are the exit criteria for each activity and
the entry criteria for the next follow-on activity?

Figure 4.7 shows that the entry criteria for an activity must be met before
the activity can start. The exit criteria must be met before the activity can
be considered complete and before the next activity may start. The diffi-
culty comes in when the activities overlap in a concurrent manner. The
entry and exit criteria must then be defined with much more granularity.

4.4.1 Entry Criteria

Prior to performing any of the activities portrayed in the process diagram,
we must ask for the condition that allows the performer of that activity to
start. The conditions for initiating the activity define the entry criteria.
These include a listing and a description of the following resources:

= Required artifacts
= Required people
= Required tools

= Required definition of the activity to be performed

There must be a specified list of artifacts. Just listing them alone is not
enough. These artifacts must be in a condition that they are usable by the
activity. As an example, consider the design task that needs the requirement

Exit
criteria

Entry

criteria Process

activity

Met? Met?

© Jones and Bartlett Publishers, LLC. NOT FOR SALE OR DISTRIBUTION.

4.4 Entry and Exit Criteria

specifications. The state of each specification must be defined as “com-
pleted,” which means the following:

= All specifications have been reviewed by the customers and other
stakeholders.

» All exceptions found during the review are changed.
= The modified specifications are accepted by all parties.

When the requirement specifications have attained these conditions, they
are considered to be complete and to have met the entry criteria for the
design task. Note that if the desired process is incrementally driven, the
“completed” state may apply to only the incremental requirement that is
needed for the next activity of design.

The people required to perform the task must also be specified. They must
be in a “ready” state, meaning that they are available and can be applied to
the task prior to the commencement of the task.

Any tools that are required or that may be later used to perform a task are
specified. Again, just listing the tools is not enough. The rationale and the
expectations of using any tool for the task must be spelled out. The people
who are pegged to use the tools have to be identified and trained prior to
the beginning of performing the task.

The most obvious requirement, yet one that is often left out, is the defini-
tion and explanation of the task itself. If there is not a clear understanding
of the task, different individuals may perform the task differently, which
can cause erratic results.

The definition of the entry criteria for each of the steps or activities
described in a process will bring the high-level definition of process down
to an executable level. It also allows each part of the organization to tailor
the process by specifying slightly different entry criteria for each of the
tasks in a process.

4.4.2 ExitCriteria

Before an activity is declared complete, the exit criteria for such a declara-
tion need to be specified ahead of time. Only when those criteria are met
can the activity be considered complete. Again, in the case of incremental

© Jones and Bartlett Publishers, LLC. NOT FOR SALE OR DISTRIBUTION.

I o0

CHAPTER 4 Software Process Models

and overlapping activities, the exit criteria must then be declared at a much
finer level.

The main purpose of the exit criteria is to describe the artifacts that must
be available for the next activity. A clear description of what must be
included in each completed artifact must be defined. Furthermore, it is
important to clearly spell out any conditions such as the following:

» All the artifacts are reviewed.
= All or some prespecified percentage of the errors are corrected.

= People in the downstream activities have concurred and accepted
the artifacts.

There are other conditions that we may include as part of the exit criteria—
for example, that the person who is to participate in the next downstream
activity is freed from the current activity. The important thing is that the
exit criteria should be clearly specified ahead of time.

4.5 Process Assessment Models

Software engineering development and support processes continue to be
modified, improved, and invented through countless studies, experiments,
and implementations, some achieving great success and some utter failure
(see Cusumano, et al. 2003; MacCormack 2001). The software industry has
embraced the importance of software development processes for years.
One of the key organizations that has contributed, advanced, and advo-
cated the software development processes is the Software Engineering
Institute (SEI), a research and development center funded by the U.S.
Department of Defense and located on the Carnegie Mellon campus. Its
stated core purpose is to “help others make measured improvements on
their software engineering capabilities.” (See the Suggested Readings for the
SEI web address.)

Another organization that has contributed to software engineering is the
International Standards Organization (ISO). Its ISO 9000 series of software
quality standards includes the ISO/IEC 90003:2004 document, which pro-
vides guidance for organizations to apply ISO9001:2000 to the computer
software activities. Specifically, there are four documents—ISO/IES 91261
through ISO/IES 9126—4 that address various aspects of software quality.

© Jones and Bartlett Publishers, LLC. NOT FOR SALE OR DISTRIBUTION.

4.5 Process Assessment Models

Also, the ISO/IEC 12207 Standard for Information Technology document
discusses and provides a framework for software life cycle processes. These
documents can be purchased from the ISO website listed in the Suggested
Readings. Both the SEI and ISO contributed greatly to assessing the matu-
rity of the organization in their software development and support.

4.5.1 SEI's Capability Maturity Model

The Capability Maturity Model (CMM), initially proposed by SEI is a
framework that is used to help a software organization define its level of
maturity in software development. (See the Suggested Readings for infor-
mation on the original document on CMM in 1993.) The model presents
five levels of maturity and is based on the concept of continuous improve-
ments. The level of maturity of a software organization is determined by its
practice of different sets of key software development process activities.
The levels are sequential and accumulative in that an organization assessed
at a Level x is expected to have elevated from Level (x — 1). There is a list of
“officially” trained CMM assessors, which may be obtained from SEI, who
perform the appraisal of an organization and provide the feedback on the
strength and weakness of the organizations’ key processes activities and
commitments. The five levels of CMM are represented in Figure 4.8.

At the initial level (Level 1 in the figure) an organization has no process,
and any success is probably attributed to a strong and experienced leader.
The probability of repeating this success is low. As an organization defines,
practices, and continuously improves on the different processes, it moves
up the scale of maturity.

| Optimizing | Level 5 Most mature
| Managed | Level 4
| Defined | TIo!
| Repeatable | Level 2
| il | Level 1
Least mature

Figure 4.8

The five levels of the
original Capability
Maturity Model.

© Jones and Bartlett Publishers, LLC. NOT FOR SALE OR DISTRIBUTION.

I 92 CHAPTER 4 Software Process Models

At Level 2, there are six key processes that an organization must master:
= Requirements management
» Software project tracking and oversight
= Software quality assurance
» Software project planning
= Subcontract management
» Software configuration management

An organization at Level 2 (the repeatable level) has mastered these key
project management related processes and is expected to be able to repeat
its success when given a similar project.

In order for an organization to elevate from Level 2 to Level 3 (the defined
level), it must master seven more key processes:

» Organization process focus

= Training program

» Software product engineering

= Peer reviews

» Organization process definition
» Integrated software management
» Intergroup coordination

At Level 3, the organization has mastered the major processes related to
construction of software along with additional project management related
processes.

An organization moves up to Level 4 (the managed level) when it focuses
its effort on quantitative and quality management in addition to all the key
processes of Levels 2 and 3. As such, two more key processes are added:

» Quantitative process management
» Software quality management

Metrics and measurements of the process and of the software artifacts are
introduced. Quantitative management of attributes such as quality, pro-
ductivity, or efficiency is part of the organization at this level. With the cap-

© Jones and Bartlett Publishers, LLC. NOT FOR SALE OR DISTRIBUTION.

4.5 Process Assessment Models

tured measurements, the feedback from prior activities becomes visible,
which allows future improvements to both the processes and the product.

The highest level of CMM is Level 5 (the optimizing level). The emphasis
here is on continuous improvement. In order to facilitate such improve-
ment, three key processes must be included:

= Defect prevention
= Technology change management

= Process change management

All the key processes at this ultimate level contribute to an organization
poised for changes and improvements.

SET’s original CMM has been used by thousands of software organizations
across multiple countries. Today, large and small companies around the
world—from Wipro in India to Neusoft in China—have attained Level 5.
Occasionally, several organizations within the same company may be
assessed at different levels. For example, Lockheed Martin, the U.S. techno-
logical giant in the aerospace industry, is an example of a company that has
several organizations within it that have attained CMM Level 5. The United
States leads the world in the number of CMM assessed organizations. Some
organizations, however, just utilize the CMM framework for self-improve-
ment and never request any formal assessment. Others have used the
assessed CMM level as a marketing tool for their organizations. This is
especially evident in the software service sector.

The time required for ascending from one level to the next higher level is
usually on the order of one or two years, rarely in months or days.

4.5.2 SEI's Capability Maturity Model Integrated

In 2001, the CMM was upgraded to the Capability Maturity Model Inte-
grated (CMMI). Again, the important factor to remember is that CMMTI’s
purpose is to provide guidance for improving the processes of an organiza-
tion and its ability to develop, manage, and support the software product
and services. While there are multiple aspects of the CMMI (e.g., systems
engineering, software engineering, integrated product and process devel-
opment, and supplier sourcing), the one we are interested in and will be
discussing here is the CMMI-SW, the software engineering model.

© Jones and Bartlett Publishers, LLC. NOT FOR SALE OR DISTRIBUTION.

I o CHAPTER 4 Software Process Models

The CMMI-SW model has two representations:

= Continuous

» Staged

The continuous representation model is more applicable to the assessment
and improvement of processes. The staged representation model is, like the
CMM, better applied to assessing the maturity of an organization. In the
next three sections we will first discuss the three key concepts common to
both the continuous and the staged representations, and we will then delin-
eate the differences between the two representations.

The Process Areas of CMMI

The first key concept related to both the continuous and staged representa-
tions in CMMI is that there are 25 major process areas covering four major
categories of processes: (1) process management, (2) project management,
(3) engineering, and (4) support.

The following five process areas fall under process management:
» Organizational process focus
= Organizational process definition
» Organizational training
» Organizational process performance

= Organizational innovation and deployment
The following eight process areas fall under project management:

= Project planning

= Project monitoring and control

= Supplier agreement management
= Integrated project management

= Risk management

= Integrated teaming

» Integrated supplier management

= Quantitative project management

© Jones and Bartlett Publishers, LLC. NOT FOR SALE OR DISTRIBUTION.

4.5 Process Assessment Models

The following six process areas fall under engineering:
= Requirements development
= Requirements management
= Technical solution
= Product integration
= Verification
= Validation
The last six process areas fall under support:
» Configuration management
» Process and product quality assurance
» Measurement and analysis
» Organizational environment for integration
= Decision analysis and resolution
» Causal analysis and resolution

These 25 process areas form the basis for process evaluation in CMMI.

Levels in CMMI

Both the continuous and staged representations utilize levels for assess-
ment. In the case of continuous representation, there are 6 (0-5) capability
levels for assessing the process areas. The staged representation has 5 (1-5)
maturity levels for assessing the organization. Figure 4.9 compares the

Level 5 Optimizing Optimizing
Level 4 Quantitatively managed Quantitatively managed
Level 3 Defined Defined
Level 2 Managed Managed
Level 1 Performed Initial
Level 0 Incomplete | —-----
Continuous Staged Figure 4.9
(Capability Levels) (Maturity Levels) Different levels in CMMI.

© Jones and Bartlett Publishers, LLC. NOT FOR SALE OR DISTRIBUTION.

I o6

CHAPTER 4 Software Process Models

capability and staged levels. The utilization of levels for designating assess-
ment results is the second key concept in CMMI. Note that the names for
Levels 2 through 5 are the same for both the continuous capability levels
and the staged maturity levels. However, as will be explained in a later sec-
tion of this chapter, these levels are different in their structures.

Goals and Practices in CMMI

A third key concept that is common to both the continuous and the staged
representations in CMMI is the notion of goals and practices. Within each
of the 25 process areas that were mentioned earlier is a designated set of
specific goals that uniquely describe the specific practices that must be
implemented to satisfy that process area. Furthermore, the specific prac-
tices associated with each of the goals are also unique to each goal. Thus the
specific practices are all different, as illustrated in Figure 4.10.

As an example, consider one of the 25 process areas, organizational process
focus. For this process area, there are two specific goals with their respective
specific practices. Specific goal 1 has three specific practices, and specific
goal 2 has four specific practices.

= Specific goal 1: Strengths, weaknesses, and improvement opportu-
nities for the organization’s processes are identified periodically
and as needed.

= Specific practice 1.1: Establish organizational process needs.
= Specific practice 1.2: Appraise the organization’s processes.
= Specific practice 1.3: Identify improvements to the processes.

» Specific goal 2: Improvements are planned and implemented,
organizational process assets are deployed, and process-related
experiences are incorporated into the organization’s process assets.

s Specific practice 2.1: Establish and maintain process action plans.
= Specific practice 2.2: Implement process action plans.
= Specific practice 2.3: Deploy organizational process assets.

= Specific practice 2.4: Incorporate process-related work prod-
ucts, measures, and improvement information into organiza-
tional process assets.

© Jones and Bartlett Publishers, LLC. NOT FOR SALE OR DISTRIBUTION.

4.5 Process Assessment Models

Generie f| FLR Generic Generie || 1IN Generic
practice 1 practice n practice 1 practice p
Generic Generic

goal 1
Process \ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ Process
area 1 area 25

Specific Specific
goal 1 goal z

7~ Specific > -7 Specific >\ /” Specific > <7 Specific >\
' practice 1.,” " _ practice w.’ ', practice 1.,” " _ practice k ./

~ ~ ~ ~

goal 5

Consult the CMMI document, CMU/SEI-2002-TR-028, in the Suggested
Readings for a complete list of specific goals and their respective specific
practices for each of the 25 process areas.

In contrast to the specific goals, which are different for each process area,
there are five generic goals that are applicable to all the 25 process areas (see
Figure 4.10). The five generic goals are as follows:

» Generic goal 1: Achieve specific goals of the process area.

» Generic goal 2: Institutionalize managed process.

= Generic goal 3: Institutionalize defined process.

» Generic goal 4: Institutionalize quantitatively managed process.
» Generic goal 5: Institutionalize optimizing process.

These generic goals also map into the continuous representation’s capabil-
ity levels 1 through 5, respectively. Capability level 0, which is the incom-
plete level, has no generic goal associated with it.

Associated with each of the five generic goals are sets of generic practices.
Since the goals are applicable to all the process areas, the set of generic
practices are also applicable to the 25 process areas. There is one generic
practice associated with generic goal 1. There are 10 generic practices asso-
ciated with generic goal 2. Generic goal 3 has two generic practices. Two

Figure 4.10
Goals and practices.

© Jones and Bartlett Publishers, LLC. NOT FOR SALE OR DISTRIBUTION.

- E CHAPTER 4 Software Process Models

Figure 4.11

Capability level by process
areas for continuous
representation.

generic practices are associated with generic goal 4, and generic goal 5 has
two generic practices. Since the generic goals are applicable to all the
process areas, their respective generic practices are also applicable to all the
process areas.

Continuous Representation Model

The continuous representation model, in which each process area is
appraised at its own capability level, uses both the specific goals and the
generic goals for assessing the process areas. An example of a profile of an
organization’s capability level by process areas is depicted in Figure 4.11.
This profile not only provides an assessment but also serves as guidance for
an organization to improve on the process areas that need improvements.
The continuous representation model has several functions in an organiza-
tion:

» Allows an organization to select the order of improvements that
best meets that organization’s needs and structure.

» Allows comparisons across different organizations on a process
area by process area basis.

» Allows easier migration from and comparison to Electronic Insti-
tute Alliance International Standard (EIA/IS) 731 and Inter-
national Organization for Standardization and International
Electro-technical Commission (ISO/IEC) 15504.

5 4
4 -4
3 it
Capability
levels o 4
1 +
O+ /P! | [| ---_-3
Process Process Process Process
area 1 area 2 area 3 area 25

© Jones and Bartlett Publishers, LLC. NOT FOR SALE OR DISTRIBUTION.

4.5 Process Assessment Models

CL5 Optimizing

+(Generic goal 5)
CL4 Quantitatively managed

+(Generic goal 4)
CL3 Defined

+(Generic goal 3)
CL2 Managed

+(Generic goal 2)
CL1 Performed _7

+(Specific goals) +(Generic goal 1)

CLO Incomplete/Y

Each process area initially starts at capability level 0 (CLO0), or the incom-
plete level. For any process area to move up from CLO to the next level, per-
formed level or CL1, two sets of activities must be completed.

» The specific goals for that process area must be achieved through
completing all the associated specific practices for those specific
goals.

» Generic goal 1 must be achieved through completion of its associ-
ated generic practices.

Once a process area reaches capability level 1, the performed level, subse-
quent levels are achieved by satisfying the subsequent generic goals and
their respective generic practices (see Figure 4.12). The figure shows that in
order for a process area to improve from CLn to CLn+1, generic goal n+1
must be satisfied.

Staged Representation Model

In a staged representation model, there are five maturity levels (MLs). The
same 25 process areas are grouped into four of the five maturity levels.
Maturity level 1, the initial level, has no process area associated with it.
Essentially, ML1 is similar to CLO of the continuous representation model.
The organization achieves a maturity level by satisfying the set of process
areas that are grouped under that maturity level. The groupings of process
areas for the staged representation model’s maturity levels are as follows:

9 I

Figure 4.12

Achieving the capability
levels by process area in
the continuous represen-
tation model.

© Jones and Bartlett Publishers, LLC. NOT FOR SALE OR DISTRIBUTION.

I 100 CHAPTER 4 Software Process Models

ML5

» Organizational innovation and deployment

» Causal analysis and resolution

ML4

» Organizational process performance

= Quantitative project management

ML3

= Requirements development

» Technical solution

= Product integration

= Verification

» Validation

» Organizational process focus

» Organizational process definition
= Organizational training

» Integrated project management
= Risk management

= Integrated teaming

» Integrated supplier management
» Decision analysis and resolution

» Organizational environment for integration

ML2

» Requirements management
= Project planning

» Project monitoring and control

© Jones and Bartlett Publishers, LLC. NOT FOR SALE OR DISTRIBUTION.

4.5 Process Assessment Models

» Supplier agreement management
= Measurement and analysis
» Process and product quality assurance

» Configuration management

ML1

= None

The maturity levels are sequential, with any maturity level n being built
upon maturity level n —1. The staged representation model provides an
organization a single maturity level appraisal based on the set of process
areas satisfied. For example, an organization is assessed as maturity level 2
if all seven process areas grouped under ML2 are satisfied. The staged rep-
resentation provides the following for an organization:

= A sequence of improvements of process areas by maturity levels
= The capacity to compare across organizations by maturity levels

» Easy migration from the earlier software CMM model

The rule for a process area to be considered satisfied in a staged representa-
tion model is similar to that of the continuous representation model. There
are, however, some subtle differences. A process area that is grouped at
ML2, managed level, would need to satisfy all its specific goals and associ-
ated specific practices along with generic goal 2 and its associated generic
practices. For process areas that are grouped in ML3, defined level, those
process areas need to satisfy all the specific goals and specific practices
along with generic goal 2 and the associated generic practices. Each process
area listed under ML4, quantitatively managed level, would need to satisfy
all their specific goals and specific practices along with generic goal 3 and
associated generic practices. Similar to ML4, each process area in ML5,
optimizing level, would need to satisfy all its specific goals and specific
practices along with generic goal 3 and generic practices. Note that in satis-
fying the staged maturity levels, generic goals 1, 4, and 5 do not play a part
in the scheme.

© Jones and Bartlett Publishers, LLC. NOT FOR SALE OR DISTRIBUTION.

I 102

CHAPTER 4 Software Process Models

4.6 Process Definition and Communication

We have discussed several traditional software development processes.
While they serve as good models, it is very likely that they will need some
modification to fit a specific organization. Depending on the goal(s) of the
software project, a slightly different set of activities may be needed or
emphasized. As Osterweil (1987) observed, the software development
process is just a vehicle for carrying out those activities. Thus, specifying
the process model is similar to constructing a software system itself. A
process model or specification is an abstract representation of the actual
process. It is important that this “modified” process be well defined and
communicated to all participants so that the project can be carried out
smoothly.

A software process specification is composed of two basic parts:

» The activities to be included in the software project
= The order in which these activities should be performed

These two main components are further expanded and refined to include
the following set of items:

= Activities: Detailed descriptions of each of the activities included
in the process

» Control: Necessary entry and exit criteria for each activity, in addi-
tion to the order in which each should be performed

= Artifacts: The resulting output from each of the activities
= Resources: The people who perform the activities

» Tools: The tools that may be used to enhance the performance of
the activity

A software process definition for development and support projects needs
to include all of the preceding information in differing degrees of detail.
The modified process definition for a specific organization needs to
describe the activities to be performed, specify the controlled conditions of
the entry and exit criteria, and define the order in which these activities
must be performed. It is necessary to identify and define the resulting arti-
facts, including null situations, from each of the activities. A software proj-

© Jones and Bartlett Publishers, LLC. NOT FOR SALE OR DISTRIBUTION.

4.7 Summary

ect is usually carried out by several people—each having different skills and
experience. The number of people needed, their individual skill levels, and
the experience level of each, must be specified. Finally, any tools that can
enhance the performance of the activities should be specified.

It is difficult and tedious to define all of the preceding activities and related
items. Thus, a team may decide to place an emphasis on the parts that are
most relevant to each project. On the other hand, in order to provide some
flexibility for a very experienced team that has worked on similar projects
before, they may choose to define all five parts at a high level for the pur-
pose of management overview. Note that specifying the software process to
the most detailed level would be nearly equivalent to performing the
detailed design and programming of the software process itself.

4,7 Summary

In earlier chapters we alluded to the importance of having a process or a set of
processes to guide the software developers in large development and support
projects. In this chapter we traced through three traditional process models:

= Waterfall
= Incremental
= Spiral
A more modern process model, the Rational Unified Process (RUP), was

introduced. The emphasis here is on the need to have well-defined criteria
for both entrance to and exit from activities in a process model.

The Software Engineering Institute at Carnegie Mellon has been a driving
force in the process modeling and process assessment arena. Its first soft-
ware process model, the Capability Maturity Model (CMM) is now well
known among software industry practitioners. In recent years, the
improved model, Capability Maturity Model Integrated (CMMI), is gain-
ing momentum. CMMD’s continuous representation model allows an
organization to assess the capability level of its process areas separately
while the staged model allows an organization to assess the maturity level
of the complete organization, much like the CMM model. It is very likely
that a standard process needs to be modified and refined before it can be
utilized by a software project.

In the next chapter, we will introduce the more recent processes and
methodologies such as Agile and Extreme Programming.

© Jones and Bartlett Publishers, LLC. NOT FOR SALE OR DISTRIBUTION.

I 104 CHAPTER 4 Software Process Models

4.8 Review Questions

1. Discuss one advantage and one disadvantage of the waterfall
process.

2. What is the goal of a software process model?

3. What are the four quadrants in a spiral model? Trace the require-
ments set of activities through each quadrant.

4. What are the entry and exit criteria to a process?

5. What motivated software engineers to move from the waterfall
model to the incremental or spiral model?

6. What are the major concepts that drove the Rational Unified
Process framework?

7. What are the four phases of Rational Unified Process?

8. List all of the key processes addressed by SEI’'s CMM model.
Which ones are required for maturity level 22

9. How many process areas, in total, are included in SEI’s Software
CMMTI? List those that fall into the engineering category and the
support category.

'

4.9 Exercises

1. Look again at the simple process model in Figure 4.1. What develop-
ment activity would you choose to add first to that process and why?

S a 2. What is the difference between the multiple component incre-
DR mental model and the multiple release incremental model?

3. Discuss the four phases of Rational Unified Process and their rela-
tionship to the development activities such as requirements analy-
sis, design, and testing.

4. Give two entry criteria examples and discuss their importance.
5. Give two exit criteria examples and discuss their importance.

6. Get on the Internet at www.sei.cmu.edu and search for SEI’s
vision and mission. Do you believe we need such an organization
e and why?
7. List the process areas that are required for staged maturity level 2
of CMMI. How do these differ from those of maturity level 2 in
CMM?
© Jones and Bartlett Publishers, LLC. NOT FOR SALE OR DISTRIBUTION.

4.9 Suggested Readings

8. Discuss the two representation models in CMMI. What do these
two models assess?

9. In the continuous representation model, discuss how a process
area moves up (or improves) from CL2 to CL3.

410 Suggested Readings

D. M. Ahern, A. Closure, and R. Turner, CMMI Distilled—A Practical Intro-
duction to Integrated Process Improvement, 2nd ed. (Reading, MA: Addison-
Wesley, 2004).

B. Boehm, “A Spiral Model for Software Development and Enhancement,”
Computer 21, no. 5 (May 1988): 61-72.

E P. Brooks, The Mythical Man Month (Reading, MA: Addison-Wesley,
1975).

Capability Maturity Model Integration (CMMI) Version 1.1, CMMI for Soft-
ware Engineering, CMU/SEI-2002—-TR-028, August 2002.

M. Cusumano, A. MacCormack, C. F. Kemerer, and Crandall, B., “Software
Development Worldwide: The State of the Practices,” IEEE Software 20, no.
6 (November—December 2003): 28—34.

K. E. Emam and N. H. Madhaviji, Elements of Software Process Assessment
and Improvement (Los Alamitos, CA: IEEE Computer Society, 1999).

M. Fowler and K. Scott, UML Distilled, 2nd ed. (Reading, MA: Addison-
Wesley, 1999).

T. Gilb, Principles of Software Engineering Management (Reading, MA:
Addison-Wesley Longman, 1989).

—“Rule-Based Design Reviews,” Software Quality Professional 7, no. 1
(December 2004): 4—13.

T. Glib and K. Gilb, Evolutionary Project Management and Product Develop-
ment. Unfinished book manuscript at http://www.result-planning.com
(October 2004).

E. Guerrero and Y. Eterovic, Adapting the SW-CMM in a Small IT Organi-
zation,” IEEE Software (July/August 2004): 29-35.

© Jones and Bartlett Publishers, LLC. NOT FOR SALE OR DISTRIBUTION.

*ub
DIS

ON

I 106

J=}

and Bartlet
DR R '

CHAPTER 4 Software Process Models

W. S. Humphrey, Managing the Software Process (Reading, MA: Addison-
Wesley, 1989).

—A Discipline for Software Engineering (Reading, MA: Addison-Wesley,
1995).

—Introduction to the Personal Software Process (Reading, MA: Addison-
Wesley, 1997).

International Standards Organization (ISO), www.iso.org, 2004.

I. Jacobson, G. Booch, and J. Rumbaugh, The Unified Software Development
Process (Reading, MA: Addison-Wesley Longman, 1999).

P. Kruchten, The Rational Unified Process, 3rd ed. (Reading, MA: Addison-
Wesley, 2003).

A. MacCormack, “Product-Development Practices That Work: How Inter-
net Companies Build Software,” MIT Sloan Management Review (Winter
2001): 75-83.

L. Osterweil, “Software Processes Are Software Too,” Proceedings of 9th
International Conference on Software Engineering, (April 1987): 2—13.

M. C. Paulk, et al., “Capability Maturity Model for Software, Version 1.1,”
Software Engineering Institute, CMU/SEI-93-TR-24, DTIC Number
ADA263404 (February 1993).

R. S. Pressman, Software Engineering: A Practitioner’s Approach, 6th ed.
(New York: McGraw-Hill, 2005).

W. W. Royce, “Managing the Development of Large-Scale Software Sys-
tems,” Proceedings of IEEE WESCON, August 1970.

J. Rumbaugh, I. Jacobson, and G. Booch, The Unified Modeling Language
Reference Manual (Reading, MA: Addison-Wesley, 1998).

Software Engineering Institute (SEI), www.sei.cmu.edu, 2004

J. Wood and D. Silver, Joint Application Development, 2nd ed. (New York:
John Wiley, 1995).

© Jones and Bartlett Publishers, LLC. NOT FOR SALE OR DISTRIBUTION.

