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In this chapter we look at numerical techniques for solving systems of linear equations.

We add four important methods, namely Gausssian elimination, LU decomposition, the

Jacobi method, and the Gauss-Seidel method to our library of techniques of solving sys-

tems of linear equations. We discuss the merits of the various methods, including their reliability

for solving various types of systems. Certain systems of equations can lead to incorrect results

unless great care is taken. We discuss ways of recognizing and solving “delicate” systems. 

While the determinant approach of Chapter 5 is useful for finding eigenvalues and

eigenvectors of small matrices and for developing the theory, it is not practical for find-

ing eigenvalues and eigenvectors of large matrices that occur in applications. We intro-

duce a numerical technique for finding such eigenvalues and eigenvectors. 

Applications discussed include an analysis of networks––ways of describing con-

nectivities of networks and the accessibility of their vertices. Such measures are used to

compare connectivities of cities and regions, and to plan where roads should be built.

Gaussian Elimination 
There are many elimination methods in addition to the method of Gauss-Jordan elimina-
tion for solving systems of linear equations. In this section we introduce another elimina-
tion method called Gaussian elimination. Different methods are suitable for different
occasions. It is important to choose the best method for the purpose in mind. We shall discuss
the relative merits of Gauss-Jordan elimination and Gaussian elimination. The merits and
drawbacks of other methods will be discussed later. 

The method of Gaussian elimination involves an echelon form of the augmented matrix
of the system of equations. An echelon form satisfies the first three of the conditions of the
reduced echelon form.

*8.1

8Numerical Methods

C H A P T E R  

DEFINITION A matrix is in echelon form if

1. Any rows consisting entirely of zeros are grouped at the bottom of the matrix.
2. The first nonzero element of each row is 1. This element is called a leading 1.
3. The leading 1 of each row after the first is positioned to the right of the leading 1 of the previous row.

(This implies that all the elements below a leading 1 are zero.)
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348 CHAPTER 8 Numerical Methods

The following matrices are all in echelon form.

The difference between a reduced echelon form and an echelon form is that the elements
above and below a leading 1 are zero in a reduced echelon form, while only the elements
below the leading 1 need be zero in an echelon form.

The Gaussian elimination algorithm is as follows. 

Gaussian Elimination

1. Write down the augmented matrix of the system of linear equations.
2. Find an echelon form of the augmented matrix using elementary row operations. This

is done by creating leading 1’s, then zeros below each leading 1, column by column,
starting with the first column.

3. Write down the system of equations corresponding to the echelon form.
4. Use back substitution to arrive at the solution. 

We illustrate the method with the following example.

£
1 21 2

0 1 2

0 0 1

§ £
1 3 26 4

0 0 1 3

0 0 0 0

§ £
1 4 6 2 5 2

0 0 1 2 3 4

0 0 0 0 1 6

§

Solve the following system of linear equations using the method of Gaussian
elimination.

SOLUTION 

Starting with the augmented matrix, create zeros below the pivot in the first column.

At this stage we create a zero only below the pivot. 

echelon form

We have arrived at the echelon form.
The corresponding system of equations is

x4 5   2

x3 1 3x4 5    1

x1 1 2x2 1 3x3 1 2x4 5 21

<
R3 1 122 2R2  

£
1 2 3 2 21

0 0 1 3 1

0 0 0 2 4

§ <
  11/2 2  R3  

£
1 2 3 2 21

0 0 1 3 1

0 0 0 1 2

§

£
1 2 3 2 21

21 22 22 1 2

2 4 8 12 4

§
<

R2 1 R1

  R3 1 122 2R1  
£

1 2 3 2 21

0 0 1 3 1

0 0 2 8 6

§

 2x1 1 4x2 1 8x3 1 12x4 5   4
2x1 2 2x2 2 2x3 1    x4 5   2

  x1 1 2x2 1 3x3 1   2x4 5 21

EXAMPLE 1
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8.1 Gaussian Elimination 349

Observe that the effect of performing the row operations in this manner to arrive at
an echelon form is to eliminate variables from equations. This is called forward elimi-
nation. This system is now solved by back substitution. (The terms forward pass and
backward pass are also used.) The value of is substituted into the second equation
to give and are then substituted into the first equation to get We get

Substituting into the first equation,

Let The system has many solutions. The solutions are

x1 5 22r 1 10, x2 5 r, x3 5 25, x4 5 2 

x2 5 r.

 x1 5 22x2 1 10

 x1 1 2x2 5     10,

 x1 1 2x2 1 3 125 2 1 2 12 2 5 21,

x4 5 2 and x3 5 25

 x3 5 25

 x3 1 3 12 2 5   1,

x1.x4x3x3.
x4

The forward elimination of variables in this method was performed using matrices and
elementary row operations. The back substitution can also be performed using matrices.
The final matrix is then the reduced echelon form of the system. This way of performing
the back substitution can be implemented on a computer. We illustrate the method for the
system of equations of the previous example.

Solve the following system of linear equations using the method of Gaussian
elimination, performing back substitution using matrices.

SOLUTION 

We arrive at the echelon form as in the previous example.

echelon form

This marks the end of the forward elimination of variables from equations. We now
commence the back substitution using matrices.

(Create zeros above the leading 1 in row 3. 
This is equivalent to substituting for from
Equation 3 into Equations 1 and 2.)

x4

£
1 2 3 2 21

0 0 1 3 1

0 0 0 1 2

§
<

  R1 1 122 2R3  
  R2 1 123 2R3  

£
1 2 3 0 25

0 0 1 0 25

0 0 0 1 2

§

£
1 2 3 2 21

0 0 1 3 1

0 0 0 1 2

§£
1 2 3 2 21

21 22 22 1 2

2 4 8 12 4

§ < c<

 2x1 1 4x2 1 8x3 1 12x4 5   4
2x1 2 2x2 2 2x3 1    x4 5   2
  x1 1 2x2 1 3x3 1   2x4 5 21

EXAMPLE 2
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350 CHAPTER 8 Numerical Methods

Comparison of Gauss-Jordan and Gaussian Elimination
The method of Gaussian elimination is in general more efficient than Gauss-Jordan elimina-
tion in that it involves fewer operations of addition and multiplication. It is during the back
substitution that Gaussian elimination picks up this advantage. We now illustrate how Gaussian
elimination saves two operations over Gauss-Jordan elimination in the preceding example.
Consider the final transformation that brings the matrix to reduced echelon form.

The aim of this transformation is to create a 0 in location Note that changing the 3
in location to 0 need not in practice involve any arithmetic operations, as one (or the
computer) knows in advance that the element is to be zero. The 0 in the location
remains unchanged; no arithmetic operations need be performed on it. The row operation

in fact uses only two arithmetic operations—one of multiplication and one
of addition—in changing the in the location to 10:

addition multiplication

On the other hand, when the zero is created in the location during Gauss-Jordan elim-
ination, the element and the element are both changed, each involving two
operations, one addition and the other multiplication. These two operations for the change
in the element are two additional operations involved in Gauss-Jordan elimination.

In larger systems of equations, many more operations are saved in Gaussian elimina-
tion during back substitution. The reduction in the number of operations not only saves time
on a computer but also increases the accuracy of the final answer. With each arithmetic
operation there is a possibility of round-off error on a computer. With large systems, the
method of Gauss-Jordan elimination involves approximately 50% more arithmetic opera-
tions than does Gaussian elimination (see the following table). 

11, 4 2
11, 5 211, 4 2 11, 3 2

25 1 123 2 125 2 5 10

11, 5 225
R1 1 123 2R2

11, 4 211, 3 2 11, 3 2 .

£
1 2 3 0 25

0 0 1 0 25

0 0 0 1 2

§ <
  R1 1 123 2R2  

£
1 2 0 0 10

0 0 1 0 25

0 0 0 1 2

§

(Create a zero above the leading 1 in row 2.
This is equivalent to substituting for 
from Equation 2 into Equation 1.)

This matrix is the reduced echelon form of the original augmented matrix. The corre-
sponding system of equations is

Let We get the same solution as previously,

x1 5 22r 1 10,  x2 5 r,  x3 5 25,  x4 5 2

x2 5 r.

x4 5    2

x3       5 25

x1 1 2x2         5   10

x3

<
R1 1 123 2R2

    £
1 2 0 0 10

0 0 1 0 25

0 0 0 1 2

§

S S
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8.1 Gaussian Elimination 351

Count of Operations for an System with Unique Solution 

Number of Multiplications Number of Additions

Gauss-Jordan elimination

Gaussian elimination n3

3
1

n2

2
2

5n

6
<

n3

3

n3

3
1 n2 2

n

3
<

n3

3
 

n3

2
2

n

2
<

n3

2
 

n3

2
1

n2

2
<

n3

2
 1 for large n 2

n 3 n

Gauss-Jordan elimination, on the other hand, has the advantage of being more straight-
forward for hand computations. It is easier for solving small systems and it is the method
that we use in this course when we solve systems of linear equations by hand. 

We complete this section with a discussion of the formulas for the total number of opera-
tions involved in solving a system of n linear equations in n variables that has a unique solu-
tion, using both Gauss-Jordan elimination and Gaussian elimination. We group multiplications
and divisions together as multiplications and additions and subtractions together as additions. 

If there are many equations, with n large, then the term with the highest power of n
dominates the other terms in the preceding formulas. The total number of operations with
Gauss-Jordan elimination is approximately while the total in Gaussian elimination is
approximately Gaussian elimination is, thus, approximately 50% more efficient than
Gauss-Jordan elimination.

We now derive the above formulas for Gauss-Jordan elimination, leaving it for the
reader to arrive at the formulas for Gaussian elimination in the exercises that follow. Let
us denote general elements in the matrices by . Assume that there are no row interchanges.
Note that when an element is known to become a 1 or a zero there are no arithmetic oper-
ations involved; substitution is used. Thus, for example, there are no operations involved
in the location where a leading one is created. We get, starting with the 
augmented matrix of the system,

n 3 1n 1 1 2

*

2n3

3 .
n3

   

0 *

0 *

( (

1 *

¥
<

1 mult

1 add
1per row 2

   ≥
1 0

0 1

( (

0 0

* *

* *

( (

1 *

¥< c<
1 mult

   ≥
0 1

0 1

( (

0 0

c *
c *

(
c *

¥
<

n 2 1 mults

n 2 1 adds
1per row 2

  ≥
1 0

0 1

( (

0 0

c *
c *

(
c *

¥<
n 2 1 mults

  
≥

1 *

0 1

( (

0 *

c *
c *

(
c *

¥
<

n mults

n adds
1per row 2

   ≥
1 *

0 *

( (

0 *

c *
c *

(
c *

¥<
n mults

   
  ≥

1 *

* *

( (

* *

c *
c *

(
c *

¥≥
 * *

* *

( (

* *

n
rows

We now add up these operations. Remember that there are rows involved every
time zeros are created “per row” in the above manner. The following formula is used for the
sum of the first n integers

3n 1 1n 2 1 2 1 c1 1 4 5
n 1n 1 1 2

2

1n 2 1 2

(''')'''*

n 1 1 columns

(
'
'
)

'
'
*
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352 CHAPTER 8 Numerical Methods

Total number of multiplications

to create leading 1’s to create zeros

Total number of additions

5 1n 2 1 2 3n 1 1n 1 1 2 1 c1 1 4 5 1n 2 1 2 cn 1n 1 1 2
2

d 5
n3

2
2  

n

2

 5 n 3n 1 1n 2 1 2 1 c1 1 4 5 n cn 1n 1 1 2
2

d 5
n3

2
1

n2

2

('''''')''''''*(''''')'''''*

5 3n 1 1n 1 1 2 1 c1 1 4 1 1n 2 1 2 3n 1 1n 2 1 2 1 c1 1 4

EXERCISE SET 8.1 

Echelon Form 
1. Determine whether or not each of the following matrices is

in echelon form.

(a) (b)

(c) (d)

2. Determine whether or not each of the following matrices is
in echelon form.

(a) (b)

(c) (d)

Gaussian Elimination
In Exercises 3–6, solve the systems of equations using Gaussian
elimination. 

(a) Perform the back substitution using equations. 

(b) Perform the back substitution using matrices.

3.

4.

5.

6.

Miscellaneous Results
7. Consider a system of four equations in five variables. In

general, how many arithmetic operations will be saved by
using Gaussian elimination rather than Gauss-Jordan elim-
ination to solve the system? Where are these operations
saved?

8. Compare Gaussian elimination to Gauss-Jordan elimina-
tion for a system of four equations in six variables. Determine
where operations are saved during Gaussian elimination. 

9. Can a matrix have more than one echelon form? (Hint:
Consider a matrix and arrive at an echelon form using
two distinct sequences of row operations.) 

10. Consider a system of n linear equations in n variables that has
a unique solution. Show that Gaussian elimination involves

multiplications and additions
to arrive at an echelon form, and then a further 
multiplications and additions to arrive at the
reduced echelon form. Thus a total of 
multiplications and additions are
involved in solving the system of equations using Gaussian
elimination. (The formula for the sum of squares is

)

11. Construct a table that gives the number of multiplications
and additions in both Gauss-Jordan elimination and Gaussian
elimination for systems of n equations in n variables having
unique solutions, for to 10.n 5 2 

3n 1n 1 1 2 12n 1 1 2 4 /6.n2 1 1n 2 1 2 2 1 c1 1 5

n3/3 1 n2/2 2 5n/6
n3/3 1 n2 2 n/3

n2/2 2 n/2
n2/2 2 n/2

n3/3 2 n/3n3/3 1 n2/2 1 n/6

2 3 3

 2x1 2 x2 1 5x3 2 3x4 2 4x5 5 23
 2x1 2 x2 2 5x3 1 3x4 2 2x5 5 23
 x1 2 x2 1 5x3 1 2x4 2 2x5 5 21

      2x2 1 2x3 5    1

 x1 1 2x2 2  x3 5 23

2x1 2 2x2 1 5x3 5    4

 x1 2  x2 1 2x3 5    3

3x1 2 2x2 1 x3 5 5

 x1 2  x2 1 x3 5 2

 x1 2  x2 2 x3 5 2

x1 1 2x2 1 3x3 5 14

x1 2   x2 1  x3 5 2

x1 1   x2 1  x3 5 6

≥
1 21 4 6

0 0 1 3

0 0 0 0

0 0 0 1

¥≥
1 3 4 2 3

0 0 2 5 1

0 0 0 1 4

0 0 0 0 6

¥

≥
1 2 4 6

0 0 1 2

0 1 3 3

0 0 0 1

¥£
1 0 0 3 0

0 0 1 2 0

0 0 0 0 1

§

≥
1 7 6 2

0 0 1 8

0 0 1 4

0 0 0 1

¥£
1 5 6 2

0 1 0 4

0 0 1 2

§

£
1 2 3 4

0 0 1 0

0 0 0 1

§ £
1 2 1

0 1 3

0 0 0

§
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