Introduction to Air Pollution Science
A Public Health Perspective

Robert F. Phalen, PhD
Professor, Department of Medicine
Center for Occupational and Environmental Health
University of California, Irvine
Irvine, California

Robert N. Phalen, PhD, CIH
Assistant Professor, Health Science and Human Ecology
College of Natural Sciences
California State University, San Bernardino
San Bernardino, California
To Philippus Aurelus Theophrastus Bombastus von Hohenheim—Paracelsus (1493–1541), who probably made the single most important contribution to air pollution science by proclaiming:

“All substances are poisons; there is none which is not a poison. The right dose differentiates a poison from a remedy.”

Table of Contents

Preface ... xiii

Reviewers ... xv

Foreword .. xvi

About the Authors .. xviii

CHAPTER 1: INTRODUCTION TO AIR POLLUTION SCIENCE ... 1

I. INTRODUCTION: HISTORY .. 2

 Early History and Natural Events .. 2

 Use of Fuels by Humans ... 3

 History of Attitudes and Perceptions ... 4

 Impact of the Industrial Revolution .. 5

II. THE GREAT AIR POLLUTION DISASTERS .. 5

 Meuse River Valley, 1930 ... 5

 Donora Pennsylvania, 1948 ... 6

 London, 1952 .. 6

 Conclusions from the Three Air Pollution Disasters ... 8

III. MODERN AIR POLLUTION ISSUES .. 8

IV. RISKS VS. BENEFITS ASSOCIATED WITH AIR POLLUTANT PRODUCING ACTIVITIES 9

V. AGENCIES INVOLVED IN AIR POLLUTION ASSESSMENT AND CONTROL 10

VI. THE SCOPE OF MODERN AIR POLLUTION SCIENCE ... 12

 Earth Science, Meteorology, and Climate .. 12

 Ecology .. 12

 Epidemiology and Controlled Studies ... 13

 Air Chemistry ... 14

 Dosimetry ... 14

 Risk Assessment ... 14

 Regulations .. 15

 Environmental Justice .. 15

VII. SUMMARY OF MAJOR POINTS .. 16
Table of Contents

III. PARTICLE MORPHOLOGY AND TOXICITY ... 60
 Overview .. 60
 Particle Mass .. 60
 Fibers and Metal Fumes ... 60
 Surface Area and Dissolution Rate .. 61
 Other Size Dependent Factors and Toxicity ... 62

IV. GASES AND VAPORS ... 62
 What Are Gases and Vapors? .. 62
 Ideal Gas Laws .. 63
 Vapor Pressure ... 63
 Partial Pressure ... 63
 Physiologic Implications of Gas Partitioning .. 64
 Inhaled Gases .. 65
 Expressing Gas Concentrations .. 65
 Gas Solubility and the Role of Particles in Transporting Inhaled Gases 66

V. IMPORTANT PHOTOCHEMICAL AND OTHER REACTIONS 66
 Gas Spectroscopy and Photochemistry .. 66
 Photochemistry of Ozone and Nitrogen Dioxide .. 67
 Hydrocarbons and Their Derivatives ... 68
 Sulfur ... 68
 Nitrogen ... 69

VI. PRIMARY AND SECONDARY AIR POLLUTANTS ... 70
 Overview .. 70
 Primary Particulate Matter .. 71
 Secondary Particulate Matter .. 71
 Secondary Gases and Vapors ... 73

VII. UNCERTAINTIES RELATED TO PUBLIC HEALTH ISSUES 73

VIII. SUMMARY OF MAJOR POINTS ... 74

IX. QUIZ AND PROBLEMS .. 75
 Quiz Questions .. 75
 Problems .. 76

X. DISCUSSION TOPICS ... 76
 References and Recommended Reading .. 76

CHAPTER 4: SAMPLING AND ANALYSIS FOR HEALTH ASSESSMENTS 79
I. INTRODUCTION ... 80
 Overview .. 80
 Sampling ... 80
 Analysis .. 81

II. QUALITY ASSURANCE AND STATISTICAL CONSIDERATIONS 81
 Accuracy and Precision ... 82
 Field Blanks .. 84
 Detection and Quantification Limits ... 84
 Calibration ... 85
 Reporting Analytical Results and Errors ... 85
CHAPTER 5: VISIBILITY, CLIMATE, AND THE OZONE LAYER ... 121
 I. INTRODUCTION: VISIBILITY, CLIMATE, AND THE OZONE LAYER 122
 Some Basic Concepts ... 122
 II. VISIBILITY AND AIR POLLUTION ... 124
 Vision ... 124
 Visibility .. 125
 Air Pollutants that Impair Visibility 127
 Modeling Light Extinction 127
 Spatial and Temporal Trends in Visibility 128
 III. CLIMATE AND AIR POLLUTION ... 130
 Introduction ... 130
 The Greenhouse Effect and Greenhouse Gases 131
 Climate Models .. 132
 Climate and Particulate Air Pollution 135
 IV. STRATOSPHERIC OZONE .. 136
 Why Is Stratospheric Ozone Important? 136
 Ozone Measurement, Formation, and Destruction ... 137
 V. SUMMARY OF MAJOR POINTS .. 139
 VI. QUIZ AND PROBLEMS ... 140
 Quiz Questions .. 140
 Problems .. 140
Table of Contents

VII. DISCUSSION TOPICS

References and Recommended Reading .. 141

CHAPTER 6: REGULATION AND ABATEMENT OF AIR POLLUTANTS

I. INTRODUCTION AND SCOPE .. 143
Introduction .. 144
Scope of this Chapter .. 145

II. REGULATORY AGENCIES .. 145

III. REGULATIONS AND STANDARDS 147
Air Pollution Regulations and Air Quality Standards 147
Components of an Air Quality Standard 148
The U.S. Clean Air Act .. 151
Other Clean Air Acts .. 152
Tobacco-Use Controls ... 152

IV. TRENDS, BENEFITS, AND TRADE-OFFS 153
Trends, Benefits, and New Questions 153
Regulatory Trade-Offs of Air Pollution Regulations 156

V. ABATEMENT AND COMPLIANCE STRATEGIES 158
Introduction: Definitions and Scope ... 158

VI. CONTROL OF PARTICULATE AND GASEOUS EMISSIONS 159
Basic Principles for the Collection of Particles 159
Particle Collection Devices ... 159
Acoustic Agglomerators .. 166
Additional Methods for Controlling Gas Emissions 166
Selection of Aerosol and Gas Collectors 167

VII. CASE STUDY: COAL-FIRED POWER PLANT 168
Overview .. 168
Pulverized Fuel Coal-Fired Power Plants 169

VIII. CASE STUDY: AUTOMOBILES AND TRUCKS 171
Regulatory Pressure and Overview of Controls 171
Emission Controls .. 171
There Are Positive Results, but Some Persistent Problems 173

IX. SUMMARY OF MAJOR POINTS .. 174

X. QUIZ AND PROBLEMS .. 175
Quiz Questions .. 175
Problems .. 175

XI. DISCUSSION TOPICS .. 176
References and Recommended Reading 176

CHAPTER 7: HUMAN EXPOSURES TO AIR POLLUTANTS

I. INTRODUCTION: BREATHING—AN OLD HABIT 179
Gas Exchange .. 180
Other Critical Functions .. 180
Inhaled Air Volumes .. 180

II. RESPIRATORY TRACT COMPARTMENTS FOR INHALATION CONSIDERATIONS ... 182
Compartmental Models .. 182
Pollutant Deposition and Clearance Models 182

III. POLLUTANT DEPOSITION IN THE BODY 182
Inhaled Particle Deposition ... 182
Inhaled Gases .. 185
In Viro Toxinty Testing Used for Air Pollutants ... 228
Additional Comments .. 229

IV. ANIMAL STUDIES .. 230
Why Are Animal Studies Performed? .. 230
Rationale for Animal Studies ... 231
Main Species Used in Inhalation Toxicology .. 231

V. HUMAN CLINICAL STUDIES .. 232
Pulmonary Function ... 233
Cardiac Function ... 233
Behavioral Studies ... 234

VI. EXPOSURE METHODS .. 234
Overview ... 234
Inhalation System Requirements .. 234
Laboratory Animal and Human Exposures .. 234

VII. UNSOLVED PROBLEMS IN AIR POLLUTION TOXICOLOGY ... 235

VIII. SUMMARY OF MAJOR POINTS ... 237

IX. QUIZ AND PROBLEMS .. 238
Quiz Questions ... 238
Problems .. 239

X. DISCUSSION TOPICS .. 239
References and Recommended Reading ... 239

CHAPTER 10: EPIDEMIOLOGY AND AIR POLLUTION .. 241

I. INTRODUCTION: WHAT IS EPIDEMIOLOGY AND WHY IS IT IMPORTANT? ... 242
Definition and Scope ... 242
Air Pollution Studies ... 242

II. IMPORTANT CONCEPTS IN EPIDEMIOLOGY .. 242
Overview of Statistical Techniques and Concepts Used by Epidemiologists .. 242

III. TYPES OF EPIDEMIOLOGY STUDIES ... 252
Common Study Designs .. 252

IV. AIR POLLUTION EPIDEMIOLOGY .. 255
Overview ... 255
Early Epidemiological Studies .. 255
Recent Epidemiological Studies of Ozone and Particulate Material .. 256

V. POTENTIALLY SUSCEPTIBLE SUBPOPULATIONS .. 263

VI. SUMMARY OF MAJOR POINTS ... 264

VII. QUIZ AND PROBLEMS .. 265
Quiz Questions ... 265
Problems .. 266

VIII. DISCUSSION TOPICS .. 266
References and Recommended Reading ... 266

CHAPTER 11: RISK ASSESSMENT .. 269

I. INTRODUCTION .. 270
What Is Risk? ... 270
Early Beginnings of Formal Risk Assessment .. 270
Air Pollution Risk Assessment .. 273
Additional Considerations for Carcinogens ... 274

II. HAZARD IDENTIFICATION .. 277
Epidemiological Studies ... 278
In Viro Bioassays ... 278
Table of Contents

In Vitro Methods ... 278
Evidence of Biological Activity ... 279
Chemical Structure and Reactivity Information 279
Hazard Identification of Carcinogens 279

III. HAZARD ASSESSMENT ... 280
Introduction .. 280
Non-Cancer Hazards ... 281
Cancer Hazards ... 283

IV. EXPOSURE ASSESSMENT .. 284
Pollutant Sources (With an Emphasis on Air Pollutants) 285
Routes of Exposure .. 285
Measurement of Exposure ... 286

V. RISK CHARACTERIZATION .. 287
Non-Carcinogens ... 288
Carcinogens ... 288
Cumulative Risk and Multiple Chemical Exposures 289

VI. RISK COMMUNICATION ... 289
What Is Risk Communication? .. 289
Comments on Risk Assessments 292

VII. SUMMARY OF MAJOR POINTS ... 292

VIII. QUIZ AND PROBLEMS .. 292
Quiz Questions .. 292
Problems ... 294

IX. DISCUSSION TOPICS .. 294
References and Recommended Reading 295

CHAPTER 12: ETHICAL CONSIDERATIONS: HOW THEY APPLY TO AIR POLLUTION 297

I. INTRODUCTION ... 298
Why Bother? ... 298
What Does “Ethics” Encompass? ... 298

II. ETHICS AS A BRANCH OF PHILOSOPHY 299

III. HUMAN AND ANIMAL SUBJECTS RESEARCH ETHICS 300
Historical Background ... 300
Human Research Ethics .. 301
Animal Research Ethics .. 303

IV. PROFESSIONAL ETHICS ... 304
Professional Associations, Societies, and Other Organizations .. 304
Sample Professional Codes of Ethics 305

V. PRACTICAL ETHICS ... 307
Ethical Decision Making .. 307

VI. SUMMARY OF MAJOR POINTS .. 309

VII. QUIZ AND PROBLEMS .. 309
Quiz Questions .. 309
Problems ... 310

VIII. DISCUSSION TOPICS .. 311
References and Recommended Reading 311

Index .. 313
Preface

Air pollution science is both interesting and elegant because it integrates many disciplines. Responsibly managing air pollution requires the expertise and cooperation of a diverse array of specialists. Chemists, physicists, and engineers must have a working knowledge of public health, as well as the basic principles of toxicology, epidemiology, and the regulatory process. Also, public health professionals (including epidemiologists, toxicologists, and regulators) need to acquire a working knowledge of air pollution chemistry, physics, and engineering in order to be relevant and effective. In the interest of public health and welfare, it is no longer acceptable to pursue and promote one’s own scientific discipline in isolation. A holistic approach is necessary, with the ultimate goal of making sound decisions that will best protect public health and the environment. To serve this end, this book covers essential traditional topics, as well as some that are new to air pollution textbooks. For example, full chapters are dedicated to risk assessment, toxicology, epidemiology, and ethics.

Traditional topics have been updated to address current issues in air pollution science (e.g., climate change). Individual chapters cover Sources and Emissions; Properties of Air Pollutants (Chemistry and Physics); Sampling and Analysis; Visibility, Climate, and the Ozone Layer; Regulation and Abatement; Human Exposures; Effects on Human Health; Toxicology; Epidemiology; Risk Assessment; and Ethics. The authors believe these are essential basic topics that students and professionals must appreciate in order to understand air pollution science. The chapters are scientifically current, and they introduce important basic concepts, online databases, and even some of the relevant peer-reviewed literature.

The authors have proven records in research and education in the air pollution sciences, and their formal scientific training, professional experience, and viewpoints are complementary. Their combined expertise and interests include air sampling, chemical analyses, aerosol science, industrial hygiene, inhalation toxicology, occupational health, biophysics, dermal toxicology, pollutant control technologies, applied ethics, and undergraduate, graduate, and post-graduate education. They have discussed, reviewed, and edited each other’s contributions, and they have had many stimulating discussions and debates regarding the content presented in this text.

This textbook is necessary because it is: (1) motivated by a concern for public health and welfare, but also (2) current from a basic science viewpoint. As the Earth’s population expands, air quality will worsen unless cleaner and/or more efficient technologies are developed for generating power, providing food, manufacturing goods, transporting goods, and enjoying life. On the other hand, many people throughout the world are still dealing with serious and very real health problems that are not associated with air pollution. These problems include poor nutrition, infectious disease, and natural disasters. Therefore, air pollution must be placed into a proper perspective within each society or community. Presenting this public health perspective is an important goal of this textbook. After all, the public must deal with all of the potential consequences of a regulatory action, not just the intended benefits.
The authors must thank more people than they can name. First is Mrs. Leslie Kimura, who word-processed every chapter many times and served as our Administrative Assistant. Leslie’s young daughter Kayla inspired us all with her patience and healthy scientific curiosity. She was also an invaluable companion to the authors’ children and grandchildren, Joseph and Samuel.

Without the advice and help of Dr. Robert H. Friis, our role model as a textbook author, this project could neither have been begun nor completed. We are also appreciative of the guidance from Michael Brown, Maro Gartside, Rebekah Linga, Chloe Falivene, Grace Richards, Sophie Fleck, Teresa Reilly, Catie Heverling, and several other Jones & Bartlett Learning staff. Erica Martinetti, Robert N. Phalen, and Joshua Bracks expertly prepared several figures. The authors’ families, Katherine Phalen, Michelle Phalen, and Nancy Phalen, tirelessly performed essential research, editing, and checking. Kathryn E. Terry, attorney at law and member of the California State Bar Committee on Ethics, offered expert suggestions on our ethics chapter. Rowe Yates contributed quiz questions. Dr. Loyda Mendez provided valuable advice.

The authors’ children and grandchildren gave up valuable time with their parents and grandparents. They inspired us and helped us to relax during tense times by playing baseball with us. They deserve our most sincere appreciation.

Robert F. Phalen and Robert N. Phalen
Reviewers

April L. Hiscox, PhD
Department of Geography
The University of South Carolina

Robert G. Keesee, PhD
Associate Professor
Department of Atmospheric & Environmental Sciences
State University of New York at Albany

Chris J. Walcek, PhD
Senior Research Scientist
Department of Atmospheric & Environmental Sciences
State University of New York at Albany
Air, water, and earth sustain all living things, both plants and animals. They are the source of foodstuffs and energy critical to the well-being of human kind. Constant availability of oxygen within narrow concentration limits is essential for humans and all other mammalian organisms. Likewise, the constant availability of carbon dioxide within critical concentration limits is essential fuel for plants. The evolution of humankind has been strongly influenced by combustion, the interaction of carbonaceous materials and oxygen and the release of thermal energy. Primitive man learned to use fire to enhance the well-being of individuals and small communities of hunters and gatherers. This was soon followed by development of agricultural-based communities. The industrial revolution soon emerged with its strong dependence on the use of energy from available natural resources. That revolution was initially fueled by wood, then coal, and continues today with extensive use of coal, oil, natural gas, and to a lesser extent, uranium fuel for nuclear reactors as the primary energy sources. The availability of refined oil products, gasoline, diesel, and aviation fuel, has been the cornerstone of a transportation sector that has helped create a global economy. Increased agricultural productivity has been key to feeding a growing global population. Enhanced agricultural productivity has benefited from improved germ stocks, the use of petroleum product fueled equipment, and increased use of fertilizers. Nitrogen, extracted from the air, has played a critical role as a fertilizer.

Uses of carbon-based fuel stocks were initially very inefficient and resulted in significant emissions of a variety of gaseous and particulate pollutants primarily to air. Initially, the impacts were local, then observed regionally, and now are recognized as being of global concern. Air pollutants may directly impact the health of individuals and, in some cases, only be identified by studying very large populations. Other impacts on human populations may arise indirectly via contamination of water, soil, and plants. It is clear that the development of modern society has been dependent on the complex inter-relationships between air, water, earth, energy, and food production, and these, in turn, impact the health of the world’s population. In both developed and developing countries, people are living longer on average than at any time in the history of human kind.

This text, by a father-son team, Robert F. and Robert N. Phalen, will be useful for undergraduate and graduate students and the lay public who want to better understand the multi-faceted nature of air pollution, its impact on society, and how the impacts can be mitigated. Their decades of experience as researchers studying the health effects of air pollution and as teachers have provided them with a valuable perspective often lacking in textbooks. They understand the scientific information being communicated. Equally as important, they understand the importance of communicating basic principles and using specific examples of the science to illustrate the principles.

Readers of the text will quickly identify a series of conceptual paradigms highly relevant to air quality that are recurring in the book. These include an emphasis on studying air pollution linkages from the sources of pollutants to the ambient air to the breathing zone of people to how inhaled materials are deposited and impact the respiratory tract and remote tissues. The individual chapters on
toxicological and epidemiological studies help the reader understand the strengths and weaknesses of each approach and how the resulting knowledge can be integrated. The Phalens wisely provide a chapter on the risk assessment process, which has emerged over the past half century as an approach to synthesizing information from multiple sources to understand human health hazards and risks. Every chapter provides not only coverage of science but, most importantly, places that science in the context of the global society in which we all live.

The senior Dr. Phalen received his undergraduate and early graduate education in Physics and then received his PhD in Radiation Biology and Biophysics. I had the pleasure of working with Robert F. Phalen at the Lovelace Inhalation Toxicology Research Institute (now the Lovelace Respiratory Research Institute), an institute whose successful research program was grounded on issue-resolving multi-disciplinary collaboration. At the University of California, Irvine, he has had an outstanding career as a research scientist and teacher. The junior Dr. Phalen received his undergraduate education in biology, gained experience as an Industrial Hygienist, and then received his PhD in Environmental Health. He has worked at the interface of applying science to resolving environmental and occupational health issues. The rich and varied experiences of the Phalens have taught them the importance of applying the skills of multiple disciplines in the physical, biological, and biomedical sciences, mathematics, information technology, engineering, the societal sciences, and philosophy to increase our knowledge base on air pollution and then use that knowledge to assist in resolving important societal issues. Students with an inquiring mind will identify many potential opportunities for developing a future career in one of the disciplines key to developing and using scientific knowledge of air pollution science.

Unlike many texts in the field, this book is not an encyclopedia of the knowledge of air pollution written from the perspective of multiple super specialists. Neither is this a doom and despair text with finger pointing to establish blame and advocate narrow viewpoints as to how society should move forward. This book exemplifies how science has an important role in helping human kind prosper and live healthy lives with thoughtful attention given to the quality of our air, water, and earth and the wise use of energy resources. Air quality is a crucial interface issue for the future of human kind. As William Shakespeare noted, “The golden age is before us and not behind us,” and “What is past is prologue.” This textbook will provide readers with an understanding of the past and current science of air pollution so they can be better contributors in the future.

Roger O. McClellan, DVM, MMS, DSc (Honorary)
Inhalation Toxicologist, Aerosol Scientist, and Risk Analyst
Albuquerque, New Mexico
About the Authors

Robert F. Phalen, PhD, is a Fellow of the Academy of Toxicological Sciences and a Professor of Medicine in the Center for Occupational and Environmental Health at the University of California, Irvine. He co-directs the Air Pollution Health Effects Laboratory, and teaches undergraduate, graduate, and medical students. Among his numerous duties, he has organized several international conferences and chaired research ethics committees for human and animal subjects.

Robert N. Phalen, PhD, a Certified Industrial Hygienist, is an Assistant Professor of Environmental Health Sciences in the Health Science and Human Ecology Department at California State University, San Bernardino. In addition to his research on air quality, pesticides, sampling and analysis, and personal protective equipment, he teaches a variety of undergraduate courses and serves on administrative, education, and research committees (including the human subject’s ethics committee).

The authors have approximately 150 combined scientific publications.