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 Chapter 3 in Review

We turn now to DEs of order two and higher. In the first six sections of this 
chapter we examine some of the underlying theory of linear DEs and meth-
ods for solving certain kinds of linear equations. The difficulties that surround 
higher-order nonlinear DEs and the few methods that yield analytic solutions 
of such equations are examined next (Section 3.7). The chapter concludes with 
higher-order linear and nonlinear mathematical models (Sections 3.8, 3.9, and 
3.11) and the first of several methods to be considered on solving systems of 
linear DEs (Section 3.12).

Chapter Contents
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98 CHAPTER 3  Higher-Order Differential Equations

3.1 Theory of Linear Equations

Introduction We turn now to differential equations of order two or higher. In this section we 
will examine some of the underlying theory of linear DEs. Then in the five sections that follow 
we learn how to solve linear higher-order differential equations.

3.1.1 Initial-Value and Boundary-Value Problems

Initial-Value Problem In Section 1.2 we defined an initial-value problem for a general 
nth-order differential equation. For a linear differential equation, an nth-order initial-value 
problem is

Solve:  an1x2 
d 

ny

dxn 1 an211x2
d 

n21y

dxn21 1
p 1 a11x2 

dy

dx
1 a01x2y 5 g1x2

 
Subject to:  y1x02 � y0, y¿1x02 � y1, p  , y1n2121x02 � yn21. 

(1)

Recall that for a problem such as this, we seek a function defined on some interval I containing x0 
that satisfies the differential equation and the n initial conditions specified at x0: y(x0) � y0, y�(x0) �
y1, . . ., y

(n�1)(x0) � yn�1. We have already seen that in the case of a second-order initial-value 
problem, a solution curve must pass through the point (x0, y0) and have slope y1 at this point.

Existence and Uniqueness In Section 1.2 we stated a theorem that gave conditions under 
which the existence and uniqueness of a solution of a first-order initial-value problem were 
guaranteed. The theorem that follows gives sufficient conditions for the existence of a unique 
solution of the problem in (1).

Theorem 3.1.1 Existence of a Unique Solution

Let an(x), an�1(x), . . . , a1(x), a0(x), and g(x) be continuous on an interval I, and let an(x) � 0 
for every x in this interval. If x � x0 is any point in this interval, then a solution y(x) of the 
initial-value problem (1) exists on the interval and is unique.

■ EXAMPLE 1 Unique Solution of an IVP
The initial-value problem

 3y� � 5y� � y� � 7y � 0,   y(1) � 0,   y�(1) � 0,   y�(1) � 0

possesses the trivial solution y � 0. Since the third-order equation is linear with constant 
coefficients, it follows that all the conditions of Theorem 3.1.1 are fulfilled. Hence y � 0 is 
the only solution on any interval containing x � 1.

■ EXAMPLE 2 Unique Solution of an IVP
You should verify that the function y � 3e2x � e�2x � 3x is a solution of the initial-value 
problem y� � 4y � 12x, y(0) � 4, y�(0) � 1. Now the differential equation is linear, the coef-
ficients as well as g(x) � 12x are continuous, and a2(x) � 1 � 0 on any interval I containing 
x � 0. We conclude from Theorem 3.1.1 that the given function is the unique solution on I.

The requirements in Theorem 3.1.1 that ai(x), i � 0, 1, 2, . . ., n be continuous and an(x) � 0 for 
every x in I are both important. Specifically, if an(x) � 0 for some x in the interval, then the solution 
of a linear initial-value problem may not be unique or even exist. For example, you should verify 
that the function y � cx2 � x � 3 is a solution of the initial-value problem

 x2y� � 2xy� � 2y � 6,   y(0) � 3,   y�(0) � 1
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on the interval (�q, q) for any choice of the parameter c. In other words, there is no unique 
solution of the problem. Although most of the conditions of Theorem 3.1.1 are satisfied, the 
obvious difficulties are that a2(x) � x2 is zero at x � 0 and that the initial conditions are also 
imposed at x � 0.

Boundary-Value Problem Another type of problem consists of solving a linear differential 
equation of order two or greater in which the dependent variable y or its derivatives are specified 
at different points. A problem such as

Solve: a21x2 
d 

2y

dx2 1 a11x2 
dy

dx
1 a01x2y 5 g1x2

Subject to:  y1a2 � y0, y1b2 � y1

is called a two-point boundary-value problem, or simply a boundary-value problem (BVP). 
The prescribed values y(a) � y0 and y(b) � y1 are called boundary conditions (BC). A solution 
of the foregoing problem is a function satisfying the differential equation on some interval I, con-
taining a and b, whose graph passes through the two points (a, y0) and (b, y1). See FIGURE 3.1.1.

For a second-order differential equation, other pairs of boundary conditions could be

 y�(a) � y0,     y(b) � y1

     y(a) � y0, y�(b) � y1

 y�(a) � y0, y�(b) � y1,

where y0 and y1 denote arbitrary constants. These three pairs of conditions are just special cases 
of the general boundary conditions

 A1 y(a) � B1 y�(a) � C1

 A2 y(b) � B2 y�(b) � C2.

The next example shows that even when the conditions of Theorem 3.1.1 are fulfilled, a 
boundary-value problem may have several solutions (as suggested in Figure 3.1.1), a unique 
solution, or no solution at all.

■ EXAMPLE 3 A BVP Can Have Many, One, or No Solutions
In Example 4 of Section 1.1 we saw that the two-parameter family of solutions of the dif-
ferential equation x� � 16x � 0 is

 x � c1 cos 4t � c2 sin 4t. (2)

(a) Suppose we now wish to determine that solution of the equation that further satisfies the 
boundary conditions x(0) � 0, x(p/2) � 0. Observe that the first condition 0 � c1 cos 0
� c2 sin 0 implies c1 � 0, so that x � c2 sin 4t. But when t � p/2, 0 � c2 sin 2p is 
satisfied for any choice of c2 since sin 2p � 0. Hence the boundary-value problem

 x– 1 16x � 0, x 102 � 0, x1p>22 � 0 (3)

 has infinitely many solutions. FIGURE 3.1.2 shows the graphs of some of the members 
of the one-parameter family x � c2 sin 4t that pass through the two points (0, 0) and 
(p/2, 0).

(b) If the boundary-value problem in (3) is changed to

 x� � 16x � 0,   x(0) � 0,   x 1p>82  � 0, (4)

 then x(0) � 0 still requires c1 � 0 in the solution (2). But applying x(p/8) � 0 to x � c2 
sin 4t demands that 0 � c2 sin(p/2) � c2 	 1. Hence x � 0 is a solution of this new 
boundary-value problem. Indeed, it can be proved that x � 0 is the only solution of (4).

y

x
I

solutions of the DE

(b, y1)

(a, y0)

FIGURE 3.1.1 Colored curves are 
solutions of a BVP

x
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c2 = –

1
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1
2 1

4

1
2

π

FIGURE 3.1.2 The BVP in (3) of 
Example 3 has many solutions
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100 CHAPTER 3  Higher-Order Differential Equations

(c) Finally, if we change the problem to

 x� � 16x � 0,   x(0) � 0,   x 1p>22  � 1, (5)

  we find again that c1 � 0 from x(0) � 0, but that applying x(p/2) � 1 to x � c2 sin 4t leads 
to the contradiction 1 � c2 sin 2p � c2 	 0 � 0. Hence the boundary-value problem (5) 
has no solution.

3.1.2 Homogeneous Equations
A linear nth-order differential equation of the form

 an1x2 
d 

ny

dx 
n 1 an211x2 

d 
n21y

dxn21 1
p 1 a11x2 

dy

dx
1 a01x2  y � 0

 
(6)

is said to be homogeneous, whereas an equation 

 an1x2 
d 

ny

dxn 1 an211x2 
d 

n21y

dxn21 1
p 1 a11x2 

dy

dx
1 a01x2  y � g1x2  (7)

with g(x) not identically zero, is said to be nonhomogeneous. For example, 2y� � 3y� � 5y � 0 
is a homogeneous linear second-order differential equation, whereas x2y� � 6y� � 10y � ex is a 
nonhomogeneous linear third-order differential equation. The word homogeneous in this context 
does not refer to coefficients that are homogeneous functions as in Section 2.5; rather, the word 
has exactly the same meaning as in Section 2.3.

We shall see that in order to solve a nonhomogeneous linear equation (7), we must first be 
able to solve the associated homogeneous equation (6).

To avoid needless repetition throughout the remainder of this section, we shall, as a matter of 
course, make the following important assumptions when stating definitions and theorems about 
the linear equations (6) and (7). On some common interval I, 

the coefficients • ai(x), i � 0, 1, 2, . . ., n, are continuous;
the right-hand member • g(x) is continuous; and
a• n(x) � 0 for every x in the interval.

Differential Operators In calculus, differentiation is often denoted by the capital letter D; that 
is, dy/dx � Dy. The symbol D is called a differential operator because it transforms a differen-
tiable function into another function. For example, D(cos 4x) � �4 sin 4x, and D(5x3 � 6x 2) �
15x2 � 12x. Higher-order derivatives can be expressed in terms of D in a natural manner:

 
d

dx
 ady

dx
b 5 d2y

dx2 5 D1Dy2 5 D2y and in general d 
ny

dx 
n 5 D 

ny,

where y represents a sufficiently differentiable function. Polynomial expressions involving D, 
such as D � 3, D2 � 3D � 4, and 5x3D3 � 6x2D2 � 4xD � 9, are also differential operators. In 
general, we define an nth-order differential operator to be

 L � an(x)Dn � an�1(x)Dn�1 � . . . � a1(x)D � a0(x). (8)

As a consequence of two basic properties of differentiation, D(cf (x)) � c Df (x), c a constant, and 
D{ f (x) � g(x)} � Df (x) � Dg(x), the differential operator L possesses a linearity property; that 
is, L operating on a linear combination of two differentiable functions is the same as the linear 
combination of L operating on the individual functions. In symbols, this means

 L{af (x) � bg(x)} � aL( f (x)) � bL(g(x)), (9)

where a and b are constants. Because of (9) we say that the nth-order differential operator L is 
a linear operator.

Differential Equations Any linear differential equation can be expressed in terms of the 
D notation. For example, the differential equation y� � 5y� � 6y � 5x � 3 can be written as 

Note y � 0 is always a 
solution of a homogeneous 
linear equation. 

Remember these assumptions 
in the definitions and 
theorems of this chapter.

s
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 3.1 Theory of Linear Equations 101

D2y � 5Dy � 6y � 5x � 3 or (D2 � 5D � 6)y � 5x � 3. Using (8), the nth-order linear dif-
ferential equations (6) and (7) can be written compactly as

 L( y) � 0   and   L( y) � g(x),

respectively.

Superposition Principle In the next theorem we see that the sum, or superposition, of two 
or more solutions of a homogeneous linear differential equation is also a solution.

Theorem 3.1.2 Superposition Principle—Homogeneous Equations

Let y1, y2, . . . , yk be solutions of the homogeneous nth-order differential equation (6) on an 
interval I. Then the linear combination

 y � c1 y1(x) � c2 y2(x) � . . . � ck yk(x),

where the ci, i � 1, 2, . . . , k are arbitrary constants, is also a solution on the interval.

PROOF 

We prove the case k � 2. Let L be the differential operator defined in (8), and let y1(x) and 
y2(x) be solutions of the homogeneous equation L(y) � 0. If we define y � c1 y1(x) � c2 y2(x), 
then by linearity of L we have

 L(y) � L{c1 y1(x) � c2 y2(x)} � c1L( y1) � c2L( y2) � c1 	 0 � c2 	 0 � 0.

Corollaries to Theorem 3.1.2

(a) A constant multiple y � c1y1(x) of a solution y1(x) of a homogeneous linear 
 differential equation is also a solution.

(b) A homogeneous linear differential equation always possesses the trivial solution y � 0.

■ EXAMPLE 4 Superposition—Homogeneous DE
The functions y1 � x2 and y2 � x2 ln x are both solutions of the homogeneous linear equa-
tion x3y� � 2xy� � 4y � 0 on the interval (0, q). By the superposition principle, the linear 
combination

 y � c1x
2 � c2x

2 ln x

is also a solution of the equation on the interval.

The function y � e7x is a solution of y� � 9y� � 14y � 0. Since the differential equation is 
linear and homogeneous, the constant multiple y � ce7x is also a solution. For various values of c 
we see that y � 9e7x, y � 0, y �2  !5e7x, . . ., are all solutions of the equation.

Linear Dependence and Linear Independence The next two concepts are basic to the study 
of linear differential equations.

Defi nition 3.1.1 Linear Dependence/Independence

A set of functions f1(x), f2(x), . . ., fn(x) is said to be linearly dependent on an interval I if there 
exist constants c1, c2, . . ., cn, not all zero, such that

 c1  f1(x) � c2  f2(x) � . . . � cn  fn(x) � 0

for every x in the interval. If the set of functions is not linearly dependent on the interval, it is 
said to be linearly independent.
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102 CHAPTER 3  Higher-Order Differential Equations

In other words, a set of functions is linearly independent on an interval if the only constants 
for which

 c1  f1(x) � c2  f2(x) � . . . � cn  fn(x) � 0

for every x in the interval are c1 � c2 � . . . � cn � 0.
It is easy to understand these definitions in the case of two functions f1(x) and f2(x). If the 

functions are linearly dependent on an interval, then there exist constants c1 and c2 that are not 
both zero such that for every x in the interval c1 f1(x) � c2 f2(x) � 0. Therefore, if we assume that 
c1 � 0, it follows that f1(x) � (�c2/c1)f2(x); that is

If two functions are linearly dependent, then one is simply a constant multiple of 
the other.

Conversely, if f1(x) � c2 f2(x) for some constant c2, then (�1) 	 f1(x) � c2 f2(x) � 0 for every x 
on some interval. Hence the functions are linearly dependent, since at least one of the constants 
(namely, c1 � �1) is not zero. We conclude that

Two functions are linearly independent when neither is a constant multiple of the other

on an interval. For example, the functions f1(x) � sin 2x and f2(x) � sin x cos x are linearly de-
pendent on (�q, q) because f1(x) is a constant multiple of f2(x). Recall from the double angle 
formula for the sine that sin 2x � 2 sin x cos x. On the other hand, the functions f1(x) � x and 
f2(x) � | x | are linearly independent on (�q, q). Inspection of FIGURE 3.1.3 should convince you 
that neither function is a constant multiple of the other on the interval.

It follows from the preceding discussion that the ratio f2(x)/f1(x) is not a constant on an in-
terval on which f1(x) and f2(x) are linearly independent. This little fact will be used in the next 
section.

■ EXAMPLE 5 Linearly Dependent Functions
The functions f1(x) � cos2x, f2(x) � sin2x, f3(x) � sec2x, f4(x) � tan2x are linearly  dependent 
on the interval (�p/2, p/2) since

 c1 cos2x � c2 sin2x � c3 sec2x � c4 tan2x � 0,

when c1 � c2 � 1, c3 � �1, c4 � 1. We used here cos2x � sin2x � 1 and 1 � tan2x � 
sec2x.

A set of functions f1(x), f2(x), . . ., fn(x) is linearly dependent on an interval if at least one func-
tion can be expressed as a linear combination of the remaining functions.

■ EXAMPLE 6 Linearly Dependent Functions
The functions f1(x) � !x � 5, f2(x) � !x � 5x, f3(x) � x �1, f4(x) � x 2 are linearly de-
pendent on the interval (0, q) since f2 can be written as a linear combination of f1, f3, and f4. 
Observe that

 f2(x) � 1 	 f1(x) � 5 	 f3(x) � 0 	 f4(x)

for every x in the interval (0, q).

Solutions of Differential Equations We are primarily interested in linearly independent 
functions or, more to the point, linearly independent solutions of a linear differential equation. 
Although we could always appeal directly to Definition 3.1.1, it turns out that the question of 
whether n solutions y1, y2, . . ., yn of a homogeneous linear nth-order differential equation (6) are 
linearly independent can be settled somewhat mechanically using a determinant.

y

x

(a)

y

x

(b)

f1 = x

f2 = |x|

FIGURE 3.1.3 The set consisting of 
f1 and f2 is linearly independent on 
(�q, q)
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 3.1 Theory of Linear Equations 103

Defi nition 3.1.2 Wronskian

Suppose each of the functions f1(x), f2(x), . . ., fn(x) possesses at least n �1 derivatives. The 
determinant

 W1f
 1,p, f n2 5 4  f 1 f2

p f n

f1¿ f2¿ p fn¿
( ( (

f 
 1n212
1 f 

 1n212
2

p f  
1n212
n

 4  ,
where the primes denote derivatives, is called the Wronskian of the functions.

Theorem 3.1.3 Criterion for Linearly Independent Solutions

Let y1, y2, . . ., yn be n solutions of the homogeneous linear nth-order differential equation (6) on an 
interval I. Then the set of solutions is linearly independent on I if and only if W(y1, y2, . . ., yn) � 0 
for every x in the interval.

It follows from Theorem 3.1.3 that when y1, y2, . . ., yn are n solutions of (6) on an interval I, the 
Wronskian W( y1, y2, . . ., yn) is either identically zero or never zero on the interval.

A set of n linearly independent solutions of a homogeneous linear nth-order differential equa-
tion is given a special name.

Defi nition 3.1.3 Fundamental Set of Solutions

Any set y1, y2, . . ., yn of n linearly independent solutions of the homogeneous linear nth-order 
differential equation (6) on an interval I is said to be a fundamental set of solutions on the 
interval.

The basic question of whether a fundamental set of solutions exists for a linear equation is 
answered in the next theorem.

Theorem 3.1.4 Existence of a Fundamental Set

There exists a fundamental set of solutions for the homogeneous linear nth-order  differential 
equation (6) on an interval I.

Analogous to the fact that any vector in three dimensions can be expressed uniquely as a linear 
combination of the linearly independent vectors i, j, k, any solution of an nth-order homogeneous 
linear differential equation on an interval I can be expressed uniquely as a linear combination of n 
linearly independent solutions on I. In other words, n linearly independent solutions y1, y2, . . ., yn

are the basic building blocks for the general solution of the equation.

Theorem 3.1.5 General Solution—Homogeneous Equations

Let y1, y2, . . ., yn be a fundamental set of solutions of the homogeneous linear nth-order differen-
tial equation (6) on an interval I. Then the general solution of the equation on the interval is

 y � c1 y1(x) � c2 y2(x) � . . . � cn yn(x),

where ci, i � 1, 2, . . ., n are arbitrary constants.
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104 CHAPTER 3  Higher-Order Differential Equations

Theorem 3.1.5 states that if Y(x) is any solution of (6) on the interval, then constants C1, C2, . . ., 
Cn can always be found so that

 Y(x) � C1 y1(x) � C2 y2(x) �  . . . � Cn yn(x).

We will prove the case when n � 2.

PROOF 

Let Y be a solution and y1 and y2 be linearly independent solutions of a2y� � a1 y� � a0 y � 0 
on an interval I. Suppose x � t is a point in I for which W(y1(t), y2(t)) � 0. Suppose also that 
Y(t) � k1 and Y�(t) � k2. If we now examine the equations

 C1y1(t) � C2y2(t) � k1

     C1y�1(t) � C2y�2(t) � k2,

it follows that we can determine C1 and C2 uniquely, provided that the determinant of the 
coefficients satisfies

 
2 y11t2 y21t2

y1¿1t2 y2¿1t2
2 � 0.

But this determinant is simply the Wronskian evaluated at x � t, and, by assumption, W � 0. 
If we define G(x) � C1y1(x) � C2y2(x), we observe that G(x) satisfies the differential equation, 
since it is a superposition of two known solutions; G(x) satisfies the initial conditions

 G(t) � C1 y1(t) � C2 y2(t) � k1   and   G�(t) � C1 y�1(t) � C2 y�2(t) � k2;

Y(x) satisfies the same linear equation and the same initial conditions. Since the solution of 
this linear initial-value problem is unique (Theorem 3.1.1), we have Y(x) � G(x) or Y(x) � 
C1 y1(x) � C2 y2(x).

■ EXAMPLE 7 General Solution of a Homogeneous DE
The functions y1 � e3x and y2 � e�3x are both solutions of the homogeneous linear equation 
y� � 9y � 0 on the interval (�q, q). By inspection, the solutions are linearly independent 
on the x-axis. This fact can be corroborated by observing that the Wronskian

 
W1e3x, e23x2 � 2 e3x e23x

3e3x 23e23x 2 �26 � 0

for every x. We conclude that y1 and y2 form a fundamental set of solutions, and consequently 
y � c1e

3x � c2e
�3x is the general solution of the equation on the interval.

■ EXAMPLE 8 A Solution Obtained from a General Solution
The function y � 4 sinh 3x � 5e3x is a solution of the differential equation in Example 7. 
(Verify this.) In view of Theorem 3.1.5, we must be able to obtain this solution from the 
general solution y � c1e

3x � c2e
�3x. Observe that if we choose c1 � 2 and c2 � �7, then

y � 2e3x � 7e�3x can be rewritten as

 y � 2e3x 2 2e23x 2 5e23x � 4 ae3x 2 e23x

2
b 2 5e23x.

The last expression is recognized as y � 4 sinh 3x � 5e�3x.
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 3.1 Theory of Linear Equations 105

■ EXAMPLE 9 General Solution of a Homogeneous DE
The functions y1 � ex, y2 � e2x, and y3 � e3x satisfy the third-order equation y� � 6y� � 
11y� � 6y � 0. Since

 W1ex, e2x, e3x2 � 3 ex e2x e3x

ex 2e2x 3e3x

ex 4e2x 9e3x

3 � 2e6x 2 0

for every real value of x, the functions y1, y2, and y3 form a fundamental set of solutions on 
(�q, q). We conclude that y � c1e

x � c2e
2x � c3e

3x is the general solution of the differential 
equation on the interval.

3.1.3 Nonhomogeneous Equations
Any function yp free of arbitrary parameters that satisfies (7) is said to be a particular solution of 
the equation. For example, it is a straightforward task to show that the constant function yp � 3 is 
a particular solution of the nonhomogeneous equation y� � 9y � 27.

Now if y1, y2, . . ., yk are solutions of (6) on an interval I and yp is any particular solution of (7) 
on I, then the linear combination

 y � c1 y1(x) � c2 y2(x) �  . . . � ck yk(x) � yp (10)

is also a solution of the nonhomogeneous equation (7). If you think about it, this makes sense, 
because the linear combination c1 y1(x) � c2 y2(x) � . . . � ck yk(x) is mapped into 0 by the opera-
tor L � anD

n � an�1D
n�1 � . . . � a1D � a0, whereas yp is mapped into g(x). If we use k � n 

linearly independent solutions of the nth-order equation (6), then the expression in (10) becomes 
the general solution of (7).

Theorem 3.1.6 General Solution—Nonhomogeneous Equations

Let yp be any particular solution of the nonhomogeneous linear nth-order differential equation (7) 
on an interval I, and let y1, y2, . . ., yn be a fundamental set of solutions of the associated ho-
mogeneous differential equation (6) on I. Then the general solution of the equation on the 
interval is

 y � c1 y1(x) � c2 y2(x) � . . . � cn yn(x) � yp,

where the ci, i � 1, 2, . . ., n are arbitrary constants.

PROOF 

Let L be the differential operator defined in (8), and let Y(x) and yp(x) be particular solutions 
of the nonhomogeneous equation L(y) � g(x). If we define u(x) � Y(x) � yp(x), then by lin-
earity of L we have

 L(u) � L{Y(x) � yp(x)} � L(Y(x)) � L(yp(x)) � g(x) � g(x) � 0.

This shows that u(x) is a solution of the homogeneous equation L(y) � 0. Hence, by 
Theorem 3.1.5, u(x) � c1 y1(x) � c2 y2(x) � . . . � cn yn(x), and so

 Y(x) � yp(x) � c1 y1(x) � c2  y2(x) � . . . � cn yn(x)

or Y(x) � c1 y1(x) � c2 y2(x) � . . . � cn yn(x) � yp(x).

79665_CH03_PASS01.indd   10579665_CH03_PASS01.indd   105 9/22/09   5:56:09 PM9/22/09   5:56:09 PM
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Complementary Function We see in Theorem 3.1.6 that the general solution of a nonhomo-
geneous linear equation consists of the sum of two functions:

 y � c1 y1(x) � c2 y2(x) �  . . . � cn yn(x) � yp(x) � yc(x) � yp(x).

The linear combination yc(x) � c1 y1(x) � c2 y2(x) �  . . . � cn yn(x), which is the general solution 
of (6), is called the complementary function for equation (7). In other words, to solve a non-
homogeneous linear differential equation we first solve the associated  homogeneous equation 
and then find any particular solution of the nonhomogeneous equation. The general solution of 
the nonhomogeneous equation is then

 y � complementary function � any particular solution.

■ EXAMPLE 10 General Solution of a Nonhomogeneous DE
By substitution, the function yp � �11

12 � 12x is readily shown to be a particular solution of the 
nonhomogeneous equation

 y� � 6y� � 11y� � 6y � 3x. (11)

In order to write the general solution of (11), we must also be able to solve the associated 
homogeneous equation

 y� � 6y� � 11y� � 6y � 0.

But in Example 9 we saw that the general solution of this latter equation on the interval (�q, q) 
was yc � c1e

x � c2e
2x � c3e

3x. Hence the general solution of (11) on the interval is

 y � yc � yp � c1e
x � c2e

2x � c3e
3x 2

11

12
2

1

2
x.

Another Superposition Principle The last theorem of this discussion will be useful in 
Section 3.4, when we consider a method for finding particular solutions of nonhomogeneous 
equations.

Theorem 3.1.7 Superposition Principle—Nonhomogeneous Equations

Let yp1
, yp2

, . . ., ypk
 be k particular solutions of the nonhomogeneous linear nth-order differential 

equation (7) on an interval I corresponding, in turn, to k distinct functions g1, g2, . . ., gk. That 
is, suppose ypi

 denotes a particular solution of the corresponding differential equation

 an(x)y(n) � an�1(x)y(n�1) � . . . � a1(x)y� � a0(x)y � gi(x), (12)

where i � 1, 2, . . ., k. Then

 yp � yp1
(x) � yp2

(x) � . . . � ypk
(x) (13)

is a particular solution of

 an(x)y(n) � an�1(x)y(n�1) � . . . � a1(x)y� � a0(x)y
 � g1(x) � g2(x) � . . . � gk(x). (14)

PROOF 

We prove the case k � 2. Let L be the differential operator defined in (8), and let yp1
(x) and 

yp2
(x) be particular solutions of the nonhomogeneous equations L(y) � g1(x) and L(y) � g2(x), 
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respectively. If we define yp � yp1
(x) � yp2

(x), we want to show that yp is a particular solution 
of L(y) � g1(x) � g2(x). The result follows again by the linearity of the operator L:

 L( yp) � L{ yp1
(x) � yp2

(x)} � L( yp1
(x)) � L( yp2

(x)) � g1(x) � g2(x).

■ EXAMPLE 11 Superposition—Nonhomogeneous DE
You should verify that

 yp1
 � �4x2 is a particular solution of y� � 3y� � 4y � �16x2 � 24x � 8,

 yp2
 � e2x is a particular solution of y� � 3y� � 4y � 2e2x,

 yp3
 � xex is a particular solution of y� � 3y� � 4y � 2xex � ex.

It follows from Theorem 3.1.7 that the superposition of yp1
, yp2

, and yp3
,

 y � yp1
 � yp2

 � yp3
 � �4x2 � e2x � xex,

is a solution of

 y� � 3y� � 4y � �16x2 � 24x � 8 � 2e2x � 2xex � ex.
   
 g1(x) g2(x) g3(x)

If the yp
i
 are particular solutions of (12) for i � 1, 2, . . ., k, then the linear com bination 

 yp � c1yp1
 � c2 yp2

 � . . . � ck yp
k
,

where the ci are constants, is also a particular solution of (14) when the right-hand member of 
the equation is the linear combination

 c1g1(x) � c2g2(x) � . . . � ckgk(x).

Before we actually start solving homogeneous and nonhomogeneous linear differential equa-
tions, we need one additional bit of theory presented in the next section.

This sentence is a generalization of 
Theorem 3.1.7.
T

Remarks
This remark is a continuation of the brief discussion of dynamical systems given at the end 
of Section 1.3.

A dynamical system whose rule or mathematical model is a linear nth-order  differential 
equation

 an(t)y
(n) � an�1(t)y

(n�1) � . . . � a1(t)y� � a0(t)y � g(t)

is said to be a linear system. The set of n time-dependent functions y(t), y�(t), . . ., y(n�1)(t) 
are the state variables of the system. Recall, their values at some time t give the state of the 
system. The function g is variously called the input function, forcing function, or excita-
tion function. A solution y(t) of the differential equation is said to be the output or response 
of the system. Under the conditions stated in Theorem 3.1.1, the output or response y(t) is 
uniquely determined by the input and the state of the system prescribed at a time t0; that is, 
by the initial conditions y(t0), y�(t0), . . ., y

(n�1)(t0).
In order that a dynamical system be a linear system, it is necessary that the superposition 

principle (Theorem 3.1.7) hold in the system; that is, the response of the system to a superpo-
sition of inputs is a superposition of outputs. We have already examined some simple linear 
systems in Section 2.7 (linear first-order equations); in Section 3.8 we examine linear systems 
in which the mathematical models are second-order differential equations.
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 3.1 Exercises Answers to selected odd-numbered problems begin on page ANS-000.  

3.1.1  Initial-Value and Boundary-Value Problems
In Problems 1– 4, the given family of functions is the general 
solution of the differential equation on the indicated interval. 
Find a member of the family that is a solution of the initial-value 
problem.

 1. y � c1e
x � c2e

�x, (�q, q); y� � y � 0, y(0) � 0, y�(0) � 1

 2. y � c1e
4x � c2e

�x, (�q, q); y� � 3y� � 4y � 0, y(0) � 1,
y�(0) � 2

 3. y � c1x � c2x ln x, (0, q); x2y� � xy� � y � 0, y(1) � 3,
y�(1) � � 1

 4. y � c1 � c2 cos x � c3 sin x, (�q, q); y� � y� � 0,
y(p) � 0, y�(p) � 2, y�(p) � � 1

 5. Given that y � c1 � c2x
2 is a two-parameter family of solutions 

of xy� � y� � 0 on the interval (�q, q), show that constants 
c1 and c2 cannot be found so that a member of the family sat-
isfies the initial conditions y(0) � 0, y�(0) � 1. Explain why 
this does not violate Theorem 3.1.1.

 6. Find two members of the family of solutions in Problem 5 
that satisfy the initial conditions y(0) � 0, y�(0) � 0.

 7. Given that x(t) � c1 cos vt � c2 sin vt is the general solution 
of x� � v2x � 0 on the interval (�q, q), show that a solu-
tion satisfying the initial conditions x(0) � x0, x�(0) � x1, is 
given by

 x(t) � x0 cos vt � 
x1

v
 sin vt.

 8. Use the general solution of x� � v2x � 0 given in Problem 7 
to show that a solution satisfying the initial conditions x(t0) � 
x0, x�(t0) � x1, is the solution given in Problem 7 shifted by an 
amount t0:

 x(t) � x0 cos v (t – t0) � 
x1

v
 sin v (t – t0).

In Problems 9 and 10, find an interval centered about x � 0 for 
which the given initial-value problem has a unique solution.

 9. (x � 2)y� � 3y � x,  y(0) � 0, y�(0) � 1

 10. y� � (tan x)y � ex,  y(0) � 1, y�(0) � 0

 11. (a)  Use the family in Problem 1 to find a solution of y� � y � 0 
that satisfies the boundary conditions y(0) � 0, y(1) � 1.

(b) The DE in part (a) has the alternative general solution 
y � c3 cosh x � c4 sinh x on (�q, q). Use this family 
to find a solution that satisfies the boundary conditions 
in part (a).

(c) Show that the solutions in parts (a) and (b) are equivalent.

 12. Use the family in Problem 5 to find a solution of xy� � y� � 0 
that satisfies the boundary conditions y(0) � 1, y�(1) � 6.

In Problems 13 and 14, the given two-parameter family is a 
solution of the indicated differential equation on the interval 
(�q, q). Determine whether a member of the family can be 
found that satisfies the boundary conditions.

 13. y � c1e
x cos x � c2e

x sin x; y� � 2y� � 2y � 0

(a) y(0) � 1, y�(p) � 0 (b) y(0) � 1, y(p) � �1

(c) y(0) � 1, y 1p>22  � 1 (d) y(0) � 0, y(p) � 0

 14. y � c1x
2 � c2x

4 � 3; x2y� � 5xy� � 8y � 24

(a) y(�1) � 0, y(1) � 4 (b) y(0) � 1, y(1) � 2

(c) y(0) � 3, y(1) � 0 (d) y(1) � 3, y(2) � 15

3.1.2  Homogeneous Equations
In Problems 15–22, determine whether the given set of 
functions is linearly dependent or linearly independent on 
the interval (�q, q).

 15. f1(x) � x, f2(x) � x2, f3(x) � 4x �3x2

 16. f1(x) � 0, f2(x) � x, f3(x) � ex

 17. f1(x) � 5, f2(x) � cos2x, f3(x) � sin2x

 18. f1(x) � cos 2x, f2(x) � 1, f3(x) � cos2x

 19. f1(x) � x, f2(x) � x �1, f3(x) � x � 3

 20. f1(x) � 2 � x, f2(x) � 2 � | x |

 21. f1(x) � 1 � x, f2(x) � x, f3(x) � x2

 22. f1(x) � ex, f2(x) � e�x, f3(x) � sinh x

In Problems 23�30, verify that the given functions form a 
fundamental set of solutions of the differential equation on 
the indicated interval. Form the general solution.

 23. y� � y� � 12y � 0; e�3x, e4x, (�q, q)

 24. y� � 4y � 0; cosh 2x, sinh 2x, (�q, q)

 25. y� � 2y� � 5y � 0; e x cos 2x, e x sin 2x, (�q, q)

 26. 4y� � 4y� � y � 0; e x/2, xe x/2, (�q, q)

 27. x2y� � 6xy� � 12y � 0; x3, x4, (0, q)

 28. x2y� � xy� � y � 0; cos(ln x), sin(ln x), (0, q)

 29. x3y� � 6x2y� � 4xy� � 4y � 0; x, x�2, x�2 ln x, (0, q)

 30. y(4) � y� � 0; 1, x, cos x, sin x, (�q, q)

3.1.3  Nonhomogeneous Equations
In Problems 31–34, verify that the given two-parameter family 
of functions is the general solution of the nonhomogeneous 
differential equation on the indicated interval.

 31. y� � 7y� � 10y � 24e x;

  y � c1e
2x � c2e

5x � 6e x, (�q, q)

 32. y� � y � sec x;

  y � c1 cos x � c2 sin x � x sin x � (cos x) ln(cos x), 
(�p/2, p/2)

 33. y� � 4y� � 4y � 2e2x � 4x � 12;

  y � c1e
2x � c2xe2x � x2e2x � x � 2, (�q, q)
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 34. 2x2y� � 5xy� � y � x2 � x;

  y � c1x21>2 � c2x
� 1 � 1

15 x2 � 1
6 x, (0, q)

 35. (a)  Verify that yp1
 � 3e2x and yp2

 � x2 � 3x are, respectively, 
particular solutions of

 y� � 6y� � 5y � �9e2x

 and y� � 6y� � 5y � 5x2 � 3x �16.

(b) Use part (a) to find particular solutions of

        y� � 6y� � 5y � 5x2 � 3x � 16 � 9e2x

 and y� � 6y� � 5y � �10x2 � 6x � 32 � e2x.

 36. (a) By inspection, find a particular solution of

 y� � 2y � 10.

(b) By inspection, find a particular solution of

 y� � 2y � �4x.

(c) Find a particular solution of y� � 2y � �4x � 10.

(d) Find a particular solution of y� � 2y � 8x � 5.

Discussion Problems
 37. Let n � 1, 2, 3, . . .. Discuss how the observations Dnxn�1 � 0 

and Dnxn � n! can be used to find the general solutions of the 
given differential equations.
(a) y� � 0 (b) y� � 0
(c) y(4) � 0 (d) y� � 2
(e) y� � 6 (f) y(4) � 24

 38. Suppose that y1 � ex and y2 � e�x are two solutions of a homo-
geneous linear differential equation. Explain why y3 � cosh x 
and y4 � sinh x are also solutions of the equation.

 39. (a)  Verify that y1 � x3 and y2 � |x|3 are linearly independent 
solutions of the differential equation x 2y� � 4xy� � 6y � 0 
on the interval (�q, q).

(b) Show that W( y1, y2) � 0 for every real number x. Does 
this result violate Theorem 3.1.3? Explain.

(c) Verify that Y1 � x3 and Y2 � x 2 are also linearly inde-
pendent solutions of the differential equation in part (a) 
on the interval (�q, q).

(d) Find a solution of the differential equation satisfying 
y(0) � 0, y�(0) � 0.

(e) By the superposition principle, Theorem 3.1.2, both linear 
combinations y � c1 y1 � c2 y2 and Y � c1Y1 � c2Y2 are 
solutions of the differential equation. Discuss whether one, 
both, or neither of the linear combinations is a general solu-
tion of the differential equation on the interval (�q, q).

 40. Is the set of functions f1(x) � e x�2, f2(x) � e x�3 linearly de-
pendent or linearly independent on the interval (�q, q)? 
Discuss.

 41. Suppose y1, y2, . . ., yk are k linearly independent solutions on 
(�q, q) of a homogeneous linear nth-order differential equa-
tion with constant coefficients. By Theorem 3.1.2 it follows 
that yk�1 � 0 is also a solution of the differential equation. Is 
the set of solutions y1, y2, . . ., yk, yk�1 linearly dependent or 
linearly independent on (�q, q)? Discuss.

 42. Suppose that y1, y2, . . ., yk are k nontrivial solutions of a ho-
mogeneous linear nth-order differential equation with con-
stant coefficients and that k � n � 1. Is the set of solutions 
y1, y2, . . ., yk linearly dependent or linearly independent on 
(�q, q)? Discuss.

3.2 Reduction of Order

Introduction In Section 3.1 we saw that the general solution of a homogeneous linear second-
order differential equation

 a2(x)y� � a1(x)y� � a0(x)y � 0 (1)

was a linear combination y � c1y1 � c2 y2, where y1 and y2 are solutions that constitute a linearly 
independent set on some interval I. Beginning in the next section we examine a method for 
determining these solutions when the coefficients of the DE in (1) are constants. This method, 
which is a straightforward exercise in algebra, breaks down in a few cases and yields only a 
single solution y1 of the DE. It turns out that we can construct a second solution y2 of a homo-
geneous equation (1) (even when the coefficients in (1) are variable) provided that we know 
one nontrivial solution y1 of the DE. The basic idea described in this section is that the linear 
second-order equation (1) can be reduced to a linear first-order DE by means of a substitution 
involving the known solution y1. A second solution, y2 of (1), is apparent after this first-order 
DE is solved.

Reduction of Order Suppose y(x) denotes a known solution of equation (1). We seek a second 
solution y2(x) of (1) so that y1 and y2 are linearly independent on some interval I. Recall that if 
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y1 and y2 are linearly independent, then their ratio y2/y1 is nonconstant on I; that is, y2/y1 � u(x) 
or y2(x) � u(x)y1(x). The idea is to find u(x) by substituting y2(x) � u(x)y1(x) into the given dif-
ferential equation. This method is called reduction of order since we must solve a first-order 
equation to find u.

The first example illustrates the basic technique.

■ EXAMPLE 1 Finding a Second Solution
Given that y1 � e x is a solution of y� � y � 0 on the interval (�q, q), use reduction of order 
to find a second solution y2.

Solution  If y � u(x)y1(x) � u(x)e x, then the first two derivatives of y are obtained from the 
product rule:

 y� � ue x � e xu�,   y� � ue x � 2e xu� � e xu�.

By substituting y and y� into the original DE, it simplifies to

 y� � y � e x(u� � 2u�) � 0.

Since e x � 0, the last equation requires u� � 2u� � 0. If we make the substitution w � u�, this 
linear second-order equation in u becomes w� � 2w � 0, which is a linear first-order equation 
in w. Using the integrating factor e2x, we can write d/dx [e2xw] � 0. After integrating we get 
w � c1e

�2x or u� � c1e
�2x. Integrating again then yields u � �1

2 c1e
�2x � c2. Thus

 y � u(x)e x � �
c1

2
 e�x � c2e x. (2)

By picking c2 � 0 and c1 � �2 we obtain the desired second solution, y2 � e�x. Because 
W(e x, e�x ) � 0 for every x, the solutions are linearly independent on (�q, q).

Since we have shown that y1 � e x and y2 � e�x are linearly independent solutions of a linear 
second-order equation, the expression in (2) is actually the general solution of y� � y � 0 on 
the interval (�q, q).

General Case Suppose we divide by a2(x) in order to put equation (1) in the standard form

 y� � P(x)y� � Q(x)y � 0, (3)

where P(x) and Q(x) are continuous on some interval I. Let us suppose further that y1(x) 
is a known solution of (3) on I and that y1(x) � 0 for every x in the interval. If we define 
y � u(x)y1(x), it follows that

 y� � uy1� � y1u�,   y� � uy1� � 2y1�u� � y1u�

 y� � Py� � Qy � u[ y�1 � Py�1 � Qy1] � y1u� � (2y1� � Py1)u� � 0.
 
 zero

This implies that we must have

 y1u� � (2y1� � Py1)u� � 0   or   y1w� � (2y1� � Py1)w � 0, (4)

where we have let w � u�. Observe that the last equation in (4) is both linear and separable. 
Separating variables and integrating, we obtain

 
dw
w
1 2 

y1¿
y1

 dx 1 P dx � 0

 ln Zwy2
1 Z �2#P dx 1 c or wy2

1 � c1e
2ePdx.
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We solve the last equation for w, use w � u�, and integrate again:

 
u � c1#e

2ePdx

y2
1

 dx 1 c2.

By choosing c1 � 1 and c2 � 0, we find from y � u(x)y1(x) that a second solution of equation (3) is

 y2 � y11x2#e
2eP1x2dx

y2
11x2

 dx. (5)

It makes a good review of differentiation to verify that the function y2(x) defined in (5) satisfies 
equation (3) and that y1 and y2 are linearly independent on any interval on which y1(x) is not zero.

■ EXAMPLE 2 A Second Solution by Formula (5)
The function y1 � x2 is a solution of x2y� � 3xy� � 4y � 0. Find the general solution on the 
interval (0, q).

Solution  From the standard form of the equation

 y– 2
3
x

  y¿ 1
4

x 
2  y 5 0,

we find from (5) y2 � x2#e
3edx>x
x4  dx d e3edx>x 5 eln x3

5 x3

 � x2#dx
x

� x 2ln x.

The general solution on the interval (0, q) is given by y � c1y1 � c2y2; that is, y � c1x
2 � 

c2x
2 ln x.

Remarks
We have derived and illustrated how to use (5) because this formula appears again in the next 
section and in Section 5.2. We use (5) simply to save time in obtaining a desired result. Your 
instructor will tell you whether you should memorize (5) or whether you should know the 
first principles of reduction of order.

 3.2 Exercises Answers to selected odd-numbered problems begin on page ANS-000.  

In Problems 1�16, the indicated function y1(x) is a solution 
of the given equation. Use reduction of order or formula (5), 
as instructed, to find a second solution y2(x).

 1. y� � 4y� � 4y � 0; y1 � e2x

 2. y� � 2y� � y � 0; y1 � xe�x

 3. y� � 16y � 0; y1 � cos 4x
 4. y� � 9y � 0; y1 � sin 3x
 5. y� � y � 0; y1 � cosh x
 6. y� � 25y � 0; y1 � e5x

 7. 9y� � 12y� � 4y � 0; y1 � e2x/3

 8. 6y� � y� � y � 0; y1 � e x/3

 9. x2y� � 7xy� � 16y � 0; y1 � x4

 10. x2y� � 2xy� � 6y � 0; y1 � x2

 11. xy� � y� � 0; y1 � ln x
 12. 4x2y� � y � 0; y1 � x1/2 ln x
 13. x2y� � xy� � 2y � 0; y1 � x sin(ln x)
 14. x2y� � 3xy� � 5y � 0; y1 � x2 cos(ln x)
 15. (1 � 2x – x2)y� � 2(1 � x)y� � 2y � 0; y1 � x � 1
 16. (1 � x2)y� � 2xy� � 0; y1 � 1

In Problems 17–20, the indicated function y1(x) is a solution of 
the associated homogeneous equation. Use the method of reduc-
tion of order to find a second solution y2(x) of the homogeneous 
equation and a particular solution of the given nonhomogeneous 
equation.

 3.2 Reduction of Order 111
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112 CHAPTER 3  Higher-Order Differential Equations

3.3 Homogeneous Linear Equations with Constant Coeffi cients

Introduction We have seen that the linear first-order DE y� � ay � 0, where a is a constant, 
possesses the exponential solution y � c1e

�ax on the interval (�q, q). Therefore, it is natural 
to ask whether exponential solutions exist for homogeneous linear higher-order DEs

 an y
(n) � an�1 y

(n�1) �  . . . � a1 y� � a0 y � 0, (1)

where the coefficients ai, i � 0, 1, . . ., n are real constants and an � 0. The surprising fact is that 
all solutions of these higher-order equations are either exponential functions or are constructed 
out of exponential functions.

Auxiliary Equation We begin by considering the special case of a second-order  equation

 ay� � by� � cy � 0. (2)

If we try a solution of the form y � emx, then after substituting y� � memx and y� � m2emx equa-
tion (2) becomes

 am2emx � bmemx � cemx � 0   or   emx(am2 � bm � c) � 0.

Since emx is never zero for real values of x, it is apparent that the only way that this exponential 
function can satisfy the differential equation (2) is to choose m as a root of the quadratic 
equation

 am2 � bm � c � 0. (3)

This last equation is called the auxiliary equation of the differential equation (2). Since the two 

roots of (3) are m1 � (�b � 2b2 2 4ac2>2a and m2 � (�b �2b2 2 4ac2>2a, there will be 
three forms of the general solution of (1) corresponding to the three cases:

m• 1 and m2 are real and distinct (b2 � 4ac 
 0),
m• 1 and m2 are real and equal (b2 � 4ac � 0), and
m• 1 and m2 are conjugate complex numbers (b2 � 4ac � 0).

We discuss each of these cases in turn.

 17. y� � 4y � 2; y1 � e�2x

 18. y� � y� � 1; y1 � 1
 19. y� � 3y� � 2y � 5e3x; y1 � e x

 20. y� � 4y� � 3y � x; y1 � e x

Discussion Problems
 21. (a)  Give a convincing demonstration that the second-order 

equation ay� � by� � cy � 0, a, b, and c constants, always 
possesses at least one solution of the form y1 �em1x, m1 
a constant.

(b) Explain why the differential equation in part (a) must then 
have a second solution, either of the form y2 � em2x, or of 
the form y2 � xem1x, m1 and m2 constants.

(c) Reexamine Problems 1–8. Can you explain why the state-
ments in parts (a) and (b) above are not contradicted by 
the answers to Problems 3�5?

 22. Verify that y1(x) � x is a solution of xy� � xy� � y � 0. 
Use reduction of order to find a second solution y2(x) in the 
form of an infinite series. Conjecture an interval of definition 
for y2(x).

Computer Lab Assignments
 23. (a) Verify that y1(x) � ex is a solution of

 xy� � (x � 10)y� � 10y � 0.

(b) Use (5) to find a second solution y2(x). Use a CAS to carry 
out the required integration.

(c) Explain, using Corollary (a) of Theorem 3.1.2, why the 
second solution can be written compactly as

 y21x2 5 a
10

n50
 
1

n!
 xn.
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 3.3 Homogeneous Linear Equations with Constant Coefficients 113

 Case I :  Distinct Real Roots  Under the assumption that the auxiliary equation (3) 
has two unequal real roots m1 and m2, we find two solutions, y1 � em1x and 
y2 � em2x, respectively. We see that these functions are linearly independent 
on (�q, q) and hence form a fundamental set. It follows that the general 
solution of (2) on this interval is

           y � c1em1x � c2 e
m2x. (4)

 Case II :  Repeated Real Roots  When m1 � m2 we necessarily obtain only one expo-
nential solution, y1 � em1x. From the quadratic formula we find that m1 � �b/2a 
since the only way to have m1 � m2 is to have b2 � 4ac � 0. It follows from 
the discussion in Section 3.2 that a second solution of the equation is

            
y2 � em1x#e

2m1x

e2m1x
dx � em1x#dx � xem1x.

 
(5)

  In (5) we have used the fact that �b/a � 2m1. The general solution is then

         y � c1em1x � c2xem1x. (6)

 Case III :  Conjugate Complex Roots  If m1 and m2 are complex, then we can write 
m1 � a � ib and m2 � a � ib, where a and b 
 0 are real and i2 � �1. 
Formally, there is no difference between this case and Case I, hence

         y � C1e
(a�ib)x � C2e

(a�ib)x.

   However, in practice we prefer to work with real functions instead of complex 
exponentials. To this end we use Euler’s formula:

         eiu � cos u � i sin u,

  where u is any real number.* It follows from this formula that

 eibx � cos bx � i sin bx   and   e�ibx � cos bx – i sin bx, (7)

   where we have used cos(�bx) � cos bx and sin(�bx) � �sin bx. Note 
that by first adding and then subtracting the two equations in (7), we obtain, 
respectively,

 eibx � e�ibx � 2 cos bx   and   eibx � e�ibx � 2i sin bx.

   Since y � C1e
(a�ib)x � C2e

(a�ib)x is a solution of (2) for any choice of the 
constants C1 and C2, the choices C1 � C2 � 1 and C1 � 1, C2 � �1 give, in 
turn, two solutions:

           y1 � e(a�ib)x � e(a�ib)x   and   y2 � e(a�ib)x � e(a�ib)x.

  But      y1 � eax(eibx � e�ibx) � 2eax cos bx

  and      y2 � eax(eibx � e�ibx) � 2ieax sin bx.

*A formal derivation of Euler’s formula can be obtained from the Maclaurin series e 
x � a

q

n = 0
x 

n>n! by 
substituting x � iu, using i2 � �1, i3 � �i, . . ., and then separating the series into real and imaginary 
parts. The plausibility thus established, we can adopt cos u � i sin u as the definition of eiu.
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114 CHAPTER 3  Higher-Order Differential Equations

Hence from Corollary (a) of Theorem 3.1.2 the last two results show that eax cos bx and 
eax sin bx are real solutions of (2). Moreover, these solutions form a fundamental set on 
(�q, q). Consequently, the general solution is

 y � c1e
ax cos bx � c2e

ax sin bx � eax(c1 cos bx � c2 sin bx). (8)

■ EXAMPLE 1 Second-Order DEs
Solve the following differential equations.
(a) 2y� � 5y� � 3y � 0   (b)   y� � 10y� � 25y � 0   (c)  y� � 4y� � 7y � 0

Solution  We give the auxiliary equations, the roots, and the corresponding general solutions.
(a) 2m2 � 5m � 3 � (2m � 1)(m � 3), m1 � �1

2, m2 � 3. From (4),

 y � c1e
�x/2 � c2e

3x.

(b) m2 � 10m � 25 � (m � 5)2, m1 � m2 � 5. From (6),

  y � c1e
5x � c2xe5x.

(c) m2 � 4m � 7 � 0, m1 � �2 � !3 i, m2 � �2 �!3 i. From (8) with a � �2, 
b � !3, we have

  y � e�2x(c1 cos !3x � c2 sin!3x).

■ EXAMPLE 2 An Initial-Value Problem
Solve the initial-value problem 4y� � 4y� � 17y � 0, y(0) � �1, y�(0) � 2.

Solution  By the quadratic formula we find that the roots of the auxiliary equation 4m2 � 4m � 
17 � 0 are m1 � �1

2 � 2i and m2 � �1
2 � 2i. Thus from (8) we have y � e�x/2(c1 cos 2x � 

c2 sin 2x). Applying the condition y(0) � �1, we see from e0(c1 cos 0 � c2 sin 0) � �1 
that c1 � �1. Differentiating y � e�x/2(�cos 2x � c2 sin 2x) and then using y�(0) � 2 gives 
2c2 � 1

2 � 2 or c2 � 3
4. Hence the solution of the IVP is y � e�x/2(�cos 2x � 3

4 sin 2x). In 
FIGURE 3.3.1 we see that the solution is oscillatory but y → 0 as x → q.

Two Equations Worth Knowing The two differential equations

 y� � k2y � 0   and   y� � k2y � 0,

k real, are important in applied mathematics. For y� � k2y � 0, the auxiliary equation m2 � k2 � 0 
has imaginary roots m1 � ki and m2 � �ki. With a � 0 and b � k in (8), the general solution 
of the DE is seen to be

 y � c1 cos kx � c2 sin kx. (9)

On the other hand, the auxiliary equation m2 � k2 � 0 for y� � k2y � 0 has distinct real roots 
m1 � k and m2 � �k and so by (4) the general solution of the DE is

 y � c1e
kx � c2e

�kx. (10)

Notice that if we choose c1 � c2 � 1
2 and c1 � 1

2, c2 � �1
2 in (10), we get the particular solutions 

y � 1
2  (ekx � e�kx) � cosh kx and y � 1

2  (ekx � e�kx) � sinh kx. Since cosh kx and sinh kx are 
linearly independent on any interval of the x-axis, an alternative form for the general solution 
of y� � k2y � 0 is

 y � c1 cosh kx � c2 sinh kx. (11)

See Problems 41, 42, and 53 in Exercises 3.3.

x

1

y

1

FIGURE 3.3.1 Graph of solution of 
IVP in Example 2
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Higher-Order Equations In general, to solve an nth-order differential equation

 an y
(n) � an�1 y

(n � 1) �  . . . � a2 y� � a1 y� � a0 y � 0, (12)

where the ai, i � 0, 1, . . ., n are real constants, we must solve an nth-degree polynomial equation

 anm
n � an�1m

n�1 �  . . . � a2m
2 � a1m � a0 � 0. (13)

If all the roots of (13) are real and distinct, then the general solution of (12) is

 y � c1em1x � c2em2x �  . . . � cnemnx.

It is somewhat harder to summarize the analogues of Cases II and III because the roots of an 
auxiliary equation of degree greater than two can occur in many combinations. For example, a 
fifth-degree equation could have five distinct real roots, or three distinct real and two complex 
roots, or one real and four complex roots, or five real but equal roots, or five real roots but with 
two of them equal, and so on. When m1 is a root of multiplicity k of an nth-degree auxiliary 
equation (that is, k roots are equal to m1), it can be shown that the linearly independent solu-
tions are

 em1x,  xem1x,  x2em1x, p  ,  x k21em1x

and the general solution must contain the linear combination

 c1em1x � c2  xem1x � c3  x
2em1x � . . . � ck  x

k�1em1x.

Lastly, it should be remembered that when the coefficients are real, complex roots of an auxiliary 
equation always appear in conjugate pairs. Thus, for example, a cubic polynomial equation can 
have at most two complex roots.

■ EXAMPLE 3 Third-Order DE
Solve y� � 3y� � 4y � 0.

Solution  It should be apparent from inspection of m3 � 3m2 � 4 � 0 that one root is m1 � 1 
and so m � 1 is a factor of m3 � 3m2 �  4. By division we find

 m3 � 3m2 � 4 � (m � 1)(m2 � 4m � 4) � (m � 1)(m � 2)2,

and so the other roots are m2 � m3 � �2. Thus the general solution is

 y � c1e x � c2e
�2x � c3xe�2x.

■ EXAMPLE 4 Fourth-Order DE

Solve 
d 4y

dx 4 1 2 
d 2y

dx 2 1 y � 0.

Solution  The auxiliary equation m4 � 2m2 � 1 � (m2 � 1)2 � 0 has roots m1 � m3 � i and 
m2 � m4 � �i. Thus from Case II the solution is

 y � C1e
ix � C2e

�ix � C3xeix � C4xe�ix.

By Euler’s formula the grouping C1e
ix � C2e

�ix can be rewritten as c1 cos x � c2 sin x after a 
relabeling of constants. Similarly, x(C3e

ix � C4e
�ix) can be expressed as x(c3 cos x � c4 sin x). 

Hence the general solution is

     y � c1 cos x � c2 sin x � c3 x cos x � c4 x sin x.

 3.3 Homogeneous Linear Equations with Constant Coefficients 115
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116 CHAPTER 3  Higher-Order Differential Equations

Example 4 illustrates a special case when the auxiliary equation has repeated complex roots. 
In general, if m1 � a � ib, b 
 0, is a complex root of multiplicity k of an auxiliary equation 
with real coefficients, then its conjugate m2 � a � ib is also a root of multiplicity k. From the 
2k complex-valued solutions

 e(a�ib)x, xe(a�ib)x, x2e(a�ib)x, . . . , x k�1e(a�ib)x

 e(a�ib)x, xe(a�ib)x, x2e(a�ib)x, . . . , x k�1e(a�ib)x

we conclude, with the aid of Euler’s formula, that the general solution of the corresponding 
differential equation must then contain a linear combination of the 2k real linearly independent 
solutions

 eax cos bx, xeax cos bx, x2eax cos bx, . . . , x k�1eax cos bx

 eax sin bx, xeax sin bx, x2eax sin bx, . . . , x k�1eax sin bx.

In Example 4 we identify k � 2, a � 0, and b � 1.

Rational Roots Of course the most difficult aspect of solving constant–coefficient differential 
equations is finding roots of auxiliary equations of degree greater than two. For example, to solve 
3y� � 5y� � 10y� � 4y � 0 we must solve 3m3 � 5m2 � 10m � 4 � 0. Something we can try 
is to test the auxiliary equation for rational roots. Recall, if m1 � p/q is a rational root (expressed 
in lowest terms) of an auxiliary equation anm

n � . . . � a1m � a0 � 0 with integer coefficients, 
then p is a factor of a0 and q is a factor of an. For our specific cubic auxiliary equation, all the 
factors of a0 � �4 and an � 3 are p: �1, �2, �4 and q: �1, �3, so the possible rational roots 
are p/q: �1, �2, �4, �1

3, �2
3, �4

3. Each of these numbers can then be tested, say, by synthetic 
division. In this way we discover both the root m1 � 1

3 and the factorization

 3m3 � 5m2 � 10m � 4 � 1m 2 1
32 (3m2 � 6m � 12).

The quadratic formula then yields the remaining roots m2 � �1 � !3i and m3 � �1 �!3i. 
Therefore the general solution of 3y� � 5y� � 10y� � 4y � 0 is y � c1e x/3 � e�x(c2 cos !3x � 
c3 sin !3x).

Use of Computers Finding roots or approximations of roots of polynomial equations is a 
routine problem with an appropriate calculator or computer software. The computer algebra 
systems Mathematica and Maple can solve polynomial equations (in one variable) of degree less 
than five in terms of algebraic formulas. For the auxiliary equation in the preceding paragraph, 
the commands

 Solve[3 m∧3 � 5 m∧2 � 10 m – 4 � � 0, m] (in Mathematica)

 solve(3*m∧3 � 5*m∧2 � 10*m – 4, m); (in Maple)

yield immediately their representations of the roots 1
3, �1 � !3i, �1 �!3i. For auxiliary 

equations of higher degree it may be necessary to resort to numerical commands such as NSolve 
and FindRoot in Mathematica. Because of their capability of solving polynomial equations, it 
is not surprising that some computer algebra systems are also able to give explicit solutions of 
homogeneous linear constant-coefficient differential equations. For example, the inputs

 DSolve [y�[x] � 2 y�[x] � 2 y[x] � � 0, y[x], x] (in Mathematica)

 dsolve(diff(y(x),x$2) � 2*diff(y(x),x) � 2*y(x) � 0, y(x)); (in Maple)

give, respectively,

 
yfxg 2.

Cf2g Cos fxg 2  Cf1g Sin fxg
Ex  

(14)

and y(x) � _C1 exp(–x) sin(x) –  _C2 exp(–x) cos(x)
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Translated, this means y � c2e
�x cos x � c1e

�x sin x is a solution of y� � 2y� � 2y � 0.
In the classic text Differential Equations by Ralph Palmer Agnew* (used by the author as a 

student), the following statement is made:

  It is not reasonable to expect students in this course to have computing skill and equip-
ment necessary for efficient solving of equations such as

 4.317 
d 

4y

dx4 1 2.179 
d 

3y

dx3 1 1.416 
d 

2y

dx2 1 1.295 
dy

dx
1 3.169y 5 0. (15)

Although it is debatable whether computing skills have improved in the intervening years, it is a 
certainty that technology has. If one has access to a computer algebra system, equation (15) could 
be considered reasonable. After simplification and some relabeling of the output, Mathematica 
yields the (approximate) general solution

 y � c1e
�0.728852x cos(0.618605x) � c2e

�0.728852x sin(0.618605x)

 � c3e
�0.476478x cos(0.759081x) � c4e

�0.476478x sin(0.759081x).

We note in passing that the DSolve and dsolve commands in Mathematica and Maple, like most 
aspects of any CAS, have their limitations.

Finally, if we are faced with an initial-value problem consisting of, say, a fourth-order dif-
ferential equation, then to fit the general solution of the DE to the four initial conditions we 
must solve a system of four linear equations in four unknowns (the c1, c2, c3, c4 in the general 
solution). Using a CAS to solve the system can save lots of time. See Problems 35, 36, 61, and 
62 in Exercises 3.3.

*McGraw-Hill, New York, 1960.

Remarks
In case you are wondering, the method of this section also works for homogeneous linear 
first-order differential equations ay� � by � 0 with constant coefficients. For example, to 
solve, say, 2y� � 7y � 0, we substitute y � emx into the DE to obtain the auxiliary equation 
2m � 7 � 0. Using m � 27

2, the general solution of the DE is then y � c1e
�7x/2.

 3.3 Exercises Answers to selected odd-numbered problems begin on page ANS-000.  

In Problems 1–14, find the general solution of the given 
second-order differential equation.

 1. 4y� � y� � 0 2. y� � 36y � 0
 3. y� � y� � 6y � 0 4. y� � 3y� � 2y � 0
 5. y� � 8y� � 16y � 0 6. y� � 10y� � 25y � 0
 7. 12y� � 5y� � 2y � 0 8. y� � 4y� � y � 0
 9. y� � 9y � 0 10. 3y� � y � 0
 11. y� � 4y� � 5y � 0 12. 2y� � 2y� � y � 0
 13. 3y� � 2y� � y � 0 14. 2y� � 3y� � 4y � 0

In Problems 15–28, find the general solution of the given 
higher-order differential equation.

 15. y� � 4y� � 5y� � 0

 16. y� � y � 0

 17. y� � 5y� � 3y� � 9y � 0

 18. y� � 3y� � 4y� � 12y � 0

 19. 
d 

3u

dt 
3 1

d 
2u

dt 
2 2 2u 5 0

 20. 
d3x

dt3 2
d 

2x

dt 
2 2 4x 5 0

 21. y� � 3y� � 3y� � y � 0

 22. y� � 6y� � 12y� � 8y � 0

 23. y(4) � y� � y� � 0

 24. y(4) � 2y� � y � 0

 3.3 Homogeneous Linear Equations with Constant Coefficients 117
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118 CHAPTER 3  Higher-Order Differential Equations

 25. 16 
d 4y

dx4 1 24 
d2y

dx2 1 9y � 0

 26. 
d 

4y

dx4 2 7 
d2y

dx2 2 18y � 0

 27. 
d 5u

dr 
5 1 5 

d 4u

dr4 2 2 
d 3u

dr3 2 10 
d 2u

dr2 1
du

dr
1 5u � 0

 28. 2 
d 5x

ds5 2 7 
d 4x

ds4 1 12 
d 3x

ds3 1 8 
d 2x

ds2 � 0

In Problems 29–36, solve the given initial-value problem.

 29. y� � 16y � 0, y(0) � 2, y�(0) � �2

 30. 
d 2y

du2 1 y 5 0, y 1p>32 5 0, y¿ 1p>32 5 2

 31. 
d 2y

dt2 2 4 
dy

dt
2 5y 5 0, y112 5 0, y¿ 112 5 2

 32. 4y� � 4y� � 3y � 0, y(0) � 1, y�(0) � 5

 33. y� � y� � 2y � 0, y(0) � y�(0) � 0

 34. y� � 2y� � y � 0, y(0) � 5, y�(0) � 10

 35. y� � 12y� � 36y� � 0, y(0) � 0, y�(0) � 1, y�(0) � �7

 36. y� � 2y� � 5y� � 6y � 0, y(0) � y�(0) � 0, y�(0) � 1

In Problems 37�40, solve the given boundary-value problem.

 37. y� � 10y� � 25y � 0, y(0) � 1, y(1) � 0

 38. y� � 4y � 0, y(0) � 0, y(p) � 0

 39. y� � y � 0, y�(0) � 0, y�(p
2) � 0

 40. y� � 2y� � 2y � 0, y(0) � 1, y(p) � 1

In Problems 41 and 42, solve the given problem first using the 
form of the general solution given in (10). Solve again, this time 
using the form given in (11).

 41. y� � 3y � 0, y(0) � 1, y�(0) � 5

 42. y� � y � 0, y(0) � 1, y�(1) � 0

In Problems 43–48, each figure represents the graph of 
a particular solution of one of the following differential 
equations:

(a) y� � 3y� � 4y � 0 (b) y� � 4y � 0

(c) y� � 2y� � y � 0 (d) y� � y � 0

(e) y� � 2y� � 2y � 0 (f) y� � 3y� � 2y � 0

Match a solution curve with one of the differential equations. 
Explain your reasoning.

 43. y

x

FIGURE 3.3.2 Graph for 
Problem 43

 44.  y

x

FIGURE 3.3.3 Graph for 
Problem 44

 45. y

x

FIGURE 3.3.4 Graph for 
Problem 45

 46. 
y

x

FIGURE 3.3.5 Graph for 
Problem 46

 47. y

x
π

FIGURE 3.3.6 Graph for 
Problem 47

 48.  y

x
π

FIGURE 3.3.7 Graph for 
Problem 48

Discussion Problems
 49. The roots of a cubic auxiliary equation are m1 � 4 and m2 � 

m3 � �5. What is the corresponding homogeneous linear 
differential equation? Discuss: Is your answer unique?

 50. Two roots of a cubic auxiliary equation with real coefficients 
are m1 � �1

2  and m2 � 3 � i. What is the corresponding 
homogeneous linear differential equation?

 51. Find the general solution of y� � 6y� � y� – 34y � 0 if it is 
known that y1 � e�4x cos x is one solution.

 52. To solve y(4) � y � 0 we must find the roots of m4 � 1 � 0. 
This is a trivial problem using a CAS, but it can also be done by 
hand working with complex numbers. Observe that m4 � 1 � 
(m2 � 1)2 � 2m2. How does this help? Solve the differential 
equation.

 53. Verify that y � sinh x � 2 cos (x � p
6) is a particular solution 
of y(4) � y � 0. Reconcile this particular solution with the 
general solution of the DE.

 54. Consider the boundary-value problem y� � ly � 0, y(0) � 0, 
y(p/2) � 0. Discuss: Is it possible to determine values of l so 
that the problem possesses (a) trivial solutions? (b) nontrivial 
solutions?

 55. In the study of techniques of integration in calculus, certain 
indefinite integrals of the form � eax f (x) dx could be evaluated 
by applying integration by parts twice, recovering the origi-
nal integral on the right-hand side, solving for the original 
integral, and obtaining a constant multiple k � eax f (x) dx on 
the left-hand side. Then the value of the integral is found by 
dividing by k. Discuss: For what kinds of functions f does 
the described procedure work? Your solution should lead to 
a differential equation. Carefully analyze this equation and 
solve for f.
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3.4 Undetermined Coeffi cients

Introduction To solve a nonhomogeneous linear differential equation

 an y
(n) � an�1 y

(n�1) �  . . . � a1 y� � a0 y � g(x) (1)

we must do two things: (i) find the complementary function yc; and (ii) find any particular solu-
tion yp of the nonhomogeneous equation. Then, as discussed in Section 3.1, the general solution 
of (1) on an interval I is y � yc � yp.

The complementary function yc is the general solution of the associated homogeneous DE 
of (1); that is

 an y
(n) � an�1 y

(n�1) �  . . . � a1 y� � a0 y � 0.

In the last section we saw how to solve these kinds of equations when the coefficients were 
constants. Our goal then in the present section is to examine a method for obtaining particular 
solutions.

Method of Undetermined Coefficients The first of two ways we shall consider for obtain-
ing a particular solution yp is called the method of undetermined coefficients. The underlying 
idea in this method is a conjecture, an educated guess really, about the form of yp motivated by 
the kinds of functions that make up the input function g(x). The general method is limited to 
nonhomogeneous linear DEs such as (1) where

the coefficients, • ai, i � 0, 1, . . ., n are constants, and
 where • g(x) is a constant, a polynomial function, exponential function eax, sine or cosine 
functions sin bx or cos bx, or finite sums and products of these functions. 

Strictly speaking, g(x) � k (a constant) is a polynomial function. Since a constant function 
is probably not the first thing that comes to mind when you think of polynomial functions, 
for emphasis we shall continue to use the redundancy “constant functions, polynomial 
functions, . . ..”

A constant k is a polynomial 
function.
A

Mathematical Model
 56. Slipping Chain  Reread the discussion on the slipping chain 

in Section 1.3 and illustrated in Figure 1.3.6 on page 22.
(a) Use the form of the solution given in (11) of this 

section to find the general solution of equation (16) of 
Section 1.3:

d 
2x

dt 
2 2

64

L
x � 0.

(b) Find a particular solution that satisfies the initial condi-
tions stated in the discussion on pages 22�23.

(c) Suppose that the total length of the chain is L � 20 ft and 
that x0 � 1. Find the velocity at which the slipping chain 
will leave the supporting peg.

Computer Lab Assignments
In Problems 57–60, use a computer either as an aid in solving the 
auxiliary equation or as a means of directly obtaining the general 

solution of the given differential equation. If you use a CAS to 
obtain the general solution, simplify the output and, if necessary, 
write the solution in terms of real functions.
 57. y� � 6y� � 2y� � y � 0

 58. 6.11y � � 8.59y � � 7.93y� � 0.778y � 0

 59. 3.15y(4) � 5.34y � � 6.33y� � 2.03y � 0

 60. y(4) � 2y � � y� � 2y � 0

In Problems 61 and 62, use a CAS as an aid in solving 
the auxiliary equation. Form the general solution of the 
differential equation. Then use a CAS as an aid in solving
the system of equations for the coefficients ci, i � 1, 2, 3, 4 
that result when the initial conditions are applied to the 
general solution.

 61. 2y(4) � 3y � � 16y � � 15y� � 4y � 0,

  y(0) � �2, y�(0) � 6, y�(0) � 3, y�(0) � 1
2

 62. y(4) � 3y � � 3y � � y� � 0,

  y(0) � y�(0) � 0, y �(0) � y�(0) � 1
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The following functions are some examples of the types of inputs g(x) that are appropriate 
for this discussion:

 g(x) � 10,   g(x) � x2 � 5x,   g(x) � 15x � 6 � 8e�x

 g(x) � sin 3x � 5x cos 2x,   g(x) � xe x sin x � (3x2 � 1)e�4x.

That is, g(x) is a linear combination of functions of the type

 P(x) � anx n � an�1x n�1 �  . . . � a1x � a0, P(x)eax, P(x)eax sin bx, and P(x)eax cos bx,

where n is a nonnegative integer and a and b are real numbers. The method of undetermined 
coefficients is not applicable to equations of form (1) when

 g(x) � ln x,   g(x) � 
1
x

,   g(x) � tan x,   g(x) � sin�1x,

and so on. Differential equations in which the input g(x) is a function of this last kind will be 
considered in Section 3.5.

The set of functions that consists of constants, polynomials, exponentials eax, sines, and 
cosines has the remarkable property that derivatives of their sums and products are again sums 
and products of constants, polynomials, exponentials eax, sines, and cosines. Since the linear 
combination of derivatives an yp

(n) � an�1 yp
(n�1) �  . . . � a1y�p � a0yp must be identical to g(x), it 

seems reasonable to assume that yp has the same form as g(x).
The next two examples illustrate the basic method.

■ EXAMPLE 1 General Solution Using Undetermined Coefficients
Solve y� � 4y� – 2y � 2x2 � 3x � 6. (2)

Solution  Step 1 We first solve the associated homogeneous equation y� � 4y� – 2y � 0. 
From the quadratic formula we find that the roots of the auxiliary equation m2 � 4m � 2 � 0 
are m1 � �2 � !6 and m2 � �2 � !6. Hence the complementary function is

 yc 5 c1e
212126 2 x 1 c2e

122126 2 x.

Step 2 Now, since the function g(x) is a quadratic polynomial, let us assume a particular 
solution that is also in the form of a quadratic polynomial:

 yp � Ax 2 � Bx � C.

We seek to determine specific coefficients A, B, and C for which yp is a solution of (2). 
Substituting yp and the derivatives y�p � 2Ax � B and y�p � 2A into the given differential 
equation (2), we get

 y�p � 4y�p � 2yp � 2A � 8Ax � 4B � 2Ax 2 � 2Bx � 2C 

 � 2x 2 � 3x � 6.

Since the last equation is supposed to be an identity, the coefficients of like powers of x must 
be equal:

 –2A x2 + 8A – 2B x + 2A + 4B – 2C = 2x2 – 3x + 6.

equal

That is,

 �2A � 2,   8A � 2B � �3,   2A � 4B � 2C � 6.
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Solving this system of equations leads to the values A � �1, B � �5
2, and C � �9. Thus a 

particular solution is

 yp �2x2 2
5

2
 x 2 9.

Step 3 The general solution of the given equation is

 y 5 yc 1 yp 5 c1e
212126 2 x 1 c2e 

122126 2 x 2 x2 2
5

2
x 2 9.

■ EXAMPLE 2 Particular Solution Using Undetermined Coefficients
Find a particular solution of y� � y� � y � 2 sin 3x.

Solution  A natural first guess for a particular solution would be A sin 3x. But since succes-
sive differentiations of sin 3x produce sin 3x and cos 3x, we are prompted instead to  assume 
a particular solution that includes both of these terms:

 yp � A cos 3x � B sin 3x.

Differentiating yp and substituting the results into the differential equation give, after 
regrouping,

 y�p � y�p � yp � (�8A � 3B) cos 3x � (3A � 8B) sin 3x � 2 sin 3x

or

 –8A – 3B cos 3x + 3A – 8B sin 3x = 0 cos 3x + 2 sin 3x.

equal

From the resulting system of equations,

 �8A � 3B � 0,   3A � 8B � 2,

we get A � 6
73 and B �  216

73. A particular solution of the equation is

 yp �
6

73
 cos 3x 2

16

73
 sin 3x.

As we mentioned, the form that we assume for the particular solution yp is an educated guess; 
it is not a blind guess. This educated guess must take into consideration not only the types of 
functions that make up g(x) but also, as we shall see in Example 4, the functions that make up 
the complementary function yc.

■ EXAMPLE 3 Forming yp by Superposition
Solve y� � 2y� – 3y � 4x � 5 � 6xe2x. (3)

Solution  Step 1 First, the solution of the associated homogeneous equation y� � 2y� – 3y � 0 
is found to be yc � c1e

�x � c2e
3x.

Step 2 Next, the presence of 4x � 5 in g(x) suggests that the particular solution includes a 
linear polynomial. Furthermore, since the derivative of the product xe2x produces 2xe2x and 
e2x, we also assume that the particular solution includes both xe2x and e2x. In other words, 
g is the sum of two basic kinds of functions:

 g(x) � g1(x) � g2(x) � polynomial � exponentials.

 3.4 Undetermined Coefficients 121
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122 CHAPTER 3  Higher-Order Differential Equations

Correspondingly, the superposition principle for nonhomogeneous equations (Theorem 3.1.7) 
suggests that we seek a particular solution 

 yp � yp1
 � yp2

,

where yp1
 � Ax � B and yp2

 � Cxe2x � Ee2x. Substituting

 yp � Ax � B � Cxe2x � Ee2x

into the given equation (3) and grouping like terms gives

 y�p � 2y�p � 3yp � �3Ax � 2A � 3B � 3Cxe2x � (2C � 3E)e2x � 4x � 5 � 6xe2x. (4)

From this identity we obtain the four equations

 �3A � 4,   �2A � 3B � �5,   �3C � 6,   2C � 3E � 0.

The last equation in this system results from the interpretation that the coefficient of e2x in 
the right member of (4) is zero. Solving, we find A � �4

3, B � 23
9 , C � �2, and E � �4

3. 
Consequently,

yp �2
4

3
 x 1

23

9
2 2xe2x 2

4

3
 e2x.

Step 3 The general solution of the equation is

y � c1e
2x 1 c2e

3x 2
4

3
 x 1

23

9
2 a2x 1

4

3
b  e2x.

In light of the superposition principle (Theorem 3.1.7), we can also approach Example 3 from 
the viewpoint of solving two simpler problems. You should verify that substituting

yp1
 � Ax � B into y� � 2y� – 3y � 4x � 5

and yp2
 � Cxe2x � Ee2x into y� � 2y� – 3y � 6xe2x

yield, in turn, yp1
 � �4

3 x � 23
9  and yp2

 � � (2x � 4
3) e2x. A particular solution of (3) is then yp �

yp1
 � yp2

.
The next example illustrates that sometimes the “obvious” assumption for the form of yp is 

not a correct assumption.

■ EXAMPLE 4 A Glitch in the Method
Find a particular solution of y� � 5y� � 4y � 8ex.

Solution  Differentiation of ex produces no new functions. Thus, proceeding as we did in the 
earlier examples, we can reasonably assume a particular solution of the form yp � Ae x. But 
substitution of this expression into the differential equation yields the contradictory statement 
0 � 8e x, and so we have clearly made the wrong guess for yp.
  The difficulty here is apparent upon examining the complementary function yc � c1e

x � 
c2e

4x. Observe that our assumption Ae x is already present in yc. This means that e x is a solu-
tion of the associated homogeneous differential equation, and a constant multiple Ae x when 
substituted into the differential equation necessarily produces zero.
  What then should be the form of yp? Inspired by Case II of Section 3.3, let’s see whether 
we can find a particular solution of the form

 yp � Axe x.

How to use Theorem 3.1.7 in 
the solution of Example 3.
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Substituting y� p � Axe x � Ae x and y� p � Axe x � 2Ae x into the differential equation and sim-
plifying gives

 y�p � 5y�p � 4yp � �3Ae x � 8e x.

From the last equality we see that the value of A is now determined as A � �8
3. Therefore a 

particular solution of the given equation is yp � 28
3 xe x.

The difference in the procedures used in Examples 1–3 and in Example 4 suggests that we 
consider two cases. The first case reflects the situation in Examples 1–3.

 Case I :  No function in the assumed particular solution is a solution of the associated 
homogeneous differential equation.

In Table 3.4.1 we illustrate some specific examples of g(x) in (1) along with the corre-
sponding form of the particular solution. We are, of course, taking for granted that no func-
tion in the assumed particular solution yp is duplicated by a function in the complementary 
function yc.

       g(x) Form of yp

 1. 1 (any constant) A
 2. 5x � 7 Ax � B
 3. 3x2 � 2 Ax2 � Bx � C
 4. x3 � x � 1 Ax3 � Bx2 � Cx � E
 5. sin 4x A cos 4x � B sin 4x
 6. cos 4x A cos 4x � B sin 4x
 7. e5x Ae5x

 8. (9x � 2)e5x (Ax � B)e5x

 9. x2e5x (Ax2 � Bx � C)e5x

 10. e3x sin 4x Ae3x cos 4x � Be3x sin 4x
 11. 5x2 sin 4x (Ax2 � Bx � C) cos 4x � (Ex2 � Fx � G) sin 4x
 12. xe3x cos 4x (Ax � B)e3x cos 4x � (Cx � E)e3x sin 4x

TABLE 3.4.1 Trial Particular Solutions

■ EXAMPLE 5 Forms of Particular Solutions—Case I
Determine the form of a particular solution of

(a) y� � 8y� � 25y � 5x3e�x � 7e�x     (b)  y� � 4y � x cos x.

Solution  (a)  We can write g(x) � (5x3 � 7)e�x. Using entry 9 in Table 3.4.1 as a model, 
we assume a particular solution of the form

  yp � (Ax3 � Bx2 � Cx � E)e�x.

 Note that there is no duplication between the terms in yp and the terms in the complementary 
function yc � e4x(c1 cos 3x � c2 sin 3x).

(b) The function g(x) � x cos x is similar to entry 11 in Table 3.4.1 except, of course, that 
we use a linear rather than a quadratic polynomial and cos x and sin x instead of cos 4x 
and sin 4x in the form of yp:

  yp � (Ax � B) cos x � (Cx � E) sin x.

Again observe that there is no duplication of terms between yp and yc � c1 cos 2x � c2 sin 2x.

3.4 Undetermined Coefficients 123
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If g(x) consists of a sum of, say, m terms of the kind listed in the table, then (as in Example 3) 
the assumption for a particular solution yp consists of the sum of the trial forms yp1

, yp2
, p  ,  ypm

 
corresponding to these terms:

 yp � yp1
1 yp2

1 p 1 ypm
.

The foregoing sentence can be put another way.

  Form Rule for Case I :  The form of yp is a linear combination of all linearly independent 
functions that are generated by repeated differentiations of g(x).

■ EXAMPLE 6 Forming yp by Superposition—Case I
Determine the form of a particular solution of

 y� � 9y� � 14y � 3x 2 � 5 sin 2x � 7xe6x.

Solution
Corresponding to 3x 2 we assume yp1

 � Ax 2 � Bx � C.

Corresponding to �5 sin 2x we assume yp2
 � E cos 2x � F sin 2x.

Corresponding to 7xe6x we assume yp3
 � (Gx � H)e6x.

The assumption for the particular solution is then

 yp � yp1
1 yp2

1 yp3
 � Ax2 � Bx � C � E cos 2x � F sin 2x � (Gx � H)e6x.

No term in this assumption duplicates a term in yc � c1e
2x � c2e

7x.

 Case II :  A function in the assumed particular solution is also a solution of the  associated 
homogeneous differential equation.

The next example is similar to Example 4.

■ EXAMPLE 7 Particular Solution—Case II
Find a particular solution of y� � 2y� � y � ex.

Solution  The complementary function is yc � c1e x � c2xe x. As in Example 4, the assumption 
yp � Ae x will fail since it is apparent from yc that e x is a solution of the associated homogeneous 
equation y� � 2y� � y � 0. Moreover, we will not be able to find a particular solution of the 
form yp � Axe x since the term xe x is also duplicated in yc. We next try

 yp � Ax2ex.

Substituting into the given differential equation yields 2Ae x � e x and so A � 1
2. Thus a par-

ticular solution is yp � 1
2x2e x.

Suppose again that g(x) consists of m terms of the kind given in Table 3.4.1, and suppose 
further that the usual assumption for a particular solution is

 yp � yp1
1 yp2

1 p 1 ypm
,

where the ypi
, i � 1, 2, . . ., m are the trial particular solution forms corresponding to these terms. 

Under the circumstances described in Case II, we can make up the following general rule.

  Multiplication Rule for Case II : If any ypi contains terms that duplicate terms in 
yc  , then that ypi must be multiplied by x n, where n is the smallest positive integer that 
eliminates that duplication.
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■ EXAMPLE 8 An Initial-Value Problem
Solve the initial-value problem y� � y � 4x � 10 sin x, y(p) � 0,  y�(p) � 2.

Solution  The solution of the associated homogeneous equation y� � y � 0 is  yc � c1 cos x � 
c2 sin x. Since g(x) � 4x � 10 sin x is the sum of a linear polynomial and a sine function, our 
normal assumption for yp, from entries 2 and 5 of Table 3.4.1, would be the sum of yp1

 � Ax � B 
and yp2

 � C cos x � E sin x:

 yp � Ax � B � C cos x � E sin x. (5)

But there is an obvious duplication of the terms cos x and sin x in this assumed form and two 
terms in the complementary function. This duplication can be eliminated by simply multiply-
ing yp2

 by x. Instead of (5) we now use

 yp � Ax � B � Cx cos x � Ex sin x.

Differentiating this expression and substituting the results into the differential equation 
gives

 y�p � yp � Ax � B � 2C sin x � 2E cos x � 4x � 10 sin x. (6)

Differentiating this expression and substituting the results into the differential equation give

 yp– 1 yp � Ax 1 B 2 2C sin x 1 2E cos x � 4x 1 10 sin x,

and so A � 4, B � 0, �2C � 10, 2E � 0. The solutions of the system are immediate: A � 4, 
B � 0, C � �5, and E � 0. Therefore from (6) we obtain yp � 4x � 5x cos x. The general 
solution of the given equation is

 y � yc � yp � c1 cos x � c2 sin x � 4x � 5x cos x.

We now apply the prescribed initial conditions to the general solution of the equation. First, 
y(p) � c1 cos p � c2 sin p � 4p � 5p cos p � 0 yields c1 � 9p since cos p � �1 and 
sin p � 0. Next, from the derivative

       y� � �9p sin x � c2 cos x � 4 � 5x sin x � 5 cos x

and y�(p) � �9p sin p � c2 cos p � 4 � 5p sin p � 5 cos p � 2

we find c2 � 7. The solution of the initial value is then

 y � 9p cos x � 7 sin x � 4x � 5x cos x.

■ EXAMPLE 9 Using the Multiplication Rule
Solve y� � 6y� � 9y � 6x2 � 2 � 12e3x.

Solution  The complementary function is yc � c1e
3x � c2xe3x. And so, based on entries 3 and 7 

of Table 3.4.1, the usual assumption for a particular solution would be

 yp � Ax2 � Bx � C � Ee3x.
  
 yp1

    yp2

Inspection of these functions shows that the one term in yp2
 is duplicated in yc. If we multiply 

yp2
 by x, we note that the term xe3x is still part of yc. But multiplying yp2

 by x2 eliminates all 
duplications. Thus the operative form of a particular solution is

 yp � Ax2 � Bx � C � Ex2e3x.

 3.4 Undetermined Coefficients 125
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Differentiating this last form, substituting into the differential equation, and collecting like 
terms gives

   y�p � 6y�p � 9yp � 9Ax 2 � (�12A � 9B)x � 2A � 6B � 9C � 2Ee3x � 6x 2 � 2 � 12e3x.

It follows from this identity that A � 2
3, B � 8

9, C � 2
3, and E � � 6. Hence the general solu-

tion y � yc � yp is

 y � c1e
3x 1 c2xe3x 1

2

3
 x 2 1

8

9
 x 1

2

3
2 6x 2e 3x.

■ EXAMPLE 10 Third-Order DE—Case I
Solve y� � y� � ex cos x.

Solution  From the characteristic equation m3 � m2 � 0 we find m1 � m2 � 0 and m3 � �1. 
Hence the complementary function of the equation is yc � c1 � c2x � c3e

�x. With g(x) � 
excos x, we see from entry 10 of Table 3.4.1 that we should assume

 yp � Aex cos x � Bex sin x.

Since there are no functions in yp that duplicate functions in the complementary solution, we 
proceed in the usual manner. From

 y�p � y�p � (�2A � 4B)ex cos x � (�4A � 2B)ex sin x � ex cos x

we get �2A � 4B � 1, � 4A � 2B � 0. This system gives A � � 1
10 and B � 1

5, so that a 
particular solution is yp � � 1

10 ex cos x � 1
5 ex sin x. The general solution of the equation is

 y � yc � yp � c1 � c2x � c3e
�x � 

1

10
 ex cos x + 

1

5
 ex sin x.

■ EXAMPLE 11 Fourth-Order DE—Case II
Determine the form of a particular solution of y(4) � y� � 1 � x2e�x.

Solution  Comparing yc � c1 � c2x � c3x
2 � c4e

�x with our normal assumption for a par-
ticular solution

 yp � A � Bx2e�x � Cxe�x � Ee�x,
  
 yp1

     yp2

we see that the duplications between yc and yp are eliminated when yp1
 is multiplied by x3 and 

yp2
 is multiplied by x. Thus the correct assumption for a particular solution is 

      yp � Ax3 � Bx3e�x � Cx2e�x � Exe�x.

Remarks
(i) In Problems 27–36 of Exercises 3.4, you are asked to solve initial-value problems, and 
in Problems 37– 40 boundary-value problems. As illustrated in Example 8, be sure to apply 
the initial conditions or the boundary conditions to the general solution y � yc � yp. Students 
often make the mistake of applying these conditions only to the complementary function yc 
since it is that part of the solution that contains the constants.
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(ii) From the “Form Rule for Case I” on page 124 of this section you see why the method of 
undetermined coefficients is not well suited to nonhomogeneous linear DEs when the input 
function g(x) is something other than the four basic types listed in blue on page 120. If P(x) 
is a polynomial, continued differentiation of P(x)eax sin bx will generate an independent set 
containing only a finite number of functions—all of the same type, namely, polynomials times 
eax sin bx or eax cos bx. On the other hand, repeated differentiations of input functions such 
as g(x) � ln x or g(x) � tan�1x generate an independent set containing an infinite number of 
functions:

derivatives of ln x: 
1
x

 , 
21

x2  , 
2

x3 , p   ,

derivatives of tan�1x: 
1

1 1 x2 , 
22x

11 1 x222
 , 
22 1 6x2

11 1 x223
 , p  .

 3.4 Exercises Answers to selected odd-numbered problems begin on page ANS-000.  

In Problems 1–26, solve the given differential equation by 
undetermined coefficients.

 1. y� � 3y� � 2y � 6
 2. 4y� � 9y � 15
 3. y� � 10y� � 25y � 30x � 3
 4. y� � y� – 6y � 2x

 5. 1
4  y� � y� � y � x2 � 2x

 6. y� � 8y� � 20y � 100x2 � 26xex

 7. y� � 3y � �48x2e3x

 8. 4y� � 4y� – 3y � cos 2x
 9. y� � y� � �3
 10. y� � 2y� � 2x � 5 � e�2x

 11. y� � y� � 1
4 y � 3 � ex/2

 12. y� � 16y � 2e4x

 13. y� � 4y � 3 sin 2x
 14. y� – 4y � (x2 � 3) sin 2x
 15. y� � y � 2x sin x
 16. y� � 5y� � 2x3 � 4x2 � x � 6
 17. y� � 2y� � 5y � ex cos 2x
 18. y� � 2y� � 2y � e2x(cos x � 3 sin x)
 19. y� � 2y� � y � sin x � 3 cos 2x
 20. y� � 2y� – 24y � 16 � (x � 2)e4x

 21. y� � 6y� � 3 � cos x
 22. y� � 2y� � 4y� � 8y � 6xe2x

 23. y� � 3y� � 3y� – y � x � 4ex

 24. y� � y� � 4y� � 4y � 5 � ex � e2x

 25. y(4) � 2y� � y � (x � 1)2

 26. y(4) � y� � 4x � 2xe�x

In Problems 27–36, solve the given initial-value problem.

 27. y� � 4y � �2, y 1p>82 � 1
2, y¿1p>82 � 2

 28. 2y� � 3y� � 2y � 14x2 � 4x � 11,
  y(0) � 0, y�(0) � 0

 29. 5y� � y� � �6x, y(0) � 0, y�(0) � �10

 30. y� � 4y� � 4y � (3 � x)e�2x, y(0) � 2, y�(0) � 5

 31. y� � 4y� � 5y � 35e�4x, y(0) � �3, y�(0) � 1

 32. y� � y � cosh x,  y(0) � 2, y�(0) � 12

 33. 
d 

2x

dt2  � v2x � F0 sin vt, x(0) � 0, x�(0) � 0

 34. 
d 

2x

dt2  � v2x � F0 cos gt, x(0) � 0, x�(0) � 0

 35. y� – 2y� � y� � 2 � 24ex � 40e5x, y(0) � 1
2, y�(0) � 5

2, 

  y�(0) � �9
2

 36. y� � 8y � 2x � 5 � 8e�2x, y(0) � �5, y�(0) � 3, y�(0) � � 4

In Problems 37–40, solve the given boundary-value problem.

 37. y� � y � x2 � 1, y(0) � 5, y(1) � 0

 38. y� � 2y� � 2y � 2x � 2, y(0) � 0, y(p) � p

 39. y� �3y � 6x, y(0) � 0, y(1) � y�(1) � 0

 40. y� � 3y � 6x, y(0) � y�(0) � 0, y(1) � 0

In Problems 41 and 42, solve the given initial-value problem 
in which the input function g(x) is discontinuous. [Hint: Solve 
each problem on two intervals, and then find a solution so that 
y and y� are continuous at x � p/2 (Problem 41) and at x � p 
(Problem 42).]

 41. y� � 4y � g(x), y(0) � 1, y�(0) � 2, where

 g1x2 5 e sin x,

0,
 0 # x # p>2

x . p>2

 3.4 Undetermined Coefficients 127
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128 CHAPTER 3  Higher-Order Differential Equations

 42. y� � 2y� � 10y � g(x), y(0) � 0, y�(0) � 0, where

 g1x2 5 e20,

0,
 0 # x # p

x . p

Discussion Problems
 43. Consider the differential equation ay� � by� � cy � ekx, where 

a, b, c, and k are constants. The auxiliary equation of the 
associated homogeneous equation is 

 am2 � bm � c � 0.

(a) If k is not a root of the auxiliary equation, show that we 
can find a particular solution of the form yp � Aekx, where 
A � 1/(ak2 � bk � c).

(b) If k is a root of the auxiliary equation of multiplicity one, 
show that we can find a particular solution of the form 
yp � Axekx, where A � 1/(2ak � b). Explain how we know 
that k � �b/(2a).

(c) If k is a root of the auxiliary equation of multiplicity two, 
show that we can find a particular solution of the form 
y � Ax2ekx, where A � 1/(2a).

 44. Discuss how the method of this section can be used to find a par-
ticular solution of y� � y � sin x cos 2x. Carry out your idea.

 45. Without solving, match a solution curve of y� � y � f (x) 
shown in the figure with one of the following functions:
(i) f (x) � 1, (ii) f (x) � e�x,
(iii) f (x) � ex, (iv) f (x) � sin 2x,
(v) f (x) � ex sin x, (vi) f (x) � sin x.

Briefly discuss your reasoning.

(a) y

x

FIGURE 3.4.1 Solution curve

(b) y

x

FIGURE 3.4.2 Solution curve

(c) 

FIGURE 3.4.3 Solution curve

x

y

(d) 

FIGURE 3.4.4 Solution curve

x

y

Computer Lab Assignments

In Problems 46 and 47, find a particular solution of the given 
differential equation. Use a CAS as an aid in carrying out 
differentiations, simplifications, and algebra.

 46. y� � 4y� � 8y � (2x2 � 3x)e2x cos 2x � (10x2 � x � 1)e2x sin 2x
 47. y(4) � 2y� � y � 2 cos x � 3x sin x

3.5 Variation of Parameters

Introduction The method of variation of parameters used in Section 2.3 to find a particular 
solution of a linear first-order differential equation is applicable to linear higher-order equations 
as well. Variation of parameters has a distinct advantage over the method of the preceding section 
in that it always yields a particular solution yp provided the associated homogeneous equation can 
be solved. In addition, the method presented in this section, unlike undetermined coefficients, is 
not limited to cases where the input function is a combination of the four types of functions listed 
on page 120, nor is it limited to differential equations with constant coefficients.

Some Assumptions To adapt the method of variation of parameters to a linear second-order 
differential equation

 a2(x)y� � a1(x)y� � a0(x)y � g(x), (1)
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3.5 Variation of Parameters 129

we begin as we did in Section 3.2—we put (1) in the standard form

 y� � P(x)y� � Q(x)y � f (x) (2)

by dividing through by the lead coefficient a2(x). Equation (2) is the second-order analogue of the 
linear first-order equation dy/dx � P(x)y � f (x). In (2) we shall assume  P(x), Q(x), and f (x) are 
continuous on some common interval I. As we have already seen in Section 3.3, there is no dif-
ficulty in obtaining the complementary function yc of (2) when the coefficients are constants.

Method of Variation of Parameters Corresponding to the substitution yp � u1(x)y1(x) that 
we used in Section 2.3 to find a particular solution yp of dy/dx � P(x)y � f (x), for the linear 
second-order DE (2) we seek a solution of the form

 yp � u1(x)y1(x) � u2(x)y2(x), (3)

where y1 and y2 form a fundamental set of solutions on I of the associated homogeneous form 
of (1). Using the Product Rule to differentiate yp twice, we get

 y�p � u1y�1 � y1u�1 � u2 y�2 � y2u�2

 y�p � u1y�1 � y�1u�1 � y1u�1 � u�1y�1 � u2 y�2 � y�2u�2 � y2u�2 � u�2 y�2.

Substituting (3) and the foregoing derivatives into (2) and grouping terms yields

 zero zero

 y�p � P(x)y�p � Q(x)yp � u1[y�1 � Py�1 � Qy1] � u2[ y�2 � Py�2 � Qy2]

        � y1u�1 � u�1 y�1 � y2u�2 � u�2 y�2 � P[ y1u�1 � y2u�2] � y�1u�1 � y�2u�2

 � 
d

dx
 [ y1u�1] � 

d

dx
 [ y2u�2] � P[ y1u�1 � y2u�2] � y�1u�1 � y�2u�2

� 
d

dx
 [ y1u�1 � y2u�2] � P[ y1u�1 � y2u�2] � y�1u�1 � y�2u�2 � f (x). (4)

Because we seek to determine two unknown functions u1 and u2, reason dictates that we need 
two equations. We can obtain these equations by making the further assumption that the func-
tions u1 and u2 satisfy y1u�1 � y2u�2 � 0. This assumption does not come out of the blue but is 
prompted by the first two terms in (4), since, if we demand that y1u�1 � y2u�2 � 0, then (4) reduces 
to y�1u�1 � y�2u�2 � f (x). We now have our desired two equations, albeit two equations for determin-
ing the derivatives u�1 and u�2. By Cramer’s rule, the solution of the system

 y1u�1 � y2u�2 � 0 

 y�1u�1 � y�2u�2 � f (x)

can be expressed in terms of determinants:

u1¿ 5
W1

W
5 2 

y2  f 1  x2

W
and u2¿ 5

W2

W
5

y1  f 1  x2

W
 (5)

where W � 2  y1 y2

y1¿ y2¿
 2  , W1 � 2 0 y2

 f 1 x x2 y2¿
2  , W2 � 2  y1 0

y1¿ f 1 1x x2
 2  . (6)

The functions u1 and u2 are found by integrating the results in (5). The determinant W is recognized 
as the Wronskian of y1 and y2. By linear independence of y1 and y2 on I, we know that W(y1(x), 
y2(x)) � 0 for every x in the interval.

Summary of the Method Usually it is not a good idea to memorize formulas in lieu of un-
derstanding a procedure. However, the foregoing procedure is too long and complicated to use 
each time we wish to solve a differential equation. In this case it is more efficient to simply use 

If you are unfamiliar with 
Cramer’s rule see Section 8.7.
I
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130 CHAPTER 3  Higher-Order Differential Equations

the formulas in (5). Thus to solve a2 y� � a1y� � a0y � g(x), first find the complementary func-
tion yc � c1y1 � c2 y2 and then compute the Wronskian W( y1(x), y2(x)). By dividing by a2, we 
put the equation into the standard form y� � Py� � Qy � f (x) to determine f (x). We find u1 and 
u2 by integrating u�1� W1/W and u�2 � W2/W, where W1 and W2 are defined as in (6). A particular 
solution is yp � u1y1 � u2 y2. The general solution of the equation is then y � yc � yp.

■ EXAMPLE 1 General Solution Using Variation of Parameters
Solve y� � 4y� � 4y � (x � 1)e2x.

Solution  From auxiliary equation m2 � 4m � 4 � (m � 2)2 � 0 we have yc � c1e
2x � c2xe2x. 

With the identifications y1 � e2x and y2 � xe2x, we next compute the Wronskian:

 W1e2x, xe2x2 � 2 e2x xe2x

2e2x 2xe2x 1 e2x 2 � e4x.

Since the given differential equation is already in form (2) (that is, the coefficient of y� is 1), 
we identify f (x) � (x � 1)e2x. From (6) we obtain

 W1 � 2 0 xe2x

1x 1 12e2x 2xe2x 1 e2x 2 �21x 1 12xe4x, W2 � 2 e2x 0

2e2x 1x 1 12e2x 2 � 1x 1 12e4x,

and so from (5)

 u1¿ �2
1x 1 12xe4x

e4x �2x2 2 x, u2¿ �
1x 1 12e4x

e4x � x 1 1.

It follows that u1 � �1
3x3 � 1

2x2 and u2 � 1
2x2 � x. Hence

 yp 5 a21

3
  x3 2

1

2
 x2b  e2x 1 a1

2
  x2 1 xb  xe2x 5

1

6
 x3

 e2x 1
1

2
 x2e2x

and y � yc � yp � c1e
2x � c2xe2x � 

1

6
 x3e2x � 

1

2
 x2e2x.

■ EXAMPLE 2 General Solution Using Variation of Parameters
Solve 4y� � 36y � csc 3x.

Solution  We first put the equation in the standard form (2) by dividing by 4:

 y� � 9y � 
1

4
 csc 3x.

Since the roots of the auxiliary equation m2 � 9 � 0 are m1 � 3i and m2 � �3i, the comple-
mentary function is yc � c1 cos 3x � c2 sin 3x. Using y1 � cos 3x, y2 � sin 3x, and f (x) � 
1
4 csc 3x, we obtain

 
W1 cos 3x, sin 3x2 � 2  cos 3x  sin 3x

23 sin 3x 3 cos 3x
2 � 3,

 
W1 � 2 0  sin 3x

1
4 csc 3x 3  cos3x

2 �2
1

4
,  W2 � 2  cos 3x 0

23 sin 3x 1
4 csc 3x

2 �
1

4
 
 cos 3x

 sin 3x
.

Integrating

 
u1¿ �

W1

W
�2

1

12
 and u2¿ �

W2

W
�

1

12
 
 cos 3x

 sin 3x

gives u1 � � 1
12x and u2 � 1

36 ln |sin 3x|. Thus a particular solution is

 yp � � 
1

12
x cos 3x � 

1

36
 (sin 3x) ln |  sin 3x   |.
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The general solution of the equation is

 y � yc � yp � c1 cos 3x � c2 sin 3x � 
1

12
 x cos 3x � 

1

36
 (sin 3x) ln |  sin 3x  |. (7)

Equation (7) represents the general solution of the differential equation on, say, the interval 
(0, p/6).

Constants of Integration When computing the indefinite integrals of u�1 and u�2, we need not 
introduce any constants. This is because

 y � yc � yp � c1y1 � c2 y2 � (u1 � a1)y1 � (u2 � b1)y2

 � (c1 � a1)y1 � (c2 � b1)y2 � u1 y1 � u2 y2

 � C1 y1 � C2 y2 � u1 y1 � u2 y2.

■ EXAMPLE 3 General Solution Using Variation of Parameters
Solve y� � y � 1>x.

Solution  The auxiliary equation m2 � 1 � 0 yields m1 � �1 and m2 � 1. Therefore 
yc � c1e

x � c2e
�x. Now W(ex, e�x) � �2 and

 

u¿1 �2
e2x11>x2
22

, u1 �
1

2#
x

x0

e2t

t
 dt,

u¿2 �
e x11>x2
22

, u2 �2
1

2#
x

x0

et

t
 dt.

Since the foregoing integrals are nonelementary, we are forced to write

 yp 5
1

2
 ex#

x

x0

e2t

t
 dt 2

1

2
 e2x#

x

x0

et

t
 dt,

and so

 y 5 yc 1 yp 5 c1e
x 1 c2e

2x 1
1

2
 ex#

x

x0

e2t

t
 dt 2

1

2
 e2x#

x

x0

et

t
 dt.

In Example 3 we can integrate on any interval [x0, x] not containing the origin. Also see 
Examples 2 and 3 in Section 3.10.

Higher-Order Equations The method we have just examined for nonhomogeneous second-
order differential equations can be generalized to linear nth-order equations that have been put 
into the standard form

 y(n) � Pn�1(x)y(n�1) �  . . . � P1(x)y� � P0(x)y � f (x). (8)

If yc � c1y1 � c2 y2 �  . . . � cn yn is the complementary function for (8), then a particular 
solution is

 yp � u1(x)y1(x) � u2(x)y2(x) �  . . . � un(x)yn(x),

where the u�k, k � 1, 2, . . ., n, are determined by the n equations

    y1u�1 �    y2u�2 �  . . . �  ynu�n � 0

    y1u�1 �    y�2u�2 �  . . . �  y�nu�n � 0

    � � (9)

 y1
(n�1)u�1 � y2

(n�1)u�2 �  . . . �  yn
(n�1)u�n � f (x).

 3.5 Variation of Parameters 131
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132 CHAPTER 3  Higher-Order Differential Equations

The first n � 1 equations in this system, like y1u�1 � y2u�2 � 0 in (4), are assumptions made to 
simplify the resulting equation after yp � u1(x)y1(x) �  . . . � un(x)yn(x) is substituted in (8). 
In this case, Cramer’s rule gives

 u�k � 
Wk

W
,   k � 1, 2, . . ., n,

where W is the Wronskian of y1, y2, . . ., yn and Wk is the determinant obtained by replacing 
the kth column of the Wronskian by the column consisting of the right-hand side of (9); that 
is, the column (0, 0, . . ., f (x)). When n � 2 we get (5). When n � 3, the particular solution is 
yp � u1y1 � u2y2 � u3y3, where y1, y2, and y3 constitute a linearly independent set of solutions 
of the associated homogeneous DE, and u1, u2, u3 are determined from

 u1¿ �
W1

W
, u2¿ �

W2

W
, u3¿ �

W3

W
,  (10)

 W1 � 3 0 y2 y3

0 y2¿ y3¿
 f 1  x2 y2– y3–

3  ,  W2 � 3 y1 0 y3

y1¿ 0 y3¿
y1– f 1  x2 y3–

3  ,  W3 � 3 y1 y2 0

y1¿ y2¿ 0

y1– y2– f 1  x2

3  , and W � 3 y1 y2 y3

y1¿ y2¿ y3¿
y1– y2– y3–

3  . 
See Problems 25 and 26 in Exercises 3.5.

Remarks
In the problems that follow do not hesitate to simplify the form of yp. Depending on how 
the antiderivatives of u�1 and u�2 are found, you may not obtain the same yp as given in the 
answer section. For example, in Problem 3 in Exercises 3.5, both yp � 1

2  sin x � 1
2x cos x 

and yp � 1
4sin x � 1

2x cos x are valid answers. In either case the general solution y � yc � yp 
simplifies to y � c1 cos x � c2 sin x � 1

2 x cos x. Why?

 3.5 Exercises Answers to selected odd-numbered problems begin on page ANS-000.  

In Problems 1�18, solve each differential equation by variation 
of parameters.

 1. y� � y � sec x 2. y� � y � tan x

 3. y� � y � sin x 4. y� � y � sec u tan u

 5. y� � y � cos2x 6. y� � y � sec2x

 7. y� � y � cosh x 8. y� � y � sinh 2x

 9. y� � 4y � 
e2x

x
 10. y� � 9y � 

9x

e3x

 11. y� � 3y� � 2y � 
1

1 1 ex

 12. y� � 2y� � y � 
ex

1 1 x2

 13. y� � 3y� � 2y � sin ex 14. y� � 2y� � y � et arctan t

 15. y� � 2y� � y � e�t ln t 16. 2y� � 2y� � y � 42x

 17. 3y� � 6y� � 6y � ex sec x

 18. 4y� � 4y� � y � ex>221 2 x2

In Problems 19–22, solve each differential equation by 
variation of parameters subject to the initial conditions 
y(0) � 1, y�(0) � 0.

 19. 4y� � y � xex/2

 20. 2y� � y� � y � x � 1

 21. y� � 2y� � 8y � 2e�2x � e�x

 22. y� � 4y� � 4y � (12x 2 � 6x)e2x

In Problems 23 and 24, the indicated functions are 
known linearly independent solutions of the associated 
homogeneous differential equation on the interval (0, q). 
Find the general solution of the given nonhomogeneous 
equation.

 23. x2y� � xy� � (x2 � 1
4)y � x3>2; y1 � x21>2 cos x, y2 � 

x21>2 sin x

 24. x2y� � xy� � y � sec(ln x); y1 � cos(ln x), y2 � sin(ln x)
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3.6 Cauchy–Euler Equation 133

In Problems 25 and 26, solve the given third-order differential 
equation by variation of parameters.

 25. y� � y� � tan x 26. y� � 4y� � sec 2x

Discussion Problems
In Problems 27 and 28, discuss how the methods of 
undetermined coefficients and variation of parameters can be 
combined to solve the given differential equation. Carry out 
your ideas.

 27. 3y� � 6y� � 30y � 15 sin x � ex tan 3x
28. y� � 2y� � y � 4x2 � 3 � x�1ex

 29. What are the intervals of definition of the general solutions in 
Problems 1, 7, 9, and 18? Discuss why the interval of definition 
of the general solution in Problem 24 is not (0, q).

 30. Find the general solution of x4y� � x3y� – 4x2y � 1 given 
that y1 � x2 is a solution of the associated homogeneous 
equation.

Computer Lab Assignments
In Problems 31 and 32, the indefinite integrals of the equations 
in (5) are nonelementary. Use a CAS to find the first four 
nonzero terms of a Maclaurin series of each integrand and 
then integrate the result. Find a particular solution of the given 
differential equation.

 31. y� � y � 21 1 x2

 32. 4y– 2 y � ex2

3.6 Cauchy–Euler Equation

Introduction The relative ease with which we were able to find explicit solutions of linear 
higher-order differential equations with constant coefficients in the preceding sections does not, 
in general, carry over to linear equations with variable coefficients. We shall see in Chapter 5 
that when a linear differential equation has variable coefficients, the best that we can usually 
expect is to find a solution in the form of an infinite series. However, the type of differential 
equation considered in this section is an exception to this rule; it is an equation with variable 
coefficients whose general solution can always be expressed in terms of powers of x, sines, co-
sines, logarithmic, and exponential functions. Moreover, its method of solution is quite similar 
to that for constant equations.

Cauchy–Euler Equation Any linear differential equation of the form

anx
n 

d ny

dx n 1 an21x
n21 

d n21y

dx n21 1
p 1 a1x 

dy

dx
1 a0y � g1x2,

where the coefficients an, an�1, . . ., a0 are constants, is known diversely as a Cauchy–Euler 
equation, an Euler–Cauchy equation, an Euler equation, or an equidimensional equation. 
The observable characteristic of this type of equation is that the degree k � n, n � 1, . . ., 1, 0 of 
the monomial coefficients xk matches the order k of differentiation d ky/dx k: 

  same same
 ↓      ↓ ↓    ↓

 anx
nd ny

dx n 1 an21x
n21d n21y

dx n21 1
p.

As in Section 4.3, we start the discussion with a detailed examination of the forms of the 
general solutions of the homogeneous second-order equation

ax2 
d 

2y

dx2 1 bx 
dy

dx
1 cy � 0.

The solution of higher-order equations follows analogously. Also, we can solve the nonhomo-
geneous equation ax2y� � bxy� � cy � g(x) by variation of parameters, once we have determined 
the complementary function yc(x).

The coefficient of d 2y/dx2 is zero at x � 0. Hence, in order to guarantee that the fundamental 
results of Theorem 3.1.1 are applicable to the Cauchy–Euler equation, we confine our attention to 
finding the general solution on the interval (0, q). Solutions on the interval (�q, 0) can be obtained 
by substituting t � �x into the differential equation. See Problems 37 and 38 in Exercises 3.6.

Lead coefficient being zero at 
x � 0 could cause a problem.
L
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134 CHAPTER 3  Higher-Order Differential Equations

Method of Solution We try a solution of the form y � x m, where m is to be determined. Analogous 
to what happened when we substituted emx into a linear equation with constant coefficients, after 
substituting x m each term of a Cauchy–Euler equation becomes a polynomial in m times xm since

 akx k 
d ky

dx k  � akx km(m � 1)(m � 2) p  (m � k � 1) x m�k

 � akm(m � 1)(m � 2) p  (m � k � 1) x m.

For example, by substituting y � xm the second-order equation becomes

 ax2 
d 

2y

dx2 1 bx 
dy

dx
 � cy � am(m � 1)xm � bmxm � cxm � (am(m � 1) � bm � c)xm.

Thus y � xm is a solution of the differential equation whenever m is a solution of the auxiliary 
equation

 am(m � 1) � bm � c � 0   or   am2 � (b � a)m � c � 0. (1)

There are three different cases to be considered, depending on whether the roots of this quadratic 
equation are real and distinct, real and equal, or complex. In the last case the roots appear as a 
conjugate pair.

 Case I :  Distinct Real Roots  Let m1 and m2 denote the real roots of (1) such that 
m1 � m2. Then y1 � xm1 and y2 � xm2 form a fundamental set of solutions. 
Hence the general solution is

          y � c1x m1 � c2x m2. (2)

■ EXAMPLE 1 Distinct Roots

Solve x 2 
d 2y

dx2 2 2x 
dy

dx
2 4y 5 0.

Solution  Rather than just memorizing equation (1), it is preferable to assume y � xm as the 
solution a few times in order to understand the origin and the difference between this new 
form of the auxiliary equation and that obtained in Section 3.3. Differentiate twice,

 
dy

dx
5 mxm21, d 2y

dx 2 5 m1m 2 12xm22,

and substitute back into the differential equation:

 x2 
d 

2y

dx 
2  � 2x 

dy

dx
 � 4y � x2 	 m(m � 1)x m�2 � 2x 	 mx m�1 � 4xm

 � x m(m(m � 1) � 2m � 4) � x m(m2 � 3m � 4) � 0

if m2 � 3m � 4 � 0. Now (m � 1)(m � 4) � 0 implies m1 � �1, m2 � 4 and so (2) yields 
the general solution y � c1x

�1 � c2x
4.

 Case II :  Repeated Real Roots  If the roots of (1) are repeated (that is, m1 � m2), then 
we obtain only one solution; namely; y � x m1. When the roots of the quadratic 
equation am2 � (b � a)m � c � 0 are equal, the discriminant of the coef-
ficients is necessarily zero. It follows from the quadratic formula that the root 
must be m1 � �(b � a)/2a.

    Now we can construct a second solution y2, using (5) of Section 3.2. We 
first write the Cauchy–Euler equation in the standard form

          
d 

2y

dx2 1
b
ax

  

dy

dx
1

c

ax2  y � 0
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 and make the identifications P(x) � b/ax and �(b/ax) dx � (b/a) ln x. Thus

 y2 � xm1 #e
21b>a2ln x

x2m1
 dx

 � xm1 #  x�b/a 	 x22m1 dx  ← e�(b/a) ln x � eln x 
2 1b>a2

 � x�b/a

 � xm1 #   x�b/a 	 x(b�a)/a dx  ← �2m1 � (b � a)/a

 � xm1 #   dx
x

 � xm1 ln x.

The general solution is then

 y � c1xm1 � c2xm1 ln x. (3)

■ EXAMPLE 2 Repeated Roots

Solve 4x2 
d 

2y

dx2 1 8x 
dy

dx
1 y 5 0.

Solution  The substitution y � xm yields

 4x2 
d 

2y

dx2  � 8x 
dy

dx
 � y � xm(4m(m � 1) � 8m � 1) � xm(4m2 � 4m � 1) � 0

when 4m2 � 4m � 1 � 0 or (2m � 1)2 � 0. Since m1 � � 12 is a repeated root, (3) gives the 
general solution y � c1x21>2 � c2x21>2 ln x.

For higher-order equations, if m1 is a root of multiplicity k, then it can be shown that

 xm1,   xm1 ln x,   xm1(ln x)2,   . . .,   xm1(ln x)k�1

are k linearly independent solutions. Correspondingly, the general solution of the differential 
equation must then contain a linear combination of these k solutions.

 Case III :  Conjugate Complex Roots  If the roots of (1) are the conjugate pair 
m1 � a � ib, m2 � a � ib, where a and b 
 0 are real, then a  solution 
is y � C1x

a�ib � C2x
a�ib. But when the roots of the auxiliary equation are 

complex, as in the case of equations with constant  coefficients, we wish to 
write the solution in terms of real functions only. We note the identity

 xib � (eln x ) ib � eib ln x,

 which, by Euler’s formula, is the same as

 xib � cos(b ln x) � i sin(b ln x).

 Similarly, x�ib � cos(b ln x) � i sin(b ln x).

 Adding and subtracting the last two results yields

 xib � x�ib � 2 cos(b ln x)   and   xib � x�ib � 2i sin( b ln x),

  respectively. From the fact that y � C1x
a�ib � C2x

a�ib is a solution for 
any values of the constants, we see, in turn, for C1 � C2 � 1 and C1 � 1, 
C2 � �1 that

 y1 � xa(xib � x�ib)   and   y2 � xa(xib � x�ib)

 3.6 Cauchy–Euler Equation 135
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136 CHAPTER 3  Higher-Order Differential Equations

 or y1 � 2xa cos( b ln x)   and   y2 � 2ixa sin( b ln x)

  are also solutions. Since W(xa cos( b ln x), xa sin( b ln x)) � bx2a�1 � 0, 
b 
 0, on the interval (0, q), we conclude that

 y1 � xa cos( b ln x)   and   y2 � xa sin( b ln x)

  constitute a fundamental set of real solutions of the differential equation. 
Hence the general solution is

 y � xa[c1 cos(b ln x) � c2 sin(b ln x)]. (4)

■ EXAMPLE 3 An Initial-Value Problem
Solve the initial-value problem 4x2y� � 17y � 0, y(1) � �1, y�(1) � �1

2.

Solution  The y� term is missing in the given Cauchy–Euler equation; nevertheless, the 
substitution y � xm yields

 4x2y� � 17y � xm(4m(m � 1) � 17) � xm(4m2 � 4m � 17) � 0

when 4m2 � 4m � 17 � 0. From the quadratic formula we find that the roots are m1 � 12 � 2i 
and m2 � 1

2 � 2i. With the identifications a � 1
2 and b � 2, we see from (4) that the general 

solution of the differential equation is

 y � x1>2 [c1 cos(2 ln x) � c2 sin(2 ln x)].

By applying the initial conditions y(1) � �1, y�(1) � 0 to the foregoing solution and using 
ln 1 � 0 we then find, in turn, that c1 � �1 and c2 � 0. Hence the solution of the initial-
value problem is y � �x1>2cos (2 ln x). The graph of this function, obtained with the aid of 
computer software, is given in FIGURE 3.6.1 The particular solution is seen to be oscillatory 
and unbounded as x → q.

The next example illustrates the solution of a third-order Cauchy–Euler equation.

■ EXAMPLE 4 Third-Order Equation

Solve x3 
d 3y

dx 3 1 5x 2 
d 2y

dx 2 1 7x 
dy

dx
1 8y � 0.

Solution  The first three derivatives of y � xm are

 
dy

dx
� mxm21, d 

2y

dx2 � m1m 2 12xm22, d3y

dx3 � m1m 2 12 1m 2 22xm23

so that the given differential equation becomes 

 x3
 

d3y

dx3 1 5x2
 

d2y

dx2 1 7x 

dy

dx
1 8y � x3m(m � 1)(m � 2)xm � 3 � 5x2m(m � 1)xm � 2 � 7xmxm � 1 � 8xm

   � xm(m(m � 1)(m � 2) � 5m(m � 1) � 7m � 8)

   � xm(m3 � 2m2 � 4m � 8) � xm(m � 2)(m2 � 4) � 0.

In this case we see that y � xm will be a solution of the differential equation for m1 � �2, 
m2 � 2i, and m3 � �2i. Hence the general solution is

 y � c1x
�2 � c2 cos(2 ln x) � c3 sin(2 ln x).

10

5

–5

25 50 75 100
x

y

FIGURE 3.6.1 Graph of solution of IVP 
in Example 3
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The method of undetermined coefficients as described in Section 3.4 does not carry over, in 
general, to linear differential equations with variable coefficients. Consequently, in the following 
example the method of variation of parameters is employed.

■ EXAMPLE 5 Variation of Parameters
Solve x2y� � 3xy� � 3y � 2x4e x.

Solution  Since the equation is nonhomogeneous, we first solve the associated homogeneous 
equation. From the auxiliary equation (m � 1)(m � 3) � 0 we find yc � c1x � c2x

3. Now 
before using variation of parameters to find a particular solution yp � u1 y1 � u2 y2, recall that 
the formulas u�1 � W1/W and u�2 � W2/W, where W1, W2, and W are the determinants defined 
on page 129, and were derived under the assumption that the differential equation has been 
put into the standard form y� � P(x)y� � Q(x)y � f (x). Therefore we divide the given equa-
tion by x2, and from

 y– 2
3
x

 y¿ 1
3

x2 y � 2x2ex

we make the identification f (x) � 2x2ex. Now with y1 � x, y2 � x3 and

 W � 2x x3

1 3x2 2 � 2x3, W1 � 2 0 x3

2x2ex 3x2 2 �22x5ex, W2 � 2x 0

1 2x2ex 2 � 2x3ex

we find u1¿ �2
2x5ex

2x3 �2x2ex   and   u2¿ �
2x3ex

2x3 � ex.

The integral of the latter function is immediate, but in the case of u�1 we integrate by parts 
twice. The results are u1 � �x2e x � 2xe x � 2e x and u2 � e x. Hence

 yp � u1y1 � u2y2 � (�x 2e x � 2xe x � 2e x)x � e xx3 � 2x2e x � 2xex.

Finally we have y � yc � yp � c1x � c2x
3 � 2x2ex � 2xex.

Remarks
The similarity between the forms of solutions of Cauchy–Euler equations and solutions of 
linear equations with constant coefficients is not just a coincidence. For example, when the 
roots of the auxiliary equations for ay� � by� � cy � 0 and ax2y� � bxy� � cy � 0 are distinct 
and real, the respective general solutions are

 y � c1e
m1x 1 c2e

m2x and y � c1x
m1 1 c2x

m2, x . 0. (5)

In view of the identity eln x � x, x 
 0, the second solution given in (5) can be expressed in 
the same form as the first solution:

 y � c1e
m1ln x 1 c2e

m2ln x � c1e
m1t 1 c2e

m2t,

where t � ln x. This last result illustrates another fact of mathematical life: Any Cauchy–Euler 
equation can always be rewritten as a linear differential equation with constant coefficients 
by means of the substitution x � et. The idea is to solve the new differential equation in terms 
of the variable t, using the methods of the previous sections, and once the general solution is 
obtained, resubstitute t � ln x. Since this procedure provides a good review of the Chain Rule 
of differentiation, you are urged to work Problems 31–36 in Exercises 3.6.
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138 CHAPTER 3  Higher-Order Differential Equations

 3.6 Exercises Answers to selected odd-numbered problems begin on page ANS-000.  

In Problems 1–18, solve the given differential equation.

 1. x2y� � 2y � 0 2. 4x2y� � y � 0
 3. xy� � y� � 0 4. xy� � 3y� � 0
 5. x2y� � xy� � 4y � 0 6. x2y� � 5xy� � 3y � 0
 7. x2y� � 3xy� � 2y � 0 8. x2y� � 3xy� � 4y � 0
 9. 25x2y� � 25xy� � y � 0 10. 4x2y� � 4xy� � y � 0
 11. x2y� � 5xy� � 4y � 0 12. x2y� � 8xy� � 6y � 0
 13. 3x2y� � 6xy� � y � 0 14. x2y� � 7xy� � 41y � 0
 15. x3y� � 6y � 0 16. x3y� � xy� � y � 0
 17. xy(4) � 6y� � 0
 18. x4y(4) � 6x3y� � 9x2y� � 3xy� � y � 0

In Problems 19–24, solve the given differential equation by 
variation of parameters.

 19. xy� � 4y� � x4 20. 2x2y� � 5xy� � y � x2 � x
 21. x2y� � xy� � y � 2x 22. x2y� � 2xy� � 2y � x4ex

 23. x2y� � xy� � y � ln x 24. x2y� � xy� � y � 
1

x 1 1

In Problems 25–30, solve the given initial-value problem. Use a 
graphing utility to graph the solution curve.

 25. x2y� � 3xy� � 0, y(1) � 0, y�(1) � 4
 26. x2y� � 5xy� � 8y � 0, y(2) � 32, y�(2) � 0
 27. x2y� � xy� � y � 0, y(1) � 1, y�(1) � 2
 28. x2y� � 3xy� � 4y � 0, y(1) � 5, y�(1) � 3

 29. xy� � y� � x, y(1) � 1, y�(1) � � 12
 30. x2y� � 5xy� � 8y � 8x6, y 1122  � 0, y� 1122  � 0

In Problems 31–36, use the substitution x � et to transform the 
given Cauchy–Euler equation to a differential equation with 
constant coefficients. Solve the original equation by solving the 
new equation using the procedure in Sections 3.3–3.5.

 31. x2y� � 9xy� � 20y � 0
 32. x2y� � 9xy� � 25y � 0
 33. x2y� � 10xy� � 8y � x2

 34. x2y� � 4xy� � 6y � ln x2

 35. x2y� � 3xy� � 13y � 4 � 3x
 36. x3y� � 3x2y� � 6xy� � 6y � 3 � ln x3

In Problems 37 and 38, solve the given initial-value problem on 
the interval (�q, 0).

 37. 4x2y� � y � 0, y(�1) � 2, y�(�1) � 4

 38. x2y� � 4xy� � 6y � 0, y(�2) � 8, y�(�2) � 0

Discussion Problems
 39. How would you use the method of this section to solve

 (x � 2)2y� � (x � 2)y� � y � 0?

  Carry out your ideas. State an interval over which the  solution 
is defined.

 40. Can a Cauchy–Euler differential equation of lowest order with 
real coefficients be found if it is known that 2 and 1 � i are 
two roots of its auxiliary equation? Carry out your ideas.

 41. The initial conditions y(0) � y0, y�(0) � y1, apply to each of 
the following differential equations:

 x2y� � 0,

 x2y� � 2xy� � 2y � 0,

 x2y� � 4xy� � 6y � 0.

  For what values of y0 and y1 does each initial-value problem 
have a solution?

 42. What are the x-intercepts of the solution curve shown in 
Figure 3.6.1? How many x-intercepts are there in the interval 
defined by 0 � x � 1

2?

Computer Lab Assignments
In Problems 43–46, solve the given differential equation by using 
a CAS to find the (approximate) roots of the auxiliary equation.

 43. 2x3y� � 10.98x2y� � 8.5xy� � 1.3y � 0

 44. x3y� � 4x2y� � 5xy� � 9y � 0

 45. x4y(4) � 6x3y� � 3x2y� � 3xy� � 4y � 0

 46. x4y(4) � 6x3y� � 33x2y� � 105xy� � 169y � 0

 47. Solve x3y� � x2y� � 2xy� � 6y � x2 by variation of param-
eters. Use a CAS as an aid in computing roots of the auxiliary 
equation and the determinants given in (10) of Section 3.5.

3.7 Nonlinear Equations

Introduction The difficulties that surround higher-order nonlinear DEs and the few methods 
that yield analytic solutions are examined next.

Some Differences There are several significant differences between linear and nonlinear 
differential equations. We saw in Section 3.1 that homogeneous linear equations of order two or 
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higher have the property that a linear combination of solutions is also a solution (Theorem 3.1.2). 
Nonlinear equations do not possess this property of superposability. For example, on the interval 
(�q, q), y1 � ex, y2 � e�x, y3 � cos x, and y4 � sin x are four linearly independent solutions of 
the nonlinear second-order differential equation (y�)2 � y2 � 0. But linear combinations such as 
y � c1e

x � c3 cos x, y � c2e
�x � c4 sin x, y � c1e

x � c2e
�x � c3 cos x � c4 sin x are not solutions 

of the equation for arbitrary nonzero constants ci. See Problem 1 in Exercises 3.7.
In Chapter 2 we saw that we could solve a few nonlinear first-order differential equations by 

recognizing them as separable, exact, homogeneous, or perhaps Bernoulli equations. Even though 
the solutions of these equations were in the form of a one-parameter family, this family did not, as a 
rule, represent the general solution of the differential equation. On the other hand, by paying attention 
to certain continuity conditions, we obtained general solutions of linear first-order equations. Stated 
 another way, nonlinear first-order differential equations can possess singular solutions whereas linear 
equations cannot. But the major difference between linear and nonlinear equations of order two or 
higher lies in the realm of solvability. Given a linear equation there is a chance that we can find some 
form of a solution that we can look at, an explicit solution or perhaps a solution in the form of an 
infinite series. On the other hand, nonlinear higher-order differential equations virtually defy solution. 
This does not mean that a nonlinear higher-order differential equation has no solution but rather that 
there are no analytical methods whereby either an explicit or implicit solution can be found.

Although this sounds disheartening, there are still things that can be done; we can always 
analyze a nonlinear DE qualitatively and numerically.

Let us make it clear at the outset that nonlinear higher-order differential equations are 
important—dare we say even more important than linear equations?—because as we fine-tune 
the mathematical model of, say, a physical system, we also increase the likelihood that this 
higher-resolution model will be nonlinear.

We begin by illustrating an analytical method that occasionally enables us to find explicit/
implicit solutions of special kinds of nonlinear second-order differential equations.

Reduction of Order Nonlinear second-order differential equations F (x, y�, y�) � 0, where 
the dependent variable y is missing, and F ( y, y�, y�) � 0, where the independent variable x is 
missing, can sometimes be solved using first-order methods. Each equation can be reduced to a 
first-order equation by means of the substitution u � y�.

The next example illustrates the substitution technique for an equation of the form F (x, y�, y�) � 0. 
If u � y�, then the differential equation becomes F (x, u, u�) � 0. If we can solve this last equation 
for u, we can find y by integration. Note that since we are solving a second-order equation, its 
solution will contain two arbitrary constants.

■ EXAMPLE 1 Dependent Variable y Is Missing
Solve y� � 2x(y�)2.

Solution  If we let u � y�, then du/dx � y�. After substituting, the second-order equation 
reduces to a first-order equation with separable variables; the independent variable is x and 
the dependent variable is u:

 
du

dx
� 2xu2 or du

u2 � 2x dx

  #u22du � #2x dx

       2u21 � x2 1 c2
1.

The constant of integration is written as c1
2 for convenience. The reason should be obvious in 

the next few steps. Since u�1 � 1/y�, it follows that

             
dy

dx
�2

1

x2 1 c2
1

and so y �2# dx

x2 1 c2
1

 or y �2
1
c1

 tan21 
x
c1
1 c2.
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140 CHAPTER 3  Higher-Order Differential Equations

Next we show how to solve an equation that has the form F ( y, y�, y�) � 0. Once more we let 
u � y�, but since the independent variable x is missing, we use this substitution to transform the 
differential equation into one in which the independent variable is y and the dependent variable 
is u. To this end we use the Chain Rule to compute the second derivative of y:

 
y– �

du

dx
�

du

dy
 
dy

dx
� u 

du

dy
.

In this case the first-order equation that we must now solve is F ( y, u, u du/dy) � 0.

■ EXAMPLE 2 Independent Variable x Is Missing
Solve yy� � ( y�)2.

Solution  With the aid of u � y�, the Chain Rule shown above, and separation of variables, 
the given differential equation becomes

 
y au 

du

dy
b 5 u2  or  du

u
5

dy

y
.

Integrating the last equation then yields ln |u| � ln |y| � c1, which, in turn, gives u � c2y, 
where the constant �ec1 has been relabeled as c2. We now resubstitute u � dy/dx, separate 
variables once again, integrate, and relabel constants a second time:

#dy

y
� c2#dx   or   ln |y| � c2x � c3   or   y � c4ec2 x.

Use of Taylor Series In some instances a solution of a nonlinear initial-value problem, in 
which the initial conditions are specified at x0, can be approximated by a Taylor  series centered 
at x0.

■ EXAMPLE 3 Taylor Series Solution of an IVP
Let us assume that a solution of the initial-value problem

 y� � x � y � y2,   y(0) � �1,   y�(0) � 1 (1)

exists. If we further assume that the solution y(x) of the problem is analytic at 0, then y(x) 
possesses a Taylor series expansion centered at 0:

 y1x2 � y102 1
y¿ 102

1!
x 1

y– 102
2!

x2 1
y‡ 102

3!
x3 1

y142102

4!
x4 1

y152102

5!
x5 1 p. (2)

Note that the value of the first and second terms in the series (2) are known since those values 
are the specified initial conditions y(0) � �1, y�(0) � 1. Moreover, the differential equation 
itself defines the value of the second derivative at 0: y�(0) � 0 � y(0) � y(0)2 � 0 � (�1) � 
(�1)2 � �2. We can then find expressions for the higher derivatives y�, y(4), . . ., by calculating 
the successive derivatives of the differential equation:

 y�(x) � 
d

dx
 (x � y �y2) � 1 � y� – 2yy� (3)

 y(4)(x) � 
d

dx
 (1 � y� – 2yy�) � y� � 2yy� � 2(y�)2 (4)

 y(5)(x) � 
d

dx
 ( y� � 2yy� � 2( y�)2) � y� – 2yy� – 6y�y� (5)
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and so on. Now using y(0) � �1 and y�(0) � 1 we find from (3) that y�(0) � 4. From the values 
y(0) � �1, y�(0) � 1, and y�(0) � �2, we find y(4)(0) � �8 from (4). With the additional 
information that y�(0) � 4, we then see from (5) that y(5)(0) � 24. Hence from (2), the first 
six terms of a series solution of the initial-value problem (1) are

 y1x2 �21 1 x 2 x2 1
2

3
 x3 2

1

3
 x4 1

1

5
 x5 1 p.

Use of a Numerical Solver Numerical methods, such as Euler’s method or a Runge–Kutta 
method, are developed solely for first-order differential equations and then are extended to systems 
of first-order equations. In order to analyze an nth-order initial-value problem numerically, we 
express the nth-order ODE as a system of n first-order equations. In brief, here is how it is done 
for a second-order initial-value problem: First, solve for y�; that is, put the DE into normal form 
y� � f (x, y, y�), and then let y� � u. For example, if we substitute y� � u in

 
d 2y

dx2  � f (x, y, y�),   y(x0) � y0,   y�(x0) � u0, (6)

then y� � u� and y�(x0) � u(x0) so that the initial-value problem (6) becomes

 Solve: e y¿ � u

u¿ � f 1x, y, u2

 Subject to: y(x0) � y0 ,  u(x0) � u0.

However, it should be noted that a commercial numerical solver may not require* that you supply 
the system.

■ EXAMPLE 4 Graphical Analysis of Example 3
Following the foregoing procedure, the second-order initial-value problem in Example 3 is 
equivalent to

  
dy

dx
� u

  
du

dx
� x 1 y 2 y2

with initial conditions y(0) � �1, u(0) � 1. With the aid of a numerical solver we get the solu-
tion curve shown in blue in FIGURE 3.7.1. For comparison, the curve shown in red is the graph 
of the fifth-degree Taylor polynomial T5(x) � �1 � x � x2 � 2

3x
3 2 1

3x
4 1 1

5x
5. Although 

we do not know the interval of convergence of the Taylor series obtained in Example 3, the 
closeness of the two curves in a neighborhood of the origin suggests that the power series 
may converge on the interval (�1, 1).

Qualitative Questions The colored graph in Figure 3.7.1 raises some questions of a qualita-
tive nature: Is the solution of the original initial-value problem oscillatory as x → q? The graph 
generated by a numerical solver on the larger interval shown in FIGURE 3.7.2 would seem to sug-
gest that the answer is yes. But this single example, or even an assortment of examples, does not 
answer the basic question of whether all solutions of the differential equation y� � x � y � y2 
are oscillatory in nature. Also, what is happening to the solution curves in Figure 3.7.2 when 

*Some numerical solvers require only that a second-order differential equation be expressed in normal 
form y� � f (x, y, y�). The translation of the single equation into a system of two equations is then built into 
the computer program, since the first equation of the system is always y� � u and the second equation is 
u� � f (x, y, u).

Taylor polynomial

y

x

solution curve
generated by a
numerical solver

FIGURE 3.7.1 Comparison of two 
approximate solutions in Example 4

10

y

x

FIGURE 3.7.2 Numerical solution curve 
of IVP in (1) of Example 3
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142 CHAPTER 3  Higher-Order Differential Equations

x is near �1? What is the behavior of solutions of the differential equation as x → �q? Are 
solutions bounded as x → q? Questions such as these are not easily answered, in general, for 
nonlinear second-order differential equations. But certain kinds of second-order equations lend 
themselves to a systematic qualitative analysis, and these, like their first-order relatives encoun-
tered in Section 2.1, are the kind that have no explicit dependence on the independent variable. 
Second-order ODEs of the form

 F ( y, y�, y�) � 0   or   
d 

2y

dx2  � f ( y, y�);

that is, equations free of the independent variable x, are called autonomous. The differential 
equation in Example 2 is autonomous, and because of the presence of the x term on its right side, 
the equation in Example 3 is nonautonomous. For an in-depth treatment of the topic of stabil-
ity of autonomous second-order differential equations and autonomous systems of differential 
equations, the reader is referred to Chapter 11.

 3.7 Exercises Answers to selected odd-numbered problems begin on page ANS-000.  

In Problems 1 and 2, verify that y1 and y2 are solutions of the 
given differential equation but that y � c1y1 � c2y2 is, in general, 
not a solution.

 1. ( y�)2 � y2; y1 � ex, y2 � cos x

 2. yy� � 1
2 ( y�)2; y1 � 1, y2 � x2

In Problems 3�8, solve the given differential equation by using 
the substitution u � y�.

 3. y� � ( y�)2 � 1 � 0 4. y� � 1 � ( y�)2

 5. x2y� � ( y�)2 � 0 6. ( y � 1)y� � ( y�)2

 7. y� � 2y( y�)3 � 0 8. y2y� � y�

 9. Consider the initial-value problem

    y� � yy� � 0,  y(0) � 1,  y�(0) � �1.

(a) Use the DE and a numerical solver to graph the solution 
curve.

(b) Find an explicit solution of the IVP. Use a graphing utility 
to graph this solution.

(c) Find an interval of definition for the solution in part (b).

 10. Find two solutions of the initial-value problem

 ( y�)2 � ( y�)2 � 1,  y1p>22 � 1
2, y¿1p>22 � 23>2.

Use a numerical solver to graph the solution curves.

In Problems 11 and 12, show that the substitution u � y� leads 
to a Bernoulli equation. Solve this equation (see Section 2.5).

 11. xy� � y� � ( y�)3 12. xy� � y� � x( y�)2

In Problems 13–16, proceed as in Example 3 and obtain the first 
six nonzero terms of a Taylor series solution, centered at 0, of 
the given initial-value problem. Use a numerical solver and a 
graphing utility to compare the solution curve with the graph of 
the Taylor polynomial.

 13. y� � x � y2, y(0) � 1, y�(0) � 1

 14. y� � y2 � 1, y(0) � 2, y�(0) � 3

 15. y� � x2 � y2 � 2y�, y(0) � 1, y�(0) � 1

 16. y� � ey, y(0) � 0, y�(0) � �1

 17. In calculus, the curvature of a curve that is defined by a 
function y � f (x) is defined as

 k �
y–

f1 1 1y¿22g3>2.

  Find y � f (x) for which k � 1. [Hint: For simplicity,  ignore 
constants of integration.]

Discussion Problems
 18. In Problem 1 we saw that cos x and ex were solutions of the 

nonlinear equation ( y�)2 � y2 � 0. Verify that sin x and e�x 
are also solutions. Without attempting to solve the differ-
ential equation, discuss how these explicit solutions can be 
found by using knowledge about linear equations. Without 
attempting to verify, discuss why the linear combinations 
y � c1e

x � c2e
�x � c3 cos x � c4 sin x and y � c2e

�x � c4 sin x 
are not, in general, solutions, but the two special linear combina-
tions y � c1e

x � c2e
�x and y � c3 cos x � c4 sin x must satisfy 

the differential equation.

 19. Discuss how the method of reduction of order considered 
in this section can be applied to the third-order differential 

equation y� � 21 1 1y–22. Carry out your ideas and solve 
the equation.

 20. Discuss how to find an alternative two-parameter family of 
solutions for the nonlinear differential equation y� � 2x( y�)2 
in Example 1. [Hint: Suppose that 2c2

1 is used as the constant 
of integration instead of �c2

1.]
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 3.8 Linear Models: Initial-Value Problems 143

Mathematical Models
 21. Motion in a Force Field  A mathematical model for the po-

sition x(t) of a body moving rectilinearly on the x-axis in an 
inverse-square force field is given by

 
d 2x

dt 2 �
k 2

x 2.

  Suppose that at t � 0 the body starts from rest from the position 
x � x0, x0 
 0. Show that the velocity of the body at time t is 
given by v2 � 2k2(1/x � 1/x0). Use the last expression and a CAS 
to carry out the integration to express time t in terms of x.

 22. A mathematical model for the position x(t) of a moving 
object is

 
d2x

dt2 1  sin x � 0.

  Use a numerical solver to graphically investigate the solutions 
of the equation subject to x(0) � 0, x�(0) � x1, x1 � 0. Discuss 
the motion of the object for t � 0 and for various choices of x1. 
Investigate the equation

 
d 2x

dt 2 1
dx

dt
1  sin x � 0

  in the same manner. Give a possible physical interpretation 
of the dx/dt term.

3.8 Linear Models: Initial-Value Problems

Introduction In this section we are going to consider several linear dynamical systems in 
which each mathematical model is a linear second-order differential equation with constant 
coefficients along with initial conditions specified at time t0:

 a2 

d 
2y

dt2 1 a1 

dy

dt
1 a0 

y 5 g1t2, y1t02 5 y0, y¿ 1t02 5 y1.

Recall, the function g is the input, driving, or forcing function of the system. The output or 
response of the system is a function y(t) defined on an I interval containing t0 that satisfies both 
the differential equation and the initial conditions on the interval I.

3.8.1 Spring/Mass Systems: Free Undamped Motion

Hooke’s Law Suppose a flexible spring is suspended vertically from a rigid support and 
then a mass m is attached to its free end. The amount of stretch, or elongation, of the spring will, 
of course, depend on the mass; masses with different weights stretch the spring by differing 
amounts. By Hooke’s law, the spring itself exerts a restoring force F opposite to the direction of 
elongation and proportional to the amount of elongation s. Simply stated, F � ks, where k is a 
constant of proportionality called the spring constant. The spring is essentially characterized by 
the number k. For example, if a mass weighing 10 lb stretches a spring 12 ft, then 10 � k(1

2) implies 
k � 20 lb/ft. Necessarily then, a mass weighing, say, 8 lb stretches the same spring only 1

2 ft.

Newton’s Second Law After a mass m is attached to a spring, it stretches the spring by an 
amount s and attains a position of equilibrium at which its weight W is balanced by the restoring 
force ks. Recall that weight is defined by W � mg, where mass is measured in slugs, kilograms, 
or grams and g � 32 ft/s2, 9.8 m/s2, or 980 cm/s2, respectively. As indicated in FIGURE 3.8.1(b), 
the condition of equilibrium is mg � ks or mg � ks � 0. If the mass is displaced by an amount 
x from its equilibrium position, the restoring force of the spring is then k(x � s). Assuming that 
there are no retarding forces acting on the system and assuming that the mass vibrates free of other 
external forces—free motion—we can equate Newton’s second law with the net, or resultant, 
force of the restoring force and the weight:

 m 
d 2x

dt 2  � � k(s � x) � mg � � kx � mg � ks � � kx. (1)
 
 zero

(c)(b)(a)

unstretched s

l

m

m

motion

l

x

l + s 

equilibrium
position

mg – ks = 0

FIGURE 3.8.1 Spring/mass system
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144 CHAPTER 3  Higher-Order Differential Equations

The negative sign in (1) indicates that the restoring force of the spring acts opposite to the direc-
tion of motion. Furthermore, we can adopt the convention that displacements measured below 
the equilibrium position are positive. See FIGURE 3.8.2.

DE of Free Undamped Motion By dividing (1) by the mass m we obtain the second-order 
differential equation d 2x/dt 2 � (k/m)x � 0 or

 

d 
2x

dt2 1 v
2x � 0, (2)

where v2 � k/m. Equation (2) is said to describe simple harmonic motion or free undamped 
motion. Two obvious initial conditions associated with (2) are x(0) � x0, the amount of initial 
displacement, and x�(0) � x1, the initial velocity of the mass. For example, if x0 
 0, x1 � 0, 
the mass starts from a point below the equilibrium position with an imparted upward velocity. 
When x1 � 0 the mass is said to be released from rest. For example, if x0 � 0, x1 � 0, the mass 
is released from rest from a point ux0 Z  units above the equilibrium position.

Solution and Equation of Motion To solve equation (2) we note that the solutions of the 
auxiliary equation m2 � v2 � 0 are the complex numbers m1 � vi, m2 � �vi. Thus from (8) of 
Section 3.3 we find the general solution of (2) to be

 x(t) � c1 cos vt � c2 sin vt. (3)

The period of free vibrations described by (3) is T � 2p/v, and the frequency is f � 1/T � 
v/2p. For example, for x(t) � 2 cos 3t � 4 sin 3t the period is 2p/3 and the frequency is 3/2p. 
The former number means that the graph of x(t) repeats every 2p/3 units; the latter number means 
that there are three cycles of the graph every 2p units or, equivalently, that the mass undergoes 
3/2p complete vibrations per unit time. In addition, it can be shown that the period 2p/v is the 
time interval between two successive maxima of x(t). Keep in mind that a maximum of x(t) is 
a positive displacement corresponding to the mass’s attaining a maximum distance below the 
equilibrium position, whereas a minimum of x(t) is a negative displacement corresponding to 
the mass’s attaining a maximum height above the equilibrium position. We refer to either case 
as an extreme displacement of the mass. Finally, when the initial conditions are used to deter-
mine the constants c1 and c2 in (3), we say that the resulting particular solution or response is 
the equation of motion.

■ EXAMPLE 1 Free Undamped Motion
A mass weighing 2 pounds stretches a spring 6 inches. At t � 0 the mass is released from a 
point 8 inches below the equilibrium position with an upward velocity of 4

3 ft/s. Determine 
the equation of free motion.

Solution  Because we are using the engineering system of units, the measurements given 
in terms of inches must be converted into feet: 6 in. � 1

2  ft; 8 in. � 2
3  ft. In addition, we 

must convert the units of weight given in pounds into units of mass. From m � W/g we 
have m � 2

32 � 1
16 slug. Also, from Hooke’s law, 2 � k(1

2) implies that the spring constant is 
k � 4 lb/ft. Hence (1) gives

 
1

16
 
d 2x

dt 2 5 24x  or  d 2x

dt 2 1 64x 5 0.

The initial displacement and initial velocity are x(0) � 2
3, x�(0) � � 43, where the negative 

sign in the last condition is a consequence of the fact that the mass is given an initial  velocity 
in the negative, or upward, direction.

Now v2 � 64 or v � 8, so that the general solution of the differential equation is

 x(t) � c1 cos 8t � c2 sin 8t. (4)

m

x = 0

x < 0

x > 0

FIGURE 3.8.2 Positive direction is 
below equilibrium position
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Applying the initial conditions to x(t) and x�(t) gives c1 � 2
3 and c2 � �1

6. Thus the equation 
of motion is

x1t2 �
2

3
 cos 8t 2

1

6
 sin 8t. (5)

Alternative Form of x(t ) When c1 � 0 and c2 � 0, the actual amplitude A of free vibrations 
is not obvious from inspection of equation (3). For example, although the mass in Example 1 is 
initially displaced 23 foot beyond the equilibrium position, the amplitude of  vibrations is a number 
larger than 2

3. Hence it is often convenient to convert a solution of form (3) to the simpler form

 x(t) � A sin(vt � f), (6)

where A � 2c2
1 1 c2

2 and f is a phase angle defined by

 

 sin f �
c1

A

 cos f �
c2

A

t   tan f �
c1

c2
. (7)

To verify this we expand (6) by the addition formula for the sine function:

 A sin vt cos f � A cos vt sin f � (A sin f) cos vt � (A cos f) sin vt. (8)

It follows from FIGURE 3.8.3 that if f is defined by

 sin f �
c1

2c2
1 1 c2

2

�
c1

A
,  cos f �

c2

2c2
1 1 c2

2

�
c2

A
,

then (8) becomes

 A 
c1

A  
cos vt � A 

c2

A  
sin vt � c1 cos vt � c2 sin vt � x(t).

■ EXAMPLE 2 Alternative Form of Solution (5)
In view of the foregoing discussion, we can write the solution (5), x(t) � 2

3 cos 8t � 1
6 sin 8t, 

in the alternative form x(t) � A sin(8t � f). Computation of the amplitude is straightforward, 

A � 21232
2 1 121

6 2
2 � 217

36 � 0.69 ft, but some care should be exercised when computing 
the phase angle f defined by (7). With c1 � 2

3  and c2 � �1
6  we find tan f � � 4, and a 

calculator then gives tan�1(� 4) � �1.326 rad. This is not the phase angle, since tan�1(� 4) 
is located in the fourth quadrant and therefore contradicts the fact that sin f 
 0 and cos f � 0 
because c1 
 0 and c2 � 0. Hence we must take f  to be the second-quadrant 
angle f � p � (�1.326) � 1.816 rad. Thus we have

 x1t2 �
217

6
 sin 18t 1 1.8162. (9)

The period of this function is T � 2p/8 � p/4.

FIGURE 3.8.4(a) illustrates the mass in Example 2 going through approximately two complete 
cycles of motion. Reading left to right, the first five positions marked with black dots correspond 
to the initial position of the mass below the equilibrium position (x � 23), the mass passing through 
the equilibrium position for the first time heading upward (x � 0), the mass at its extreme dis-
placement above the equilibrium position (x � �!17/6), the mass at the equilibrium position 
for the second time heading downward (x � 0), and the mass at its extreme displacement below 

Be careful in the computation 
of the phase angle f.
B

φ

c1
2
 + c2

2
√ c1

c2

FIGURE 3.8.3 A relationship between 
c1 
 0, c2 
 0 and phase angle f
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146 CHAPTER 3  Higher-Order Differential Equations

the equilibrium position (x � !17/6). The dots on the graph of (9) given in Figure 3.8.4(b) also 
agree with the five positions just given. Note, however, that in Figure 3.8.4(b) the positive direction 
in the tx-plane is the usual upward direction and so is opposite to the positive direction indicated 
in Figure 3.8.4(a). Hence the blue graph representing the motion of the mass in Figure 3.8.4(b) 
is the mirror image through the t-axis of the red dashed curve in Figure 3.8.4(a).

Form (6) is very useful, since it is easy to find values of time for which the graph of x(t) crosses 
the positive t-axis (the line x � 0). We observe that sin(vt � f) � 0 when vt � f � np, where 
n is a nonnegative integer.

Systems with Variable Spring Constants In the model discussed above, we assumed an ideal 
world, a world in which the physical characteristics of the spring do not change over time. In the 
nonideal world, however, it seems reasonable to expect that when a spring/mass system is in motion 
for a long period the spring would weaken; in other words, the “spring constant” would vary, or, 
more specifically, decay with time. In one model for the aging spring, the spring constant k in (1), 
is replaced by the decreasing function K(t) � ke�at, k 
 0, a 
 0. The linear differential equation 
mx� � ke�atx � 0 cannot be solved by the methods considered in this chapter. Nevertheless, we 
can obtain two linearly independent solutions using the methods in Chapter 5. See Problem 15 
in Exercises 3.8, Example 4 in Section 5.3, and Problems 33 and 39 in Exercises 5.3.

When a spring/mass system is subjected to an environment in which the temperature is rap-
idly decreasing, it might make sense to replace the constant k with K(t) � kt, k 
 0, a function 
that increases with time. The resulting model, mx� � ktx � 0, is a form of Airy’s differential 
equation. Like the equation for an aging spring, Airy’s equation can be solved by the methods 
of Chapter 5. See Problem 16 in Exercises 3.8, Example 2 in Section 5.1, and Problems 34, 35, 
and 40 in Exercises 5.3.

3.8.2 Spring/Mass Systems: Free Damped Motion
The concept of free harmonic motion is somewhat unrealistic, since the motion described by 
equation (1) assumes that there are no retarding forces acting on the moving mass. Unless the mass 
is suspended in a perfect vacuum, there will be at least a resisting force due to the surrounding 
medium. As FIGURE 3.8.5 shows, the mass could be suspended in a viscous medium or connected 
to a dashpot damping device.

x negative 

x = 0 

x positive 

x negative 

x = 0 

x positive 

x = 0

17
6

——√

17
6

——√

x

2
3
–

2
3
–(0, )

(a)

amplitude A = 
17
6

——√

–π
4

period

(b)

t

x =

x = 0

x = –

x =

FIGURE 3.8.4 Simple harmonic motion

(a)

m

m

(b)

FIGURE 3.8.5 Damping devices

79665_CH03_PASS01.indd   14679665_CH03_PASS01.indd   146 9/22/09   5:56:56 PM9/22/09   5:56:56 PM



DE of Free Damped Motion In the study of mechanics, damping forces acting on a body are 
considered to be proportional to a power of the instantaneous velocity. In particular, we shall 
assume throughout the subsequent discussion that this force is given by a constant multiple of 
dx/dt. When no other external forces are impressed on the system, it follows from Newton’s 
second law that

 
m 

d 2x

dt 2 �2kx 2 b 
dx

dt
,
 

(10)

where b is a positive damping constant and the negative sign is a consequence of the fact that 
the damping force acts in a direction opposite to the motion.

Dividing (10) by the mass m, we find the differential equation of free damped motion is 
d 2x/dt2 � (b/m)dx/dt � (k/m)x � 0 or

 
d 2x

dt 2 1 2l 

dx

dt
1 v2x 5 0, (11)

where 2l �
b

m
, v2 �

k
m

.
 

(12)

The symbol 2l is used only for algebraic convenience, since the auxiliary equation is m2 � 2lm � 
v2 � 0 and the corresponding roots are then

 m1 �2l 1 2l2 2 v2, m2 �2l 2 2l2 2 v2.

We can now distinguish three possible cases depending on the algebraic sign of l2 � v2. Since 
each solution contains the damping factor e�lt, l 
 0, the displacements of the mass become 
negligible over a long period of time.
 Case I :    L2 � V2 
 0  In this situation the system is said to be overdamped because 

the damping coefficient b is large when compared to the spring constant k. 
The corresponding solution of (11) is x(t) � c1em1t � c2em2t or

 x1t2 � e2lt1c1e
2l22v2t 1 c2e

22l22v2t
 2. (13)

Equation 13 represents a smooth and nonoscillatory motion. FIGURE 3.8.6 shows two possible 
graphs of x(t).
 Case II :    L2 � V2 � 0  The system is said to be critically damped because any slight 

decrease in the damping force would result in oscillatory motion. The general 
solution of (11) is x(t) � c1em1t � c2te

m1t or

 x(t) � e�lt(c1 � c2t). (14)

Some graphs of typical motion are given in FIGURE 3.8.7. Notice that the motion is quite similar 
to that of an overdamped system. It is also apparent from (14) that the mass can pass through the 
equilibrium position at most one time.
 Case III :  L2 � V2 � 0  In this case the system is said to be underdamped because 

the damping coefficient is small compared to the spring constant. The roots 
m1 and m2 are now complex:

 m1 5 2l 1#v2 2 l2i,  m2 5 2l 2#v2 2 l2i.

 Thus the general solution of equation (11) is

 x1t2 � e2lt1c1 cos 2v2 2 l2t 1 c2 sin 2v2 2 l2t2. (15)

As indicated in FIGURE 3.8.8, the motion described by (15) is oscillatory, but because of the coef-
ficient e�lt, the amplitudes of vibration → 0 as t → q.

t

x

FIGURE 3.8.6 Motion of an overdamped 
system

x

t

FIGURE 3.8.7 Motion of an critically 
damped system

x

t

undamped
underdamped

FIGURE 3.8.8 Motion of an underdamped 
system
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148 CHAPTER 3  Higher-Order Differential Equations

■ EXAMPLE 3 Overdamped Motion
It is readily verified that the solution of the initial-value problem

 

d 2x

dt 2 1 5 
dx

dt
1 4x � 0, x102 � 1, x¿ 102 � 1

is x1t2 5
5

3
 e2t 2

2

3
 e24t.

 
(16)

The problem can be interpreted as representing the overdamped motion of a mass on a spring. 
The mass starts from a position 1 unit below the equilibrium position with a downward veloc-
ity of 1 ft/s.
  To graph x(t) we find the value of t for which the function has an extremum; that is, 
the value of time for which the first derivative (velocity) is zero. Differentiating (16) gives 
x�(t) � �5

3e�t � 8
3e�4t so that x�(t) � 0 implies e3t � 8

5  or t � 1
3  ln 8

5  � 0.157. It follows 
from the first derivative test, as well as our intuition, that x(0.157) � 1.069 ft is actually a 
maximum. In other words, the mass attains an extreme displacement of 1.069 feet below the 
equilibrium position.
  We should also check to see whether the graph crosses the t-axis; that is, whether the mass 
passes through the equilibrium position. This cannot happen in this instance since the equation 
x(t) � 0, or e3t � 2

5, has the physically irrelevant solution t � 1
3 ln 2

5 � �0.305.
  The graph of x(t), along with some other pertinent data, is given in FIGURE 3.8.9.

■ EXAMPLE 4 Critically Damped Motion
An 8-pound weight stretches a spring 2 feet. Assuming that a damping force numerically 
equal to two times the instantaneous velocity acts on the system, determine the equation 
of motion if the weight is released from the equilibrium position with an upward velocity 
of 3 ft/s.

Solution  From Hooke’s law we see that 8 � k(2) gives k � 4 lb/ft and that W � mg gives 
m � 8

32 � 1
4 slug. The differential equation of motion is then

 

1

4
 
d 2x

dt 2 5 24x 2 2 
dx

dt
  or  d 2x

dt 2 1 8 
dx

dt
1 16x 5 0.

 
(17)

The auxiliary equation for (17) is m2 � 8m � 16 � (m � 4)2 � 0 so that m1 � m2 � �4. 
Hence the system is critically damped and

 x(t) � c1e
�4t � c2te

�4t. (18)

Applying the initial conditions x(0) � 0 and x�(0) � �3, we find, in turn, that c1 � 0 and 
c2 � �3. Thus the equation of motion is

 x(t) � �3te�4t. (19)

To graph x(t) we proceed as in Example 3. From x�(t) � �3e�4t(1 � 4t) we see that x�(t) � 0 when 
t � 1

4. The corresponding extreme displacement is x(1
4) � �3(1

4)e�1 � �0.276 ft. As shown 
in FIGURE 3.8.10, we interpret this value to mean that the weight reaches a maximum height 
of 0.276 foot above the equilibrium position.

■ EXAMPLE 5 Underdamped Motion
A 16-pound weight is attached to a 5-foot-long spring. At equilibrium the spring measures 
8.2 feet. If the weight is pushed up and released from rest at a point 2 feet above the equilib-
rium position, find the displacements x(t) if it is further known that the surrounding medium 
offers a resistance numerically equal to the instantaneous velocity.

x

t
1 2 3

3
2
3

e–4t–x = 5e–t

(a)

t

(b)

1

1.5

2

2.5

3

0.601

0.370

0.225

0.137

0.083

x (t)

FIGURE 3.8.9 Overdamped system in 
Example 3

t

x t = 1
4

–0.276
maximum

height above
equilibrium position 

FIGURE 3.8.10 Critically damped 
system in Example 4
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Solution  The elongation of the spring after the weight is attached is 8.2 � 5 � 3.2 ft, so it 
follows from Hooke’s law that 16 � k(3.2) or k � 5 lb/ft. In addition, m � 16

32 � 12 slug so that 
the differential equation is given by

 

1

2
 
d 2x

dt 2 �25x 2
dx

dt
 or d 2x

dt 2 1 2 
dx

dt
1 10x � 0.

 
(20)

Proceeding, we find that the roots of m2 � 2m � 10 � 0 are m1 � �1 � 3i and m2 � �1 � 3i, 
which then implies the system is underdamped and

 x(t) � e�t(c1 cos 3t � c2 sin 3t). (21)

Finally, the initial conditions x(0) � �2 and x�(0) � 0 yield c1 � �2 and c2 � � 23, so the 
equation of motion is

 x1t2 � e2t a22 cos 3t 2
2

3
 sin 3tb . (22)

Alternative Form of x(t ) In a manner identical to the procedure used on page 145, we can 
write any solution

 x1t2 5 e2lt1c1 cos 2v2 2 l2t 1 c2 sin 2v2 2 l2t2

in the alternative form

 x1t2 5 Ae2lt sin 12v2 2 l2t 1 f2 , (23)

where A � 2c2
1 1 c2

2 and the phase angle f is determined from the equations

  sin f �
c1

A
,  cos f �

c2

A
,  tan f �

c1

c2
. 

The coefficient Ae�lt is sometimes called the damped amplitude of vibrations. Because (23) is 

not a periodic function, the number 2p>2v2 2 l2 is called the quasi period and 2v2 2 l2>2p 
is the quasi frequency. The quasi period is the time interval between two successive maxima 
of x(t). You should verify, for the equation of motion in Example 5, that A � 2!10>3 and 
f � 4.391. Therefore an equivalent form of (22) is

 x1t2 �
2210

3
 e2t sin 13t 1 4.3912.

3.8.3 Spring/Mass Systems: Driven Motion

DE of Driven Motion with Damping Suppose we now take into consideration an external 
force f (t) acting on a vibrating mass on a spring. For example, f (t) could represent a driving 
force causing an oscillatory vertical motion of the support of the spring. See FIGURE 3.8.11. The 
inclusion of f (t) in the formulation of Newton’s second law gives the differential equation of 
driven or forced motion:

 
m 

d 2x

dt 2 �2kx 2 b 
dx

dt
1 f 1t2.

 
(24)

Dividing (24) by m gives

 
d 2x

dt 2 1 2l 
dx

dt
1 v2x � F1t2, (25)

m

FIGURE 3.8.11 Oscillatory vertical 
 motion of the support
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150 CHAPTER 3  Higher-Order Differential Equations

where F (t) � f (t)/m and, as in the preceding section, 2l � b/m, v2 � k/m. To solve the lat-
ter nonhomogeneous equation we can use either the method of undetermined coefficients or 
variation of parameters.

■ EXAMPLE 6 Interpretation of an Initial-Value Problem
Interpret and solve the initial-value problem

 

1

5
 
d 2x

dt 2 1 1.2 
dx

dt
1 2x � 5 cos 4t, x102 �

1

2
, x¿ 102 � 0.

 
(26)

Solution  We can interpret the problem to represent a vibrational system consisting of a mass 
(m � 1

5 slug or kilogram) attached to a spring (k � 2 lb/ft or N/m). The mass is released from 
rest 1

2 unit (foot or meter) below the equilibrium position. The motion is damped ( b � 1.2) 
and is being driven by an external periodic (T � p/2 s) force beginning at t � 0. Intuitively 
we would expect that even with damping, the system would remain in motion until such 
time as the forcing function was “turned off,” in which case the amplitudes would diminish. 
However, as the problem is given, f (t) � 5 cos 4t will remain “on” forever.

We first multiply the differential equation in (26) by 5 and solve

 
dx 2

dt 2 1 6 
dx

dt
1 10x � 0

by the usual methods. Since m1 � �3 � i, m2 � �3 � i, it follows that

 xc(t) � e�3t(c1 cos t � c2 sin t).

Using the method of undetermined coefficients, we assume a particular solution of the form 
xp(t) � A cos 4t � B sin 4t. Differentiating xp(t) and substituting into the DE gives

 x�p � 6x�p � 10xp � (� 6A � 24B) cos 4t � (�24A � 6B) sin 4t � 25 cos 4t.

The resulting system of equations

 � 6A � 24B � 25,   �24A � 6B � 0

yields A � � 25
102 and B � 50

51. It follows that

 x(t) � e�3t(c1 cos t � c2 sin t) � 
25

102
 cos 4t � 

50

51 
sin 4t. (27)

When we set t � 0 in the above equation, we obtain c1 � 38
51. By differentiating the  expression 

and then setting t � 0, we also find that c2 � � 86
51. Therefore the equation of motion is

 x1t2 � e23t
 a38

51
 cos t 2

86

51
 sin tb 2 25

102
 cos 4t 1

50

51
 sin 4t. (28)

Transient and Steady-State Terms When F is a periodic function, such as F (t) � F0 sin gt or 
F (t) � F0 cos gt, the general solution of (25) for l 
 0 is the sum of a nonperiodic function xc(t) and 
a periodic function xp(t). Moreover, xc(t) dies off as time increases; that is, limtSq xc(t) � 0. Thus 
for a long period of time, the displacements of the mass are closely approximated by the particular 
solution xp(t). The complementary function xc(t) is said to be a transient term or transient solu-
tion, and the function xp(t), the part of the solution that remains after an interval of time, is called a 
steady-state term or steady-state solution. Note therefore that the effect of the initial conditions on 
a spring/mass system driven by F is transient. In the particular solution (28), e�3t(38

51 cos t � 86
51 sin t) 

is a transient term and xp(t) � � 25
102 cos 4t � 50

51 sin 4t is a steady-state term. The graphs of these 
two terms and the solution (28) are given in FIGURES 3.8.12(a) and 3.8.12(b), respectively.

1

–1

transient

x

t

/2
(a)

1

–1

+ steady state

x

t

(b)

π

/2π

steady-state xp(t)

x(t) = transient

FIGURE 3.8.12  Graph of solution (28) 
in Example 6
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 3.8 Linear Models: Initial-Value Problems 151

■ EXAMPLE 7 Transient/Steady-State Solutions
The solution of the initial-value problem

 
d 2x

dt 2 1 2 
dx

dt
1 2x � 4 cos t 1 2 sin t, x102 � 0, x¿102 � x1,

where x1 is constant, is given by

 x(t) � (x1 � 2)e�t sin t � 2 sin t.
  
 transient steady state

Solution curves for selected values of the initial velocity x1 are shown in FIGURE 
3.8.13. The graphs show that the influence of the transient term is negligible for about 
t � 3p/2. 

DE of Driven Motion Without Damping With a periodic impressed force and no damping 
force, there is no transient term in the solution of a problem. Also, we shall see that a periodic 
impressed force with a frequency near or the same as the frequency of free undamped vibrations 
can cause a severe problem in any oscillatory mechanical system.

■ EXAMPLE 8 Undamped Forced Motion
Solve the initial-value problem

 
d 2x

dt 2  � v2x � F0 sin gt,   x(0) � 0,   x�(0) � 0, (29)

where F0 is a constant and g � v.

Solution  The complementary function is xc(t) � c1 cos vt � c2 sin vt. To obtain a particular 
solution we assume xp(t) � A cos gt � B sin gt so that

 x�p � v2xp � A(v2 � g2) cos gt � B(v2 � g2) sin gt � F0 sin gt.

Equating coefficients immediately gives A � 0 and B � F0 /(v
2 � g2). Therefore

 xp1t2 �
F0

v2 2 g2 sin gt.

Applying the given initial conditions to the general solution

 x(t) � c1 cos vt � c2 sin vt � 
F0

v2 2 g2  sin gt

yields c1 � 0 and c2 � �gF0  /v(v2 � g2). Thus the solution is

 x(t) � 
F0

v1v2 2 g22
 (�g sin vt � v sin gt),   g � v. (30) 

Pure Resonance Although equation (30) is not defined for g � v, it is interesting to 
observe that its limiting value as g → v can be obtained by applying L’Hôpital’s rule. This 
limiting process is analogous to “tuning in” the frequency of the driving force (g/2p) to 
the frequency of free vibrations (v/2p). Intuitively we expect that over a length of time we 

FIGURE 3.8.13 Graphs of solution in 
Example 7 for various values of x1

4

x

t

/2π

2

x1 = –3

π
–4

–2

x1 = 7

x1 = 3

x1 = 0
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152 CHAPTER 3 Higher-Order Differential Equations

should be able to substantially increase the amplitudes of vibration. For g � v we define 
the solution to be

  x1t2 � lim
gSv

F0 
2g sin vt 1 v sin gt

v1v2 2 g22
� F0 lim

gSv
  

d

dg
 12g sin vt 1 v sin gt2

d

dg
 1v3 2 vg22

  � F0 lim
gSv

 
2 sin vt 1 vt cos gt

22vg

  � F0 
2 sin vt 1 vt cos vt

22v2

 �
F0

2v2 sin vt 2
F0

2v
 t cos vt. (31)

As suspected, when t → q the displacements become large; in fact, | x(tn) | → q when tn � 
np/v, n � 1, 2,  . . . . The phenomenon we have just described is known as pure resonance. The 
graph given in FIGURE 3.8.14 shows typical motion in this case.

In conclusion, it should be noted that there is no actual need to use a limiting process on (30) 
to obtain the solution for g � v. Alternatively, equation (31) follows by solving the initial-value 
problem

 
d 2x

dt 2  � v2x � F0 sin vt,   x(0) � 0,   x�(0) � 0

directly by conventional methods.
If the displacements of a spring/mass system were actually described by a function such 

as (31), the system would necessarily fail. Large oscillations of the mass would eventually force 
the spring beyond its elastic limit. One might argue too that the resonating model presented in 
Figure 3.8.14 is completely unrealistic, because it ignores the retarding effects of ever-present 
damping forces. Although it is true that pure resonance cannot occur when the smallest amount 
of damping is taken into consideration, large and equally destructive amplitudes of vibration 
(although bounded as t → q) can occur. See Problem 43 in Exercises 3.8.

3.8.4 Series Circuit Analogue

LRC-Series Circuits As mentioned in the introduction to this chapter, many different physical 
systems can be described by a linear second-order differential equation similar to the differential 
equation of forced motion with damping:

 m 
d 

2x

dt 
2 1 b 

dx

dt
1 kx � f 1t2. (32)

If i(t) denotes current in the LRC-series electrical circuit shown in FIGURE 3.8.15, then the voltage 
drops across the inductor, resistor, and capacitor are as shown in Figure 1.3.3. By Kirchhoff’s 
second law, the sum of these voltages equals the voltage E(t) impressed on the circuit; that is,

 L 
di

dt
1 Ri 1

1

C
 q � E1t2. (33)

But the charge q(t) on the capacitor is related to the current i(t) by i � dq/dt, and so (33) becomes 
the linear second-order differential equation

 L 
d 

2q

dt 
2 1 R 

dq

dt
1

1

C
 q � E1t2. (34)

FIGURE 3.8.14  Graph of solution 
in (31) illustrating pure resonance

t

x

FIGURE 3.8.15  LRC-series 
circuit

C

L
RE
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 3.8 Linear Models: Initial-Value Problems 153

The nomenclature used in the analysis of circuits is similar to that used to describe spring/
mass systems.

If E(t) � 0, the electrical vibrations of the circuit are said to be free. Since the auxiliary equation 
for (34) is Lm2 � Rm � 1/C � 0, there will be three forms of the solution with R � 0, depending 
on the value of the discriminant R2 � 4L/C. We say that the circuit is

 overdamped if R2 � 4L/C � 0,
 critically damped if R2 � 4L/C � 0,
and underdamped if R2 � 4L/C 	 0.

In each of these three cases the general solution of (34) contains the factor e�Rt/2L, and so q(t) → 0 
as t → q. In the underdamped case when q(0) � q0, the charge on the capacitor oscillates as it 
decays; in other words, the capacitor is charging and discharging as t → q. When E(t) � 0 and 
R � 0, the circuit is said to be undamped and the electrical vibrations do not approach zero as t 
increases without bound; the response of the circuit is simple harmonic.

■ EXAMPLE 9 Underdamped Series Circuit
Find the charge q(t) on the capacitor in an LRC-series circuit when L � 0.25 henry (h), 
R � 10 ohms (V), C � 0.001 farad (f), E(t) � 0 volts (V), q(0) � q0 coulombs (C), and 
i(0) � 0 amperes (A).

Solution  Since 1/C � 1000, equation (34) becomes

 
1

4
 q� � 10q� � 1000q � 0   or   q� � 40q� � 4000q � 0.

Solving this homogeneous equation in the usual manner, we find that the circuit is under-
damped and q(t) � e�20t (c1 cos 60t � c2 sin 60t). Applying the initial conditions, we find 
c1 � q0 and c2 � q0 /3. Thus q(t) � q0e

�20t(cos 60t � 1
3 sin 60t). Using (23), we can write the 

foregoing solution as

 q(t) � 
q0210

3
 e�20t sin(60t � 1.249). 

When there is an impressed voltage E(t) on the circuit, the electrical vibrations are said to be 
forced. In the case when R � 0, the complementary function qc(t) of (34) is called a transient 
solution. If E(t) is periodic or a constant, then the particular solution qp(t) of (34) is a steady-
state solution.

■ EXAMPLE 10 Steady-State Current
Find the steady-state solution qp(t) and the steady-state current in an LRC-series circuit when 
the impressed voltage is E(t) � E0 sin gt.

Solution  The steady-state solution qp(t) is a particular solution of the differential equation

 L 
d 2q

dt 2 1 R 
dq

dt
1

1

C
 q � E0 sin gt.

Using the method of undetermined coefficients, we assume a particular solution of the form 
qp(t) � A sin gt � B cos gt. Substituting this expression into the differential equation, sim-
plifying, and equating coefficients gives

 A �

E0 aLg 2
1

Cg
b

2g aL2g2 2
2L

C
1

1

C2g2 1 R2b
, B �

E0R

2g aL2g2 2
2L

C
1

1

C2g2 1 R2b
.
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154 CHAPTER 3 Higher-Order Differential Equations

It is convenient to express A and B in terms of some new symbols.

 If X � Lg 2
1

Cg
, then X 

2 � L2g2 2
2L

C
1

1

C2g2.

 If Z � 2X2 1 R2, then Z 
2 � L2g2 2

2L

C
1

1

C2g2 1 R2.

Therefore A � E0X/(�gZ2) and B � E0R/(�gZ 2), so the steady-state charge is

 qp1t2 �2
E0X

gZ 
2  sin gt 2

E0R

gZ 
2  cos gt.

Now the steady-state current is given by ip(t) � q�p(t):

 ip1t2 �
E0

Z
 aR

Z
  sin gt 2

X

Z
 cos gtb . (35) 

The quantities X � Lg � 1/(Cg) and Z � 2X2 1 R2 defined in Example 10 are called, 
respectively, the reactance and impedance of the circuit. Both the reactance and the impedance 
are measured in ohms.

3.8.1   Spring/Mass Systems: Free Undamped 
Motion

 1. A mass weighing 4 pounds is attached to a spring whose spring 
constant is 16 lb/ft. What is the period of simple harmonic 
motion?

 2. A 20-kilogram mass is attached to a spring. If the frequency 
of simple harmonic motion is 2/p cycles/s, what is the spring 
constant k? What is the frequency of simple harmonic motion 
if the original mass is replaced with an 80-kilogram mass?

 3. A mass weighing 24 pounds, attached to the end of a spring, 
stretches it 4 inches. Initially, the mass is released from rest 
from a point 3 inches above the equilibrium position. Find the 
equation of motion.

 4. Determine the equation of motion if the mass in Problem 3 is 
initially released from the equilibrium position with an initial 
downward velocity of 2 ft/s.

 5. A mass weighing 20 pounds stretches a spring 6 inches. The 
mass is initially released from rest from a point 6 inches below 
the equilibrium position.
(a) Find the position of the mass at the times t � p/12, p/8, 
p/6, p/4, and 9p/32 s.

(b) What is the velocity of the mass when t � 3p/16 s? In 
which direction is the mass heading at this instant?

(c) At what times does the mass pass through the equilibrium 
position?

 6. A force of 400 newtons stretches a spring 2 meters. A mass 
of 50 kilograms is attached to the end of the spring and is 
initially released from the equilibrium position with an upward 
velocity of 10 m/s. Find the equation of motion.

 7. Another spring whose constant is 20 N/m is suspended from 
the same rigid support but parallel to the spring/mass system 
in Problem 6. A mass of 20 kilograms is attached to the 
second spring, and both masses are initially released from 
the equilibrium position with an upward velocity of 10 m/s.

(a) Which mass exhibits the greater amplitude of motion?
(b) Which mass is moving faster at t � p/4 s? At p/2 s?
(c) At what times are the two masses in the same position? 

Where are the masses at these times? In which directions 
are they moving?

 8. A mass weighing 32 pounds stretches a spring 2 feet. Determine 
the amplitude and period of motion if the mass is initially re-
leased from a point 1 foot above the equilibrium position with 
an upward velocity of 2 ft/s. How many complete cycles will 
the mass have completed at the end of 4p seconds?

 9. A mass weighing 8 pounds is attached to a spring. When set 
in motion, the spring/mass system exhibits simple harmonic 
motion. Determine the equation of motion if the spring con-
stant is 1 lb/ft and the mass is initially released from a point 
6 inches below the equilibrium position with a downward 
velocity of 3

2 ft/s. Express the equation of motion in the form 
given in (6).

 10. A mass weighing 10 pounds stretches a spring 1
4 foot. This 

mass is removed and replaced with a mass of 1.6 slugs, which 
is initially released from a point 1

3 foot above the equilibrium 
position with a downward velocity of 54 ft/s. Express the equa-
tion of motion in the form given in (6). At what times does 
the mass attain a displacement below the equilibrium position 
numerically equal to 1

2 the amplitude?

 3.8 Exercises Answers to selected odd-numbered problems begin on page ANS-000.  
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 11. A mass weighing 64 pounds stretches a spring 0.32 foot. The 
mass is initially released from a point 8 inches above the 
equilibrium position with a downward velocity of 5 ft/s.
(a) Find the equation of motion.
(b) What are the amplitude and period of motion?
(c) How many complete cycles will the mass have completed 

at the end of 3p seconds?
(d) At what time does the mass pass through the equilibrium 

position heading downward for the second time?
(e) At what time does the mass attain its extreme displace-

ment on either side of the equilibrium position?
(f) What is the position of the mass at t � 3 s?
(g) What is the instantaneous velocity at t � 3 s?
(h) What is the acceleration at t � 3 s?
(i) What is the instantaneous velocity at the times when the 

mass passes through the equilibrium position?
(j) At what times is the mass 5 inches below the equilibrium 

position?
(k) At what times is the mass 5 inches below the equilibrium 

position heading in the upward direction?

 12. A mass of 1 slug is suspended from a spring whose spring 
constant is 9 lb/ft. The mass is initially released from a point 
1 foot above the equilibrium position with an upward veloc-
ity of !3 ft/s. Find the times for which the mass is heading 
downward at a velocity of 3 ft/s.

 13. Under some circumstances when two parallel springs, with 
constants k1 and k2, support a single mass, the effective spring 
constant of the system is given by k � 4k1k2>(k1 � k2). A mass 
weighing 20 pounds stretches one spring 6 inches and another 
spring 2 inches. The springs are attached to a common rigid 
support and then to a metal plate. As shown in FIGURE 3.8.16, the 
mass is attached to the center of the plate in the double-spring ar-
rangement. Determine the effective spring constant of this system. 
Find the equation of motion if the mass is initially released from 
the equilibrium position with a downward velocity of 2 ft/s. 

  FIGURE 3.8.16 Double-spring system in Problem 13

20 lb

k2k1

 14. A certain mass stretches one spring 13 foot and another spring 12 foot. 
The two springs are attached to a common rigid support in the man-
ner indicated in Problem 13 and Figure 3.8.16. The first mass is set 
aside, a mass weighing 8 pounds is attached to the double-spring 
arrangement, and the system is set in motion. If the period of mo-
tion is p/15 second, determine how much the first mass weighs.

 15. A model of a spring/mass system is 4x� � e�0.1tx � 0. By in-
spection of the differential equation only, discuss the behavior 
of the system over a long period of time.

 16. A model of a spring/mass system is 4x� � tx � 0. By inspec-
tion of the differential equation only, discuss the behavior of 
the system over a long period of time.

3.8.2   Spring/Mass Systems: Free Damped Motion
In Problems 17–20, the given figure represents the graph of an 
equation of motion for a damped spring/mass system. Use the 
graph to determine

(a) whether the initial displacement is above or below the 
equilibrium position, and

(b) whether the mass is initially released from rest, heading 
downward, or heading upward.

 17. 

FIGURE 3.8.17 Graph 
for Problem 17

t

x  18. 

FIGURE 3.8.18 Graph 
for Problem 18

t

x

 19. 

FIGURE 3.8.19 Graph 
for Problem 19

t

x  20. 

FIGURE 3.8.20 Graph 
for Problem 20

t

x

 21. A mass weighing 4 pounds is attached to a spring whose con-
stant is 2 lb/ft. The medium offers a damping force that is 
numerically equal to the instantaneous velocity. The mass is 
initially released from a point 1 foot above the equilibrium 
position with a downward velocity of 8 ft/s. Determine the time 
at which the mass passes through the equilibrium position. 
Find the time at which the mass attains its extreme displace-
ment from the equilibrium position. What is the position of 
the mass at this instant?

 22. A 4-foot spring measures 8 feet long after a mass weighing 
8 pounds is attached to it. The medium through which the mass 
moves offers damping force numerically equal to !2 times 
the instantaneous velocity. Find the equation of motion if the 
mass is initially released from the equilibrium position with a 
downward velocity of 5 ft/s. Find the time at which the mass 
attains its extreme displacement from the equilibrium position. 
What is the position of the mass at this instant?

 23. A 1-kilogram mass is attached to a spring whose constant is 
16 N/m, and the entire system is then submerged in a liquid 
that imparts a damping force numerically equal to 10 times the 
instantaneous velocity. Determine the equations of motion if
(a) the mass is initially released from rest from a point 1 meter 

below the equilibrium position, and then
(b) the mass is initially released from a point 1 meter below the 

equilibrium position with an upward velocity of 12 m/s.
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156 CHAPTER 3 Higher-Order Differential Equations

 24. In parts (a) and (b) of Problem 23, determine whether the mass 
passes through the equilibrium position. In each case find the 
time at which the mass attains its extreme displacement from 
the equilibrium position. What is the position of the mass at 
this instant?

 25. A force of 2 pounds stretches a spring 1 foot. A mass 
weighing 3.2 pounds is attached to the spring, and the system 
is then immersed in a medium that offers a damping force 
numerically equal to 0.4 times the instantaneous velocity.
(a) Find the equation of motion if the mass is initially re-

leased from rest from a point 1 foot above the equilibrium 
position.

(b) Express the equation of motion in the form given 
in (23).

(c) Find the first time at which the mass passes through the 
equilibrium position heading upward.

 26. After a mass weighing 10 pounds is attached to a 5-foot spring, 
the spring measures 7 feet. This mass is removed and replaced 
with another mass that weighs 8 pounds. The entire system is 
placed in a medium that offers a damping force numerically 
equal to the instantaneous velocity.
(a) Find the equation of motion if the mass is initially released 

from a point 12 foot below the equilibrium position with a 
downward velocity of 1 ft/s.

(b) Express the equation of motion in the form given 
in (23).

(c) Find the times at which the mass passes through the equi-
librium position heading downward.

(d) Graph the equation of motion.
 27. A mass weighing 10 pounds stretches a spring 2 feet. The mass 

is attached to a dashpot damping device that offers a damping 
force numerically equal to b (b � 0) times the instantaneous 
velocity. Determine the values of the damping constant b so 
that the subsequent motion is (a) overdamped, (b) critically 
damped, and (c) underdamped.

 28. A mass weighing 24 pounds stretches a spring 4 feet. The sub-
sequent motion takes place in a medium that offers a damping 
force numerically equal to b (b � 0) times the instantaneous 
velocity. If the mass is initially released from the equilibrium 
position with an upward velocity of 2 ft/s, show that when 
b � 3!2 the equation of motion is

 x1t2 5
23

2b2 2 18
 e22bt>3 sinh 

2

3
2b2 2 18 t.

3.8.3   Spring/Mass Systems: Driven Motion
 29. A mass weighing 16 pounds stretches a spring 8

3  feet. The 
mass is initially released from rest from a point 2 feet below 
the equilibrium position, and the subsequent motion takes 
place in a medium that offers a damping force numerically 
equal to one-half the instantaneous velocity. Find the equa-
tion of motion if the mass is driven by an external force equal 
to f (t) � 10 cos 3t.

 30. A mass of 1 slug is attached to a spring whose constant 
is 5 lb/ft. Initially the mass is released 1 foot below the 

equilibrium position with a downward velocity of 5 ft/s, and 
the subsequent motion takes place in a medium that offers a 
damping force numerically equal to two times the instanta-
neous velocity.
(a) Find the equation of motion if the mass is driven by an 

external force equal to f (t) � 12 cos 2t � 3 sin 2t.
(b) Graph the transient and steady-state solutions on the same 

coordinate axes.
(c) Graph the equation of motion.

 31. A mass of 1 slug, when attached to a spring, stretches it 2 feet 
and then comes to rest in the equilibrium position. Starting 
at t � 0, an external force equal to f (t) � 8 sin 4t is applied 
to the system. Find the equation of motion if the surrounding 
medium offers a damping force numerically equal to eight 
times the instantaneous velocity.

 32. In Problem 31 determine the equation of motion if the exter-
nal force is f (t) � e�t sin 4t. Analyze the displacements for 
t → q.

 33. When a mass of 2 kilograms is attached to a spring whose 
constant is 32 N/m, it comes to rest in the equilibrium posi-
tion. Starting at t � 0, a force equal to f (t) � 68e�2t cos 4t 
is applied to the system. Find the equation of motion in the 
absence of damping.

 34. In Problem 33 write the equation of motion in the form x(t) � 
A sin(vt � f) � Be�2t sin(4t � u). What is the amplitude of 
vibrations after a very long time?

 35. A mass m is attached to the end of a spring whose constant 
is k. After the mass reaches equilibrium, its support begins 
to oscillate vertically about a horizontal line L according to 
a formula h(t). The value of h represents the distance in feet 
measured from L. See FIGURE 3.8.21.
(a) Determine the differential equation of motion if the entire 

system moves through a medium offering a damping force 
numerically equal to b(dx/dt).

(b) Solve the differential equation in part (a) if the spring 
is stretched 4 feet by a weight of 16 pounds and b � 2, 
h(t) � 5 cos t, x(0) � x�(0) � 0. 

FIGURE 3.8.21  Oscillating support in Problem 35

L

support

h (t)

 36. A mass of 100 grams is attached to a spring whose constant is 
1600 dynes/cm. After the mass reaches equilibrium, its support 
oscillates according to the formula h(t) � sin 8t, where h rep-
resents displacement from its original position. See Problem 
35 and Figure 3.8.21.
(a) In the absence of damping, determine the equation of 

motion if the mass starts from rest from the equilibrium 
position.
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(b) At what times does the mass pass through the equilibrium 
position?

(c) At what times does the mass attain its extreme 
displacements?

(d) What are the maximum and minimum displacements?
(e) Graph the equation of motion.

In Problems 37 and 38, solve the given initial-value problem.

 37. 
d 2x

dt 2  � 4x � �5 sin 2t � 3 cos 2t, x(0) � �1, x�(0) � 1

 38. 
d 2x

dt 2  � 9x � 5 sin 3t, x(0) � 2, x�(0) � 0

 39. (a) Show that the solution of the initial-value problem

      
d 2x

dt 2  � v2x � F0 cos gt, x(0) � 0, x�(0) � 0

 is   x1t2 5
F0

v2 2 g2 1  cos gt 2  cos vt2.

(b) Evaluate lim
gSv

 
F0

v2 2 g2  (cos gt � cos vt).

 40. Compare the result obtained in part (b) of Problem 39 with 
the solution obtained using variation of parameters when the 
external force is F0 cos vt.

 41. (a)  Show that x(t) given in part (a) of Problem 39 can be 
written in the form

      x 1t2 5
22F0

v2 2 g2 sin 
1

2
 1g 2 v2  t sin 

1

2
 1g 1 v2  t.

(b) If we define e � 1
21g 2 v2 , show that when e is small, 

an approximate solution is

      x1t2 �
F0

2eg
 sin et sin gt.

 When e is small the frequency g/2p of the impressed force 
is close to the frequency v/2p of free vibrations. When 
this occurs, the motion is as indicated in FIGURE 3.8.22. 
Oscillations of this kind are called beats and are due 
to the fact that the frequency of sin et is quite small in 
comparison to the frequency of sin gt. The red dashed 
curves, or envelope of the graph of x(t), are obtained from 
the graphs of 
(F0 /2eg) sin et. Use a graphing utility 
with various values of F0, e, and g to verify the graph in 
Figure 3.8.22. 

 FIGURE 3.8.22  Beats phenomenon in Problem 41

x

t

Computer Lab Assignments
 42. Can there be beats when a damping force is added to the 

model in part (a) of Problem 39? Defend your position with 
graphs obtained either from the explicit solution of the 
problem

 
d 

2x

dt 
2 1 2l

dx

dt
 � v2x � F0 cos gt,  x(0) � 0,  x�(0) � 0

  or from solution curves obtained using a numerical solver.

 43. (a) Show that the general solution of

      
d 2x

dt 2 1 2l 
dx

dt
1 v2x 5 F0 sin gt

   is

   x1t2 5 Ae2lt
 sin 12v2 2 l2t 1 f2

                    1
F0

21v2 2 g222 1 4l2g2
  sin 1gt 1 u2,

 where A � 2c2
1 1 c2

2 and the phase angles f and u are, 
respectively, defined by sin f � c1/A, cos f � c2/A and

      sin u 5
22lg

21v2 2 g222 1 4l2g2
,

     cos u 5
v2 2 g2

21v2 2 g222 1 4l2g2
.

(b) The solution in part (a) has the form x(t) � xc(t) � xp(t). 
Inspection shows that xc(t) is transient, and hence for large 
values of time, the solution is approximated by xp(t) � 
g(g) sin(gt � u), where

      g1g2 5
F0

21v2 2 g222 1 4l2g2
.

 Although the amplitude g(g) of xp(t) is bounded as t → q, 
show that the maximum oscillations will occur at the value 

g1 � 2v2 2 2l2. What is the maximum value of g? 

The number 2v2 2 2l2>2p is said to be the resonance 
frequency of the system.

(c) When F0 � 2, m � 1, and k � 4, g becomes

      g1g2 5
2

214 2 g222 1 b2g2
.

 Construct a table of the values of g1 and g(g1) correspond-
ing to the damping coefficients b � 2, b � 1, b � 34, b � 12, 
and b � 1

4. Use a graphing utility to obtain the graphs of 
g corresponding to these damping coefficients. Use the 
same coordinate axes. This family of graphs is called 
the resonance curve or frequency response curve of 
the system. What is g1 approaching as b → 0? What is 
happening to the  resonance curve as b → 0?
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158 CHAPTER 3 Higher-Order Differential Equations

 44. Consider a driven undamped spring/mass system described 
by the initial-value problem

    
d2x

dt2  � v2x � F0 sinn gt, x(0) � 0, x�(0) � 0.

(a) For n � 2, discuss why there is a single frequency g1/2p 
at which the system is in pure resonance.

(b) For n � 3, discuss why there are two frequencies g1/2p 
and g2/2p at which the system is in pure resonance.

(c) Suppose v � 1 and F0 � 1. Use a numerical solver to 
obtain the graph of the solution of the initial-value prob-
lem for n � 2 and g � g1 in part (a). Obtain the graph of 
the solution of the initial-value problem for n � 3 cor-
responding, in turn, to g � g1 and g � g2 in part (b).

3.8.4   Series Circuit Analogue
 45. Find the charge on the capacitor in an LRC-series circuit at 

t � 0.01 s when L � 0.05 h, R � 2 �, C � 0.01 f, E(t) � 0 V, 
q(0) � 5 C, and i(0) � 0 A. Determine the first time at which 
the charge on the capacitor is equal to zero.

 46. Find the charge on the capacitor in an LRC-series circuit when 
L � 1

4 h, R � 20 �, C � 1
300 f, E(t) � 0 V, q(0) � 4 C, and 

i(0) � 0 A. Is the charge on the capacitor ever equal to zero?

In Problems 47 and 48, find the charge on the capacitor and 
the current in the given LRC-series circuit. Find the maximum 
charge on the capacitor.

 47. L � 5
3  h, R � 10 �, C � 1

30  f, E(t) � 300 V, q(0) � 0 C, 
i(0) � 0 A

 48. L � 1 h, R � 100 �, C � 0.0004 f, E(t) � 30 V, q(0) � 0 C, 
i(0) � 2 A

 49. Find the steady-state charge and the steady-state current in an 
LRC-series circuit when L � 1 h, R � 2 �, C � 0.25 f, and 
E(t) � 50 cos t V.

 50. Show that the amplitude of the steady-state current in the 
LRC-series circuit in Example 10 is given by E0/Z, where Z 
is the impedance of the circuit.

 51. Use Problem 50 to show that the steady-state current in an LRC-
series circuit when L � 12 h, R � 20 �, C � 0.001 f, and E(t) � 
100 sin 60t V, is given by ip(t) � 4.160 sin(60t � 0.588).

 52. Find the steady-state current in an LRC-series circuit when 
L � 1

2 h, R � 20 �, C � 0.001 f, and E(t) � 100 sin 60t � 
200 cos 40t V.

 53. Find the charge on the capacitor in an LRC-series circuit when 
L � 12 h, R � 10 �, C � 0.01 f, E(t) � 150 V, q(0) � 1 C, and 
i(0) � 0 A. What is the charge on the capacitor after a long 
time?

 54. Show that if L, R, C, and E0 are constant, then the amplitude 
of the steady-state current in Example 10 is a maximum when 
g � 1/!LC. What is the maximum amplitude?

 55. Show that if L, R, E0, and g are constant, then the amplitude 
of the steady-state current in Example 10 is a maximum when 
the capacitance is C � 1/Lg2.

 56. Find the charge on the capacitor and the current in an LC-circuit 
when L � 0.1 h, C � 0.1 f, E(t) � 100 sin gt V, q(0) � 0 C, 
and i(0) � 0 A.

 57. Find the charge on the capacitor and the current in an LC-circuit 
when E(t) � E0 cos gt V, q(0) � q0 C, and i(0) � i0 A.

 58. In Problem 57, find the current when the circuit is in 
resonance.

3.9 Linear Models: Boundary-Value Problems

Introduction The preceding section was devoted to dynamic physical systems each 
described by a mathematical model consisting of a linear second-order differential equation 
accompanied by prescribed initial conditions—that is, side conditions that are specified on 
the unknown function and its first derivative at a single point. But often the mathematical 
description of a steady-state phenomenon or a static physical system demands that we solve 
a linear differential equation subject to boundary conditions—that is, conditions specified 
on the unknown function, or on one of its derivatives, or even on a linear combination of the 
unknown function and one of its derivatives, at two different points. By and large, the number 
of specified boundary conditions matches the order of the linear DE. We begin this section 
with an application of a relatively simple linear fourth-order differential equation associated 
with four boundary conditions.

Deflection of a Beam Many structures are constructed using girders, or beams, and these 
beams deflect or distort under their own weight or under the influence of some external force. As we 
shall now see, this deflection y(x) is governed by a relatively simple linear fourth-order differential 
equation.

To begin, let us assume that a beam of length L is homogeneous and has uniform cross sections 
along its length. In the absence of any load on the beam (including its weight), a curve joining the 
centroids of all its cross sections is a straight line called the axis of symmetry. See FIGURE 3.9.1(a). 

FIGURE 3.9.1  Deflection of a 
homogeneous beam

axis of symmetry

(a)

deflection curve

(b)
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If a load is applied to the beam in a vertical plane containing the axis of symmetry, the beam, as 
shown in Figure 3.9.1(b), undergoes a distortion, and the curve connecting the centroids of all 
cross sections is called the deflection curve or elastic curve. The deflection curve approximates 
the shape of the beam. Now suppose that the x-axis coincides with the axis of symmetry and that 
the deflection y(x), measured from this axis, is positive if downward. In the theory of elasticity 
it is shown that the bending moment M(x) at a point x along the beam is related to the load per 
unit length w(x) by the equation

 
d 2M

dx 2 � w1x2. (1)

In addition, the bending moment M(x) is proportional to the curvature k of the elastic curve

 M(x) � EIk, (2)

where E and I are constants; E is Young’s modulus of elasticity of the material of the beam, and I 
is the moment of inertia of a cross section of the beam (about an axis known as the neutral axis). 
The product EI is called the flexural rigidity of the beam.

Now, from calculus, curvature is given by k � y�/[1 � (y�)2]3/2. When the deflection y(x) is 
small, the slope y� � 0 and so [1 � (y�)2]3/2 � 1. If we let k � y�, equation (2) becomes M � EI y�. 
The second derivative of this last expression is

 
d 2M

dx 2 � EI 
d 2

dx 2 y– � EI 
d 4y

dx 4. (3)

Using the given result in (1) to replace d2M/dx2 in (3), we see that the deflection y(x) satisfies 
the fourth-order differential equation

 EI 
d 4y

dx 4 � w1x2. (4)

Boundary conditions associated with equation (4) depend on how the ends of the beam are 
supported. A cantilever beam is embedded or clamped at one end and free at the other. A div-
ing board, an outstretched arm, an airplane wing, and a balcony are common examples of such 
beams, but even trees, flagpoles, skyscrapers, and the George Washington monument can act as 
cantilever beams, because they are embedded at one end and are subject to the bending force of 
the wind. For a cantilever beam, the deflection y(x) must satisfy the following two conditions at 
the embedded end x � 0:

y• (0) � 0 since there is no deflection, and
 • y�(0) � 0 since the deflection curve is tangent to the x-axis (in other words, the 
slope of the deflection curve is zero at this point).

At x � L the free-end conditions are

y• �(L) � 0 since the bending moment is zero, and
y• �(L) � 0 since the shear force is zero.

The function F (x) � dM/dx � EI d3y/dx3 is called the shear force. If an end of a beam is simply 
supported or hinged (also called pin supported, and fulcrum supported), then we must have 
y � 0 and y� � 0 at that end. The following table summarizes the boundary conditions that are 
associated with (4). See FIGURE 3.9.2.

Ends of the Beam Boundary Conditions

Embedded y � 0, y� � 0

Free y� � 0, y� � 0

Simply supported or hinged y � 0, y� � 0

FIGURE 3.9.2  Beams with various 
end conditions

(a)  Embedded at both ends

(b)  Cantilever beam: embedded at the
       left end, free at the right end

(c)  Simply supported at both ends

x = 0 x = L

x = 0 x = L

x = 0 x = L
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■ EXAMPLE 1 An Embedded Beam
A beam of length L is embedded at both ends. Find the deflection of the beam if a constant 
load w0 is uniformly distributed along its length—that is, w(x) � w0, 0 	 x 	 L.

Solution  From (4), we see that the deflection y(x) satisfies

 EI 
d 

4y

dx4 � w0.

Because the beam is embedded at both its left end (x � 0) and right end (x � L), there is no 
vertical deflection and the line of deflection is horizontal at these points. Thus the boundary 
conditions are

 y(0) � 0,   y�(0) � 0,   y(L) � 0,   y�(L) � 0.

We can solve the nonhomogeneous differential equation in the usual manner (find yc by 
observing that m � 0 is a root of multiplicity four of the auxiliary equation m4 � 0, and then 
find a particular solution yp by undetermined coefficients), or we can simply integrate the 
equation d  4y/dx4 � w0 /EI four times in succession. Either way, we find the general solution 
of the equation y � yc � yp to be

 y1x2 � c1 1 c2x 1 c3x
2 1 c4x

3 1
w0

24EI
 x4.

Now the conditions y(0) � 0 and y�(0) � 0 give, in turn, c1 � 0 and c2 � 0, whereas the 

remaining conditions y(L) � 0 and y�(L) � 0 applied to y(x) � c3x
2 � c4x

3 � 
w0

24EI
 x4 yield 

the simultaneous equations

  c3L
2 1 c4L

3 1
w0

24EI
 L4 � 0

  3c3L 1 3c4L
2 1

w0

6EI
 L3 � 0.

Solving this system gives c3 � w0 L
2/24EI and c4 � �w0L/12EI. Thus the deflection is

 y1x2 �
w0 

L2

24EI
 x2 2

w0 
L

12EI
 x3 1

w0

24EI
 x4

or y1x2 �
w0

24EI
 x 21x 2 L22. By choosing w0 � 24EI, and L � 1, we obtain the graph of the 

deflection curve in FIGURE 3.9.3. 

The discussion of the beam not withstanding, a physical system that is described by a two-
point boundary-value problem usually involves a second-order differential equation. Hence, for 
the remainder of the discussion in this section we are concerned with boundary-value problems 
of the type

 Solve:    a21x2  
d 

2y

dx2 1 a11x2   
dy

dx
1 a01x2  y 5 g1x2, a , x , b (5)

 Subject to:  
A1y1a2 1 B1y¿1a2 � C1

A2 
y1b2 1 B2y¿1b2 � C2.

 (6)

In (5) we assume that the coefficients a0(x), a1(x), a2(x), and g(x) are continuous on the interval 
[a, b] and that a2(x) � 0 for all x in the interval. In (6) we assume that A1 and B1 are not both zero 
and A2 and B2 are not both zero. When g(x) � 0 for all x in [a, b] and C1 and C2 are 0, we say that 
the boundary-value problem is homogeneous. Otherwise, we say that the boundary-value problem 

FIGURE 3.9.3  Deflection curve 
for Example 1

y

x
0.5

1
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is nonhomogeneous. For example, the BVP y� � y � 0, y(0) � 0, y(p) � 0 is homogeneous, 
whereas the BVP y� � y � 1, y(0) � 0, y(2p) � 0 is nonhomogeneous.

Eigenvalues and Eigenfunctions In applications involving homogeneous boundary-value 
problems, one or more of the coefficients in the differential equation (5) may depend on a constant 
parameter l. As a consequence the solutions y1(x) and y2(x) of the homogeneous DE (5) also 
depend on l. We often wish to determine those values of the parameter for which the boundary-
value problem has nontrivial solutions. The next example illustrates this idea.

■ EXAMPLE 2 Nontrivial Solutions of a BVP
Solve the homogeneous boundary-value problem

 y� � ly � 0,   y(0) � 0,   y(L) � 0.

Solution  We consider three cases: l � 0, l 	 0, and l � 0.

Case I:  For l � 0, the solution of the DE y � � 0 is y � c1x � c2. Applying the bound-
ary conditions y(0) � 0 and y(L) � 0 to this solution yield, in turn, c2 � 0 and 
c1 � 0. Hence for l � 0, the only solution of the boundary-value problem is 
the trivial solution y � 0.

Case II:  For l 	 0, it is convenient to write l � �a2, where a � 0. With this new nota-
tion the auxiliary equation is m2 � a2 � 0 and has roots m1 � a and m2 � �a. 
Because the interval on which we are working is finite, we choose to write 
the general solution of y � � a2y � 0 in the hyperbolic form y � c1 cosh ax � 
c2 sinh ax. From y(0) � 0 we see

y(0) � c1 cosh 0 � c2 sinh 0 � c1 
 1 � c2 
 0 � c1

   implies c1 � 0. Hence y � c2 sinh ax. The second boundary condition y(L)� 0 
then requires c2 sinh aL � 0. When a � 0, sinh aL � 0, and so we are forced 
to choose c2 � 0. Once again the only solution of the BVP is the trivial solution 
y � 0.

Case III:  For l � 0 we write l � a2, where a � 0. The auxiliary equation m2 � a2 � 0 
now has complex roots m1 � ia and m2 � �ia, and so the general solution of 
the DE y� � a2y � 0 is y � c1 cos ax � c2 sin ax. As before, y(0) � 0 yields 
c1 � 0 and so y � c2 sin�x. Then y(L) � 0 implies

c2 sin aL � 0.

   If c2 � 0, then necessarily y � 0. But this time we can require c2 � 0 since 
sin aL � 0 is satisfied whenever aL is an integer multiple of p:

 aL 5 np or a 5 np

L
 or ln 5 a

2
n 5 anp

L
b2

, n 5 1,2,3, p .

   Therefore for any real nonzero c2, y � c2sin(npx/L) is a solution of the prob-
lem for each n. Since the differential equation is homogeneous, any constant 
multiple of a solution is also a solution. Thus we may, if desired, simply take 
c2 � 1. In other words, for each number in the sequence

 l1 5
p2

L2 , l2 5
4p2

L2 , l3 5
9p2

L2 , p ,

  the corresponding function in the sequence

 y1 5  sin 

p

L
, y2 5  sin 

2p

L
, y3 5  sin 

3p

L
,  p ,

  is a nontrivial solution of the original problem. 
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162 CHAPTER 3 Higher-Order Differential Equations

The numbers ln � n2p2/L2, n � 1, 2, 3,  . . . for which the boundary-value problem in Example 2 
has a nontrivial solution are known as characteristic values or, more commonly, eigenvalues. 
The solutions depending on these values of ln, yn � c2 sin(npx/L) or simply yn � sin(npx/L), 
are called characteristic functions or eigenfunctions.

Buckling of a Thin Vertical Column In the eighteenth century Leonhard Euler was one of 
the first mathematicians to study an eigenvalue problem in analyzing how a thin elastic column 
buckles under a compressive axial force.

Consider a long slender vertical column of uniform cross section and length L. Let y(x) denote 
the deflection of the column when a constant vertical compressive force, or load, P is applied to 
its top, as shown in FIGURE 3.9.4. By comparing bending moments at any point along the column 
we obtain

 EI 
d 

2y

dx2 5 2Py  or  EI 
d 

2y

dx2 1 Py 5 0, (7)

where E is Young’s modulus of elasticity and I is the moment of inertia of a cross section about 
a vertical line through its centroid.

■ EXAMPLE 3 The Euler Load
Find the deflection of a thin vertical homogeneous column of length L subjected to a constant 
axial load P if the column is hinged at both ends.

Solution  The boundary-value problem to be solved is

 EI 
d 2y

dx 2 1 Py � 0, y102 � 0, y1L2 � 0.

First note that y � 0 is a perfectly good solution of this problem. This solution has a simple 
intuitive interpretation: If the load P is not great enough, there is no deflection. The question 
then is this: For what values of P will the column bend? In mathematical terms: For what 
values of P does the given boundary-value problem possess nontrivial solutions?

By writing l � P/EI we see that

 y� � ly � 0,   y(0) � 0,   y(L) � 0

is identical to the problem in Example 2. From Case III of that discussion we see that the 
deflection curves are yn(x) � c2 sin(npx/L), corresponding to the eigenvalues ln � Pn /EI � 
n2p2/L2, n � 1, 2, 3, . . . . Physically this means that the column will buckle or deflect only when 
the compressive force is one of the values Pn � n2p2EI/L2, n � 1, 2, 3,  . . . . These different 
forces are called critical loads. The deflection curve corresponding to the smallest critical 
load P1 � p2EI/L2, called the Euler load, is y1(x) � c2 sin(px/L) and is known as the first 
buckling mode. 

The deflection curves in Example 3 corresponding to n � 1, n � 2, and n � 3 are shown in 
FIGURE 3.9.5. Note that if the original column has some sort of physical restraint put on it at x � 
L/2, then the smallest critical load will be P2 � 4p2EI/L2 and the deflection curve will be as 
shown in Figure 3.9.5(b). If restraints are put on the column at x � L/3 and at x � 2L/3, then the 
column will not buckle until the critical load P3 � 9p2EI/L2 is applied and the deflection curve 
will be as shown in Figure 3.9.5(c). See Problem 25 in Exercises 3.9.

Rotating String The simple linear second-order differential equation

 y� � ly � 0 (8)

occurs again and again as a mathematical model. In Section 3.8 we saw (8) in the forms d 2x/dt2 � 
(k/m)x � 0 and d2q/dt2 � (1/LC)q � 0 as models for, respectively, the simple harmonic motion 
of a spring/mass system and the simple harmonic response of a series circuit. It is apparent when 

FIGURE 3.9.4  Elastic column buckling 
under a compressive force

L
x

y

P

(a) (b)

x = 0

x = L

FIGURE 3.9.5  Deflection curves for 
compressive forces P1, P2, P3
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the model for the deflection of a thin column in (7) is written as d2y/dx2 � (P/EI)y � 0 that it is 
the same as (8). We encounter the basic equation (8) one more time in this section: as a model 
that defines the deflection curve or the shape y(x) assumed by a rotating string. The physical situ-
ation is analogous to when two persons hold a jump rope and twirl it in a synchronous manner. 
See FIGURE 3.9.6 parts (a) and (b).

Suppose a string of length L with constant linear density r (mass per unit length) is stretched 
along the x-axis and fixed at x � 0 and x � L. Suppose the string is then rotated about that axis at 
a constant angular speed v. Consider a portion of the string on the interval [x, x � Δ x], where Δx 
is small. If the magnitude T of the tension T, acting tangential to the string, is constant along the 
string, then the desired differential equation can be obtained by equating two different formulations 
of the net force acting on the string on the interval [x, x � Δ x]. First, we see from Figure 3.9.6(c) 
that the net vertical force is

 F � T sin u2 � T sin u1. (9)

When angles u1 and u2 (measured in radians) are small, we have sin u2 � tan u2 and sin u1 � tan u1. 
Moreover, since tan u2 and tan u1 are, in turn, slopes of the lines containing the vectors T2 and 
T1, we can also write

 tan u2 � y�(x � Δ x)  and  tan u1 � y�(x).

Thus (9) becomes

 F � T [ y�(x � Δ x) � y�(x)]. (10)

Second, we can obtain a different form of this same net force using Newton’s second law, F � ma. 
Here the mass of string on the interval is m � rΔx; the centripetal acceleration of a body rotating 
with angular speed v in a circle of radius r is a � rv2. With Δx small we take r � y. Thus the 
net vertical force is also approximated by

 F � �(rΔ x)yv2, (11)

where the minus sign comes from the fact that the acceleration points in the direction opposite 
to the positive y-direction. Now by equating (10) and (11) we have 

 difference quotient

  

T [y�(x � Δx) � y�(x)] � �(rΔx)yv2  or  T 
y¿ 1x 1 Dx2 2 y¿ 1x2

Dx
 � rv2y � 0. (12)

For Δx close to zero the difference quotient in (12) is approximately the second derivative d2y/dx2. 
Finally we arrive at the model

 T 
d 

2y

dx2 1 rv
2y 5 0. (13)

Since the string is anchored at its ends x � 0 and x � L, we expect that the solution y(x) of equa-
tion (13) should also satisfy the boundary conditions y(0) � 0 and y(L) � 0.

Remarks
(i) We will pursue the subject of eigenvalues and eigenfunctions for linear second-order dif-
ferential equations in greater detail in Section 12.5.
(ii) Eigenvalues are not always easily found as they were in Example 2; you may have to 
approximate roots of equations such as tan x � �x or cos x cosh x � 1. See Problems 34–38 
in Exercises 3.9.
(iii) Boundary conditions can lead to a homogeneous algebraic system of linear equations 
where the unknowns are the coefficients ci in the general solution of the DE. Such a system is 
always consistent, but in order to possess a nontrivial solution (in the case when the number of 
equations equals the number of unknowns) we must have the determinant of the coefficients 
equal to zero. See Problems 19 and 20 in Exercises 3.9.

FIGURE 3.9.6  Rotating rope and 
forces acting on it

ω
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164 CHAPTER 3 Higher-Order Differential Equations

Defl ection of a Beam
In Problems 1�5, solve equation (4) subject to the appropriate 
boundary conditions. The beam is of length L, and w0 is a 
constant.

 1. (a)  The beam is embedded at its left end and free at its right 
end, and w(x) � w0, 0 	 x 	 L.

(b) Use a graphing utility to graph the deflection curve when 
w0 � 24EI and L � 1.

 2. (a)  The beam is simply supported at both ends, and w(x) � w0, 
0 	 x 	 L.

(b) Use a graphing utility to graph the deflection curve when 
w0 � 24EI and L � 1.

 3. (a)  The beam is embedded at its left end and simply supported 
at its right end, and w(x) � w0, 0 	 x 	 L.

(b) Use a graphing utility to graph the deflection curve when 
w0 � 48EI and L � 1.

 4. (a)  The beam is embedded at its left end and simply supported 
at its right end, and w(x) � w0 sin(px/L), 0 	 x 	 L.

(b) Use a graphing utility to graph the deflection curve when 
w0 � 2p3EI and L � 1.

(c) Use a root-finding application of a CAS (or a graphic 
calculator) to approximate the point in the graph in part (b) 
at which the maximum deflection occurs. What is the 
maximum deflection?

 5. (a)  The beam is simply supported at both ends, and w(x) � 
w0 x, 0 	 x 	 L.

(b) Use a graphing utility to graph the deflection curve when 
w0 � 36EI and L � 1.

(c) Use a root-finding application of a CAS (or a graphic 
calculator) to approximate the point in the graph in part (b) 
at which the maximum deflection occurs. What is the 
maximum deflection?

 6. (a)  Find the maximum deflection of the cantilever beam in 
Problem 1.

(b) How does the maximum deflection of a beam that is half 
as long compare with the value in part (a)?

(c) Find the maximum deflection of the simply supported 
beam in Problem 2.

(d) How does the maximum deflection of the simply sup-
ported beam in part (c) compare with the value of maxi-
mum deflection of the embedded beam in Example 1?

 7. A cantilever beam of length L is embedded at its right end, 
and a horizontal tensile force of P pounds is applied to its free 
left end. When the origin is taken at its free end, as shown in 
FIGURE 3.9.7, the deflection y(x) of the beam can be shown to 
satisfy the differential equation

 EIy– 5 Py 2 w1x2  
x

2
.

  Find the deflection of the cantilever beam if w(x) � w0x, 
0 	 x 	 L, and y(0) � 0, y�(L) � 0. 

  FIGURE 3.9.7  Deflection of cantilever beam in Problem 7

x

L
y

P

xO

w0x

 8. When a compressive instead of a tensile force is applied at the 
free end of the beam in Problem 7, the differential equation 
of the deflection is

 EIy– 5 2Py 2 w1x2  
x

2
.

  Solve this equation if w(x) � w0 x, 0 	 x 	 L, and y(0) � 0, 
y�(L) � 0.

Eigenvalues and Eigenfunctions
In Problems 9–18, find the eigenvalues and eigenfunctions for 
the given boundary-value problem.

 9. y� � ly � 0, y(0) � 0, y(p) � 0

 10. y� � ly � 0, y�(0) � 0, y(p/4) � 0

 11. y� � ly � 0, y�(0) � 0, y(L) � 0

 12. y� � ly � 0, y(0) � 0, y�(p/2) � 0

 13. y� � ly � 0, y�(0) � 0, y(p) � 0

 14. y� � ly � 0, y(�p) � 0, y(p) � 0

 15. y� � 2y� � (l � 1)y � 0, y(0) � 0, y(5) � 0

 16. y� � (l � 1)y � 0, y�(0) � 0, y�(1) � 0

 17. x2y� � xy� � ly � 0, y(1) � 0, y(ep) � 0

 18. x2y� � xy� � ly � 0, y�(e�1) � 0, y(1) � 0

In Problems 19 and 20, find the eigenvalues and eigenfunctions 
for the given boundary-value problem. Consider only the case 
l � a4, a � 0.

 19. y142 2 ly 5 0, y102 5 0, y– 102 5 0, y112 5 0, 

  y– 112 5 0

 20. y142 2 ly 5 0, y¿ 102 5 0, y‡ 102 5 0, y1p2 5 0,

  y– 1p2 5 0

 3.9 Exercises Answers to selected odd-numbered problems begin on page ANS-000.  
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Buckling of a Thin Column
 21. Consider Figure 3.9.5. Where should physical restraints be 

placed on the column if we want the critical load to be P4? 
Sketch the deflection curve corresponding to this load.

 22. The critical loads of thin columns depend on the end conditions 
of the column. The value of the Euler load P1 in Example 3 was 
derived under the assumption that the column was hinged at 
both ends. Suppose that a thin vertical homogeneous column 
is embedded at its base (x � 0) and free at its top (x � L) and 
that a constant axial load P is applied to its free end. This load 
either causes a small deflection d as shown in FIGURE 3.9.8 or 
does not cause such a deflection. In either case the differential 
equation for the deflection y(x) is

 EI 
d 2y

dx 2 1 Py � Pd.

(a) What is the predicted deflection when d � 0?
(b) When d � 0, show that the Euler load for this column 

is one-fourth of the Euler load for the hinged column in 
Example 3. 

FIGURE 3.9.8  Deflection of vertical column in Problem 22

δ

x

x = L
P

yx = 0

 23. As was mentioned in Problem 22, the differential equation (7) 
that governs the deflection y(x) of a thin elastic column 
subject to a constant compressive axial force P is valid only 
when the ends of the column are hinged. In general, the dif-
ferential equation governing the deflection of the column is 
given by

 
d 

2

dx2 aEI 
d 

2y

dx2 b 1 P 
d 

2y

dx2 � 0.

  Assume that the column is uniform (EI is a constant) and that 
the ends of the column are hinged. Show that the solution of 
this fourth-order differential equation subject to the boundary 
conditions y(0) � 0, y�(0) � 0, y(L) � 0, y�(L) � 0 is equivalent 
to the analysis in Example 3.

 24. Suppose that a uniform thin elastic column is hinged at the 
end x � 0 and embedded at the end x � L.
(a) Use the fourth-order differential equation given in 

Problem 23 to find the eigenvalues ln, the critical loads 
Pn, the Euler load P1, and the deflections yn(x).

(b) Use a graphing utility to graph the first buckling 
mode.

Rotating String
 25. Consider the boundary-value problem introduced in the con-

struction of the mathematical model for the shape of a rotating 
string:

   T 
d 

2y

dx2 1 rv
2y 5 0, y102 5 0, y1L2 5 0.

  For constant T and r, define the critical speeds of angular 
rotation vn as the values of v for which the boundary-value 
problem has nontrivial solutions. Find the critical speeds vn 
and the corresponding deflections yn(x).

 26. When the magnitude of tension T is not constant, then a model 
for the deflection curve or shape y(x) assumed by a rotating 
string is given by

   
d

dx
cT 1x2 

dy

dx
d 1 rv2y 5 0.

  Suppose that 1 	 x 	 e and that T(x) � x2.

(a) If y(1) � 0, y(e) � 0, and rv2 � 0.25, show that the criti-
cal speeds of angular rotation are 

     vn � 1
2214n2p2 1 12>r 

 and the corresponding deflections are

      yn1x2 � c2x
21>2

 sin 1npln x2, n � 1, 2, 3, p .

(b) Use a graphing utility to graph the deflection curves on 
the interval [1, e] for n � 1, 2, 3. Choose c2 � 1.

Miscellaneous Boundary-Value Problems
 27. Temperature in a Sphere  Consider two concentric spheres 

of radius r � a and r � b, a 	 b. See FIGURE 3.9.9. The tem-
perature u(r) in the region between the spheres is determined 
from the boundary-value problem

    r 
d 

2u

dr2 1 2 
du

dr
5 0, u1a2 5 u0, u1b2 5 u1,

  where u0 and u1 are constants. Solve for u(r). 

  FIGURE 3.9.9  Concentric spheres in Problem 27

u = u1

u = u0
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166 CHAPTER 3 Higher-Order Differential Equations

 28. Temperature in a Ring  The temperature u(r) in the circular 
ring shown in FIGURE 3.9.10 is determined from the boundary-
value problem

    r 
d2u

dr2 1
du

dr
� 0, u1a2 � u0, u1b2 � u1,

  where u0 and u1 are constants. Show that

   u1r2 �
u0 

ln 1r>b2 2 u1ln 1r>a2
ln 1a>b2 . 

 

FIGURE 3.9.10  Circular ring in Problem 28

a
b

u = u0

u = u1

Discussion Problems
 29. Simple Harmonic Motion  The model mx� � kx � 0 for 

simple harmonic motion, discussed in Section 3.8, can be 
related to Example 2 of this section.

     Consider a free undamped spring/mass system for which 
the spring constant is, say, k � 10 lb/ft. Determine those 
masses mn that can be attached to the spring so that when 
each mass is released at the equilibrium position at t � 0 with 
a nonzero velocity v0, it will then pass through the equilibrium 
position at t � 1 second. How many times will each mass 
mn pass through the equilibrium  position in the time interval 
0 	 t 	 1?

 30. Damped Motion  Assume that the model for the spring/mass 
system in Problem 29 is replaced by mx� � 2x� � kx � 0. 
In other words, the system is free but is subjected to 
damping numerically equal to two times the instanta-
neous velocity. With the same initial conditions and spring 
constant as in Problem 29, investigate whether a mass m can 
be found that will pass through the equilibrium position at 
t � 1 second.

In Problems 31 and 32, determine whether it is possible to find 
values y0 and y1 (Problem 31) and values of L � 0 (Problem 32) 
so that the given boundary-value problem has (a) precisely one 
nontrivial solution, (b) more than one solution, (c) no solution, 
and (d) the trivial solution.

 31. y� � 16y � 0, y(0) � y0, y(p/2) � y1

 32. y� � 16y � 0, y(0) � 1, y(L) � 1

 33. Consider the boundary-value problem

    y� � ly � 0, y(�p) � y(p), y�(�p) � y�(p).

(a) The type of boundary conditions specified are called 
periodic boundary conditions. Give a geometric inter-
pretation of these conditions.

(b) Find the eigenvalues and eigenfunctions of the problem.
(c) Use a graphing utility to graph some of the eigenfunctions. 

Verify your geometric interpretation of the boundary con-
ditions given in part (a).

 34. Show that the eigenvalues and eigenfunctions of the boundary-
value problem

 y� � ly � 0,  y(0) � 0,  y(1) � y�(1) � 0

  are ln � a2
n and yn � sin anx, respectively, where an, n � 1, 

2, 3, . . . are the consecutive positive roots of the equation 
tan a � �a.

Computer Lab Assignments
 35. Use a CAS to plot graphs to convince yourself that the equation 

tan a � �a in Problem 34 has an infinite number of roots. 
Explain why the negative roots of the equation can be ignored. 
Explain why l � 0 is not an eigenvalue even though a � 0 is 
an obvious solution of the equation tan a � �a.

 36. Use a root-finding application of a CAS to approximate 
the first four eigenvalues l1, l2, l3, and l4 for the BVP in 
Problem 34.

In Problems 37 and 38, find the eigenvalues and eigenfunctions 
of the given boundary-value problem. Use a CAS to approxi-
mate the first four eigenvalues l1, l2, l3, and l4.

 37. y� � ly � 0, y(0) � 0, y(1) � 1
2y�(1) � 0

 38. y(4) � ly � 0, y(0) � 0, y�(0) � 0, y(1) � 0, y�(1) � 0

  [Hint: Consider only l � a4, a � 0.]

3.10 Green’s Functions

Introduction We have seen in Section 3.8 that the linear second-order differential 
equation

 a21x2  
d 

2y

dx2 1 a11x2  
dy

dx
1 a01x2y 5 g1x2  (1)
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3.10 Green’s Functions 167

plays an important role in applications. In the mathematical analysis of physical systems it is 
often desirable to express the response or output y(x) of (1) subject to either initial conditions or 
boundary conditions directly in terms of the forcing function or input g(x). In this manner the 
response of the system can quickly be analyzed for different forcing functions.

To see how this is done we start by examining solutions of initial-value problems in which 
the DE (1) has been put into the standard form

y– 1 P1x2y¿ 1 Q1x2y � f 1x2  (2)

by dividing the equation by the lead coefficient a2(x). We also assume throughout this section 
that the coefficient functions P(x), Q(x), and f(x) are continuous on some common interval I.

3.10.1 Initial-Value Problems

Three Initial-Value Problems We will see as the discussion unfolds that the solution of the 
second-order initial-value problem

y– 1 P1x2y¿ 1 Q1x2y � f 1x2, y1x02 � y0, y¿1x02 � y1 (3)

can be expressed as the superposition of two solutions: the solution yh of the associated homo-
geneous DE with nonhomogeneous initial conditions

y– 1 P1x2y¿ 1 Q1x2y � 0, y1x02 � y0, y¿1x02 � y1, (4)

and the solution yp of the nonhomogeneous DE with homogeneous (that is, zero) initial 
conditions

 y– 1 P1x2y¿ 1 Q1x2y � f 1x2, y1x02 � 0, y¿1x02 � 0. (5)

As we have seen in the preceding sections of this chapter, in the case where P and Q are con-
stants the solution of the IVP (4) presents no difficulties: We use the methods of Sections 3.3 
to find the general solution of the homogeneous DE and then use the given initial conditions 
to determine the two constants in that solution. So we will focus on the solution of the IVP (5). 
Because of the zero initial conditions, the solution of (5) could describe a physical system that 
is initially at rest and so is sometimes called a rest solution.

Green’s Function If y1(x) and y2(x) form a fundamental set of solutions on the interval I of 
the associated homogeneous form of (2), then a particular solution of the nonhomogeneous equa-
tion (2) on the interval I can be found by variation of parameters. Recall from (3) of Section 3.5, 
the form of this solution is

yp1x2 � u11x2y11x2 1 u21x2y21x2. (6)

The variable coefficients u1(x) and u2(x) in (6) are defined by (5) of Section 3.5:

 u¿11x2 5 2
y21x2  f 1x2

W
, u¿21x2 5

y11x2  f 1x2

W
. (7)

The linear independence of y1(x) and y2(x) on the interval I guarantees that the Wronskian 
W � W( y1(x), y2(x)) � 0 for all x in I. If x and x0 are numbers in I, then integrating the derivatives 
in (7) on the interval [x0, x] and substituting the results in (6) give

  yp1x2 5 y11x2#
x

x0

2y21t2  f 1t2

W1t2
 dt 1 y21x2#

x

x0

y11t2  f 1t2

W1t2
 dt

  5 #
x

x0

2y11x2y21t2

W1t2
 f 1t2  dt 1 #

x

x0

y 11t2y2 
1x2

W1t2
 f 1t2  dt, 

(8)

Here at least one of the numbers 
y0 or y1 is assumed to be nonzero. 
If both y0 and y1 are 0, then the 
solution of the IVP is y � 0.

H

Because y1(x) and y2(x) are constant with 
respect to the integration on t, we can 
move these functions inside the definite 
integrals.

B
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168 CHAPTER 3 Higher-Order Differential Equations

where  W1t2 5 W1  y11t2, y21t22 5 2  y11t2 y21t2

y¿11t2 y¿21t2
2.

From the properties of the definite integral, the two integrals in the second line of (8) can be 
rewritten as a single integral

yp1x2 5 #
x

x0

G1x, t2  f 1t2dt. (9)

The function G(x, t) in (9),

G1x, t2 5
y11t2y21x2 2 y11x2y21t2

W1t2
, (10)

is called the Green’s function for the differential equation (2).
Observe that a Green’s function (10) depends only on the fundamental solutions, y1(x) and 

y2(x) of the associated homogeneous differential equation for (2) and not on the forcing func-
tion f (x). Therefore all linear second-order differential equations (2) with the same left-hand side 
but different forcing functions have the same Green’s function. So an alternative title for (10) is 
the Green’s function for the second-order differential operator L � D2 � P(x)D � Q(x).

■ EXAMPLE 1 Particular Solution
Use (9) and (10) to find a particular solution of y� � y � f (x).

Solution  The solutions of the associated homogeneous equation y� � y � 0 are y1 � e 
x, 

y2 � e2x, and W1  y11t2, y21t22 5 22. It follows from (10) that the Green’s function is

 G1x, t2 �
e 

te2x 2 e 
xe2t

22
�

e 
x2 t 2 e21x2 t2

2
� sinh1x 2 t2. (11)

Thus from (9), a particular solution of the DE is

 yp1x2 5 #
x

x0

sinh1x 2 t2  f 1t2dt. (12)

■ EXAMPLE 2 General Solutions
Find the general solution of the following nonhomogeneous differential equations.

(a) y– 2 y � 1>x (b) y– 2 y � e2x

Solution  From Example 1, both DEs possess the same complementary function 
yc � c1e

2x 1 c2e 
x. Moreover, as pointed out in the paragraph preceding Example 1, the 

Green’s function for both differential equations is (11).
(a) With the identifications f 1x2 � 1>x and f 1t2 � 1>t we see from (12) that a particular 

solution of y– 2 y � 1>x is yp1x2 � #
x

x0

sinh1x 2 t2

t
 dt. Thus the general solution 

y � yc 1 yp of the given DE on any interval fx0, xg  not containing the origin is

 y � c1e 
x 1 c2e

2x 1 #
x

x0

sinh1x 2 t2

t
 dt. (13)

 You should compare this solution with that found in Example 3 of Section 3.5.

(b) With f 1x2 � e2x in (12), a particular solution of y– 2 y � e2x is 
yp1x2 � ex

x0
sinh1x 2 t2e2t dt. The general solution y � yc 1 yp is then

 y 5 c1e 
x 1 c2e

2x 1 #
x

x0

sinh1x 2 t2e2tdt. (14)

Important. Read this paragraph 
a second time.
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 3.10 Green’s Functions 169

Now consider the special initial-value problem (5) with homogeneous initial conditions. One 
way of solving the problem when f 1x2 2 0 has already been illustrated in Sections 3.4 and 3.5; 
that is, apply the initial conditions y1x02 � 0, y¿1x02 � 0 to the general solution of the nonhomo-
geneous DE. But there is no actual need to do this because we already have solution of the IVP 
at hand; it is the function defined in (9).

Theorem 3.10.1 Solution of the IVP in (5) 

The function yp(x) defined in (9) in the solution of the initial-value problem (5).

PROOF

By construction we know that yp1x2  in (9) satisfies the nonhomogeneous DE. Next, because 
a definite integral has the property ea

a � 0 we have

 yp1x02 5 #
x0

x0

G1x0, t2  f 1t2  dt 5 0.

Finally, to show that y ¿p1x02 � 0 we utilize the Leibniz formula* for the derivative of an 
integral:

 y¿p1x2 5 G1x, x2 f 1x2 1 #
x

x0

   

y11t2y¿21x2 2 y¿11x2y21t2

W1t2
 f 1t2  dt.

Hence, y¿p1x02 5 #
x0

x0

  

y11t2y¿21x02 2 y¿11x02y21t2

W1t2
 f 1t2  dt 5 0.

■ EXAMPLE 3 Example 2 Revisited
Solve the initial-value problems
(a) y– 2 y � 1>x, y112 � 0, y¿112 � 0  (b) y– 2 y � e2x, y102 � 0, y¿102 � 0.

Solution  (a)  With x0 � 1 and f 1t2 � 1>t, it follows from (13) of Example 2 and Theorem 3.10.1 
that the solution of the initial-value problem is

 yp1x2 5 #
x

1
  

sinh1x 2 t2

t
 dt,

where f1, xg, x . 0.

(b) Identifying x0 � 0 and f 1t2 � e2t, we see from (14) that the solution of the IVP is

 yp1x2 5 #
x

0
sinh1x 2 t2e2tdt. (15)

In Part (b) of Example 3, we can carry out the integration in (15), but bear in mind that x is 
held constant throughout the integration with respect to t:

  yp1x2 5 #
x

0
sinh1x 2 t2e2tdt 5 #

x

0

ex2 t 2 e21x2 t2

2
 e2tdt

  5
1

2
 ex#

x

0
etdt 2

1

2
 e2x#

x

0
e3tdt

  5
1

3
 e2x 2

1

2
 e 

x 1
1

6
 e2x.

*This formula, usually discussed in advanced calculus, is given by

d

dx#
v1x2

u1x2

F1x, t2  dt 5 F1x, v1x22v¿ 1x2 2 F1x, u1x22u¿ 1x2 1 #
v1x2

u1x2

0
0x

 F1x, t2  dt.

0 from (10)
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170 CHAPTER 3 Higher-Order Differential Equations

■ EXAMPLE 4 Another IVP
Solve the initial-value problem

y– 1 4y � x, y102 � 0, y¿102 � 0.

Solution We begin by constructing the Green’s function for the given differential equation.

  The two linearly independent solutions of y– 1 4y � 0 are y11x2 � cos 2x and y21x2 � sin 2x.
From (10), with W1cos 2t, sin 2t2 � 2, we find

G1x, t2 �
cos 2t sin 2x 2 cos 2x sin 2t

2
�

1

2
 sin 21x 2 t2.

With the identification x0 � 0, a solution of the given initial-value problem is

yp1x2 �
1

2#
x

0
t sin 21x 2 t2dt.

If we wish to evaluate the integral, we first write

yp1x2 �
1

2
 sin 2x#

x

0
t cos 2t dt 2

1

2
 cos 2x#

x

0
t sin 2t dt

and then use integration by parts:

yp1x2 �
1

2
 sin 2x c 1

2
 t sin 2t 1

1

4
 cos 2t d x

0
2

1

2
 cos 2x c21

2
 t cos 2t 1

1

4
 sin 2t d x

0
  

or yp1x2 5
1

4
 x 2

1

8
 sin 2x.

Initial-Value Problems—Continued We can now make use of Theorem 3.10.1 to find the 
solution of the initial-value problem posed in (3).

Theorem 3.10.2 Solution of the IVP (3) 

If yh is the solution of the initial-value problem (4) and yp is the solution (9) of the initial-value 
problem (5) on the interval I, then

y � yh � yp (16)

is the solution of the initial-value problem (3).

PROOF

Because yh is a linear combination of the fundamental solutions, it follows from (10) of Section 
3.1 that y � yh 1 yp is a solution of the nonhomogeneous DE. Moreover, since yh satisfies 
the initial conditions in (4) and yp satisfies the initial conditions in (5), we have

 y1x02 5 yh1x02 1 yp1x02 5 y0 1 0 5 y0

 y¿ 1x02 5 y¿h1x02 1 y¿p1x02 5 y1 1 0 5 y1.

Keeping in mind the absence of a forcing function in (4) and the presence of such a term in 
(5), we see from (16) that the response y1x2  of a physical system described by the initial-value 
problem (3) can be separated into two different responses:

y(x) �   yh(x)   �   yp(x) (17)

 
response of system response of system

 due to initial conditions due to the forcing
y(x0) � y0, y�(x0) � y1 function f

Here we have used the trigo-
nometric identity sin(2x � 2t) � 
sin 2x cos 2t � cos 2x sin 2t.
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In different symbols, the following initial-value problem represents the pure resonance situ-
ation for a vibrating spring/mass system. See page 152.

■ EXAMPLE 5 Using Theorem 3.10.2
Solve the initial-value problem

 y– 1 4y � sin 2x, y102 � 1, y¿102 �22.

Solution  We solve two initial-value problems.

  First, we solve y– 1 4y � 0, y102 � 1, y¿ 102 �22. By applying the initial conditions to 
the general solution y1x2 � c1 cos 2x 1 c2 sin 2x of the homogeneous DE, we find that c1 � 1 
and c2 �21. Therefore, yh(x) � cos 2x � sin 2x.
  Next we solve y– 1 4y � sin 2x, y102 � 0, y¿ 102 � 0. Since the left-hand side of the differ-
ential equation is the same as the DE in Example 4, the Green’s function is the same; namely, 
G1x, t2 � 1

2 sin 21x 2 t2. With f 1t2 � sin 2t we see from (9) that the solution of this second 

problem is yp1x2 5
1
2e

x
0 sin 21x 2 t2 sin 2t dt.

  Finally, in view of (16) in Theorem 3.10.2, the solution of the original IVP is

 y1x2 � yh1x2 1 yp1x2 � cos 2x 2 sin 2x 1
1

2#
x

0
sin 21x 2 t2 sin 2t dt. (18)

  If desired, we can integrate the definite integral in (18) by using the trigonometric 
identity

 sin A sin B 5
1

2
 fcos1A 2 B2 2 cos1A 1 B2g

with A � 21x 2 t2  and B � 2t:

  yp1x2 5
1

2#
x

0
sin 21x 2 t2sin 2t dt

  5
1

4#
x

0
fcos12x 2 4t2 2 cos 2xgdt

  5
1

4
c21

4
 sin 12x 2 4t2 2 t  cos 2x d x

0

  5
1

8
 sin 2x 2

1

4
 x cos 2x.  

(19)

Hence, the solution (18) can be rewritten as

 y1x2 5 yh1x2 1 yp1x2 5 cos 2x 2 sin 2x 1 a1

8
 sin 2x 2

1

4
  x cos 2xb ,

or y1x2 5 cos 2x 2
7

8
 sin 2x 2

1

4
  x cos 2x. (20)

Note that the physical significance indicated in (17) is lost in (20) after combining like terms in 
the two parts of the solution y1x2 � yh1x2 1 yp1x2.

The beauty of the solution given in (18) is that we can immediately write down the response 
of a system if the initial conditions remain the same but the forcing function is changed. For 
example, if the problem in Example 5 is changed to

 y– 1 4y 5 x, y102 5 1, y¿ 102 5 22,
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172 CHAPTER 3 Higher-Order Differential Equations

we simply replace sin 2t in the integral in (18) by t and the solution is then

  y1x2 5 yh1x2 1 yp1x2

  5 cos 2x 2 sin 2x 1
1

2#
x

0
t sin 21x 2 t2dt

  5
1

4
x 1 cos 2x 2

9

8
 sin 2x.

Because the forcing function f is isolated in the particular solution yp1x2 5 ex
x0
G1x, t2  f 1t2  dt, the 

solution in (16) is useful when f is piecewise defined. The next example illustrates this idea.

■ EXAMPLE 6 An Initial-Value Problem
Solve the initial-value problem

 y– 1 4y � f 1x2, y102 � 1, y¿102 �22,

when the forcing function f is piecewise defined:

 f 1x2 5 •
0,           x , 0

sin 2x,  0 # x # 2p

0,           x . 2p.

Solution  From (18), with sin 2t replaced by f (t), we can write

 y1x2 � cos 2x 2 sin 2x 1
1

2#
x

0
sin 21x 2 t2  f 1t2dt.

Because f is defined in three pieces, we consider three cases in the evaluation of the definite 
integral. For x � 0,

 yp1x2 5
1

2#
x

0
sin 21x 2 t2  0 dt 5 0,

for 0 	 x 	 2p,

  yp1x2 5
1

2#
x

0
sin 21x 2 t2sin 2t dt

  5
1

8
 sin 2x 2

1

4
 x cos 2x,

and finally for x 
 2p, we can use the integration following Example 5:

  yp1x2 5
1

2#
2p

0
sin 21x 2 t2  sin 2t dt 1

1

2#
x

2p
sin 21x 2 t2 0 dt

  5
1

2#
2p

0
 sin 21x 2 t2  sin 2t dt

  5
1

4
c21

4
 sin12x 2 4t2 2 t cos 2x d 2p

0

  5 2
1

16
 sin12x 2 8p2 2

1

2
 pcos 2x 1

1

16
 sin 2x

  5 2
1

2
 pcos 2x.

d see Example 4

d using the integration in (19)

d using the integration in (19)
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Hence yp1x2  is

 yp1x2 5 c0, x , 0
1
8 sin 2x 2 1

4 x cos 2x, 0 # x # 2p

21
2 pcos 2x, x . 2p

and so

   y1x2 � yh1x2 1 yp1x2 � cos 2x 2 sin 2x 1 yp1x2.

Putting all the pieces together we get

           y1x2 5 ccos 2x 2 sin 2x, x , 0

11 2 1
4 x2cos 2x 2 7

8 sin 2x, 0 # x # 2p

11 2 1
2 p2cos 2x 2 sin 2x, x . 2p.

The graph y(x) is given in FIGURE 3.10.1.

We next examine how a boundary-value problem (BVP) can be solved using a different kind 
of Green’s function.

3.10.2 Boundary-Value Problems
In contrast to a second-order IVP in which y(x) and y�(x) are specified at the same point, a BVP 
for a second-order DE involves conditions on y(x) and y�(x) that are specified at two different 
points x � a and x � b. Conditions such as

 y1a2 � 0, y1b2 � 0; y1a2 � 0, y¿1b2 � 0; y¿1a2 � 0, y¿1b2 � 0

are just special cases of the more general homogeneous boundary conditions

 A1y1a2 1 B1y¿ 1a2 � 0 (21)

and       A2 
y1b2 1 B2 

y¿ 1b2 5 0, (22)

where A1, A2, B1, and B2 are constants. Specifically, our goal is to find an integral solution yp1x2  
that is analogous to (9) for nonhomogeneous boundary-value problems of the form

 y– 1 P1x2y¿ 1 Q1x2y � f 1x2 ,

 A1y1a2 1 B1y¿1a2 � 0, (23)

 A2 
y1b2 1 B2 

y¿ 1b2 5 0.

In addition to the usual assumptions that P(x), Q(x), and f (x) are continuous on [a, b], we assume 
that the homogeneous problem

  y– 1 P1x2y¿ 1 Q1x2y 5 0,

     A1y1a2 1 B1y¿ 1a2 5 0

      A2 y1b2 1 B2 y¿ 1b2 5 0,

possesses only the trivial solution y � 0. This latter assumption is sufficient to guarantee that a 

unique solution of (23) exists and is given by an integral yp1x2 5 eb
a G1x, t2  f 1t2  dt, where G(x, t) 

is a Green’s function.
The starting point in the construction of G(x, t) is again the variation of parameters formulas 

(6) and (7).

FIGURE 3.10.1  Graph of y(x) 
in Example 6

y

x

1

−1

−π π 2π 3π
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174 CHAPTER 3 Higher-Order Differential Equations

Another Green’s Function Suppose y11x2  and y21x2  are linearly independent solutions on 
fa, bg  of the associated homogeneous form of the DE in (23) and that x is a number in the in-
terval fa, bg. Unlike the construction of (8) where we started by integrating the derivatives in 
(7) over the same interval, we now integrate the first equation in (7) on fb, xg  and the second 
equation in (7) on fa, xg:

 u11x2 5 2#
x

b

y21t2  f 1t2

W1t2
 dt and u21x2 5 #

x

a

y11t2  f 1t2

W1t2
 dt. (24)

The reason for integrating u¿11x2  and u¿21x2  over different intervals will become clear shortly. From 
(24), a particular solution yp1x2 � u11x2y11x2 1 u21x2y21x2  of the DE is

 yp1x2 5 y11x2#
b

x

y21t2  f 1t2

W1t2
 dt 1 y21x2#

x

a

y11t2  f 1t2

W1t2
 dt

or yp1x2 5 #
x

a

y21x2y11t2

W1t2
 f 1t2  dt 1 #

b

x

y11x2y21t2

W1t2
 f 1t2  dt. (25)

The right-hand side of (25) can be written compactly as a single integral

yp1x2 5 #
b

a

G1x, t2  f 1t2  dt, (26)

where the function G(x, t) is

G1x, t2 5 µ
y11t2y21x2

W1t2
,                          a # t # x

y11x2y21t2

W1t2
,                          x # t # b.

 (27)

The piecewise-defined function (27) is called a Green’s function for the boundary-value prob-
lem (23). It can be proved that G(x, t) is a continuous function of x on the interval [a, b].

Now if the solutions y11x2  and y21x2  used in the construction of (27) are chosen in such 
a manner that at x 5 a, y11x2  satisfies A1y11a2 1 B1y¿11a2 5 0, and at x 5 b, y21x2  satisfies 
A2y21b2 1 B2y¿21b2 5 0, then, wondrously, yp1x2  defined in (26) satisfies both homogeneous 
boundary conditions in (23).

To see this we will need

  yp1x2 5 u11x2y11x2 1 u21x2y21x2  (28)

and  y¿p1x2 5 u11x2y¿11x2 1 y11x2u¿11x2 1 u21x2y¿21x2 1 y21x2u¿21x2
  5 u11x2y¿11x2 1 u21x2y¿21x2.  

(29)

Before proceeding, observe in (24) that u1(b) � 0 and u2(a) � 0. In view of the second of these 
two properties we can show that yp(x) satisfies (21) whenever y1(x) satisfies the same boundary 
condition. From (28) and (29) we have

 
0

 
0

  A1yp1a2 1 B1y¿p1a2 5 A1fu11a2y11a2 1 u21a2y21a2g 1 B1fu11a2y¿11a2 1 u21a2y¿21a2g

  5 u11a2 fA1y11a2 1 B1y¿11a2g 5 0.

 0 from (21)

here we used the minus
sign in (24) to reverse
the limits of integration

The last line in (29) results from 
the fact that 

y1(x)u�1(x) � y2(x)u�2(x) � 0.
See the discussion in Section 3.5 
following (4).
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3.10 Green’s Functions 175

Likewise, u11b2 � 0 implies that whenever y21x2  satisfies (22) so does yp1x2:

0
 

0

 A2 yp1b2 1 B2y¿p1b2 5 A2fu11b2y11b2 1 u21b2y21b2g 1 B2fu11b2y¿11b2 1 u21b2y¿21b2g

 5 u21b2 fA2 y21b2 1 B2 
y¿21b2g 5 0.

0 from (22)

The next theorem summarizes these results.

Theorem 3.10.3 Solution of a BVP

Let y1(x) and y2(x) be linearly independent solutions of

y� � P(x)y� � Q(x)y � 0

on [a, b], and suppose y1(x) and y2(x) satisfy (21) and (22), respectively. Then the function yp(x) 
defined in (26) is a solution of the boundary-value problem (23).

■ EXAMPLE 7 Using Theorem 3.10.3
Solve the boundary-value problem

y– 1 4y � 3, y¿102 � 0, y1p>22 � 0.

Solution  The solutions of the associated homogeneous equation y– 1 4y � 0 are 
y11x2 � cos 2x  and y21x2 � sin 2x  and y11x2  satisfies y¿ 102 � 0, whereas y21x2  satisfies 
y1p>22 � 0. The Wronskian is W1  y1, y22 5 2, and so from (27) we see that the Green’s 
function for the boundary-value problem is

G1x, t2 5 e 1
2 cos 2t sin 2x,    0 # t # x
1
2 cos 2x sin 2t,    x # t # p>2.

It follows from Theorem 3.10.3 that a solution of the BVP is (26) with the identifications 
a � 0, b � p>2, and f 1t2 � 3:

 yp1x2 5 3#
p>2

0
G1x, t2  dt

 5 3 �
1

2
 sin 2x#

x

0
cos 2t dt 1 3 �

1

2
 cos 2x#

p>2

x

sin 2t dt,

or after evaluating the definite integrals, yp1x2 5
3
4 1

3
4 cos 2x.

Don’t infer from the preceding example that the demand that y11x2  satisfy (21) and y21x2
satisfy (22) uniquely determines these functions. As we see in the last example, there is a certain 
arbitrariness in the selection of these functions.

■ EXAMPLE 8 A Boundary-Value Problem
Solve the boundary-value problem

x2y– 2 3xy¿ 1 3y 5 24x5, y112 5 0,  y122 5 0.

Solution  The differential equation is recognized as a Cauchy–Euler DE.

The boundary condition y�(0) � 0 is a 
special case of (21) with a � 0, A1 � 0, 
and B1 � 1. The boundary condition 
y(p/2) � 0 is a special case of (22) with
b � p/2, A2 � 1, and B2 � 0.

T
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176 CHAPTER 3 Higher-Order Differential Equations

From the auxiliary equation m1m 2 12 2 3m 1 3 � 1m 2 12 1m 2 32 � 0 the general solution 
of the associated homogeneous equation is y � c1x 1 c2x

3. Applying y112 � 0 to this solution 
implies c1 1 c2 � 0 or c1 �2c2. By choosing c2 �21 we get c1 � 1 and y1 � x 2 x3. On 
the other hand, y122 � 0 applied to the general solution shows 2c1 1 8c2 � 0 or c1 �24c2. 
The choice c2 �21 now gives c1 � 4 and so y21x2 � 4x 2 x3. The Wronskian of these two 
functions is

 W1y11x2, y21x22 5 2 x 2 x3     4x 2 x3

1 2 3x2    4 2 3x2 2 5 6x3.

Hence the Green’s function for the boundary-value problem is

 G1x, t2 5 µ
1t 2 t 

32 14x 2 x32

6t3 ,                   0 # t # x

1x 2 x32 14t 2 t 
32

6t3 ,                    x # t # 2.

In order to identify the correct forcing function f we must write the DE in standard form:

 y– 2
3
x

 y¿ 1
3

x2 y 5 24x3.

From this equation we see that f 1t2 � 24t3 and so (26) becomes

 

yp1x2 � 24#
2

1
G1x, t2t3dt

� 414x 2 x32#
x

1
1t 2 t32dt 1 41x 2 x32#

2

x

14t 2 t32dt.

Straightforward definite integration and algebraic simplification yields the solution 
yp1x2 � 12x 2 15x3 1 3x5.

 3.10 Exercises Answers to selected odd-numbered problems begin on page ANS-000.  

3.10.1  Initial-Value Problems
In Problems 1–6, proceed as in Example 1 to find a particular 
solution yp1x2  of the given differential equation in the integral 
form (9).

 1. y– 2 16y � f 1x2

 2. y– 1 3y¿ 2 10y � f 1x2

 3. y– 1 2y¿ 1 y � f 1x2

 4. 4y– 2 4y¿ 1 y � f 1x2

 5. y– 1 9y � f 1x2

 6. y– 2 2y¿ 1 2y � f 1x2

In Problems 7–12, proceed as in Example 2 to find the general 
solution of the given differential equation. Use the results 
obtained in Problems 1–6. Do not evaluate the integral that 
defines yp1x2.

 7. y– 2 16y � xe22x

 8. y– 1 3y¿ 2 10y � x2

 9. y– 1 2y¿ 1 y � e2x

 10. 4y– 2 4y¿ 1 y � arctan x

 11. y– 1 9y � x 1 sin x
 12. y– 2 2y¿ 1 2y � cos2x

In Problems 13–18, proceed as in Example 3 to find the solution 
of the given initial-value problem. Evaluate the integral that 
defines yp1x2.

 13. y– 2 4y � e2x, y102 � 0, y¿102 � 0

 14. y– 2 y¿ � 1, y102 � 0, y¿102 � 0

 15. y– 2 10y¿ 1 25y 5 e5x, y102 5 0, y¿ 102 5 0

 16. y– 1 6y¿ 1 9y � x, y102 � 0, y¿102 � 0

 17. y– 1 y 5 csc x cot x, y1p>22 5 0, y¿ 1p>22 5 0

 18. y– 1 y � sec2x, y1p2 � 0, y¿1p2 � 0

In Problems 19–30, proceed as in Example 5 to find a solution 
of the given initial-value problem.

 19. y– 2 4y � e2x, y102 � 1, y¿102 �24

 20. y– 2 y¿ � 1, y102 � 10, y¿102 � 1

 21. y– 2 10y¿ 1 25y � e5x, y102 �21, y¿102 � 1

 22. y– 1 6y¿ 1 9y � x, y102 � 1, y¿102 �23
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 3.11 Nonlinear Models 177

 23. y– 1 y 5 csc x cot x, y1p>22 5 2p>2, y¿ 1p>22 5 21

 24. y– 1 y 5 sec2x, y1p2 5 1
2, y¿ 1p2 5 21

 25. y– 1 3y¿ 1 2y 5 sin ex, y102 5 21, y¿ 102 5 0

 26. y– 1 3y¿ 1 2y �
1

1 1 ex, y102 � 0, y¿102 � 1

 27. x2y– 2 2xy¿ 1 2y � x, y112 � 2, y¿112 �21

 28. x2y– 2 2xy¿ 1 2y � x ln x, y112 � 1, y¿112 � 0

 29. x2y– 2 6y � ln x, y112 � 1, y¿112 � 3

 30. x2y– 2 xy¿ 1 y � x2, y112 � 4, y¿112 � 3

In Problems 31–34, proceed as in Example 6 to find a solution 
of the initial-value problem with the given piecewise-defined 
forcing function.

 31. y– 2 y 5 f 1x2, y102 5 8, y¿ 102 5 2,

  where f 1x2 � e21,    x , 0

1, x $ 0

 32. y– 2 y 5 f 1x2, y102 5 3, y¿ 102 5 2,

  where  f 1x2 � e0,    x , 0

x,   x $ 0

 33. y– 1 y 5 f 1x2, y102 5 1, y¿ 102 5 21,

  where  f 1x2 � •
0, x , 0

10,  0 # x # 3p

0, x . 3p

 34. y– 1 y 5 f 1x2, y102 5 0, y¿ 102 5 1,

  where  f 1x2 � •
0, x , 0

cos x,  0 # x # 4p

0, x . 4p

3.10.2  Boundary-Value Problems
In Problems 35 and 36, (a) use (25) and (26) to find a solution of 
the boundary-value problem. (b) Verify that function yp1x2  satis-
fies the differential equations and both boundary conditions.

 35. y– 5 f 1x2, y102 5 0, y112 5 0

 36. y– 5 f 1x2, y102 5 0, y112 1 y¿ 112 5 0

 37. In Problem 35 find a solution of the BVP when f 1x2 � 1.

 38. In Problem 36 find a solution of the BVP when f 1x2 � x.

In Problems 39–44, proceed as in Examples 7 and 8 to find a 
solution of the given boundary-value problem.

 39. y– 1 y � 1, y102 � 0, y112 � 0

 40. y– 1 9y � 1, y102 � 0, y¿1p2 � 0

 41. y– 2 2y¿ 1 2y � ex, y102 � 0, y1p>22 � 0

 42. y– 2 y¿ � e2x, y102 � 0, y112 � 0

 43. x2y– 1 xy¿ � 1, y1e212 � 0, y112 � 0

 44. x2y– 2 4xy¿ 1 6y � x4, y112 2 y¿112 � 0, y132 � 0

Discussion Problems
 45. Suppose the solution of the boundary-value problem

 y– 1 Py¿ 1 Qy 5 f 1x2, y1a2 5 0, y1b2 5 0,

  a , b, is given by yp1x2 5 eb
a G1x, t2  f 1t2  dt where y11x2  and y21x2  

are solutions of the associated homogeneous differential equa-
tion chosen in the construction of G1x, t2  so that y11a2 � 0 and 
y21b2 � 0. Prove that the solution of the boundary-value prob-
lem with nonhomogeneous DE and boundary conditions,

 y– 1 Py¿ 1 Qy 5 f 1x2, y1a2 5 A, y1b2 5 B

  is given by

 y1x2 5 yp1x2 1
B

y11b2
 y11x2 1

A

y21a2
 y21x2.

  [Hint: In your proof, you will have to show that y11b2 2 0 
and y21a2 2 0. Reread the assumptions following (22).]

 46. Use the result in Problem 45 to solve

 y– 1 y 5 1, y102 5 5, y112 5 210.

3.11 Nonlinear Models

Introduction  In this section we examine some nonlinear higher-order mathematical models. 
We are able to solve some of these models using the substitution method introduced on page 139. 
In some cases where the model cannot be solved, we show how a nonlinear DE can be replaced 
by a linear DE through a process called linearization.

Nonlinear Springs The mathematical model in (1) of Section 3.8 has the form

 m 
d 2x

dt 2 1 F 1x2 � 0, (1)
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178 CHAPTER 3 Higher-Order Differential Equations

where F(x) � kx. Since x denotes the displacement of the mass from its equilibrium position, 
F(x) � kx is Hooke’s law; that is, the force exerted by the spring that tends to restore the mass 
to the equilibrium position. A spring acting under a linear restoring force F(x) � kx is naturally 
referred to as a linear spring. But springs are seldom perfectly linear. Depending on how it is 
constructed and the material used, a spring can range from “mushy” or soft to “stiff ” or hard, 
so that its restorative force may vary from something below to something above that given by 
the linear law. In the case of free motion, if we assume that a nonaging spring possesses some 
nonlinear characteristics, then it might be reasonable to assume that the restorative force F(x) of 
a spring is proportional to, say, the cube of the displacement x of the mass beyond its equilibrium 
position or that F(x) is a linear combination of powers of the displacement such as that given 
by the nonlinear function F(x) � kx � k1x

3. A spring whose mathematical model incorporates a 
nonlinear restorative force, such as

 m 
d 2x

dt 2 1 kx3 � 0 or m 
d 2x

dt 2 1 kx 1 k1x
3 � 0, (2)

is called a nonlinear spring. In addition, we examined mathematical models in which damping 
imparted to the motion was proportional to the instantaneous velocity dx/dt, and the restoring 
force of a spring was given by the linear function F(x) � kx. But these were simply assumptions; 
in more realistic situations damping could be proportional to some power of the instantaneous 
velocity dx/dt. The nonlinear differential equation

 m 
d 2x

dt 2 1 b 2dx

dt
2  dx

dt
1 kx � 0 (3)

is one model of a free spring/mass system with damping proportional to the square of the veloc-
ity. One can then envision other kinds of models: linear damping and nonlinear restoring force, 
nonlinear damping and nonlinear restoring force, and so on. The point is, nonlinear characteristics 
of a physical system lead to a mathematical model that is nonlinear.

Notice in (2) that both F(x) � kx3 and F(x) � kx � k1x
3 are odd functions of x. To see why a 

polynomial function containing only odd powers of x provides a reasonable model for the restor-
ing force, let us express F as a power series centered at the equilibrium position x � 0:

 F(x) � c0 � c1x � c2x
2 � c3x

3 � ….

When the displacements x are small, the values of xn are negligible for n sufficiently large. If we 
truncate the power series with, say, the fourth term, then

 F(x) � c0 � c1x � c2x
2 � c3x

3.

In order for the force at x � 0 (F(x) � c0 � c1x � c2x
2 � c3x

3) and the force at �x � 0 (F(�x) � 
c0 � c1x � c2x

2 � c3x
3) to have the same magnitude but act in the opposite directions, we must 

have F(�x) � �F(x). Since this means F is an odd function, we must have c0 � 0 and c2 � 0, 
and so F(x) � c1x � c3x

3. Had we used only the first two terms in the series, the same argument 
yields the linear function F(x) � c1x. For discussion purposes we shall write c1 � k and c2 � k1. 
A restoring force with mixed powers such as F(x) � kx � k1x

2, and the corresponding vibrations, 
are said to be unsym metrical.

Hard and Soft Springs Let us take a closer look at the equation in (1) in the case where the 
restoring force is given by F(x) � kx � k1x

3, k � 0. The spring is said to be hard if k1 � 0 and 
soft if k1 � 0. Graphs of three types of restoring forces are illustrated in FIGURE 3.11.1. The next 
example illustrates these two special cases of the differential equation m d 2x/dt 2 � kx � k1x

3 � 0, 
m � 0, k � 0.

■ EXAMPLE 1 Comparison of Hard and Soft Springs
The differential equations

 
d 2x

dt 2  � x � x3 � 0 (4)

FIGURE 3.11.1  Hard and soft springs

F hard
spring linear spring

soft spring

x
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and 
d 2x

dt 2  � x � x3 � 0 (5)

are special cases of (2) and are models of a hard spring and soft spring, respectively. 
FIGURE 3.11.2(a) shows two solutions of (4) and Figure 3.11.2(b) shows two solutions of (5) 
obtained from a numerical solver. The curves shown in red are solutions satisfying the initial 
conditions x(0) � 2, x�(0) � �3; the two curves in blue are solutions satisfying x(0) � 2, 
x�(0) � 0. These solution curves certainly suggest that the motion of a mass on the hard spring 
is oscillatory, whereas motion of a mass on the soft spring is not oscillatory. But we must 
be careful about drawing conclusions based on a couple of solution curves. A more complete 
picture of the nature of the solutions of both of these equations can be obtained from the 
qualitative analysis discussed in Chapter 11. 

Nonlinear Pendulum Any object that swings back and forth is called a physical pendulum. 
The simple pendulum is a special case of the physical pendulum and consists of a rod of length l 
to which a mass m is attached at one end. In describing the motion of a simple pendulum in a 
vertical plane, we make the simplifying assumptions that the mass of the rod is negligible and 
that no external damping or driving forces act on the system. The displacement angle u of the 
pendulum, measured from the vertical as shown in FIGURE 3.11.3, is considered positive when 
measured to the right of OP and negative to the left of OP. Now recall that the arc s of a circle of 
radius l is related to the central angle u by the formula s � lu. Hence angular acceleration is

 a �
d 2s

dt 2 � l 
d 2u

dt 2 .

From Newton’s second law we then have

 F � ma � ml 
d 2u

dt 2 .

From Figure 3.11.3 we see that the magnitude of the tangential component of the force due to 
the weight W is mg sin u. In direction this force is �mg sin u, since it points to the left for u � 0 
and to the right for u � 0. We equate the two different versions of the tangential force to obtain 
ml d2u/dt2 � �mg sin u or

 
d2u

dt2 1
g

l
 sin u � 0. (6)

Linearization Because of the presence of sin u, the model in (6) is nonlinear. In an attempt 
to understand the behavior of the solutions of nonlinear higher-order differential equations, one 
sometimes tries to simplify the problem by replacing nonlinear terms by certain approximations. 
For example, the Maclaurin series for sin u is given by

  sin u � u 2
u3

3!
1
u5

5!
2 p,

and so if we use the approximation sin u � u � u3/6, equation (6) becomes d2u/dt2 � (g/l)u � 
(g/6l)u3 � 0. Observe that this last equation is the same as the second nonlinear equation in (2) 
with m � 1, k � g/l, and k1 � �g/6l. However, if we assume that the displacements u are small 
enough to justify using the replacement sin u � u, then (6)  becomes

 
d2u

dt2 1
g

l
 u � 0. (7)

See Problem 24 in Exercises 3.11. If we set v2 � g/l, we recognize (7) as the differential equa-
tion (2) of Section 3.8 that is a model for the free undamped vibrations of a linear spring/mass 
system. In other words, (7) is again the basic linear equation y� � ly � 0 discussed on page 161 
of Section 3.9. As a consequence, we say that equation (7) is a linearization of equation (6). 
Since the general solution of (7) is u(t) � c1 cos vt � c2 sin vt, this linearization suggests that 
for initial conditions amenable to small oscillations the motion of the pendulum described by 
(6) will be periodic.

FIGURE 3.11.2  Numerical solution 
curves

x

t

 x (0) = 2,
 x (0) = –3

  x (0) = 2,
 x (0) = 0

(a) Hard spring

x

t

 x (0) = 2,
 x (0) = –3

  x (0) = 2,
 x (0) = 0

(b) Soft spring

FIGURE 3.11.3  Simple pendulum

O

l

θ

θ

θ
θP

W = mg

mg cos

mg sin
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■ EXAMPLE 2 Two Initial-Value Problems
The graphs in FIGURE 3.11.4(a) were obtained with the aid of a numerical solver and represent 
solution curves of equation (6) when v2 � 1. The blue curve depicts the solution of (6) that 
satisfies the initial conditions u(0) � 1

2 , u�(0) � 1
2  whereas the red curve is the solution of 

(6) that satisfies u(0) � 1
2 , u�(0) � 2. The blue curve represents a periodic solution—the 

pendulum oscillating back and forth as shown in Figure 3.11.4(b) with an apparent amplitude 
A 	 1. The red curve shows that u increases without bound as time increases—the pendulum, 
starting from the same initial displacement, is given an initial velocity of magnitude great 
enough to send it over the top; in other words, the pendulum is whirling about its pivot as 
shown in Figure 3.11.4(c). In the absence of damping the motion in each case is continued 
indefinitely. 

Telephone Wires The first-order differential equation

 
dy

dx
�

W

T1

is equation (17) of Section 1.3. This differential equation, established with the aid of Figure 1.3.8 
on page 23, serves as a mathematical model for the shape of a flexible cable suspended between 
two vertical supports when the cable is carrying a vertical load. In Exercises 2.2, you may have 
solved this simple DE under the assumption that the vertical load carried by the cables of a sus-
pension bridge was the weight of a horizontal roadbed distributed evenly along the x-axis. With 
W � rw, r the weight per unit length of the roadbed, the shape of each cable between the vertical 
supports turned out to be parabolic. We are now in a position to determine the shape of a uniform 
flexible cable hanging under its own weight, such as a wire strung between two telephone posts. 
The vertical load is now the wire itself, and so if r is the linear density of the wire (measured, 
say, in lb/ft) and s is the length of the segment P1P2 in Figure 1.3.8, then W � rs. Hence,

 
dy

dx
�
rs

T1
. (8)

Since the arc length between points P1 and P2 is given by

 s � #
x

0 Å1 1 ady

dx
b2

dx, (9)

it follows from the Fundamental Theorem of Calculus that the derivative of (9) is

 
ds

dx
�Å1 1 ady

dx
b2

. (10)

Differentiating (8) with respect to x and using (10) lead to the second-order equation

 
d 2y

dx 2 5
r

T1
 
ds

dx
  or  d 2y

dx 2 5
r

T1Å1 1 ady

dx
b2

. (11)

In the example that follows, we solve (11) and show that the curve assumed by the suspended 
cable is a catenary. Before proceeding, observe that the nonlinear second-order differential 
equation (11) is one of those equations having the form F(x, y�, y�) � 0 discussed in Section 3.7. 
Recall, we have a chance of solving an equation of this type by reducing the order of the equation 
by means of the substitution u � y�.

■ EXAMPLE 3 An Initial-Value Problem
From the position of the y-axis in Figure 1.3.8 it is apparent that initial conditions associated 
with the second differential equation in (11) are y(0) � a and y�(0) � 0. If we substitute u � y�, 

the last equation in (11) becomes 
du

dx
�
r

T1
21 1 u2. Separating variables,

FIGURE 3.11.4  Numerical solution 
curves in (a); oscillating pendulum in (b); 
whirling pendulum in (c) in Example 2

(b)

θ (0) = 1
2

,

θ (0) = 1
2

θ (0) = 1
2

,

θ (0) = 2

θ

t

θ (0) =    , θ (0) = 2

θ (0) =    , θ (0) =

π π2

(a)

1
2

1
2

1
2

(c)
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 # du

21 1 u2
5
r

T1
#dx  gives   sinh 

21u 5
r

T1
x 1 c1.

Now, y�(0) � 0 is equivalent to u(0) � 0. Since sinh�1 0 � 0, we find c1 � 0 and so 
u � sinh (rx/T1). Finally, by integrating both sides of

 
dy

dx
5  sinh  

r

T1
x  we get  y 5

T1

r
 cosh  

r

T1
x 1 c2.

Using y(0) � a, cosh 0 � 1, the last equation implies that c2 � a � T1/r. Thus we see that the 
shape of the hanging wire is given by y � (T1/r) cosh(rx/T1) � a � T1/r. 

In Example 3, had we been clever enough at the start to choose a � T1/r, then the solution of 
the problem would have been simply the hyperbolic cosine y � (T1/r) cosh (rx/T1).

Rocket Motion In Section 1.3 we saw that the differential equation of a free-falling body of 
mass m near the surface of the Earth is given by

 m 
d 2s

dt 2 5 2mg  or simply  d 2s

dt 2 5 2g,

where s represents the distance from the surface of the Earth to the object and the positive direction 
is considered to be upward. In other words, the underlying assumption here is that the distance 
s to the object is small when compared with the radius R of the Earth; put yet another way, the 
distance y from the center of the Earth to the object is approximately the same as R. If, on the 
other hand, the distance y to an object, such as a rocket or a space probe, is large compared to R, 
then we combine Newton’s second law of motion and his universal law of gravitation to derive 
a differential equation in the variable y.

Suppose a rocket is launched vertically upward from the ground as shown in FIGURE 3.11.5. 
If the positive direction is upward and air resistance is ignored, then the differential equation of 
motion after fuel burnout is

 m 
d 

2y

dt 
2 5 2k 

Mm

y2   or  d 
2y

dt 
2 5 2k 

M

y2 , (12)

where k is a constant of proportionality, y is the distance from the center of the Earth to the rocket, 
M is the mass of the Earth, and m is the mass of the rocket. To determine the constant k, we use 
the fact that when y � R, kMm/R2 � mg or k � gR2/M. Thus the last equation in (12) becomes

 
d 2y

dt 2 �2g 
R2

y2 . (13)

See Problem 14 in Exercises 3.11.

Variable Mass Notice in the preceding discussion that we described the motion of the rocket 
after it has burned all its fuel, when presumably its mass m is constant. Of course during its pow-
ered ascent, the total mass of the rocket varies as its fuel is being expended. The second law of 
motion, as originally advanced by Newton, states that when a body of mass m moves through a 
force field with velocity v, the time rate of change of the momentum mv of the body is equal to 
applied or net force F acting on the body:

 F �
d

dt
 1mv2. (14)

If m is constant, then (14) yields the more familiar form F � m dv/dt � ma, where a is accelera-
tion. We use the form of Newton’s second law given in (14) in the next example, in which the 
mass m of the body is variable.

■ EXAMPLE 4 Chain Pulled Upward by a Constant Force
A uniform 10-foot-long chain is coiled loosely on the ground. One end of the chain is pulled 
vertically upward by means of a constant force of 5 lb. The chain weighs 1 lb per foot. 
Determine the height of the end above ground level at time t. See Figure 1.3.18 and Problem 21 
in Exercises 1.3.

FIGURE 3.11.5  Distance to rocket is 
large compared to R

y

R

center
of Earth

v0
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182 CHAPTER 3 Higher-Order Differential Equations

Solution  Let us suppose that x � x(t) denotes the height of the end of the chain in the air at 
time t, v � dx/dt, and that the positive direction is upward. For that portion of the chain in the 
air at time t we have the following variable quantities:

weight: W � (x ft) 
 (1 lb/ft) � x,
mass: m � W/g � x/32,
net force: F � 5 � W � 5 � x.

Thus from (14) we have

 Product Rule

 

 
d

dt
 a x

32
 vb 5 5 2 x  or  x 

dv

dt
1 v 

dx

dt
5 160 2 32x. (15)

Since v � dx/dt the last equation becomes

 x 
d 

2x

dt2 1 adx

dt
b2

1 32x � 160. (16)

The nonlinear second-order differential equation (16) has the form F(x, x�, x�) � 0, which is 
the second of the two forms considered in Section 3.7 that can possibly be solved by reduction 
of order. In order to solve (16), we revert back to (15) and use v � x� along with the Chain 

Rule. From 
dv

dt
�

dv

dx
 
dx

dt
� v 

dv

dx
 the second equation in (15) can be rewritten as

 xv 
dv

dx
1 v2 � 160 2 32x. (17)

On inspection (17) might appear intractable, since it cannot be characterized as any of the 
first-order equations that were solved in Chapter 2. However, by rewriting (17) in differential 
form M(x, v)dx � N(x, v)dv � 0, we observe that the nonexact equation

 (v2 � 32x � 160) dx � xv dv � 0 (18)

can be transformed into an exact equation by multiplying it by an integrating factor.* When 
(18) is multiplied by µ(x) � x, the resulting equation is exact (verify). If we identify 0f>0x � 
xv2 � 32x2 � 160x, 0f>0v � x2v, and then proceed as in Section 2.4, we arrive at

 
1

2
 x 2v2 1

32

3
 x3 2 80x2 � c1. (19)

From the initial condition x(0) � 0 it follows that c1 � 0. Now by solving 1
2 x 2v2 1 32

3  x3 � 
80x2 � 0 for v � dx/dt � 0 we get another differential equation,

 
dx

dt
5 Å160 2

64

3
 x,

which can be solved by separation of variables. You should verify that

 2
3

32
 a160 2

64

3
 xb1>2

� t 1 c2. (20)

This time the initial condition x(0) � 0 implies c2 � �3210/8. Finally, by squaring both 
sides of (20) and solving for x we arrive at the desired result,

 x1t2 �
15

2
2

15

2
 a1 2

4210

15
 tb2

. (21)

See Problem 15 in Exercises 3.11.

*See page 59 in section 2.4.
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 3.11 Exercises Answers to selected odd-numbered problems begin on page ANS-000.  

To the Instructor
In addition to Problems 24 and 25, all or portions of Problems 
1�6, 8�13, 15, 17, and 23 could serve as Computer Lab 
Assignments.

Nonlinear Springs
In Problems 1�4, the given differential equation is a model of an 
undamped spring/mass system in which the restoring force F(x) in 
(1) is nonlinear. For each equation use a numerical solver to plot 
the solution curves satisfying the given initial conditions. If the 
solutions appear to be periodic, use the solution curve to estimate 
the period T of oscillations.

 1. 
d 2x

dt 2  � x3 � 0,  

  x(0) � 1, x�(0) � 1; x(0) � 1
2, x�(0) � �1

 2. 
d 2x

dt 2  � 4x � 16x3 � 0, 

  x(0) � 1, x�(0) � 1; x(0) � �2, x�(0) � 2

 3. 
d 2x

dt 2  � 2x � x2 � 0, 

  x(0) � 1, x�(0) � 1; x(0) � 3
2, x�(0) � �1

 4. 
d 2x

dt 2  � xe0.01x � 0, 

  x(0) � 1, x�(0) � 1; x(0) � 3, x�(0) � �1

 5. In Problem 3, suppose the mass is released from the initial 
position x(0) � 1 with an initial velocity x�(0) � x1. Use a 
numerical solver to estimate the smallest value of |x1| at which 
the motion of the mass is nonperiodic.

 6. In Problem 3, suppose the mass is released from an initial 
position x(0) � x0 with the initial velocity x�(0) � 1. Use a 
numerical solver to estimate an interval a 	 x0 	 b for which 
the motion is oscillatory.

 7. Find a linearization of the differential equation in Problem 4.
 8. Consider the model of an undamped nonlinear spring/mass 

system given by x� � 8x � 6x3 � x5 � 0. Use a numerical 
solver to discuss the nature of the oscillations of the system 
corresponding to the initial conditions:

  x(0) � 1, x�(0) � 1;  x(0) � �2, x�(0) � 1
2;

  x(0) � 22, x�(0) � 1;  x(0) � 2, x�(0) � 1
2;

  x(0) � 2, x�(0) � 0;  x(0) � �22, x�(0) � �1.

In Problems 9 and 10, the given differential equation is a model 
of a damped nonlinear spring/mass system. Predict the behavior 
of each system as t S �. For each equation use a numerical 
solver to obtain the solution curves satisfying the given initial 
conditions.

 9. 
d 2x

dt 2 1
dx

dt
 � x � x3 � 0,

  x(0) � �3,  x�(0) � 4;  x(0) � 0,  x�(0) � �8

 10. 
d 2x

dt 2 1
dx

dt
 � x � x3 � 0,

  x(0) � 0,  x�(0) � 3
2;  x(0) � �1,  x�(0) � 1

 11. The model mx� � kx � k1x
3 � F0 cos vt of an undamped 

periodically driven spring/mass system is called Duffing’s 
differential equation. Consider the ini tial-value problem 
x� � x � k1x

3 � 5 cos t, x(0) � 1, x�(0) � 0. Use a numerical 
solver to investigate the behavior of the system for values 
of k1 � 0 ranging from k1 � 0.01 to k1 � 100. State your 
conclusions.

 12. (a)  Find values of k1 � 0 for which the system in Problem 
11 is oscillatory.

(b) Consider the initial-value problem

 x� � x � k1x
3 � cos 3

2t,  x(0) � 0, x�(0) � 0.

   Find values for k1 � 0 for which the system is oscillatory.

Nonlinear Pendulum
 13. Consider the model of the free damped nonlinear pendulum 

given by

 
d 2u

dt 2 1 2l
du

dt
1 v2

 sin u � 0.

  Use a numerical solver to investigate whether the motion in the 
two cases l2 � v2 � 0 and l2 � v2 � 0 corresponds, respec-
tively, to the overdamped and underdamped cases discussed 
in Section 3.8 for spring/mass systems. Choose appropriate 
initial conditions and values of l and v.

Rocket Motion
 14. (a)  Use the substitution v � dy/dt to solve (13) for v in terms 

of y. Assume that the velocity of the rocket at burnout 
is v � v0 and that y � R at that instant; show that the 
approximate value of the constant c of integration is 
c � �gR � 1

2v0
2.

(b) Use the solution for v in part (a) to show that the escape 

velocity of the rocket is given by v0 � 22gR. [Hint: 
Take y S � and assume v � 0 for all time t.]

(c) The result in part (b) holds for any body in the solar sys-
tem. Use the values g � 32 ft/s2 and R � 4000 mi to show 
that the escape velocity from the Earth is (approximately) 
v0 � 25,000 mi/h.

(d) Find the escape velocity from the Moon if the acceleration 
of gravity is 0.165g and R � 1080 mi.

Variable Mass
 15. (a)  In Example 4, how much of the chain would you in-

tuitively expect the constant 5-pound force to be able to 
lift?

(b) What is the initial velocity of the chain?
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184 CHAPTER 3 Higher-Order Differential Equations

(c) Why is the time interval corresponding to x(t) � 0 not the 
interval I of definition of the solution (21)? Determine 
the interval I. How much chain is actually lifted? Explain 
any difference between this answer and your prediction 
in part (a).

(d) Why would you expect x(t) to be a periodic solution?
 16. A uniform chain of length L, measured in feet, is held vertically 

so that the lower end just touches the floor. The chain weighs 
2 lb/ft. The upper end that is held is  released from rest at t � 0 
and the chain falls straight down. See Figure 1.3.19. As we 
saw in Problem 22 in Exercises 1.3, if x(t) denotes the length 
of the chain on the floor at time t, air resistance is ignored, 
and the positive direction is taken to be downward, then

 1L 2 x2 
d 2x

dt 2 2 adx

dt
b2

� Lg.

(a) Solve for v in terms of x. Solve for x in terms of t. Express 
v in terms of t.

(b) Determine how long it takes for the chain to fall com-
pletely to the ground.

(c) What velocity does the model in part (a) predict for the 
upper end of the chain as it hits the ground?

 17. A portion of a uniform chain of length 8 feet is loosely coiled 
around a peg at the edge of a high horizontal platform, and the 
remaining portion of the chain hangs at rest over the edge of 
the platform. Suppose that the length of the overhang is 3 feet 
and that the chain weighs 2 lb/ft. Starting at t � 0, the weight 
of the overhanging portion causes the chain on the table to 
uncoil smoothly and to fall to the floor.
(a) Ignore any resistive forces and assume that the positive di-

rection is downward. If x(t) denotes the length of the chain 
overhanging the platform at time t � 0 and v � dx/dt, find 
a differential equation that relates v to x.

(b) Proceed as in Example 4 and solve for v in terms of x by 
finding an appropriate integrating factor.

(c) Express time t in terms of x. Use a CAS as an aid in de-
termining the time it takes for a 7-foot segment of chain 
to uncoil completely—that is, fall from the platform.

 18. A portion of a uniform chain of length 8 feet lies stretched 
out on a high horizontal platform, and the remaining portion 
of the chain hangs over the edge of the platform as shown 
in FIGURE 3.11.6. Suppose the length of the overhang is 3 feet 
and that the chain weighs 2 lb/ft. The end of the chain on the 
platform is held until at t � 0 it is released from rest, and the 
chain begins to slide off the platform because of the weight 
of the overhanging portion.
(a) Ignore any resistive forces and assume that the positive di-

rection is downward. If x(t) denotes the length of the chain 
overhanging the platform at time t � 0 and v � dx/dt, 
show that v is related to x by the differential equation 

v 
dv

dx
 � 4x.

(b) Solve for v in terms of x. Solve for x in terms of t. Express 
v in terms of t.

(c) Approximate the time it takes for the rest of the chain to 
slide off the platform. Find the velocity at which the end 
of the chain leaves the edge of the platform.

(d) Suppose the chain is L feet long and weighs a total of 
W pounds. If the overhang at t � 0 is x0 feet, show that 
the velocity at which the end of the chain leaves the edge 

of the platform is v(L) � Å
g

L
 1L2 2 x2

02. 

 FIGURE 3.11.6  Sliding chain in Problem 18

3 ft

Miscellaneous Mathematical Models
 19. Pursuit Curve  In a naval exercise, a ship S1 is pursued by 

a submarine S2, as shown in FIGURE 3.11.7. Ship S1 departs 
point (0, 0) at t � 0 and proceeds along a straight-line 
course (the y-axis) at a constant speed v1. The submarine 
S2 keeps ship S1 in visual contact, indicated by the straight 
dashed line L in the figure, while traveling at a constant 
speed v2 along a curve C. Assume that S2 starts at the point 
(a, 0), a � 0, at t � 0 and that L is tangent to C. Determine 
a mathematical model that describes the curve C. Find an 
explicit solution of the differential equation. For conve-
nience, define r � v1/v2. Determine whether the paths of 
S1 and S2 will ever intersect by considering the cases r � 1, 
r � 1, and r � 1. 

  [Hint: 
dt

dx
�

dt

ds
 
ds

dx
, where s is arc length measured along C.] 

  FIGURE 3.11.7  Pursuit curve in Problem 19

y

C

L

S2

x

S1

 20. Pursuit Curve  In another naval exercise, a destroyer S1 pur-
sues a submerged submarine S2. Suppose that S1 at (9, 0) on 
the x-axis detects S2 at (0, 0) and that S2 simultaneously detects 
S1. The captain of the destroyer S1 assumes that the submarine 
will take immediate evasive action and conjectures that its 
likely new course is the straight line indicated in FIGURE 3.11.8. 
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When S1 is at (3, 0) it changes from its straight-line course 
toward the origin to a pursuit curve C. Assume that the speed 
of the destroyer is, at all times, a constant 30 mi/h and the 
submarine’s speed is a constant 15 mi/h.
(a) Explain why the captain waits until S1 reaches (3, 0) before 

ordering a course change to C.
(b) Using polar coordinates, find an equation r � f (u) for the 

curve C.
(c) Let T denote the time, measured from the initial detection, 

at which the destroyer intercepts the submarine. Find an 
upper bound for T.

 FIGURE 3.11.8  Pursuit curve in Problem 20

y

x

C

L

(3, 0) (9, 0)

θ

S2

S1

Discussion Problems
 21. Discuss why the damping term in equation (3) is written as

 b 2dx

dt
2  dx

dt
 instead of b adx

dt
b2

.

 22. (a)  Experiment with a calculator to find an interval 0 	 u � u1, 
where u  is measured in radians, for which you think 
sin u � u is a fairly good estimate. Then use a graphing 
utility to plot the graphs of y � x and y � sin x on the 
same coordinate axes for 0 	 x 	 p/2. Do the graphs 
confirm your observations with the calculator?

(b) Use a numerical solver to plot the solutions curves of the 
initial-value problems

 
d 2u

dt 2  � sin u � 0,  u(0) � u0, u�(0) � 0

 and 
d 2u

dt 2  � u � 0,  u(0) � u0, u�(0) � 0

 for several values of u0 in the interval 0 	 u � u1 found 
in part (a). Then plot solution curves of the initial-
value problems for several values of u0 for which 
u0 � u1.

 23. (a)  Consider the nonlinear pendulum whose oscillations are 
defined by (6). Use a numerical solver as an aid to de-
termine whether a pendulum of length l will oscillate 
faster on the Earth or on the Moon. Use the same initial 
conditions, but choose these initial conditions so that the 
pendulum oscillates back and forth.

(b) For which location in part (a) does the pendulum have 
greater amplitude?

(c) Are the conclusions in parts (a) and (b) the same when 
the linear model (7) is used?

Computer Lab Assignments
 24. Consider the initial-value problem

 
d 2u

dt 2 1  sin u � 0, u102 �
p

12
, u¿102 �2

1

3

  for the nonlinear pendulum. Since we cannot solve the dif-
ferential equation, we can find no explicit solution of this 
problem. But suppose we wish to determine the first time 
t1 � 0 for which the pendulum in Figure 3.11.3 starting from 
its initial position to the right, reaches the position OP—that 
is, find the first positive root of u(t) � 0. In this problem and 
the next we examine several ways to proceed.
(a) Approximate t1 by solving the linear problem d 2u/dt2 � 
u � 0, u(0) � p/12, u�(0) � �1

3.
(b) Use the method illustrated in Example 3 of Section 3.7 to 

find the first four nonzero terms of a Taylor series solution 
u(t) centered at 0 for the nonlinear initial-value problem. 
Give the exact values of all coefficients.

(c) Use the first two terms of the Taylor series in part (b) to 
approximate t1.

(d) Use the first three terms of the Taylor series in part (b) to 
approximate t1.

(e) Use a root-finding application of a CAS (or a graphing 
calculator) and the first four terms of the Taylor series in 
part (b) to approximate t1.

(f) In this part of the problem you are led through the com-
mands in Mathematica that enable you to approximate 
the root t1. The procedure is easily modified so that any 
root of u(t) � 0 can be approximated. (If you do not have 
Mathematica, adapt the given procedure by finding the 
corresponding syntax for the CAS you have on hand.) 
Precisely reproduce and then, in turn, execute each line 
in the given sequence of commands.

sol � NDSolve[{y�[t] � Sin[y[t]} � � 0,
 y[0] � � Pi/12, y�[0] �� �1/3} ,
 y, { t, 0, 5} ]//Flatten
solution � y[t]/.sol
Clear[y]
y[t_]: � Evaluate[solution]
y[t]
gr1 � Plot[y[t], { t, 0, 5} ]
root � FindRoot[y[t] � � 0, { t, 1} ]

(g) Appropriately modify the syntax in part (f) and find the 
next two positive roots of u(t) � 0.

 25. Consider a pendulum that is released from rest from an ini-
tial displacement of u0 radians. Solving the linear model (7) 
subject to the initial conditions u(0) � u0, u�(0) � 0 gives 
u(t) � u0 cos !g>lt. The period of oscillations predicted by this 

model is given by the  familiar formula T � 2p/!g>l � 2p2l>g. 
The interesting thing about this formula for T is that it does 

79665_CH03_zill_pp178-195.indd   18579665_CH03_zill_pp178-195.indd   185 9/22/09   6:00:37 PM9/22/09   6:00:37 PM



186 CHAPTER 3 Higher-Order Differential Equations

not depend on the magnitude of the initial displacement u0. 
In other words, the linear model predicts that the time that it 
would take the pendulum to swing from an initial displacement 
of, say, u0 � p/2 (� 90
) to �p/2 and back again would be 
exactly the same time to cycle from, say, u0 � p/360 (� 0.5
) 
to �p/360. This is intuitively unreasonable; the actual period 
must depend on u0.

     If we assume that g � 32 ft/s2 and l � 32 ft, then the period 
of oscillation of the linear model is T � 2p s. Let us compare 
this last number with the period predicted by the nonlinear 
model when u0 � p/4. Using a numerical solver that is capable 
of generating hard data, approximate the solution of

 
d 2u

dt 2 1  sin u 5 0, u102 5 p
4

, u¿ 102 5 0

  for 0 	 t 	 2. As in Problem 24, if t1 denotes the first time 
the pendulum reaches the position OP in Figure 3.11.3, then 
the period of the nonlinear pendulum is 4t1. Here is another 
way of solving the equation u(t) � 0. Experiment with small 
step sizes and advance the time starting at t � 0 and ending 
at t � 2. From your hard data, observe the time t1 when u(t) 
changes, for the first time, from positive to negative. Use 
the value t1 to determine the true value of the period of the 
nonlinear pendulum. Compute the percentage relative error 
in the period estimated by T � 2p.

3.12 Solving Systems of Linear Equations

Introduction We conclude this chapter as we did in Chapter 2 with systems of differential 
equations. But unlike Section 2.9, we will actually solve systems in the discussion that follows.

Coupled Systems/Coupled DEs In Section 2.9 we briefly examined some mathematical 
models that were systems of linear and nonlinear first-order ODEs. In Section 3.8 we saw that 
the mathematical model describing the displacement of a mass on a single spring, current in 
a series circuit, and charge on a capacitor in a series circuit consisted of a single differential 
equation. When physical systems are coupled—for example, when two or more mixing tanks 
are connected, when two or more spring/mass systems are attached, or when circuits are joined 
to form a network—the mathematical model of the system usually consists of a set of coupled 
differential equations; in other words, a system of differential equations.

We did not attempt to solve any of the systems considered in Section 2.9. The same remarks 
made in Sections 3.7 and 3.11 pertain as well to systems of nonlinear ODEs; that is, it is nearly 
impossible to solve such systems analytically. However, linear systems with constant coefficients 
can be solved. The method that we shall examine in this section for solving linear systems with 
constant coefficients simply uncouples the system into distinct linear ODEs in each dependent 
variable. Thus, this section gives you an opportunity to practice what you learned earlier in the 
chapter.

Before proceeding, let us continue in the same vein as Section 3.8 by considering a spring/
mass system, but this time we derive a mathematical model that describes the vertical displace-
ments of two masses in a coupled spring/mass system.

Coupled Spring/Mass System Suppose two masses m1 and m2 are connected to two springs A 
and B of negligible mass having spring constants k1 and k2, respectively. As shown in FIGURE 3.12.1(a), 
spring A is attached to a rigid support and spring B is attached to the bottom of mass m1. Let 
x1(t) and x2(t) denote the vertical displacements of the masses from their equilibrium positions. 
When the system is in motion, Figure 3.12.1(b), spring B is subject to both an elongation and 
a compression; hence its net elongation is x2 � x1. Therefore it follows from Hooke’s law that 
springs A and B exert forces �k1x1 and k2(x2 � x1), respectively, on m1. If no damping is present 
and no external force is impressed on the system, then the net force on m1 is �k1x1 � k2(x2 � x1). 
By Newton’s second law we can write

 m1 
d 2x1

dt 2 �2k1x1 1 k21x2 2 x12.
FIGURE 3.12.1  Coupled spring/mass 
systems

A

B

k1

x1

x2

k2

k2(x2 –x1)

k2(x2 –x1)

k1x1x1 = 0

x2 = 0

m1

m2

m1

m2

m1

m2

(a) Equilibrium (b) Motion (c) Forces
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Similarly, the net force exerted on mass m2 is due solely to the net elongation of spring B; that 
is, �k2(x2 � x1). Hence we have

 m2 
d 2x

 2

dt 2 �2k21x2 2 x12.

In other words, the motion of the coupled system is represented by the system of linear second-
order equations

  m1x1– �2k1x1 1 k21x2 2 x12

  m2x2– �2k21x2 2 x12. 
(1)

After we have illustrated the main idea of this section, we will return to system (1).

Systematic Elimination The method of systematic elimination for solving systems of linear 
equations with constant coefficients is based on the algebraic principle of elimination of vari-
ables. The analogue of multiplying an algebraic equation by a constant is operating on an ODE 
with some combination of derivatives. The elimination process is expedited by rewriting each 
equation in a system using differential operator notation. Recall from Section 3.1 that a single 
linear equation

 any
(n) � an�1y

(n�1) � … � a1y� � a0y � g(t),

where the ai, i � 0, 1, . . . , n are constants, can be written as

 (anD
n � an�1D

n�1 � … � a1D � a0)y � g(t).

If an nth-order differential operator anD
n � an�1D

n�1 � . . .  � a1D � a0 factors into differential 
operators of lower order, then the factors commute. Now, for example, to rewrite the system

 x� � 2x� � y� � x � 3y � sin t

 x� � y� � �4x � 2y � e�t

in terms of the operator D, we first bring all terms involving the dependent variables to one side 
and group the same variables:

 x� � 2x� � x � y� � 3y � sin t      (D2 � 2D � 1)x � (D2 � 3)y � sin t

 x� � 4x � y� � 2y � e�t  
so that

       (D � 4)x � (D � 2)y � e�t.

Solution of a System A solution of a system of differential equations is a set of sufficiently 
differentiable functions x � f1(t), y � f2(t), z � f3(t), and so on, that satisfies each equation in 
the system on some common interval I.

Method of Solution Consider the simple system of linear first-order equations

 

dx

dt
� 3y

dy

dt
� 2x

   or, equivalently,   
Dx 2 3y � 0

2x 2 Dy � 0.
 (2)

Operating on the first equation in (2) by D while multiplying the second by �3 and then adding 
eliminates y from the system and gives D2x � 6x � 0. Since the roots of the auxiliary equation 
of the last DE are m1 � !6 and m2 � �!6, we obtain

 x1t2 � c1e
226t 1 c2e

26t. (3)
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Multiplying the first equation in (2) by 2 while operating on the second by D and then subtracting 
gives the differential equation for y, D2y � 6y � 0. It follows immediately that

 y1t2 � c3e
226t 1 c4e

26t. (4)

Now, (3) and (4) do not satisfy the system (2) for every choice of c1, c2, c3, and c4 because the 
system itself puts a constraint on the number of parameters in a solution that can be chosen ar-
bitrarily. To see this, observe that after substituting x(t) and y(t) into the first equation of the 
original system, (2) gives, after simplification,

 12 26c1 2 3c32e
226t 1 126c2 2 3c42e

26t � 0.

Since the latter expression is to be zero for all values of t, we must have �!6c1 � 3c3 � 0 and 
!6c2 � 3c4 � 0. Thus we can write c3 and a multiple of c1 and c4 as a multiple of c2:

 c3 �2
26

3
 c1 and c4 �

26

3
 c2. (5)

Hence we conclude that a solution of the system must be

 x1t2 � c1e
226t 1 c2e

26t, y1t2 �2
26

3
 c1e

226t 1
26

3
 c2e

26t.

You are urged to substitute (3) and (4) into the second equation of (2) and verify that the same 
relationship (5) holds between the constants.

■ EXAMPLE 1 Solution by Elimination
Solve Dx � (D � 2)y � 0

 (D � 3)x �  2y � 0. (6)

Solution  Operating on the first equation by D � 3 and on the second by D and then subtract-
ing eliminates x from the system. It follows that the differential equation for y is

 [(D � 3)(D � 2) � 2D]y � 0  or  (D2 � D � 6)y � 0.

Since the characteristic equation of this last differential equation is m2 � m � 6 � 
(m � 2)(m � 3) � 0, we obtain the solution

 y(t) � c1e
2t � c2e

�3t. (7)

Eliminating y in a similar manner yields (D2 � D � 6)x � 0, from which we find

 x(t) � c3e
2t � c4e

�3t. (8)

As we noted in the foregoing discussion, a solution of (6) does not contain four independent 
constants. Substituting (7) and (8) into the first equation of (6) gives

 (4c1 � 2c3)e
2t � (�c2 � 3c4)e

�3t � 0.

From 4c1 � 2c3 � 0 and �c2 � 3c4 � 0 we get c3 � �2c1 and c4 � �1
3c2. Accordingly, a 

solution of the system is

 x(t) � �2c1e
2t � 

1

3
c2e

�3t,  y(t) � c1e
2t � c2e

�3t. 

This is important.
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Since we could just as easily solve for c3 and c4 in terms of c1 and c2, the solution in Example 1 
can be written in the alternative form

 x(t) � c3e
2t � c4e

�3t,  y(t) � �
1

2
c3e

2t � 3c4e
�3t.

It sometimes pays to keep one’s eyes open when solving systems. Had we solved for x first, 
then y could be found, along with the relationship between the constants, by using the last equa-
tion in (6). You should verify that substituting x(t) into y � 1

2(Dx � 3x) yields y � �1
2c3e

2t � 
3c4e

�3t.

■ EXAMPLE 2 Solution by Elimination
Solve x� � 4x � y� � t 2

 x� � x � y� � 0. 
(9)

Solution  First we write the system in differential operator notation:

 (D � 4)x � D2y � t 2

   (D � 1)x � Dy � 0. 
(10)

Then, by eliminating x, we obtain

 [(D � 1)D2 � (D � 4)D]y � (D � 1)t 2 � (D � 4)0

or (D3 � 4D)y � t 2 � 2t.

Since the roots of the auxiliary equation m(m2 � 4) � 0 are m1 � 0, m2 � 2i, and m3 � �2i, 
the complementary function is

 yc � c1 � c2 cos 2t � c3 sin 2t.

To determine the particular solution yp we use undetermined coefficients by assuming 
yp � At 3 � Bt 2 � Ct. Therefore

 y�p � 3At 2 � 2Bt � C,   y�p � 6At � 2B,   y�p � 6A,

 y�p � 4y�p � 12At 2 � 8Bt � 6A � 4C � t 2 � 2t.

The last equality implies 12A � 1, 8B � 2, 6A � 4C � 0, and hence A � 1
12, B � 1

4, C � �1
8. 

Thus

 y � yc � yp � c1 � c2 cos 2t � c3 sin 2t � 
1

12
 t 3 � 

1

4
 t 2 � 

1

8
 t. (11)

Eliminating y from the system (9) leads to

 [(D � 4) � D(D � 1)]x � t 2  or  (D2 � 4)x � �t 2.

It should be obvious that

 xc � c4 cos 2t � c5 sin 2t

and that undetermined coefficients can be applied to obtain a particular solution of the form 
xp � At 2 � Bt � C. In this case the usual differentiations and algebra yield xp � �1

4t 2 � 1
8, 

and so

 x � xc � xp � c4 cos 2t � c5 sin 2t � 
1

4
t 2 � 

1

8
. (12)

Watch for a shortcut.W
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190 CHAPTER 3 Higher-Order Differential Equations

Now c4 and c5 can be expressed in terms of c2 and c3 by substituting (11) and (12) into either 
equation of (9). By using the second equation, we find, after combining terms,

 (c5 � 2c4 � 2c2) sin 2t � (2c5 � c4 � 2c3) cos 2t � 0

so that c5 � 2c4 � 2c2 � 0 and 2c5 � c4 � 2c3 � 0. Solving for c4 and c5 in terms of c2 and c3 
gives c4 � �1

5(4c2 � 2c3) and c5 � 1
5(2c2 � 4c3). Finally, a solution of (9) is found to be

 x(t) � � 
1

5
 (4c2 � 2c3) cos 2t � 

1

5
 (2c2 � 4c3) sin 2t � 

1

4
 t 2 � 

1

8
,

 y(t) � c1 � c2 cos 2t � c3 sin 2t � 
1

12
 t 3 � 

1

4
 t 2 � 

1

8
 t. 

■ EXAMPLE 3 A Mathematical Model Revisited
In (3) of Section 2.9 we saw that a system of linear first-order differential equations described 
the number of pounds of salt x1(t) and x2(t) of a brine mixture that flows between two tanks. 
At that time we were not able to solve the system. But now, in terms of differential operators, 
the system is

 aD 1
2

25
b  x1 2  

1

50
 x2 � 0

 2
2

25
 x1 1 aD 1

2

25
b  x2 � 0.

Operating on the first equation by D � 2
25, multiplying the second equation by 1

50, adding, and 
then simplifying, give

 (625D2 � 100D � 3)x1 � 0.

From the auxiliary equation 625m2 � 100m � 3 � (25m � 1)(25m � 3) � 0 we see 
immediately that

 x1(t) � c1e
�t/25 � c2e

�3t/25.

In like manner we find (625D2 � 100D � 3)x2 � 0 and so

 x2(t) � c3e
�t/25 � c4e

�3t/25.

Substituting x1(t) and x2(t) into, say, the first equation of the system then gives

 (2c1 � c3)e
�t/25 � (�2c2 � c4)e

�3t/25 � 0.

From this last equation we find c3 � 2c1 and c4 � �2c2. Thus a solution of the system is

 x1(t) � c1e
�t/25 � c2e

�3t/25,   x2(t) � 2c1e
�t/25 � 2c2e

�3t/25.

In the original discussion we assumed that initial conditions were x1(0) � 25 and x2(0) � 0. 
Applying these conditions to the solution yields c1 � c2 � 25 and 2c1 � 2c2 � 0. Solving 
these equations simultaneously gives c1 � c2 � 25

2 . Finally, a solution of the initial-value 
problem is

 x1(t) � 
25

2
e�t/25 � 

25

2
e�3t/25,   x2(t) � 25e�t/25 � 25e�3t/25. 
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In our next example we solve system (1) under the assumption that k1 � 6, k2 � 4, m1 � 1, 
and m2 � 1.

■ EXAMPLE 4 A Special Case of System (1)
Solve x�1 � 10x1 �4x2 � 0

 �4x1 � x�2 � 4x2 � 0 
(13)

subject to x1(0) � 0, x�1(0) � 1, x2(0) � 0, x�2(0) � �1.

Solution  Using elimination on the equivalent form of the system

 (D2 � 10)x1 � 4x2 � 0

 �4x1 � (D2 � 4)x2 � 0

we find that x1 and x2 satisfy, respectively,

 (D2 � 2)(D2 � 12)x1 � 0  and  (D2 � 2)(D2 � 12)x2 � 0.

Thus we find

 x1(t) � c1 cos !2t � c2 sin !2t � c3 cos 2!3t � c4 sin 2!3t

 x2(t) � c5 cos !2t � c6 sin !2t � c7 cos 2!3t � c8 sin 2!3t.

Substituting both expressions into the first equation of (13) and simplifying eventually 
yields c5 � 2c1, c6 � 2c2, c7 � �1

2c3, c8 � �1
2c4. Thus, a solution of (13) is

 x1(t) � c1 cos !2t � c2 sin !2t � c3 cos 2!3t � c4 sin 2!3t

 x2(t) � 2c1 cos !2t � 2c2 sin !2t � 1
2c3 cos 2!3t � 1

2c4 sin 2!3t.

The stipulated initial conditions then imply c1 � 0, c2 � �22/10, c3 � 0, c4 � 23/5. 
And so the solution of the initial-value problem is

  x11t2 �2
22

10
 sin 22t 1

23

5
 sin 223t

 (14)

  x21t2 �2
22

5
 sin 22t 2

23

10
 sin 223t.

The graphs of x1 and x2 in FIGURE 3.12.2 reveal the complicated oscillatory motion of 
each mass. 

We will revisit Example 4 in Section 4.6, where we will solve (13) by means of the Laplace 
transform.

 3.12 Exercises Answers to selected odd-numbered problems begin on page ANS-000.  

In Problems 1�20, solve the given system of differential 
equations by systematic elimination.

 1. 
dx

dt
� 2x 2 y 2. 

dx

dt
� 4x 1 7y

  
dy

dt
� x  

dy

dt
� x 2 2y

 3. 
dx

dt
�2y 1 t  4. 

dx

dt
2 4y � 1

  
dy

dt
� x 2 t  

dy

dt
1 x � 2

 5. (D2 � 5)x � 2y � 0
  �2x � (D2  � 2)y � 0

FIGURE 3.12.2  Displacements of the two 
masses in Example 4

0.4
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0 t

0 2.5 5 7.5 10 12.5 15

t

0 2.5 5 7.5 10 12.5 15

0.4

0.2

0

–0.4

–0.2

–0.4

–0.2

(a) x1(t)

(b) x2(t)

x2

x1
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192 CHAPTER 3 Higher-Order Differential Equations

 6. (D � 1)x � (D � 1)y � 2
   3x � (D � 2)y � �1

 7. 
d 2x

dt 2 � 4y 1 e¿ 8. 
d 2x

dt 2 1
dy

dt
�25x

  
d 2y

dt 2 � 4x 2 et  
dx

dt
1

dy

dt
�2x 1 4y

 9. Dx � D2y � e3t

  (D � 1)x � (D � 1)y � 4e3t

 10. D2x �Dy � t
  (D � 3)x � (D � 3)y � 2

 11. (D2 � 1)x � y � 0
  (D � 1) x � Dy � 0

 12. (2D2 � D � 1)x � (2D � 1)y � 1
  (D � 1)x � Dy � �1

 13. 2
dx

dt
2 5x 1

dy

dt
� et  14. 

dx

dt
1

dy

dt
 � et

  
dx

dt
2 x 1

dy

dt
� 5et  2

d 2x

dt 2 1
dx

dt
1 x 1 y � 0

 15. (D � 1)x � (D2 � 1)y � 1
  (D2 � 1)x � (D � 1)y � 2

 16. D2x � 2(D2 � D)y � sin t
   x � Dy � 0

 17. Dx � y 18.    Dx �   z � et

  Dy � z  (D � 1)x � Dy � Dz � 0
  Dz � x  x � 2y    � Dz � et

 19. 
dx

dt
� 6y 20. 

dx

dt
�2x 1 z

  
dy

dt
� x 1 z  

dy

dt
�2y 1 z

  
dz

dt
� x 1 y  

dz

dt
�2x 1 y

In Problems 21 and 22, solve the given initial-value problem.

 21. 
dx

dt
�25x 2 y 22. 

dx

dt
� y 2 1

  
dy

dt
� 4x 2 y  

dy

dt
�23x 1 2y

  x 112 5 0, y 112 5 1  x 102 5 0, y 102 5 0

Mathematical Models
 23. Projectile Motion  A projectile shot from a gun has weight 

w � mg and velocity v tangent to its path of motion. Ignoring 
air resistance and all other forces acting on the projectile except its 
weight, determine a system of differential equations that describes 
its path of motion. See FIGURE 3.12.3. Solve the system. [Hint: Use 
Newton’s second law of motion in the x and y directions.] 

  FIGURE 3.12.3 Path of projectile in Problem 23

y

x

mg

v

 24. Projectile Motion with Air Resistance  Determine a system 
of differential equations that describes the path of motion in 
Problem 23 if air resistance is a retarding force k (of magni-
tude k) acting tangent to the path of the projectile but opposite 
to its motion. See FIGURE 3.12.4. Solve the system. [Hint: k is 
a multiple of velocity, say cv.] 

  FIGURE 3.12.4  Forces in Problem 24

v

k θ

Computer Lab Assignments
 25. Consider the solution x1(t) and x2(t) of the initial-value prob-

lem given at the end of Example 3. Use a CAS to graph 
x1(t) and x2(t) in the same coordinate plane on the interval 
[0, 100]. In Example 3, x1(t) denotes the number of pounds 
of salt in tank A at time t, and x2(t) the number of pounds of 
salt in tank B at time t. See Figure 2.9.1. Use a root-finding 
application to determine when tank B contains more salt than 
tank A.

 26. (a)  Reread Problem 8 of Exercises 2.9. In that problem you were 
asked to show that the system of differential equations

 

dx1

dt
�2

1

50
 x1

dx2

dt
�

1

50
 x1 2

2

75
 x2

dx3

dt
�

2

75
 x2 2

1

25
 x3

  is a model for the amounts of salt in the connected mixing 
tanks A, B, and C shown in Figure 2.9.7. Solve the system 
subject to x1(0) � 15, x2(t) � 10, x3(t) � 5.

(b) Use a CAS to graph x1(t), x2(t), and x3(t) in the same 
coordinate plane on the interval [0, 200].

(c) Since only pure water is pumped into tank A, it stands to 
reason that the salt will eventually be flushed out of all 
three tanks. Use a root-finding application of a CAS to 
determine the time when the amount of salt in each tank 
is less than or equal to 0.5 pounds. When will the amounts 
of salt x1(t), x2(t), and x3(t) be simultaneously less than or 
equal to 0.5 pounds?

 27. (a)  Use systematic elimination to solve the system (1) for 
the coupled spring/mass system when k1 � 4, k2 � 2, 
m1 � 2, and m2 � 1 and with initial conditions x1(0) � 2, 
x�1(0) � 1, x2(0) � �1, x�2(0) � 1.

(b) Use a CAS to plot the graphs of x1(t) and x2(t) in the 
tx-plane. What is the fundamental difference in the mo-
tions of the masses m1 and m2 in this problem and that of 
the masses illustrated in Figure 3.12.2?

(c) As parametric equations, plot x1(t) and x2(t) in the 
x1x2-plane. The curve defined by these parametric equa-
tions is called a Lissajous curve.
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 3  in Review Answers to selected odd-numbered problems begin on page ANS-000.  

Answer Problems 1�8 without referring back to the text. Fill in 
the blank or answer true/false.

 1. The only solution of the initial-value problem y� � x2y � 0, 
y(0) � 0, y�(0) � 0 is ______.

 2. For the method of undetermined coefficients, the assumed 
form of the particular solution yp for y� � y � 1 � ex is 
______.

 3. A constant multiple of a solution of a linear differential equa-
tion is also a solution.

 4. If f1 and f2 are linearly independent functions on an interval I, 
then their Wronskian W(f1, f2) � 0 for all x in I.

 5. If a 10-pound weight stretches a spring 2.5 feet, a 32-pound 
weight will stretch it _____ feet.

 6. The period of simple harmonic motion of an 8-pound weight 
attached to a spring whose constant is 6.25 lb/ft is _____ 
seconds.

 7. The differential equation describing the motion of a mass 
attached to a spring is x� � 16x � 0. If the mass is released 
at t � 0 from 1 meter above the equilibrium position with a 
downward velocity of 3 m/s, the amplitude of vibrations is 
______ meters.

 8. If simple harmonic motion is described by x(t) � (!2/2) sin 
(2t � f), the phase angle f is ________ when x(0) � �1

2 and 
x�(0) � 1.

 9. Give an interval over which f1(x) � x2 and f2(x) � x |x| are 
linearly independent. Then give an interval on which f1 and 
f2 are linearly dependent.

 10. Without the aid of the Wronskian determine whether the given 
set of functions is linearly independent or linearly dependent 
on the indicated interval.
(a) f1(x) � ln x, f2(x) � ln x2, (0, �)
(b) f1(x) � xn, f2(x) � xn�1, n � 1, 2, …, (��, �)
(c) f1(x) � x, f2(x) � x � 1, (��, �)
(d) f1(x) � cos (x � p>2), f2(x) � sin x, (��, �)
(e) f1(x) � 0, f2(x) � x, (�5, 5)
(f) f1(x) � 2, f2(x) � 2x, (��, �)
(g) f1(x) � x2, f2(x) � 1 � x2,  f3(x) � 2 � x2, (��, �)
(h) f1(x) � xex�1, f2(x) � (4x � 5)ex, f3(x) � xex, (��, �)

 11. Suppose m1 � 3, m2 � �5, and m3 � 1 are roots of multiplic-
ity one, two, and three, respectively, of an auxiliary equation. 
Write down the general solution of the corresponding homo-
geneous linear DE if it is
(a) an equation with constant coefficients,
(b) a Cauchy–Euler equation.

 12. Find a Cauchy–Euler differential equation ax2y� � bxy� � cy � 0, 
where a, b, and c are real constants, if it is known that
(a) m1 � 3 and m2 � �1 are roots of its auxiliary equation,
(b) m1 � i is a complex root of its auxiliary equation.

In Problems 13�28, use the procedures developed in this chap-
ter to find the general solution of each differential equation.

 13. y� � 2y� � 2y � 0
 14. 2y� � 2y� � 3y � 0

 15. y� � 10y� � 25y� � 0
 16. 2y� � 9y� � 12y� � 5y � 0
 17. 3y� � 10y� � 15y� � 4y � 0
 18. 2y(4) � 3y� � 2y� � 6y� � 4y � 0
 19. y� � 3y� � 5y � 4x3 � 2x 
 20. y� � 2y� � y � x2ex

 21. y� � 5y� � 6y� � 8 � 2 sin x
 22. y� � y� � 6
 23. y� � 2y� � 2y � ex tan x

 24. y� � y � 
2ex

ex 1 e2x

 25. 6x2y� � 5xy� � y � 0
 26. 2x3y� � 19x2y� � 39xy� � 9y � 0
 27. x2y� � 4xy� � 6y � 2x4 � x2

 28. x2y� � xy� � y � x3

 29. Write down the form of the general solution y � yc � yp of the 
given differential equation in the two cases v � a and v � a. 
Do not determine the coefficients in yp.
(a) y� � v2y � sin ax
(b) y� � v2y � eax

 30. (a)  Given that y � sin x is a solution of y(4) � 2y� � 11y� � 
2y� � 10y � 0, find the general solution of the DE without 
the aid of a calculator or a computer.

(b) Find a linear second-order differential equation with constant 
coefficients for which y1 � 1 and y2 � e�x are solutions of 
the associated homogeneous equation and yp � 12x2 � x is a 
particular solution of the nonhomogeneous equation.

 31. (a)  Write the general solution of the fourth-order DE y(4) � 
2y� � y � 0 entirely in terms of hyperbolic functions.

(b) Write down the form of a particular solution of y(4) � 
2y� � y � sinh x.

 32. Consider the differential equation x2y� � (x2 � 2x)y� � 
(x � 2)y � x3. Verify that y1 � x is one solution of the as-
sociated homogeneous equation. Then show that the method 
of reduction of order discussed in Section 3.2 leads both 
to a second solution y2 of the homogeneous equation and 
to a particular solution yp of the nonhomogeneous equa-
tion. Form the general solution of the DE on the interval 
(0, �).

In Problems 33�38, solve the given differential equation subject 
to the indicated conditions.

 33. y� � 2y� � 2y � 0, y 1p>22  � 0, y(p) � �1
 34. y� � 2y� � y � 0, y(�1) � 0, y�(0) � 0
 35. y� � y � x � sin x, y(0) � 2, y�(0) � 3

 36. y� � y � sec3x, y(0) � 1, y�(0) � 1
2

 37. y�y� � 4x, y(1) � 5, y�(1) � 2
 38. 2y� � 3y2, y(0) � 1, y�(0) � 1
 39. (a)  Use a CAS as an aid in finding the roots of the auxiliary 

equation for 12y(4) � 64y� � 59y� � 23y� � 12y � 0. 
Give the general solution of the equation.

 CHAPTER 3 in Review 193
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194 CHAPTER 3 Higher-Order Differential Equations

(b) Solve the DE in part (a) subject to the initial conditions 
y(0) � �1, y�(0) � 2, y�(0) � 5, y�(0) � 0. Use a CAS as 
an aid in solving the resulting systems of four equations 
in four unknowns.

 40. Find a member of the family of solutions of 

 xy� � y� � !x � 0

  whose graph is tangent to the x-axis at x � 1. Use a graphing 
utility to obtain the solution curve.

In Problems 41�44, use systematic elimination to solve the 
given system.

 41. 
dx

dt
1

dy

dt
 � 2x � 2y � 1 42. 

dx

dt
 � 2x � y � t � 2

  
dx

dt
1 2

dy

dt
� y 1 3  

dy

dt
 � 3x � 4y � 4t

 43.    (D � 2)x  �y � � et

   �3x � (D � 4)y � �7et

 44. (D � 2)x � (D � 1)y � sin 2t
   5x � (D � 3)y � cos 2t
 45. A free undamped spring/mass system oscillates with a period 

of 3 s. When 8 lb is removed from the spring, the system then 
has a period of 2 s. What was the weight of the original mass 
on the spring?

 46. A 12-pound weight stretches a spring 2 feet. The weight is 
released from a point 1 foot below the equilibrium position 
with an upward velocity of 4 ft/s.
(a) Find the equation describing the resulting simple harmonic 

motion.
(b) What are the amplitude, period, and frequency of motion?
(c) At what times does the weight return to the point 1 foot 

below the equilibrium position?
(d) At what times does the weight pass through the equilib-

rium position moving upward? moving downward?
(e) What is the velocity of the weight at t � 3p/16 s?
(f) At what times is the velocity zero?

 47. A spring with constant k � 2 is suspended in a liquid that 
offers a damping force numerically equal to four times the 
instantaneous velocity. If a mass m is suspended from the 
spring, determine the values of m for which the subsequent 
free motion is nonoscillatory.

 48. A 32-pound weight stretches a spring 6 inches. The weight moves 
through a medium offering a damping force numerically equal 
to b times the instantaneous  velocity. Determine the values of 
b for which the system will exhibit oscillatory motion.

 49. A series circuit contains an inductance of L � 1 h, a capaci-
tance of C � 10�4 f, and an electromotive force of E(t) � 100 
sin 50t V. Initially the charge q and current i are zero.
(a) Find the equation for the charge at time t.
(b) Find the equation for the current at time t.
(c) Find the times for which the charge on the capacitor 

is zero.
 50. Show that the current i(t) in an LRC-series circuit satisfies the 

differential equation

 L 
d 

2i

dt2 1 R 
di

dt
1

1

C
 i � E¿1t2,

  where E�(t) denotes the derivative of E(t).

 51. Consider the boundary-value problem

 y� � ly � 0,   y(0) � y(2p),   y�(0) � y�(2p).

  Show that except for the case l � 0, there are two independent 
eigenfunctions corresponding to each eigen value.

 52. A bead is constrained to slide along a frictionless rod of 
length L. The rod is rotating in a vertical plane with a constant 
angular velocity v about a pivot P fixed at the midpoint of the 
rod, but the design of the pivot allows the bead to move along 
the entire length of the rod. Let r(t) denote the position of the 
bead relative to this rotating coordinate system, as shown in 
FIGURE 3.R.1. In order to apply Newton’s second law of motion 
to this rotating frame of reference it is necessary to use the 
fact that the net force acting on the bead is the sum of the real 
forces (in this case, the force due to gravity) and the inertial 
forces (coriolis, transverse, and centrifugal). The mathematics 
is a little complicated, so we give just the resulting differential 
equation for r,

 m 
d 2r

dt 2   � mv2r � mg sin (vt).

(a) Solve the foregoing DE subject to the initial conditions 
r(0) � r0, r�(0) � v0. 

 FIGURE 3.R.1  Rotating rod in Problem 52

P

ω t

bead

r (t)

(b) Determine initial conditions for which the bead exhibits 
simple harmonic motion. What is the minimum length L 
of the rod for which it can accommodate simple harmonic 
motion of the bead?

(c) For initial conditions other than those obtained in part (b), 
the bead must eventually fly off the rod. Explain using 
the solution r(t) in part (a).

(d) Suppose v � 1 rad/s. Use a graphing utility to plot the 
graph of the solution r(t) for the initial conditions r(0) � 0, 
r�(0) � v0, where v0 is 0, 10, 15, 16, 16.1, and 17.

(e) Suppose the length of the rod is L � 40 ft. For each pair of 
initial conditions in part (d), use a root-finding application 
to find the total time that the bead stays on the rod.

 53. Suppose a mass m lying on a flat, dry, frictionless surface is 
attached to the free end of a spring whose constant is k. In 
FIGURE 3.R.2(a) the mass is shown at the equilibrium position 
x � 0; that is, the spring is neither stretched nor compressed. 
As shown in Figure 3.R.2(b), the displacement x(t) of the 
mass to the right of the equilibrium position is positive and 
negative to the left. Derive a differential equation for the free 
horizontal (sliding) motion of the mass. Discuss the difference 
between the derivation of this DE and the analysis leading to 
(1) of Section 3.8.
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  FIGURE 3.R.2  Sliding spring/mass system in Problem 53

x = 0

m

m

rigid
support

(a) Equilibrium

(b) Motion

x (t) < 0 x (t) > 0

 54. What is the differential equation of motion in Problem 53 
if kinetic friction (but no other damping forces) acts on the 
sliding mass? [Hint: Assume that the magnitude of the force 
of kinetic friction is fk � µmg, where mg is the weight of the 
mass and the constant µ � 0 is the coefficient of kinetic fric-
tion. Then consider two cases: x� � 0 and x� � 0. Interpret 
these cases physically.]

In Problems 55 and 56, use a Green’s function to solve the given 
initial-value problem.

 55. y– 1 y 5 tan x, y102 5 2, y¿ 102 5 25
 56. x2y– 2 3xy 1 4y � lnx, y112 � 0, y¿112 � 0
 57. Historically, in order to maintain quality control over muni-

tions (bullets) produced by an assembly line, the manufacturer 
would use a ballistic pendulum to determine the muzzle veloc-
ity of a gun; that is, the speed of a bullet as it leaves the barrel. 
The ballistic pendulum (invented in 1742), is simply a plane 
pendulum consisting of a rod of negligible mass to which a 
block of wood of mass mw is attached. The system is set in 
motion by the impact of a bullet that is moving horizontally 
at the unknown muzzle velocity vb; at the time of the impact, 
t � 0, the combined mass is mw 1 mb, where mb is the mass 
of the bullet embedded in the wood. We have seen in (7) of 
Section 3.10 that in the case of small oscillations, the angular 
displacement u1t2  of a plane pendulum shown in Figure 3.11.3 
is given by the linear DE u– 1 1g>l2u � 0, where u . 0 cor-
responds to motion to the right of vertical. The velocity vb can 
be found by measuring the height h of the mass mw 1 mb at the 
maximum displacement angle umax shown in FIGURE 3.R.3.

    Intuitively, the horizontal velocity V of the combined mass 
mw 1 mb after impact is only a fraction of the velocity vb of 

the bullet, that is, V � a mb

mw 1 mb

bvb. Now recall, a distance 

s traveled by a particle moving along a circular path is related 
to the radius l and central angle u by the formula s � lu. By 
differentiating the last formula with respect to time t, it follows 
that the angular velocity v of the mass and its linear velocity 
v are related by v � lv. Thus the initial angular velocity v0 
at the time t at which the bullet impacts the wood block is 

related to V by V � lv0 or v0 � a mb

mw 1 mb

bvb

l
.

(a) Solve the initial-value problem

 
d 

2u

dt 
2 1

g

l
 u 5 0,  u102 5 0, u¿ 102 5 v0.

(b) Use the result from part (a) to show that

 vb 5 amw 1 mb

mb
b2lg umax.

(c) Use Figure 3.R.3 to express cos umax in terms of l and h. 
Then use the first two terms of the Maclaurin series for 
cos u to express umax in terms of l and h. Finally, show 
that vb is given (approximately) by

 vb � amw 1 mb

mb
b22gh.

 

l

mb mw

m b
 +

 m w

vb V

qmax

h

FIGURE 3.R.3 Ballistic pendulum in Problem 57

 58. Use the result in Problem 57 to find the muzzle velocity vb 
when mb 5 5g,  mw 5 1 kg, and h � 6  cm.
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