Contents

Introduction xiii
Contributor Biographies xv
About the Editor xxi

Part I Game Engine Design 1

Chapter 1 What to Look for When Evaluating Middleware for Integration 3
Jason Hughes

1.1 Middleware, How Do I Love Thee? 3
1.2 Integration Complexity and Modularity 3
1.3 Memory Management 4
1.4 Mass Storage I/O Access 5
1.5 Logging 5
1.6 Error Handling 6
1.7 Stability and Performance Consistency 6
1.8 Custom Profiling Tools 7
1.9 Customer Support 7
1.10 Demands on the Maintainers 7
1.11 Source Code Availability 8
1.12 Quality of Source Code 8
Chapter 2 The Game Asset Pipeline
Rémi Arnaud
2.1 Asset Pipeline Overview 11
2.2 Asset Pipeline Design 18
2.3 Push or Pull Pipeline Model 20
2.4 COLLADA, A Standard Intermediate Language 22
2.5 OpenCOLLADA 30
2.6 User Content 33

Chapter 3 Volumetric Representation of Virtual Environments
David Williams
3.1 Introduction 39
3.2 Overview 40
3.3 Data Structures 42
3.4 Surface Extraction 46
3.5 Rendering 52
3.6 Physics 56
3.7 The Future 57

Chapter 4 High-Level Pathfinding
Daniel Higgins
4.1 Terms 62
4.2 Start Your Engines 62
4.3 Why High-Level Pathfinding? 63
4.4 Preprocess Phase 64
4.5 Fuzzy Pathing Phase 71
4.6 Detailed Paths Phase 75
4.7 Why Go Through All This Trouble? 76
Chapter 5 Environment Sound Culling

Simon Franco

5.1 The Problem
5.2 A Sound Culling Solution
5.3 Constructing the Sound Grid
5.4 Processing the Sound Grid
5.5 Supporting Multiple Listeners
5.6 Extensions

Chapter 6 A GUI Framework and Presentation Layer

Adrian Hirst

6.1 GUI Systems
6.2 Design Patterns: Model View Controller (MVC)
6.3 A GUI Design
6.4 And Finally

Chapter 7 World’s Best Palettizer

Jason Hughes

7.1 Palettes? Whatever for?
7.2 Understanding Quantization
7.3 Hard-Earned Lessons
7.4 Algorithm Overview
7.5 Future Work
7.6 Results

Chapter 8 3D Stereoscopic Rendering: An Overview of Implementation Issues

Anders Hast

8.1 Mechanisms of Plano-stereoscopic Viewing
8.2 Stereo Techniques
8.3 Design Considerations for 3D Scenes
8.4 Outlook
Contents

12.2 Velocity Field Computation 178
12.3 Physics Simplification 181
12.4 Results and Discussion 184

Chapter 13 Mesh Partitioning for Fun and Profit 187
Jon Hughes
13.1 Desirable Algorithm Properties 187
13.2 Lessons Learned 189
13.3 When Greedy Is Good 191
13.4 Future Work 193
13.5 Graphical Walkthrough 194

Chapter 14 Moments of Inertia for Common Shapes 197
Eric Lengyel
14.1 Center of Mass 197
14.2 The Inertia Tensor 198
14.3 Derivation of Moments of Inertia 201
14.4 Summary 215

Part II Rendering Techniques 217

Chapter 15 Physically-Based Outdoor Scene Lighting 219
Frank Kane
15.1 Positioning the Sun and Moon 219
15.2 Computing Natural Sunlight 221
15.3 Moonlight and Other Nighttime Light Sources 223
15.4 Tone-Mapping the Light 224
15.5 Implementation Notes 226

Chapter 16 Rendering Physically-Based Skyboxes 229
Frank Kane
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>Generating and Drawing the Skybox</td>
<td>229</td>
</tr>
<tr>
<td>16</td>
<td>Computing the Skybox Vertex Colors</td>
<td>231</td>
</tr>
<tr>
<td>16</td>
<td>Integrating the Skybox with Your Scene</td>
<td>233</td>
</tr>
<tr>
<td>16</td>
<td>Embellishing Your Skybox</td>
<td>234</td>
</tr>
<tr>
<td>Chapter 17</td>
<td>Motion Blur and the Velocity-Depth-Gradient Buffer</td>
<td>235</td>
</tr>
<tr>
<td>Eric Lengyel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.1</td>
<td>Technique Overview</td>
<td>236</td>
</tr>
<tr>
<td>17.2</td>
<td>Rendering to the Velocity-Depth-Gradient Buffer</td>
<td>238</td>
</tr>
<tr>
<td>17.3</td>
<td>Rendering the Post-Processing Effect</td>
<td>242</td>
</tr>
<tr>
<td>17.4</td>
<td>Grid Optimization</td>
<td>245</td>
</tr>
<tr>
<td>Chapter 18</td>
<td>Fast Screen-space Ambient Occlusion and Indirect Lighting</td>
<td>249</td>
</tr>
<tr>
<td>László Szirmay-Kalos, Balázs Tóth, and Tamás Umenhoffer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.1</td>
<td>Introduction</td>
<td>249</td>
</tr>
<tr>
<td>18.2</td>
<td>A General Ambient Illumination Model</td>
<td>250</td>
</tr>
<tr>
<td>18.3</td>
<td>Screen-space Representation of the Scene</td>
<td>252</td>
</tr>
<tr>
<td>18.4</td>
<td>Volumetric Ambient Occlusion</td>
<td>253</td>
</tr>
<tr>
<td>18.5</td>
<td>Indirect Lighting of the Near Geometry</td>
<td>257</td>
</tr>
<tr>
<td>18.6</td>
<td>Implementation</td>
<td>257</td>
</tr>
<tr>
<td>18.7</td>
<td>Results</td>
<td>260</td>
</tr>
<tr>
<td>Chapter 19</td>
<td>Real-Time Character Dismemberment</td>
<td>263</td>
</tr>
<tr>
<td>Aurelio Reis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.1</td>
<td>What is Character Damage Modeling?</td>
<td>263</td>
</tr>
<tr>
<td>19.2</td>
<td>Methods of Mutilation</td>
<td>264</td>
</tr>
<tr>
<td>19.3</td>
<td>Bone Matrix Flattening</td>
<td>265</td>
</tr>
<tr>
<td>19.4</td>
<td>Improvements</td>
<td>266</td>
</tr>
<tr>
<td>19.5</td>
<td>Demo</td>
<td>269</td>
</tr>
<tr>
<td>Chapter 20</td>
<td>A Deferred Decal Rendering Technique</td>
<td>271</td>
</tr>
<tr>
<td>Jan Krassnigg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.1</td>
<td>The Problem</td>
<td>272</td>
</tr>
</tbody>
</table>
Part III Programming Methods

Chapter 21 Multithreaded Object Models

Jon Parise

- 21.1 Explicit Locking
- 21.2 Message-Based Updates
- 21.3 Multiple Thread Contexts
- 21.4 Buffered State Changes
- 21.5 Selecting the Best Approach

Chapter 22 Holistic Task Parallelism for Common Game Architecture Patterns

Brad Werth

- 22.1 Tasks Versus Threads in Games
- 22.2 The Task Scheduler
- 22.3 Decomposing Game Patterns into Tasks
- 22.4 The Future of Task Parallelism in Games

Chapter 23 Dynamic Code Execution Hierarchies

Martin Linklater

- 23.1 What are Code Execution Hierarchies?
- 23.2 Design Features
- 23.3 Benefits & Pitfalls