HANDBOOK for Health Care Research

Second Edition

ROBERT L. CHATBURN, RRT-NPS, FAARC
Research Manager, Respiratory Institute
Cleveland Clinic
Cleveland, Ohio

JONES AND BARTLETT PUBLISHERS
Sudbury, Massachusetts
Boston Toronto London Singapore
Dedication

Allied health professionals are rarely given formal training in research methodology. And, even when they are, it is never more than a cursory overview. The real learning happens in apprenticeship. One must have a good mentor who can pass on the benefit of his or her knowledge and experience. I have been blessed with three of the best mentors a person could have.

The first is Marvin Lough, MBA, RRT, FAARC. Marv gave me my first job in the profession and helped me create a dedicated research position. He taught me that it is not what a person holds in memory that counts, but rather what he knows how to find. He has exemplified in every way what it means to be a professional, a leader, and a gentleman.

The second is Frank P. Primiano, Jr., PhD. Frank has the most disciplined, logical, and penetrating mind that I have ever encountered. He taught me the basic skills of a scientist. He taught me that brilliance lies in paying attention to the details and the supreme importance of defining and understanding the words you use. Most importantly, he taught me, “If you explain something so that even a fool can understand it . . . then only a fool will understand it.”

The third is Terry Volsko, MHHS, RRT, FAARC. I have never met anyone with a greater hunger for knowledge or a stronger will to succeed. She has been a brilliant and tireless colleague, an insightful critic, and a compassionate friend.
Brief Contents

Section I Introduction
1 Why Study Research?
2 Ethics and Research
3 Outcomes Research

Section II Planning the Study
4 The Scientific Method
5 Developing the Study Idea
6 Reviewing the Literature
7 Designing the Experiment

Section III Conducting the Study
8 Steps to Implementation
9 Making Measurements
10 Basic Statistical Concepts
11 Statistical Methods for Nominal Measures
12 Statistical Methods for Ordinal Measures
13 Statistical Methods for Continuous Measures

Section IV Publishing the Findings
14 The Paper
15 The Abstract
16 The Case Report
<table>
<thead>
<tr>
<th>Appendix</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Basic Science Writing</td>
<td>287</td>
</tr>
<tr>
<td>II</td>
<td>Glossary</td>
<td>321</td>
</tr>
<tr>
<td>III</td>
<td>Peer Review Checklists</td>
<td>331</td>
</tr>
<tr>
<td>IV</td>
<td>Answers</td>
<td>335</td>
</tr>
<tr>
<td>V</td>
<td>Model Paper</td>
<td>343</td>
</tr>
<tr>
<td>VI</td>
<td>Response to Reviewers</td>
<td>357</td>
</tr>
</tbody>
</table>

17 The Poster Presentation
Contents

Preface xix
About the Author xxiii

Section I Introduction 1

1 Why Study Research? 3
Health Care Education 3
Critical Evaluation of Published Reports 4
Continuing Education 4
Professional Accountability 5
Administration of Health Care Services 5
Continuous Quality Improvement 6
Evaluating New Equipment and Methods 6
Validating Manufacturers’ Claims 6
Questions 7

2 Ethics and Research 9
Institutional Review and Human Subjects’ Rights 10
Functions of the Institutional Review Board 10
Composition of the Institutional Review Board 11
Approval of the Institutional Review Board 11
Informed Consent 12
Background 12
Role Today 12
Revocation of Consent 13
Ethical Issues 13
Basic Principles 13
Objective Patient Care 15
Reporting Research Results 15
CONTENTS

Questions 16
Reference 16

3 Outcomes Research

A Brief History 17
Understanding the Jargon 18
Outcomes Research: Focus and Methods 19
The Outcome of Outcomes Research 23
Examples from Respiratory Care 24
Benchmarking 25
Summary 27
Questions 27
References 28

Section II Planning the Study 29

4 The Scientific Method 31

The Scientific Method 31
Step 1: Formulate a Problem Statement 31
Step 2: Generate a Hypothesis 31
Step 3: Define Rejection Criteria 32
Step 4: Make a Prediction 32
Step 5: Perform the Experiment 33
Step 6: Test the Hypothesis 33

Steps in Conducting Scientific Research 33
Develop the Study Idea 33
Search the Literature 34
Consult an Expert 34
Design the Experiment 34
Write the Protocol 34
Obtain Permission 34
Collect the Data 35
Analyze the Data 35
Publish the Findings 35
Questions 35
Contents

5 Developing the Study Idea
- Sources of Research Ideas: 37
- Developing a Problem Statement: 38
- Judging the Feasibility of the Project: 40
 - Significance of the Problem: 40
 - Measurability of the Problem: 41
 - Time Constraints: 41
 - Availability of Subjects: 41
 - Cost and Equipment: 41
 - Experience: 42
- Summary: 42
- Questions: 42
- Reference: 44

6 Reviewing the Literature
- Conducting the Literature Search: 46
 - Scope of the Review: 46
 - Sources of Information: 46
 - Books: 46
 - Journal Articles: 47
 - Databases: 47
 - Bibliographic Databases: 48
 - Citation Databases: 49
 - Synthesized Databases: 49
 - Portals: 50
 - Electronic Journals and Books: 50
 - General Internet Resources: 50
 - Suggestions for Conducting Searches: 50
 - How to Read a Research Article: 51
 - Selecting a Research Paper to Read: 52
 - Organization of Research Papers: 53
 - What Is in a Title?: 54
 - The Abstract: 55
 - How to Read the Actual Paper: 55
 - Summary: 57
 - Questions: 57
 - References: 58
CONTENTS

7 Designing the Experiment 59
 Samples and Populations 59
 Methods of Obtaining a Sample 60
 Basic Concepts of Research Design 62
 Experimental Designs 63
 Pre-Experimental Designs 64
 Quasi-Experimental Designs (Case Control) 64
 True Experimental Designs (Randomized Control) 66
 Analysis of Variance 68
 Validity of Research Designs 71
 Non-Experimental Study Designs 73
 Retrospective Studies 74
 Prospective Studies 75
 Case Studies 75
 Surveys 75
 Correlational Studies 76
 Questions 76
 References 78

Section III Conducting the Study 79

8 Steps to Implementation 81
 Writing the Study Protocol 81
 Creating a General Plan 81
 The IRB Study Protocol Outline 82
 Funding 87
 Data Collection 87
 The Laboratory Notebook 88
 Specialized Data Collection Forms 88
 Computers 89
 Questions 91

9 Making Measurements 93
 Basic Measurement Theory 93
 Accuracy 94
 Precision 94
 Inaccuracy, Bias, and Imprecision 96
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linearity</td>
<td>97</td>
</tr>
<tr>
<td>Calibration</td>
<td>98</td>
</tr>
<tr>
<td>Sources of Bias (Systematic Error)</td>
<td>99</td>
</tr>
<tr>
<td>Sources of Imprecision (Random Error)</td>
<td>104</td>
</tr>
<tr>
<td>Measuring Specific Variables</td>
<td></td>
</tr>
<tr>
<td>Pressure</td>
<td>105</td>
</tr>
<tr>
<td>Flow</td>
<td>105</td>
</tr>
<tr>
<td>Volume</td>
<td>108</td>
</tr>
<tr>
<td>Humidity</td>
<td>111</td>
</tr>
<tr>
<td>Signal Processing</td>
<td>111</td>
</tr>
<tr>
<td>Recording and Display Devices</td>
<td>115</td>
</tr>
<tr>
<td>Questions</td>
<td>118</td>
</tr>
<tr>
<td>10 Basic Statistical Concepts</td>
<td>121</td>
</tr>
<tr>
<td>Preliminary Concepts</td>
<td>121</td>
</tr>
<tr>
<td>Definition of Terms</td>
<td>122</td>
</tr>
<tr>
<td>Levels of Measurement</td>
<td>122</td>
</tr>
<tr>
<td>Significant Figures</td>
<td>124</td>
</tr>
<tr>
<td>Zeros as Significant Figures</td>
<td>125</td>
</tr>
<tr>
<td>Calculations Using Significant Figures</td>
<td>125</td>
</tr>
<tr>
<td>Rounding</td>
<td>126</td>
</tr>
<tr>
<td>Descriptive Statistics</td>
<td>126</td>
</tr>
<tr>
<td>Data Representation</td>
<td>126</td>
</tr>
<tr>
<td>Measures of the Typical Value of a Set of Numbers</td>
<td>133</td>
</tr>
<tr>
<td>Measures of Dispersion</td>
<td>135</td>
</tr>
<tr>
<td>Propagation of Errors in Calculations</td>
<td>137</td>
</tr>
<tr>
<td>Correlation and Regression</td>
<td>138</td>
</tr>
<tr>
<td>Inferential Statistics</td>
<td>142</td>
</tr>
<tr>
<td>The Concept of Probability</td>
<td>142</td>
</tr>
<tr>
<td>The Normal Distribution and Standard Scores</td>
<td>144</td>
</tr>
<tr>
<td>Sampling Distributions</td>
<td>147</td>
</tr>
<tr>
<td>Confidence Intervals</td>
<td>150</td>
</tr>
<tr>
<td>Error Intervals</td>
<td>152</td>
</tr>
<tr>
<td>Data Analysis for Device Evaluation Studies</td>
<td>157</td>
</tr>
<tr>
<td>Interpreting Manufacturers’ Error Specifications</td>
<td>161</td>
</tr>
<tr>
<td>Hypothesis Testing</td>
<td>164</td>
</tr>
<tr>
<td>Type I and II Errors</td>
<td>170</td>
</tr>
</tbody>
</table>
CONTENTS

Power Analysis and Sample Size 172
Rules of Thumb for Estimating Sample Size 176
Clinical Importance Versus Statistical Significance 180
Matched Versus Unmatched Data 180
Questions 181
Reference 186

11 Statistical Methods for Nominal Measures 187

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Describing the Data</td>
<td>187</td>
</tr>
<tr>
<td>Characteristics of a Diagnostic Test</td>
<td>188</td>
</tr>
<tr>
<td>True- and False-Positive Rates</td>
<td>191</td>
</tr>
<tr>
<td>True- and False-Negative Rates</td>
<td>191</td>
</tr>
<tr>
<td>Sensitivity and Specificity</td>
<td>192</td>
</tr>
<tr>
<td>Positive and Negative Predictive Value</td>
<td>192</td>
</tr>
<tr>
<td>Diagnostic Accuracy</td>
<td>193</td>
</tr>
<tr>
<td>Likelihood Ratio</td>
<td>193</td>
</tr>
<tr>
<td>Receiver Operating Characteristic (ROC) Curve</td>
<td>193</td>
</tr>
<tr>
<td>Correlation</td>
<td>195</td>
</tr>
<tr>
<td>Kappa</td>
<td>195</td>
</tr>
<tr>
<td>Phi</td>
<td>196</td>
</tr>
<tr>
<td>Comparing a Single Sample with a Population</td>
<td>197</td>
</tr>
<tr>
<td>Binomial Test</td>
<td>197</td>
</tr>
<tr>
<td>z Test</td>
<td>198</td>
</tr>
<tr>
<td>Comparing Two Samples, Unmatched Data</td>
<td>199</td>
</tr>
<tr>
<td>Fisher Exact Test</td>
<td>200</td>
</tr>
<tr>
<td>Comparing Two or More Samples, Matched Data</td>
<td>201</td>
</tr>
<tr>
<td>McNemar Test</td>
<td>201</td>
</tr>
<tr>
<td>Comparing Three or More Samples, Unmatched Data</td>
<td>202</td>
</tr>
<tr>
<td>Chi-Squared Test</td>
<td>202</td>
</tr>
<tr>
<td>Questions</td>
<td>203</td>
</tr>
</tbody>
</table>

12 Statistical Methods for Ordinal Measures 205

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Describing the Data</td>
<td>205</td>
</tr>
<tr>
<td>Correlation</td>
<td>206</td>
</tr>
<tr>
<td>Spearman Rank Order Correlation</td>
<td>206</td>
</tr>
<tr>
<td>Comparing Two Samples, Unmatched Data</td>
<td>207</td>
</tr>
<tr>
<td>Mann-Whitney Rank Sum Test</td>
<td>207</td>
</tr>
<tr>
<td>Contents</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td></td>
</tr>
<tr>
<td>Comparing Two Samples, Matched Data</td>
<td></td>
</tr>
<tr>
<td>Wilcoxon Signed Rank Test</td>
<td>208</td>
</tr>
<tr>
<td>Comparing Three or More Samples, Unmatched Data</td>
<td></td>
</tr>
<tr>
<td>Kruskal-Wallis ANOVA</td>
<td>209</td>
</tr>
<tr>
<td>Comparing Three or More Samples, Matched Data</td>
<td></td>
</tr>
<tr>
<td>Friedman Repeated Measures ANOVA</td>
<td>210</td>
</tr>
<tr>
<td>Questions</td>
<td>211</td>
</tr>
<tr>
<td>Statistical Methods for Continuous Measures</td>
<td>213</td>
</tr>
<tr>
<td>Testing for Normality</td>
<td></td>
</tr>
<tr>
<td>Kolmogorov-Smirnov Test</td>
<td>213</td>
</tr>
<tr>
<td>Testing for Equal Variances</td>
<td></td>
</tr>
<tr>
<td>F Ratio Test</td>
<td>214</td>
</tr>
<tr>
<td>Correlation and Regression</td>
<td></td>
</tr>
<tr>
<td>Pearson Product-Moment Correlation Coefficient</td>
<td>217</td>
</tr>
<tr>
<td>Simple Linear Regression</td>
<td>218</td>
</tr>
<tr>
<td>Multiple Linear Regression</td>
<td>219</td>
</tr>
<tr>
<td>Logistic Regression</td>
<td>220</td>
</tr>
<tr>
<td>Comparing One Sample to a Known Value</td>
<td></td>
</tr>
<tr>
<td>One-Sample t Test</td>
<td>222</td>
</tr>
<tr>
<td>Comparing Two Samples, Unmatched Data</td>
<td></td>
</tr>
<tr>
<td>Unpaired t Test</td>
<td>223</td>
</tr>
<tr>
<td>Comparing Two Samples, Matched Data</td>
<td></td>
</tr>
<tr>
<td>Paired t Test</td>
<td>226</td>
</tr>
<tr>
<td>Comparing Three or More Samples, Unmatched Data</td>
<td></td>
</tr>
<tr>
<td>One-Way ANOVA</td>
<td>228</td>
</tr>
<tr>
<td>Two-Way ANOVA</td>
<td>230</td>
</tr>
<tr>
<td>Comparing Three or More Samples, Matched Data</td>
<td></td>
</tr>
<tr>
<td>One-Way Repeated Measures ANOVA</td>
<td>233</td>
</tr>
<tr>
<td>Two-Way Repeated Measures ANOVA</td>
<td>235</td>
</tr>
<tr>
<td>Questions</td>
<td>239</td>
</tr>
<tr>
<td>Section IV Publishing the Findings</td>
<td>241</td>
</tr>
<tr>
<td>The Paper</td>
<td>243</td>
</tr>
<tr>
<td>Selecting an Appropriate Journal</td>
<td>243</td>
</tr>
<tr>
<td>Writing Style</td>
<td>243</td>
</tr>
</tbody>
</table>
Contents

Types of Authors 244
Types of Readers 244
Indexing 244
Peer Review 244
Getting Started 245
Authorship 245
The Rough Draft 245
The Structure of a Paper 247
Title 247
Abstract 247
Introduction 248
Methods 248
Results 249
Discussion 250
Conclusion 250
Illustrations 250
Submission for Publication 251
First Steps 251
Peer Review 251
Revision 251
Production 252
Mistakes to Avoid 252
Questions 253

15 The Abstract 255
Background 255
Specifications 255
Content Elements 256
Format 256
Model Abstract 257
Model Abstract #1: Mid-Frequency Ventilation: Optimum Settings for ARDS 257
Model Abstract #2: Laboratory Evaluation of Three Stockpiled Portable Ventilators 258
What Not to Do (Analysis of Rejected Abstracts) 260
Abstract #1: Quality Improvement Using Therapist-Driven Protocols 260
Review of Abstract #1 260
Abstract #2: Comparison of Whole-Body Plethysmography (WBP) with In-Line Pneumotachography (ILP) for Neonatal Pulmonary Function Measurements 261
Review of Abstract #2 262

Abstract #3: Effect of PEEP in Patients with Congenital Diaphragmatic Hernia 263
Review of Abstract #3 263

Abstract #4: Simulation of Closed-Chest Compression Using a Mechanical Test Lung 264
Review of Abstract #4 265

Summary 265
Questions 266

16 The Case Report 267

Who Should Write It? 268
Attributes of a Reportable Case 269
A New Disease or Condition 269
A Previously Unreported Feature or Complication 270
A Particularly Instructive Example of a Known Condition 270
A Case Illustrating a New Diagnostic Test or Monitoring Technique 270
A New Treatment Modality 270
A New Outcome of Treatment 271

Steps in Preparing a Case Report 271
Identification of an Appropriate Case 271
Review of the Pertinent Literature 272
Consultation and Discussion 272
Planning the Paper and Assignment of Roles and Authorship 272
Further Investigation of the Case 273
Preparation of the First Draft 273
Preparation of Tables and Illustrations 273
Consultation and Discussion 274
Manuscript Revision 274
Preparation and Submission of Final Draft 274

Structure of a Case Report 274
Introduction 275
Case Summary 275
Tables and Illustrations 276
CONTENTS

Discussion 276
References 276
Common Mistakes in Case Report Writing 277
 Tunnel Vision 277
 Insufficient Documentation of Case 277
 Insufficient Documentation of Intervention 277
 Poor Patient Care 278
 Erroneous Premise 278
 Submission to the Wrong Journal 279
 Literary Inexperience 279
 Inadequate Literature Review 279
 Ineffective Illustrations or Tables 279
 Poor References 279
 Technical Mistakes 280
 Failure to Revise the Manuscript After Editorial Review 280
Questions 280

17 The Poster Presentation 281
 Layout 281
 Template 282
 Questions 283

Appendix I Basic Science Writing 287
 Introduction 287
 Questions to Ask About Your Words 290
 Did I Include Explanations That Are Not Necessary for My Audience? 291
 Did I Use the Right Word or Term? 292
 Wrong Word by Definition 292
 Unnecessary or Incorrect Long Term 293
 Wrong Form of the Word 295
 Wrong Preposition 296
 Did I Use Acronyms and Technical Terms Correctly? 297
 Did I Use Terms Consistently? 298
 Did I Create Unnecessary and/or Problematic Data Categories? 299
 Did I Include Error or Range Values for All Numbers? 300
 Is the Sentence Logically Organized? 300
 Does the Sentence Use the Correct Voice? 301
Contents

Is the Sentence Too Long or Too Short? 303
Does the Beginning of the Sentence Have an Obvious Logical
Connection to the Previous Sentence? 304
Does the Sentence Say Something That Really Needs to Be Said? 305
Is It Redundant? 306
Do Not Restate for Emphasis 306
Scrutinize Commonly Used Phrases for Redundancy 307
Did I Phrase It Tentatively? 308
Is the Syntax Convoluted, Peculiar, or in a Literary Style? 309
Are There Confusing Word Strings? 311
Do Any of the Words Contradict Each Other? 311
Did I Lay Out the Information in Chronological Order? 312
Did I State the Topic and Then Stay on Topic? 313
Did I Put the Information in the Right Format (Text, Table, or Figure)? 314
Is There Redundancy Among the Sentences? 317
Is the Information in the Right Part of the Report? 318
Is There Redundancy Between Parts of the Report? 318
Does the Abstract Follow These Rules? 319

Appendix II Glossary 321

Appendix III Peer Review Checklists 331
Original Study Checklist 331
Device/Method Evaluation Checklist 332
Case Study Checklist 334

Appendix IV Answers 335
Chapter 1: Why Study Research? 335
Chapter 2: Ethics and Research 335
Chapter 3: Outcomes Research 336
Chapter 4: The Scientific Method 337
Chapter 5: Developing the Study Idea 337
Chapter 6: Reviewing the Literature 338
Chapter 7: Designing the Experiment 338
Chapter 8: Steps to Implementation 339
Chapter 9: Making Measurements 339
Chapter 10: Basic Statistical Concepts 340
CONTENTS

Chapter 11: Statistical Methods for Nominal Measures 341
Chapter 12: Statistical Methods for Ordinal Measures 341
Chapter 13: Statistical Methods for Continuous Measures 342
Chapter 14: The Paper 342
Chapter 15: The Abstract 342
Chapter 16: The Case Report 342
Chapter 17: The Poster Presentation 342

Appendix V Model Paper 343
Abstract 344
Introduction 345
Methods 346
Results 349
Discussion 353
References 354

Appendix VI Response to Reviewers 357
Reviewer #1 357
Reviewer #2 358
Reviewer #3 359

Index 361
Preface

Learning to conduct research is like learning to ride a bicycle: reading a book is not much help. You need to learn by doing, with someone holding you up the first few times. Yet, the student of health sciences research must be familiar with basic concepts that can be studied by reading. The trick is for an author to select the right topics and present them in a way that is both relevant and interesting.

Handbook for Health Care Research, Second Edition, is the result of my research experience in the field of respiratory care over the last 30 years. I have selected topics and statistical procedures that are common to medical research in general as well as to allied health care in particular. It is by no means an exhaustive treatise on any particular aspect of medical research. Rather, it is a practical guide to supplement specialized statistics textbooks, although it can function as a stand-alone text for a short course in research for a two- or four-year respiratory care or other allied health program. In fact, this book grew out of the notes I used for seven years to teach research at Cuyahoga Community College.

On one level, the book is geared for the student or health care professional who wants to become involved with research. Basic concepts are presented along with real-world examples. Naturally, because I am a respiratory therapist, the examples focus on respiratory care. However, the concepts are applicable to any area of medical research. I have tried to keep the theory and mathematics at the most elementary level. I assume that the reader will have basic computer skills and will have access to software that will handle the math. For that reason, unlike many books on the topic, this book gives no probability tables for calculating things like the critical values of the t-statistic. Computers have made hand calculations all but obsolete. What the student really needs to know is which procedure to use, when to use it, and why to use it.

For the experienced researcher, the book is organized for easy look-up of basic research procedures and definitions. When you are in the middle of a project, you do not want to have to dig through pages and pages of theory when you simply want to be reminded of which test to use or how to format the data for computer entry.

Not every health care professional will be directly involved with research. However, everyone will be involved with the results of research. Most will be involved with some sort of continuous quality improvement project, which will inevitably require familiarity with research techniques. Therefore, this book, if nothing else, is an excellent tool to help you become an “educated consumer” of research. After all, how can you appreciate the information in professional journals if you do not even know what a p value is? Researchers who publish
in journals are trying to sell you their ideas. If you do not understand the procedures they use to generate their ideas and the language they use to sell them, you could end up “buying a lemon.”

New to the Second Edition

For the Second Edition of Handbook for Health Care Research, the tables and figures have been fully updated and revised. Chapter 6, “Reviewing the Literature,” has been rewritten to reflect the latest Internet resources. Appendix I is brand-new, and it provides valuable insight for improving your scientific writing skills. Chapter 15, “The Abstract,” has been revised, and a new model paper is presented in Appendices V and VI.

Features of Handbook for Health Care Research

Several features in this book are unique. For example, the descriptions of statistical tests are standardized in a practical format. For each procedure, a hypothetical (or sometimes real-world) study problem is introduced, the hypothesis is stated, the data are given in the format that they are entered into the computer, and then a detailed report from an actual statistical program is given.

Another unique feature is Chapter 15, which focuses on writing the stand-alone abstract. The new researcher’s first experience with publishing research will usually be in the form of an abstract rather than a full-text article. For this reason, I have placed particular emphasis on how to write an abstract that will pass peer review. There are model abstracts that have been published in Respiratory Care, along with examples of abstracts that show what not to do. I review each example in detail and explain the mistakes made. These detailed examples are intended to give the reader a mentor, someone looking over his or her shoulder and providing help and encouragement. In fact, this text is written in a conversational style throughout. This helps to illustrate the relevance of each new concept that might otherwise seem dull and intangible.

Finally, Appendix I is an unique tutorial for improving your science writing, authored by Matti Mero, an experienced copyeditor for Respiratory Care. As a copyeditor for a major medical journal, Matti has seen every kind of mistake. His suggestions will help you avoid them and make the experience of peer review much easier once you submit your manuscript for publication.

Also included in the appendices is a model manuscript that was published in Respiratory Care. I include the comments of the peer reviewers along with the authors’ responses. One of the biggest obstacles for new researchers is that they have a hard time accepting critical comments about a manuscript they have submitted for publication. Many, maybe even most, are so discouraged that they do not make the suggested revisions, and their work goes to waste. My hope is that by reading actual reviewers’ comments and the authors’ responses, you will understand that (1) every researcher, no matter how experienced, will be criticized, and (2) the
criticism leads to a better product if you follow through. I always tell my students that the first thing they have to learn is to put their egos on the shelf.

Acknowledgments

Much thanks to David J. Pierson, MD, for writing Chapter 16, “The Case Report.” David first wrote this chapter for my book Fundamentals of Respiratory Care Research—now long out of print—and then the chapter reappeared in the First Edition of this book. Fortunately, David’s advice is timeless.

Mathew “Matti” Mero, MA, is the author of the new Appendix I, “Basic Science Writing.” Matti is a copyeditor for Respiratory Care and has a unique perspective honed from many years of rooting out mistakes and rounding the rough edges of countless authors (me among them). What he writes is pure gold, and you are not likely to find anything like it in other books. I am indebted to Matti for catching many a “slip of the pen” over the many years that I have been submitting manuscripts to Respiratory Care.

Charles G. Durbin, Jr., MD, FAARC, of the University of Virginia Health System, Charlottesville, contributed to Chapter 6, “Reviewing the Literature,” based on a paper he published in Respiratory Care in October 2009, pages 1366–1371. Charlie has been a friend and colleague for many years.
About the Author

Robert L. Chatburn, RRT-NPS, FAARC, is an Adjunct Associate Professor in the Department of Medicine at the Lerner College of Medicine of Case Western Reserve University and a Fellow of the American Association for Respiratory Care. Mr. Chatburn is currently the Clinical Research Manager of the Respiratory Institute at the Cleveland Clinic. Previously, he was the Technical Director of respiratory care at University Hospitals for 20 years. He is the author of nine textbooks and over 240 publications in medical journals. He is an Associate Editor of Respiratory Care and is recognized internationally as a research scientist and authority on mechanical ventilation and pediatric respiratory care.

Mr. Chatburn was born and raised in the Cleveland area. He received an AS degree from Cuyahoga Community College and a BS degree from Youngstown State University. He began his career at Rainbow Babies & Children’s Hospital in 1977. In 1979 he was promoted to research coordinator. In 1986 he took the position of Technical Director of pediatric respiratory care and in 1995 annexed the adult division as well. In 1997 he became Adjunct Assistant Professor of pediatrics at Case Western Reserve University and was promoted to Adjunct Associate Professor in 1998. In 2006 Mr. Chatburn became Clinical Research Manager of the Respiratory Institute at the Cleveland Clinic. Mr. Chatburn was among the first 13 people awarded fellowship in the American Association for Respiratory Care in 1998 and was the recipient of the 2007 Forrest M. Bird Lifetime Scientific Achievement Award.

Contributing Authors

Charles G. Durbin, Jr., MD, FAARC
Professor of Anesthesiology and Surgery
University of Virginia

Matthew Mero, MA
Respiratory Care

David J. Pierson, MD
Medical Director, Respiratory Care
Harborview Medical Center
Professor of Medicine
University of Washington