Clinical Prediction Rules
Jones and Bartlett’s

Contemporary Issues in Physical Therapy and Rehabilitation Medicine Series

Series Editor

Peter A. Huijbregts, PT, MSc, MHSc, DPT, OCS, FAAOMPT, FCAMT

Books in the Series

Now Available

Tension-Type and Cervicogenic Headache: Pathophysiology, Diagnosis, and Management
César Fernández-de-las-Peñas, PT, DO, PhD
Lars Arendt-Nielsen, DMSc, PhD
Robert D. Gerwin, MD

Myofascial Trigger Points: Pathophysiology and Evidence-Informed Diagnosis and Management
Jan Dommerholt, PT, DPT, MPS, DAAPM
Peter A. Huijbregts, PT, MSc, MHSc, DPT, OCS, FAAOMPT, FCAMT

Wellness and Physical Therapy
Sharon Elayne Fair, PT, MS, PhD

Orthopaedic Manual Therapy Diagnosis: Spine and Temporomandibular Joints
Aad van der El, BPE, BSc, PT, Dip. MT, Dip. Acupuncture

Coming Soon

Post-Surgical Rehabilitation After Artificial Disc Replacement: An Evidenced-Based Guide to Comprehensive Patient Care
John N. Flood, DO, FACOS, FAOAO
Roy Bechtel, PT, PhD
Scott Benjamin, PT, DScPT
To my wife, Buquet, and my daughter, Emma—thank you for your love, support, and patience. You mean the world to me.

PG

For Cara . . . my favorite.

CW
BRIEF CONTENTS

Chapter

1 Introduction 1
2 How to Use This Book 19
3 Statistics 23
4 Screening 35
5 Cervicothoracic Region and Temporomandibular Joint 93
6 Upper Extremities 119
7 Lumbopelvic Region 145
8 Lower Extremities 179
9 Case Studies 215

Appendix

A CPR Quality Scores of Level IV Prognostic Studies 237
B CPR Quality Scores of Level IV Intervention Studies 238
C Quality Assessment of Diagnostic CPRs 240
D CPR Quality Scores of Interventional Validation Studies 241
E CPR Decision-Making Algorithm 242
Contents

Clinical Bottom Line 60
Study Specifics 61
Osteoporosis 63
Bone Densitometry in Women 63
Predictor Variables 63
Clinical Bottom Line 63
Study Specifics 63
Osteoporosis 66
Bone Densitometry in Women 66
Predictor Variables 66
Example of the Scoring System 66
Clinical Bottom Line 66
Study Specifics 67
Osteoporosis 70
Bone Densitometry in Men 70
Predictor Variables 70
Example of Scoring 70
Clinical Bottom Line 70
Study Specifics 70
Osteoporosis 73
Bone Densitometry in Men 73
Predictor Variables 73
Clinical Bottom Line 73
Study Specifics 73
Venous Thromboembolism 75
Clinical Identification of Lower Extremity
Deep-Vein Thrombosis (DVT) 75
Predictor Variables 75
Clinical Bottom Line 75
Study Specifics 76
Venous Thromboembolism 80
Percent Probability of an Upper Extremity
Deep-Vein Thrombosis (DVT) 80
Predictor Variables 80
Clinical Bottom Line 80
Study Specifics 80
Venous Thromboembolism 82
Clinical Identification of Pulmonary Embolism (PE) 82
Predictor Variables 82
Venous Thromboembolism

Determination of Probability for Pulmonary Embolism (PE)

Clinical Bottom Line

Study Specifics

Venous Thromboembolism

<table>
<thead>
<tr>
<th>Predictor Variables</th>
<th>Clinical Bottom Line</th>
<th>Study Specifics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Clinical Identification of Peripheral Neuropathy Among Older Persons

Clinical Bottom Line

Study Specifics

Peripheral Neuropathy

<table>
<thead>
<tr>
<th>Predictor Variables</th>
<th>Clinical Bottom Line</th>
<th>Examination</th>
<th>Study Specifics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5 Cervicothoracic Region and Temporomandibular Joint

Diagnostic

Diagnosis of Cervical Radiculopathy

<table>
<thead>
<tr>
<th>Predictor Variables</th>
<th>Clinical Bottom Line</th>
<th>Examination</th>
<th>Study Specifics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prognostic

Prediction of Persistent Whiplash-Associated Disorders (WAD)

<table>
<thead>
<tr>
<th>Predictor Variables</th>
<th>Clinical Bottom Line</th>
<th>Study Specifics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prognostic

Predicting Short-Term Outcomes with Cervical Radiculopathy

<table>
<thead>
<tr>
<th>Predictor Variables</th>
<th>Clinical Bottom Line</th>
<th>Study Specifics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Interventional

Cervical Manipulation for Mechanical Neck Pain

<table>
<thead>
<tr>
<th>Predictor Variables</th>
<th>Clinical Bottom Line</th>
<th>Intervention</th>
<th>Study Specifics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Thoracic Manipulation for Mechanical Neck Pain

<table>
<thead>
<tr>
<th>Predictor Variables</th>
<th>Clinical Bottom Line</th>
<th>Intervention</th>
<th>Study Specifics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Contents

Predictor Variables
105

Clinical Bottom Line
105

Examination
105

Intervention
106

Study Specifics
108

Interventional

109

Treatment of Trigger Points for Chronic Tension-Type Headache
109

Predictor Variables
109

Clinical Bottom Line
109

Intervention
109

Study Specifics
110

Interventional

111

Cervical Traction for Mechanical Neck Pain
111

Predictor Variables
111

Clinical Bottom Line
111

Intervention
113

Study Specifics
115

Interventional

116

Prediction of Benefit or No Benefit with Occlusal Splint for Temporomandibular (TMJ) Pain
116

Predictor Variables
116

Significant Predictor Variables of Failure
116

Clinical Bottom Line
116

Intervention
116

Study Specifics
116

6 Upper Extremities

Diagnostic

Diagnosis of Subacromial Impingement Syndrome and Full-Thickness Rotator Cuff Tear in Patient with Shoulder Pain
120

Predictor Variables for Impingement Syndrome
120

Predictor Variables for Full-Thickness Rotator Cuff Tear
120

Clinical Bottom Line
120

Examination
120

Study Specifics
122

Diagnostic

Diagnosis of Rotator Cuff Tears
124
Contents

Predictor Variables 124
Clinical Bottom Line 124
Examination 124
Study Specifics 125

Diagnostic 126
Diagnosis of Carpal Tunnel Syndrome (CTS) 126
Predictor Variables 126
Clinical Bottom Line 126
Examination 126
Study Specifics 126

Diagnostic 128
The American College of Rheumatology Criteria for the Classification of Osteoarthritis (OA) of the Hand 128
Predictor Variables 128
Clinical Bottom Line 128
Study Specifics 128

Prognostic 130
Prediction of Persistent Shoulder Pain 130
Predictor Variables: Persistent Shoulder Symptoms at 6 Weeks 130
Predictor Variables: Persistent Shoulder Symptoms at 6 Months 130
Clinical Bottom Line 131
Examination 131
Study Specifics 131

Interventional 133
Mobilization with Movement (MWM) and Exercise for Lateral Epicondylalgia 133
Predictor Variables 133
Clinical Bottom Line 133
Intervention 133
Study Specifics 136

Interventional 138
Cervicothoracic Manipulation for Shoulder Pain 138
Predictor Variables 138
Clinical Bottom Line 138
Examination 138
Intervention 140
Study Specifics 144
7 Lumbopelvic Region 145

Diagnostic 146
Diagnosis of Patients with Lumbar Spinal Stenosis (LSS) 146
 Predictor Variables 146
 Clinical Bottom Line 146
 Study Specifics 146

Diagnosis 148
Diagnosis of Pain Originating from the Sacroiliac Joint (SIJ) 148
 Predictor Variables 148
 Clinical Bottom Line 148
 Examination 148
 Study Specifics 151

Prognostic 152
Diagnosis of Ankylosing Spondylitis (AS) 152
 Predictor Variables 152
 Clinical Bottom Line 152
 Study Specifics 152

Prognostic 154
Prediction of Recovery in Patients with Low Back Pain (LBP) 154
 Predictor Variables 154
 Clinical Bottom Line 154
 Intervention 154
 Study Specifics 154

Interventional 156
Lumbar Stabilization for Low Back Pain 156
 Predictor Variables of Success 156
 Predictor Variables of Nonsuccess 156
 Clinical Bottom Line 156
 Examination 156
 Intervention 158
 Study Specifics 158

Interventional 160
Lumbar Manipulation for Acute Low Back Pain (Success) 160
 Predictor Variables 160
 Clinical Bottom Line 160
 Examination 160
Intervention 161
Study Specifics 162

Interventional 164
Lumbar Manipulation for Acute Low Back Pain (Failure) 164
Significant Predictor Variables Independently Associated with Failure 164
Clinical Bottom Line 164
Examination 164
Intervention 166
Study Specifics 166

Interventional 168
Prone Lumbar Mechanical Traction in Patients with Signs of Nerve Root Compression 168
Predictor Variables 168
Clinical Bottom Line 168
Examination 168
Intervention 169
Study Specifics 170

Interventional 172
Supine Lumbar Mechanical Traction for Low Back Pain (LBP) 172
Predictor Variables 172
Clinical Bottom Line 172
Intervention 172
Study Specifics 173

Interventional 174
Facet Joint Block in Low Back Pain 174
Predictor Variables 174
Clinical Bottom Line 174
Examination 174
Study Specifics 175

Interventional 176
Response to Exercise in Ankylosing Spondylitis (AS) 176
Predictor Variables 176
Clinical Bottom Line 176
Intervention 176
Study Specifics 177
8 Lower Extremities 179

Diagnostic 180
The American College of Rheumatology Criteria for the Classification of Osteoarthritis (OA) of the Hip 180
 Predictor Variables 180
 Clinical Bottom Line 180
 Examination 180
 Study Specifics 182

Diagnostic 183
Diagnosis of Hip Osteoarthritis (OA) 183
 Predictor Variables 183
 Clinical Bottom Line 183
 Examination 183
 Study Specifics 184

Diagnostic 186
The American College of Rheumatology Criteria for the Classification of Osteoarthritis (OA) of the Knee 186
 Predictor Variables 186
 Predictor Variables plus Radiography 186
 Clinical Bottom Line 186
 Study Specifics 186

Diagnostic 188
Diagnosis of Knee Effusion 188
 Predictor Variables 188
 Clinical Bottom Line 188
 Examination 188
 Study Specifics 189

Diagnostic 190
Diagnosis of Medial Collateral Ligament (MCL) Tear for Patients with Knee Pain 190
 Predictor Variables 190
 Clinical Bottom Line 190
 Examination 190
 Study Specifics 191

Interventional 192
Lumbar Manipulation in Patellofemoral Pain Syndrome (PFPS) 192
 Predictor Variables 192
<table>
<thead>
<tr>
<th>Interventional</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patellar Taping for Patellofemoral Pain Syndrome (PFPS)</td>
<td>196</td>
</tr>
<tr>
<td>Orthotics in Patients with Patellofemoral Pain Syndrome (PFPS)</td>
<td>199</td>
</tr>
<tr>
<td>Prefabricated Orthotics and Modified Activity for Individuals with Patellofemoral Pain Syndrome (PFPS)</td>
<td>201</td>
</tr>
<tr>
<td>Hip Mobilization in Knee Osteoarthritis (OA)</td>
<td>204</td>
</tr>
<tr>
<td>Manual Therapy and Exercise After Inversion Ankle Sprain</td>
<td>209</td>
</tr>
<tr>
<td>Patellar Taping for Patellofemoral Pain Syndrome (PFPS)</td>
<td>196</td>
</tr>
<tr>
<td>Clinical Bottom Line</td>
<td>196</td>
</tr>
<tr>
<td>Examination</td>
<td>196</td>
</tr>
<tr>
<td>Intervention</td>
<td>197</td>
</tr>
<tr>
<td>Study Specifics</td>
<td>198</td>
</tr>
<tr>
<td>Orthotics in Patients with Patellofemoral Pain Syndrome (PFPS)</td>
<td>199</td>
</tr>
<tr>
<td>Clinical Bottom Line</td>
<td>199</td>
</tr>
<tr>
<td>Examination</td>
<td>201</td>
</tr>
<tr>
<td>Intervention</td>
<td>203</td>
</tr>
<tr>
<td>Study Specifics</td>
<td>203</td>
</tr>
<tr>
<td>Prefabricated Orthotics and Modified Activity for Individuals with Patellofemoral Pain Syndrome (PFPS)</td>
<td>201</td>
</tr>
<tr>
<td>Clinical Bottom Line</td>
<td>201</td>
</tr>
<tr>
<td>Examination</td>
<td>201</td>
</tr>
<tr>
<td>Intervention</td>
<td>203</td>
</tr>
<tr>
<td>Study Specifics</td>
<td>203</td>
</tr>
<tr>
<td>Hip Mobilization in Knee Osteoarthritis (OA)</td>
<td>204</td>
</tr>
<tr>
<td>Clinical Bottom Line</td>
<td>204</td>
</tr>
<tr>
<td>Examination</td>
<td>204</td>
</tr>
<tr>
<td>Intervention</td>
<td>206</td>
</tr>
<tr>
<td>Study Specifics</td>
<td>207</td>
</tr>
<tr>
<td>Manual Therapy and Exercise After Inversion Ankle Sprain</td>
<td>209</td>
</tr>
<tr>
<td>Clinical Bottom Line</td>
<td>209</td>
</tr>
<tr>
<td>Examination</td>
<td>209</td>
</tr>
<tr>
<td>Intervention</td>
<td>210</td>
</tr>
<tr>
<td>Study Specifics</td>
<td>214</td>
</tr>
</tbody>
</table>
Contents

9 Case Studies

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cervicothoracic Spine</td>
<td>215</td>
</tr>
<tr>
<td>Historical Exam</td>
<td>216</td>
</tr>
<tr>
<td>Physical Exam</td>
<td>216</td>
</tr>
<tr>
<td>Clinical Decision Making</td>
<td>216</td>
</tr>
<tr>
<td>Diagnosis/Classification</td>
<td>217</td>
</tr>
<tr>
<td>Prognosis</td>
<td>217</td>
</tr>
<tr>
<td>Interventions</td>
<td>218</td>
</tr>
<tr>
<td>Discussion</td>
<td>219</td>
</tr>
<tr>
<td>Knee</td>
<td>220</td>
</tr>
<tr>
<td>Historical Exam</td>
<td>221</td>
</tr>
<tr>
<td>Physical Exam</td>
<td>221</td>
</tr>
<tr>
<td>Clinical Decision Making</td>
<td>222</td>
</tr>
<tr>
<td>Diagnosis</td>
<td>222</td>
</tr>
<tr>
<td>Intervention</td>
<td>223</td>
</tr>
<tr>
<td>Discussion</td>
<td>224</td>
</tr>
<tr>
<td>Lumbar Spine</td>
<td>225</td>
</tr>
<tr>
<td>Historical Exam</td>
<td>226</td>
</tr>
<tr>
<td>Physical Exam</td>
<td>226</td>
</tr>
<tr>
<td>Special Tests</td>
<td>226</td>
</tr>
<tr>
<td>Clinical Decision Making</td>
<td>227</td>
</tr>
<tr>
<td>Diagnosis/Classification</td>
<td>227</td>
</tr>
<tr>
<td>Prognosis</td>
<td>228</td>
</tr>
<tr>
<td>PT Classification/Treatment</td>
<td>228</td>
</tr>
<tr>
<td>Discussion</td>
<td>229</td>
</tr>
<tr>
<td>Foot/Ankle</td>
<td>232</td>
</tr>
<tr>
<td>Historical Exam</td>
<td>233</td>
</tr>
<tr>
<td>Physical Exam</td>
<td>233</td>
</tr>
<tr>
<td>Clinical Decision Making</td>
<td>234</td>
</tr>
<tr>
<td>Diagnosis</td>
<td>234</td>
</tr>
<tr>
<td>Discussion</td>
<td>235</td>
</tr>
</tbody>
</table>

A CPR Quality Scores of Level IV Prognostic Studies

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>237</td>
</tr>
</tbody>
</table>

B CPR Quality Scores of Level IV Intervention Studies

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>238</td>
</tr>
</tbody>
</table>
Contents

C Quality Assessment of Diagnostic CPRs 240

D CPR Quality Scores of Interventional Validation Studies 241

E CPR Decision-Making Algorithm 242

Index 243
Clinical Prediction Rules: A Physical Therapy Reference Manual by Drs. Paul Glynn and P. Cody Weisbach will make a substantial and timely contribution to the physical therapy profession. The profession recently experienced an influx in the development of clinical prediction rules (CPRs), which provide physical therapists with an evidence-based tool to assist in patient management when determining a particular diagnosis or prognosis, or when predicting a response to a particular intervention. Clinicians often are left without evidence to guide clinical decision making. CPRs make terrific contributions to the evidence available to physical therapists and will greatly enhance the quality of care provided to patients. Drs. Glynn and Weisbach have taken the first step in the much-needed process of ensuring that CPRs are used on a consistent basis. They have provided a user-friendly guide to understanding the principles and utilization of CPRs in physical therapy practice. Furthermore, Clinical Prediction Rules: A Physical Therapy Reference Manual provides an extensive list of CPRs that have been developed and the potential implications for the patients whom physical therapists treat.

Despite the increasing popularity of CPRs, they are not without limitations and should be subjected to the scientific scrutiny of continued methodologically sound research. The authors of this text have clearly identified that CPRs in the initial stage of development should be used with caution and only within the context of the existing risks and benefits. Evidence provided through the use of uncontrolled cohort studies—which often are used in the development of CPRs—should not be defended as an endpoint but rather as the first step in the research process. Despite the fact that the majority of CPRs useful to physical therapists exist in the initial stages of development, in the absence of strong evidence, they are capable of providing useful information to the clinician that may in turn enhance patient outcomes. The authors have provided readers with all of the tools necessary to decide whether a CPR is appropriate for the patient sitting before them. Furthermore, this text lucidly identifies common methodological flaws associated with CPR studies and provides a quality assessment score for all derivation-level studies of which an assessment tool exists. This will greatly enhance the ability of physical therapists to critique CPRs and determine their applicability to clinical practice. Drs. Glynn and Weisbach emphasize the need to determine a rule’s accuracy in different practice settings and its impact on outcomes of care and costs. The caveat is that clinicians cannot be entirely confident in the accuracy of a rule’s use until more definitive validation studies are completed. For this reason, the authors did not include CPRs
that have not been validated if the magnitude of the decision being made is such that the risk of making an inaccurate decision exceeds the potential benefits (e.g., the potential of a false negative for cervical spine fracture).

Clinical prediction rules should not be construed as removal of the clinical decision-making process from physical therapist practice. Instead, they should be used to eliminate some of the uncertainty that occurs with each and every clinical encounter and to provide a level of evidence on which clinicians can make decisions with adequate confidence. Sticking with the principles of evidence-based practice, the authors encourage therapists to incorporate the best available evidence (including CPRs) combined with clinical expertise and patient values to enhance the overall quality of care provided to individual patients.

I am certain we will continue to see the use of CPRs assist in advancing clinical practice in the physical therapy profession. Because it will be increasingly difficult for busy clinicians to stay abreast of the current best evidence, this text will assist in alleviating the complicated process of synthesizing the evidence. Clinical Prediction Rules: A Physical Therapy Reference Manual provides a succinct and clear guide to the use of CPRs in clinical practice and will prove an invaluable tool for both students and physical therapists in maximizing the quality of care provided to patients. This text is much more than a compendium of CPRs, and it will serve to improve the understanding of the clinical implications of CPRs and should enhance the translation of evidence to clinical practice. The authors should be congratulated, as the text clearly achieves its goal of serving as a clinical resource and reference manual to a collection of clinical prediction rules pertinent to the outpatient, orthopaedic physical therapist.

Joshua A. Cleland, PT, PhD
Professor
Franklin Pierce University
Concord, New Hampshire
ACKNOWLEDGMENTS

Without the help of many, this book would not be possible. For this reason, we would like to acknowledge the following:

- Jones and Bartlett Publishers for its attention to detail and dedication to this endeavor.
- Tim Flynn, PT, PhD, OCS, FAAOMPT, Regis University, Denver, Colorado; Chad Cook, PT, PhD, MBA, OCS, COMT, Duke University, Durham, North Carolina; Gary Austin, PT, PhD, OCS, Sacred Heart University, Fairfield, Connecticut; Bill Egan, PT, DPT, OCS, FAAOMPT, Temple University, Philadelphia, Pennsylvania; and César Fernández-de-las-Peñas, PT, DO, PhD, Universidad Rey Juan Carlos, Madrid, Spain, for their review of our manuscript and their thoughtful suggestions to help improve its quality.
- Amber Hosey, PT, DPT, for her consistent clinical feedback as well as for agreeing to model for the photos in this text.
- The Rehabilitation Department of Newton-Wellesley Hospital for its commitment to quality patient care, evidence-based practice, and the education of future physical therapists.

To all, we thank you!
I think it is safe to say that the advent of clinical prediction rules has caused quite a stir in the orthopaedic physical therapy world. Clinical prediction rules are decision-making tools that contain predictor variables obtained from patient history, examination, and simple diagnostic tests; they can assist in making a diagnosis, establishing a prognosis, or determining appropriate management strategies. In other words, clinical prediction rules (CPRs) are diagnostic, prognostic, or interventional/prescriptive. To date, the large majority of clinical prediction rules within the physical therapy literature are prescriptive in nature. Prescriptive clinical prediction rules are an exponent of the treatment-based system. In this type of diagnostic classification system, a cluster of signs and symptoms from the patient history and physical examination is used to classify patients into subgroups with specific implications for management. As such, it produces homogeneous subgroups where all subjects within that group are expected to respond favorably to a matched intervention. All orthopaedic physical therapists will be able to recall various systematic reviews and meta-analyses published in leading biomedical journals that have indicated interventions that we know to be effective in our everyday clinical practice. These reviews are either no more effective than the standard of care or have an effect size similar to placebo interventions. A 2003 meta-analysis showing a lack of evidence for the use of manipulation in the management of patients with low back pain can serve as an often-referenced illustration. Not that this finding should surprise us: If studies included in a systematic review or meta-analysis use no patient classification other than a broad category of nonspecific regional pain, the resultant heterogeneous study samples pretty much preclude finding real effects of even the most effective intervention. Their ability to identify homogeneous subgroups immediately makes the development and validation of prescriptive clinical prediction rules a priority for our profession. As Clinical Prediction Rules: A Physical Therapy Reference Manual shows, many researchers have indeed recognized this importance, and the result is the impressive number of clinical prediction rules presented in this text.

So why has the development and application of clinical prediction rules, particularly prescriptive rules, led to such controversy in orthopaedic physical therapy? One obvious reason is the fear that such rules may lead to a loss of autonomy with regard to clinical decision making. In this context, the choice of the word prescriptive has been less than fortuitous. And, admittedly, this fear is grounded in reality. Colleagues have told me that some healthcare organizations instituted company-wide educational programs and policies that (inappropriately and prematurely) positioned the application of nonvalidated clinical prediction rules as the new...
standard of care. As with any research, there is the potential that interested third parties use their findings to inappropriately limit care and reimbursement. Another reason for this fear is that clinical prediction rules may seem hard to integrate with the mechanism-based classification system still used as the predominant paradigm by many orthopaedic physical therapists today. This paradigm is based on the premise that impairments identified during examination are the cause of musculoskeletal pain and dysfunction; interventions aimed at resolving these impairments are assumed to lead to decreased pain and increased function.5

Why is—despite these concerns—this book a worthwhile text that should ideally be included in the professional library of all orthopaedic physical therapists as well as of other conservative musculoskeletal care providers? First, clinical prediction rules were never intended to replace mechanism-based decision making. As with all research, we need to take into account external validity, which means that we can only apply clinical prediction rule research to patient populations that are sufficiently similar to the populations in which the tool was developed or validated. Acknowledging that the majority of clinical decisions will still be made using the mechanism-based paradigm, clinical prediction rules simply provide us with another tool for a specific subpopulation, albeit that for this subpopulation it provides a higher level of support from research evidence than does reasoning using the mechanism-based paradigm. However, to appropriately use this extra tool in our clinical toolbox, we need to know about content and relevance to our clinical practice of the clinical prediction rule. Second, any clinician will want to guard against misinterpretation and misuse of this tool for the purpose of limiting therapist autonomy and patient care. This means we need to be aware of limitations not only relevant to the individual rules but also inherent in the research process involved in deriving and validating these rules.

Clinical Prediction Rules: A Physical Therapy Reference Manual provides ready access to the clinical prediction rules relevant to orthopaedic clinical practice. It starts with a discussion of rules used for screening patients for the need for referral, followed by a presentation of rules organized by body region, and further divided into diagnostic, prognostic, and interventional rules. Taking into account the dire consequences of incorrect decisions during the screening portion of the examination, only screening rules that have undergone broad-based validation are included. An in-depth but accessible discussion of the research process, common methodological shortcomings in clinical prediction rule research, and relevant statistics provide the clinician with the tools required for critical analysis and appropriate application. Methodological quality scores are provided for prognostic and prescriptive rules and for validation studies. In the absence of a validated methodological quality assessment tool for diagnostic studies, the authors have proposed and
provided a quality checklist for such studies. This allows for further critical interpretation by the clinician interested in application of the rules in clinical practice. Current, evidence-informed, and patient-centered clinical practice in orthopaedic physical therapy and other conservative musculoskeletal care professions requires the clinician to provide care based on an integration of current best research evidence, clinician expertise, and patient preferences. This text provides not only the current best evidence but also adds to clinician expertise by providing the tools required for critical analysis of this evidence. Finally, by providing the clinician with the knowledge required to educate the patient with regard to appropriate interpretation of clinical prediction rules, it also allows for truly informed patient input in the clinical decision-making process.

Peter A. Huijbregts, PT, MSc, MHSc, DPT, OCS, FAAOMPT, FCAMT
Series Editor, Contemporary Issues in Physical Therapy and Rehabilitation
Victoria, British Columbia, Canada

References
ABOUT THE AUTHORS

Paul E. Glynn, PT, DPT, OCS, FAAOMPT

Dr. Glynn graduated from the University of Massachusetts at Lowell with a BS in Exercise Physiology and later earned his MS in Physical Therapy in 1997. In 2001, he completed a Certificate of Advanced Studies in Orthopaedic Physical Therapy as well as his Doctorate in Physical Therapy from the MGH Institute of Health Professions in Boston, Massachusetts. Dr. Glynn achieved board certification as an Orthopaedic Clinical Specialist in 2002. In 2006, he completed his manual therapy fellowship training at Regis University in Denver, Colorado, and he currently serves as affiliate faculty in the university’s transitional DPT and fellowship programs. Dr. Glynn also serves as affiliate faculty at the University of Medicine and Dentistry in Newark, New Jersey, as well as for Evidence in Motion, Inc. in Louisville, Kentucky. Currently he works as the Supervisor of Staff Development and Clinical Research at Newton-Wellesley Hospital in Newton, Massachusetts, where he is a member of the Institutional Review Board.

Dr. Glynn has published research in numerous peer-reviewed journals, including Physical Therapy, the Journal of Manual and Manipulative Therapy, the Journal of Sports Rehabilitation, and the Journal of Shoulder and Elbow Surgery. He is the recipient of the 2006 Excellence in Research Award, the JMMP Therapeutic Exercise Award, and the 2008 Jack Walker Award. He is an active researcher and national presenter in the field, a manuscript reviewer for the Journal of Manual and Manipulative Therapy, and an item writer for the National Physical Therapy Exam (NPTE) and the Specialization Academy of Content Experts (SACE). Dr. Glynn also is an associate member of the Federation of State Boards of Physical Therapy (FSBPT) and has recently served on the FSBPT’s standards setting task force for the NPTE.

P. Cody Weisbach, PT, DPT

Dr. Weisbach earned his BA in Kinesiology and Applied Physiology from the University of Colorado at Boulder and completed his Doctorate in Physical Therapy at Simmons College in Boston, Massachusetts, in 2007. He is currently enrolled in a manual therapy fellowship at Regis University in Denver, Colorado.

Since graduation, Dr. Weisbach has worked with an orthopaedic population in a hospital-based outpatient setting at Newton-Wellesley Hospital in Newton, Massachusetts. In addition to his clinical duties, he has acted as a clinical investigator for several studies pending publication and is the primary investigator of a study investigating the effects of manual physical therapy applied to the hip in patients with...
low back pain. Dr. Weisbach has been published in Physical Therapy and recently participated in a clinical commentary on the influence of the hip in lower-back pain published in the Journal of Sports Rehabilitation.

Dr. Weisbach has been active in the American Physical Therapy Association (APTA) since 2004 and is a member of the Orthopaedic Section of the APTA and the American Academy of Orthopaedic Manual Physical Therapists.