
Copyright © 2009 by James L. Hein. All rights reserved.

Maple Experiments in
Discrete Mathematics

James L. Hein
Portland State University

March 2009

2

Contents

Preface ...4
0 Introduction to Maple...5

0.1 Getting Started ...5
0.2 Some Programming Tools...6

1 Elementary Notions and Notations ..8
1.1 Logic Operations ...8
1.2 Set Operations.i.Set operations ...9
1.3 List Operations ...11
1.4 String Operations..12
1.5 Graph Constructions...13
1.6 Spanning Trees ...15

2 Facts About Functions...17
2.1 Sequences ..17
2.2 The Map Function...18
2.3 Function Compositions ...20
2.4 If-Then-Else Definitions for Functions21
2.5 Evaluating Expressions ..23
2.6 Comparing Functions..24
2.7 Type Checking ...26
2.8 Properties of Functions ...27

3 Construction Techniques...29
3.1 Examples of Recursively Defined Functions29
3.2 Strings and Palindromes ..31
3.3 A Recursively Defined Sorting Function32
3.4 Binary Trees ..33
3.5 Type Checking for Inductively Defined Sets34
3.6 Inductively Defined Sets ...35
3.7 Subsets and Power Sets ...36

 Contents 3

4 Binary Relations ..39
4.1 Composing Two Binary Relations ..39
4.2 Constructing Closures of Binary Relations40
4.3 Testing for Closures ..42
4.4 Warshall/Floyd Algorithms ..43
4.5 Orderings ...46

5 Analysis Techniques ...48
5.1 Finite Sums...48
5.2 Permutations ..50
5.3 Combinations..51
5.4 Error Detection and Correction...52
5.5 The Birthday Paradox...57
5.6 It Pays to Switch ...58
5.7 Markov Chains..63
5.8 Efficiency and Accumulating Parameters63
5.9 Solving Recurrences ..65
5.10 Generating Functions..68
5.11 The Factorial and GAMMA Functions.......................................70
5.12 Orders of Growth ...72

Answers to Selected Experiments ..75
Index...82

4

Preface

This book contains programming experiments that are designed to reinforce
the learning of discrete mathematics. Most of the experiments are short and
to the point, just like traditional homework problems, so that they reflect the
daily classroom work. The experiments in the book are organized to accom-
pany the first five chapters of Discrete Structures, Logic, and Computability,
Third Edition, by James L. Hein.
 In traditional experimental laboratories, there are certain tools that are
used to perform various experiments. The Maple programming environment
is the tool used for the experiments in this book. Maple is easy to learn and
use because its syntax and semantics are similar to that of mathematics. So
the learning curve is steep and no prior knowledge of the language is assumed.
In fact, the experiments are designed to introduce language features as tools
to help explore the problems being studied.
 The instant feedback provided by the Maple interactive programming
environment can help the process of learning. When students get immediate
feedback to indicate success or failure, there is a powerful incentive to try and
get the right solution. This encourages students to ask questions like, “What
happens if I do this?” This supports the idea that exploration and experiment
are keys to learning.
 The book builds on the traditional laboratory experiences that most stu-
dents receive in high school science courses. i.e., experimentation, observation,
and conclusion. Each section contains an informal description of a topic—with
examples as necessary—and presents a list of experiments to perform. Some
experiments are simple, like using a program to check answers to hand calcu-
lations, and some experiments are more sophisticated, like checking whether
a definition works, or constructing a small program to explore a concept.

5

0
Introduction to Maple

The Maple language allows us to explore a wide range of topics in discrete
mathematics. After a brief introduction to Maple we’ll start right in doing ex-
periments. To keep the emphasis on discrete mathematics we’ll introduce new
Maple tools in the experiments where they are needed.

0.1 Getting Started
This section contains a few key facts to get you started using Maple. The first
thing you need to do is start a Maple session, and this depends on your com-
puter environment. In a UNIX environment you can start Maple by typing the
word

maple

followed by a return. Once maple has started up, it displays the prompt

>

which indicates that the interpreter is waiting for a command. All commands
(except quitting and getting help) must end with a semi-colon. For example,
the command

> 4+5;

will cause Maple to return 9. To quit Maple type the command

> quit

and hit return.

6 Maple Experiments

 Maple has an outstanding interactive help system that gives explana-
tions, definitions, and examples. Information and help about a particular
function can be found by typing a question mark followed by the name of the
function. For example, type the command

> ?help

and hit return to find out about the help system itself. For example, if we need
to know about Maple’s arithmetic operations we can type

> ?arithmetic

For another example, to find out about the max function type the command

> ?max

0.2 Some Programming Tools
We’ll list here a few programming tools that should come in handy from time
to time. You can find out more about these tools and many others with the
help system.

• You can always access the previous expression with %. (In older versions of

maple the double quote is used.) For example, the command

> 4 + 5;

 results in the value 9. So the command

> % + 6;

 returns the value 15.

• The up/down arrow keys can be used to move the cursor up and down
through the commands of a session. If they don’t work, try control p for the
previous command and control n for the next command.

• To read in the contents of the file named filename type

> read filename;

 Maple Experiments 7

 If filename contains unusual characters (e.g., "/", ".", etc.) then the name
must be enclosed in backquotes. For example,

> read `file.2`;

If the file contains Maple commands, then the commands will be loaded
and executed.

• You can display the definition of a user-defined function ƒ by typing

> print(ƒ);

• To trace the execution of a function ƒ type

> trace(ƒ);

 and then type the expression you wish evaluated—like ƒ(14). To stop the
trace of ƒ type

> untrace(ƒ);

• To save the definitions for ƒ, g, and h to a file named foo type

> save ƒ, g, h, foo;

• Some letters and names in Maple are protected and can’t be used unless
they are unprotected. Find out more about this with the help system by
typing the command

> ?unprotect

• To edit a UNIX file named x with, say, the vi editor without leaving Maple,
type

> system(`vi x`);

• The UNIX file named

.mapleinit

 is used to hold maple commands and/or definitions that you want loaded
automatically at the start of a Maple session. This file is quite handy as a
place for the collection of tools and you want to use again and again.

8

1
Elementary Notions and
Notations

In this chapter we’ll use Maple to explore some of the ideas presented in
Chapter One of the textbook. In particular, we’ll do experiments with logic op-
erations, set operations, list operations, string operations, graph construc-
tions, and spanning trees.

1.1 Logic Operations
This experiment tests whether the logical operations of not, or, and and are
implemented correctly in Maple. We’ll also see how to define a new logical op-
eration. Try out the following Maple tests to get started with the experiment.

 > true and false;
 > true or false;
 > not true;
 > a or false;
 > a or true;
 > a or b;
 > a and false;
 > a and true;
 > a and b;
 > not a;
 > not a or false;
 > not a or true;

 Elementary Notions and Notations 9

Now, suppose we define a new operation “if_then” as follows:

> if_then := (x, y) -> not x or y;

We can test this operation by applying it to various truth values. For example,
try out the following test:

> if_then(true, true);

If we want to rename the if_then function to the name “ofCourse” we can do it
by writing

> ofCourse := if_then;

Then we can use the new name. For example,

> ofCourse(true, true);

To convince ourselves that the two names define the same operation we can
observe the two definitions:

 > print(if_then);
 > print(ofCourse);

Experiments to Perform

 1. Verify the rest of the entries in the truth tables for not, and, and or.

 2. Find the rest of the truth table entries for the if_then operation.

 3. Use the help system to find out about the precedence of the three opera-
tions not, and, and or when used in combination without parentheses.
Just type

> ?precedence

 Try out various combinations of the three operators not, and, and or to
verify the precedence of evaluation in the absence of parentheses.

1.2 Set Operations
In this experiment we’ll explore some of the basic ideas about sets. Try out the
following commands to get used to working with sets and set operations in
Maple.

10 Maple Experiments

 > A := {a, a, b, b, b};

 > member(a, A);

 > member(c, A);

 > evalb({a} = {a, a});

 > B := {b, c};

 > evalb(A = B);

 > A union B;

 > A intersect B;

 > A minus B;

 > nops(A);

 > nops(B);

 > nops(A intersect B);

Now let’s try to define the symmetric difference of two sets:

 > symDiff := (x, y) -> (x minus y) union (y minus x);

 > symDiff(A, B);

Experiments to Perform

 1. Why is the computed answer to the first command A := {a, b} rather than
A := {a, a, b, b, b}?

 2. Check each of the following statements by hand and then use Maple
commands to confirm your answers:

 a. x ∈ {a, b}. b. x ∈ {a, x}. c. a ∈ {a}.

 d. ∅ ∈ {a, b}. e. ∅ ∈ ∅. f. ∅ ∈ {∅}.

 g. {a, b} ∈ {a, b, c}. h. {a, b} ∈ {{a, b}, b, c}.

 3. The following two properties of sets relate the subset operation to the
operations of intersection or union.

A ⊆ B if and only if A ∩ B = A.
A ⊆ B if and only if A ∪ B = B.

 Test each property by defining a “subset” operation, where the command

> subset(A, B);

 decides whether A is a subset of B.

 Elementary Notions and Notations 11

 4. Use the help system to find out about the precedence of the three opera-
tions union, intersect, and minus when used in combination without pa-
rentheses. Just type

> ?precedence

 Try out various combinations of the three operators union, intersect, and
minus to verify that the precedence of evaluation in the absence of paren-
theses.

1.3 List Operations
Lists are very useful structures for representing information and Maple has a
nice collection of tools that allow us to work with them. Try out the following
commands to get used to working with lists in Maple.

 > A := [a, a, b, b, b];

 > B := [b, c];

 > [op(A), op(B)];

This is a cumbersome expression to type whenever we want to concatenate
two lists. We can define a concatenation operation for two lists as follows.

 > catLists := (x, y) -> [op(x), op(y)];

Now we can concatenate the two lists A and B with the following command.

 > catLists(A, B);

Suppose that we want to use the primitive operations of cons, head, and tail
to construct, access the head, and access the tail of a list, respectively. Maple
doesn’t have definitions for these operations. So we’ll have to define them our-
selves. We’ll refer to them as cons, hd, and tl.

 > cons := (x, y) -> [x, op(y)];

 > cons(a, B);

 > hd := x -> x[1];

 > hd(A);

Before we decide on a definition for tail, we’ll look at two possible definitions
because different versions of Maple may give different results.

12 Maple Experiments

 > tl1 := x -> [x[2..nops(x)]];
 > tl1(A);
 > tl2 := x -> x[2..nops(x)];
 > tl2(A);

Experiments to Perform

0. a. Depending on the results of the tl1 and tl2 tests, choose the proper
definition for tl.

b. Then put the definitions for hd, tl, and cons in your .mapleinit file so
they will always be loaded and available for each Maple session.

c. Test hd, tl, and cons on arguments for which they are not defined. For
example, hd(a), hd([]), tl(a), tl([]), and cons(a, b).

 1. Define each of the following functions and perform at least three tests for
each definition.

a. The function “heads” maps two nonemtpy lists to a list consisting of
the heads of the two lists. For example,

heads([a, b], [c, d, e]) = [a, c].

b. The function “tails” maps two nonemtpy lists to a list consisting of
the tails of the two lists. For example,

tails([a, b], [c, d, e]) = [[b], [d, e]].

c. The function “examine” maps a list to a list consisting of the head
and tail of the given list. For example,

examine([a, b, c]) = [a, [b, c]].

d. The function “add2” attaches two new elements to the left end of a
list. For example,

add2(a, b, [c, d, e]) = [a, b, c, d, e].

1.4 String Operations
Strings of characters can be processed in Maple. A string is a sequence of
characters enclosed in double quotes. The string with no elements is called
the empty string and in Maple it is denoted by "". Try out the following exam-
ples to get used to working with strings in Maple.

 > A := "ab#*9bd";

 Elementary Notions and Notations 13

 > length(A);
 > substring(A, 1);
 > substring(A, 2);
 > substring(A, length(A));
 > substring(A, 1..3);
 > substring(A, 2..4);
 > substring(A, 2..length(B));
 > substring(A, 2..1);
 > emptyString := "";
 > cat(A, A);
 > cat(A, emptyString);
 > cat("", "ab","cd");
 > cat(A, emptyString);

Experiments to Perform

 1. Make a definition for the operation head, where head(x) returns the first
character of the nonempty string x. Test your definition.

 2. Make a definition for the operation tail, where tail(x) returns the string
obtained from the nonempty string x by removing its head. Test your
definition.

 3. Make a definition for the operation last, where last(x) returns the last
character of the nonempty string x. Test your definition.

 4. A palindrome is a string that equals itself when reversed. Make a defini-
tion for the operation pal to test whether a string of three characters is a
palindrome. For example, pal("aba") is true and pal("xxy") is false. Hint:
Use evalb to test the first and third characters for equality.

1.5 Graph Constructions
Maple has some nice tools to construct finite graphs. The networks package
contains tools for working with graphs. We can load the package with the fol-
lowing command.

 > with(networks);

There are several tools that we can use to generate some well-known graphs.

14 Maple Experiments

For example, try out the following commands.

 > draw(complete(4));

 > draw(void(6));
 > draw(cycle(6));
 > draw(octahedron());

Suppose that we want to construct a graph G with 8 vertices labeled with the
numbers 1, 2, ..., 8. Try the following commands to accomplish the task.

 > G := void(8);

 > draw(G);
 > vertices(G);

We can add some edges to G in several ways. For example, try out the follow-
ing commands.

 > connect({1}, {3, 5, 7}, G);
 > draw(G);
 > edges(G);
 > ends(G);
 > ends(e1, G);

The vertices of a graph may have names other than numbers. For example,
let’s define a graph with vertex set {a, b, c, d}.

 > new(G);

 > addvertex({a, b, c, d}, G);
 > connect({a, b}, {c, d}, G);
 > connect(a, b, G);
 > draw(G);
 > connect(c, d, G);
 > delete(e4, G);
 > draw(G);

Now that we have a better idea of how to deal with graphs, let’s see whether
we can construct a directed graph with weighted edges.

 > new(H);

 > addvertex({a, b, c}, H);
 > addedge([[a, b], [b, a], [b, c], [a, c]], weights = [4, 2, 1, 3], H);

 Elementary Notions and Notations 15

 > draw(H);
 > eweight(H);

Experiments to Perform

 1. Use the help system to find out more about the “connect” and “addedge”
functions. Suppose G is the following weighted graph.

c

b

a d

15 10

55

10

a. Construct G by using the connect function to create the edges. Don’t
worry about the orientation of the graph that Maple draws.

b. Construct G by using the addedge function to create the edges. Again,
don’t worry about the orientation of the graph that Maple draws.

 2. Use the help system to find out about the “show” command. Use it on the
graph G in the preceding experiment. Try to figure out the meanings of
the various parts of the output.

 3. Use the help system to find out about two commands in the networks
package that you have not yet used. Try them out.

1.6 Spanning Trees
We can use Maple to compute spanning trees for finite graphs. Recall that a
spanning tree for a connected graph is a subgraph that is a tree and contains
all the vertices of the graph. A minimal spanning tree for a connected weighted
graph is a spanning tree such that the sum of the edge weights is minimum
among all spanning trees. Try out the following Maple commands to discover
the main ideas.

 > with(networks);

 > new(G);
 > addvertex({a, b, c}, G);
 > addedge([[a, b], [b, a], [b, c], [a, c]], weights = [4, 2, 1, 3], G);
 > draw(spantree(G));
 > spantree(G, a, w);

16 Maple Experiments

 > draw(%);
 > w;
 > spantree(G, a, w);
 > unassign(‘w’);
 > w;
 > spantree(G, a, w);
 > w;

Experiments to Perform

 1. Suppose that H is the following weighted graph. Use Maple to find a
minimal spanning tree for H.

 c

b

a d

15 10

55

10

 2. Use the Maple help system to find out about the Petersen graph. Use
Maple to construct and draw the graph and to draw a spanning tree for
the graph. Note: The Petersen graph is an example of a graph that is not
planar.

17

2
Facts About Functions

In this chapter we’ll use Maple to explore some basic ideas about functions
presented in Chapter Two of the textbook. We’ll do experiments with se-
quences, the map function, composition, if-then definitons, evaluating expres-
sions, comparing functions, type checking, and properties of functions.

2.1 Sequences
Maple has some useful expressions for working with finite sequences of ob-
jects. In Maple a sequence is a listing of objects separated by commas. So a
sequence is like a list without the delimiters on the ends. However, we’ll see
that, if we wish, we can put delimiters on the ends of a sequence of objects.
 Try out the following commands to get a feel for some of the techniques
that can be used to construct and use sequences.

 > seq(i, i=0..9);
 > seq(hello, i=1..4);
 > seq({i, i+1}, i=1..5);
 > seq(i**2 + i, i=1..6);
 > f := x -> x*x;
 > seq(f(i), i=3..12);
 > 3..15;
 > $3..15;
 > A := $1..12;
 > seq(x+x, x=A);
 > sequence := x -> [$0..x];
 > sequence(17);
 > g := x -> {$-x..x};
 > g(5);

18 Maple Experiments

 > {$-4..4};
 > [$-4..4];
 > h := n -> [$-n..n];
 > h(5);

Experiments to Perform

 1. Suppose that we want to construct the function ƒ defined by

ƒ(n) = [[0, 0], [1, 1], ..., [n, n]].

 We can use the seq function to define ƒ as follows:

> ƒ:= n -> [seq([k, k], k=0..n)];

 Use Maple to perform three tests of the function.

 2. Use the seq function to construct a Maple version of the function g de-
fined by

g(n) = [[n, n], ..., [1, 1], [0, 0]].

 Use Maple to perform three tests of the function.

 3. Use the seq function to construct a Maple version of the function h de-
fined by

h(n) = [[n, 0], [n – 1, 1], ..., [1, n – 1], [0, n]].

 Use Maple to perform three tests of the function.

 4. Use the seq function to construct a Maple version of the function s de-
fined by

s(n) = [{0}, {0, 1}, {0, 1, 2}, {0, 1, 2, 3}, ..., {0, 1, 2, 3, ..., n}].

 Use Maple to perform three tests of the function.

2.2 The Map Function
The map function is a very useful tool for working with functions for which we
need several values. Recall that the map function “maps” a function and a list
of domain elements onto a list of values. For example, if {a, b, c} is a subset of
the domain of ƒ, then

 Facts About Functions 19

 map(ƒ, [a, b, c]) = [ƒ(a), ƒ(b), ƒ(c)].

Try out the following commands to get used to using Maple’s map function.

 > map(abs, [-1, 3, -32, 4]);
 > map(abs, {1, -1, 2, -2});
 > f := x -> x**2;
 > map(f, [1, 2, 3, 4, 5]);
 > map(f, [$-5..5]);
 > map(f, {$-5..5});
 > diff(sin(x), x);
 > diff(cos(x), x);
 > map(diff, [sin(x), cos(x), tan(x)], x);
 > map(diff, [1, x, x**2, x**3], x);
 > f := (x, y, z) -> x**2 + y + z;
 > map(f, {1, 2, 3}, 4, 5);
 > newf := x -> f(x[1], x[2], x[3]);
 > map(newf, {[1, 2, 3], [4, 5, 6]});

Notice the error that occurs when we try to map an infix operation like union.

 > map(union, [{a}, {b}], {c});

It can be fixed by enclosing the name in back quotes. Try the following.

 > map(`union`, [{a}, {b}], {c});
 > map(`union`, {{a}, {b}}, {c});

From the examples it can be seen that for functions of arity n, where n ≥ 2, the
map operation must specify the second through the nth arguments that will
be used by the function. For example, suppose that g has arity 3. Observe the
result of the following command.

 > map(g, [a, b, c], x, y);

There is also a map2 operation for functions having arity n, where n ≥ 2. In
this case the map2 operation must specify the first argument and the third
through the nth arguments. For example, observe the following command and
compare its result with the previous command.

 > map2(g, x, [a, b, c], y);

20 Maple Experiments

Experiments to Perform

 1. Describe how you would use Maple to find the image of a finite subset A
of the domain of a function g.

 2. Use the map function to define each of the following functions. Be sure to
test each definition.

a. The function “heads” maps any list of nonempty lists to a list of the
heads of the lists. For example,

heads([[a, b], [a, b, c], [b, d]]) = [a, a, b].

b. The function “tails” maps any list of nonempty lists to a list of the
tails of the lists. For example,

tails([[a, b], [a, b, c], [b, d]]) = [[b], [b, c], [d]].

 3. Use the map2 function to define the function “dist” that distributes an
element x into a list L of elements by creating a list of pairs made up by
pairing x with each element of L. For example,

dist(x, [a, b, c]) = [[x, a], [x, b], [x, c]].

 Hint: Suppose that we define the function pair that makes a 2-tuple out
of its two arguments. E.g., suppose that pair(x, y) = [x, y]. Now use pair in
your construction of dist.

2.3 Function Compositions
Maple allows us to define functions by composition either with variables or
without variables. Note that Maple uses the symbol @ instead of ° to denote
composition. Try out the following examples to see how composition of func-
tions can be used with Maple.

 > f := x -> x + 1;
 > g := x -> x**2;
 > f(g(x));
 > (f@g)(x);
 > g(f(x));
 > (g@f)(x);
 > h := g@ƒ;
 > k := ƒ@g;

 Facts About Functions 21

 > h(x);
 > k(x);

Of course, we could also define h and k using variables as follows.

 > h := x -> g(f(x));
 > k := x -> f(g(x));
 > h(x);
 > k(x);

It’s easy to see that composition is not commutative in general. For example,
we can plot the graphs of g@ƒ, ƒ@g, and the difference g@ƒ – ƒ@g. Try out the
following tests.

 > plot(h(x), x = 0..10);
 > plot(k(x), x = 0..10);
 > plot(h(x) - k(x), x = 0..10);

Experiments to Perform

 1. Define two new different numeric functions ƒ and g of your own choosing
and do the following things.

a. Construct and test both ƒ@g and g@ƒ to see whether they are equal.

b. Plot the graphs of ƒ@g and g@ƒ.

 2. The operations cons, hd, and tl that we defined in (1.3 List Operations)
are related by the following equation for all nonempty lists x.

cons(hd(x), tl(x)) = x.

a. Test this equation on several lists using the evalb operation.

b. If we let g(x) = (hd(x), tl(x)) and h = cons@g, then we can rewrite the
given equation as h(x) = x for all nonempty lists x. Define g and h as
Maple functions and then test the rewritten version of the equation
on several lists using the evalb operation.

2.4 If-Then-Else Definitions for Functions
When a function is defined by cases, we can use the if-then-else form to imple-
ment the function in Maple. For example, suppose that we want to define an
absolute value function. Although Maple already has the “abs” function to do

22 Maple Experiments

the job, we’ll define our own version. The absolute value function, which we’ll
call “absolute” can be defined by cases as follows:

!

absolute(x) =
x if x " 0

#x if x < 0

$
%
&

We can implement this case definition in Maple as follows:

> absolute := x -> if x >= 0 then x else –x fi;

 The if-then-else rule can be used more than once if there are several
cases in a definition. For example, suppose we want to classify the roots of a
quadratic equation having the following form:

ax2 + bx + c = 0.

We can define the function “classifyRoots” to give the appropriate statements
as follows:

 classifyRoots(a, b, c) = if b2 – 4ac > 0 then
 “The roots are real and distinct.”
 else if b2 – 4ac < 0 then
 “The roots are complex conjugates.”
 else
 “The roots are real and repeated.”

We can implement the definition in Maple as follows. (Note that elif is used
for “else if,” and backward quotes enclose strings.)

> classifyRoots := (a, b, c) -> if b*b - 4*a*c > 0 then
 `The roots are real and distinct.`
 elif b*b - 4*a*c < 0 then
 `The roots are complex conjugates.`
 else
 `The roots are real and repeated.`
 fi;

Experiments to Perform

 1. Test the abs and classifyRoots functions. Your tests should include a va-
riety of inputs to test all possible cases of each definition.

 Facts About Functions 23

 2. We can define a function “max2” to return the maximum of two numbers
as follows.

max2 := (x, y) -> if x < y then y else x fi;

 Test max2 on several pairs of numbers. Then for each of the following
conditions, write and test a definition for the function “max3” to return
the maximum of three numbers.

a. Use max2 to define max3.

b. Write an if-then-else definition for max3 that does not use any other
functions.

2.5 Evaluating Expressions
Although Maple is very good at symbolic manipulation, it is still just a com-
puter program that is not quite as intelligent as a normal human being. When
evaluating expressions Maple sometimes needs some guidance from us. For
example, try out the following statements.

 > 1/2;
 > eval(1/2);
 > eval((1+3)/2);
 > evalf(1/2);
 > evalf((1+3)/2);
 > simplify(1/2);
 > simplify((1+3)/2);
 > g := log[2];
 > g(16);
 > simplify(g(16));
 > evalf(g(16));
 > plot(g(x), x=1..16);
 > map(g, {$1..16});
 > map(g, [$1..16]);

In this experiment we’ll consider a property of binary trees. We know that
among the binary trees with n nodes, the minimum depth that any tree can
have is floor(log2 n). We’ll call this function minDepth and write it as the com-
position

minDepth = floor ° log2.

24 Maple Experiments

This function can be implemented in Maple as follows:

> minDepth := floor @ log[2];

Experiments to Perform

 1. Find out about minDepth by doing the following experiments.

a. Plot minDepth over the values 1..16.

b. Find the image of the set {1, 2, ..., 16} by minDepth.

c. Find the list of values of minDepth when applied to elements in the
list [1, 2, ..., 16].

 2. As (1) shows, Maple doesn’t give us the kind of answers that we want for
minDepth. We want to redefine minDepth so that it gives us integer val-
ues. Suppose we try the following definition.

> newMinDepth := floor @ evalf @ log[2].

a. Test newMinDepth by performing the three tests of (1).

b. What is wrong with the new definition of minDepth?

c. Try to redefine minDepth as a composition of functions, without vari-
ables, so that it correctly returns all values as integers. Test your
definition with at least the three tests used in (1).

2.6 Comparing Functions
Functions can usually be defined in many different ways. So it is useful to be
able to easily compare definitions to see whether they define the same func-
tion over various sets. For example, the following two definitions both claim to
test whether an integer is even.

 > f := x -> if x mod 2 = 0 then true else false fi;

 > g := x -> if 2 * floor(x/2) = x then true else false fi;

We can compare results of the two functions by constructing a function to do
the comparing.

 > compare := x -> if f(x) = g(x) then true else false fi;

 Facts About Functions 25

For example, we can test the two functions to see whether they are equal on
the set {0, 1, ..., 20} with commands such as

 > map(compare, {$0..20});
or
 > map(compare, {seq(i, i=0..20)});

If the result is {true}, then things are OK over the set {0, 1, ..., 20}. If the result
is {true, false}, then there are problems that can be examined by using a list
to check where the two definitions differ.

> map(compare, [$0..20]);

Experiments to Perform

 1. An alternative to the if-then-else comparison for two functions ƒ and g is
to use evalb as follows.

> compare := x -> evalb(f(x) = g(x));

 Try out this definition of compare by repeating the sample tests.

 2. In addition to the floor function, Maple has a ceiling function, ceil, and a
truncation function, trunc. Try out the following tests to observe the dif-
ferences between these functions

 > floor(-3.1);
 > floor(5.9);
 > ceil(-3.1);
 > ceil(5.9);
 > trunc(-3.1);
 > trunc(5.9);

a. The three functions are all equal on integer arguments. Verify this fact
over the set {-50, -49, ..., 49, 50}.

b. Each of the three functions differs from the other two for certain sets of
non-integer arguments. For example, we can compare ceil and trunc on
a set of rational numbers that are not integers as follows.

 > compare := x -> evalb(ceil(x) = trunc(x));
 > map(compare, {seq(x + 0.5, x = -10..10)});

 Test each of the pairs of functions {floor, ceil}, {floor, trunc}, and {ceil,
trunc} to find and verify the sets of non-integer arguments for which they
are equal and for which they are not equal.

26 Maple Experiments

 3. The function ƒ below claims to define the mod function.

> ƒ := (x, n) -> x - n*floor(x/n);

 Compare ƒ with Maple’s mod function. Do they agree? If not, describe the
differences between the two functions.

 4. Write two different definitions for a function to test whether a number is
odd. Test your definitions to make sure that they agree on the numbers
in the set {-1000, ... 1000}.

2.7 Type Checking
There are many predefined types in Maple. To check whether an expression E
has type T we write a query of the form

> type(E, T).

Try out the following Maple commands to get a feel for type checking.

 > type(2, integer);
 > type(1.5, integer);
 > type(xy, string);
 > type(9, string);
 > type(“9”, string);
 > type(4, {string, integer});
 > type(xy, {string, integer});

Experiments to Perform

 1. Use Maple’s help system to learn about the types numeric, realcons, and
rational. Do some tests to show how these types differ from each other.

 2. Use Maple’s help system to discover five other types. For each of the five
types, do two tests: one true and one false.

 3. Define your own ceiling function “ceil2” as an if-then-else definition that
uses at least one type expression. You may use Maple’s trunc function in
your definition. But you may not use Maple’s floor and ceil functions.
Test the definition by comparing it with the ceil function. Test it not only
on integers, but on other numbers too. For example, you might try the fol-
lowing comparison.

 > compare := x -> evalb(ceil(x/2) = ceil2(x/2));

 Facts About Functions 27

 > map(compare, {$-20..20});

 4. Define your own floor function “floor2” as an if-then-else definition that
uses at least one type expression. You may use Maple’s trunc function in
your definition. But you may not use Maple’s floor and ceil functions. Be
sure to test the definition by comparing it with the floor function. Test it
not only on integers, but on other numbers too.

 5. Use Maple’s help system to learn about “error”. Then redefine your cons,
hd, and tl functions to return error messages in the following cases.

 a. cons returns an error if the second argument is not at list.

 b. hd returns an error if the argument is the empty list or not alist .

 c. tl returns an error if the argument is the empty list or not alist .

2.8 Properties of Functions
Maple can sometimes help us tell whether a function is injective, surjective,
or bijective. For example, suppose we want to study properties of the function
ƒ defined by the expression

!

ƒ(x) =
1

x +1
.

Over the real numbers, ƒ is defined everywhere except x = –1. We can get an
idea about ƒ by looking at its graph at various intervals using the plot func-
tion.
 To see whether ƒ is injective we must see whether x ≠ y implies ƒ(x) ≠
ƒ(y) for all x and y in the domain of ƒ. In other words, using the contrapositive
statement, we want to see whether ƒ(x) = ƒ(y) implies x = y. The following
Maple command will do the job. That is, solve the equation ƒ(x) = ƒ(y) for x
and see if the answer is y.

> solve(f(x) = f(y), x);

Since Maple returns y, we know that ƒ is injective.
 What about surjective? In this case we want to see if any element y in the
codomain of ƒ is equal to ƒ(x) for some x in the domain of ƒ. So we would like
to solve the equation ƒ(x) = y for x, which we can do in Maple with the follow-
ing command.

> solve(f(x) = y, x);

28 Maple Experiments

Maple returns an expression for x. We can test whether ƒ maps the expression
to y with the following Maple command.

> f(%);

Now simplify the result to see whether it is equal to y:

> simplify(%);

The result is y. So things look good so far. Any problems with x = – 1?

Experiments to Perform

 1. Use Maple to see whether each of the following functions is injective, sur-
jective, or bijective.

 a. ƒ(x) = x/(x + 1).

 b. ƒ(x) = x/(1 – x).

 c. ƒ(x) = (1 – x)/x.

29

3
Construction Techniques

In this chapter we’ll use Maple to explore some of the basic ideas about the
construction of recursively defined functions and inductively defined sets pre-
sented in Chapter Three of the textbook. We’ll do experiments with lists,
strings, trees, and sets.

3.1 Examples of Recursively Defined Functions
It’s easy to translate definitions for recursively defined functions into Maple.
For example, suppose we have the following recursive definition of the func-
tion to concatenate two lists:

 concat([], y) = y
 concat(h :: t, y) = h :: concat(t, y).

We can easily convert this definition into a Maple if-then-else program as fol-
lows, where cons, hd, and tl are the user defined functions from (1.3 List Op-
erations):

> concat := (x, y) -> if x = [] then y else cons(hd(x), concat(tl(x), y)) fi;

For example, try out the following command.

> concat([a, b, c], [d, e]);

To see how the recursion unfolds we need to do a trace.

 > trace(concat);

30 Maple Experiments

 > concat([a, b, c], [d, e]);

Experiments to Perform

 1. Consider the following definition of a function ƒ to compute floor(x/2) for
any natural number x. In other words, ƒ(x) = floor(x/2).

> ƒ := x -> if x = 0 or x = 1 then 0 else 1 + ƒ(x – 2) fi;

 a. Test ƒ to see whether it computes floor(x/2) for x a natural number.

b. Trace ƒ to observe the unfolding of the recursion.

c. What happens when ƒ is applied to a non-natural number?

 2. The following function returns the sum of a list of numbers, where we as-
sume that an empty sum is zero.

 total([]) = 0
 total(h :: t) = h + total(t).

 A Maple implementation of total can be defined as follows:

total := x -> if x = [] then 0 else hd(x) + total(tl(x)) fi;

 Test total on several lists of numbers. For example,

 > total([3, 2, 9 , 5.34]);
 > total([$1..10]);

 Trace total on a list of numbers to observe the unfolding of the recursion.

 3. The function “last” finds the last element of a non-empty list.

 last([x]) = x
 last(h :: t) = last(t).

 Construct a Maple definition for last. Notice that the basis case is for a
list with one element, which can be described as a list whose tail is the
empty list. Test it on several examples and use the trace command on
one test to observe the recursion.

 4. Construct a recursive Maple program—and test it—for the “small” func-
tion, which returns the smallest element of a nonempty list of numbers.
For example, small([9, 78, 5, 38]) returns 5.

 5. Construct a recursive Maple program—and test it—for the “first” func-

 Construction Techniques 31

tion, which removes the rightmost element of a nonempty list. For exam-
ple, first([a, b, c]) returns [a, b].

 6. Construct a recursive Maple program—and test it—for the “pairs” func-
tion, which takes two lists of equal length and outputs a list consisting of
the corresponding pairs from the two input lists. For example, pairs([a, b,
c], [1, 2, 3]) returns [[a, 1], [b, 2], [c, 3]].

 7. Construct a recursive Maple program—and test it—for the “dist” func-
tion, which takes an element and a list and outputs a list of pairs made
up by distributing the given element with each element of the list. For
example, dist(x, [a, b, c]) returns [[x, a], [x, b], [x, c]].

 8. Construct a recursive Maple program—and test it—for the “prod” func-
tion, which takes two lists and outputs the product of the two lists. For
example, prod([1, 2], [a, b, c]) returns the list

 [[1, a], [1, b], [1, c], [2, a], [2, b], [2, c]].

 Hint: The dist function might be helpful.

3.2 Strings and Palindromes
Recall that a palindrome is a string that equals itself when reversed. For ex-
ample, the string aba is a palindrome. In Maple the string of digits 101 is
considered a number. To make it into a string we can give the command

 > convert(101, string);

Then we can treat the result as a string and test whether it is a palindrome.
The following function “pal” is a test to see whether it’s input—either a string
or a number considered as a string of digits—is a palindrome. The functions
F, L, and M return the first character of a string, the last character of a string,
and the middle of a string, respectively.

pal := x -> if type(x, string) then
 if length(x) <= 1 then true
 elif F(x) = L(x) then pal(M(x))
 else false fi
 else pal(convert(x, string)) fi;

32 Maple Experiments

Experiments to Perform

 1. Write the definitions for F, L, and M. Then test pal on several strings and
numbers.

 2. The convert operation in Maple can be used to find the binary represen-
tation of a natural number. For example,

 > convert(45, binary);

 returns the number 101101.

 Notice that the binary string is a palindrome. Write a program “pals” to
construct a list of the first n natural numbers whose binary representa-
tions are palindromes. For example,

 > pals(4);

 returns the list [0, 1, 3, 5]. Test pals and see if you can find some rela-
tionships between or properties of these numbers.

3.3 A Recursively Defined Sorting Function
As another example of a recursively defined function, we’ll write a sorting
function for a list of numbers. The idea we’ll use is sorting by insertion, where
the head of the list is inserted into the sorted version of the tail of the list. For
the moment, we’ll assume that “insert” does the job of inserting an element
into a sorted list. We’ll use the name “isort” because Maple already has its
own “sort” function.

> isort := x -> if x = [] then x else insert(hd(x), isort(tl(x))) fi;

Of course, we can’t test this definition until we write the definition for the in-
sert function. This function inserts an element into a sorted list by comparing
the element with each member of the list until it reaches a larger element or
the end of the list, at which time the element is placed in the proper position.
Here’s a definition for the insert function in if-then-else form:

> insert := (a, x) -> if x = [] then [a]
 elif a <= hd(x) then cons(a, x)
 else cons(hd(x), insert(a, tl(x)))
 fi;

 Construction Techniques 33

Now we can test both the insert function and the isort function.

 > insert(7, [1, 4, 9, 14]).
 > isort([4, 9, 3, 5, 0]);

Experiments to Perform

 1. Perform several tests of insert and isort. Do at least one trace for each
function to see what is going on.

 2. What happens if we insert an element in a list that is not sorted?

 3. Modify the definition of insert by replacing =< with <. Try out some tests
to demonstrate what happens. Is one version more efficient than the
other?

3.4 Binary Trees
Binary trees are inherently recursive in nature. In this experiment we’ll see
how binary trees can be created, searched, and traversed by simple recursive
algorithms. We’ll represent binary trees as lists, where the empty binary tree
is the empty list and a nonempty binary tree is a list of the form

[L, x, R],

where L is the left subtree, x is the root, and R is the right subtree. We can
construct a binary search tree from a list of numbers as follows:

 build([]) = []
 build(H :: T) = insert(H, build(T))

where insert takes a number and a binary search tree and returns a new bi-
nary search tree that contains the number.

 insert(x, []) = [[], x, []]

 insert(x, [L, y, R]) = if x ≤ y then [insert(x, L), y, R] else [L, y, insert(x, R]]

Experiments to Perform

 1. Implement and test “build” and “insert” as Maple functions. To do this
you will need to be able to pick out the root and the left and right sub-
trees of a nonempty binary tree. Test them on several lists.

34 Maple Experiments

 2. The form of the binary search trees is not inviting. To see the information
in a binary search tree we can traverse it by one of the standard methods,
preorder, inorder, and postorder. For each of these orderings, write a pro-
cedure to print out the values of the nodes.

 3. Build and test a Maple function “isIn” to see whether a number is in a
binary search tree.

3.5 Type Checking for Inductively Defined Sets
In this experiment we’ll see how to construct types that are inductively de-
fined sets. A couple of examples should suffice to get the idea. For example,
suppose that we have a set S that is inductively defined as follows.

Basis: 2 ∈ S.
Induction: If x ∈ S then x + 3 ∈ S.

To build our own type checker for S we make the following definition, which
will allow us to use Maple’s type function.

 > `type/S` := x -> if not type(x, integer) then false
 elif x < 2 then false
 elif x = 2 then true
 else type(x - 3, S)
 fi;

Now we can check to see whether an expression has type S by using Maple’s
type function. For example, try out the following commands.

 > type(2, S);
 > type(3, S);
 > type(2+3, S);

For another example, suppose that T is a set of lists that has the following
inductive definition.

Basis: [] ∈ T.
Induction: if x ∈ T then cons(a, x) ∈ T.

As in the previous example, we can build our own type checker for T, which is
given as follows.

 Construction Techniques 35

 > `type/T` := x -> if not type(x, list) then false
 elif x = [] then true
 elif hd(x) = a then type(tl(x), T)
 else false
 fi;

Experiments to Perform

 1. Write down an informal description of the set S. Then perform some
tests to see whether the type function tests for membership in the set S
that you described. For example, you might try some tests like the follow-
ing to see what happens.

> map(type, [$1..10], S);

 2. Write down an informal description of the set T. Then perform some
tests to see whether the type function tests for membership in the set T
that you described.

 3. Let A be the set defined inductively as follows:

Basis: 0 ∈ A.
Induction: if x ∈ A then 2x + 1 ∈ A.

a. Write down an informal description of A.

b. Define A as a Maple type function and then test your definition to see
whether it works properly to test membership in the set A that you
described.

3.6 Inductively Defined Sets
In this experiment we’ll look at some ways to pick out elements or subsets of
elements from an inductively defined set. For example, if an inductively de-
fined set has a single basis element and a single construction rule, then it’s
easy to define a function to select the nth element of the set. For example,
suppose that S is defined inductively as follows.

Basis: 2 ∈ S.
Induction: If x ∈ S then x + 3 ∈ S.

Let getS(n) return the nth element of S. We can define getS as follows in Ma-
ple:

getS := n -> if n = 1 then 2 else getS(n – 1) + 3 fi;

36 Maple Experiments

Now we can compute the individual elements of S. For example, try out the
following commands.

 > getS(1);
 > getS(35);

We can use the map function to find various subsets of S. For example, try out
the following command to obtain the first 10 elements of S.

> map(getS, {$1..10});

Experiments to Perform

 1. Let A be the set of elements defined inductively as follows.

Basis: 0 ∈ A.
Induction: if x ∈ A then 2x + 1 ∈ A.

 Define getA and then use it to generate some elements of A and some
subsets of A.

 2. Let T be the set of elements defined inductively as follows.

Basis: [] ∈ T.
Induction: if x ∈ T then cons(a, x) ∈ T.

 Define getT and then use it to generate some elements of T and some
subsets of T.

3.7 Subsets and Power Sets
Sets are represented in Maple in such a way that the elements can be ac-
cessed. But the ordering of elements in a set is based on the internal ad-
dresses of expressions, which may differ from machine to machine. For exam-
ple, try out the following commands.

 > A := {a, c, c, b, b, d};
 > B := {a, b, d, x};
 > C := {c, c, b, d, a};
 > {a, b};
 > {b, a};

We can still work with sets and access elements of a set as long as we don’t

 Construction Techniques 37

rely on a specific ordering of the elements. Try out the following commands.

 > A := {a, b, c, d, e};
 > nops(A);
 > op(A);
 > A[1];
 > A[3];
 > {A[1]};
 > A[2..4];
 > {A[2..4]};

The head and tail functions defined for lists should also work for sets because
Maple stores the elements of a set by a fixed internal ordering of expressions.
For example, try out the following commands.

 > hd := x -> x[1];
 > tl := x -> x[2..nops(x)];
 > hd(A);
 > tl(A);

If we want to construct a set similar to a list, then we’ll need a different defi-
nition for cons.

 > setCons := (x, S) -> {x, op(S)};
 > setCons(a, {b, d, x});

With this definition the following equation should hold for all sets S.

S = setCons(hd(S), tl(S)).

For example, we can use evalb to test the equation for any particular set. Try
out the following commands.

 > S := {1, 5, b, a};
 > evalb(A = setCons(hd(A), tl(A)));

38 Maple Experiments

Experiments to Perform

 1. Construct a recursive definition for the “subset” function, which deter-
mines whether one set is a subset of another. For example, the Maple
command

> subset({a, b}, {b, c, a, d});

 should return true. Be sure to give your definition a good test.

 2. Construct a recursive definition for the “power” function, where power(S)
returns the power set of the finite set S (the set of all subsets of S). For
example,

> power({a, b});

 should return the set consisting of all four subsets of {a, b}. Be sure to
give your definition a good test. Hint: Notice that the map and map2
functions can be used to add an element to each set in a collection of sets.
For example, either of the commands

> map2(`union`,{a} , {{ }, {b}, {c}, {b, c}});
 or

> map(`union`, {{ }, {b}, {c}, {b, c}}, {a});

 will return the set {{a}, {a, b}, {a, c}, {a, b, c}}.

 3. (Efficiency considerations). Try out the following tests to verify that ac-
tual parameters are passed by value (i. e., evaluated before being
passed).

 > g:= x -> [power(x), power(x)];
 > h := x -> [x, x];
 > j := x -> h(power(x));
 > A := {$1..10};
 > time(h(power(A)));
 > time(j(A));
 > time(g(A));

 Why do these tests indicate that parameters are passed by value?

39

4
Binary Relations

In this chapter we’ll use Maple to explore some of the basic ideas about binary
relations presented in Chapter Four of the textbook. We’ll do experiments
with composition, closure, and order.

4.1 Composing Two Binary Relations
In this experiment we’ll see how to construct the composition of two binary re-
lations. If we are given two binary relations R and S, the composition R ° S is
defined as follows.

R° S = { [a, c] | there is a value b such that [a, b] ∈ R and [b, c] ∈ S}.

We’ll let “compose” be the function that returns the composition of two finite
binary relations. So compose(R, S) returns the composition R° S.
 Here’s a way to construct compose(R, S). If R ≠ { }, then we can take the
first pair of R, say [a, b], and look through S for those pairs whose first com-
ponent is b. Whenever a pair [b, c] occurs in S, we put the pair [a, c] in our
composition set. Once this has been done, we can apply the same procedure to
the tail of R and union the two sets to get the desired composition. We’ll let
the function getPairs do the job of composing a singleton pair from R with S.
In other words, getPairs has the definition

getPairs([a, b], S) = {[a, c] | There is a pair [b, c] ∈ S}.

Assuming that we have written a Maple definition for getPairs, we can write
the Maple definition for compose as follows.

40 Maple Experiments

 > compose := (R, S) -> if R = { } then { }
 else getPairs(hd(R), S) union compose(tl(R), S) fi;

Experiments to Perform

 1. Write a Maple definition for the function getPairs. For example, the Ma-
ple command

> getPairs([a, b], {[b, c], [c, d], [b, d]});

 should return the set {[a, c], [a, d]}. Be sure to test getPairs on several ex-
amples.

 2. Now test the compose function on several pairs of binary relations. For
example, define the following relations.

 > less := {[1, 2], [1, 3], [1, 4], [2, 3], [2, 4], [3, 4]};

 > greater := {[4, 3], [4, 2], [4, 1], [3, 2], [3, 1], [2, 1]};

 > equal := {[1, 1], [2, 2], [3, 3], [4, 4]};

 Perform tests to compute the following nine compositions.

 less ° less less ° equal less ° greater

 equal ° less equal ° equal equal ° greater

 greater ° less greater ° equal greater ° greater

4.2 Constructing Closures of Binary Relations
In this experiment we’ll be concerned with techniques to construct the three
famous closures of a binary relation: reflexive, symmetric, and transitive.
We’ll start with the reflexive closure of a binary relation R over the set A,
which is defined as the following set.

R ∪ {[a, a] | a ∈ A}.

To compute this set we need to construct the equality relation for a set A,
which we’ll denote by eq(A). A definition for eq can be given as follows.

 > eq := A -> if A = { } then { } else {[hd(A), hd(A)]} union eq(tl(A)) fi;

For example, try out the following test.

 Binary Relations 41

 > B := {a, b, c};
 > eq(B);

With the means to find the equality relation for a set, it’s an easy matter to
find the reflexive closure of a binary relation R over a set A, which we’ll denote
by rc(R, A). A definition for rc can be written as follows.

 > rc := (R, A) -> R union eq(A);

For example, we’ll compute the reflexive closure of a binary relation.

 > R := {[a, b], [b, c], [c, a]};
 > C := rc(R, {a, b, c});

Now let’s consider the symmetric closure of a binary relation R, which is de-
fined as the following set.

R ∪ {[a, b] | [b, a] ∈ R}.

To compute this set we’ll need to compute the converse of a binary relation R,
which we’ll denote by converse(R). A definition for converse can be written as
follows.

 > converse := R -> if R = { } then { }
 else
 {[hd(R)[2], hd(R)[1]]} union converse(tl(R)) fi;

With the means to find the converse of a relation, it’s an easy matter to find
the symmetric closure of a binary relation R, which we’ll denote by sc(R, A). A
definition for sc can be written as follows.

 > sc := R -> R union converse(R);

Experiments to Perform

 1. Test this definition of symmetric closure on the binary relation

R = {[a, b], [b, c], [c, a]}.

 Test sc on two other binary relations of your choice.

 2. Let comp(R, n) denote the composition of the binary relation R with itself
n times. For example, comp(R, 2) = R° R and comp(R, 3) = R° R° R. The

42 Maple Experiments

transitive closure of R over an n-element set, which we denote as tc(R, n)
is defined as the following union.

 tc(R) = R ∪ R2 ∪ ... ∪ Rn

 = comp(R, 1) ∪ comp(R, 2) ∪ ... ∪ comp(R, n).

 So the tc function can be defined in terms of the comp function. This al-
lows us to make the following definition for tc.

> tc := (R, n) -> if n = 0 then { } else comp(R, n) union tc(R, n – 1) fi;

a. Use “compose” from Section 4.1 to define the comp function. Use the
following relation for one of the tests. L = {[0, 1], [1, 2], [2, 3], [3, 4]}.

b. Test tc on at least two binary relations.Use the following relation for
one of the tests. L = {[0, 1], [1, 2], [2, 3], [3, 4]}.

 3. We know that the smallest equivalence relation containing a binary rela-
tion R is tsr(R). For each of the following relations R use Maple to find
the smallest equivalence relation containing R. Also test the relation
rst(R) to show that the order of application can not be changed.

 a. R = { } over the set A = {a, b, c}.

 b. R = {[a, b]} over the set A = {a, b, c}.

 c. R = {[a, b], [a, c]} over the set A = {a, b, c}.

 d. R = {[1, 2], [1, 3], [4, 5], [6, 3]} over the set A = {1, 2, 3, 4, 5, 6}.

4.3 Testing for Closures
This experiment considers the problem of testing whether a binary relation is
reflexive, symmetric, or transitive. We’ll start by considering ways to test for
the reflexive property of a binary relation. Let isReflexive(R, A) test whether
the binary relation R over A is reflexive. Here is a definition for the function.

 > isReflexive := (R, A) -> if A = { } then true
 elif member([hd(A), hd(A)], R) then
 isReflexive(R, tl(A))
 else false fi;

This definition just checks to see whether the equality relation for A is a sub-
set of R. If we have access to the functions eq and subset from prior experi-

 Binary Relations 43

ments, then we can define isReflexive as follows.

> isReflexive := (R, A) -> subset(eq(A), R);

Alternatively, we could use the the fact that a binary relation is reflexive if
and only if it equals its reflexive closure. If we have access to the function rc to
compute the reflexive closure from the previous experiment, then we can de-
fine isReflexive as follows.

> isReflexive := (R, A) -> evalb(R = rc(R, A));

Experiments to Perform

 1. Do the following test for each of the three definitions of isReflexive.

 > A := {a, b, c};
 > R := {[a, a], [a, b], [b, b], [b, c], [c, c]};
 > isReflexive(R, A);

 Test the three definitions of isReflexive on a binary relation that is not
reflexive.

 2. Construct a function isSymmetric to test whether a binary relation is
symmetric. Test your function on two relations that are symmetric and
two relations that are not symmetric.

 3. Construct a function isTransitive to test whether a binary relation is
transitive. Test your function on two relations that are transitive and
two relations that are not transitive.

4.4 Warshall/Floyd Algorithms
In this experiment we’ll look at some algorithms to answer questions about
binary relations when we think of them in the form of directed graphs. In the
process we’ll see another way to compute the transitive closure of a binary re-
lation.
 We’ll construct algorithms that for any pair of vertices i and j in a di-
rected graph will answer the following questions.

Is there a path from i to j?
What is the length of the shortest path from i to j?
What is the shortest path from i to j?

44 Maple Experiments

A directed graph with n vertices will be represented as an n by n adjacency
matrix over the set of indices {1, 2, ..., n}. To get used to working with matrices
in Maple try out the following commands.

 > [[0, 0, 1], [1, 1, 0], [0, 0, 1]];
 > a := matrix(%);
 > evalm(a);
 > a[3, 2];
 > b := matrix(2, 2);
 > evalm(b);
 > b[1, 2] := 3;
 > evalm(b);
 > for i from 1 to 2 do b[i, i] := 0 od;
 > evalm(b);

It makes sense to place data like matrices in a file instead of typing them out
during a session. For example, create a file named matrixInput with the fol-
lowing data.

[[0, 0, 1], [1, 1, 0], [0, 0, 1]];

Then the first line of the preceding Maple commands can be replaced by the
following command.

 > read matrixInput;

Now the other commands can be performed as before. For example, try out the
following commands again.

 > a := matrix(%);
 > evalm(a);
 > a[3, 2];

We can answer the question, “Is there a path from i to j?” if we have access to
the transitive closure of the binary relation representing the directed graph.
Warshall’s algorithm computes the transitive closure of a binary relation rep-
resented as an adjacency matrix. Here is a Maple version of the algorithm
with some preceding comments.

 # Warshall's algorithm
 # The algorithm computes the transitive closure of a binary
 # relation (digraph) represented as an n by n adjacency.
 # If M is an n by n adjacency matrix, then the command
 # > war(M, n);
 # will output the adjacency matrix of the transitive closure.

 Binary Relations 45

 war := proc(M, n)
 local A;
 A := matrix(n, n);
 for i from 1 to n do
 for j from 1 to n do
 A[i, j] := M[i, j]
 od od;
 for k from 1 to n do
 for i from 1 to n do
 for j from 1 to n do
 if A[i, k] = 1 and A[k, j] = 1 then A[i, j] := 1 fi
 od od od;
 print(evalm(A))
 end;

Experiments to Perform

 1. Put the Maple program for Warshall’s algorithm in a file. Then put the
adjacency matrix for the following graph in another file.

1 2 3 4 5

 Test Warshall’s algorithm on the adjacency matrix for the graph.

 2. Write an algorithm to implement Floyd’s algorithm for finding the
lengths of shortest paths. Test your algorithm on the following graph.

 Note: You can use the word infinity to denote infinite entries in the modi-
fied adjacency matrix for the graph.

 3. Write an algorithm to implement the modified version of Floyd’s algo-
rithm that also outputs a path matrix for finding the shortest path. Test
your algorithm on the following graph.

46 Maple Experiments

 4. How many distinct path matrices can describe the shortest paths in the
following graph? Assume that all edges have weight = 1.

1 2 3 4 5

 Which path matrix is returned by Floyd’s modified algorithm?

 5. Write a function that takes two vertices i and j as input along with the
two matricies output by Floyd’s modified algorithm and returns a short-
est path from i to j, if one exists. You may return the path either as a list
edges to be traveled on a path from i to j or as a list of vertices along the
path from i to j. Test your function on the three graphs from the preceding
experiments.

4.5 Orderings
To have an ordering, we need a set of elements together with a binary relation
that is antisymmetric and transitive. In this experiment we’ll look at the
lexicographic ordering and the standard ordering of strings. Recall that the
lexicographic ordering of a set of strings over an alphabet is like the usual dic-
tionary ordering that we are used to. In Maple the “lexorder” function will de-
cide whether two strings are lexicograpically ordered. For example, try out the
following commands.

> lexorder(a, b);
> lexorder(``, a);
> lexorder(ab, baa);
> lexorder(ab, ``);

Experiments to Perform

 1. Check to see whether lexorder is a reflexive ordering of strings.

 2. Use Maple’s sort operation to verify the following lexicographic ordering

Λ < a < aa < aaa < aba < abb < ba < bbaa < bca.

 Also verify that the lexicographic ordering is not well-founded. That is,
there are infinite descending chains. For example,

b > ab > aab > aaab > ...

 3. The standard ordering of strings is a well-founded alternative to lexico-
graphic ordering. In this ordering, strings of the same length are ordered

 Binary Relations 47

lexicographically, while strings of different length are ordered by length.

a. Define the operation “std” to decide whether two strings are in stan-
dard order.

b. Test std on strings over {a, b, c}. For example, use Maple’s sort with
std to verify the standard ordering of the strings in the list

[ba, Λ, a, aba, aa, aaa, abb, bbaa, bca].

 4. The lexicographic ordering of ℕ × ℕ is defined by (x1, x2) < (y1, y2) if either

x1 < y1 or x1 = y1 and x2 < y2.

a. Define the operation “lex” to decide whether pairs of natural numbers
are lexicographically ordered. For example, lex([1, 2], [2, 0]) is true.

b. Test lex on several pairs of natural numbers. Then use it with the sort
operation to sort the list

[[4,0], [0, 2], [1, 1], [0, 1], [1, 0]].

48

5
Analysis Techniques

In this chapter we’ll use Maple to explore some of the basic ideas from Chap-
ter Five of the textbook. We’ll do experiments with finite sums, counting,
probability, solving recurrences, and orders of growth.

5.1 Finite Sums
This experiment looks at various ways that Maple can be used to evaluate
finite sums and to find closed forms for finite sums in some cases. Try out the
following tests to see how Maple calculates sums.

 > sum(i, i=1..20);
 > sum(i, i=1..n);
 > sum(i*i, i=1..n);
 > sum(i*i*i, i=1..n);
 > sum(i*i*i*i, i=1..n);
 > sum(i*(a**i), i=1..n);
 > sum('a[k]*x^k','k'=0..n);

When dealing with expressions that involve summations it can often be quite
useful to change the limits of summation. For example,

!

(i "1)
i=2

n+1

= i

i=1

n

.

We can use Maple to verify that changes we make in limits of summation are
correct. For example, try out the following Maple commands.

 Analysis Techniques 49

 > a := sum(i-1, i = 2..n+1);
 > b := sum(i, i = 1..n);
 > evalb(a = b);
 > evalb(simplify(a) = simplify(b));
 > simplify(a);
 > simplify(b);

Experiments to Perform

 1. Some of the tests gave closed formulas as answers. Check whether these
answers agree with known results for the sums.

 2. Use Maple’s help system to find out more about sum.

 3. Given the following alogrithm to analyze.

 for i := 1 to n do
 for j := i downto 1 do x := x + ƒ(x) od;
 x := x + g(x)
 od

 For each of the following cases, find a closed form in terms of n for the
number of times that the indicated statement is executed. Use Maple’s
sum command if necessary.

a. Find the number of times the assignment statement (:=) is executed
during the running of the program. Notice that an assignment state-
ment is found at four places in the program.

b. Find the number of times the addition operation (+) is executed dur-
ing the running of the program.

 4. For each of the following cases, find an expression for each question mark
so that the two summations are equal. Use Maple to verify the correct-
ness of your results.

a.

!

(i + 2)
i=2

n

" = (i #1)
i=?

?

" . b.

!

a
n+2x

n

n=0

5

" = a
n
x
?

n=?

?

" .

c.

!

(n + 3)x
n

n=0

k

" = nx
?

n=?

?

" .

50 Maple Experiments

5.2 Permutations
In this experiment we’ll use Maple to explore counting with permutations. Try
out the following commands to see how maple deals with permutations.

 > with(combinat);
 > permute({a, b, c});
 > permute({a, b, a});
 > permute([r, a, d, a, r]);
 > permute(4, 2);
 > numbperm(4, 2);

Experiments to Perform

 1. Maple has many combinatorial functions. Explore the package with the
following help command.

 > ?combinat

 Use the help system to find out about three different functions that deal
with permutations. Perform some tests.

 2. Notice from the examples that when the permute operation is applied to
a list of elements it returns bag permutations. For each of the following
lists apply the permute operation. Then verify in each case that the
number of permutations listed can be computed by the formula for bag
permutations.

 a. [b, l, o, b].

 b. [t, o, o, t].

 c. [r, a, d, a, r].

 d. [b, a, n, a, n, a].

 3. Suppose we want to build a code to represent each of 29 distinct objects
with a binary string having the same minimal length n, where each
string has the same number of 0’s and 1’s. Somehow we need to solve an
inequality like

!

n!

k!k!
" 29 ,

 where k = n/2. We find by trial and error that n = 8. Try it.

 Analysis Techniques 51

5.3 Combinations
In this experiment we’ll examine some elementary principles of counting com-
binations. For example, try out the following commands to see how Maple
deals with combinations.

 > with(combinat);
 > binomial(10, 4);
 > choose({a, b, c});
 > choose({a, b, a});
 > choose(4, 2);
 > numbcomb(4, 2);
 > binomial(4, 2);
 > sum(binomial(5, i), i = 0..5);

Experiments to Perform

 1. Maple has many combinatorial functions. Explore the package with the
following help command.

 > ?combinat

 Use the help system to find out about three different functions that deal
with combinations. Perform some tests.

 2. How do we really know that the element in the nth row and kth column of
Pascal’s triangle is

n

k()? It depends on the following useful result about
binomial coefficients.

!

n

k

"

$
%

&
' =

n (1

k

"

$

%

&
' +

n (1

k (1

"

$

%

&
' .

 Use Maple to test this equation for several values of n.

 3. Can you find some other interesting patterns in Pascal’s triangle? There
are lots of them. For example, look down the column labeled 2 and notice
that, for each n ≥ 2, the element in position (n, 2) is the value of the arith-
metic sum 1 + 2 + ... + (n – 1). In other words, we have the formula

!

n

2

"

$
%

&
' =

n(n (1)

2
.

 Use Maple to test this equation for several values of n.

52 Maple Experiments

 4. In how many ways can four coins be selected from a collection of pennies,
nickels, and dimes? Let S = {penny, nickel, dime}. Then we need the num-
ber of four-element bags chosen from S. The answer is

!

3+ 4 "1

4

$
%

&

'
(=

6

4

$
%
&

'
(=15.

 Can you figure out a way to have Maple compute and output a listing of
the bags.

 5. Design a Maple function that can be used to test the following equation
for several values of n.

!

(1)(1)(3)L(2n " 3)

n!
2
n

=
2

n

2n " 2

n "1

$
%

&

'
(.

 6. Design a Maple function that can be used to test the following equation
on several values of n.

!

n

0

"

$
%

&
' +

n

1

"

$
%

&
' + ...+

n

n (1

"

$

%

&
' +

n

n

"

$
%

&
' = 2

n
.

5.4 Error Detection and Correction
A binary block code is a set of binary strings that have the same length. Each
string is called a code word. The distance between two code words is the num-
ber of digits where the two code words differ. For example, the distance be-
tween 1011 and 1010 is 1 and the distance between 00110 and 10111 is 2.
 We can write a Maple function to detect the distance between two code
words of the same length as follows, where F and T are functions to return the
first character (the head) and the tail of a string, respectively.

dis := (x, y) -> if type(x, string) and type(y, string) then
 if x = "" then 0
 elif F(x) = F(y) then dis(T(x), T(y))
 else 1 + dis(T(x), T(y))
 fi
 else dis(convert(x, string), convert(y, string)) fi;

For example, the command

> dis(1001,1111);

 Analysis Techniques 53

returns the value 2. If there are leading 0’s in a binary string we need to place
double quotes around the string to capture each bit. For example, the com-
mand

> dis("0000",1011);

returns the value 3 and the command

> dis("0111", 1000);

returns the value 4

Error Detection
Whenever the distance between any two code words is at least 2, the code is a
single error-detection code because any word with a single error will not be
equal to any of the given code words. For example, suppose our code consists of
the following four words.

000, 110, 101, 011.

The distance between any two of these words is 2. If one of the words is
transmitted and a single error occurs, then the received word must be one of
the following strings

100, 010, 001, 111.

This set of words is disjoint from the given set of code words.
 One way to construct an error detection scheme is to take any set of code
words and add a single “parity” bit to each word, where the bit is 1 if the
number of 1’s in the word is odd and 0 otherwise. So the number of 1’s in any
code word (including the parity bit) is always even. Thus the distance between
any two code words is an even number. For example, suppose we start with
the following code of eight words.

000, 001, 010, 011, 100, 101, 110, 111.

Notice that some pairs are distance 1 apart. We’ll add a parity bit on the
right of each word to obtain the following code.

0000, 0011, 0101, 0110, 1001, 1010, 1100, 1111.

Notice that each word in this set has an even number of 1’s. So if a single error
occurs, then there will be an odd number of 1’s in the received word.

54 Maple Experiments

 If we represent a code word as a list of binary digits, then it is easy to
check for single errors. For example, the sum of the digits taken modulo 2 will
give us the parity of the word. Try out the following Maple commands.

 > x := [0, 1, 1, 0, 1];
 > sum(x[i], i = 1..5) mod 2;

Error Correction
A single error can be detected and corrected if the distance between any two
code words is at least 3. This follows because if a code word x is transmitted
and the result y contains a single error, then the distance between x and y is 1
while the distance between y and any other code word is at least 2. This is an
example of the following more general result about error correction.

Whenever a code has the property that the distance between any two
code words is at least 2k + 1, then the code is a k-error-correcting code.

One method to create a single error-correction code is to use parity bits. For
example, suppose we start with the following code of eight words.

000, 001, 010, 011, 100, 101, 110, 111.

Notice that some pairs are distance 1 apart. We’ll add three parity bits on the
right of each word as follows: If C1C2C3 is a three bit string, then construct the
six bit string C1C2C3P1P2P3, where

P1 = (C1 + C2) mod 2
P2 = (C1 + C3) mod 2
P3 = (C2 + C3) mod 2

The eight code words with three parity bits added are listed as follows.

000000, 001011, 010101, 011110, 100110, 101101, 110011, 111000.

Notice, with some work, that the distance between any two of these six bit
words is at least 3.
 With this method (due to Hamming), we can detect and correct a single
error by recomputing the three parity bits when the word is received. If an er-
ror occurred in some parity bit Pi, then that is the only change. If an error oc-
curred in one of the bits Ci, then exactly two of the parity bits are wrong.
 For example, let x = 000000 and suppose that x is transmitted and the
code word received is y = 000100. Recomputing the parity bits for y give us the

 Analysis Techniques 55

word 000000. The only difference is in the parity bit, which means that the
error is in the parity bit. So the correct value of y is 000000.
 Now suppose that x is transmitted and the code word received is z =
100000. Recomputing the parity bits for z give us the word 100110, which dif-
fers from z in exactly two parity bits P1 and P2. This tells us that the an error
occurred in one of the bits Ci. But which Ci is in error? Let’s again observe the
calculation P1 and P2.

P1 = (C1 + C2) mod 2
P2 = (C1 + C3) mod 2

Notice that there is a common bit in the calculation of P1 and P2, namely C1.
That is the key to which bit is in error. So the correct value of z is 000000.
 If we represent a code word as a list of binary digits, then it is easy to de-
tect and correct single errors. To get the idea, try out the following Maple
commands.

 > x := [0, 0, 0, 0, 0, 0];

 > y := [1, 0, 0, 0, 0, 0];

 > p[1] := (y[1] + y[2]) mod 2;

 > evalb(p[1] = y[4]);

Experiments to Perform

 1. Write the definitions for the functions F and T. Then try out several tests
of the distance function.

 2. This experiment deals with adding parity bits to code words.

a. Write a Maple function to transform a binary block code by adding a
parity bit to each code word so that the total number of 1's is even.
Represent the input and the output as a list of code words, where each
code word is represented as a list of binary digits. For example, if
addParityBit is the name of the function, then the Maple command

 > addParityBit([[1, 0, 1, 1], [1, 0, 0, 0], [0, 0, 0, 0]]);

 returns the list [[1, 0, 1, 1, 1], [1, 0, 0, 0, 1], [0, 0, 0, 0, 0]].

 Test your function on this example and on the example list of eight 3-
bit code words.

56 Maple Experiments

b. Write a Maple function to take a block code of 3-bit code words and
add three parity bits to each word. For example, if addThreeBits is
the name of the function, then the Maple command

 > addThreeBits([[1, 1, 1], [1, 0, 1]]);

 returns the list [[1, 1, 1, 0, 0, 0], [1, 0, 1, 1, 0, 1]].

 Test your function on this example and on the example set of eight 3-
bit code words.

 3. Write a function to detect single errors in a list of code words that origi-
nally have even parity (i.e., each word has an even number of 1's). The
output should be a sublist consisting of those code words with an odd
number of 1's. For example, if parityErrors is the name of the function,
then the maple command

 > parityErrors ([[1, 0, 1, 1], [1, 0, 1, 0], [0, 0, 1, 0]]);

 returns the list [[1, 0, 1, 1], [0, 0, 1, 0]].

a. Test parityErrors on the example input and on another list of your
choosing the input of eight 4-bit words.

b. We can use a random number generator to simulate the transmission
of a set of code words with the possibility that single errors may occur
in some the of words. (See Maple's help ? rand.) Here is a program,
called errorTest, to do the job, and to detect which words contain er-
rors.

 errorTest := proc(L)
 local X, p, i, s, n;
 print(L);
 X := L;
 p := rand(1..2);
 for i to nops(X) do
 if p() = 1 then # Call p(); if it is 1, introduce random error.
 s := rand(1..nops(X[i]));
 n := s();
 X[i][n] := (X[i][n] + 1) mod 2
 fi
 od;
 print(X);
 parityErrors(X)
 end;

 Analysis Techniques 57

 Perform the following tests of errorTest. First, call errorTest four
times for the input list [[1, 0, 1, 1, 1], [1, 0, 0, 0, 1], [0, 0, 0, 0, 0]]. Sec-
ond, call errorTest four times for the input list of eight 4-bit code
words of even parity.

 4 Write two Maple programs, one to detect single errors and one to correct
single errors, to process lists of 6-bit code words, where the last three
bits are parity bits. For example, if detectErrors is the program to detect
single errors, then the Maple command

 > detectErrors([[0, 0, 0, 0, 0, 0], [1, 1, 1, 0, 1, 0], [1, 0, 0, 1, 0, 1]]);

 returns the list [[1, 1, 1, 0, 1, 0], [1, 0, 0, 1, 0, 1]].

 If we let correctErrors be the program to correct single errors, then the
Maple command

 > correctErrors([[1, 1, 1, 0, 1, 0], [1, 0, 0, 1, 0, 1]]);

 returns the list [[1, 1, 1, 0, 0, 0], [1, 0, 1, 1, 0, 1]].

a. Test detectErrors on the example input and then use the output to
test correctErrors. Do a second test of the two programs on another
list of 6-bit code words,

b. What happens when 2 or more errors occur in some code word?

c. Modify the errorTest program used in (4b) to introduce random single
errors in a list of 6-bit code words, where the last three bits are parity
bits. The program then calls detectErrors and correctErrors. Perform
the following tests of errorTest. First, call errorTest four times for the
input list [[0, 0, 0, 0, 0, 0], [1, 0, 0, 1, 1, 0], [1, 1, 1, 0, 0, 0]]. Second,
call errorTest four times for the input list of all eight 6-bit code words.

5.5 The Birthday Paradox
This experiment is designed to test some results of discrete probability by us-
ing a random number generator. The “birthday paradox” illustrates that some
coincidences are actually probable events. For example, we know that if we
choose 23 numbers (e.g., birthdays) at random out of 365 possible numbers
(e.g., the days of the year), then the probability that two of the chosen num-
bers will be the same is 0.507. For 30 numbers the probability is 0.706, and
for 40 numbers the probability is 0.891. Consider the following Maple pro-
gram to generate a list of random numbers in the interval 1 to 365.

58 Maple Experiments

number := rand(1..365);
birth := N -> [seq(number(), i=1..N)];

For example, try out the following commands to get used to things.

> number();
> number();
> birth(23);

Experiments to Perform

 1. It is hard for our eyes to find duplicates in a list of random numbers. But
it is not hard to write a program that picks out duplicates, if there are
any, from a list of numbers. Let dup(L) return the set of duplicates that
occur in the list L. For example,

dup([2, 4, 5, 9, 3, 4, 6, 3, 4, 2]) = {2, 3, 4}.

 Let trial(N) return the set of duplicates that occur in a list of N random
numbers in the interval 1 to 365. The definition for trial is easy:

trial := dup @ birth.

 Your task is to construct and test the function “dup” so that trial works
as desired.

 2. Test the birthday paradox by doing 10 trials for each of the following val-
ues of N. In each case, observe how close the results of the 10 trials come
to the actual probabilities.

 a. 23 numbers.

 b. 30 numbers.

 c. 40 numbers.

5.6 It Pays to Switch
This experiment is designed to test some results of discrete probability by us-
ing a random number generator. Suppose there is a set of three numbers. One
of the three numbers will be chosen as the winner of a three-number lottery.
We pick one of the three numbers. Later, we are told that one of the two re-
maining numbers is not a winner, and we are given the chance to keep the

 Analysis Techniques 59

number that we picked or to switch and choose the remaining number. What
should we do? We should switch.
 To see this, notice that once we pick a number, the probability that we
did not pick the winner is 2/3. In other words, it is more likely that one of the
other two numbers is a winner. So when we are told that one of the other
numbers is not the winner, it follows that the remaining other number has
probability 2/3 of being the winner. So go ahead and switch.
 To test this theory consider the following Maple program to generate a
list of pairs of random numbers from the set {1, 2, 3}, where we can consider a
pair to contain the winning number and the number picked.

 number := rand(1..3);
 pays := N -> [seq([number(),number()], i=1..N)];

For example, try out the following commands to see a few lists of pairs of ran-
dom numbers from the set {1, 2, 3}.

 > pays(5);
 > pays(10);
 > pays(20);

If we always choose to switch, then we count the number of distinct pairs re-
turned and divide by the total number of pairs to obtain an idea of how we
would fair in such an experiment.

Experiments to Perform

 1. It is hard for our eyes to find pairs that are distinct in a large list of pairs
of random numbers. Suppose that we have a program “distinct” to take
such a list and return the number of pairs that are distinct. For example,

distinct([[1, 3], [1, 1], [3, 2], [1, 2], [2, 2]]) = 3.

 Let trial(N) return the number of distinct pairs out of N pairs of random
numbers from the set {1, 2, 3}. The definition for trial is easy:

trial := distinct @ pays.

 Your task is to construct and test the function “distinct” so that trial
works as desired.

60 Maple Experiments

 2. Test the “pays to switch” game by doing 10 trials for each of the following
values of N. In each case, observe how close the results of the 10 trials
come to the actual probability of 2/3.

 a. 10 numbers.
 b. 20 numbers.
 c. 50 numbers.
 d. 100 numbers.
 e. 1000 numbers.

 3. Another way to see that switching is the best policy is to modify the prob-
lem to a larger set of numbers. For example, suppose we have a set of 50
numbers and a 50-number lottery. If we pick a number, then the prob-
ability that we did not pick a winner is 49/50. Later we are told that 48 of
the remaining numbers are not winners, but we are given the chance to
keep the number we picked or switch and choose the remaining number.
What should we do? We should switch because the chance that the re-
maining number is the winner is 49/50.

 Design and test an experiment for this example in a manner similar to

the given experiment.

5.7 Markov Chains
A Markov chain is a process that changes state over time where each change
of state depends only on the previous state and a given probability distribu-
tion about the chances of changing from any state to any other state. The
main property is that the next state depends only on the current state and the
given probability for changing states.
 For example, suppose we have a 2-state Markov chain with states la-
beled 0 and 1, where the probability of changing states is given on the edges of
the following directed graph.

1 0.8

0.2

0

0.4

0.6

 Analysis Techniques 61

We can represent this graph by a transition matrix P of probabilities. Try out
the following Maple command to construct P.

 > P := matrix([[.8, .2], [.6, .4]]);

To observe the value of P, just type the command

 > evalm(P);

The matrix of probabilities for entering some state after two stages of the
process is given by the product P2 = PP. Try out the following command to
compute this product.

 > evalm(P.P);

The matrix of probabilities for entering a state after three stages of the proc-
ess is given by the command

 > evalm(P.P.P);

 Suppose there is an equal chance of starting the process in either of the
two states 0 and 1. In other words, we’ll assume that the initial probability
vector is X0 = (0.5, 0.5). We can represent this vector in Maple with the follow-
ing command.

 > X0 := vector([0.5, 0.5]);

The probability of entering some state after one stage is given by the vector
X0P, which we can compute with the command

 > evalm(X0.P);

To calculate the probabilities for entering some state after 2, 3, or 4 stages of
the process, we can type the following commands.

 > evalm(X0.P.P);

 > evalm(X0.P.P.P);

 > evalm(X0.P.P.P.P);

Notice that these vectors appear to be converging to a particular vector. Let X
= (u, v) be the unique probability vector such that XP = X. Try the following
command to construct X.

 > X := vector([u, v]);

62 Maple Experiments

To calculate XP type the following command.

 > evalm(X.P);

Now, we’re in position to solve the equation XP = X, where u + v = 1. Type the
following command to solve the resulting set of simultaneous equations for u
and v. Note: We are assuming that % refers to the value of the previous vector
evalm(X.P).

 > solve({%[1] = u, %[2] = v, u +v = 1}, [u, v]);

This is the vector X such that XP = X. The Markov chain theorem tells us that
the previous sequence of vectors converges to X.
 We should note that the value of the initial probability vector X0 does
not change the eventual outcome. For example, try out the following tests with
X0 = (0.3, 0.7) and observe the sequence converges to X.

 > X0 := vector([.3, .7]);

 > evalm(X0.P);

 > evalm(%.P);

 > evalm(%.P);

 > evalm(%.P);

Experiments to Perform

1. Use the sample matrix P to compute the sequence

X0P, X0P
2, X0P

3, X0P
4

 for each case and observe the convergence of the sequence to the vector X.

 a. X0 = (0.02, 0.98).

 b. X0 = (0.98, 0.02).

 2. A company has gathered statistics on three of its products A, B, and C.
(You can think of A, B, and C as three breakfast cereals, or as three
models of automobile, or as any three products that compete with each
other for market share.) The statistics show that customers switch be-
tween products according to the following transition matrix.

 Analysis Techniques 63

!

P =

0 0.5 0.5

0.5 0.2 0.3

0.3 0 0.7

"

$
$

%

&

'
'
.

 a. Use Maple to represent P and calculate P2 to observe that it has no
zero entries.

 b. Since Part (a) shows that a power of P has no zero entries, the Markov
theorem tells us that there is a unique probability vector X such that
XP = X and X has no zero entries. Use Maple to find the unique prob-
ability vector X such that XP = X.

 c. Calculate P4 and P8. Notice that the sequence P, P2, P4, P8 gives good
evidence of the fact that Pn approaches the matrix with X in each row.

 d. Let X0 = (0.1, 0.8, 0.1) be the initial probability vector with respect to
customers buying the products A, B, and C. Compute the sequence

X0P, X0P
2, X0P

4, X0P
8

 and observe that it converges to X. Repeat the computation with the
vector X0 = (0.3, 0.1, 0.6).

5.8 Efficiency and Accumulating Parameters
We can often write an efficient recursive algorithm by explicitly keeping track
of some of the intermediate computations. Variables used to keep track of
such computations are called accumulating parameters.
 As an example, suppose that we want to compute Fibonacci numbers.
Let ƒ(n) return the nth Fibonacci number. We’ll use the definition of the nth
Fibonacci number to give a simple recursive definition for ƒ as follows.

> f := n -> if n = 0 then 0 elif n = 1 then 1else f(n – 1) + f(n – 2) fi;

Notice that for each call to ƒ(n) there are calls to ƒ(n – 1) and ƒ(n – 2). So the
number of calls is exponential. The first experiment should convince us that
we need to look for a more efficient algorithm. The second experiment outlines
an efficient algorithm for Fibonacci numbers that uses accumulating parame-
ters to keep track of the previous two numbers needed to calculate the next
one.

64 Maple Experiments

Experiments to Perform

 1. Test ƒ on a few small values of n until you notice some elapsed time be-
tween the call and the returned value. This will most likely occur some-
where between n = 20 and n = 30. Use Maple’s time function to measure
the computation time of ƒ on several tests. For example, try the following
command.

 > time(f(25));

 Also trace ƒ on a very small value of n, like n = 5 or thereabouts.

 2. We can define a linear function to compute Fibonacci numbers as follows.

 > fib := n -> g(n, 0, 1);
 > g := (n, u, v) -> if n = 0 then u else g(n – 1, v, u + v) fi;

 Test fib on the same values of n that you used to test ƒ. Use Maple’s
time function to measure the computation time for fib on same tests that
you measured for ƒ. Trace fib and g with the computation of fib on the
same small value of n that was used to trace ƒ.

 3. Suppose that we want to reverse a list. Let rev(x) denote the reverse of
the list x. One way to define rev is to recursively put the head of the list
at end of reverse of the tail. Here is a definition, where putLast(a, x) is
the list obtained by putting a at the end of list x.

 rev := x -> if x = [] then x else putLast(hd(x), rev(tl(x))) fi;

 putLast := (a, x) -> if x = [] then [a]
 else cons(hd(x), putLast(a, tl(x))) fi;

 Test rev on several size lists to get a feel for its slowness. For example,
try something like

 > rev([$1..100]);
 or
 > rev([seq(i, i=0..100)]);

 Use Maple’s time function to measure the computation time of rev on
several tests. Trace rev and putLast with the computation of rev on a
small list.

 4. We can define a linear function to compute the reverse of a list by accu-
mulating the answer as we perform the computation. Complete the fol-
lowing definition of to reverse a list.

 > rev := x -> h(x, []);
 > h := (x, y) -> if x = [] then y else h(.........,) fi;

 Analysis Techniques 65

 Test your new definition of rev on the same lists that you used to test the
previous version. Use Maple’s time function to measure the computation
time for rev on same tests that you used for the previous version. Trace
rev and h with the computation of rev on the same small list that was
used to trace the previous rev and putLast.

5.9 Solving Recurrences
Maple can help us find closed form solutions for some recurrences. To intro-
duce the ideas we’ll start out with a simple recurrence like the following.

 x0 = 1
 xn = 2xn–1 + 3n.

Try to solve this recurrence by hand to find a closed form solution. Then check
your answer with Maple by typing the following expression:

> rsolve({x(0) = 1, x(n) = 2*x(n-1) + 3*n}, x);

To assign x(n) the value of the expression returned by Maple, we type the fol-
lowing command:

> x := unapply(%, n);

Now we can compute some values of x. For example, try out the following
commands.

 > x(0);
 > x(1);
 > x(2);

Some recurrences have solutions that are complicated expressions. Maple of-
ten needs help in evaluating such expressions. The following commands can
be useful in such cases.

simplify, expand, numer, and denom.

For example, let’s consider the Fibonacci numbers. The nth Fibonacci number
Fn is given by the following definition.

 F0 = 0
 F1 = 1
 Fn = Fn – 1 + Fn – 2

66 Maple Experiments

We can solve this recurrence with the following Maple command.

> rsolve({F(0) = 0, F(1) = 1, F(n) = F(n – 1) + F(n – 2)}, F);

The resulting expression is quite complicated. We can try to simplify it with
the command

> simplify(%);

Now let’s try to find some values of F. To assign F(n) the value of the expres-
sion returned by Maple, we type the following command.

> F := unapply(%, n);

Now we can compute some values of F. For example, try out the following
commands.

 > F(0);
 > F(1);

The expression for F(1) is not satisfactory. We can try to simplify it with the
command

> simplify(%);

Let’s try the following command to expand the denominator of this expression:

> numer(%)/expand(denom(%));

If we find that a particular combination of commands works well and we wish
to use them over and over, then it makes sense to construct a function to do
the job. For example, if we want to use the preceding command more than
once, we could define a function like the following.

> mySimp := x -> numer(x)/expand(denom(x));

Then we could simply give the following command each time we wanted to ex-
pand the denominator of an expression.

> mySimp(%);

 Analysis Techniques 67

Experiments to Perform

 1. For each of the following recurrences, do two things:

 (1) Define a recursive Maple function for the recurrence and compute a
few of its values.

 (2) Try to use Maple to find a closed form solution for the recurrence. If
Maple can’t solve a recurrence, it will return the given recurrence. For each
recurrence that Maple solves, be sure to test Maple’s solution for the
same values that you computed by using the recursive definition. Use the
simplifying commands as necessary.

a. (Towers of Hanoi) Let hn denote the smallest number of disc moves

needed to move a pyramid of n discs from one pole to another pole
with the restriction that there are three poles and no disc can ever be
above a disc of smaller diameter.

 h0 = 0
 hn = 2hn – 1 + 1

b. (Derangements of a string) Let dn denote the number of arrangements

of a string of n elements such that all n elements move from their
original positions. Then dn is defined by the recurrence

 d1 = 0

 d2 = 1
 dn = (n – 1)(dn – 1 + dn – 2)

c. The number of calls Cn on F to compute the nth Fibonacci number
Fn—using the recurrence definition—is described by the recurrence

 C0 = 1
 C1 = 1
 Cn = 1 + Cn – 1 + Cn – 2

d. (Lucas numbers) The recurrence to define the nth Lucas number Ln is
given by

 L0 = 2

 L1 = 1
 Ln = Ln – 1 + Ln – 2

68 Maple Experiments

5.10 Generating Functions
Some recurrences can’t be solved by cancellation and some can’t even be
solved by the Maple rsolve operation. A powerful technique that uses generat-
ing functions can often be used to solve these recurrences. The technique is
presented in Section 5.5.3 of the textbook.
 Recall that the generating function for the sequence

a0, a1, ... , an, ...

 is given by the the following infinite polynomial.

 A(x) = a0 + a1x + a2x
2 + ... + anxn + ...

 =

!

a
n
x
n

n=0

"

.

For example, the generating function for the sequence 1, 1, ..., 1, ... is

!

x
n

n=0

"

.

The closed form for this generating function is given by the following formula.

!

1

1" x
= x

n

n=0

#

$.

Recall that we can use such a formula to solve recurrences. For example, sup-
pose we have a recurrence that defines the sequence a0, a1, ... , an, ..., and we
calculate, using the method of generating functions, that

!

A(x) =
1

1" 3x
.

Then we can rewrite it as follows:

!

A(x) =
1

1" 2x
=

1

1" (2x)
= (2x)

n

n=0

#

$ = 2
n
x
n

n=0

#

$.

Since
A(x) =

!

a
n
x
n

n=0

"
,

we can equate coefficients to obtain the solution an = 3n. In other words, the

solution sequence is 1, 3, 9, ..., 3n,

 Analysis Techniques 69

 The textbook introduces the method of solving recurrences by generating
functions as a three step process. In Step 1 the given recurrence is used to con-
struct an equation with A(x) as the unknown. Step 2 solves the equation for
A(x) and, often with the help of partial fractions, writes A(x) as a sum of
known generating functions. Step 3 equates coefficients to find the result.
 Maple can be used in Step 2 to solve for A(x) and to transform the result-
ing expression into partial fractions. First replace A(x) by a new variable y.
Then convert the equation to the form

expression = 0.

Then the equation can be solved with the Maple command

> solve(expression, y);

The result can be converted into partial fractions by the Maple command

> convert(%, parfrac, x);

 For example, we’ll solve the equation

A(x) – x = 5 x A(x) – 6 x2A(x).

Replace A(x) by y and transform the equation into the form “expression = 0” to
obtain the equation

x – y + 5xy – 6x2y = 0

Now we solve for y by giving Maple the following command.

> solve(x - y + 5*x*y-6*y*x^2, y);

The result is the expression

!

x

1" 5x + 6x
2

We can use Maple to convert this expression to partial fractions with the fol-
lowing command.

> convert(%, parfrac, x);

70 Maple Experiments

The result is the expression

!

1

2x "1
"

1

3x "1
.

Experiments to Perform

 1. Use generating functions and Maple to solve each of the following recur-
rences.

 a. a0 = 0,
 a1 = 4,
 an = 2an – 1 + 3an – 2 (n ≥ 2).

 b. a0 = 0,
 a1 = 1,
 an = 7an – 1 – 12an – 2 (n ≥ 2).

 c. a0 = 0,
 a1 = 1,
 a2 = 1,
 an = 2an – 1 + an – 2 – 2an – 3 (n ≥ 3).

5.11 The Factorial and GAMMA Functions
Maple has a factorial function to compute n!. But we can also define our own
factorial function. For example, suppose we define the factorial function recur-
sively as follows:

 ƒ(0) = 1
 ƒ(n) = n*ƒ(n – 1).

Of course we can translate this definition directly into Maple. But we can also
solve the recurrence with Maple as follows.

> rsolve({ƒ(0) = 1, ƒ(n) = n*ƒ(n – 1)}, ƒ);

Notice that the answer is GAMMA(n + 1). Try out GAMMA on some samples
as follows:

 Analysis Techniques 71

 > g := GAMMA;
 > g(1);
 > g(2);
 > g(3);
 > g(4);
 > g(20);

Notice what happens when you test GAMMA with the argument 0:

> g(0);

Experiments to Perform

 1. What relationship do you see between Maple’s “factorial” and GAMMA
functions?

 2. Test the GAMMA function on several arguments that are not integers.
For example, explore the results for several arguments between 4 and 5.
Also, try out arguments in decimal form and in fractional form. For ex-
ample, GAMMA(0.5) and GAMMA(1/2).

 3. Test the GAMMA function on several arguments between 0 and 1. Be
sure to explore the results as arguments get closer and closer to 0.

 4. Use plot to help with your analysis. For example, try out the following
examples.

 > plot(n!, n=0..5);
 > plot(GAMMA(x), x=0..5);
 > plot(GAMMA(x + 1), x=0..5);

 5. Make some observations about the GAMMA function, based on your
tests.

 6. The following recurrence can’t be solved with the rsolve command. Try it.

 d1 = 0
 d2 = 1
 dn = (n – 1)(dn – 1 + dn – 2)

 An alternative recurrence to define dn is given as follows.

 dn = 1

 dn = ndn – 1 + (–1)n

72 Maple Experiments

a. Write recursive functions for these two definitions and verify that the
two define the same function by testing over several ranges of natural
numbers.

b. Use rsolve on the second definition. Note that the result uses the
GAMMA function. Test the solution on several numbers to see that it
agrees with the the two functions of part (a). Note: You may need to
use Maple’s simplify operation to obtain an integer value for each ex-
pression.

5.12 Orders of Growth
In this experiment we’ll use Maple to compare the growth rates of functions by
examining their asymptotic behavior. Suppose that ƒ and g are two functions
for which we have the following limit.

!

lim
n " #

ƒ(n)

g(n)
= c .

We have the following results:
 If c = 0, then ƒ has lower order than g. We represent this fact with the fol-
lowing little oh notation.

ƒ(n) = o(g(n)).

 If c = ∞, then ƒ has higher order than g. We represent this fact with the
following little oh notation.

g(n) = o(ƒ(n)).

 If c ≠ 0 and c ≠ ∞, then ƒ has the same order as g. We represent this fact
with the following big theta notation

ƒ(n) = Θ(g(n)).

We can use Maple to compute limits. So it follows that we can compare the
rates of growth of functions with Maple. Try out the following examples to get
used to the idea of taking limits.

 > limit((n**2 + 3*n)/ 4578*n, n = infinity);

 > limit(log[2](n)/n, n = infinity);

 Analysis Techniques 73

Experiments to Perform

 1. Let ƒ(n) g(n) mean that ƒ has lower order than g. Use Maple to verify
the following ordering.

log2 n n n log2 n n2 2n.

 2. Use Maple to verify the following statements, where k > 0 is any positive
constant.

a. log2 (log2 (n)) = o(log2 n).

b. n(n+ 1)/2 = Θ(n2).

c. log2 (kn) = Θ(log2 n), where k > 0 is any positive constant.

d. log2 (k + n) = Θ(log2 n), where k > 0 is any positive constant.

 3. Construct a Maple function “lower” that decides whether a function ƒ has
lower order than a function g. In other words, lower(ƒ(n), g(n)) should re-
turn true if ƒ(n) = o(g(n)). For example, the command

> lower(log[2](n), n);

 should return true because log[2](n) = o(n). Test your definition of lower
on the following pairs of functions by applying it first to the given pair
and then to the reverse of the pair.

a. log2 (log2 (n)) and log2 n.

b. n(n+ 1)/2 and n2.

c. log2 (n) and log2 n
45.

d. 2n and n39.

 4. Use the help system to review Maple’s sort function. Then use Maple’s
“sort” function together with the “lower” relation defined in (3) to sort the
following lists of functions. Notice that some lists have more than one
function of the same order.

 a. [n2, 2n, log2 n, 25, 9n, 1, 8n2].

 b. [2n, n, nlog2 n, n2, 1].

74 Maple Experiments

 5. We want to use Maple to verify the following hierarchy of functions,
where ƒ(n) g(n) means that ƒ has lower order than g.

!

1p log2 n p n p n log2 n p n
2

p n
3
p n

50
p 2n p 3n p 50n p n!p n

n .

 We might start by using Maple’s sort function together with “lower” from
(3). However, the result in general is not definitive because the sort func-
tion does not tell us specifically that each member of the sorted list has
lower order than its successor in the sorted list. We don’t want to spend
the time writing down all the limit commands necessary to verify the or-
dering. Instead, construct a function “limits” that takes as input a non-
empty list of functions and outputs the list of limits of quotients of suc-
cessive pairs of functions in the list. So if there are k functions in the in-
put list, then the output will be a list of k – 1 limits of quotients. Test
your definition on each of the following lists of functions.

 a. [n2, 2n, log2 n, 25, 9n, 1, 8n2].

 b. [2n, n, nlog2 n, n2, 1].

 c. The list of functions in the given hierarchy.

75

Answers to Selected
Experiments

Chapter 1
1.2 Set Operations
1. Maple's sets reflect the fact that sets don't have repeated elements.
3. For example,
 subset := (A, B) -> evalb(A intersect B = A);

1.3 List Operations
heads := (x, y) -> [hd(x), hd(y)];
tails := (x, y) -> [tl(x), tl(y)];
examine := x -> [hd(x), tl(x)];
add2 := (a, b, x) -> cons(a, cons(b, x));

1.4 String Operations
1. head := x -> substring(x, 1..1);
2. tail := x -> substring(x, 2..length(x));
3. last := x -> substring(x, length(x));
4. pal := x -> evalb(head(x) = last(x));

1.6 Spanning Trees
1. The graph H has a minimal spanning tree of weight 20.
2. The petersen graph contains 10 vertices, each of degree three, and 15
edges. It forms a pentagon containing a five point star where each vertex of the
star is connected to the “opposite” two vertices of the star and one vertex of
the pentagon.

76 Answers to Selected Experiments

Chapter 2

2.1 Sequences
2. g := n -> [seq([n-k, n-k], k=0..n)];
3. h := n -> [seq([n-k, k], k=0..n)];
4. s := n -> [seq({$0..k}, k=0..n)];

2.2 The Map Function
1. The image f(A) is just map(f, A).
2a. h := x -> map(hd, x);
2b. t := x -> map(tl, x);
3. dist := (x, L) -> map2(f, x, L);
 f := (x, y) -> [x, y];

2.5 Evaluating Expressions
1b. map(minDepth, {$1..16});
1c. map(minDepth, [$1..16]);
2b. The definition
 minDepth := floor@evalf@log[2]
yields an incorrect result when applied to 16, due to rounding.
2c. minDepth := floor@simplify@log[2]

2.7 Type Checking
3. ceil2 := x -> if type(x, integer) then x
 elif x < 0 then trunc(x) else trunc(x + 1) fi;
4. floor2 := x -> if type(x, integer) then x
 elif x < 0 then trunc(x – 1) else trunc(x) fi;
5. a. cons := (x, y) -> if type(y, list) then [x, op(y)]
 else error “second argument is not a list” fi;

Chapter 3

3.1 Examples of Recursively Defined Functions
3. last := x -> if tl(x) = [] then hd(x) else last(tl(x)) fi;
5. first := x -> if tl(x) = [] then [] else cons(hd(x), first(tl(x))) fi;
6. pairs := (x, y) -> if x = [] or y = [] then []

else cons([hd(x), hd(y)], pairs(tl(x), tl(y))) fi;
7. dist := (a, x) -> if x = [] then [] else cons([a, hd(x)], dist(a, tl(x))) fi;
8. prod := (x, y) -> if x = [] then [] else concat(dist(hd(x), y), prod(tl(x), y)) fi;

3.2 Strings and Palindromes
1. F := x -> substring(x, 1);
 L := x -> substring(x, length(x));
 M := x -> substring(x, 2..length(x)-1);

 Answers to Selected Experiments 77

2. Pals finds a list of the first n natural numbers whose binary representa-
tions are palindromes.

pals := proc(n)
 L := [];
 a:= 0;
 for i from 1 to n do
 x := convert(a, binary);
 while not pal(x) do
 a := a + 1;
 x := convert(a, binary);
 od;
 L := cons(a, L);
 a := a+1;
 od;
 print(L);
 end;

3.3 A Recursively Defined Sorting Function
2. An element inserted in an unsorted list is inserted just to the left of the
first element that is greater.

3. The original insert with ≤ is more efficient when there are repeated occur-
rences of the element being inserted because the element is inserted before
the first repeated occurrence.

3.5 Type Checking for Inductively Defined Sets
3. `type/A` := x -> if not type(x, integer) then false
 elif x < 0 then false
 elif x = 0 then true
 else type((x-1)/2), A)
 fi;

3.6 Inductively Defined Sets
1. getA := n -> if n = 1 then 0 else getA(n - 1)*2 + 1 fi;
2. getT := n -> if n = 1 then [] else cons(a, getT(n-1)) fi;

3.7 Subsets and Power Sets
1. subset := (x, y) -> if x = { } then true
 elif member(hd(x), y) then subset(tl(x),y)
 else false fi;
2. One version is the following, which is quite inefficient because each call of
power(x) results is two calls on power(tl(x)).

power := x -> if x = { } then {{ }}
 else power(tl(x)) union map(`union`, power(tl(x)), {hd(x)}) fi;

78 Answers to Selected Experiments

A more efficient version is the following, which for each call of power(x) results
in only one call to power(tl(x)).

pow := S -> if S = { } then {{ }}
 else g(pow(tl(S)), hd(S)) fi;

where g is defined by

g := (S, x) -> S union map(`union`, S, {x});

Chapter 4

4.1 Composing Two Binary Relations
1. Two possible solutions, one recursive and one iterative, are listed.

getPairs := (x, S) -> if S = { } then { }
 elif x[2] = S[1][1] then {[x[1], S[1][2]]} union getPairs(x, tl(S))
 else getPairs(x, tl(S)) fi;

getPairs := (x, S) ->
 {seq(`if`(x[2] = S[i][1], cons(x[1], S[i][2]), []), i = 1..nops(S))} minus {[]};

4.2 Constructing Closures of Binary Relations
2. comp := (R, n) -> if n = 1 then R
 else compose(R, comp(R, n-1)) fi;

4.3 Testing for Closures
2. Two possibilities are
 isSymmetric := R -> evalb(R = converse(R));
and
 isSymmetric := R -> evalb(R = sc(R));

3. isTransitive := (R, n) -> evalb(R = tc(R, n));

4.4 Warshall/Floyd Algorithms
2. Floyd’s algorithm to compute the minimum distances between points in a
digraph represented by an n by n matrix m with the following properties:

 m[i, j] = weight of edge (i, j) for all edges where i ≠ j.
 m[i, i] = 0 for i = 1...n.
 m[i, j] = infinity (a number larger than the sum of all edge weights)
 for all other edges (i, j) not in the graph.
 The call floyd(m, n) will output the matrix of minimum distances.

 Answers to Selected Experiments 79

floyd := proc(m, n)
 local a;
 a := matrix(n, n);
 for i from 1 to n do
 for j from 1 to n do
 a[i, j] := m[i, j]
 od od;
 for k from 1 to n do
 for i from 1 to n do
 for j from 1 to n do
 a[i, j] := min(a[i, j] , a[i, k] + a[k, j]);
 od od od;
 print(evalm(a))
 end;

3. The Paths algorithm modifies Floyds algorithm to compute the matrix
from which the actual points on the shortest path can be found. The input is
the same as for Floyd’s algorithm. Namely, a digraph represented by an n by n
matrix m with the following properties:

 m[i, j] = weight of edge (i, j), for all edges where i ≠ j.
 m[i, i] = 0, for i = 1...n.
 m[i, j] = infinity, for all other edges (i, j) not in the graph.

 The call paths(m, n) will output the Floyd matrix and the paths matrix.

 paths := proc(m, n)
 local a, p;
 a := matrix(n, n); p := matrix(n, n);
 for i from 1 to n do
 for j from 1 to n do
 a[i, j] := m[i, j]; p[i, j] := 0
 od od;
 for k from 1 to n do
 for i from 1 to n do
 for j from 1 to n do
 if a[i, k] + a[k, j] < a[i, j] then
 a[i, j] := a[i, k] + a[k, j]; p[i, j] := k
 fi
 od od od;
 print(evalm(a));
 print(evalm(p))
 end;

80 Answers to Selected Experiments

5. These functions construct a shortest path between two points. The assump-
tion is that the m-matrix and the p-matrix from the modified Floyd algorithm
are available.

This function outputs the list of edges of the shortest path from i to j.

edges := (i, j, m, p) ->
 if m[i, j] = infinity or i = j then []
 elif p[i, j] = 0 then [[i, j]]
 else catLists(edges(i, p[i, j], m, p), edges(p[i, j], j, m, p)) fi;

This function outputs the nodes i, ..., j on a shortest path from i to j.

nodes := (i, j, m, p) ->
 if m[i, j] = infinity or i = j then []
 elif p[i, j] = 0 then [i, j]
 else catLists(nodes(i, p[i, j], m, p), tl(nodes(p[i, j], j, m, p))) fi;

catLists := (x, y) -> [op(x), op(y)];

4.5 Orderings
3a. std:=(x, y) -> if length(x) < length(y) then true
 elif length(x) > length(y) then false
 else lexorder(x, y) fi;

Chapter 5

5.3 Combinations
6. The binomial sum can be computed with the following function.
f := n -> sum(binomial(n,i),i=0..n);

5.5 The Birthday Paradox
1. dup := L -> if L = [] then { }
 elif member(hd(L), tl(L)) then {hd(L)} union dup(tl(L))
 else dup(tl(L)) fi;

5.6 It Pays to Switch
1. distinct := S -> if S = [] then 0
 elif hd(S)[1] <> hd(S)[2] then
 distinct(tl(S)) + 1
 else
 distinct(tl(S))

 fi;

 Answers to Selected Experiments 81

5.7 Markov Chains

2b. To five decimal places X = (0.25532, 0.15957, 0.58511).

5.8 Efficiency and Accumulating Parameters
4. h := (x, y) -> if x = [] then y else h(tl(x), cons(hd(x),y)) fi;

5.9 Solving Recurrences
1b. No Maple solution for derangements.

5.10 Generating Functions

1a. an = 3n + (–1)n + 1. b. an = 4n – 3n. c. an = (1/3)(2n + (–1)n+1

5.11 The Factorial and GAMMA Functions
6b. The Maple command

 > rsolve({d(0)=1, d(n)=n*d(n-1)+(-1)^n}, d);

returns the result

 exp(-1) GAMMA(n + 1, -1)

We can define a function for this expression as follows.

> f := n -> exp(-1)* GAMMA(n + 1, -1);

We can test the expresion as follows

> f(3);

 2 exp(-1) exp(1)

> simplify(");

 2

5.12 Orders of Growth
2cd. Maple handles k as a constant, just like us.

3. lower := (x, y) -> if limit(x/y, n=infinity) = 0 then true else false fi;

5. limits := L -> if tl(L) = [] then [] else
 cons(limit(hd(L)/hd(tl(L)), n=infinity), limits(tl(L))) fi;

82

Index

Accumulating parameters, 63
Asymptotic behavior, 72
Big theta, 72
Binary relations

composition, 39
equality, 40
refelexive closure, 41
symmetric closure, 41
testing for closure, 42
transitive closure, 42

Binary trees, 33
Birthday paradox, 57
Combinations, 51
Comparing functions, 24
Cons function, 11
Derangements of a string, 67
Empty string, 12
Error correction, 54
Error detection, 53
Evaluating expressions, 23
Factorial function, 70
Fibonacci numbers, 64, 65
Finite sums, 48
Floyd’s algorithm;, 45
Function compositions, 20
Function properties, 27
Generating functions, 68

Graph constructions, 13
Hd function, 11
If-then-else definitions, 21
Inductively defined sets, 34, 35
List operations, 11
Little oh, 72
Logic operations, 8
Lucas numbers, 67
Map function, 18
Map2 function, 19
Maple

.mapleinit, 7
addedge, 15
addvertex, 14
and, 8
arithmetic, 6
binomial, 51
ceil, 25
choose, 51
connect, 14
convert, 31
cursor moves, 6
delete, 14
denom, 65
draw, 14
edges, 14
elif, 22

 Index 83

ends, 14
eval, 23
evalb, 10
evalf, 23
evalm, 44
eweight, 15
expand, 65
floor, 25
GAMMA, 70
help, 6
intersect, 10
length, 13
limit, 72
list notation, 11
map, 19
map2, 38
matrix, 44
max, 6
member, 10
minus, 10
new, 14
nops, 10
not, 8
numbcomb, 51
numbperm, 50
numer, 65
op, 11
operator precedences, 9
or, 8
permute, 50
plot, 21
previous expression, 6
print, 7
quit, 5
rand, 56
read, 6
rsolve, 65
save a session, 7
seq, 17
simplify, 23

solve, 27
start, 5
substring, 13
sum, 48
time, 38
trace, 7
trunc, 25
type, 26
unapply, 65
unassign, 16
UNIX commands, 7
unprotect, 7
untrace, 7
vertices, 14

Markov chain, 60
Minimal spanning tree, 15
Orderings

lexicographic, 46
standard, 46, 47

Orders of growth, 72
Palindromes, 31
Permutations, 50
Plotting a graph, 21
Power sets, 38
Random numbers, 57
Recurrences, 62
Recursively defined functions, 29
Sequences, 17
Set operations, 9
Sorting, 32
Spanning trees, 15
String operations, 12
Strings, 31
Subsets, 10, 37
Tl function, 11
Towers of Hanoi, 67
Type checking, 26
Warshall's algorithm, 44

