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Preface 
 
 
 
This book contains programming experiments that are designed to reinforce 
the learning of discrete mathematics. Most of the experiments are short and 
to the point, just like traditional homework problems, so that they reflect the 
daily classroom work. The experiments in the book are organized to accom-
pany the first five chapters of Discrete Structures, Logic, and Computability, 
Third Edition, by James L. Hein. 
 In traditional experimental laboratories, there are certain tools that are 
used to perform various experiments. The Maple programming environment 
is the tool used for the experiments in this book. Maple is easy to learn and 
use because its syntax and semantics are similar to that of mathematics. So 
the learning curve is steep and no prior knowledge of the language is assumed. 
In fact, the experiments are designed to introduce language features as tools 
to help explore the problems being studied. 
 The instant feedback provided by the Maple interactive programming 
environment can help the process of learning. When students get immediate 
feedback to indicate success or failure, there is a powerful incentive to try and 
get the right solution. This encourages students to ask questions like, “What 
happens if I do this?” This supports the idea that exploration and experiment 
are keys to learning. 
 The book builds on the traditional laboratory experiences that most stu-
dents receive in high school science courses. i.e., experimentation, observation, 
and conclusion. Each section contains an informal description of a topic—with 
examples as necessary—and presents a list of experiments to perform. Some 
experiments are simple, like using a program to check answers to hand calcu-
lations, and some experiments are more sophisticated, like checking whether 
a definition works, or constructing a small program to explore a concept. 
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0 
Introduction to Maple 

The Maple language allows us to explore a wide range of topics in discrete 
mathematics. After a brief introduction to Maple we’ll start right in doing ex-
periments. To keep the emphasis on discrete mathematics we’ll introduce new 
Maple tools in the experiments where they are needed. 

0.1   Getting Started 
This section contains a few key facts to get you started using Maple. The first 
thing you need to do is start a Maple session, and this depends on your com-
puter environment. In a UNIX environment you can start Maple by typing the 
word  

maple  

followed by a return. Once maple has started up, it displays the prompt 

>  

which indicates that the interpreter is waiting for a command. All commands 
(except quitting and getting help) must end with a semi-colon. For example, 
the command 

> 4+5;  

will cause Maple to return 9. To quit Maple type the command 

> quit  

and hit return. 
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 Maple has an outstanding interactive help system that gives explana-
tions, definitions, and examples. Information and help about a particular 
function can be found by typing a question mark followed by the name of the 
function. For example, type the command  

> ?help  

and hit return to find out about the help system itself. For example, if we need 
to know about Maple’s arithmetic operations we can type 

> ?arithmetic 

For another example, to find out about the max function type the command 

> ?max 

0.2   Some Programming Tools  
We’ll list here a few programming tools that should come in handy from time 
to time. You can find out more about these tools and many others with the 
help system. 
 
• You can always access the previous expression with %. (In older versions of 

maple the double quote is used.) For example, the command 

> 4 + 5; 

 results in the value 9. So the command 

> % + 6; 

 returns the value 15. 

• The up/down arrow keys can be used to move the cursor up and down 
through the commands of a session. If they don’t work, try control p for the 
previous command and control n for the next command. 

• To read in the contents of the file named filename type  

> read filename;  
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 If filename contains unusual characters (e.g., "/", ".", etc.) then the name 
must be enclosed in backquotes. For example, 

> read `file.2`; 

If the file contains Maple commands, then the commands will be loaded 
and executed. 

• You can display the definition of a user-defined function ƒ by typing 

> print(ƒ); 

• To trace the execution of a function ƒ type  

> trace(ƒ); 

 and then type the expression you wish evaluated—like ƒ(14). To stop the 
trace of ƒ type  

> untrace(ƒ); 

• To save the definitions for ƒ, g, and h to a file named foo type  

> save ƒ, g, h, foo;  

• Some letters and names in Maple are protected and can’t be used unless 
they are unprotected. Find out more about this with the help system by 
typing the command  

> ?unprotect 

• To edit a UNIX file named x with, say, the vi editor without leaving Maple, 
type  

> system(`vi x`); 

• The UNIX file named  

.mapleinit 

 is used to hold maple commands and/or definitions that you want loaded 
automatically at the start of a Maple session. This file is quite handy as a 
place for the collection of tools and you want to use again and again. 
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1 
Elementary Notions and  
Notations 

In this chapter we’ll use Maple to explore some of the ideas presented in 
Chapter One of the textbook. In particular, we’ll do experiments with logic op-
erations, set operations, list operations, string operations, graph construc-
tions, and spanning trees. 

1.1   Logic Operations 
This experiment tests whether the logical operations of not, or, and and are 
implemented correctly in Maple. We’ll also see how to define a new logical op-
eration. Try out the following Maple tests to get started with the experiment. 

 > true and false; 
 > true or false; 
 > not true; 
 > a or false; 
 > a or true; 
 > a or b; 
 > a and false; 
 > a and true; 
 > a and b; 
 > not a; 
 > not a or false; 
 > not a or true; 
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Now, suppose we define a new operation “if_then” as follows: 

> if_then := (x, y) -> not x or y; 

We can test this operation by applying it to various truth values. For example, 
try out the following test: 

> if_then(true, true); 

If we want to rename the if_then function to the name “ofCourse” we can do it 
by writing 

> ofCourse := if_then; 

Then we can use the new name. For example, 

> ofCourse(true, true); 

To convince ourselves that the two names define the same operation we can 
observe the two definitions: 

  > print(if_then); 
  > print(ofCourse); 

Experiments to Perform 

 1. Verify the rest of the entries in the truth tables for not, and, and or. 

 2. Find the rest of the truth table entries for the if_then operation.  

 3. Use the help system to find out about the precedence of the three opera-
tions not, and, and or when used in combination without parentheses. 
Just type 

> ?precedence 

  Try out various combinations of the three operators not, and, and or to 
verify the precedence of evaluation in the absence of parentheses. 

1.2   Set Operations 
In this experiment we’ll explore some of the basic ideas about sets. Try out the 
following commands to get used to working with sets and set operations in 
Maple. 
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 > A := {a, a, b, b, b}; 

 > member(a, A); 

 > member(c, A); 

 > evalb({a} = {a, a}); 

 > B := {b, c}; 

 > evalb(A = B); 

 > A union B; 

 > A intersect B; 

 > A minus B; 

 > nops(A); 

 > nops(B); 

 > nops(A intersect B); 

Now let’s try to define the symmetric difference of two sets: 

 > symDiff := (x, y) -> (x minus y) union (y minus x); 

 > symDiff(A, B); 

Experiments to Perform 

 1. Why is the computed answer to the first command A := {a, b} rather than 
A := {a, a, b, b, b}? 

 2. Check each of the following statements by hand and then use Maple 
commands to confirm your answers: 

  a. x ∈ {a, b}. b. x ∈ {a, x}. c. a ∈ {a}. 

  d. ∅ ∈ {a, b}. e. ∅ ∈ ∅. f. ∅ ∈ {∅}. 

  g. {a, b} ∈ {a, b, c}. h. {a, b} ∈ {{a, b}, b, c}. 

 3. The following two properties of sets relate the subset operation to the 
operations of intersection or union. 

A ⊆ B if and only if A ∩ B = A. 
A ⊆ B if and only if A ∪ B = B. 

  Test each property by defining a “subset” operation, where the command  

> subset(A, B); 

  decides whether A is a subset of B. 
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 4. Use the help system to find out about the precedence of the three opera-
tions union, intersect, and minus when used in combination without pa-
rentheses. Just type  

> ?precedence 

  Try out various combinations of the three operators union, intersect, and 
minus to verify that the precedence of evaluation in the absence of paren-
theses. 

1.3   List Operations 
Lists are very useful structures for representing information and Maple has a 
nice collection of tools that allow us to work with them. Try out the following 
commands to get used to working with lists in Maple. 

 > A := [a, a, b, b, b]; 

 > B := [b, c]; 

 > [op(A), op(B)]; 

This is a cumbersome expression to type whenever we want to concatenate 
two lists. We can define a concatenation operation for two lists as follows. 

 > catLists := (x, y) -> [op(x), op(y)]; 

Now we can concatenate the two lists A and B with the following command. 

 > catLists(A, B); 

Suppose that we want to use the primitive operations of cons, head, and tail 
to construct, access the head, and access the tail of a list, respectively. Maple 
doesn’t have definitions for these operations. So we’ll have to define them our-
selves. We’ll refer to them as cons, hd, and tl. 

 > cons := (x, y) -> [x, op(y)]; 

 > cons(a, B); 

 > hd := x -> x[1]; 

 > hd(A); 

Before we decide on a definition for tail, we’ll look at two possible definitions 
because different versions of Maple may give different results. 
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 > tl1 := x -> [x[2..nops(x)]]; 
 > tl1(A); 
 > tl2 := x -> x[2..nops(x)]; 
 > tl2(A); 

Experiments to Perform 

0. a. Depending on the results of the tl1 and tl2 tests, choose the proper 
definition for tl.  

b. Then put the definitions for hd, tl, and cons in your .mapleinit file so 
they will always be loaded and available for each Maple session. 

c. Test hd, tl, and cons on arguments for which they are not defined. For 
example, hd(a), hd([ ]), tl(a), tl([ ]), and cons(a, b). 

 1. Define each of the following functions and perform at least three tests for 
each definition. 

a. The function “heads” maps two nonemtpy lists to a list consisting of 
the heads of the two lists. For example,  

heads([a, b], [c, d, e]) = [a, c]. 

b. The function “tails” maps two nonemtpy lists to a list consisting of 
the tails of the two lists. For example,  

tails([a, b], [c, d, e]) = [[b], [d, e]]. 

c. The function “examine” maps a list to a list consisting of the head 
and tail of the given list. For example,  

examine([a, b, c]) = [a, [b, c]]. 

d. The function “add2” attaches two new elements to the left end of a 
list. For example,  

add2(a, b, [c, d, e]) = [a, b, c, d, e].  

1.4   String Operations 
Strings of characters can be processed in Maple.  A string is a sequence of 
characters enclosed in double quotes. The string with no elements is called 
the empty string and in Maple it is denoted by "". Try out the following exam-
ples to get used to working with strings in Maple. 

 > A := "ab#*9bd"; 
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 > length(A); 
 > substring(A, 1); 
 > substring(A, 2); 
 > substring(A, length(A)); 
 > substring(A, 1..3); 
 > substring(A, 2..4); 
 > substring(A, 2..length(B)); 
 > substring(A, 2..1); 
 > emptyString := ""; 
 > cat(A, A); 
 > cat(A, emptyString); 
 > cat("", "ab","cd"); 
 > cat(A, emptyString); 
 

Experiments to Perform 

 1. Make a definition for the operation head, where head(x) returns the first 
character of the nonempty string x. Test your definition. 

 2. Make a definition for the operation tail, where tail(x) returns the string 
obtained from the nonempty string x by removing its head. Test your 
definition. 

 3. Make a definition for the operation last, where last(x) returns the last 
character of the nonempty string x. Test your definition. 

 4. A palindrome is a string that equals itself when reversed. Make a defini-
tion for the operation pal to test whether a string of three characters is a 
palindrome. For example, pal("aba") is true and pal("xxy") is false. Hint: 
Use evalb to test the first and third characters for equality. 

1.5   Graph Constructions 
Maple has some nice tools to construct finite graphs. The networks package 
contains tools for working with graphs. We can load the package with the fol-
lowing command. 

 > with(networks); 

There are several tools that we can use to generate some well-known graphs. 
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For example, try out the following commands. 

 > draw(complete(4)); 

 > draw(void(6)); 
 > draw(cycle(6)); 
 > draw(octahedron()); 

Suppose that we want to construct a graph G with 8 vertices labeled with the 
numbers 1, 2, ..., 8. Try the following commands to accomplish the task. 

 > G := void(8); 

 > draw(G); 
 > vertices(G); 

We can add some edges to G in several ways. For example, try out the follow-
ing commands. 

 > connect({1}, {3, 5, 7}, G); 
 > draw(G); 
 > edges(G); 
 > ends(G); 
 > ends(e1, G); 

The vertices of a graph may have names other than numbers. For example, 
let’s define a graph with vertex set {a, b, c, d}. 

 > new(G); 

 > addvertex({a, b, c, d}, G); 
 > connect({a, b}, {c, d}, G); 
 > connect(a, b, G); 
 > draw(G); 
 > connect(c, d, G); 
 > delete(e4, G); 
 > draw(G); 

Now that we have a better idea of how to deal with graphs, let’s see whether 
we can construct a directed graph with weighted edges. 

 > new(H); 

 > addvertex({a, b, c}, H); 
 > addedge([[a, b], [b, a], [b, c], [a, c]], weights = [4, 2, 1, 3], H); 
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 > draw(H); 
 > eweight(H); 

Experiments to Perform 

 1. Use the help system to find out more about the “connect” and “addedge” 
functions. Suppose G is the following weighted graph. 

c

b

a d

15 10

55

10

 

a. Construct G by using the connect function to create the edges. Don’t 
worry about the orientation of the graph that Maple draws.  

b. Construct G by using the addedge function to create the edges. Again, 
don’t worry about the orientation of the graph that Maple draws. 

 2. Use the help system to find out about the “show” command. Use it on the 
graph G in the preceding experiment. Try to figure out the meanings of 
the various parts of the output. 

 3. Use the help system to find out about two commands in the networks 
package that you have not yet used. Try them out. 

1.6   Spanning Trees 
We can use Maple to compute spanning trees for finite graphs. Recall that a 
spanning tree for a connected graph is a subgraph that is a tree and contains 
all the vertices of the graph. A minimal spanning tree for a connected weighted 
graph is a spanning tree such that the sum of the edge weights is minimum 
among all spanning trees. Try out the following Maple commands to discover 
the main ideas. 

 > with(networks); 

 > new(G); 
 > addvertex({a, b, c}, G); 
 > addedge([[a, b], [b, a], [b, c], [a, c]], weights = [4, 2, 1, 3], G); 
 > draw(spantree(G)); 
 > spantree(G, a, w); 
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 > draw(%); 
 > w;  
 > spantree(G, a, w); 
 > unassign(‘w’); 
 > w; 
 > spantree(G, a, w); 
 > w; 

Experiments to Perform 

 1. Suppose that H is the following weighted graph. Use Maple to find a 
minimal spanning tree for H.  

 c

b

a d

15 10

55

10

 

 2. Use the Maple help system to find out about the Petersen graph. Use 
Maple to construct and draw the graph and to draw a spanning tree for 
the graph. Note: The Petersen graph is an example of a graph that is not 
planar. 
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2 
Facts About Functions 

In this chapter we’ll use Maple to explore some basic ideas about functions 
presented in Chapter Two of the textbook. We’ll do experiments with se-
quences, the map function, composition, if-then definitons, evaluating expres-
sions, comparing functions, type checking, and properties of functions. 

2.1   Sequences 
Maple has some useful expressions for working with finite sequences of ob-
jects. In Maple a sequence is a listing of objects separated by commas. So a 
sequence is like a list without the delimiters on the ends. However, we’ll see 
that, if we wish, we can put delimiters on the ends of a sequence of objects. 
 Try out the following commands to get a feel for some of the techniques 
that can be used to construct and use sequences. 

 > seq(i, i=0..9); 
 > seq(hello, i=1..4); 
 > seq({i, i+1}, i=1..5); 
 > seq(i**2 + i, i=1..6); 
 > f := x -> x*x; 
 > seq(f(i), i=3..12); 
 > 3..15; 
 > $3..15; 
 > A := $1..12; 
 > seq(x+x, x=A); 
 > sequence := x -> [$0..x]; 
 > sequence(17); 
 > g := x -> {$-x..x}; 
 > g(5); 
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 > {$-4..4}; 
 > [$-4..4]; 
 > h := n -> [$-n..n]; 
 > h(5); 

Experiments to Perform 

 1. Suppose that we want to construct the function ƒ defined by  

ƒ(n) = [[0, 0], [1, 1], ..., [n, n]].  

  We can use the seq function to define ƒ as follows: 

> ƒ:= n -> [seq([k, k], k=0..n)]; 

  Use Maple to perform three tests of the function. 

 2. Use the seq function to construct a Maple version of the function g de-
fined by  

g(n) = [[n, n], ..., [1, 1], [0, 0]].  

  Use Maple to perform three tests of the function. 

 3. Use the seq function to construct a Maple version of the function h de-
fined by  

h(n) = [[n, 0], [n – 1, 1], ..., [1, n – 1], [0, n]].  

  Use Maple to perform three tests of the function. 

 4. Use the seq function to construct a Maple version of the function s de-
fined by  

s(n) = [{0}, {0, 1}, {0, 1, 2}, {0, 1, 2, 3}, ..., {0, 1, 2, 3, ..., n}]. 

  Use Maple to perform three tests of the function. 

2.2   The Map Function 
The map function is a very useful tool for working with functions for which we 
need several values. Recall that the map function “maps” a function and a list 
of domain elements onto a list of values. For example, if {a, b, c} is a subset of 
the domain of ƒ, then 
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 map(ƒ, [a, b, c]) = [ƒ(a), ƒ(b), ƒ(c)].  

Try out the following commands to get used to using Maple’s map function. 

 > map(abs, [-1, 3, -32, 4]); 
 > map(abs, {1, -1, 2, -2}); 
 > f := x -> x**2; 
 > map(f, [1, 2, 3, 4, 5]); 
 > map(f, [$-5..5]); 
 > map(f, {$-5..5}); 
 > diff(sin(x), x); 
 > diff(cos(x), x); 
 > map(diff, [sin(x), cos(x), tan(x)], x); 
 > map(diff, [1, x, x**2, x**3], x); 
 > f := (x, y, z) -> x**2 + y + z; 
 > map(f, {1, 2, 3}, 4, 5); 
 > newf := x -> f(x[1], x[2], x[3]); 
 > map(newf, {[1, 2, 3], [4, 5, 6]}); 

Notice the error that occurs when we try to map an infix operation like union. 

 > map(union, [{a}, {b}], {c}); 

It can be fixed by enclosing the name in back quotes. Try the following. 

 > map(`union`, [{a}, {b}], {c}); 
 > map(`union`, {{a}, {b}}, {c}); 
 
From the examples it can be seen that for functions of arity n, where n ≥ 2, the 
map operation must specify the second through the nth arguments that will 
be used by the function. For example, suppose that g has arity 3. Observe the 
result of the following command. 

 > map(g, [a, b, c], x, y); 

There is also a map2 operation for functions having arity n, where n ≥ 2. In 
this case the map2 operation must specify the first argument and the third 
through the nth arguments. For example, observe the following command and 
compare its result with the previous command. 

 > map2(g, x, [a, b, c], y); 
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Experiments to Perform 

 1. Describe how you would use Maple to find the image of a finite subset A 
of the domain of a function g. 

 2. Use the map function to define each of the following functions. Be sure to 
test each definition. 

a. The function “heads” maps any list of nonempty lists to a list of the 
heads of the lists. For example,  

heads([[a, b], [a, b, c], [b, d]]) = [a, a, b]. 

b. The function “tails” maps any list of nonempty lists to a list of the 
tails of the lists. For example, 

tails([[a, b], [a, b, c], [b, d]]) = [[b], [b, c], [d]]. 

 3. Use the map2 function to define the function “dist” that distributes an 
element x into a list L of elements by creating a list of pairs made up by 
pairing x with each element of L. For example, 

dist(x, [a, b, c]) = [[x, a], [x, b], [x, c]]. 

  Hint: Suppose that we define the function pair that makes a 2-tuple out 
of its two arguments. E.g., suppose that pair(x, y) = [x, y]. Now use pair in 
your construction of dist.  

2.3   Function Compositions 
Maple allows us to define functions by composition either with variables or 
without variables. Note that Maple uses the symbol @ instead of ° to denote 
composition. Try out the following examples to see how composition of func-
tions can be used with Maple. 

 > f := x -> x + 1; 
 > g := x -> x**2; 
 > f(g(x)); 
 > (f@g)(x); 
 > g(f(x)); 
 > (g@f)(x); 
 > h := g@ƒ; 
 > k := ƒ@g; 
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 > h(x); 
 > k(x); 

Of course, we could also define h and k using variables as follows. 

 > h := x -> g(f(x)); 
 > k := x -> f(g(x)); 
 > h(x); 
 > k(x); 

It’s easy to see that composition is not commutative in general. For example, 
we can plot the graphs of g@ƒ, ƒ@g, and the difference g@ƒ – ƒ@g. Try out the 
following tests.  

 > plot(h(x), x = 0..10); 
 > plot(k(x), x = 0..10); 
 > plot(h(x) - k(x), x = 0..10); 

Experiments to Perform 

 1. Define two new different numeric functions ƒ and g of your own choosing 
and do the following things.  

a. Construct and test both ƒ@g and g@ƒ to see whether they are equal. 

b. Plot the graphs of ƒ@g and g@ƒ. 

 2. The operations cons, hd, and tl that we defined in (1.3 List Operations) 
are related by the following equation for all nonempty lists x. 

cons(hd(x), tl(x)) = x. 

a. Test this equation on several lists using the evalb operation. 

b. If we let g(x) = (hd(x), tl(x)) and h = cons@g, then we can rewrite the 
given equation as h(x) = x for all nonempty lists x. Define g and h as 
Maple functions and then test the rewritten version of the equation 
on several lists using the evalb operation. 

2.4   If-Then-Else Definitions for Functions 
When a function is defined by cases, we can use the if-then-else form to imple-
ment the function in Maple. For example, suppose that we want to define an 
absolute value function. Although Maple already has the “abs” function to do 
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the job, we’ll define our own version. The absolute value function, which we’ll 
call “absolute” can be defined by cases as follows: 

    

! 

absolute(x) =
x if x " 0

#x if x < 0

$ 
% 
& 

 

We can implement this case definition in Maple as follows: 

> absolute := x -> if x >= 0 then x else –x fi; 

 The if-then-else rule can be used more than once if there are several 
cases in a definition. For example, suppose we want to classify the roots of a 
quadratic equation having the following form: 

ax2 + bx + c = 0. 

We can define the function “classifyRoots” to give the appropriate statements 
as follows: 

  classifyRoots(a, b, c)  = if b2 – 4ac > 0 then 
      “The roots are real and distinct.” 
     else if b2 – 4ac < 0 then 
      “The roots are complex conjugates.” 
     else 
      “The roots are real and repeated.” 
 
We can implement the definition in Maple as follows. (Note that elif is used 
for “else if,” and backward quotes enclose strings.) 

> classifyRoots := (a, b, c) -> if b*b - 4*a*c > 0 then  
   `The roots are real and distinct.` 
  elif b*b - 4*a*c < 0 then 
   `The roots are complex conjugates.` 
  else 
   `The roots are real and repeated.` 
  fi; 

Experiments to Perform 

 1. Test the abs and classifyRoots functions. Your tests should include a va-
riety of inputs to test all possible cases of each definition. 
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 2. We can define a function “max2” to return the maximum of two numbers 
as follows. 

max2 := (x, y) -> if x < y then y else x fi; 

  Test max2 on several pairs of numbers. Then for each of the following 
conditions, write and test a definition for the function “max3” to return 
the maximum of three numbers. 

a. Use max2 to define max3. 

b. Write an if-then-else definition for max3 that does not use any other 
functions. 

2.5   Evaluating Expressions 
Although Maple is very good at symbolic manipulation, it is still just a com-
puter program that is not quite as intelligent as a normal human being. When 
evaluating expressions Maple sometimes needs some guidance from us. For 
example, try out the following statements. 

 > 1/2; 
 > eval(1/2); 
 > eval((1+3)/2); 
 > evalf(1/2); 
 > evalf((1+3)/2); 
 > simplify(1/2); 
 > simplify((1+3)/2); 
 > g := log[2]; 
 > g(16); 
 > simplify(g(16)); 
 > evalf(g(16)); 
 > plot(g(x), x=1..16); 
 > map(g, {$1..16}); 
 > map(g, [$1..16]); 

In this experiment we’ll consider a property of binary trees. We know that 
among the binary trees with n nodes, the minimum depth that any tree can 
have is floor(log2 n). We’ll call this function minDepth and write it as the com-
position 

minDepth = floor ° log2. 
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This function can be implemented in Maple as follows: 

> minDepth := floor @ log[2]; 

Experiments to Perform 

 1. Find out about minDepth by doing the following experiments. 

a. Plot minDepth over the values 1..16. 

b. Find the image of the set {1, 2, ..., 16} by minDepth. 

c. Find the list of values of minDepth when applied to elements in the 
list [1, 2, ..., 16]. 

 2. As (1) shows, Maple doesn’t give us the kind of answers that we want for 
minDepth. We want to redefine minDepth so that it gives us integer val-
ues. Suppose we try the following definition. 

> newMinDepth := floor @ evalf @ log[2]. 

a. Test newMinDepth by performing the three tests of (1). 

b. What is wrong with the new definition of minDepth? 

c. Try to redefine minDepth as a composition of functions, without vari-
ables, so that it correctly returns all values as integers. Test your 
definition with at least the three tests used in (1). 

2.6   Comparing Functions 
Functions can usually be defined in many different ways. So it is useful to be 
able to easily compare definitions to see whether they define the same func-
tion over various sets. For example, the following two definitions both claim to 
test whether an integer is even. 

 > f := x -> if x mod 2 = 0 then true else false fi; 

 > g := x -> if 2 * floor(x/2) = x then true else false fi; 

We can compare results of the two functions by constructing a function to do 
the comparing. 

 > compare := x -> if f(x) = g(x) then true else false fi; 
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For example, we can test the two functions to see whether they are equal on 
the set {0, 1, ..., 20} with commands such as 

 > map(compare, {$0..20}); 
or 
 > map(compare, {seq(i, i=0..20)}); 

If the result is {true}, then things are OK over the set {0, 1, ..., 20}. If the result 
is {true, false}, then there are problems that can be examined by using a list 
to check where the two definitions differ. 

> map(compare, [$0..20]); 

Experiments to Perform 

 1. An alternative to the if-then-else comparison for two functions ƒ and g is 
to use evalb as follows. 

> compare := x -> evalb(f(x) = g(x)); 

  Try out this definition of compare by repeating the sample tests. 

 2. In addition to the floor function, Maple has a ceiling function, ceil, and a 
truncation function, trunc. Try out the following tests to observe the dif-
ferences between these functions 

    > floor(-3.1); 
    > floor(5.9); 
    > ceil(-3.1); 
    > ceil(5.9); 
    > trunc(-3.1); 
    > trunc(5.9); 

a. The three functions are all equal on integer arguments. Verify this fact 
over the set {-50, -49, ..., 49, 50}. 

b. Each of the three functions differs from the other two for certain sets of 
non-integer arguments. For example, we can compare ceil and trunc on 
a set of rational numbers that are not integers as follows.  

    > compare := x -> evalb(ceil(x) = trunc(x)); 
   > map(compare, {seq(x + 0.5, x = -10..10)}); 

  Test each of the pairs of functions {floor, ceil}, {floor, trunc}, and {ceil, 
trunc} to find and verify the sets of non-integer arguments for which they 
are equal and for which they are not equal.  
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 3. The function ƒ below claims to define the mod function. 

> ƒ := (x, n) -> x - n*floor(x/n);  

  Compare ƒ with Maple’s mod function. Do they agree? If not, describe the 
differences between the two functions. 

 4. Write two different definitions for a function to test whether a number is 
odd. Test your definitions to make sure that they agree on the numbers 
in the set {-1000, ... 1000}.  

2.7   Type Checking 
There are many predefined types in Maple. To check whether an expression E 
has type T we write a query of the form  

> type(E, T).  

Try out the following Maple commands to get a feel for type checking. 

 > type(2, integer); 
 > type(1.5, integer); 
 > type(xy, string); 
 > type(9, string); 
 > type(“9”, string); 
 > type(4, {string, integer}); 
 > type(xy, {string, integer}); 

Experiments to Perform 

 1. Use Maple’s help system to learn about the types numeric, realcons, and 
rational. Do some tests to show how these types differ from each other.  

 2. Use Maple’s help system to discover five other types. For each of the five 
types, do two tests: one true and one false. 

 3. Define your own ceiling function “ceil2” as an if-then-else definition that 
uses at least one type expression. You may use Maple’s trunc function in 
your definition. But you may not use Maple’s floor and ceil functions. 
Test the definition by comparing it with the ceil function. Test it not only 
on integers, but on other numbers too. For example, you might try the fol-
lowing comparison. 

  > compare := x -> evalb(ceil(x/2) = ceil2(x/2)); 
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  > map(compare, {$-20..20}); 

 4. Define your own floor function “floor2” as an if-then-else definition that 
uses at least one type expression. You may use Maple’s trunc function in 
your definition. But you may not use Maple’s floor and ceil functions. Be 
sure to test the definition by comparing it with the floor function. Test it 
not only on integers, but on other numbers too.  

 5. Use Maple’s help system to learn about “error”. Then redefine your cons, 
hd, and tl functions to return error messages in the following cases. 

  a. cons returns an error if the second argument is not at list. 

  b. hd returns an error if the argument is the empty list or not alist .  

  c. tl returns an error if the argument is the empty list or not alist .  

2.8   Properties of Functions 
Maple can sometimes help us tell whether a function is injective, surjective, 
or bijective. For example, suppose we want to study properties of the function 
ƒ defined by the expression  

! 

ƒ(x) =
1

x +1
. 

Over the real numbers, ƒ is defined everywhere except x = –1. We can get an 
idea about ƒ by looking at its graph at various intervals using the plot func-
tion.  
 To see whether ƒ is injective we must see whether x ≠ y implies ƒ(x) ≠ 
ƒ(y) for all x and y in the domain of ƒ. In other words, using the contrapositive 
statement, we want to see whether ƒ(x) = ƒ(y) implies x = y. The following 
Maple command will do the job. That is, solve the equation ƒ(x) = ƒ(y) for x 
and see if the answer is y. 

> solve(f(x) = f(y), x); 

Since Maple returns y, we know that ƒ is injective.  
 What about surjective? In this case we want to see if any element y in the 
codomain of ƒ is equal to ƒ(x) for some x in the domain of ƒ. So we would like 
to solve the equation ƒ(x) = y for x, which we can do in Maple with the follow-
ing command. 

> solve(f(x) = y, x); 
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Maple returns an expression for x. We can test whether ƒ maps the expression 
to y with the following Maple command. 

> f(%); 

Now simplify the result to see whether it is equal to y: 

> simplify(%); 

The result is y. So things look good so far. Any problems with x = – 1? 

Experiments to Perform 

 1. Use Maple to see whether each of the following functions is injective, sur-
jective, or bijective. 

  a. ƒ(x) = x/(x + 1). 

  b. ƒ(x) = x/(1 – x). 

  c. ƒ(x) = (1 – x)/x. 
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3 
Construction Techniques 

In this chapter we’ll use Maple to explore some of the basic ideas about the 
construction of recursively defined functions and inductively defined sets pre-
sented in Chapter Three of the textbook. We’ll do experiments with lists, 
strings, trees, and sets.  

3.1   Examples of Recursively Defined Functions 
It’s easy to translate definitions for recursively defined functions into Maple. 
For example, suppose we have the following recursive definition of the func-
tion to concatenate two lists: 

  concat([ ], y) = y  
  concat(h :: t, y) = h :: concat(t, y). 

We can easily convert this definition into a Maple if-then-else program as fol-
lows, where cons, hd, and tl are the user defined functions from (1.3 List Op-
erations): 

> concat := (x, y) -> if x = [ ] then y else cons(hd(x), concat(tl(x), y)) fi; 

For example, try out the following command. 

> concat([a, b, c], [d, e]); 

To see how the recursion unfolds we need to do a trace. 

     > trace(concat); 
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     > concat([a, b, c], [d, e]); 

Experiments to Perform 

 1. Consider the following definition of a function ƒ to compute floor(x/2) for 
any natural number x. In other words, ƒ(x) = floor(x/2). 

> ƒ := x -> if x = 0 or x = 1 then 0 else 1 + ƒ(x – 2) fi;  

  a. Test ƒ to see whether it computes floor(x/2) for x a natural number. 

b. Trace ƒ to observe the unfolding of the recursion. 

c. What happens when ƒ is applied to a non-natural number? 

 2. The following function returns the sum of a list of numbers, where we as-
sume that an empty sum is zero. 

   total([ ]) = 0 
   total(h :: t) = h + total(t). 

  A Maple implementation of total can be defined as follows: 

total := x -> if x = [] then 0 else hd(x) + total(tl(x)) fi; 

  Test total on several lists of numbers. For example, 

  > total([3, 2, 9 , 5.34]); 
  > total([$1..10]); 

  Trace total on a list of numbers to observe the unfolding of the recursion. 

 3. The function “last” finds the last element of a non-empty list. 

   last([x]) = x 
   last(h :: t) = last(t). 

  Construct a Maple definition for last. Notice that the basis case is for a 
list with one element, which can be described as a list whose tail is the 
empty list. Test it on several examples and use the trace command on 
one test to observe the recursion. 

 4. Construct a recursive Maple program—and test it—for the “small” func-
tion, which returns the smallest element of a nonempty list of numbers. 
For example, small([9, 78, 5, 38]) returns 5. 

 5. Construct a recursive Maple program—and test it—for the “first” func-
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tion, which removes the rightmost element of a nonempty list. For exam-
ple, first([a, b, c]) returns [a, b]. 

 6. Construct a recursive Maple program—and test it—for the “pairs” func-
tion, which takes two lists of equal length and outputs a list consisting of 
the corresponding pairs from the two input lists. For example, pairs([a, b, 
c], [1, 2, 3]) returns [[a, 1], [b, 2], [c, 3]]. 

 7. Construct a recursive Maple program—and test it—for the “dist” func-
tion, which takes an element and a list and outputs a list of pairs made 
up by distributing the given element with each element of the list. For 
example, dist(x, [a, b, c]) returns [[x, a], [x, b], [x, c]]. 

 8. Construct a recursive Maple program—and test it—for the “prod” func-
tion, which takes two lists and outputs the product of the two lists. For 
example, prod([1, 2], [a, b, c]) returns the list 

 [[1, a], [1, b], [1, c], [2, a], [2, b], [2, c]].  

  Hint: The dist function might be helpful. 

3.2   Strings and Palindromes 
Recall that a palindrome is a string that equals itself when reversed. For ex-
ample, the string aba is a palindrome. In Maple the string of digits 101 is 
considered a number. To make it into a string we can give the command 
 
 > convert(101, string); 
 
Then we can treat the result as a string and test whether it is a palindrome. 
The following function “pal” is a test to see whether it’s input—either a string 
or a number considered as a string of digits—is a palindrome. The functions 
F, L, and M return the first character of a string, the last character of a string, 
and the middle of a string, respectively. 

pal := x -> if type(x, string) then 
   if length(x) <= 1 then true  
   elif F(x) = L(x) then pal(M(x)) 
   else false fi 
  else pal(convert(x, string)) fi; 
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Experiments to Perform 

 1. Write the definitions for F, L, and M. Then test pal on several strings and 
numbers. 

 2. The convert operation in Maple can be used to find the binary represen-
tation of a natural number. For example, 

  > convert(45, binary); 

  returns the number 101101. 

  Notice that the binary string is a palindrome. Write a program “pals” to 
construct a list of the first n natural numbers whose binary representa-
tions are palindromes. For example, 

  > pals(4); 

  returns the list [0, 1, 3, 5]. Test pals and see if you can find some rela-
tionships between or properties of these numbers. 

3.3   A Recursively Defined Sorting Function 
As another example of a recursively defined function, we’ll write a sorting 
function for a list of numbers. The idea we’ll use is sorting by insertion, where 
the head of the list is inserted into the sorted version of the tail of the list. For 
the moment, we’ll assume that “insert” does the job of inserting an element 
into a sorted list. We’ll use the name “isort” because Maple already has its 
own “sort” function. 

> isort := x -> if x = [ ] then x else insert(hd(x), isort(tl(x))) fi; 

Of course, we can’t test this definition until we write the definition for the in-
sert function. This function inserts an element into a sorted list by comparing 
the element with each member of the list until it reaches a larger element or 
the end of the list, at which time the element is placed in the proper position. 
Here’s a definition for the insert function in if-then-else form: 

> insert := (a, x) -> if x = [ ] then [a]  
 elif a <= hd(x) then cons(a, x) 
 else cons(hd(x), insert(a, tl(x))) 
 fi; 
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Now we can test both the insert function and the isort function. 

  > insert(7, [1, 4, 9, 14]). 
  > isort([4, 9, 3, 5, 0]); 

Experiments to Perform 

 1. Perform several tests of insert and isort. Do at least one trace for each 
function to see what is going on. 

 2. What happens if we insert an element in a list that is not sorted? 

 3. Modify the definition of insert by replacing =< with <. Try out some tests 
to demonstrate what happens. Is one version more efficient than the 
other? 

3.4   Binary Trees 
Binary trees are inherently recursive in nature. In this experiment we’ll see 
how binary trees can be created, searched, and traversed by simple recursive 
algorithms. We’ll represent binary trees as lists, where the empty binary tree 
is the empty list and a nonempty binary tree is a list of the form  

[L, x, R],  

where L is the left subtree, x is the root, and R is the right subtree. We can 
construct a binary search tree from a list of numbers as follows: 

 build([ ]) = [ ] 
 build(H :: T) = insert(H, build(T)) 

where insert takes a number and a binary search tree and returns a new bi-
nary search tree that contains the number. 

 insert(x, [ ]) = [[ ], x, [ ]] 

 insert(x, [L, y, R]) = if x ≤ y then [insert(x, L), y, R] else [L, y, insert(x, R]] 

Experiments to Perform 

 1. Implement and test “build” and “insert” as Maple functions. To do this 
you will need to be able to pick out the root and the left and right sub-
trees of a nonempty binary tree. Test them on several lists. 
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 2. The form of the binary search trees is not inviting. To see the information 
in a binary search tree we can traverse it by one of the standard methods, 
preorder, inorder, and postorder. For each of these orderings, write a pro-
cedure to print out the values of the nodes.  

 3. Build and test a Maple function “isIn” to see whether a number is in a 
binary search tree. 

3.5   Type Checking for Inductively Defined Sets 
In this experiment we’ll see how to construct types that are inductively de-
fined sets. A couple of examples should suffice to get the idea. For example, 
suppose that we have a set S that is inductively defined as follows. 

Basis: 2 ∈ S. 
Induction: If x ∈ S then x + 3 ∈ S. 

To build our own type checker for S we make the following definition, which 
will allow us to use Maple’s type function. 

 > `type/S` := x -> if not type(x, integer) then false  
     elif x < 2 then false  
     elif x = 2 then true  
     else type(x - 3, S)  
     fi; 

Now we can check to see whether an expression has type S by using Maple’s 
type function. For example, try out the following commands. 
 
 > type(2, S); 
 > type(3, S); 
 > type(2+3, S); 
 
For another example, suppose that T is a set of lists that has the following 
inductive definition. 

Basis: [ ] ∈ T. 
Induction: if x ∈ T then cons(a, x) ∈ T. 

As in the previous example, we can build our own type checker for T, which is 
given as follows. 
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  > `type/T` := x -> if not type(x, list) then false 
      elif x = [ ] then true 
      elif hd(x) = a then type(tl(x), T) 
      else false 
      fi; 

Experiments to Perform 

 1. Write down an informal description of the set S. Then perform some 
tests to see whether the type function tests for membership in the set S 
that you described. For example, you might try some tests like the follow-
ing to see what happens. 

> map(type, [$1..10], S); 

 2. Write down an informal description of the set T. Then perform some 
tests to see whether the type function tests for membership in the set T 
that you described. 

 3. Let A be the set defined inductively as follows: 

Basis: 0 ∈ A. 
Induction: if x ∈ A then 2x + 1 ∈ A. 

a. Write down an informal description of A. 

b. Define A as a Maple type function and then test your definition to see 
whether it works properly to test membership in the set A that you 
described. 

3.6   Inductively Defined Sets 
In this experiment we’ll look at some ways to pick out elements or subsets of 
elements from an inductively defined set. For example, if an inductively de-
fined set has a single basis element and a single construction rule, then it’s 
easy to define a function to select the nth element of the set. For example, 
suppose that S is defined inductively as follows. 

Basis: 2 ∈ S. 
Induction: If x ∈ S then x + 3 ∈ S. 

Let getS(n) return the nth element of S. We can define getS as follows in Ma-
ple: 

getS := n -> if n = 1 then 2 else getS(n – 1) + 3 fi; 
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Now we can compute the individual elements of S. For example, try out the 
following commands. 

 > getS(1); 
 > getS(35); 

We can use the map function to find various subsets of S. For example, try out 
the following command to obtain the first 10 elements of S. 

> map(getS, {$1..10}); 

Experiments to Perform 

 1. Let A be the set of elements defined inductively as follows. 

Basis: 0 ∈ A. 
Induction: if x ∈ A then 2x + 1 ∈ A. 

  Define getA and then use it to generate some elements of A and some 
subsets of A. 

 2. Let T be the set of elements defined inductively as follows. 

Basis: [ ] ∈ T. 
Induction:  if x ∈ T then cons(a, x) ∈ T. 

  Define getT and then use it to generate some elements of T and some 
subsets of T. 

3.7   Subsets and Power Sets 
Sets are represented in Maple in such a way that the elements can be ac-
cessed. But the ordering of elements in a set is based on the internal ad-
dresses of expressions, which may differ from machine to machine. For exam-
ple, try out the following commands. 
 
 > A := {a, c, c, b, b, d}; 
 > B := {a, b, d, x}; 
 > C := {c, c, b, d, a}; 
 > {a, b}; 
 > {b, a}; 

We can still work with sets and access elements of a set as long as we don’t 
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rely on a specific ordering of the elements. Try out the following commands. 

 > A := {a, b, c, d, e}; 
 > nops(A); 
 > op(A); 
 > A[1]; 
 > A[3]; 
 > {A[1]}; 
 > A[2..4]; 
 > {A[2..4]}; 
 
The head and tail functions defined for lists should also work for sets because 
Maple stores the elements of a set by a fixed internal ordering of expressions. 
For example, try out the following commands. 
 
 > hd := x -> x[1]; 
 > tl := x -> x[2..nops(x)]; 
 > hd(A); 
 > tl(A); 
 
If we want to construct a set similar to a list, then we’ll need a different defi-
nition for cons. 
 
 > setCons := (x, S) -> {x, op(S)}; 
 > setCons(a, {b, d, x}); 
 
With this definition the following equation should hold for all sets S. 

S = setCons(hd(S), tl(S)).  

For example, we can use evalb to test the equation for any particular set. Try 
out the following commands.  

 > S := {1, 5, b, a}; 
 > evalb(A = setCons(hd(A), tl(A)));  
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Experiments to Perform 

 1. Construct a recursive definition for the “subset” function, which deter-
mines whether one set is a subset of another. For example, the Maple 
command 

> subset({a, b}, {b, c, a, d}); 

  should return true. Be sure to give your definition a good test. 

 2. Construct a recursive definition for the “power” function, where power(S) 
returns the power set of the finite set S (the set of all subsets of S). For 
example, 

> power({a, b}); 

  should return the set consisting of all four subsets of {a, b}. Be sure to 
give your definition a good test. Hint: Notice that the map and map2 
functions can be used to add an element to each set in a collection of sets. 
For example, either of the commands 

> map2(`union`,{a} , {{ }, {b}, {c}, {b, c}}); 
  or 

> map(`union`, {{ }, {b}, {c}, {b, c}}, {a}); 

  will return the set {{a}, {a, b}, {a, c}, {a, b, c}}. 

 3. (Efficiency considerations). Try out the following tests to verify that ac-
tual parameters are passed by value (i. e., evaluated before being 
passed). 

  > g:= x -> [power(x), power(x)]; 
  > h := x -> [x, x]; 
  > j := x -> h(power(x)); 
  > A := {$1..10}; 
  > time(h(power(A))); 
  > time(j(A)); 
  > time(g(A)); 

  Why do these tests indicate that parameters are passed by value? 
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4 
Binary Relations 

In this chapter we’ll use Maple to explore some of the basic ideas about binary 
relations presented in Chapter Four of the textbook. We’ll do experiments 
with composition, closure, and order.  

4.1   Composing Two Binary Relations 
In this experiment we’ll see how to construct the composition of two binary re-
lations. If we are given two binary relations R and S, the composition R ° S is 
defined as follows. 

R° S = { [a, c] | there is a value b such that [a, b] ∈ R and [b, c] ∈ S}. 

We’ll let “compose” be the function that returns the composition of two finite 
binary relations. So compose(R, S) returns the composition R° S. 
 Here’s a way to construct compose(R, S). If R ≠ { }, then we can take the 
first pair of R, say [a, b], and look through S for those pairs whose first com-
ponent is b. Whenever a pair [b, c] occurs in S, we put the pair [a, c] in our 
composition set. Once this has been done, we can apply the same procedure to 
the tail of R and union the two sets to get the desired composition. We’ll let 
the function getPairs do the job of composing a singleton pair from R with S. 
In other words, getPairs has the definition 

getPairs([a, b], S) = {[a, c] | There is a pair [b, c] ∈ S}. 

Assuming that we have written a Maple definition for getPairs, we can write 
the Maple definition for compose as follows. 
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 > compose := (R, S) -> if R = { } then { }  
    else getPairs(hd(R), S) union compose(tl(R), S) fi; 

Experiments to Perform 

 1. Write a Maple definition for the function getPairs. For example, the Ma-
ple command 

> getPairs([a, b], {[b, c], [c, d], [b, d]}); 

  should return the set {[a, c], [a, d]}. Be sure to test getPairs on several ex-
amples. 

 2. Now test the compose function on several pairs of binary relations. For 
example, define the following relations. 

  > less := {[1, 2], [1, 3], [1, 4], [2, 3], [2, 4], [3, 4]}; 

  > greater := {[4, 3], [4, 2], [4, 1], [3, 2], [3, 1], [2, 1]}; 

  > equal := {[1, 1], [2, 2], [3, 3], [4, 4]}; 

  Perform tests to compute the following nine compositions. 

  less ° less  less ° equal less ° greater 

  equal ° less equal ° equal equal ° greater 

  greater ° less greater ° equal greater ° greater 

4.2   Constructing Closures of Binary Relations 
In this experiment we’ll be concerned with techniques to construct the three 
famous closures of a binary relation: reflexive, symmetric, and transitive. 
We’ll start with the reflexive closure of a binary relation R over the set A, 
which is defined as the following set. 

R ∪ {[a, a] | a ∈ A}.  

To compute this set we need to construct the equality relation for a set A, 
which we’ll denote by eq(A). A definition for eq can be given as follows. 

  > eq := A -> if A = { } then { } else {[hd(A), hd(A)]} union eq(tl(A)) fi; 

For example, try out the following test.  
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   > B := {a, b, c}; 
   > eq(B); 

With the means to find the equality relation for a set, it’s an easy matter to 
find the reflexive closure of a binary relation R over a set A, which we’ll denote 
by rc(R, A). A definition for rc can be written as follows. 

  > rc := (R, A) -> R union eq(A); 

For example, we’ll compute the reflexive closure of a binary relation. 

   > R := {[a, b], [b, c], [c, a]}; 
   > C := rc(R, {a, b, c}); 

Now let’s consider the symmetric closure of a binary relation R, which is de-
fined as the following set. 

R ∪ {[a, b] | [b, a] ∈ R}.  

To compute this set we’ll need to compute the converse of a binary relation R, 
which we’ll denote by converse(R). A definition for converse can be written as 
follows. 

 > converse := R ->  if R = { } then { }  
  else  
  {[hd(R)[2], hd(R)[1]]} union converse(tl(R)) fi; 

With the means to find the converse of a relation, it’s an easy matter to find 
the symmetric closure of a binary relation R, which we’ll denote by sc(R, A). A 
definition for sc can be written as follows. 

 > sc := R -> R union converse(R); 

Experiments to Perform 

 1. Test this definition of symmetric closure on the binary relation  

R = {[a, b], [b, c], [c, a]}.  

  Test sc on two other binary relations of your choice. 

 2. Let comp(R, n) denote the composition of the binary relation R with itself 
n times. For example, comp(R, 2) = R° R and comp(R, 3) = R° R° R. The 
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transitive closure of R over an n-element set, which we denote as tc(R, n) 
is defined as the following union. 

   tc(R)  = R ∪ R2 ∪ ... ∪ Rn 

     = comp(R, 1) ∪ comp(R, 2) ∪ ... ∪ comp(R, n). 

   So the tc function can be defined in terms of the comp function. This al-
lows us to make the following definition for tc. 

> tc := (R, n) -> if n = 0 then { } else comp(R, n) union tc(R, n – 1) fi; 

a. Use “compose” from Section 4.1 to define the comp function. Use the 
following relation for one of the tests. L = {[0, 1], [1, 2], [2, 3], [3, 4]}. 

b. Test tc on at least two binary relations.Use the following relation for 
one of the tests. L = {[0, 1], [1, 2], [2, 3], [3, 4]}. 

 3. We know that the smallest equivalence relation containing a binary rela-
tion R is tsr(R). For each of the following relations R use Maple to find 
the smallest equivalence relation containing R. Also test the relation 
rst(R) to show that the order of application can not be changed. 

  a. R = { } over the set A = {a, b, c}. 

  b. R = {[a, b]} over the set A = {a, b, c}. 

  c. R = {[a, b], [a, c]} over the set A = {a, b, c}. 

  d. R = {[1, 2], [1, 3], [4, 5], [6, 3]} over the set A = {1, 2, 3, 4, 5, 6}. 

4.3   Testing for Closures 
This experiment considers the problem of testing whether a binary relation is 
reflexive, symmetric, or transitive. We’ll start by considering ways to test for 
the reflexive property of a binary relation. Let isReflexive(R, A) test whether 
the binary relation R over A is reflexive. Here is a definition for the function. 

 > isReflexive := (R, A) -> if A = { } then true 
                elif member([hd(A), hd(A)], R) then  
     isReflexive(R, tl(A)) 
          else false fi; 

This definition just checks to see whether the equality relation for A is a sub-
set of R. If we have access to the functions eq and subset from prior experi-
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ments, then we can define isReflexive as follows. 

> isReflexive := (R, A) -> subset(eq(A), R); 

Alternatively, we could use the the fact that a binary relation is reflexive if 
and only if it equals its reflexive closure. If we have access to the function rc to 
compute the reflexive closure from the previous experiment, then we can de-
fine isReflexive as follows. 

> isReflexive := (R, A) -> evalb(R = rc(R, A)); 

Experiments to Perform 

 1.  Do the following test for each of the three definitions of isReflexive. 

   > A := {a, b, c}; 
   > R := {[a, a], [a, b], [b, b], [b, c], [c, c]}; 
   > isReflexive(R, A); 

  Test the three definitions of isReflexive on a binary relation that is not 
reflexive. 

 2.  Construct a function isSymmetric to test whether a binary relation is 
symmetric. Test your function on two relations that are symmetric and 
two relations that are not symmetric. 

 3.  Construct a function isTransitive to test whether a binary relation is 
transitive. Test your function on two relations that are transitive and 
two relations that are not transitive.  

4.4   Warshall/Floyd Algorithms 
In this experiment we’ll look at some algorithms to answer questions about 
binary relations when we think of them in the form of directed graphs. In the 
process we’ll see another way to compute the transitive closure of a binary re-
lation. 
 We’ll construct algorithms that for any pair of vertices i and j in a di-
rected graph will answer the following questions. 

Is there a path from i to j? 
What is the length of the shortest path from i to j? 
What is the shortest path from i to j? 
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A directed graph with n vertices will be represented as an n by n adjacency 
matrix over the set of indices {1, 2, ..., n}. To get used to working with matrices 
in Maple try out the following commands. 

 > [[0, 0, 1], [1, 1, 0], [0, 0, 1]]; 
 > a := matrix(%); 
 > evalm(a); 
 > a[3, 2]; 
 > b := matrix(2, 2); 
 > evalm(b); 
 > b[1, 2] := 3; 
 > evalm(b); 
 > for i from 1 to 2 do b[i, i] := 0 od; 
 > evalm(b); 

It makes sense to place data like matrices in a file instead of typing them out 
during a session. For example, create a file named matrixInput with the fol-
lowing data. 

[[0, 0, 1], [1, 1, 0], [0, 0, 1]]; 

Then the first line of the preceding Maple commands can be replaced by the 
following command. 

 > read matrixInput; 

Now the other commands can be performed as before. For example, try out the 
following commands again. 

 > a := matrix(%); 
 > evalm(a); 
 > a[3, 2]; 

We can answer the question, “Is there a path from i to j?” if we have access to 
the transitive closure of the binary relation representing the directed graph. 
Warshall’s algorithm computes the transitive closure of a binary relation rep-
resented as an adjacency matrix. Here is a Maple version of the algorithm 
with some preceding comments. 

 # Warshall's algorithm  
 # The algorithm computes the transitive closure of a binary 
 # relation (digraph) represented as an n by n adjacency. 
 # If M is an n by n adjacency matrix, then the command  
 # >  war(M, n); 
 # will output the adjacency matrix of the transitive closure. 
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 war := proc(M, n) 
  local A; 
  A := matrix(n, n); 
  for i from 1 to n do 
  for j from 1 to n do 
   A[i, j] := M[i, j] 
  od od; 
  for k from 1 to n do 
  for i from 1 to n do 
  for j from 1 to n do 
   if A[i, k] = 1 and A[k, j] = 1 then A[i, j] := 1 fi 
  od od od; 
  print(evalm(A)) 
  end; 

Experiments to Perform 

 1. Put the Maple program for Warshall’s algorithm in a file. Then put the 
adjacency matrix for the following graph in another file. 

1 2 3 4 5  

  Test Warshall’s algorithm on the adjacency matrix for the graph.  

 2. Write an algorithm to implement Floyd’s algorithm for finding the 
lengths of shortest paths. Test your algorithm on the following graph.  

 

  Note: You can use the word infinity to denote infinite entries in the modi-
fied adjacency matrix for the graph. 

 3. Write an algorithm to implement the modified version of Floyd’s algo-
rithm that also outputs a path matrix for finding the shortest path. Test 
your algorithm on the following graph. 
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 4. How many distinct path matrices can describe the shortest paths in the 
following graph? Assume that all edges have weight = 1.  

1 2 3 4 5  

  Which path matrix is returned by Floyd’s modified algorithm? 

 5. Write a function that takes two vertices i and j as input along with the 
two matricies output by Floyd’s modified algorithm and returns a short-
est path from i to j, if one exists. You may return the path either as a list 
edges to be traveled on a path from i to j or as a list of vertices along the 
path from i to j. Test your function on the three graphs from the preceding 
experiments. 

4.5   Orderings 
To have an ordering, we need a set of elements together with a binary relation 
that is antisymmetric and transitive. In this experiment we’ll look at the 
lexicographic ordering and the standard ordering of strings. Recall that the 
lexicographic ordering of a set of strings over an alphabet is like the usual dic-
tionary ordering that we are used to. In Maple the “lexorder” function will de-
cide whether two strings are lexicograpically ordered. For example, try out the 
following commands. 
 
> lexorder(a, b); 
> lexorder(``, a); 
> lexorder(ab, baa); 
> lexorder(ab, ``); 

Experiments to Perform 

 1. Check to see whether lexorder is a reflexive ordering of strings. 

 2. Use Maple’s sort operation to verify the following lexicographic ordering 

Λ < a < aa < aaa < aba < abb < ba < bbaa < bca. 

  Also verify that the lexicographic ordering is not well-founded. That is, 
there are infinite descending chains. For example, 

b > ab > aab > aaab > ... 

 3.  The standard ordering of strings is a well-founded alternative to lexico-
graphic ordering. In this ordering, strings of the same length are ordered 
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lexicographically, while strings of different length are ordered by length. 

a. Define the operation “std” to decide whether two strings are in stan-
dard order. 

b. Test std on strings over {a, b, c}. For example, use Maple’s sort with 
std to verify the standard ordering of the strings in the list  

[ba, Λ, a, aba, aa, aaa, abb, bbaa, bca].  

 4.  The lexicographic ordering of ℕ × ℕ is defined by (x1, x2) < (y1, y2) if either 

x1 < y1 or x1 = y1 and x2 < y2. 

a. Define the operation “lex” to decide whether pairs of natural numbers 
are lexicographically ordered. For example, lex([1, 2], [2, 0]) is true. 

b. Test lex on several pairs of natural numbers. Then use it with the sort 
operation to sort the list 

[[4,0], [0, 2], [1, 1], [0, 1], [1, 0]].  

 



 
48 

5 
Analysis Techniques 

In this chapter we’ll use Maple to explore some of the basic ideas from Chap-
ter Five of the textbook. We’ll do experiments with finite sums, counting, 
probability, solving recurrences, and orders of growth. 

5.1   Finite Sums 
This experiment looks at various ways that Maple can be used to evaluate 
finite sums and to find closed forms for finite sums in some cases. Try out the 
following tests to see how Maple calculates sums. 
 
 > sum(i, i=1..20); 
 > sum(i, i=1..n); 
 > sum(i*i, i=1..n); 
 > sum(i*i*i, i=1..n); 
 > sum(i*i*i*i, i=1..n); 
 > sum(i*(a**i), i=1..n); 
 > sum('a[k]*x^k','k'=0..n); 
 
When dealing with expressions that involve summations it can often be quite 
useful to change the limits of summation. For example,  

! 

(i "1)
i=2

n+1

# = i

i=1

n

# .

 

We can use Maple to verify that changes we make in limits of summation are 
correct. For example, try out the following Maple commands. 
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 > a := sum(i-1, i = 2..n+1); 
 > b := sum(i, i = 1..n); 
 > evalb(a = b); 
 > evalb(simplify(a) = simplify(b)); 
 > simplify(a); 
 > simplify(b); 

Experiments to Perform 

 1. Some of the tests gave closed formulas as answers. Check whether these 
answers agree with known results for the sums.  

 2. Use Maple’s help system to find out more about sum.  

 3. Given the following alogrithm to analyze.  

  for i := 1 to n do 
   for j := i downto 1 do x := x + ƒ(x) od; 
   x := x + g(x) 
  od 

  For each of the following cases, find a closed form in terms of n for the 
number of times that the indicated statement is executed. Use Maple’s 
sum command if necessary. 

a. Find the number of times the assignment statement (:=) is executed 
during the running of the program. Notice that an assignment state-
ment is found at four places in the program. 

b. Find the number of times the addition operation (+) is executed dur-
ing the running of the program. 

 4. For each of the following cases, find an expression for each question mark 
so that the two summations are equal. Use Maple to verify the correct-
ness of your results. 

a. 

! 

(i + 2)
i=2

n

" = (i #1)
i=?

?

" . b.
 

! 

a
n+2x

n

n=0

5

" = a
n
x
?

n=?

?

" .
 

c. 

! 

(n + 3)x
n

n=0

k

" = nx
?

n=?

?

" . 
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5.2   Permutations  
In this experiment we’ll use Maple to explore counting with permutations. Try 
out the following commands to see how maple deals with permutations. 
 
 > with(combinat); 
 > permute({a, b, c}); 
 > permute({a, b, a}); 
 > permute([r, a, d, a, r]); 
 > permute(4, 2); 
 > numbperm(4, 2); 

Experiments to Perform 

 1. Maple has many combinatorial functions. Explore the package with the 
following help command. 

   > ?combinat 

  Use the help system to find out about three different functions that deal 
with permutations. Perform some tests. 

 2. Notice from the examples that when the permute operation is applied to 
a list of elements it returns bag permutations. For each of the following 
lists apply the permute operation. Then verify in each case that the 
number of permutations listed can be computed by the formula for bag 
permutations. 

  a. [b, l, o, b]. 

  b. [t, o, o, t]. 

  c. [r, a, d, a, r]. 

  d. [b, a, n, a, n, a]. 

 3. Suppose we want to build a code to represent each of 29 distinct objects 
with a binary string having the same minimal length n, where each 
string has the same number of 0’s and 1’s. Somehow we need to solve an 
inequality like 

    

! 

n!

k!k!
" 29 , 

  where k = n/2. We find by trial and error that n = 8. Try it. 
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5.3   Combinations  
In this experiment we’ll examine some elementary principles of counting com-
binations. For example, try out the following commands to see how Maple 
deals with combinations. 
 
 > with(combinat); 
 > binomial(10, 4); 
 > choose({a, b, c}); 
 > choose({a, b, a}); 
 > choose(4, 2); 
 > numbcomb(4, 2); 
 > binomial(4, 2); 
 > sum(binomial(5, i), i = 0..5); 

Experiments to Perform 

 1. Maple has many combinatorial functions. Explore the package with the 
following help command. 

   > ?combinat 

  Use the help system to find out about three different functions that deal 
with combinations. Perform some tests. 

 2. How do we really know that the element in the nth row and kth column of 
Pascal’s triangle is 

  

n

k( )? It depends on the following useful result about 
binomial coefficients. 

    

! 

n

k

" 

# 
$ 
% 

& 
' =

n (1

k

" 

# 
$ 

% 

& 
' +

n (1

k (1

" 

# 
$ 

% 

& 
' .

 

  Use Maple to test this equation for several values of n. 

 3. Can you find some other interesting patterns in Pascal’s triangle? There 
are lots of them. For example, look down the column labeled 2 and notice 
that, for each n ≥ 2, the element in position (n, 2) is the value of the arith-
metic sum 1 + 2 + ... + (n – 1). In other words, we have the formula 

     

! 

n

2

" 

# 
$ 
% 

& 
' =

n(n (1)

2
.

 

  Use Maple to test this equation for several values of n. 



52 Maple Experiments 

 

 4. In how many ways can four coins be selected from a collection of pennies, 
nickels, and dimes? Let S = {penny, nickel, dime}. Then we need the num-
ber of four-element bags chosen from S. The answer is 

! 

3+ 4 "1

4

# 

$ 
% 

& 

' 
( =

6

4

# 

$ 
% 
& 

' 
( =15.  

  Can you figure out a way to have Maple compute and output a listing of 
the bags. 

 5. Design a Maple function that can be used to test the following equation 
for several values of n. 

  

! 

(1)(1)(3)L(2n " 3)

n!
2
n

=
2

n

2n " 2

n "1

# 

$ 
% 

& 

' 
( . 

 6. Design a Maple function that can be used to test the following equation 
on several values of n. 

! 

n

0

" 

# 
$ 
% 

& 
' +

n

1

" 

# 
$ 
% 

& 
' + ...+

n

n (1

" 

# 
$ 

% 

& 
' +

n

n

" 

# 
$ 
% 

& 
' = 2

n
.

 

5.4   Error Detection and Correction 
A binary block code is a set of binary strings that have the same length. Each 
string is called a code word. The distance between two code words is the num-
ber of digits where the two code words differ. For example, the distance be-
tween 1011 and 1010 is 1 and the distance between 00110 and 10111 is 2. 
 We can write a Maple function to detect the distance between two code 
words of the same length as follows, where F and T are functions to return the 
first character (the head) and the tail of a string, respectively. 

dis := (x, y) -> if type(x, string) and type(y, string) then 
    if x =  "" then 0  
    elif F(x) = F(y) then dis(T(x), T(y)) 
    else 1 + dis(T(x), T(y)) 
    fi 
   else dis(convert(x, string), convert(y, string)) fi; 

For example, the command 

> dis(1001,1111); 
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returns the value 2. If there are leading 0’s in a binary string we need to place 
double quotes around the string to capture each bit. For example, the com-
mand 

> dis("0000",1011); 

returns the value 3 and the command 

> dis("0111", 1000); 

returns the value 4 

Error Detection 
Whenever the distance between any two code words is at least 2, the code is a 
single error-detection code because any word with a single error will not be 
equal to any of the given code words. For example, suppose our code consists of 
the following four words. 

000, 110, 101, 011. 

The distance between any two of these words is 2. If one of the words is 
transmitted and a single error occurs, then the received word must be one of 
the following strings 

100, 010, 001, 111. 

This set of words is disjoint from the given set of code words. 
 One way to construct an error detection scheme is to take any set of code 
words and add a single “parity” bit to each word, where the bit is 1 if the 
number of 1’s in the word is odd and 0 otherwise. So the number of 1’s in any 
code word (including the parity bit) is always even. Thus the distance between 
any two code words is an even number. For example, suppose we start with 
the following code of eight words. 

000, 001, 010, 011, 100, 101, 110, 111. 

Notice that some pairs are distance 1 apart. We’ll add a parity bit on the 
right of each word to obtain the following code. 

0000, 0011, 0101, 0110, 1001, 1010, 1100, 1111. 

Notice that each word in this set has an even number of 1’s. So if a single error 
occurs, then there will be an odd number of 1’s in the received word. 



54 Maple Experiments 

 

 If we represent a code word as a list of binary digits, then it is easy to 
check for single errors. For example, the sum of the digits taken modulo 2 will 
give us the parity of the word. Try out the following Maple commands. 
 
 > x := [0, 1, 1, 0, 1]; 
 > sum(x[i], i = 1..5) mod 2; 

Error Correction 
A single error can be detected and corrected if the distance between any two 
code words is at least 3. This follows because if a code word x is transmitted 
and the result y contains a single error, then the distance between x and y is 1 
while the distance between y and any other code word is at least 2. This is an 
example of the following more general result about error correction. 

Whenever a code has the property that the distance between any two 
code words is at least 2k + 1, then the code is a k-error-correcting code. 

One method to create a single error-correction code is to use parity bits. For 
example, suppose we start with the following code of eight words. 

000, 001, 010, 011, 100, 101, 110, 111. 

Notice that some pairs are distance 1 apart. We’ll add three parity bits on the 
right of each word as follows: If C1C2C3 is a three bit string, then construct the 
six bit string C1C2C3P1P2P3, where  
 

P1 = (C1 + C2) mod 2 
P2 = (C1 + C3) mod 2 
P3 = (C2 + C3) mod 2 

The eight code words with three parity bits added are listed as follows. 

000000, 001011, 010101, 011110, 100110, 101101, 110011, 111000. 

Notice, with some work, that the distance between any two of these six bit 
words is at least 3. 
 With this method (due to Hamming), we can detect and correct a single 
error by recomputing the three parity bits when the word is received. If an er-
ror occurred in some parity bit Pi, then that is the only change. If an error oc-
curred in one of the bits Ci, then exactly two of the parity bits are wrong.  
 For example, let x = 000000 and suppose that x is transmitted and the 
code word received is y = 000100. Recomputing the parity bits for y give us the 
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word 000000. The only difference is in the parity bit, which means that the 
error is in the parity bit. So the correct value of y is 000000.  
 Now suppose that x is transmitted and the code word received is z = 
100000. Recomputing the parity bits for z give us the word 100110, which dif-
fers from z in exactly two parity bits P1 and P2. This tells us that the an error 
occurred in one of the bits Ci. But which Ci is in error? Let’s again observe the 
calculation P1 and P2.  

P1 = (C1 + C2) mod 2 
P2 = (C1 + C3) mod 2 

Notice that there is a common bit in the calculation of P1 and P2, namely C1. 
That is the key to which bit is in error. So the correct value of z is 000000. 
 If we represent a code word as a list of binary digits, then it is easy to de-
tect and correct single errors. To get the idea, try out the following Maple 
commands. 
 
 > x := [0, 0, 0, 0, 0, 0]; 

 > y := [1, 0, 0, 0, 0, 0]; 

 > p[1] := (y[1] + y[2]) mod 2; 

 > evalb(p[1] = y[4]); 

Experiments to Perform 

 1. Write the definitions for the functions F and T. Then try out several tests 
of the distance function. 

 2. This experiment deals with adding parity bits to code words. 

a. Write a Maple function to transform a binary block code by adding a 
parity bit to each code word so that the total number of 1's is even. 
Represent the input and the output as a list of code words, where each 
code word is represented as a list of binary digits. For example, if 
addParityBit is the name of the function, then the Maple command 

    > addParityBit([ [1, 0, 1, 1], [1, 0, 0, 0], [0, 0, 0, 0] ]); 

   returns the list [ [1, 0, 1, 1, 1], [1, 0, 0, 0, 1], [0, 0, 0, 0, 0] ]. 

 Test your function on this example and on the example list of eight 3-
bit code words.  
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b. Write a Maple function to take a block code of 3-bit code words and 
add three parity bits to each word. For example, if addThreeBits is 
the name of the function, then the Maple command 

  > addThreeBits([[1, 1, 1], [1, 0, 1]]); 

 returns the list [ [1, 1, 1, 0, 0, 0], [1, 0, 1, 1, 0, 1] ]. 

 Test your function on this example and on the example set of eight 3-
bit code words. 

 3. Write a function to detect single errors in a list of code words that origi-
nally have even parity (i.e., each word has an even number of 1's). The 
output should be a sublist consisting of those code words with an odd 
number of 1's. For example, if parityErrors is the name of the function, 
then the maple command 

   > parityErrors ([ [1, 0, 1, 1], [1, 0, 1, 0], [0, 0, 1, 0] ]); 

  returns the list [ [1, 0, 1, 1], [0, 0, 1, 0] ]. 

a. Test parityErrors on the example input and on another list of your 
choosing the input of eight 4-bit words. 

b. We can use a random number generator to simulate the transmission 
of a set of code words with the possibility that single errors may occur 
in some the of words. (See Maple's help ? rand.) Here is a program, 
called errorTest, to do the job, and to detect which words contain er-
rors.   

 errorTest := proc(L) 
  local X, p, i, s, n; 
  print(L); 
  X := L; 
  p := rand(1..2); 
  for i to nops(X) do 
   if p() = 1 then # Call p(); if it is 1, introduce random error. 
   s := rand(1..nops(X[i]));  
   n := s();  
   X[i][n] := (X[i][n] + 1) mod 2 
   fi 
  od; 
  print(X); 
  parityErrors(X) 
 end; 
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 Perform the following tests of errorTest. First, call errorTest four 
times for the input list [ [1, 0, 1, 1, 1], [1, 0, 0, 0, 1], [0, 0, 0, 0, 0] ]. Sec-
ond, call errorTest four times for the input list of eight 4-bit code 
words of even parity. 

 4 Write two Maple programs, one to detect single errors and one to correct 
single errors, to process lists of 6-bit code words, where the last three 
bits are parity bits. For example, if detectErrors is the program to detect 
single errors, then the Maple command 

   > detectErrors([ [0, 0, 0, 0, 0, 0], [1, 1, 1, 0, 1, 0], [1, 0, 0, 1, 0, 1] ]); 

  returns the list [ [1, 1, 1, 0, 1, 0], [1, 0, 0, 1, 0, 1] ]. 

  If we let correctErrors be the program to correct single errors, then the 
Maple command 

   > correctErrors( [ [1, 1, 1, 0, 1, 0], [1, 0, 0, 1, 0, 1] ]); 

  returns the list [ [1, 1, 1, 0, 0, 0], [1, 0, 1, 1, 0, 1] ]. 

a. Test detectErrors on the example input and then use the output to 
test correctErrors. Do a second test of the two programs on another 
list of 6-bit code words,  

b. What happens when 2 or more errors occur in some code word? 

c. Modify the errorTest program used in (4b) to introduce random single 
errors in a list of 6-bit code words, where the last three bits are parity 
bits. The program then calls detectErrors and correctErrors. Perform 
the following tests of errorTest. First, call errorTest four times for the 
input list [ [0, 0, 0, 0, 0, 0], [1, 0, 0, 1, 1, 0], [1, 1, 1, 0, 0, 0] ]. Second, 
call errorTest four times for the input list of all eight 6-bit code words. 

5.5   The Birthday Paradox 
This experiment is designed to test some results of discrete probability by us-
ing a random number generator. The “birthday paradox” illustrates that some 
coincidences are actually probable events. For example, we know that if we 
choose 23 numbers (e.g., birthdays) at random out of 365 possible numbers 
(e.g., the days of the year), then the probability that two of the chosen num-
bers will be the same is 0.507. For 30 numbers the probability is 0.706, and 
for 40 numbers the probability is 0.891. Consider the following Maple pro-
gram to generate a list of random numbers in the interval 1 to 365. 
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number := rand(1..365); 
birth := N -> [seq(number( ), i=1..N)]; 

For example, try out the following commands to get used to things. 

> number( ); 
> number( ); 
> birth(23); 

Experiments to Perform 

 1. It is hard for our eyes to find duplicates in a list of random numbers. But 
it is not hard to write a program that picks out duplicates, if there are 
any, from a list of numbers. Let dup(L) return the set of duplicates that 
occur in the list L. For example,  

dup([2, 4, 5, 9, 3, 4, 6, 3, 4, 2]) = {2, 3, 4}. 

  Let trial(N) return the set of duplicates that occur in a list of N random 
numbers in the interval 1 to 365. The definition for trial is easy: 

trial := dup @ birth. 

  Your task is to construct and test the function “dup” so that trial works 
as desired. 

 2. Test the birthday paradox by doing 10 trials for each of the following val-
ues of N. In each case, observe how close the results of the 10 trials come 
to the actual probabilities.  

  a. 23 numbers. 

  b. 30 numbers. 

  c. 40 numbers. 

5.6   It Pays to Switch 
This experiment is designed to test some results of discrete probability by us-
ing a random number generator. Suppose there is a set of three numbers. One 
of the three numbers will be chosen as the winner of a three-number lottery. 
We pick one of the three numbers. Later, we are told that one of the two re-
maining numbers is not a winner, and we are given the chance to keep the 
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number that we picked or to switch and choose the remaining number. What 
should we do? We should switch.  
 To see this, notice that once we pick a number, the probability that we 
did not pick the winner is 2/3. In other words, it is more likely that one of the 
other two numbers is a winner. So when we are told that one of the other 
numbers is not the winner, it follows that the remaining other number has 
probability 2/3 of being the winner. So go ahead and switch. 
 To test this theory consider the following Maple program to generate a 
list of pairs of random numbers from the set {1, 2, 3}, where we can consider a 
pair to contain the winning number and the number picked.  

 number := rand(1..3); 
 pays := N -> [seq([number(),number()], i=1..N)]; 

For example, try out the following commands to see a few lists of pairs of ran-
dom numbers from the set {1, 2, 3}. 

 > pays(5); 
 > pays(10); 
 > pays(20); 

If we always choose to switch, then we count the number of distinct pairs re-
turned and divide by the total number of pairs to obtain an idea of how we 
would fair in such an experiment. 

Experiments to Perform 

 1. It is hard for our eyes to find pairs that are distinct in a large list of pairs 
of random numbers. Suppose that we have a program “distinct” to take 
such a list and return the number of pairs that are distinct. For example,  

distinct([[1, 3], [1, 1], [3, 2], [1, 2], [2, 2]]) = 3. 

  Let trial(N) return the number of distinct pairs out of N pairs of random 
numbers from the set {1, 2, 3}.  The definition for trial is easy: 

trial := distinct @ pays. 

  Your task is to construct and test the function “distinct” so that trial 
works as desired. 
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 2. Test the “pays to switch” game by doing 10 trials for each of the following 
values of N. In each case, observe how close the results of the 10 trials 
come to the actual probability of 2/3.  

  a. 10 numbers. 
  b. 20 numbers. 
  c. 50 numbers. 
  d. 100 numbers. 
  e. 1000 numbers. 

 3. Another way to see that switching is the best policy is to modify the prob-
lem to a larger set of numbers. For example, suppose we have a set of 50 
numbers and a 50-number lottery. If we pick a number, then the prob-
ability that we did not pick a winner is 49/50. Later we are told that 48 of 
the remaining numbers are not winners, but we are given the chance to 
keep the number we picked or switch and choose the remaining number. 
What should we do? We should switch because the chance that the re-
maining number is the winner is 49/50. 

   
  Design and test an experiment for this example in a manner similar to 

the given experiment. 

5.7   Markov Chains 
A Markov chain is a process that changes state over time where each change 
of state depends only on the previous state and a given probability distribu-
tion about the chances of changing from any state to any other state. The 
main property is that the next state depends only on the current state and the 
given probability for changing states.  
 For example, suppose we have a 2-state Markov chain with states la-
beled 0 and 1, where the probability of changing states is given on the edges of 
the following directed graph. 
 
 
 
 
 
 
 
 

1 0.8 

0.2 

0 

0.4 

0.6 
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We can represent this graph by a transition matrix P of probabilities. Try out 
the following Maple command to construct P.  

  > P := matrix([[.8, .2], [.6, .4]]); 

To observe the value of P, just type the command 

  > evalm(P); 

The matrix of probabilities for entering some state after two stages of the 
process is given by the product P2 = PP. Try out the following command to 
compute this product. 

  > evalm(P.P); 

The matrix of probabilities for entering a state after three stages of the proc-
ess is given by the command 

  > evalm(P.P.P); 

 Suppose there is an equal chance of starting the process in either of the 
two states 0 and 1. In other words, we’ll assume that the initial probability 
vector is X0 = (0.5, 0.5). We can represent this vector in Maple with the follow-
ing command. 

  > X0 := vector([0.5, 0.5]); 

The probability of entering some state after one stage is given by the vector 
X0P, which we can compute with the command 

  > evalm(X0.P); 

To calculate the probabilities for entering some state after 2, 3, or 4 stages of 
the process, we can type the following commands. 

  > evalm(X0.P.P); 

  > evalm(X0.P.P.P); 

  > evalm(X0.P.P.P.P); 

Notice that these vectors appear to be converging to a particular vector. Let X 
= (u, v) be the unique probability vector such that XP = X. Try the following 
command to construct X.   

  > X := vector([u, v]); 
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To calculate XP type the following command.   

  > evalm(X.P); 

Now, we’re in position to solve the equation XP = X, where u + v = 1. Type the 
following command to solve the resulting set of simultaneous equations for u 
and v.  Note: We are assuming that % refers to the value of the previous vector 
evalm(X.P). 

  > solve({%[1] = u, %[2] = v, u +v = 1},  [u, v]); 

This is the vector X such that XP = X. The Markov chain theorem tells us that 
the previous sequence of vectors converges to X.  
 We should note that the value of the initial probability vector X0 does  
not change the eventual outcome. For example, try out the following tests with 
X0 = (0.3, 0.7) and observe the sequence converges to X. 

  > X0 := vector([.3, .7]); 

  > evalm(X0.P); 

  > evalm(%.P);   

  > evalm(%.P); 

  > evalm(%.P); 

Experiments to Perform 

1. Use the sample matrix P to compute the sequence  

X0P, X0P
2, X0P

3, X0P
4 

  for each case and observe the convergence of the sequence to the vector X. 

  a. X0 = (0.02, 0.98). 

  b. X0 = (0.98, 0.02). 

 2. A company has gathered statistics on three of its products A, B, and C. 
(You can think of A, B,  and C as three breakfast cereals, or as three 
models of automobile, or  as any three products that compete with each 
other for market share.) The statistics show that customers switch be-
tween products according to the following transition matrix.  
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! 

P =

0 0.5 0.5

0.5 0.2 0.3

0.3 0 0.7

" 

# 

$ 
$ 

% 

& 

' 
' 
.

 

  a. Use Maple to represent P and calculate P2 to observe that it has no 
zero entries.  

  b. Since Part (a) shows that a power of P has no zero entries, the Markov 
theorem tells us that there is a unique probability vector X such that 
XP = X and X has no zero entries. Use Maple to find the unique prob-
ability vector X such that XP = X. 

  c. Calculate P4 and P8. Notice that the sequence P, P2, P4, P8 gives good 
evidence of the fact that Pn approaches the matrix with X in each row.   

  d. Let X0 = (0.1, 0.8, 0.1) be the initial probability vector with respect to 
customers buying the products A, B, and C. Compute the sequence  

X0P, X0P
2, X0P

4, X0P
8 

   and observe that it converges to X. Repeat the computation with the 
vector X0 = (0.3, 0.1, 0.6). 

5.8   Efficiency and Accumulating Parameters 
We can often write an efficient recursive algorithm by explicitly keeping track 
of some of the intermediate computations. Variables used to keep track of 
such computations are called accumulating parameters.  
 As an example, suppose that we want to compute Fibonacci numbers. 
Let ƒ(n) return the nth Fibonacci number. We’ll use the definition of the nth 
Fibonacci number to give a simple recursive definition for ƒ as follows. 

> f := n -> if n = 0 then 0 elif n = 1 then 1else f(n – 1) + f(n – 2) fi; 

Notice that for each call to ƒ(n) there are calls to ƒ(n – 1) and ƒ(n – 2). So the 
number of calls is exponential. The first experiment should convince us that 
we need to look for a more efficient algorithm. The second experiment outlines 
an efficient algorithm for Fibonacci numbers that uses accumulating parame-
ters to keep track of the previous two numbers needed to calculate the next 
one. 
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Experiments to Perform 

 1. Test ƒ on a few small values of n until you notice some elapsed time be-
tween the call and the returned value. This will most likely occur some-
where between n = 20 and n = 30. Use Maple’s time function to measure 
the computation time of ƒ on several tests. For example, try the following 
command. 

  > time(f(25)); 

  Also trace ƒ on a very small value of n, like n = 5 or thereabouts. 

 2. We can define a linear function to compute Fibonacci numbers as follows. 

   > fib := n -> g(n, 0, 1); 
   > g := (n, u, v) -> if n = 0 then u else g(n – 1, v, u + v) fi; 

  Test fib on the same values of n that you used to test ƒ. Use Maple’s 
time function to measure the computation time for fib on same tests that 
you measured for ƒ. Trace fib and g with the computation of fib on the 
same small value of n that was used to trace ƒ. 

 3. Suppose that we want to reverse a list. Let rev(x) denote the reverse of 
the list x. One way to define rev is to recursively put the head of the list 
at end of reverse of the tail. Here is a definition, where putLast(a, x) is 
the list obtained by putting a at the end of list x. 

  rev := x -> if x = [ ] then x else putLast(hd(x), rev(tl(x))) fi; 

 putLast := (a, x) -> if x = [ ] then [a]  
   else cons(hd(x), putLast(a, tl(x))) fi; 

  Test rev on several size lists to get a feel for its slowness. For example, 
try something like 

    > rev([$1..100]); 
  or 
    > rev([seq(i, i=0..100)]); 

  Use Maple’s time function to measure the computation time of rev on 
several tests. Trace rev and putLast with the computation of rev on a 
small list.  

 4. We can define a linear function to compute the reverse of a list by accu-
mulating the answer as we perform the computation. Complete the fol-
lowing definition of to reverse a list. 

   > rev := x -> h(x, [ ]); 
   > h := (x, y) -> if x = [ ] then y else h(........., ..........) fi; 
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  Test your new definition of rev on the same lists that you used to test the 
previous version. Use Maple’s time function to measure the computation 
time for rev on same tests that you used for the previous version. Trace 
rev and h with the computation of rev on the same small list that was 
used to trace the previous rev and putLast. 

5.9   Solving Recurrences 
Maple can help us find closed form solutions for some recurrences. To intro-
duce the ideas we’ll start out with a simple recurrence like the following. 

 x0 = 1 
 xn = 2xn–1 + 3n. 

Try to solve this recurrence by hand to find a closed form solution. Then check 
your answer with Maple by typing the following expression: 

> rsolve({x(0) = 1, x(n) = 2*x(n-1) + 3*n}, x); 

To assign x(n) the value of the expression returned by Maple, we type the fol-
lowing command:  

> x := unapply(%, n); 

Now we can compute some values of x. For example, try out the following 
commands. 

 > x(0); 
 > x(1); 
 > x(2); 

Some recurrences have solutions that are complicated expressions. Maple of-
ten needs help in evaluating such expressions. The following commands can 
be useful in such cases.  

simplify, expand, numer, and denom.  

For example, let’s consider the Fibonacci numbers. The nth Fibonacci number 
Fn is given by the following definition. 

 F0 = 0 
 F1 = 1 
 Fn = Fn – 1 + Fn – 2 
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We can solve this recurrence with the following Maple command. 

> rsolve({F(0) = 0, F(1) = 1, F(n) = F(n – 1) + F(n – 2)}, F); 

The resulting expression is quite complicated. We can try to simplify it with 
the command 

> simplify(%); 

Now let’s try to find some values of F. To assign F(n) the value of the expres-
sion returned by Maple, we type the following command.  

> F := unapply(%, n); 

Now we can compute some values of F. For example, try out the following 
commands. 

 > F(0); 
 > F(1); 

The expression for F(1) is not satisfactory. We can try to simplify it with the 
command 

> simplify(%); 

Let’s try the following command to expand the denominator of this expression:  

> numer(%)/expand(denom(%)); 

If we find that a particular combination of commands works well and we wish 
to use them over and over, then it makes sense to construct a function to do 
the job. For example, if we want to use the preceding command more than 
once, we could define a function like the following. 

> mySimp := x -> numer(x)/expand(denom(x)); 

Then we could simply give the following command each time we wanted to ex-
pand the denominator of an expression. 

> mySimp(%); 
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Experiments to Perform 

 1. For each of the following recurrences, do two things:  

  (1) Define a recursive Maple function for the recurrence and compute a 
few of its values.  

  (2) Try to use Maple to find a closed form solution for the recurrence. If 
Maple can’t solve a recurrence, it will return the given recurrence. For each 
recurrence that Maple solves, be sure to test Maple’s solution for the 
same values that you computed by using the recursive definition. Use the 
simplifying commands as necessary.  

a. (Towers of Hanoi) Let hn denote the smallest number of disc moves 

needed to move a pyramid of n discs from one pole to another pole 
with the restriction that there are three poles and no disc can ever be 
above a disc of smaller diameter. 

   h0 = 0 
   hn = 2hn – 1 + 1 

b. (Derangements of a string) Let dn denote the number of arrangements 

of a string of n elements such that all n elements move from their 
original positions. Then dn is defined by the recurrence 

   d1 = 0 

   d2 = 1 
   dn = (n – 1)(dn – 1 + dn – 2) 

c. The number of calls Cn on F to compute the nth Fibonacci number 
Fn—using the recurrence definition—is described by the recurrence 

   C0 = 1 
   C1 = 1 
   Cn = 1 + Cn – 1 + Cn – 2 

d. (Lucas numbers) The recurrence to define the nth Lucas number Ln is 
given by 

    L0 = 2 

   L1 = 1 
   Ln = Ln – 1 + Ln – 2 
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5.10   Generating Functions 
Some recurrences can’t be solved by cancellation and some can’t even be 
solved by the Maple rsolve operation. A powerful technique that uses generat-
ing functions can often be used to solve these recurrences. The technique is 
presented in Section 5.5.3 of the textbook.  
 Recall that the generating function for the sequence  

a0, a1, ... , an, ...  

 is given by the the following infinite polynomial. 

  A(x) = a0 + a1x + a2x
2 + ... + anxn + ... 

    = 

! 

a
n
x
n

n=0

"

# . 

For example, the generating function for the sequence 1, 1, ..., 1, ... is 

! 

x
n

n=0

"

# .

 

The closed form for this generating function is given by the following formula. 

! 

1

1" x
= x

n

n=0

#

$ .  

Recall that we can use such a formula to solve recurrences. For example, sup-
pose we have a recurrence that defines the sequence a0, a1, ... , an, ..., and we 
calculate, using the method of generating functions, that  

! 

A(x) =
1

1" 3x
. 

Then we can rewrite it as follows: 

! 

A(x) =
1

1" 2x
=

1

1" (2x)
= (2x)

n

n=0

#

$ = 2
n
x
n

n=0

#

$ . 

Since  
A(x) = 

! 

a
n
x
n

n=0

"
# , 

we can equate coefficients to obtain the solution an = 3n. In other words, the 

solution sequence is 1, 3, 9, ..., 3n, ... . 
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 The textbook introduces the method of solving recurrences by generating 
functions as a three step process. In Step 1 the given recurrence is used to con-
struct an equation with A(x) as the unknown. Step 2 solves the equation for 
A(x) and, often with the help of partial fractions, writes A(x) as a sum of 
known generating functions. Step 3 equates coefficients to find the result. 
  Maple can be used in Step 2 to solve for A(x) and to transform the result-
ing expression into partial fractions. First replace A(x) by a new variable y. 
Then convert the equation to the form  

expression = 0. 

Then the equation can be solved with the Maple command 

> solve(expression, y); 

The result can be converted into partial fractions by the Maple command 

> convert(%, parfrac, x); 

 For example, we’ll solve the equation 

A(x) – x  =  5 x A(x) – 6 x2A(x). 

Replace A(x) by y and transform the equation into the form “expression = 0” to 
obtain the equation 

x – y + 5xy – 6x2y = 0 

Now we solve for y by giving Maple the following command. 

> solve(x - y + 5*x*y-6*y*x^2, y); 

The result is the expression 

! 

x

1" 5x + 6x
2  

We can use Maple to convert this expression to partial fractions with the fol-
lowing command. 

> convert(%, parfrac, x); 
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The result is the expression 

! 

1

2x "1
"

1

3x "1
. 

Experiments to Perform 

 1. Use generating functions and Maple to solve each of the following recur-
rences. 

 a. a0  =  0, 
  a1  =  4, 
  an =  2an – 1 + 3an – 2  (n ≥ 2). 

 b. a0  =  0, 
  a1  =  1, 
  an =  7an – 1 – 12an – 2 (n ≥ 2). 

 c. a0  =  0, 
  a1  =  1, 
  a2  =  1, 
  an =  2an – 1 + an – 2 – 2an – 3 (n ≥ 3). 

5.11   The Factorial and GAMMA Functions  
Maple has a factorial function to compute n!. But we can also define our own 
factorial function. For example, suppose we define the factorial function recur-
sively as follows: 

 ƒ(0) = 1 
 ƒ(n) = n*ƒ(n – 1). 

Of course we can translate this definition directly into Maple. But we can also 
solve the recurrence with Maple as follows. 

> rsolve({ƒ(0) = 1, ƒ(n) = n*ƒ(n – 1)}, ƒ); 

Notice that the answer is GAMMA(n + 1). Try out GAMMA on some samples 
as follows: 
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 > g := GAMMA; 
 > g(1); 
 > g(2); 
 > g(3); 
 > g(4); 
 > g(20); 

Notice what happens when you test GAMMA with the argument 0: 

> g(0); 

Experiments to Perform 

 1. What relationship do you see between Maple’s “factorial” and GAMMA 
functions? 

 2. Test the GAMMA function on several arguments that are not integers. 
For example, explore the results for several arguments between 4 and 5. 
Also, try out arguments in decimal form and in fractional form. For ex-
ample, GAMMA(0.5) and GAMMA(1/2). 

 3. Test the GAMMA function on several arguments between 0 and 1. Be 
sure to explore the results as arguments get closer and closer to 0.  

 4. Use plot to help with your analysis. For example, try out the following 
examples. 

    > plot(n!, n=0..5); 
    > plot(GAMMA(x), x=0..5); 
    > plot(GAMMA(x + 1), x=0..5); 

 5. Make some observations about the GAMMA function, based on your 
tests. 

 6. The following recurrence can’t be solved with the rsolve command. Try it. 

   d1 = 0 
   d2 = 1 
   dn = (n – 1)(dn – 1 + dn – 2) 

  An alternative recurrence to define dn is given as follows. 

   dn = 1 

   dn = ndn – 1 + (–1)n 



72 Maple Experiments 

 

a. Write recursive functions for these two definitions and verify that the 
two define the same function by testing over several ranges of natural 
numbers. 

b. Use rsolve on the second definition. Note that the result uses the 
GAMMA function. Test the solution on several numbers to see that it 
agrees with the the two functions of part (a). Note: You may need to 
use Maple’s simplify operation to obtain an integer value for each ex-
pression.  

5.12   Orders of Growth 
In this experiment we’ll use Maple to compare the growth rates of functions by 
examining their asymptotic behavior. Suppose that ƒ and g are two functions 
for which we have the following limit. 

 

! 

lim
n " #

ƒ(n)

g(n)
= c . 

We have the following results: 
 If c = 0, then ƒ has lower order than g. We represent this fact with the fol-
lowing little oh notation.  

ƒ(n) = o(g(n)). 

 If c = ∞, then ƒ has higher order than g. We represent this fact with the 
following little oh notation.  

g(n) = o(ƒ(n)). 

 If c ≠ 0 and c ≠ ∞, then ƒ has the same order as g. We represent this fact 
with the following big theta notation 

ƒ(n) = Θ(g(n)). 

We can use Maple to compute limits. So it follows that we can compare the 
rates of growth of functions with Maple. Try out the following examples to get 
used to the idea of taking limits. 

   > limit((n**2 + 3*n)/ 4578*n, n = infinity); 

   > limit(log[2](n)/n, n = infinity); 
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Experiments to Perform 

 1. Let ƒ(n)  g(n) mean that ƒ has lower order than g. Use Maple to verify 
the following ordering. 

log2 n  n  n log2 n  n2  2n. 

 2. Use Maple to verify the following statements, where k > 0 is any positive 
constant. 

a. log2 (log2 (n)) = o(log2 n). 

b. n(n+ 1)/2 = Θ(n2). 

c. log2 (kn) = Θ(log2 n), where k > 0 is any positive constant. 

d. log2 (k + n) = Θ(log2 n), where k > 0 is any positive constant. 

 3. Construct a Maple function “lower” that decides whether a function ƒ has 
lower order than a function g. In other words, lower(ƒ(n), g(n)) should re-
turn true if ƒ(n) = o(g(n)). For example, the command 

> lower(log[2](n), n); 

  should return true because log[2](n) = o(n). Test your definition of lower 
on the following pairs of functions by applying it first to the given pair 
and then to the reverse of the pair. 

a. log2 (log2 (n)) and log2 n. 

b. n(n+ 1)/2 and n2. 

c. log2 (n) and log2 n
45. 

d. 2n and n39. 

 4. Use the help system to review Maple’s sort function. Then use Maple’s 
“sort” function together with the “lower” relation defined in (3) to sort the 
following lists of functions. Notice that some lists have more than one 
function of the same order. 

  a. [n2, 2n, log2 n, 25, 9n, 1, 8n2]. 

  b. [2n, n, nlog2 n, n2, 1]. 
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 5. We want to use Maple to verify the following hierarchy of functions, 
where ƒ(n)  g(n) means that ƒ has lower order than g.  

  

! 

1p log2 n p n p n log2 n p n
2

p n
3
p n

50
p 2n p 3n p 50n p n!p n

n . 

  We might start by using Maple’s sort function together with “lower” from 
(3). However, the result in general is not definitive because the sort func-
tion does not tell us specifically that each member of the sorted list has 
lower order than its successor in the sorted list. We don’t want to spend 
the time writing down all the limit commands necessary to verify the or-
dering. Instead, construct a function “limits” that takes as input a non-
empty list of functions and outputs the list of limits of quotients of suc-
cessive pairs of functions in the list. So if there are k functions in the in-
put list, then the output will be a list of k – 1 limits of quotients. Test 
your definition on each of the following lists of functions. 

  a. [n2, 2n, log2 n, 25, 9n, 1, 8n2]. 

  b. [2n, n, nlog2 n, n2, 1]. 

  c. The list of functions in the given hierarchy. 
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Chapter 1 
1.2 Set Operations 
1.  Maple's sets reflect the fact that sets don't have repeated elements. 
3. For example, 
 subset := (A, B) -> evalb(A intersect B = A); 

1.3 List Operations 
heads := (x, y) -> [hd(x), hd(y)]; 
tails := (x, y) -> [tl(x), tl(y)]; 
examine := x -> [hd(x), tl(x)]; 
add2 := (a, b, x) -> cons(a, cons(b, x)); 

1.4 String Operations 
1. head := x -> substring(x, 1..1); 
2. tail := x -> substring(x, 2..length(x)); 
3. last := x -> substring(x, length(x)); 
4. pal := x -> evalb(head(x) = last(x)); 

1.6 Spanning Trees 
1. The graph H has a minimal spanning tree of weight 20. 
2. The petersen graph contains 10 vertices, each of degree three, and 15 
edges. It forms a pentagon containing a five point star where each vertex of the 
star is connected to the “opposite” two vertices of the star and one vertex of 
the pentagon.  
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Chapter 2 

2.1 Sequences 
2. g := n -> [seq([n-k, n-k], k=0..n)]; 
3. h := n -> [seq([n-k, k], k=0..n)]; 
4. s := n -> [seq({$0..k}, k=0..n)]; 

2.2 The Map Function 
1. The image f(A) is just map(f, A). 
2a. h := x -> map(hd, x); 
2b. t := x -> map(tl, x); 
3. dist := (x, L) -> map2(f, x, L); 
 f := (x, y) -> [x, y]; 

2.5 Evaluating Expressions 
1b. map(minDepth, {$1..16}); 
1c. map(minDepth, [$1..16]); 
2b. The definition 
 minDepth := floor@evalf@log[2] 
yields an incorrect result when applied to 16, due to rounding. 
2c. minDepth := floor@simplify@log[2] 

2.7 Type Checking 
3. ceil2 := x -> if type(x, integer) then x  
     elif x < 0 then trunc(x) else trunc(x + 1) fi; 
4. floor2 := x -> if type(x, integer) then x  
       elif x < 0 then trunc(x – 1) else trunc(x) fi; 
5. a. cons := (x, y) -> if type(y, list) then [x, op(y)]  
   else error “second argument is not a list” fi; 

Chapter 3 

3.1 Examples of Recursively Defined Functions 
3. last := x -> if tl(x) = [] then hd(x) else last(tl(x)) fi; 
5. first := x -> if tl(x) = [] then [] else cons(hd(x), first(tl(x))) fi; 
6. pairs := (x, y) -> if x = [] or y = [] then []  
       
else cons([hd(x), hd(y)], pairs(tl(x), tl(y))) fi; 
7. dist := (a, x) -> if x = [] then [] else cons([a, hd(x)], dist(a, tl(x))) fi; 
8. prod := (x, y) -> if x = [] then [] else concat(dist(hd(x), y), prod(tl(x), y)) fi; 

3.2 Strings and Palindromes 
1. F := x -> substring(x, 1); 
 L := x -> substring(x, length(x)); 
  M := x -> substring(x, 2..length(x)-1); 
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2. Pals finds a list of the first n natural numbers whose binary representa-
tions are palindromes. 
 
pals :=  proc(n) 
 L := []; 
 a:= 0; 
 for i from 1 to n do 
  x := convert(a, binary); 
  while not pal(x) do 
   a := a + 1; 
   x := convert(a, binary); 
  od; 
  L := cons(a, L); 
  a := a+1; 
 od; 
 print(L); 
 end; 

3.3 A Recursively Defined Sorting Function 
2. An element inserted in an unsorted list is inserted just to the left of the 
first element that is greater. 

3. The original insert with ≤ is more efficient when there are repeated occur-
rences of the element being inserted because the element is inserted before 
the first repeated occurrence. 

3.5 Type Checking for Inductively Defined Sets 
3. `type/A` := x -> if not type(x, integer) then false 
  elif x < 0 then false  
  elif x = 0 then true  
  else type((x-1)/2), A)  
  fi; 

3.6 Inductively Defined Sets 
1. getA := n -> if n = 1 then 0 else getA(n - 1)*2 + 1 fi; 
2. getT := n -> if n = 1 then [ ] else cons(a, getT(n-1)) fi; 

3.7 Subsets and Power Sets 
1. subset := (x, y) -> if x = { } then true  
   elif member(hd(x), y) then subset(tl(x),y)  
   else false fi; 
2. One version is the following, which is quite inefficient because each call of 
power(x) results is two calls on power(tl(x)). 

power := x -> if x = { } then {{ }} 
 else power(tl(x)) union map(`union`, power(tl(x)), {hd(x)}) fi; 
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A more efficient version is the following, which for each call of power(x) results 
in only one call to power(tl(x)). 

pow := S -> if S = { } then {{ }} 
        else g(pow(tl(S)), hd(S)) fi; 

where g is defined by 

g := (S, x) -> S union map(`union`, S, {x}); 

Chapter 4 

4.1 Composing Two Binary Relations 
1. Two possible solutions, one recursive and one iterative, are listed. 
 
getPairs := (x, S) -> if S = { } then { } 
  elif x[2] = S[1][1] then {[x[1], S[1][2]]} union getPairs(x, tl(S))  
  else getPairs(x, tl(S)) fi; 
 
getPairs := (x, S) -> 
 {seq(`if`(x[2] = S[i][1], cons(x[1], S[i][2]), []), i = 1..nops(S))} minus {[]}; 

4.2 Constructing Closures of Binary Relations 
2. comp := (R, n) -> if n = 1 then R  
   else compose(R, comp(R, n-1)) fi; 

4.3 Testing for Closures 
2. Two possibilities are 
 isSymmetric := R -> evalb(R = converse(R)); 
and 
 isSymmetric := R -> evalb(R = sc(R)); 
 
3. isTransitive := (R, n) -> evalb(R = tc(R, n)); 

4.4 Warshall/Floyd Algorithms 
2. Floyd’s algorithm to compute the minimum distances between points in a 
digraph represented by an n by n matrix m with the following properties: 

  m[i, j] = weight of edge (i, j) for all edges where i ≠ j. 
  m[i, i] = 0 for i = 1...n. 
  m[i, j] = infinity (a number larger than the sum of all edge weights) 
    for all other edges (i, j) not in the graph. 
 The call floyd(m, n) will output the matrix of minimum distances. 
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floyd := proc(m, n) 
  local a; 
  a := matrix(n, n); 
  for i from 1 to n do 
  for j from 1 to n do 
   a[i, j] := m[i, j] 
  od od; 
  for k from 1 to n do 
  for i from 1 to n do 
  for j from 1 to n do 
   a[i, j] := min(a[i, j] , a[i, k] + a[k, j]); 
  od od od; 
  print(evalm(a)) 
 end; 

3. The Paths algorithm modifies Floyds algorithm to compute the matrix 
from which the actual points on the shortest path can be found. The input is 
the same as for Floyd’s algorithm. Namely, a digraph represented by an n by n 
matrix m with the following properties: 

  m[i, j] = weight of edge (i, j), for all edges where i ≠ j. 
  m[i, i] = 0, for i = 1...n. 
  m[i, j] = infinity, for all other edges (i, j) not in the graph. 

  The call paths(m, n) will output the Floyd matrix and the paths matrix. 

 paths := proc(m, n) 
  local a, p; 
  a := matrix(n, n); p := matrix(n, n); 
  for i from 1 to n do 
  for j from 1 to n do 
   a[i, j] := m[i, j]; p[i, j] := 0 
  od od; 
  for k from 1 to n do 
  for i from 1 to n do 
  for j from 1 to n do 
   if a[i, k] + a[k, j] < a[i, j] then 
    a[i, j] := a[i, k] + a[k, j]; p[i, j] := k 
   fi 
  od od od; 
  print(evalm(a)); 
  print(evalm(p)) 
 end; 
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5. These functions construct a shortest path between two points. The assump-
tion is that the m-matrix and the p-matrix from the modified Floyd algorithm 
are available. 
 
# This function outputs the list of edges of the shortest path from i to j. 
 
edges := (i, j, m, p) -> 
        if m[i, j] = infinity or i = j then [] 
        elif p[i, j] = 0 then [[i, j]] 
        else catLists(edges(i, p[i, j], m, p), edges(p[i, j], j, m, p)) fi; 
 
# This function outputs the nodes i, ..., j on a shortest path from i to j. 
 
nodes := (i, j, m, p) -> 
        if m[i, j] = infinity or i = j then [] 
        elif p[i, j] = 0 then [i, j] 
        else catLists(nodes(i, p[i, j], m, p), tl(nodes(p[i, j], j, m, p))) fi; 
 
catLists := (x, y) -> [op(x), op(y)]; 

4.5 Orderings 
3a. std:=(x, y) -> if length(x) < length(y) then true 
    elif length(x) > length(y) then false 
    else lexorder(x, y) fi; 

Chapter 5 

5.3 Combinations 
6. The binomial sum can be computed with the following function. 
f := n -> sum(binomial(n,i),i=0..n); 

5.5 The Birthday Paradox 
1. dup := L -> if L = [ ] then { } 
 elif member(hd(L), tl(L)) then {hd(L)} union dup(tl(L)) 
 else dup(tl(L)) fi; 

5.6 It Pays to Switch 
1. distinct := S -> if S = [] then 0 
  elif hd(S)[1] <> hd(S)[2] then 
   distinct(tl(S)) + 1 
  else 
   distinct(tl(S)) 

    fi; 
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5.7 Markov Chains 

2b. To five decimal places X = (0.25532, 0.15957, 0.58511). 

5.8 Efficiency and Accumulating Parameters 
4. h := (x, y) -> if x = [ ] then y else h(tl(x), cons(hd(x),y)) fi; 

5.9 Solving Recurrences 
1b. No Maple solution for derangements. 

5.10 Generating Functions 

1a. an = 3n + (–1)n + 1.  b. an = 4n – 3n.  c. an =  (1/3)(2n + (–1)n+1 

5.11 The Factorial and GAMMA Functions 
6b.  The Maple command 

 > rsolve({d(0)=1, d(n)=n*d(n-1)+(-1)^n}, d); 

returns the result 

  exp(-1) GAMMA(n + 1, -1) 

We can define a function for this expression as follows. 

> f := n -> exp(-1)* GAMMA(n + 1, -1); 

We can test the expresion as follows 

> f(3); 

  2 exp(-1) exp(1) 

> simplify("); 

  2 

5.12 Orders of Growth 
2cd. Maple handles k as a constant, just like us. 
 
3. lower := (x, y) -> if limit(x/y, n=infinity) = 0 then true else false fi; 
 
5. limits := L -> if tl(L) = [] then [] else 
                cons(limit(hd(L)/hd(tl(L)), n=infinity), limits(tl(L))) fi; 
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