
BRIEF EDITION

Nell Dale
University of Texas, Austin

Chip Weems
University of Massachusetts, Amherst

FIFTH EDITION

Programming
and Problem

Solving with

71515_FMXX_DaleWeems.indd 1 2/9/09 8:29:22 AM

Jones and Bartlett’s books and products are available through most bookstores and online booksellers. To
contact Jones and Bartlett Publishers directly, call 800-832-0034, fax 978-443-8000, or visit our website
www.jbpub.com.

Substantial discounts on bulk quantities of Jones and Bartlett’s publications are available to corporations,
professional associations, and other qualified organizations. For details and specific discount information,
contact the special sales department at Jones and Bartlett via the above contact information or send an
email to specialsales@jbpub.com.

Copyright © 2010 by Jones and Bartlett Publishers, LLC

All rights reserved. No part of the material protected by this copyright may be reproduced or utilized in
any form, electronic or mechanical, including photocopying, recording, or by any information storage and
retrieval system, without written permission from the copyright owner.

Production Credits
Publisher: David Pallai
Acquisitions Editor: Timothy Anderson
Editorial Assistant: Melissa Potter
Production Director: Amy Rose
Production Editor: Katherine Macdonald
Senior Marketing Manager: Andrea DeFronzo
V.P., Manufacturing and Inventory Control: Therese Connell
Text Design: Anne Spencer
Composition: Northeast Compositors, Inc.
Cover and Title Page Design: Kristin E. Parker
Interior Images: George Nichols
Cover and Title Page Image: © Zhang Lei/Dreamstime.com
Printing and Binding: Malloy, Inc.
Cover Printing: Malloy, Inc.

Library of Congress Cataloging-in-Publication Data
Dale, Nell B.
 Programming and problem solving with C++ / Nell Dale and Chip Weems. — Brief ed.
 p. cm.
 Includes bibliographical references and index.
 ISBN-13: 978-0-7637-7151-5 (pbk.)
 ISBN-10: 0-7637-7151-1 (pbk.)
 1. C++ (Computer program language) I. Weems, Chip. II. Title.

 QA76.73.C153D34 2009
 005.13’3—dc22
 2008040812

6048

Printed in the United States of America
13 12 11 10 09 10 9 8 7 6 5 4 3 2 1

World Headquarters
Jones and Bartlett Publishers
40 Tall Pine Drive
Sudbury, MA 01776
978-443-5000
info@jbpub.com
www.jbpub.com

 
Jones and Bartlett Publishers
  Canada
6339 Ormindale Way
Mississauga, Ontario L5V 1J2
Canada

 
Jones and Bartlett Publishers
  International
Barb House, Barb Mews
London W6 7PA
United Kingdom

71515_FMXX_DaleWeems.indd 2 2/9/09 8:29:22 AM

		 iii

Contents

	 Preface xv

1	 Overview of Programming and Problem Solving 1
	 1.1	 Overview of Programming 2

What Is Programming? 2
How Do We Write a Program? 3
What Is an Algorithm? 4
What Is a Programming Language? 5

	 1.2	 How Does a Computer Run a Program? 9
What Kinds of Instructions Can Be Written in a Programming

Language? 13
What Is Software Maintenance? 13

		 Software Maintenance Case Study: An Introduction to Software
Maintenance 16

	 1.3	 What’s Inside the Computer? 19
	 1.4	 Ethics and Responsibilities in the Computing Profession 24

Software Piracy 24
Privacy of Data 25
Use of Computer Resources 25
Software Engineering 26

	 1.5	 Problem-Solving Techniques 27
Ask Questions 27
Look for Things That Are Familiar 27
Solve by Analogy 28
Means-Ends Analysis 29
Divide and Conquer 29
The Building-Block Approach 29
Merging Solutions 30
Mental Blocks: The Fear of Starting 31

71515_FMXX_DaleWeems.indd 3 2/9/09 8:29:22 AM

iv	 CONTENTS

Algorithmic Problem Solving 31
		 Problem-Solving Case Study: Leap Year Algorithm 33
		 Summary 36
 		 Quick Check 37
 		 Answers 38
 		 Exam Preparation Exercises 38
 		 Programming Warm-Up Exercises 40
 		 Case Study Follow-Up 41
 		 Line Number 42

2	 C++ Syntax and Semantics and the Program Development
Process 43

	 2.1	 The Elements of C++ Programs 44
C++ Program Structure 44
Syntax and Semantics 46
Syntax Templates 47
Naming Program Elements: Identifiers 49
Data and Data Types 50
Naming Elements: Declarations 53
Taking Action: Executable Statements 57
Beyond Minimalism: Adding Comments to a Program 62

	 2.2	 Program Construction 63
Blocks (Compound Statements) 65
The C++ Preprocessor 67

		 Software Maintenance Case Study: Adding Titles to Names 69
	 2.3	 More about Output 72

Creating Blank Lines 72
Inserting Blanks within a Line 73
Special Characters 74

	 2.4	 Program Entry, Correction, and Execution 75
Entering a Program 75
Compiling and Running a Program 75

 		 Problem-Solving Case Study: Printing a Chessboard 76
 		 Testing and Debugging 80
 		 Summary 81
		 Quick Check 81
 		 Answers 82
 		 Exam Preparation Exercises 83
		 Programming Warm-Up Exercises 85

71515_FMXX_DaleWeems.indd 4 2/9/09 8:29:23 AM

	 CONTENTS	 v

		 Programming Problems 86
		 Case Study Follow-Up 87

3	 Numeric Types, Expressions, and Output 89
	 3.1	 Overview of C++ Data Types 90
	 3.2	 Numeric Data Types 90

Integral Types 90
Floating-Point Types 92

	 3.3	 Declarations for Numeric Types 93
Named Constant Declarations 93
Variable Declarations 94

	 3.4	 Simple Arithmetic Expressions 95
Arithmetic Operators 95
Increment and Decrement Operators 97

	 3.5	 Compound Arithmetic Expressions 98
Precedence Rules 98
Type Coercion and Type Casting 99

		 Software Maintenance Case Study: Precedence Error 102
	 3.6	 Function Calls and Library Functions 104

Value-Returning Functions 104
Library Functions 106
Void Functions 108

	 3.7	 Formatting Output 108
Integers and Strings 109
Floating-Point Numbers 111

	 3.8	 Additional string Operations 117
The length and size Functions 117
The find Function 118
The substr Function 120
Accessing Characters Within a String: The at Function 121
Converting to Lowercase and Uppercase 121

		 Problem-Solving Case Study: Mortgage Payment Calculator 124
 		 Testing and Debugging 127
 		 Summary 127
 		 Quick Check 128
 		 Answers 129
 		 Exam Preparation Exercises 129
 		 Programming Warm-Up Exercises 131
 		 Programming Problems 132
 		 Case Study Follow-Up 133

71515_FMXX_DaleWeems.indd 5 2/9/09 8:29:23 AM

vi	 CONTENTS

4	 Program Input and the Software Design Process 135
	 4.1	 Getting Data into Programs 136

Input Streams and the Extraction Operator (>>) 137
The Reading Marker and the Newline Character 140
Reading Character Data with the get Function 141
Skipping Characters with the ignore Function 144
Reading String Data 145

 	 4.2	 Interactive Input/Output 147
 	 4.3	 Noninteractive Input/Output 149
 	 4.4	 File Input and Output 150

Files 150
Using Files 150

 		 Software Maintenance Case Study: Adding File Input/Output to a
Program 154
Run-Time Input of File Names 157

	 4.5	 Input Failure 159
 	 4.6	 Software Design Methodologies 160
	 4.7	 Functional Decomposition 161

Modules 162
Implementing the Design 163
A Perspective on Design 167

		 Problem-Solving Case Study: Displaying a Name in Multiple Formats 168
		 Testing and Debugging 172

Testing and Debugging Hints 173
 		 Summary 174
 		 Quick Check 175
 		 Answers 175
 		 Exam Preparation Exercises 175
 		 Programming Warm-Up Exercises 178
 		 Programming Problems 179
 		 Case Study Follow-Up 181

5	 Conditions, Logical Expressions, and Selection Control
Structures 183

	 5.1	 Flow of Control 184
Selection 184

	 5.2	 Conditions and Logical Expressions 185
The bool Data Type 185
Logical Expressions 186

 	 5.3	 The If Statement 190

71515_FMXX_DaleWeems.indd 6 2/9/09 8:29:23 AM

	 CONTENTS	 vii

The If-Then-Else Form 190
Blocks (Compound Statements) 193
The If-Then Form 196
A Common Mistake 197

		 Software Maintenance Case Study: Incorrect Output 198
	 5.4	 Nested If Statements 201

The Dangling else 204
	 5.5	 Logical Operators 205

Precedence of Operators 211
Relational Operators with Floating-Point Types 213

	 5.6	 Testing the State of an I/O Stream 213
		 Problem-Solving Case Study: BMI Calculator 215

Testing and Debugging 221
Testing in the Problem-Solving Phase: The Algorithm Walk-Through 221
Testing in the Implementation Phase 223
The Test Plan 227
Tests Performed Automatically During Compilation and Execution 228
Testing and Debugging Hints 229

 		 Summary 231
 		 Quick Check 231
 		 Answers 231
 		 Exam Preparation Exercises 232
 		 Programming Warm-Up Exercises 234
 		 Programming Problems 236
 		 Case Study Follow-Up 238

6	 Looping 239
	 6.1	 The While Statement 240
	 6.2	 Phases of Loop Execution 242
	 6.3	 Loops Using the While Statement 242

Count-Controlled Loops 243
Event-Controlled Loops 245
Looping Subtasks 251

		 Software Maintenance Case Study: Make a Program General 255
	 6.4	 How to Design Loops 259

Designing the Flow of Control 259
Designing the Process Within the Loop 261
The Loop Exit 261

	 6.5	 Nested Logic 262
Designing Nested Loops 266

		 Problem-Solving Case Study: Recording Studio Design 273

71515_FMXX_DaleWeems.indd 7 2/9/09 8:29:23 AM

viii	 CONTENTS

		 Testing and Debugging 284
Loop-Testing Strategy 284
Test Plans Involving Loops 284
Testing and Debugging Hints 285

 		 Summary 287
 		 Quick Check 287
 		 Answers 288
 		 Exam Preparation Exercises 289
 		 Programming Warm-Up Exercises 291
 		 Programming Problems 292
 		 Case Study Follow-Up 295

7	 Additional Control Structures 297
	 7.1	 The Switch Statement 298
	 7.2	 The Do-While Statement 304
	 7.3	 The For Statement 308
		 Software Maintenance Case Study: Changing a Loop Implementation 312
	 7.4	 The Break and Continue Statements 314
	 7.5	 Guidelines for Choosing a Looping Statement 316
	 7.6	 Additional C++ Operators 316

Assignment Operators and Assignment Expressions 318
Increment and Decrement Operators 318
Bitwise Operators 319
The Case Operation 320
The sizeof Operator 320
The ?: Operator 321
Operator Precedence 322
Type Coercion in Arithmetic and Relational Expressions 323

		 Problem-Solving Case Study: The Rich Uncle 325
		 Testing and Debugging 329

Testing and Debugging Hints 329
 		 Summary 330
 		 Quick Check 330
 		 Answers 331
 		 Exam Preparation Exercises 331
 		 Programming Warm-Up Exercises 333
 		 Programming Problems 334
 		 Case Study Follow-Up 337

71515_FMXX_DaleWeems.indd 8 2/9/09 8:29:23 AM

	 CONTENTS	 ix

8	 Functions 339
	 8.1	 Functional Decomposition with Void Functions 340

When to Use Functions 340
Why Do Modules Need an Interface Design? 341
Designing Interfaces 341
Writing Modules as Void Functions 343

	 8.2	 An Overview of User-Defined Functions 347
Flow of Control in Function Calls 347
Function Parameters 347

	 8.3	 Syntax and Semantics of Void Functions 350
Function Call (Invocation) 350
Function Declarations and Definitions 351
Local Variables 353
The Return Statement 354

	 8.4	 Parameters 355
Value Parameters 356
Reference Parameters 357

		 Software Maintenance Case Study: Refactoring a Program 359
Using Expressions with Parameters 365
A Last Word of Caution About Argument and Parameter Lists 366
Writing Assertions as Function Documentation 368

		 Problem-Solving Case Study: Lawn Care Company Billing 371
 		 Testing and Debugging 381

The assert Library Function 381
Testing and Debugging Hints 383

 		 Summary 384
 		 Quick Check 384
 		 Answers 385
 		 Exam Preparation Exercises 385
 		 Programming Warm-Up Exercises 387
 		 Programming Problems 388
 		 Case Study Follow-Up 392

9	 Scope, Lifetime, and More on Functions 393
	 9.1	 Scope of Identifiers 394

Scope Rules 396
Variable Declarations and Definitions 399
Namespaces 400

71515_FMXX_DaleWeems.indd 9 2/9/09 8:29:23 AM

x	 CONTENTS

	 9.2	 Lifetime of a Variable 402
Initializations in Declarations 403

		 Software Maintenance Case Study: Debug a Simple Program 404
	 9.3	 Interface Design 408

Side Effects 408
Global Constants 411

	 9.4	 Value-Returning Functions 413
Complete Example 416
Boolean Functions 420
Interface Design and Side Effects 422
When to Use Value-Returning Functions 423

	 9.5	 Type Coercion in Assignments, Argument Passing, and Return of a Function
Value 424

 		 Problem-Solving Case Study: Health Profile 427
 		 Testing and Debugging 436

Stubs and Drivers 437
Testing and Debugging Hints 441

 		 Summary 442
 		 Quick Check 443
 		 Answers 443
 		 Exam Preparation Exercises 444
 		 Programming Warm-Up Exercises 446
 		 Programming Problems 447
 		 Case Study Follow-Up 450

10	 User-Defined Data Types 451
	 10.1	 Built-In Simple Types 452

Numeric Types 453
Characters 454

	 10.2	 User-Defined Simple Types 456
The Typedef Statement 456
Enumeration Types 457
Named and Anonymous Data Types 465

	 10.3	 Simple Versus Structured Data Types 466
	 10.4	 Records (Structs) 467

Accessing Individual Components 470
Aggregate Operations on Structs 471
More About Struct Declarations 473
Binding Like Items 474

		 Software Maintenance Case Study: Changing a Loop Implementation 474

71515_FMXX_DaleWeems.indd 10 2/9/09 8:29:23 AM

	 CONTENTS	 xi

	 10.5	 Hierarchical Records 476
	 10.6	 Unions 478
		 Problem-Solving Case Study: Stylistical Analysis of Text 480
 		 Testing and Debugging 488

Coping with Input Errors 488
Testing and Debugging Hints 488

 		 Summary 488
 		 Quick Check 489
 		 Answers 490
 		 Exam Preparation Exercises 490
 		 Programming Warm-Up Exercises 492
 		 Programming Problems 492
 		 Case Study Follow-Up 495

11	 Arrays 497
	 11.1	 One-Dimensional Arrays 498

Declaring Arrays 500
Accessing Individual Components 501
Out-of-Bounds Array Indexes 503
Initializing Arrays in Declarations 505
(Lack of) Aggregate Array Operations 505
Examples of Declaring and Accessing Arrays 506
Passing Arrays as Arguments 512
Commenting Arrays 515

		 Software Maintenance Case Study: Modularizing a Program 516
Using Typedef with Arrays 519

	 11.2	 Arrays of Records 520
Arrays of Records 520

	 11.3	 Special Kinds of Array Processing 523
Subarray Processing 523
Indexes with Semantic Content 526

	 11.4	 Two-Dimensional Arrays 526
	 11.5	 Passing Two-Dimensional Arrays as Arguments 530
	 11.6	 Processing Two-Dimensional Arrays 532

Sum the Rows 532
Sum the Columns Revised 533
Sum the Columns 535
Initialize the Array 535
Print the Array 536

71515_FMXX_DaleWeems.indd 11 2/9/09 8:29:23 AM

xii	 CONTENTS

	 11.7	 Another Way of Defining Two-Dimensional Arrays 539
	 11.8	 Multidimensional Arrays 541
	 11.9	 Sorting and Searching in an Array 543

Sorting 543
Searching 547

		 Problem-Solving Case Study: Calculating Exam Statistics 550
		 Problem-Solving Case Study: Favorite Rock Group 558
 		 Testing and Debugging 566

One-Dimensional Arrays 566
Complex Structures 566
Multidimensional Arrays 568
Sorting and Searching 568
Testing and Debugging Hints 569

 		 Summary 570
 		 Quick Check 570
 		 Answers 571
 		 Exam Preparation Exercises 571
 		 Programming Warm-Up Exercises 574
 		 Programming Problems 576
 		 Case Study Follow-Up 578

12	 Classes and Abstraction 579
	 12.1	 Abstract Data Types 580
	 12.2	 C++ Classes 583

Implementing the Member Functions 588
Classes, Objects, and Members 591
Built-in Operations on Objects 592
Class Scope 593

	 12.3	 Information Hiding 594
User-Written Header Files 595
Specification and Implementation Files 596
Compiling and Linking a Multifile Program 602

	 12.4	 What Is an Object? 603
	 12.5	 Class Design Principles 607

Encapsulation 607
Abstraction 609
Designing for Modifiability and Reuse 610
Mutability 611

		 Software Maintenance Case Study: Comparing Two TimeOfDay Objects 613

71515_FMXX_DaleWeems.indd 12 2/9/09 8:29:23 AM

	 CONTENTS	 xiii

	 12.6	 The Name ADT 618
Specification of the ADT 619
Implementation File 621

	 12.7	 Composition 623
Design of an Entry Class 623

	 12.8	 UML Diagrams 628
Diagramming a Class 628
Diagramming Composition of Classes 629

		 Problem-Solving Case Study: Create an Array of Name Objects 629
 		 Testing and Debugging 636

Testing and Debugging Hints 639
 		 Summary 640
 		 Quick Check 641
 		 Answers 641
 		 Exam Preparation Exercises 641
 		 Programming Warm-Up Exercises 642
 		 Programming Problems 644
 		 Case Study Follow-Up 646

13	 Recursion 647
	 13.1	 What Is Recursion? 648
	 13.2	 Recursive Algorithms with Simple Variables 651
	 13.3	 Towers of Hanoi 653
	 13.4	 Recursive Algorithms with Structured Variables 657
	 13.5	 Recursion or Iteration? 660
		 Software Maintenance Case Study: Substituting Binary Search for

Linear Search 660
 		 Testing and Debugging 665

Testing and Debugging Hints 665
 		 Summary 665
 		 Quick Check 665
 		 Answers 666
 		 Exam Preparation Exercises 666
 		 Programming Warm-Up Exercises 668
 		 Programming Problems 670
 		 Case Study Follow-Up 671

	 Index 673

71515_FMXX_DaleWeems.indd 13 2/9/09 8:29:23 AM

 

To quote Mephistopheles, one of the chief devils, and tempter of Faust,

…My friend, I shall be pedagogic,
And say you ought to start with Logic…
…Days will be spent to let you know
That what you once did at one blow,
Like eating and drinking so easy and free,
Can only be done with One, Two, Three.
Yet the web of thought has no such creases
And is more like a weaver’s masterpieces;
One step, a thousand threads arise,
Hither and thither shoots each shuttle,
The threads flow on, unseen and subtle,
Each blow effects a thousand ties.
The philosopher comes with analysis
And proves it had to be like this;
The first was so, the second so,
And hence the third and fourth was so,
And were not the first and second here,
Then the third and fourth could never appear.
That is what all the students believe,
But they have never learned to weave.

J. W. von Goeth, Faust, Walter Kaufman trans., New York, 1963, 199.

As you study this book, do not let the logic of algorithms bind your imagination,
but rather make it your tool for weaving masterpieces of thought.

71515_FMXX_DaleWeems.indd 14 2/9/09 8:29:23 AM

		 xv

 Preface

Introduction to the Brief, Fifth Edition
The first four editions of Programming and Problem Solving with C++ have consistently
been among the best-selling computer science textbooks in the United States. These
editions, as well as the Java, Ada, and Pascal versions, have been accepted widely as
model textbooks for ACM/IEEE-recommended curricula for the CS1/C101 course,
and for the Advanced Placement A exam in computer science.

Throughout the successive editions of this book, one thing has not changed: our
commitment to the student. As always, our efforts are directed toward making the
sometimes difficult concepts of computer science more accessible to all students. This
edition of Programming and Problem Solving with C++ continues to reflect our phi-
losophy that a textbook should be like a guide, blazing a trail and leading its readers
through territory that can initially seem difficult to navigate.

Changes to the Fifth Edition
We have designed this brief version of our Programming and Problem Solving with
C++, Fifth Edition, to include only what instructors and students are able to cover in
a single term. Based on the research of Elliot Soloway with novice programmers, we
continue to initially cover selection using only the If statement, and loops using only
the While statement. However, because many instructors like to cover all selection
control structures together and all looping control structures together, we have moved
the chapter on additional control structures so that it is directly after the chapters on
selection and looping.

Classes and object-oriented terminology, originally in Chapter 10 with other user-
defined data types, have been moved to Chapter 12, following the presentation of
arrays. With this reorganization, we can go into more depth on abstract data types
and the class construct used to implement them. In addition, we discuss the hallmarks
of good class design.

71515_FMXX_DaleWeems.indd 15 2/9/09 8:29:24 AM

xvi	 Preface

Recognizing that many students learn programming from mimicking existing solutions,
we have added numerous short example programs in every chapter. These programs illustrate
chapter concepts in a more complete context than code segments, and appear immediately
after the introduction of new concepts. We have also reorganized several of the chapters so
that the discussion moves more quickly from a concept to its practical application early in
the chapter, before moving on to related concepts. Chapters thus offer a series of concrete
examples that serve as intermediate waypoints on the path to the major case studies.

Software Maintenance Case Study
Because most real-world software engineering involves working with existing code, we have
added a new feature, the Software Maintenance Case Study, which demonstrates how to read
code in order to debug, alter, and/or enhance an existing application or class. Although the
case studies are cast in terms of revising legacy code, we have found that these skills, which
are often neglected in introductory texts, are an important contributing factor to student
success in writing new code.

Problem-Solving Case Study
Each chapter continues to provide a case study that illustrates algorithmic problem solving
while modeling good programming practices. Each begins with a problem statement, walks
through the design process, translates the design into code, and ends with a tested program.
Several of the chapters have new case studies to reflect changes in chapter content.

C++ and Object-Oriented Programming
Some educators reject C and C++ as too permissive and too conducive to writing cryptic,
unreadable programs. Our experience does not support this view, provided that the use
of language features is modeled appropriately. The fact that the C family permits a terse,
compact programming style cannot be labeled simply as “good” or “bad.” Almost any
programming language can be used to write in a style that is too terse and clever to be
easily understood. The C family indeed may be used in this manner more often than are
other languages, but we have found that with careful instruction in software engineering,
and a programming style that is straightforward, disciplined, and free of intricate language
features, students can learn to use C++ to produce clear, readable code.

It must be emphasized that although we use C++ as a vehicle for teaching computer
science concepts, the book is not a language manual and does not attempt to cover all of
C++. The language constructs are introduced in parallel with the appropriate theory. Thus
many constructs, such as advanced object-oriented features, are not covered in this brief
edition.

There are diverse opinions about when to introduce the topic of object-oriented pro-
gramming (OOP). Some educators advocate an immersion in OOP from the very beginning,
whereas others (for whom this book is intended) favor a more heterogeneous approach, in
which both functional decomposition and object-oriented design are presented as design
tools. The chapter organization of Programming and Problem Solving with C++, Brief Edi-
tion, reflects a transitional approach to OOP. Classes and object-oriented terminology are
presented, but object-oriented design (OOD) is covered only for simple, immutable, classes.
We leave a fuller treatment of OOD for the Comprehensive Edition of this text.

Synopsis
Chapter 1 is designed to create a comfortable rapport between students and the subject.
The basics of hardware and software are presented, issues in computer ethics are raised,

71515_FMXX_DaleWeems.indd 16 2/9/09 8:29:24 AM

	 Preface	 xvii

C++ syntax is first encountered in a software maintenance case study, and problem-solving
techniques are introduced and reinforced in a problem-solving case study.

Instead of overwhelming the student right away with the various numeric types avail-
able in C++, Chapter 2 concentrates on only two types: char and string. (For the latter,
we use the ISO/ANSI string class provided by the standard library.) With fewer data types
to keep track of, students can focus on overall program structure and get an earlier start
on creating and running a simple program. Chapter 3 follows with a discussion of the C++
numeric types and proceeds with material on arithmetic expressions, function calls, and
output. Unlike many books that detail all of the C++ data types and all of the C++ operators
at once, these two chapters focus on only the int, float, char, and string types, and the
basic arithmetic operators. Other data types are postponed until Chapter 10.

Input and programming methodology are the major topics of Chapter 4. The distinction
between OOD and functional decomposition is explained, and the functional decomposition
methodology is then presented in more depth. Students thus gain the perspective early that
there are two—not just one—design methodologies in widespread use and that each serves
a specific purpose. Chapter 4 also covers file I/O. The early introduction of files permits the
assignment of programming problems that require the use of sample data files.

Chapter 5 begins with the concept of flow of control and branching before moving into
relational and Boolean operations. Selection, using the If-Then and If-Then-Else structures,
are then used to demonstrate the distinction between physical ordering of statements and
logical ordering. We also develop the concept of nested control structures. Chapter 5 con-
cludes with a lengthy Testing and Debugging section that expands on the modular design
discussion by introducing preconditions and postconditions. The algorithm walk-through
and code walk-through are introduced as a means of preventing errors, and the execution
trace is used to find errors that may have made it into the code. We also cover data valida-
tion and testing strategies extensively in this section.

Chapter 6 is devoted to loop control strategies and looping operations using the syn-
tax of the While statement. Rather than introducing multiple syntactical structures, our
approach is to teach the concepts of looping using only the While statement. Chapter 7
covers the remaining “ice cream and cake” control structures in C++ (Switch, Do-While,
and For), along with the Break and Continue statements. These structures are helpful but
not essential. The section on additional C++ operators has been moved into this chapter, as
they are also useful but not indispensable.

By Chapter 8, students are already comfortable with breaking problems into modules
and using library functions, and they are receptive to the idea of writing their own functions.
Thus Chapter 8 focuses on passing arguments by value and covers flow of control in function
calls, arguments and parameters, local variables, and interface design. Coverage of interface
design includes preconditions and postconditions in the interface documentation, control
abstraction, encapsulation, and physical versus conceptual hiding of an implementation.
Chapter 9 expands the discussion to include value-returning functions, reference parameters,
scope and lifetime, stubs and drivers, and more on interface design, including side effects.

Chapter 10 begins the transition between the control structure orientation of the first
part of the book and the data structure orientation of the second part. We revisit the built-in
simple data types in terms of the set of values represented by each type and the allowable
operations on those values. Enumeration types, structs, and unions are covered. Chapter
10 includes a discussion of simple versus structured data types.

In Chapter 11, the array is introduced as a homogeneous data structure whose compo-
nents are accessed by position rather than by name. One-dimensional arrays are examined in
depth, including arrays of structs. Material on two-dimensional arrays, dimensional arrays,

71515_FMXX_DaleWeems.indd 17 2/9/09 8:29:24 AM

xviii	 Preface

and multidimensional arrays rounds out the discussion of the array type. The chapter then
concludes with an introduction to searching and sorting.

Chapter 12 formalizes the concept of an abstract data type as an introduction to the
discussion of the class construct. Object-oriented terminology is presented, emphasizing the
distinction between a class and an object. Good class design principles are stressed. The use of
specification files and implementation files is presented as a form of information hiding.

Chapter 13 concludes the text with the coverage of recursion.

Additional Features

Special Sections
Five kinds of features are set off from the main text. Theoretical Foundations sections present
material related to the fundamental theory behind various branches of computer science.
Software Engineering Tips discuss methods of making programs more reliable, robust, or
efficient. Matters of Style address stylistic issues in the coding of programs. Background
Information sections explore side issues that enhance the student’s general knowledge of
computer science. May We Introduce sections contain biographies of computing pioneers
such as Blaise Pascal, Ada Lovelace, and Grace Murray Hopper.

Goals
Each chapter begins with a list of goals for the student, broken into two categories: knowledge
goals and skill goals. They are reinforced and tested in the end-of-chapter exercises.

Demonstration Programs
Much shorter and simpler than the case study examples, demonstration programs provide
a bridge between syntactic concepts and their application in a problem-solving context.
Each chapter now includes multiple complete demonstration programs, interspersed with
coverage of new programming and language topics. All of these are available on the CD
and from the web site so that students can easily experiment with them and reuse the code
in their own projects.

Software Maintenance Case Studies
The majority of modern software engineering involves maintaining legacy code. It is thus
essential that students learn the skills associated with reading, understanding, extending, and
fixing existing programs. Such skills are rarely taught in an introductory course, where the
focus tends to be on writing new programs from problem specifications. However, it turns
out that these same maintenance skills are an important aspect of successfully writing new
programs, because once a modest amount of code has been written, getting it to work cor-
rectly is at its essence synonymous with maintenance. These new case studies are intended
to build the skills of reading, dissecting, modifying, and testing existing code.

Problem-Solving Case Studies
Problem solving is best demonstrated through case studies. In each case study, we present a
problem and use problem-solving techniques to develop a manual solution. Next, we expand
the solution to an algorithm, using functional decomposition, object-oriented design, or
both; then we code the algorithm in C++. We show sample test data and output and follow
up with a discussion of what is involved in thoroughly testing the program.

Testing and Debugging
Testing and debugging sections follow the case studies in each chapter and consider in depth
the implications of the chapter material with regard to thorough testing of programs. These
sections conclude with a list of testing and debugging hints.

71515_FMXX_DaleWeems.indd 18 2/9/09 8:29:24 AM

	 Preface	 xix

Quick Checks
At the end of each chapter are questions that test the student’s recall of major points associ-
ated with the chapter goals. Upon reading each question, the student immediately should
know the answer, which he or she can then verify by glancing at the answers at the end of
the section. The page number on which the concept is discussed appears at the end of each
question so that the student can review the material in the event of an incorrect response.

Exam Preparation Exercises
These questions help the student prepare for tests. The questions usually have objective
answers and are designed to be answerable with a few minutes of work.

Programming Warm-Up Exercises
This section provides the student with experience in writing C++ code fragments. The stu-
dent can practice the syntactic constructs in each chapter without the burden of writing a
complete program.

Programming Problems
These exercises, drawn from a wide range of disciplines, require the student to design so-
lutions and write complete programs. Some of the problems are carried through multiple
chapters, asking the students to reimplement the solution using new constructs or techniques,
as a way of illustrating that one problem can be solved with many different approaches.

Case Study Follow-Up
These exercises give the student an opportunity to strengthen software maintenance skills
by answering questions that require reading the case study code or making changes to it.

Supplements

Instructor’s Resources
The online resources are powerful teaching aids available to adopters upon request from the
publisher. Resources include a complete set of exercise answers, a computerized test bank,
PowerPoint lecture presentations, and the complete programs from the text.

Programs
The programs contain the source code for all of the complete programs that are included
within the textbook. They are available as a free download for instructors and students from
the publisher’s website. The programs from all of the case studies, plus complete programs
that appear in the chapter bodies, are included. The program files can be viewed or edited
using any standard text editor, but a C++ compiler must be used in order to compile and
run the programs.

Companion Website
This website features the complete programs from the text, and the text’s Appendices. Ap-
pendices A and B can also be found in the back of the text.

A Laboratory Course in C++, Fifth Edition
This lab manual follows the organization of this edition of the text. The lab manual is de-
signed to allow the instructor maximum flexibility and may be used in both open and closed
laboratory settings. Each chapter contains three types of activities: Prelab, Inlab, and Postlab.
Each lesson is broken into lessons that thoroughly demonstrate the concepts covered in the

71515_FMXX_DaleWeems.indd 19 2/9/09 8:29:24 AM

xx	 Preface

corresponding chapter. The programs, program shells (partial programs), and data files that
accompany the lab manual can be found on the website for this book.

Acknowledgments
We would like to thank the many individuals who have helped us in the preparation of
this fifth edition. We are indebted to the members of the faculties of the Computer Science
Departments at the University of Texas at Austin and the University of Massachusetts at
Amherst.

We extend special thanks to Jeff Brumfield for developing the syntax template metalan-
guage and allowing us to use it in the text.

For their many helpful suggestions, we thank the lecturers, teaching assistants, consul-
tants, and student proctors who run the courses for which this book was written, as well
as the students themselves.

We are grateful to the following people who took the time to offer their comments
on potential changes for previous editions: Trudee Bremer, Illinois Central College; Mira
Carlson, Northeastern Illinois University; Kevin Daimi, University of Detroit, Mercy; Bruce
Elenbogen, University of Michigan, Dearborn; Sandria Kerr, Winston-Salem State University;
Alicia Kime, Fairmont State College; Shahadat Kowuser, University of Texas, Pan America;
Bruce Maxim, University of Michigan, Dearborn; William McQuain, Virginia Tech; Xian-
nong Meng, University of Texas, Pan America; William Minervini, Broward University;
Janet Remen, Washtenaw Community College; Viviana Sandor, Oakland University; Mehdi
Setareh, Virginia Tech; Katy Snyder, University of Detroit, Mercy; Tom Steiner, University
of Michigan, Dearborn; John Weaver, West Chester University; Charles Welty, University
of Southern Maine; Cheer-Sun Yang, West Chester University.

And thank you to the following reviewers who offered their comments for this edition:
Ziya Arnavut, SUNY Fredonia; Sue Kavli, Dallas Baptist University; Katherine Snyder, Uni-
versity of Detroit, Mercy; Ilga Higbee, Black Hawk College; and Letha Etzkorn, University
of Alabama – Huntsville.

We also thank the many people at Jones and Bartlett who contributed so much, espe-
cially Tim Anderson, Acquisitions Editor; Melissa Potter, Editorial Assistant; Katherine
Macdonald, Production Editor; and Amy Rose, Production Director.

Anyone who has ever written a book—or is related to someone who has—can appreci-
ate the amount of time involved in such a project. To our families—all of the Dale clan and
the extended Dale family (too numerous to name), and to Lisa, Charlie, and Abby— thanks
for your tremendous support and indulgence.

N. D.
C. W.

71515_FMXX_DaleWeems.indd 20 2/9/09 8:29:24 AM

