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To quote Mephistopheles, one of the chief devils, and tempter of Faust,

…My friend, I shall be pedagogic,
And say you ought to start with Logic…
…Days will be spent to let you know
That what you once did at one blow,
Like eating and drinking so easy and free,
Can only be done with One, Two, Three.
Yet the web of thought has no such creases
And is more like a weaver’s masterpieces;
One step, a thousand threads arise,
Hither and thither shoots each shuttle,
The threads flow on, unseen and subtle,
Each blow effects a thousand ties.
The philosopher comes with analysis
And proves it had to be like this;
The first was so, the second so,
And hence the third and fourth was so,
And were not the first and second here,
Then the third and fourth could never appear.
That is what all the students believe,
But they have never learned to weave.

J. W. von Goeth, Faust, Walter Kaufman trans., New York, 1963, 199.

As you study this book, do not let the logic of algorithms bind your imagination, 
but rather make it your tool for weaving masterpieces of thought.
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 Preface

Introduction to the Brief, Fifth Edition
The first four editions of Programming and Problem Solving with C++ have consistently 
been among the best-selling computer science textbooks in the United States. These 
editions, as well as the Java, Ada, and Pascal versions, have been accepted widely as 
model textbooks for ACM/IEEE-recommended curricula for the CS1/C101 course, 
and for the Advanced Placement A exam in computer science.

Throughout the successive editions of this book, one thing has not changed: our 
commitment to the student. As always, our efforts are directed toward making the 
sometimes difficult concepts of computer science more accessible to all students. This 
edition of Programming and Problem Solving with C++ continues to reflect our phi-
losophy that a textbook should be like a guide, blazing a trail and leading its readers 
through territory that can initially seem difficult to navigate.

Changes to the Fifth Edition
We have designed this brief version of our Programming and Problem Solving with 
C++, Fifth Edition, to include only what instructors and students are able to cover in 
a single term. Based on the research of Elliot Soloway with novice programmers, we 
continue to initially cover selection using only the If statement, and loops using only 
the While statement. However, because many instructors like to cover all selection 
control structures together and all looping control structures together, we have moved 
the chapter on additional control structures so that it is directly after the chapters on 
selection and looping.

Classes and object-oriented terminology, originally in Chapter 10 with other user-
defined data types, have been moved to Chapter 12, following the presentation of 
arrays. With this reorganization, we can go into more depth on abstract data types 
and the class construct used to implement them. In addition, we discuss the hallmarks 
of good class design.
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Recognizing that many students learn programming from mimicking existing solutions, 
we have added numerous short example programs in every chapter. These programs illustrate 
chapter concepts in a more complete context than code segments, and appear immediately 
after the introduction of new concepts. We have also reorganized several of the chapters so 
that the discussion moves more quickly from a concept to its practical application early in 
the chapter, before moving on to related concepts. Chapters thus offer a series of concrete 
examples that serve as intermediate waypoints on the path to the major case studies.

Software Maintenance Case Study
Because most real-world software engineering involves working with existing code, we have 
added a new feature, the Software Maintenance Case Study, which demonstrates how to read 
code in order to debug, alter, and/or enhance an existing application or class. Although the 
case studies are cast in terms of revising legacy code, we have found that these skills, which 
are often neglected in introductory texts, are an important contributing factor to student 
success in writing new code.

Problem-Solving Case Study
Each chapter continues to provide a case study that illustrates algorithmic problem solving 
while modeling good programming practices. Each begins with a problem statement, walks 
through the design process, translates the design into code, and ends with a tested program. 
Several of the chapters have new case studies to reflect changes in chapter content.

C++ and Object-Oriented Programming
Some educators reject C and C++ as too permissive and too conducive to writing cryptic, 
unreadable programs. Our experience does not support this view, provided that the use 
of language features is modeled appropriately. The fact that the C family permits a terse, 
compact programming style cannot be labeled simply as “good” or “bad.” Almost any 
programming language can be used to write in a style that is too terse and clever to be 
easily understood. The C family indeed may be used in this manner more often than are 
other languages, but we have found that with careful instruction in software engineering, 
and a programming style that is straightforward, disciplined, and free of intricate language 
features, students can learn to use C++ to produce clear, readable code.

It must be emphasized that although we use C++ as a vehicle for teaching computer 
science concepts, the book is not a language manual and does not attempt to cover all of 
C++. The language constructs are introduced in parallel with the appropriate theory. Thus 
many constructs, such as advanced object-oriented features, are not covered in this brief 
edition.

There are diverse opinions about when to introduce the topic of object-oriented pro-
gramming (OOP). Some educators advocate an immersion in OOP from the very beginning, 
whereas others (for whom this book is intended) favor a more heterogeneous approach, in 
which both functional decomposition and object-oriented design are presented as design 
tools. The chapter organization of Programming and Problem Solving with C++, Brief Edi-
tion, reflects a transitional approach to OOP. Classes and object-oriented terminology are 
presented, but object-oriented design (OOD) is covered only for simple, immutable, classes. 
We leave a fuller treatment of OOD for the Comprehensive Edition of this text.

Synopsis
Chapter 1 is designed to create a comfortable rapport between students and the subject. 
The basics of hardware and software are presented, issues in computer ethics are raised, 
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C++ syntax is first encountered in a software maintenance case study, and problem-solving 
techniques are introduced and reinforced in a problem-solving case study.

Instead of overwhelming the student right away with the various numeric types avail-
able in C++, Chapter 2 concentrates on only two types: char and string. (For the latter, 
we use the ISO/ANSI string class provided by the standard library.) With fewer data types 
to keep track of, students can focus on overall program structure and get an earlier start 
on creating and running a simple program. Chapter 3 follows with a discussion of the C++ 
numeric types and proceeds with material on arithmetic expressions, function calls, and 
output. Unlike many books that detail all of the C++ data types and all of the C++ operators 
at once, these two chapters focus on only the int, float, char, and string types, and the 
basic arithmetic operators. Other data types are postponed until Chapter 10.

Input and programming methodology are the major topics of Chapter 4. The distinction 
between OOD and functional decomposition is explained, and the functional decomposition 
methodology is then presented in more depth. Students thus gain the perspective early that 
there are two—not just one—design methodologies in widespread use and that each serves 
a specific purpose. Chapter 4 also covers file I/O. The early introduction of files permits the 
assignment of programming problems that require the use of sample data files.

Chapter 5 begins with the concept of flow of control and branching before moving into 
relational and Boolean operations. Selection, using the If-Then and If-Then-Else structures, 
are then used to demonstrate the distinction between physical ordering of statements and 
logical ordering. We also develop the concept of nested control structures. Chapter 5 con-
cludes with a lengthy Testing and Debugging section that expands on the modular design 
discussion by introducing preconditions and postconditions. The algorithm walk-through 
and code walk-through are introduced as a means of preventing errors, and the execution 
trace is used to find errors that may have made it into the code. We also cover data valida-
tion and testing strategies extensively in this section.

Chapter 6 is devoted to loop control strategies and looping operations using the syn-
tax of the While statement. Rather than introducing multiple syntactical structures, our 
approach is to teach the concepts of looping using only the While statement. Chapter 7 
covers the remaining “ice cream and cake” control structures in C++ (Switch, Do-While, 
and For), along with the Break and Continue statements. These structures are helpful but 
not essential. The section on additional C++ operators has been moved into this chapter, as 
they are also useful but not indispensable.

By Chapter 8, students are already comfortable with breaking problems into modules 
and using library functions, and they are receptive to the idea of writing their own functions. 
Thus Chapter 8 focuses on passing arguments by value and covers flow of control in function 
calls, arguments and parameters, local variables, and interface design. Coverage of interface 
design includes preconditions and postconditions in the interface documentation, control 
abstraction, encapsulation, and physical versus conceptual hiding of an implementation. 
Chapter 9 expands the discussion to include value-returning functions, reference parameters, 
scope and lifetime, stubs and drivers, and more on interface design, including side effects.

Chapter 10 begins the transition between the control structure orientation of the first 
part of the book and the data structure orientation of the second part. We revisit the built-in 
simple data types in terms of the set of values represented by each type and the allowable 
operations on those values. Enumeration types, structs, and unions are covered. Chapter 
10 includes a discussion of simple versus structured data types.

In Chapter 11, the array is introduced as a homogeneous data structure whose compo-
nents are accessed by position rather than by name. One-dimensional arrays are examined in 
depth, including arrays of structs. Material on two-dimensional arrays, dimensional arrays, 
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and multidimensional arrays rounds out the discussion of the array type. The chapter then 
concludes with an introduction to searching and sorting.

Chapter 12 formalizes the concept of an abstract data type as an introduction to the 
discussion of the class construct. Object-oriented terminology is presented, emphasizing the 
distinction between a class and an object. Good class design principles are stressed. The use of 
specification files and implementation files is presented as a form of information hiding.

Chapter 13 concludes the text with the coverage of recursion.

Additional Features

Special Sections
Five kinds of features are set off from the main text. Theoretical Foundations sections present 
material related to the fundamental theory behind various branches of computer science. 
Software Engineering Tips discuss methods of making programs more reliable, robust, or 
efficient. Matters of Style address stylistic issues in the coding of programs. Background 
Information sections explore side issues that enhance the student’s general knowledge of 
computer science. May We Introduce sections contain biographies of computing pioneers 
such as Blaise Pascal, Ada Lovelace, and Grace Murray Hopper.

Goals
Each chapter begins with a list of goals for the student, broken into two categories: knowledge 
goals and skill goals. They are reinforced and tested in the end-of-chapter exercises.

Demonstration Programs
Much shorter and simpler than the case study examples, demonstration programs provide 
a bridge between syntactic concepts and their application in a problem-solving context. 
Each chapter now includes multiple complete demonstration programs, interspersed with 
coverage of new programming and language topics. All of these are available on the CD 
and from the web site so that students can easily experiment with them and reuse the code 
in their own projects.

Software Maintenance Case Studies
The majority of modern software engineering involves maintaining legacy code. It is thus 
essential that students learn the skills associated with reading, understanding, extending, and 
fixing existing programs. Such skills are rarely taught in an introductory course, where the 
focus tends to be on writing new programs from problem specifications. However, it turns 
out that these same maintenance skills are an important aspect of successfully writing new 
programs, because once a modest amount of code has been written, getting it to work cor-
rectly is at its essence synonymous with maintenance. These new case studies are intended 
to build the skills of reading, dissecting, modifying, and testing existing code.

Problem-Solving Case Studies
Problem solving is best demonstrated through case studies. In each case study, we present a 
problem and use problem-solving techniques to develop a manual solution. Next, we expand 
the solution to an algorithm, using functional decomposition, object-oriented design, or 
both; then we code the algorithm in C++. We show sample test data and output and follow 
up with a discussion of what is involved in thoroughly testing the program.

Testing and Debugging
Testing and debugging sections follow the case studies in each chapter and consider in depth 
the implications of the chapter material with regard to thorough testing of programs. These 
sections conclude with a list of testing and debugging hints.
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Quick Checks
At the end of each chapter are questions that test the student’s recall of major points associ-
ated with the chapter goals. Upon reading each question, the student immediately should 
know the answer, which he or she can then verify by glancing at the answers at the end of 
the section. The page number on which the concept is discussed appears at the end of each 
question so that the student can review the material in the event of an incorrect response.

Exam Preparation Exercises
These questions help the student prepare for tests. The questions usually have objective 
answers and are designed to be answerable with a few minutes of work.

Programming Warm-Up Exercises
This section provides the student with experience in writing C++ code fragments. The stu-
dent can practice the syntactic constructs in each chapter without the burden of writing a 
complete program.

Programming Problems
These exercises, drawn from a wide range of disciplines, require the student to design so-
lutions and write complete programs. Some of the problems are carried through multiple 
chapters, asking the students to reimplement the solution using new constructs or techniques, 
as a way of illustrating that one problem can be solved with many different approaches.

Case Study Follow-Up
These exercises give the student an opportunity to strengthen software maintenance skills 
by answering questions that require reading the case study code or making changes to it.

Supplements

Instructor’s Resources
The online resources are powerful teaching aids available to adopters upon request from the 
publisher. Resources include a complete set of exercise answers, a computerized test bank, 
PowerPoint lecture presentations, and the complete programs from the text.

Programs
The programs contain the source code for all of the complete programs that are included 
within the textbook. They are available as a free download for instructors and students from 
the publisher’s website. The programs from all of the case studies, plus complete programs 
that appear in the chapter bodies, are included. The program files can be viewed or edited 
using any standard text editor, but a C++ compiler must be used in order to compile and 
run the programs.

Companion Website
This website features the complete programs from the text, and the text’s Appendices. Ap-
pendices A and B can also be found in the back of the text.

A Laboratory Course in C++, Fifth Edition
This lab manual follows the organization of this edition of the text. The lab manual is de-
signed to allow the instructor maximum flexibility and may be used in both open and closed 
laboratory settings. Each chapter contains three types of activities: Prelab, Inlab, and Postlab. 
Each lesson is broken into lessons that thoroughly demonstrate the concepts covered in the 
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corresponding chapter. The programs, program shells (partial programs), and data files that 
accompany the lab manual can be found on the website for this book.

Acknowledgments
We would like to thank the many individuals who have helped us in the preparation of 
this fifth edition. We are indebted to the members of the faculties of the Computer Science 
Departments at the University of Texas at Austin and the University of Massachusetts at 
Amherst.

We extend special thanks to Jeff Brumfield for developing the syntax template metalan-
guage and allowing us to use it in the text.

For their many helpful suggestions, we thank the lecturers, teaching assistants, consul-
tants, and student proctors who run the courses for which this book was written, as well 
as the students themselves.

We are grateful to the following people who took the time to offer their comments 
on potential changes for previous editions: Trudee Bremer, Illinois Central College; Mira 
Carlson, Northeastern Illinois University; Kevin Daimi, University of Detroit, Mercy; Bruce 
Elenbogen, University of Michigan, Dearborn; Sandria Kerr, Winston-Salem State University; 
Alicia Kime, Fairmont State College; Shahadat Kowuser, University of Texas, Pan America; 
Bruce Maxim, University of Michigan, Dearborn; William McQuain, Virginia Tech; Xian-
nong Meng, University of Texas, Pan America; William Minervini, Broward University; 
Janet Remen, Washtenaw Community College; Viviana Sandor, Oakland University; Mehdi 
Setareh, Virginia Tech; Katy Snyder, University of Detroit, Mercy; Tom Steiner, University 
of Michigan, Dearborn; John Weaver, West Chester University; Charles Welty, University 
of Southern Maine; Cheer-Sun Yang, West Chester University.

And thank you to the following reviewers who offered their comments for this edition: 
Ziya Arnavut, SUNY Fredonia; Sue Kavli, Dallas Baptist University; Katherine Snyder, Uni-
versity of Detroit, Mercy; Ilga Higbee, Black Hawk College; and Letha Etzkorn, University 
of Alabama – Huntsville.

We also thank the many people at Jones and Bartlett who contributed so much, espe-
cially Tim Anderson, Acquisitions Editor; Melissa Potter, Editorial Assistant; Katherine 
Macdonald, Production Editor; and Amy Rose, Production Director.

Anyone who has ever written a book—or is related to someone who has—can appreci-
ate the amount of time involved in such a project. To our families—all of the Dale clan and 
the extended Dale family (too numerous to name), and to Lisa, Charlie, and Abby— thanks 
for your tremendous support and indulgence.

N. D.
C. W.

 

71515_FMXX_DaleWeems.indd   20 2/9/09   8:29:24 AM


