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B C

Random

Number Letter

=RAND() =IF(B5<0.55,"C",IF(B5<0.99,"A","R"))

Figure 6.13

6.3 Three Famous Problems

In this section we show how simulations can be used to approximate the solutions to three
famous problems in elementary probability: theMonty Hall Problem, the Birthday Problem.
and Buffon’s Needle Problem.

The Monty Hall Problem

In the famous game show Let’s Make a Deal, hosted by Monty Hall, one of the games
required a contestant to choose one of three doors. Behind one of the doors was a prize
(like money or a car), and behind the other two doors were dummy prizes (like a donkey).
Once the choice was made, Monty Hall would open up one of the un-chosen doors revealing
one of the dummy prizes. The contestant was then given a choice to either switch to the
remaining unopened door or keep the door that was already chosen. The contestant would
get whatever “prize” was behind the door.

To illustrate this game, consider the scenario in Figure 6.14 where the real prize is behind
door 2 (unbeknownst to the constentant) and the contestant chooses door 1. Monty would
then open door 3 revealing a dummy prize. The contestant then had to decide whether to
switch to door 2 (and consequently win the real prize) or don’t switch (and consequently
not win the real prize).
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Figure 6.14

The dillemma facing the contestant is the decision of whether to switch or not. To help
make this decision, we will use a simulation to estimate the following two probabilities:

1. Probability of winning if switching and
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6.3 Three Famous Problems 185

2. Probability of winning if not switching.

The key to estimating these probabilities is to realize that if not switching, the only way
to win is to initially choose the door with the real prize. If not switching, the prize is won
if the door with the real prize is not initially chosen.

Algorithm

1. Randomly designate the door with the real prize.

2. Randomly choose a door.

3. Determine if the real prize is won if switching.

4. Determine if the real prize is won if not switching.

5. Repeat for 1,000 trials.

6. Calculate P (win if switch) ≈
number of times won when switching

number of trials
.

7. Calculate P (win if don’t switch) ≈
number of times won when not switching

number of trials
.

Rename a blank worksheet “Monty” and format it as in Figure 6.15. Copy row 8 down to
row 1007 to perform 1000 trials.
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Figure 6.15

We see from the simulation that the probability of winning if switching is 2/3 and the
probability of winning if not switching is 1/3. Thus the contestant should switch. This
does not guarantee that the contestant will win, but the contestant is twice as likely to win
if switching than if not switching.

The Birthday Problem
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186 CHAPTER 6 Simulation Modeling

In a class of n students, what’s the probability that at least two students will share a
birthday (month and day)? This famous problem is known as the birthday problem. We
assume that birthdays are uniformly distributed throughout the year (i.e. no day is more
or less likely to be a birthday than any other day) and we will ignore leap years.

Algorithm

1. Randomly generate an integer between 1 and 365 for each student in the class to
represent birthdays (1 = January 1, 2 = January 2, etc.).

2. For each day of the year, count the number of students in the class that have that
day as their birthday.

3. Determine if some birthday is shared by at least two students. This is considered a
“success.”

4. Repeat for 200 trials.

5. Determine the number of successes.

6. Calculate P (at least two people sharing a birthday) ≈
number of successes

number of trials
.

To implement this algorithm, follow these steps:

1. Rename a blank worksheet “Birthday” and format it as in Figure 6.16. Copy row 3
down to row 102 to simulate a class of up to 100 students.
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Figure 6.16

2. Add the formulas in Figure 6.17 and copy row 4 down to row 367. These formulas
count the number of students who have a birthday on each day of the year and
determine if the trial is a success.

1

2

3

4

D E

Success? =IF(COUNTIF(E3:E367,">=2")>=1,1,0)

Day Count

1 =COUNTIF($B$3:$B$102,D3)

=D3+1 =COUNTIF($B$3:$B$102,D4)

Figure 6.17
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3. Add the formulas in Figure 6.18 to set up a table to store the results of 200 trials
and calculate the estimated probability. Copy row 6 down to row 204. Create a table
in the range G4:H204 to store the results from 200 trials. Select F1 as the column
input cell. Press F9 to repeat the simulation several times. Note that for a class of
23 students the simulation gives a probability of approximately 0.50.

1

2

3

4

5

6

G H

# Successes =SUM(H5:H204)

Probability =H1/200

Trial Success?

=E1

1

=G5+1

Figure 6.18

One benefit of using a simulation is that we can easily modify it to estimate more compli-
cated probabilities. For instance, if we wanted to estimate the probability that at least 3
students share a birthday in a class of 50 students, we could simply change the value of “#
students” to 50 and modify the formula to determine if the trial is a success as in Figure
6.19.

1

D E

Success? =IF(COUNTIF(E3:E367,">=3")>=1,1,0)

Figure 6.19

Buffon’s Needle Problem

A version of this problem was first solved by the French naturalist and mathematician, the
Comte de Buffon (1707-1788). Suppose we randomly drop a needle of length L ≤ 1 on a
wood floor in which the joints between the planks are 1 unit apart. Find the probability
that the needle “hits,” or intersects, one of the joints.

Let x denote the distance of the midpoint of the needle to the nearest joint between the
planks and θ denote the angle as illustrated in Figure 6.20. Note that 0 ≤ x ≤ 0.5 and
0 ≤ θ ≤ π/2.

To determine if the needle intersects a joint, observe that this can only occur if the hy-
potenuse of the right triangle in Figure 6.20 is less than L/2 (if the needle does not intersect
a joint, then the needle must be “extended” to form the triangle, making the hypotenuse
more than L/2). If h denotes the length of the hypotenuse, then using trigonometry we
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Figure 6.20

have
cos θ =

x

h
⇒ h =

x

cos θ
.

Thus the needle intersects a joint if x/ cos θ < L/2.

Algorithm

1. Randomly generate a number x between 0 and 0.5.

2. Randomly generate a number θ between 0 and π/2.

3. Calculate h = x/ cos θ.

4. Determine if h ≤ L/2. If this is true, then the trial is a “success.”

5. Repeat for 1000 trials.

6. Calculate P (intersecting a joint) ≈
number of successes

number of trials
.

Rename a blank worksheet “Buffon” and format it as in Figure 6.21. Adjust the value of
L and observe that as L gets smaller, so does the probability.
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Figure 6.21

Exercises

6.3.1 Consider the Monty Hall problem.
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a. In the simulation, the “door chosen” was random. What if the contestant always chooses door
1? Does this change either of the probabilities of winning? What if door 2 is always chosen?
What about door 3?

b. Consider the following strategy:

Always initially choose door 1. If door 2 is opened, then switch. Otherwise don’t
switch.

Create a simulation to estimate the probability of winning if this strategy were used every
time. Does this strategy do any better than switching every time?

6.3.2 Consider a generalization of the Monty Hall problem where there are N doors, exactly one
of which contains the real prize. Assume the game is played the following way:

1. The contestant always initially chooses door 1.

2. If the door with the prize is door 1 or door N , then door 2 is opened. In this case, if the
contestant switches, the door switched to is randomly selected between 3 and N , inclusive.

3. If the door with the prize is not door 1 or door N , then door N is opened. In this case, if the
contestant switches, the door switched to is randomly selected between 2 and N−1, inclusive.

Create a simulation of this game where the user can input the value of N and estimate the proba-
bilities of winning if switching and if not switching. (Suggestion: Create a column to determine
the door switch to. Use this to determine if the game is won if a switch is made.)

a. Create a table which gives the probabilities for values of N between 3 and 25.

b. What happens to the difference between the probabilities of winning if switching and the
probability if not switching as N gets larger? For “large” values of N , does it really matter if
the contestant switches or not?

6.3.3 Consider the birthday problem and let Pn denote the probability that in a class of n students,
at least 2 students share a birthday. It can be shown that Pn satisfies the following recursive
relationship:

Pn = 1− (1− Pn−1) ·
N − (n− 1)

N

where N is the number of days in a year and P1 = 0.

a. Create a spreadsheet to calculate the values of Pn for n between 1 and 100. Allow the user to
enter the value of N . If N = 365, what is the value of P23? Does this agree with the results
of the simulation?

b. Graph Pn vs n when N = 365. For what values of n is Pn > 0.90?

c. Find that probability that in a class of 6 students, at least 2 students share a birth month.

6.3.4 Modify the worksheet Birthday to estimate the solution to the following generalization of
the birthday problem: If a teacher asks a class of n students to write down an integer between a
and b, what’s the probability that at least m of them will write down the same number.
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1. Your simulation should allow the user to input the values of n, a, b, and m, and automatically
calculate the results.

2. Use a total of 500 trials.

3. Assume that n ≤ 200, 0 ≤ a < b ≤ 365, and that the students’ choices are uniformly
distributed.

4. If the value of m is in cell E1, then consider modifying the formula to determine a success as
in Figure 6.22.

2

D E

Success? =IF(COUNTIF(E4:E368,">="&E1)>=1,1,0)

Figure 6.22

6.3.5 For Buffon’s needle problem, create a table which gives the probability of an intersection for
different values of L between 0 and 1. Create a graph of the probability vs L, fit a curve to the
data, and use the curve to hypothesize the theoretical relationship between the probability and L.
(Hint: It is a very simple relationship involving the number 2/π.)

6.3.6 Two numbers x and y are randomly chosen from the interval (0, 1). Design a simulation to
estimate the probability that the closest integer to y/x is even. (Hint: Calculate y/x and round it
off to a whole number using the ROUND function. To determine if this number is even, use the
MOD function.)

6.4 Random Number Generators

In this section we will look at how computers generate “random” numbers. Random num-
bers are an essential part of all computer simulations. A simple definition of a list of

random numbers is that it is a list of numbers in which there is no pattern and all
possible numbers occur with equal frequency. The only way to get a truly random list of
numbers is by mechanical means (i.e. numbered balls tumbling in a cage, rolling a die,
etc.).

A computer generates a list of “random” numbers by using an iterative function where one
output becomes the next input. The initial input, called the seed, is arbitrary (it is often
chosen according to the clock time at which the algorithm begins) and each output becomes
a number in the list.

Because the computer uses a deterministic algorithm, there will be a pattern to the list
of numbers. Therefore, computers can never generate a true list of random numbers. The
“random” numbers they generate are called pseudorandom numbers and the algorithm


