
The Derivative

In This Chapter The word calculus is a diminutive form of the Latin word calx, which means
“stone.” In ancient civilizations small stones or pebbles were often used as a means of reckoning.
Consequently, the word calculus can refer to any systematic method of computation. However,
over the last several hundred years the connotation of the word calculus has evolved to mean that
branch of mathematics concerned with the calculation and application of entities known as
derivatives and integrals. Thus, the subject known as calculus has been divided into two rather
broad but related areas: differential calculus and integral calculus.

In this chapter we will begin our study of differential calculus.
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3.1 The Derivative
Introduction In the last section of Chapter 2 we saw that the tangent line to a graph of a

function is the line through a point with slope given by

whenever the limit exists. For many functions it is usually possible to obtain a general for-
mula that gives the value of the slope of a tangent line. This is accomplished by computing

(1)

for any x (for which the limit exists). We then substitute a value of x after the limit has
been found.

A Definition The limit of the difference quotient in (1) defines a function—a function that
is derived from the original function This new function is called the derivative func-
tion, or simply the derivative, of f and is denoted by f ¿.

y � f (x).

lim
hS0

 
f (x � h) � f (x)

h

mtan � lim
hS0

 
f (a � h) � f (a)

h

(a, f (a))y � f (x)
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Recall, is also called the slope of
the curve at (a, f (a)).

mtan

Definition 3.1.1 Derivative

The derivative of a function at x is given by

(2)

whenever the limit exists.

f ¿(x) � lim
hS0

 
f (x � h) � f (x)

h

y � f (x)

Let us now reconsider Examples 1 and 2 of Section 2.7.

EXAMPLE 1 A Derivative
Find the derivative of 

Solution As in the calculation of in Section 2.7, the process of finding the derivative
consists of four steps:

(i)

(ii)

(iii)

(iv)

From step (iv) we see that the derivative of is 

Observe that the result obtained in Example 1 of Section 2.7 is obtained by eval-
uating the derivative at that is, 

EXAMPLE 2 Value of the Derivative
For find and Interpret.

Solution From Example 1 we know that the derivative is Hence,

d point of tangency is (0, 2)

d slope of tangent line at (0, 2) is m � 0
at x � 0, e f (0) � 2

f ¿(0) � 0

d point of tangency is (�2, 6)

d slope of tangent line at (�2, 6) is m � �4
at x � �2, e f (�2) � 6

f ¿(�2) � �4

f ¿(x) � 2x.

f ¿(1).f ¿A12B,f ¿(0),f ¿(�2),f (x) � x2 � 2,

f ¿(1) � 2.x � 1, f ¿(x) � 2x
mtan � 2

f ¿(x) � 2x.f (x) � x2 � 2

lim
hS0

 
f (x � h) � f (x)

h
� lim

hS 0  

[2x � h ] � 2x.

d cancel h’s
f (x � h) � f (x)

h
�

h(2x � h)
 h

� 2x � h

f (x � h) � f (x) � [x2 � 2xh � h2 � 2] � x2 � 2 � h(2x � h)

f (x � h) � (x � h)2 � 2 � x2 � 2xh � h2 � 2

f ¿(x)
mtan

f (x) � x2 � 2.
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Recall that a horizontal line has 0 slope. So the fact that means that the tangent
line is horizontal at 

By the way, if you trace back through the four-step process in Example 1, you will find
that the derivative of is also This makes intuitive sense; since
the graph of is a rigid vertical translation or shift of the graph of 
for a given value of x, the points of tangency change but not the slope of the tangent line at
the points. For example, at but the points of tangency are

and 

EXAMPLE 3 A Derivative
Find the derivative of 

Solution To calculate we use the Binomial Theorem.

(i)

(ii)

(iii)

(iv)

The derivative of is .

EXAMPLE 4 Tangent Line
Find an equation of the tangent line to the graph of at 

Solution From Example 3 we have two functions and As we saw in
Example 2, when evaluated at the same number these functions give different information:

Thus, by the point–slope form of a line, an equation of the tangent line is given by

The graph of the function and the tangent line are given in FIGURE 3.1.1.

EXAMPLE 5 A Derivative
Find the derivative of 

Solution In this case you should be able to show that the difference is

Therefore,

The derivative of is f ¿(x) � �1�x 
2.f (x) � 1�x

 � lim
hS0

 
�1

(x � h)x
�

�1
x 

2
.

 lim
hS0

 
f (x � h) � f (x)

h
� lim

hS0
 

�h
h(x � h)x

d add fractions by using 
a common denominatorf (x � h) � f (x) �

1
x � h

�
1
x

�
�h

(x � h)x
.

f (x) � 1�x.

y �
1
8

�
3
4

  Qx �
1
2
R    or  y �

3
4

x �
1
4

.

d point of tangency is A12, 18 B

d slope of tangent at A12, 18 B is 34

f Q1
2
R � Q1

2
R3 �

1

8

f ¿Q1
2
R � 3Q1

2
R2 �

3

4
.

x � 1
2

f ¿(x) � 3x2.f (x) � x3

x � 1
2.f (x) � x3

f ¿(x) � 3x2f (x) � x3

lim
hS0

 
f (x � h) � f (x)

h
� lim

hS0
[3x2 � 3xh � h2 ] � 3x2.

f (x � h) � f (x)
h

�
h [3x2 � 3xh � h2 ]

h
� 3x2 � 3xh � h2

f (x � h) � f (x) � [x3 � 3x2h � 3xh2 � h3 ] � x3 � h (3x2 � 3xh � h2)

f (x � h) � (x � h)3 � x3 � 3x2h � 3xh2 � h3

f (x � h),

f (x) � x3.

(3, f (3)) � (3, 11).(3, g(3)) � (3, 9)
g¿(3) � 6 � f ¿(3)x � 3,

g(x) � x2f (x) � x2 � 2
g¿(x) � 2x � f ¿(x).g(x) � x2

(0, 2).
f ¿(0) � 0

d point of tangency is (1, 3)

d slope of tangent line at (1, 3) is m � 2
at x � 1, e f (1) � 3

f ¿(1) � 2.

d point of tangency is (1
2, 94)

d slope of tangent line at (1
2, 94) is m � 1

at x � 1
2, e f  A12B � 9

4

f ¿A12B � 1

3.1 The Derivative 123

Recall from algebra that

Now replace a by x and b by h.
(a � b)3 � a3 � 3a2b � 3ab2 � b3.

FIGURE 3.1.1 Tangent line in Example 4

y

x
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Notation The following is a list of some of the common notations used throughout math-
ematical literature to denote the derivative of a function:

For a function such as we write if the same function is written 
we then utilize or We will use the first three notations
throughout this text. Of course other symbols are used in various applications. Thus, if

then

The notation has its origin in the derivative form of (3) of Section 2.7. Replacing h by
and denoting the difference by in (2), the derivative is often defined as

(3)

EXAMPLE 6 A Derivative Using (3)
Use (3) to find the derivative of 

Solution In the four-step procedure the important algebra takes place in the third step:

(i)

(ii)

(iii)

(iv)

The derivative of is

Value of a Derivative The value of the derivative at a number a is denoted by the symbols

EXAMPLE 7 A Derivative
From Example 6, the value of the derivative of at, say, is written

Alternatively, to avoid the clumsy vertical bar we can simply write 

Differentiation Operators The process of finding or calculating a derivative is called differ-
entiation. Thus differentiation is an operation that is performed on a function They � f (x).

y ¿(9) � 1
6.

dy
dx
`
x�9

�
1

21x
`
x�9

�
1
6

.

x � 9y � 1x

f ¿(a), 
dy
dx
`
x�a

, y¿(a), Dxy `
x�a

.

dy�dx � 1>A21x B.y � 1x

lim
¢xS0

 
¢y
¢x

� lim
¢xS0

 
1

1x � ¢x � 1x
�

1
1x � 1x

�
1

21x
.

 �
1

1x � ¢x � 1x

 �
¢x

¢x (1x � ¢x � 1x)

 �
x � ¢x � x

¢x(1x � ¢x � 1x)

d rationalization of
numerator �

1x � ¢x � 1x
¢x

. 1x � ¢x � 1x
1x � ¢x � 1x

 
¢y
¢x

�
f (x � ¢x) � f (x)

¢x
�

1x � ¢x � 1x
¢x

¢y � f (x � ¢x) � f (x) � 1x � ¢x � 1x

f (x � ¢x) � 1x � ¢x

y � 1x.

dy
dx

� lim
¢xS0

 
f (x � ¢x) � f (x)

¢x
� lim

¢xS0
 
¢y
¢x

.

¢yf (x � h) � f (x)¢x
dy�dx

dz
dt

� 2t  or  z¿ � 2t.

z � t 
2, 

Dx y � 2x.y ¿ � 2x, dy�dx � 2x, 
y � x2,f ¿(x) � 2x; f (x) � x2,

f ¿(x), 
dy
dx

, y ¿, Dy, Dx y.

124 CHAPTER 3 The Derivative

59957_CH03a_121-190.qxd  10/6/09  5:16 PM  Page 124

© Jones and Bartlett Publishers, LLC.  NOT FOR SALE OR DISTRIBUTION. 



operation of differentiation of a function with respect to the variable x is represented by the
symbols and These symbols are called differentiation operators. For instance, the
results in Examples 1, 3, and 6 can be expressed, in turn, as

The symbol

Differentiability If the limit in (2) exists for a given number x in the domain of f, the
function f is said to be differentiable at x. If a function f is differentiable at every number
x in the open intervals and then f is differentiable on the open
interval. If f is differentiable on then f is said to be differentiable everywhere.
A function f is differentiable on a closed interval when f is differentiable on the
open interval and

(4)

both exist. The limits in (4) are called right-hand and left-hand derivatives, respectively. A
function is differentiable on when it is differentiable on and has a right-hand
derivative at a. A similar definition in terms of a left-hand derivative holds for differentiabil-
ity on Moreover, it can be shown:

• A function f is differentiable at a number c in an interval if and only if
(5)

Horizontal Tangents If is continuous at a number a and then the tangent
line at is horizontal. In Examples 1 and 2 we saw that the value of derivative 
of the function at is Thus, the tangent line to the graph is hori-
zontal at or It is left as an exercise (see Problem 7 in Exercises 3.1) to verify by
Definition 3.1.1 that the derivative of the continuous function is

Observe in this latter case that when or There
is a horizontal tangent at the point 

Where f Fails to be Differentiable A function f fails to have a derivative at if

(i) the function f is discontinuous at or
(ii) the graph of f has a corner at 

In addition, since the derivative gives slope, f will fail to be differentiable

(iii) at a point at which the tangent line to the graph is vertical.

The domain of the derivative defined by (2), is the set of numbers x for which the limit
exists. Thus the domain of is necessarily a subset of the domain of f.

EXAMPLE 8 Differentiability
(a) The function is differentiable for all real numbers x, that is, the domain

of is 
(b) Because is discontinuous at f is not differentiable at and con-

sequently not differentiable on any interval containing 0.
x � 0x � 0,f (x) � 1>x

(�q, q).f ¿(x) � 2x
f (x) � x2 � 2

f ¿
f ¿, 

(a, f (a))

(a, f (a)).
x � a, 

x � a

(2, f (2)) � (2, 5).
x � 2.�2x � 4 � 0f ¿(x) � 0f ¿(x) � �2x � 4.

f (x) � �x2 � 4x � 1
(0, 0).(0, f (0))

f ¿(0) � 0.x � 0f (x) � x2 � 2
f ¿(x) � 2x(a, f (a))

f ¿(a) � 0, y � f (x)

f ¿�(c) � f ¿�(c).
(a, b)

(�q, b ] .

(a, q)[a, q)

f ¿�(b) � lim
hS0 

�
 
f (b � h) � f (b)

h

f ¿�(a) � lim
hS0 

�

f (a � h) � f (a)
h

(a, b),
[a, b ]

(�q, q),
(a, q),(�q, b),(a, b),

dy
dx
  then means  d

dx
 y.

d
dx

 (x2 � 2) � 2x, d
dx

 x3 � 3x2, d
dx

1x �
1

21x
.

Dx.d�dx
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EXAMPLE 9 Example 7 of Section 2.7 Revisited
In Example 7 of Section 2.7 we saw that the graph of possesses no tangent at the
origin Thus is not differentiable at But is differentiable on
the open intervals and In Example 5 of Section 2.7, we proved that the
derivative of a linear function is Hence, for we have

and so Also, for and so Since
the derivative of f is a piecewise-defined function,

we can graph it as we would any function. We see in FIGURE 3.1.2(b) that is discontinuous
at 

In different symbols, what we have shown in Example 9 is that 
Since it follows from (5) that f is not differentiable at 0.

Vertical Tangents Let be continuous at a number a. If then the 
graph of f is said to have a vertical tangent at The graphs of many functions with
rational exponents possess vertical tangents.

In Example 6 of Section 2.7 we mentioned that the graph of possesses a vertical
tangent line at (0, 0). We verify this assertion in the next example.

EXAMPLE 10 Vertical Tangent
It is left as an exercise to prove that the derivative of is given by

(See Problem 55 in Exercises 3.1.) Although f is continuous at it is clear that is not
defined at that number. In other words, f is not differentiable at Moreover, because

we have as This is sufficient to say that there is a tangent line at (0, f (0))
or (0, 0) and that it is vertical. FIGURE 3.1.3 shows that the tangent lines to the graph on either
side of the origin become steeper and steeper as 

The graph of a function f can also have a vertical tangent at a point if f is dif-
ferentiable only on one side of is continuous from the left (right) at and either

EXAMPLE 11 One-Sided Vertical Tangent
The function is not differentiable on the interval because it is seen from
the derivative that does not exist. The function is contin-
uous on but differentiable on In addition, because f is continuous at 0 and

there is a one-sided vertical tangent at the origin We see in FIGURE 3.1.4

that the vertical tangent is the y-axis.

The functions and are continuous everywhere. In particular, both
functions are continuous at 0 but neither are differentiable at that number. In other words,
continuity at a number a is not sufficient to guarantee that a function is differentiable at a.
However, if a function f is differentiable at a, then f must be continuous at that number. We
summarize this last fact in the next theorem.

f (x) � x 
1>3f (x) � 0x 0

(0, 0).lim
xS0 

�  
f ¿(x) � q,

(0, q).[0, q)
f (x) � 1xf ¿�(0)f ¿(x) � 1>A21x B

[0, q)f (x) � 1x

0 f ¿(x) 0 S q as x S a 
�  or 0 f ¿(x) 0 S q as x S a 

�.
a, a, 

(a, f (a))

x S 0.

x S 0.0 f ¿(x) 0 S q

lim
xS0 

�  
f ¿(x) � q  and  lim

xS 0 
�  

f ¿(x) � q

x � 0.
f  ¿0,

f  ¿(x) �
1

3x2>3.

f (x) � x1>3

y � x 
1>3

(a, f (a)).
lim
xSa 

0  f  ¿(x) 0 � q,y � f (x)

f ¿�(0) � f ¿�(0)
f ¿�(0) � �1 and  f ¿�(0) � 1.

x � 0.
f ¿

f ¿(x) � e1, x 7 0
�1, x 6 0,

f ¿(x) � �1.f (x) � 0x 0 � �xx 6 0, f ¿(x) � 1.f (x) � 0x 0 � x
x 7 0f ¿(x) � m.f (x) � mx � b

(�q, 0).(0, q)
f (x) � 0x 0x � 0.f (x) � 0x 0(0, 0).

f (x) � 0x 0

126 CHAPTER 3 The Derivative

y

x

ƒ(x) �

(a) Absolute-value function ƒ

x

FIGURE 3.1.2 Graphs of f and in
Example 9

f ¿

y

x

ƒ�(x) � 1, x  >  0

ƒ�(x) � �1, x  <  0

(b) Graph of the derivative ƒ�

FIGURE 3.1.3 Tangent lines to the graph
of the function in Example 10

y

x

y � x1/3

FIGURE 3.1.4 Vertical tangent in
Example 11

y

y-axis is 
tangent to
the graph
at (0, 0)

x

y � x

Important

Theorem 3.1.1 Differentiability Implies Continuity

If f is differentiable at a number a, then f is continuous at a.
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PROOF To prove continuity of f at a number a it is sufficient to prove that 
or equivalently that The hypothesis is that

exists. If we let then as we have Thus, the foregoing limit is
equivalent to

Then we can write

Postscript—A Bit of History It is acknowledged that Isaac Newton (1642–1727), an English
mathematician and physicist, was the first to set forth many of the basic principles of calculus in

unpublished manuscripts on the method of fluxions, dated 1665. The word
fluxion originated from the concept of quantities that “flow”—that is, quanti-
ties that change at a certain rate. Newton used the dot notation to represent a
fluxion, or as we now know it: the derivative of a function. The symbol never
achieved overwhelming popularity among mathematicians and is used today
primarily by physicists. For typographical reasons, the so-called “fly-speck
notation” has been superseded by the prime notation. Newton attained ever-

lasting fame with the publication of his law of universal gravitation in his monumental treatise
Philosophiae Naturalis Principia Mathematica in 1687. Newton was also the first to prove,
using the calculus and his law of gravitation, Johannes Kepler’s three empirical laws of plane-
tary motion and was the first to prove that white light is composed of all colors. Newton was
elected to Parliament, was appointed warden of the Royal Mint, and was knighted in 1705. Sir
Isaac Newton said about his many accomplishments: “If I have seen farther than others, it is by
standing on the shoulders of giants.”

The German mathematician, lawyer, and philosopher Gottfried Wilhelm
Leibniz (1646–1716) published a short version of his calculus in an article in
a periodical journal in 1684. The notation for a derivative of a function
is due to Leibniz. In fact, it was Leibniz who introduced the word function into
mathematical literature. But, since it was well known that Newton’s manuscripts
on the method of fluxions dated from 1665, Leibniz was accused of appropri-
ating his ideas from these unpublished works. Fueled by nationalistic prides, a

controversy about who was the first to “invent” calculus raged for many years. Historians now
agree that both Leibniz and Newton arrived at many of the major premises of calculus inde-
pendent of each other. Leibniz and Newton are considered the “co-inventors” of the subject.

dy>dx

y
.

y.

� f ¿(a) . 0 � 0.

d both limits exist� lim
xSa

 
f (x) � f (a)

x � a
. lim

xSa
 (x � a)

d multiplication by 
x � a
x � a

� 1lim
xSa

 [  f (x) � f (a)] � lim
xSa

 
f (x) � f (a)

x � a
. (x � a)

f ¿(a) � lim
xSa

 
f (x) � f (a)

x � a
.

x S a.h S 0x � a � h, 

f ¿(a) � lim
hS0

 
f (a � h) � f (a)

h

lim
xSa

[ f (x) � f (a)] � 0.
lim
xSa 

f (x) � f (a)

3.1 The Derivative 127

Newton

Leibniz

NOTES FROM THE CLASSROOM

(i) In the preceding discussion, we saw that the derivative of a function is itself a function
that gives the slope of a tangent line. The derivative is, however, not an equation of a
tangent line. Also, to say that is an equation of the tangent at

is incorrect. Remember that must be evaluated at before it is used in the
point–slope form. If f is differentiable at then an equation of the tangent line at

is .y � y0 � f ¿(x0) . (x � x0)(x0, y0)
x0,

x0f ¿(x)(x0, y0)
y � y0 � f ¿(x) . (x � x0)

d
dx
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Exercises 3.1 Answers to selected odd-numbered problems begin on page ANS-000.

128 CHAPTER 3 The Derivative

(ii) Although we have emphasized slopes in this section, do not forget the discussion on
average rates of change and instantaneous rates of change in Section 2.7. The deriva-
tive is also the instantaneous rate of change of the function with respect
to the variable x. More will be said about rates in subsequent sections.

(iii) Mathematicians from the seventeenth to the nineteenth centuries believed that a con-
tinuous function usually possessed a derivative. (We have noted exceptions in this sec-
tion.) In 1872 the German mathematician Karl Weierstrass conclusively destroyed this
tenet by publishing an example of a function that was everywhere continuous but
nowhere differentiable.

y � f (x)f ¿(x)

Fundamentals

In Problems 1–20, use (2) of Definition 3.1.1 to find the deriv-
ative of the given function.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

In Problems 21–24, use (2) of Definition 3.1.1 to find the deriv-
ative of the given function. Find an equation of the tangent line
to the graph of the function at the indicated value of x.

21.

22.

23. 24.

In Problems 25–28, use (2) of Definition 3.1.1 to find the deriv-
ative of the given function. Find point(s) on the graph of the
given function where the tangent line is horizontal.

25. 26.

27. 28.

In Problems 29–32, use (2) of Definition 3.1.1 to find the deriv-
ative of the given function. Find point(s) on the graph of the

f (x) � x3 � x2 � 1f (x) � x3 � 3x

f (x) � x (x � 5)f (x) � x2 � 8x � 10

y � 2x � 1 �
6
x

; x � 2y � x �
1
x

; x � 1

f (x) �
1
3

x 
3 � 2x � 4; x � 0

f (x) � 4x 
2 � 7x; x � �1

f (x) � 12x � 1f (x) �
1
1x

f (x) �
1
x

�
1
x2

y �
2x � 3
x � 4

y �
x

x � 1
y �

2
x � 1

y � 3x4y � �x3 � 15x2 � x

f (x) � 2x3 � x2f (x) � x3 � x

f (x) � (2x � 5)2y � (x � 1)2

f (x) �
1
2

 x2 � 6x � 7f (x) � �x2 � 4x � 1

f (x) � �x2 � 1f (x) � 3x2

f (x) � pxf (x) � �3x � 5

f (x) � x � 1f (x) � 10

given function where the tangent line is parallel to the given
line.

29.

30.

31.

32.

In Problems 33 and 34, show that the given function is not dif-
ferentiable at the indicated value of x.

33.

34.

In the proof of Theorem 3.1.1 we saw that an alternative for-
mulation of the derivative of a function f at a is given by

(6)

whenever the limit exists. In Problems 35–40, use (6) to com-
pute 

35. 36.

37. 38.

39. 40.

41. Find an equation of the tangent line shown in red in
FIGURE 3.1.5. What are 

FIGURE 3.1.5 Graph for
Problem 41

y

1

�3
x

y �ƒ(x)

f (�3) and  f ¿(�3)?

f (x) � 1xf (x) �
4

3 � x

f (x) � x4f (x) � x3 � 4x2

f (x) � x2 � 3x � 1f (x) � 10x2 � 3

f ¿(a).

f ¿(a) � lim
xSa

 
f (x) � f (a)

x � a
,

f (x) � e3x, x 6 0
�4x, x � 0

; x � 0

f (x) � e�x � 2, x � 2
2x � 4, x 7 2

; x � 2

f (x) � 61x � 2; �x � y � 2

f (x) � �x3 � 4; 12x � y � 4

f (x) � x2 � x; �2x � y � 0

f (x) �
1
2

 x 
2 � 1; 3x � y � 1
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42. Find an equation of the tangent line shown in red in
FIGURE 3.1.6. What is What is the y-intercept of the
tangent line?

In Problems 43–48, sketch the graph of from the graph of f.

43. 44.

45. 46.

47.

48.

In Problems 49–54, match the graph of f with a graph of 
from (a)–(f).

(a) (b)

f ¿

FIGURE 3.1.12 Graph for
Problem 48

y

x

y �ƒ(x)

(1, 2)

(3,  �2)

FIGURE 3.1.11 Graph for
Problem 47

a

a

y

x

y �ƒ(x)

FIGURE 3.1.10 Graph for
Problem 46

y

45	

60	

x

y �ƒ(x)

a bFIGURE 3.1.9 Graph for
Problem 45

y �ƒ(x)

y

45	 45	
x

�1 1

FIGURE 3.1.8 Graph for
Problem 44

y

x

y �ƒ(x)

FIGURE 3.1.7 Graph for
Problem 43

y

x

y �ƒ(x) (2,  3)

f ¿

FIGURE 3.1.6 Graph for
Problem 42

y

x

9 ,0y �ƒ(x)1

1

2

f ¿(3)?
(c) (d)

(e) (f)

49. 50.

FIGURE 3.1.13 Graph for
FIGURE 3.1.14 Graph for Problem 49
Problem 50

51. 52.

FIGURE 3.1.15 Graph for 

FIGURE 3.1.16 Graph for

Problem 51

Problem 52

53. 54.

FIGURE 3.1.17 Graph for FIGURE 3.1.18 Graph for
Problem 53 Problem 54

Think About It

55. Use the alternative definition of the derivative (6) to find
the derivative of 

[Hint: Note that ]

56. In Examples 10 and 11, we saw, respectively, that the
functions and possessed vertical
tangents at the origin Conjecture where the graphs
of and may have vertical
tangents.

57. Suppose f is differentiable everywhere and has the three
properties:
(i) (ii) (iii)

Use (2) of Definition 3.1.1 to show that for
all x.

f ¿(x) � f (x)

f ¿(0) � 1.f (0) � 1,f (x1 � x2) � f (x1) f (x2),

y � 1x � 2y � (x � 4) 
1>3

(0, 0).
f (x) � 1xf (x) � x 

1>3

x � a � (x 
1>3) 

3 � (a 
1>3) 

3.

f (x) � x 
1>3.

y

x

y �ƒ(x)

y

x

y �ƒ(x)

y

x

y �ƒ(x)y

x

y �ƒ(x)

y

x

y �ƒ(x)y �ƒ(x)

y

x

3.1 The Derivative 129

y

x

y �ƒ�(x)

y

x

y �ƒ�(x)

y

x

y �ƒ�(x)

y

x

y �ƒ�(x)

y

x

y �ƒ�(x)
y

x

y �ƒ�(x)
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58. (a) Suppose f is an even differentiable function on 
On geometric grounds, explain why 
that is, is an odd function.

(b) Suppose f is an odd differentiable function on 
On geometric grounds, explain why that
is, is an even function.

59. Suppose f is a differentiable function on such that
and By experimenting with graphs

discern whether the following statement is true or false:
There is some number c in such that f ¿(c) � 0.(a, b)

f (b) � 0.f (a) � 0
[a, b ]

f ¿
f ¿(�x) � f ¿(x);

(�q, q).
f ¿

f ¿(�x) � �f ¿(x);
(�q, q). 60. Sketch graphs of various functions f that have the property

for all x in What do these functions have
in common?

Calculator/CAS Problem

61. Consider the function where n is a
positive integer. Use a calculator or CAS to obtain the
graph of f for Then use (2) to show
that f is not differentiable at for  and 5.
Can you prove this for any positive integer n? What is

for n 7 1?f ¿�(0) and f ¿�(0)

n � 1, 2, 3, 4,x � 0
n � 1, 2, 3, 4, and 5.

f (x) � xn � 0x 0 ,

[a, b ] .f ¿(x) 7 0

130 CHAPTER 3 The Derivative

3.2 Power and Sum Rules
Introduction The definition of a derivative

(1)

has the obvious drawback of being rather clumsy and tiresome to apply. To find the deriva-
tive of the polynomial function using the above definition we would only
have to juggle 137 terms in the binomial expansions of and There are
more efficient ways of computing derivatives of a function than using the definition each
time. In this section, and the sections that follow, we will see that there are shortcuts or gen-
eral rules whereby derivatives of functions such as can be obtained, lit-
erally, with just a flick of a pencil.

In the last section we saw that the derivatives of the power functions

were, in turn,

If the right-hand sides of these four derivatives are written

we observe that each coefficient (indicated in red) corresponds with the original exponent of
x in f and the new exponent of x in can be obtained from the old exponent (also indicated
in red) by subtracting 1 from it. In other words, the pattern for the derivative of the general
power function appears to be

. (2)

Derivative of the Power Function The pattern illustrated in (2) does indeed hold for any
real-number exponent n, and we will state it as a formal theorem, but at this point in the course
we do not possess the necessary mathematical tools to prove its complete validity. We can,
however, readily prove a special case of this power rule; the remaining parts of the proof will
be given in the appropriate sections ahead.

(  )x 
(  )�1

f (x) � x 
n

f ¿

2 . x 
2�1, 3 . x 

3�1, (�1) . x 
�1�1, 1

2
. x 

1
2�1,

f ¿(x) � 2x, f ¿(x) � 3x2, f ¿(x) � �
1
x2

� �x�2, f ¿(x) �
1

21x
�

1
2

 x 
�1>2.

f (x) � x2, f (x) � x3, f (x) �
1
x

� x 
�1, f (x) � 1x � x 

1>2

f (x) � 6x100 � 4x35

(x � h)35.(x � h)100
f (x) � 6x100 � 4x35

f ¿(x) � lim
hS0

  

f (x � h) � f (x)
h

See Examples 3, 5, and 6 in
Section 3.1.

bring down exponent as a multiple
T

decrease exponent by 1
c
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3.2 Power and Sum Rules 131

PROOF We present the proof only in the case when n is a positive integer. To compute (1)
for we use the four-step method:

general Binomial Theorem

(i)

(ii)

(iii)

(iv)

these terms S 0 as h S 0

EXAMPLE 1 Power Rule
Differentiate

(a) (b) (c) (d) .

Solution By the Power Rule (3),

(a) with 

(b) with 

(c) with 

(d) with 

Observe in part (b) of Example 1 that the result is consistent with the fact that the slope
of the line is See FIGURE 3.2.1.m � 1.y � x

dy
dx

� 12x12�1.n � 12:

dy
dx

� Q�2
3
R x 

(�2>3)�1 � �
2
3

 x 
�5>3 � �

2
3x 

5>3,n � �
2
3

 :

dy
dx

� 1x 
1�1 � x 

0 � 1,n � 1:

dy
dx

� 7x 
7�1 � 7x 

6,n � 7:

y � x12y � x 
�2>3y � xy � x 

7

 � lim
hS0 

cnxn�1 �
n(n � 1)

2!
 xn�1h � . . . � nxhn�2 � hn�1 d � nxn�1.

 f ¿(x) � lim
hS0

 
f (x � h) � f (x)

h

 � nxn�1 �
n(n � 1)

2!
  xn�1h � . . . � nxhn�2 � hn�1

 
f (x � h) � f (x)

h
�

h cnxn�1 �
n(n � 1)

2!
  xn�1h � . . . � nxhn�2 � hn�1 d

h

 � h cnxn�1 �
n(n � 1)

2!
 xn�1h � . . . � nxhn�2 � hn�1 d

 � nxn�1h �
n(n � 1)

2!
 xn�2h2 � . . . � nxhn�1 � hn

 f (x � h) � f (x) � xn � nxn�1h �
n(n � 1)

2!
 xn�2h2 � . . . � nxhn�1 � hn � xn

f (x � h) � (x � h) 
n � x 

n � nx 
n�1h �

n(n � 1)
2!

 x 
n�2h 

2 � . . . � nxh 
n�1 � h 

n

f (x) � x 
n

Theorem 3.2.1 Power Rule

For any real number n,

(3)
d
dx

 x 
n � nx 

n�1.

FIGURE 3.2.1 Slope of line is
consistent with dy>dx � 1

m � 1

Theorem 3.2.2 Constant Function Rule

If is a constant function, then (4)f ¿(x) � 0.f (x) � c

See the Resource Pages for a review
of the Binomial Theorem.

y

x

y � x

m � 1

⎞ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎠

⎞⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎠
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132 CHAPTER 3 The Derivative

PROOF If where c is any real number, then it follows that the difference is
Hence from (1),

Theorem 3.2.2 has an obvious geometric interpretation. As shown in FIGURE 3.2.2, the slope
of the horizontal line is, of course, zero. Moreover, Theorem 3.2.2 agrees with (3) in
the case when and n � 0.x � 0

y � c

f ¿(x) � lim
hS 0

 
c � c

h
� lim

hS 0 

0 � 0.

f (x � h) � f (x) � c � c � 0.
f (x) � c

PROOF Let Then

EXAMPLE 2 A Constant Multiple
Differentiate 

Solution From (3) and (5),

dy
dx

� 5 

d
dx

 x4 � 5(4x3) � 20x3.

y � 5x4.

 � c lim
hS0 

 

f (x � h) � f (x)
h

� c f ¿(x).

 � lim
hS0 

c c f (x � h) � f (x)
h

d
 G¿(x) � lim

hS0
 
G(x � h) � G(x)

h
� lim

hS0
 
c f (x � h) � c f (x)

h

G(x) � c f (x).

FIGURE 3.2.2 Slope of a horizontal line
is 0

Theorem 3.2.3 Constant Multiple Rule

If c is any constant and f is differentiable at x, then cf is differentiable at x, and

(5)
d
dx

 c f (x) � c f ¿(x).

Theorem 3.2.4 Sum and Difference Rules

If f and g are functions differentiable at x, then and are differentiable at x, and

(6)

(7)
d
dx

[ f (x) � g(x)] � f ¿(x) � g¿(x).

d
dx

[ f (x) � g(x)] � f ¿(x) � g¿(x),

f � gf � g

PROOF OF (6) Let Then

 � f ¿(x) � g¿(x).

 � lim
hS0

 
f (x � h) � f (x)

h
� lim

hS0
 
g(x � h) � g(x)

h

 � lim
hS0

 
f (x � h) � f (x) � g(x � h) � g(x)

h

 G¿(x) � lim
hS0

 
G(x � h) � G(x)

h
� lim

hS0
 
[ f (x � h) � g(x � h)] � [ f (x) � g(x)]

h

G(x) � f (x) � g(x).

since limits exist,
limit of a sum is
the sum of the limits

S

regrouping termsd

y

x

(x,  c) (x � h, c)

x � hx

ƒ(x) � c
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Theorem 3.2.4 holds for any finite sum of differentiable functions. For example, if f, g,
and h are functions that are differentiable at x, then

Since can be written as a sum, there is no need to prove (7) since the result
follows from a combination of (6) and (5). Hence, we can express Theorem 3.2.4 in words as:

• The derivative of a sum is the sum of the derivatives.

Derivative of a Polynomial Because we now know how to differentiate powers of x and
constant multiples of those powers we can easily differentiate sums of those constant multiples.
The derivative of a polynomial function is particularly easy to obtain. For example, the deriv-
ative of the polynomial function mentioned in the introduction to this sec-
tion, is now readily seen to be 

EXAMPLE 3 Polynomial with Six Terms

Differentiate 

Solution Using (3), (5), and (6), we obtain

Since by (4), we obtain

EXAMPLE 4 Tangent Line
Find an equation of a tangent line to the graph of at the point cor-
responding to 

Solution From the Sum Rule,

When evaluated at the same number the functions f and give:

The point–slope form gives an equation of the tangent line

Rewriting a Function In some circumstances, in order to apply a rule of differentiation
efficiently it may be necessary to rewrite an expression in an alternative form. This alterna-
tive form is often the result of some algebraic manipulation or an application of the laws of
exponents. For example, we can use (3) to differentiate the following expressions, but first
we rewrite them using the laws of exponents

,

.�8x�3, �5x�3>2, 3
2

 x1>2Sthe derivative of
each term using (3)

4x�2, 10x�1>2, x3>2,Sthen rewrite using
negative exponents

4
x2

, 10
x1>2, (x3)1>2Srewrite square

roots as powersS
4
x2

, 10
1x

, 2x3

y � 8 � �13(x � (�1))  or  y � �13x � 5.

d slope of tangent at (�1, 8) is �13f ¿(�1) � �13.

d point of tangency is (�1, 8)f (�1) � 8

f ¿x � �1

f ¿(x) � 3(4x 
3) � 2(3x 

2) � 7(1) � 12x 
3 � 6x 

2 � 7.

x � �1.
f (x) � 3x 

4 � 2x 
3 � 7x

 � 20x4 � 2x3 � 27x2 � 20x � 13.

 
dy
dx

� 4(5x4) �
1
2

 (4x3) � 9(3x2) � 10(2x) � 13(1) � 0

d
dx

  6 � 0

dy
dx

� 4 
d
dx

 x5 �
1
2

  
d
dx

x4 � 9 
d
dx

 x3 � 10 
d
dx

 x2 � 13 
d
dx

 x �
d
dx

  6.

y � 4x5 �
1
2

 x4 � 9x3 � 10x2 � 13x � 6.

f ¿(x) � 600x99 � 140x34.
f (x) � 6x100 � 4x35,

f � (�g),f � g

d
dx

 [ f (x) � g(x) � h(x)] � f ¿(x) � g¿(x) � h¿(x).

This discussion is worth remembering.

3.2 Power and Sum Rules 133
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134 CHAPTER 3 The Derivative

A function such as can be rewritten as two fractions

From the last form of f it is now apparent that the derivative is

EXAMPLE 5 Rewriting the Terms of a Function

Differentiate 

Solution Before differentiating we rewrite the first three terms as powers of x:

Then

By the Power Rule (3) and (4), we obtain

EXAMPLE 6 Horizontal Tangents
Find the points on the graph of where the tangent line is horizontal.

Solution At a point on the graph of f where the tangent is horizontal we must have
The derivative of f is and the solutions of 

or are and The corresponding points are then 
and See FIGURE 3.2.3.

Normal Line A normal line at a point P on a graph is one that is perpendicular to the tan-
gent line at P.

EXAMPLE 7 Equation of a Normal Line
Find an equation of the normal line to the graph of 

Solution Since we know that at Thus the slope of the normal
line shown in green in FIGURE 3.2.4 is the negative reciprocal of the slope of the tangent line,
that is, By the point-slope form of a line, an equation of the normal line is then

EXAMPLE 8 Vertical Tangent
For the power function the derivative is

Observe that whereas Since f is continuous at and 
as we conclude that the y-axis is a vertical tangent at This fact is

apparent from the graph in FIGURE 3.2.5.
(0, 0).x S 0,� f ¿(x)� S q

x � 0lim
xS0 

�
 

f (x) � �q.lim
xS0 

�
 

f (x) � q

f ¿(x) �
2
3

 x�1>3 �
2

3x1>3.

f (x) � x 
2>3

y � 1 � �
1
2

(x � 1)  or  y � �
1
2

 x �
3
2

.

m � �1
2.

(1, 1).mtan � 2dy>dx � 2x,

y � x 
2

  at x � 1.

(2, f (2)) � (2, 6).
(0, f (0)) � (0, 2)x � 2.x � 0�3x(x � 2) � 0

f ¿(x) � �3x2 � 6x � 0f ¿(x) � �3x2 � 6xf ¿(x) � 0.
(x, f (x))

f (x) � �x3 � 3x2 � 2

 �
2
1x

�
8
x2

�
2

x4>3.

 
dy
dx

� 4 . 1
2

 x�1>2 � 8 . (�1)x�2 � 6 . Q�1
3
R  x�4>3 � 0

dy
dx

� 4 

d
dx

 x1>2 � 8 

d
dx

 x�1 � 6 

d
dx

 x�1>3 �
d
dx

 10.

y � 4x1>2 � 8x 
�1 � 6x 

�1>3 � 10.

y � 41x �
8
x

�
6

13 x
� 10.

f ¿(x) � 5(�x 
�2) � 2(�2x 

�3) � �
5
x2

�
4
x3

.

f ¿

f (x) �
5x � 2

x2
�

5x

x2
�

2
x2

�
5
x

�
2
x2

� 5x 
�1 � 2x 

�2.

f (x) � (5x � 2)>x2

FIGURE 3.2.3 Graph of function in
Example 6

FIGURE 3.2.4 Normal line in Example 7

1

3

4

5

6

1�1 2 3

y

x

(0, 2)

(2, 6)

y � �x3 � 3x2 � 2

y

x

y � x 2
(1, 1)

tangent
normal

y

x

y � x 2/3

FIGURE 3.2.5 Graph of function in
Example 8
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Cusp The graph of in Example 8 is said to have a cusp at the origin. In general,
the graph of a function has a cusp at a point if f is continuous at has
opposite signs on either side of a, and as 

Higher-Order Derivatives We have seen that the derivative is a function derived from
By differentiation of the first derivative, we obtain yet another function called the

second derivative, which is denoted by In terms of the operation symbol we define
the second derivative with respect to x as the function obtained by differentiating twice
in succession:

The second derivative is commonly denoted by the symbols

EXAMPLE 9 Second Derivative

Find the second derivative of 

Solution We first simplify the function by rewriting it as Then by the Power Rule
(3), we have

The second derivative follows from differentiating the first derivative

Assuming that all derivatives exist, we can differentiate a function as many
times as we want. The third derivative is the derivative of the second derivative; the fourth
derivative is the derivative of the third derivative; and so on. We denote the third and fourth
derivatives by and define them by

In general, if n is a positive integer, then the nth derivative is defined by

Other notations for the first n derivatives are

Note that the “prime” notation is used to denote only the first three derivatives; after that we
use the superscript and so on. The value of the nth derivative of a function 
at a number is denoted by

f  
(n)(a),  y 

(n)(a),  and  
d 

ny
dx 

n  `
x�a

.

a
y � f (x)y 

(4), y 
(5),

D x, D 
2
x, D 

3
x, D 

4
x, p , D 

n
x.

D, D 
2, D 

3, D 
4, p , D 

n, 

d
dx

 f (x), d 
2

dx 
2

 f (x), d 
3

dx 
3

 f (x), d 
4

dx 
4

 f (x), p , d 
n

dx 
n  f (x), 

y ¿, y–, y‡, y 
(4), p , y 

(n), 
f ¿(x), f –(x), f ‡(x), f 

(4)(x), p , f 
(n)(x), 

d 
ny

dx 
n �

d
dx

 ad 
n�1y

dx 
n�1
b.

d 
3y

dx3
�

d
dx

  Qd 
2y

dx2
R  and  

d 
4y

dx4
�

d
dx

  Qd 
3y

dx3
R.

d 
3y>dx 

3 and d 
4y>dx 

4

y � f (x)

d 
2y

dx2
�

d
dx

 (�3x�4) � �3(�4x�5) � 12x�5 �
12
x5

.

dy
dx

� �3x�4.

y � x�3.

y �
1
x3

.

f –(x), y–, 
d 

2y

dx2
, d 

2

dx2
 f (x), D2, D2

x.

d
dx

  Qdy
dx
R.

y � f (x)
d>dx,f –(x).

y � f (x).
f ¿(x)

x S a.� f ¿(x)� S q
f ¿(x)a,(a, f (a))y � f (x)

f (x) � x2>3

3.2 Power and Sum Rules 135
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136 CHAPTER 3 The Derivative

EXAMPLE 10 Fifth Derivative
Find the first five derivatives of 

Solution We have

After reflecting a moment, you should be convinced that the (n � 1)st derivative of an
nth-degree polynomial function is zero.

 f 
(5)(x) � 0.

 f 
(4)(x) � 48

 f ‡(x) � 48x � 36

 f –(x) � 24x2 � 36x � 14

 f ¿(x) � 8x3 � 18x2 � 14x � 5

f (x) � 2x4 � 6x3 � 7x2 � 5x.

NOTES FROM THE CLASSROOM

(i) In the different contexts of science, engineering, and business, functions are often
expressed in variables other than x and y. Correspondingly we must adapt the deriva-
tive notation to the new symbols. For example,

Function Derivative

(ii) You may be wondering what interpretation can be given to the higher-order derivatives.
If we think in terms of graphs, then gives the slope of tangent lines to the graph of
the function gives the slope of the tangent lines to the graph of and so on. In
addition, if f is differentiable, then the first-derivative gives the instantaneous rate of
change of f. Similarly, if is differentiable, then gives the instantaneous rate of
change of f ¿.

f –f ¿
f ¿

f –,f ‡f ¿;
f –

D ¿(p) �
dD
dp

� �129 � 2p.D(p) � 800 � 129p � p2

r ¿(u) �
dr
du

� 8u � 3r(u) � 4u 
2 � 3u

A¿(r) �
dA
dr

� 2prA(r) � pr 
2

y¿(t) �
dy
dt

� 32y(t) � 32t

d
dx

Exercises 3.2 Answers to selected odd-numbered problems begin on page ANS-000.

Fundamentals

In Problems 1–8, find 

1. 2.

3. 4.

5. 6.

7. 8. y �
x � x2

1x
y � 41x �

6

2
3 x2

y � 6x3 � 3x2 � 10y � 7x2 � 4x

y � 4x12y � x9

y � p6y � �18

dy>dx.

In Problems 9–16, find Simplify.

9.

10.

11.

12. f (x) �
2 x5 � 3 x4 � x3 � 2

x2

f (x) � x3(4 x2 � 5 x � 6)

f (x) � �
2
3

 x6 � 4 x5 � 13 x2 � 8 x � 2

f (x) �
1
5

 x5 � 3x4 � 9x2 � 1

f ¿(x).
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3.2 Power and Sum Rules 137

13. 14.

15. 16.

In Problems 17–20, find the derivative of the given function.

17. 18.

19. 20.

In Problems 21–24, find an equation of the tangent line to the
graph of the given function at the indicated value of x.

21. 22.

23. 24.

In Problems 25–28, find the point(s) on the graph of the given
function at which the tangent line is horizontal.

25. 26.

27. 28.

In Problems 29–32, find an equation of the normal line to the
graph of the given function at the indicated value of x.

29. 30.

31. 32.

In Problems 33–38, find the second derivative of the given
function.

33. 34.

35. 36.

37. 38.

In Problems 39 and 40, find the indicated higher derivative.

39.

40.

In Problems 41 and 42, determine intervals for which 
and intervals for which 

41. 42.

In Problems 43 and 44, find the point(s) on the graph of f at
which 

43. 44.

In Problems 45 and 46, determine intervals for which
and intervals for which 

45. 46.

An equation containing one or more derivatives of an unknown
function is called a differential equation. In Problems 47
and 48, show that the function satisfies the given differential
equation.

47.

48.

49. Find the point on the graph of at
which the slope of the tangent line is 5.

f (x) � 2 x2 � 3 x � 6

y � x � x3 � 4; x2 y– � 3 x y ¿ � 3 y � 12

y � x�1 � x4; x2 y– � 2 xy ¿ � 4y � 0

y(x)

f (x) � x3 � x2f (x) � (x � 1)3

f –(x) 6 0.f –(x) 7 0

f (x) � x4 � 2 x3f (x) � x3 � 12 x2 � 20 x

f –(x) � 0.

f (x) � x3 � 3 x2 � 9 xf (x) � x2 � 8 x � 4

f ¿(x) 6 0.
f ¿(x) 7 0

d 
5y>dx 

5y � x4 �
10
x

;

f  
(4)(x)f (x) � 4 x6 � x5 � x3;

f (x) � x � Q 2
x2R3f (x) � 10 x�2

y � 2 x5 � 4 x3 � 6 x2y � (�4 x � 9)2

y � 15 x2 � 241xy � �x2 � 3 x � 7

x � �1f (x) � x4 � x;x � 4f (x) �
1
3

x3 � 2x2;

x � 1y � x3;x � 2y � �x2 � 1;

f (x) � x4 � 4x3f (x) � x3 � 3x2 � 9x � 2

y � 1
3x3 � 1

2x2y � x2 � 8x � 5

x �1f (x) � �x3 � 6x2;x � 4f (x) �
4
1x

� 21x;

x � 2y � �x �
8
x

;x � �1y � 2x3 � 1;

Q(t) �
t5 � 4t2 � 3

6
g(r) �

1
r

�
1
r 

2
�

1
r 

3
�

1
r 

4

p(t) � (2t)�4 � (2t�1)2h(u) � (4u)3

f (x) � (9 � x)(9 � x)f (x) � A41x � 1B2
f (x) � (x3 � x2)3f (x) � x2(x2 � 5)2 50. Find the point on the graph of at which the

tangent line is 

51. Find the point on the graph of at which the
slope of the normal line is 2.

52. Find the point on the graph of at which
the tangent line is parallel to the line 

53. Find an equation of the tangent line to the graph of
at the point where the value of the

second derivative is zero.

54. Find an equation of the tangent line to the graph of 
at the point where the value of the third derivative is 12.

Applications

55. The volume V of a sphere of radius r is Find
the surface area S of the sphere if S is the instantaneous
rate of change of the volume with respect to the radius.

56. According to the French physician Jean Louis Poiseuille
(1799–1869) the velocity y of blood in an artery with a
constant circular cross-section radius R is 

where P, and l are constants. What is
the velocity of blood at the value of r for which 

57. The potential energy of a spring-mass system when the
spring is stretched a distance of x units is 
where k is the spring constant. The force exerted on the
mass is Find the force if the spring constant
is 30 N/m and the amount of stretch is 

58. The height s above ground of a projectile at time t is
given by

where g, and are constants. Find the instantaneous
rate of change of s with respect to t at 

Think About It

In Problems 59 and 60, the symbol n represents a positive inte-
ger. Find a formula for the given derivative.

59. 60.

61. From the graphs of f and g in FIGURE 3.2.6, determine which
function is the derivative of the other. Explain your choice
in words.

FIGURE 3.2.6 Graphs for Problem 61

y

1

1
x

y �ƒ(x) y � g (x)

d 
n

dx 
n 

1
x

d 
n

dx 
n x 

n

t � 4.
s0y0,

s(t) �
1
2

 gt 
2 � y0 

t � s0,

1
2 m.

F � �dU�dx.

U(x) � 1
2 
kx 

2,

y¿(r) � 0?
n,(P�4nl )(R 

2 � r 
2),

y(r) �

V � 4
3pr 

3.

y � x 
4

y � x3 � 3x2 � 4x � 1

3x � 2y � 1 � 0.
f (x) � 1

4x
2 � 2x

f (x) � x2 � x

3x � 9y � 4 � 0.
f (x) � x2 � x
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138 CHAPTER 3 The Derivative

75. Find conditions on the coefficients a, b, and c so that the
graph of the polynomial function

has exactly one horizontal tangent. Exactly two horizontal
tangents. No horizontal tangents.

76. Let f be a differentiable function. If for all x in
the interval sketch possible graphs of f on the interval.
Describe in words the behavior of the graph of f on the
interval. Repeat if for all x in the interval 

77. Suppose f is a differentiable function such that
Find 

78. The graphs of given in
FIGURE 3.2.8 show that there are two lines that are
simultaneously tangent to both graphs. Find the points of
tangency on both graphs. Find an equation of each tangent
line.

Calculator/CAS Problems

79. (a) Use a calculator or CAS to obtain the graph of

(b) Evaluate at 
and 

(c) From the data in part (b), do you see any relationship
between the shape of the graph of f and the algebraic
signs of 

80. Use a calculator or CAS to obtain the graph of the given
functions. By inspection of the graphs indicate where each
function may not be differentiable. Find at all points
where f is differentiable.

(a) (b) f (x) � 0 x3 � 1 0f (x) � 0 x2 � 2 x 0
f ¿(x)

f –?

x � 4.x � 3,x � 2,
x � 1,x � 0,x � �1,x � �2,f –(x)

f (x) � x4 � 4x3 � 2x2 � 12x � 2.

FIGURE 3.2.8 Graphs for Problem 78

y

x

y � x2

y � �x2 �2x �3

L1

L2

L1 and  L2

y � x2 and y � �x2 � 2 x � 3

f  
(100)(x).f ¿(x) � f (x) � 0.

(a, b).f ¿(x) 6 0

(a, b),
f ¿(x) 7 0

f (x) � a x3 � b x2 � c x � d

62. From the graph of the function given in FIGURE 3.2.7,
sketch the graph of 

63. Find a quadratic function such that
and 

64. The graphs of and are said to be
orthogonal if the tangent lines to each graph are
perpendicular at each point of intersection. Show that the
graphs of and are orthogonal.

65. Find the values of b and c so that the graph of
possesses the tangent line 

at 

66. Find an equation of the line(s) that passes through 
and is tangent to the graph of 

67. Find the point(s) on the graph of such that
the tangent line at the point(s) has x-intercept 

68. Find the point(s) on the graph of such that the
tangent line at the point(s) has y-intercept 

69. Explain why the graph of has no tangent
line with slope �1.

70. Find coefficients A and B so that the function
satisfies the differential equation

71. Find values of a and b such that the slope of the tangent
to the graph of at is 

72. Find the slopes of all the normal lines to the graph of
that pass through the point [Hint: Draw a

figure and note that at there is only one normal line.]

73. Find a point on the graph of and a point on
the graph of at which the tangent
lines are parallel.

74. Find a point on the graph of at
which the tangent has the least possible slope.

f (x) � 3 x5 � 5 x3 � 2 x

g(x) � 2 x2 � 4 x � 1
f (x) � x2 � x

(2, 4)
(2, 4).f (x) � x2

�5.(1, 4)f (x) � a x2 � b x

2 y– � 3 y¿ � x � 1.
y � A x2 � B x

f (x) � 1
5 
x5 � 1

3 
x3

(0, �2).
f (x) � x2

(�3, 0).
f (x) � x2 � 5

f (x) � x2 � 2x � 2.
(3

2, 1)
x � �3.

y � 2x � cf (x) � x2 � bx

y � �1
4 x

2 � 3y � 1
8 x

2

y � g(x)y � f (x)

f –(�1) � �4.f ¿(�1) � 7,f (�1) � �11,
f (x) � a x2 � b x � c

FIGURE 3.2.7 Graph for Problem 62

1
1

y

x

y �ƒ(x)

f ¿.
y � f (x)

3.3 Product and Quotient Rules
Introduction So far we know that the derivative of a constant function and a power of x are,

in turn:

(1)
d
dx

  c � 0  and  d
dx

  x 
n � nx 

n�1.
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We also know that for differentiable functions f and g:

(2)

Although the results in (1) and (2) allow us to quickly differentiate many algebraic functions
(such as polynomials) neither (1) nor (2) are of immediate help in finding derivatives of 
functions such as or We need additional rules for differen-
tiating products and quotients 

Product Rule The rules of differentiation and the derivatives of functions ultimately stem
from the definition of the derivative. The Sum Rule in (2), derived in the preceding section, fol-
lows from this definition and the fact that the limit of a sum is the sum of the limits whenever
the limits exist. We also know that when the limits exist, the limit of a product is the product
of the limits. Arguing by analogy, it would then seem plausible that the derivative of a product
of two functions is the product of the derivatives. Regrettably, the Product Rule stated next is
not that simple.

f>g.fg
y � x>(2x � 1).y � x 

42x 
2 � 4

d
dx

 cf  (x) � c f ¿(x) and d
dx

 [ f (x) 
 g(x)] � f ¿(x) 
 g ¿(x).

Theorem 3.3.1 Product Rule

If f and g are functions differentiable at x, then is differentiable at x, and

(3)
d
dx

 [ f  (x)g(x)] � f  (x)g¿(x) � g(x) f ¿(x).

fg

PROOF Let Then by the definition of the derivative along with some alge-
braic manipulation:

zero

Because f is differentiable at x, it is continuous there and so Furthermore,
Hence the last equation becomes

The Product Rule is best memorized in words:

• The first function times the derivative of the second plus the second function times the
derivative of the first.

EXAMPLE 1 Product Rule
Differentiate 

Solution From the Product Rule (3),

 � 35x4 � 72x3 � 24x2 � 42x � 12.

 � (x3 � 2x2 � 3)(14x � 4) � (7x2 � 4x)(3x2 � 4x)

 
dy
dx

� (x3 � 2x2 � 3) . d
dx

 (7x2 � 4x) � (7x2 � 4x) . d
dx

 (x3 � 2x2 � 3)

y � (x3 � 2x2 � 3)(7x2 � 4x).

G¿(x) � f (x)g¿(x) � g(x) f ¿(x).

lim
hS0 

g(x) � g(x).
lim
hS0

 f (x � h) � f (x).

 � lim
hS0

 f (x � h) . lim
hS0

 

g(x � h) � g(x)
h

� lim
hS0

 g(x) . lim
hS0

 

f (x � h) � f (x)
h

.

 � lim
hS0 

c f (x � h) 

g(x � h) � g(x)
h

� g(x) 

f (x � h) � f (x)
h

d
 � lim

hS0
  

f (x � h)g(x � h) � f (x � h)g(x) � f (x � h)g(x) � f (x)g(x)
h

G ¿(x) � lim
hS0

  

G(x � h) � G(x)
h

� lim
hS0

  

f (x � h)g(x � h) � f (x)g(x)
h

 

G(x) � f (x)g(x).

first
derivative of

second second
derivative of

first
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140 CHAPTER 3 The Derivative

Alternative Solution The two terms in the given function could be multiplied out to obtain
a fifth-degree polynomial. The derivative can then be gotten using the Sum Rule.

EXAMPLE 2 Tangent Line
Find an equation of the tangent line to the graph of at 

Solution Before taking the derivative we rewrite as Then from the Product Rule (3)

Evaluating the given function and its derivative at gives:

By the point–slope form, the tangent line is

Although (3) is stated for only the product of two functions, it can be applied to func-
tions with a greater number of factors. The idea is to group two (or more) functions and treat
this grouping as one function. The next example illustrates the technique.

EXAMPLE 3 Product of Three Functions
Differentiate 

Solution We identify the first two factors as the “first function”:

Notice that to find the derivative of the first function, we must apply the Product Rule a sec-
ond time:

Quotient Rule The derivative of the quotient of two functions f and g is given next.

 � (4x � 1)(2x2 � x)(3x2 � 8) � (x3 � 8x)(16x2 � 1) � 4(x3 � 8x)(2x2 � x).

 
dy
dx

� (4x � 1)(2x2 � x) . (3x2 � 8) � (x3 � 8x) . [ (4x � 1)(4x � 1) � (2x2 � x) . 4]

dy
dx

� (4x � 1)(2x2 � x) 

d
dx

 (x3 � 8x) � (x3 � 8x) 

d
dx

 (4x � 1)(2x2 � x).

y � (4x � 1)(2x2 � x)(x3 � 8x).

y � 6 �
7
2

 (x � 4)  or  y �
7
2

 x � 8.

d slope of the tangent at (4, 6) is 72 
dy
dx
`
x�4

�
12 � 214 � 2

214
�

7
2

.

d point of tangency is (4, 6) y(4) � A1 � 14 B(4 � 2) � 6

x � 4

 �
3x � 21x � 2

21x
.

 � (1 � x 
1>2) . 1 � (x � 2) . 1

2 
x 

�1>2

 
dy
dx

� (1 � x 
1>2) 

d
dx

 (x � 2) � (x � 2) 

d
dx

 (1 � x 
1>2)

x 
1>2.1x

x � 4.y � (1 � 1x)(x � 2)

Product Rule again

Theorem 3.3.2 Quotient Rule

If f and g are functions differentiable at x and then is differentiable at x, and

(4)
d
dx

 c f (x)
g(x)
d �

g(x) f ¿(x) � f (x)g¿(x)

[g(x)]2
.

f>gg(x) � 0,

first
derivative of

second second
derivative of

first
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PROOF Let Then

zero

Since all limits are assumed to exist, the last line is the same as

In words, the Quotient Rule starts with the denominator:

• The denominator times the derivative of the numerator minus the numerator times the
derivative of the denominator all divided by the denominator squared.

EXAMPLE 4 Quotient Rule

Differentiate 

Solution From the Quotient Rule (4),

square of 
denominator

EXAMPLE 5 Quotient and Product Rule

Find the points on the graph of where the tangent line is horizontal.

Solution We begin with the Quotient Rule and then use the Product Rule when differenti-
ating the numerator:

y �
(x2 � 1)(2x2 � 1)

3x2 � 1

 �
�6x 

4 � 6x 
2 � 52x

(2x 
3 � 5x 

2 � 7) 
2

.

 �
(2x 

3 � 5x 
2 � 7) . 6x � (3x 

2 � 1) . (6x 
2 � 10x)

(2x 
3 � 5x 

2 � 7) 
2

 
dy
dx

�
(2x3 � 5x2 � 7) . d

dx
 (3x2 � 1) � (3x2 � 1) . d

dx
 (2x3 � 5x2 � 7)

(2x3 � 5x2 � 7)2

y �
3x2 � 1

2x3 � 5x2 � 7
.

G ¿(x) �
g(x)f ¿(x) � f (x)g¿(x)

[g(x)] 2
.

 �
lim
hS0 

g(x) . lim
hS0

 

f (x � h) � f (x)
h

� lim
hS0  

f (x) . lim
hS0

 

g(x � h) � g(x)
h

lim
hS0 

g(x � h) . lim
hS0 

g(x)
.

 � lim
hS0

 

g(x)  

f (x � h) � f (x)
h

� f (x)  

g(x � h) � g(x)
h

g(x � h)g(x)

 � lim
hS0

 

g(x) f (x � h) � g(x) f (x) � g(x) f (x) � f (x)g(x � h)
hg(x � h)g(x)

 � lim
hS0

 

g(x)f (x � h) � f (x)g(x � h)
hg(x � h)g(x)

 G¿(x) � lim
hS0

 

G(x � h) � G(x)
h

� lim
hS0

 

f (x � h)
g(x � h)

�
f (x)
g(x)

h

G(x) � f (x)>g(x).

derivative of
denominatornumerator

derivative of
numeratordenominator

d multiply out numerator
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142 CHAPTER 3 The Derivative

At a point where the tangent line is horizontal we must have The derivative just
found can only be 0 when the numerator satisfies

(5)

In (5) because for all real numbers x, we must have Substituting this num-
ber into the function gives The tangent line is horizontal at the y-intercept 

Postscript—Power Rule Revisited Remember in Section 3.2 we stated that the Power
Rule, is valid for all real number exponents n. We are now in a position to
prove the rule when the exponent is a negative integer Since, by definition, 
where m is a positive integer, we can obtain the derivative of by the Quotient Rule and the
laws of exponents:

d
dx

x�m �
d
dx

 Q 1
xmR �

xm . d
dx

1 � 1 . d
dx

xm

(xm)2
� �

mxm�1

x2m
� �mx�m�1.

x�m
x�m � 1>xm,�m.

(d>dx)xn � nxn�1,

(0, 1).y(0) � 1.
x � 0.12x2 � 8 � 0

12x5 � 8x3 � 0  or  x3(12x2 � 8) � 0.

dy>dx � 0.

 �
12x5 � 8x3

(3x2 � 1)2
.

 �
(3x2 � 1)[(x2 � 1)4x � (2x2 � 1)2x ] � (x2 � 1)(2x2 � 1)6x

(3x2 � 1)2

 
dy
dx

�
(3x2 � 1) . d

dx
[ (x2 � 1)(2x2 � 1)] � (x2 � 1)(2x2 � 1) . d

dx
 (3x2 � 1)

(3x2 � 1)2

Product Rule
here

d multiply out numerator

Of course, values of x that make the
numerator zero must not simultane-
ously make the denominator zero.

T
subtract exponents

NOTES FROM THE CLASSROOM

(i) The Product and Quotient Rules will usually lead to expressions that demand simplifi-
cation. If your answer to a problem does not look like the one in the text answer sec-
tion, you may not have performed sufficient simplifications. Do not be content to sim-
ply carry through the mechanics of the various rules of differentiation; it is always a
good idea to practice your algebraic skills.

(ii) The Quotient Rule is sometimes used when it is not required. Although we could use
the Quotient Rule to differentiate functions such as

it is simpler (and faster) to rewrite the functions as and and then use
the Constant Multiple and Power Rules:

dy
dx

�
1
6

 
d
dx

 x5 �
5
6

 x4  and  
dy
dx

� 10  

d
dx

 x�3 � �30x�4.

y � 10x�3y � 1
6 x5

y �
x5

6
  and  y �

10
x3

,

d
dx

Exercises 3.3 Answers to selected odd-numbered problems begin on page ANS-000.

Fundamentals

In Problems 1–10, find 

1.

2. y � (7x � 1)(x4 � x3 � 9x)

y � (x2 � 7)(x3 � 4x � 2)

dy>dx.
3.

4. y � ax2 �
1
x2
b ax3 �

1
x3
b

y � a41x �
1
x
b a2x �

6

1
3 x
b

⎞ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎠
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5. 6.

7. 8.

9. 10.

In Problems 11–20, find 

11.

12.

13. 14.

15.

16.

17. 18.

19.

20.

In Problems 21–24, find an equation of the tangent line to the
graph of the given function at the indicated value of x.

21. 22.

23.

24.

In Problems 25–28, find the point(s) on the graph of the given
function at which the tangent line is horizontal.

25. 26.

27. 28.

In Problems 29 and 30, find the point(s) on the graph of the
given function at which the tangent line has the indicated slope.

29.

30.

In Problems 31 and 32, find the point(s) on the graph of the
given function at which the tangent line has the indicated
property.

31.

32.

33. Find the value of k such that the tangent line to the graph
of has slope 5 at 

34. Show that the tangent to the graph of 
at is perpendicular to the

tangent to the graph of at x � 1.g(x) � (1 � x2)(1 � 2x)
x � 1(x2 � 14)>(x2 � 9)

f (x) �

x � 2.f (x) � (k � x)>x2

y �
x

x � 1
; parallel to y �

1
4

 x � 1

y �
x � 4
x � 5

; perpendicular to y � �x

y � (x � 1)(2x � 5); m � �3

y �
x � 3
x � 1

; m � �
1
8

y �
1

x2 � 6x
y �

x2

x4 � 1

y � x(x � 1)2y � (x2 � 4)(x2 � 6)

y � (2x2 � 4)(x3 � 5x � 3); x � 0

y � (21x � x)(�2x2 � 5x � 1); x � 1

y �
5x

x 
2 � 1

; x � 2y �
x

x � 1
; x �

1
2

f (x) � (x � 1) ax � 1 �
1

x � 2
b

f (x) � (x2 � 2x � 1) ax � 1
x � 3

b
f (x) �

x5

(x2 � 1)(x3 � 4)
f (x) �

(2x � 1)(x � 5)
3x � 2

f (x) � (x2 � 1)(x3 � x)(3x4 � 2x � 1)

f (x) � (x � 1)(2x � 1)(3x � 1)

f (x) �
x2 � 10x � 2

x(x2 � 1)
f (x) �

x2

2x2 � x � 1

f (x) � (x2 � 1) ax2 � 10x �
2
x2
b

f (x) � a1
x

�
4
x3
b (x3 � 5x � 1)

f ¿(x).

y � (x4 � 5x)2y � (6x � 1)2

y �
2 � 3x
7 � x

y �
3x � 1
2x � 5

y �
5

4x � 3
y �

10
x2 � 1

In Problems 35–40, f and g are differentiable functions. Find
if and 

35. 36.

37. 38.

39. 40.

41. Suppose where f is a differentiable function.
Find if and 

42. Suppose where f and g are differ-
entiable functions. Find if and 

43. Suppose where f is a differentiable function.
Find 

44. Suppose where f is a differentiable function.
Find 

In Problems 45–48, determine intervals for which 
and intervals for which 

45. 46.

47.

48.

Applications

49. The Law of Universal Gravitation states that the force F
between two bodies of masses and separated by a
distance r is where k is constant. What is
the instantaneous rate of change of F with respect to r
when 

50. The potential energy U between two atoms in a diatomic
molecule is given by where and

are positive constants and x is the distance between the
atoms. The force between the atoms is defined as

Show that 

51. The van der Waals equation of state for an ideal gas is

where P is pressure, V is volume per mole, R is the
universal gas constant, T is temperature, and a and b are
constants depending on the gas. Find in the case
where T is constant.

52. For a convex lens, the focal length f is related to the
object distance p and the image distance q by the lens
equation

Find the instantaneous rate of change of q with respect to
p in the case where f is constant. Explain the significance
of the negative sign in your answer. What happens to q as
p increases?

1
f

�
1
p

�
1
q

.

dP>dV

aP �
a

V 
2
b (V � b) � RT,

F(16 2q1>q2) � 0.F(x) � �U ¿(x).

q2

q1U(x) � q1>x 
12 � q2>x 

6,

r � 1
2 km?

F � km1m2>r 
2,

m2m1

f (x) � (x � 2)(4x2 � 8x � 4)

f (x) � (�2x � 6)(4x � 7)

f (x) �
x2 � 3
x � 1

f (x) �
5

x2 � 2x

f ¿(x) 6 0.
f ¿(x) 7 0

F‡(x).
F(x) � x3f (x),

F–(x).
F(x) � f (x)>x,

g¿(0) � 6.f ¿(0) � �1F–(0)
F(x) � xf (x) � xg(x),

f –(4) � 3.f ¿(4) � 2,f (4) � �16,F–(4)
F(x) � 1x f (x),

F(x) �
xf (x)
g(x)

F(x) � a4
x

� f (x)b  g(x)

F(x) �
1 � 2f (x)
x � g(x)

F(x) �
2g(x)
3f (x)

F(x) � x2f (x)g(x)F(x) � 2 f (x)g(x)

g(1) � 6, g ¿(1) � 2.f ¿(1) � �3,f (1) � 2,F¿(1)

3.3 Product and Quotient Rules 143
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144 CHAPTER 3 The Derivative

Think About It

53. (a) Graph the rational function 

(b) Find all the points on the graph of f such that the
normal lines pass through the origin.

54. Suppose is a differentiable function.

(a) Find for 
(b) Find for y � [ f (x)]3.dy>dx

y � [ f (x)]2.dy>dx

y � f (x)

f (x) �
2

x2 � 1
.

(c) Conjecture a rule for finding the derivative of 
where n is a positive integer.

(d) Use your conjecture in part (c) to find the derivative of

55. Suppose satisfies the differential equation 
where P is a known function. Show that 

satisfies the differential equation

whenever satisfies f (x)>y1(x).du>dx �u(x)

f (x)y ¿ � P(x)y �

u(x)y1(x)
y �P(x)y � 0,

y ¿ �y1(x)

y � (x2 � 2x � 6)500.

y � [ f (x)]n,

3.4 Trigonometric Functions
Introduction In this section we develop the derivatives of the six trigonometric functions.

Once we have found the derivatives of and we can determine the derivatives of 
and using the Quotient Rule found in the preceding section. We will see imme-

diately that the derivative of utilizes the following two limit results

(1)

found in Section 2.4.

Derivatives of Sine and Cosine To find the derivative of we use the basic def-
inition of the derivative

(2)

and the four-step process introduced in Sections 2.7 and 3.1. In the first step we use the sum
formula for the sine function,

(3)

but with x and h playing the parts of the symbols 

(i)

(ii)

As we see in the next line, we cannot cancel the h’s in the difference quotient but we can
rewrite the expression to make use of the limit results in (1).

(iii)

(iv) In this line, the symbol h plays the part of the symbol x in (1):

From the limit results in (1), the last line is the same as

Hence, (4)
d
dx

 sin x � cos x.

f ¿(x) � lim
hS0

 
f (x � h) � f (x)

h
� sin x . 0 � cos x . 1 � cos x.

f ¿(x) � lim
hS0

 
f (x � h) � f (x)

h
� sin x . lim

hS0
 
cos h � 1

h
� cos x . lim

hS0
 
sin h

h
.

� sin x . cos h � 1
h

� cos x . sin h
h

f (x � h) � f (x)
h

�
sin x(cos h � 1) � cos x sin h

h

� sin x(cos h � 1) � cos x sin h

d factor sin x from 
      first and third termsf (x � h) � f (x) � sin x cos h � cos x sin h � sin x

d from (3)f (x � h) � sin(x � h) � sin x cos h � cos x sin h

x1 and x2.

sin(x1 � x2) � sin x1 cos x2 � cos x1 sin x2,

dy
dx

� lim
hS0

 
f (x � h) � f (x)

h

f (x) � sin x

lim
xS0

 
sin x

x
� 1  and  lim

xS0
 
cos x � 1

x
� 0

sin x
csc xsec x,cot x,

tan x,cos xsin x
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this equals 1

In a similar manner it can be shown that

(5)

See Problem 50 in Exercises 3.4.

EXAMPLE 1 Equation of a Tangent Line
Find an equation of the tangent line to the graph of at

Solution From (4) the derivative of is When evaluated at the same
number these functions give:

From the point–slope form of a line, an equation of the tangent line is

The tangent line is shown in red in FIGURE 3.4.1.

Other Trigonometric Functions The results in (4) and (5) can be used in conjunction with
the rules of differentiation to find the derivatives of the tangent, cotangent, secant, and cosecant
functions.

To differentiate we use the Quotient Rule:

Using the fundamental Pythagorean identity and the fact that
the last equation simplifies to

(6)

The derivative formula for the cotangent

(7)

is obtained in an analogous fashion and left as an exercise. See Problem 51 in Exercises 3.4.
Now Therefore, we can use the Quotient Rule again to find the deriva-

tive of the secant function:

(8)

By writing
sin x

cos2
 x

�
1

cos x
. sin x

cos x
� sec x tan x

 �
0 � (�sin x)

(cos x)2
�

sin x

cos2
 x

.

 
d
dx

 
1

cos x
�

cos x 
d
dx

 1 � 1 . d
dx

 cos x

(cos x)2

sec x � 1>cos x.

d
dx

 cot x � �csc2
 x

d
dx

 tan x � sec2
 x.

1�cos2
 x � (1�cos x)2 � sec2

 x,
sin2

 x � cos2
 x � 1

�
cos x (cos x) � sin x (�sin x)

(cos x)2
�

cos2
 x � sin2

 x

cos2
 x

.

d
dx

 
sin x
cos x

�
cos x 

d
dx

 sin x � sin x 
d
dx

 cos x

(cos x)2

tan x � sin x>cos x,

y �
13
2

� �
1
2

 Qx �
4p
3
R  or  y � �

1
2

 x �
2p
3

�
13
2

.

d slope of tangent at A4p3 , �13
2 B is �1

2f ¿  Q4p
3
R � cos 

4p
3

� �
1
2

.

d point of tangency is A4p3 , �13
2 Bf  Q4p

3
R � sin 

4p
3

� �
13
2

x � 4p>3
f ¿(x) � cos x.f (x) � sin x

x � 4p>3.f (x) � sin x

d
dx

 cos x � �sin x.

3.4 Trigonometric Functions 145

FIGURE 3.4.1 Tangent line in Example 1

x

y

point of
tangency 4� 3

2( ), �

slope is

4� 1
ƒ�( )� �

y � sin x 

3 3 2
⎞ ⎪ ⎪ ⎬ ⎪ ⎪ ⎠
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146 CHAPTER 3 The Derivative

we can express (8) as

(9)

The final result also follows immediately from the Quotient Rule:

(10)

See Problem 52 in Exercises 3.4.

EXAMPLE 2 Product Rule
Differentiate 

Solution The Product Rule along with (4) gives

EXAMPLE 3 Product Rule
Differentiate 

Solution One way of differentiating this function is to recognize it as a product:
Then by the Product Rule and (5),

In the next section we will see that there is an alternative procedure for differentiating a power
of a function.

EXAMPLE 4 Quotient Rule

Differentiate 

Solution By the Quotient Rule, (4), and (9),

EXAMPLE 5 Second Derivative
Find the second derivative of 

Solution From (9) the first derivative is

To obtain the second derivative we must now use the Product Rule along with (6) and (9):

 � sec3 x � sec x tan2
 x.

 � sec x (sec2
 x) � tan x (sec x tan x)

 f –(x) � sec x 
d
dx

 tan x � tan x 
d
dx

 sec x

f ¿(x) � sec x tan x.

f (x) � sec x.

 �
1 � 2 cos x � tan2

 x

(2 � sec x)2
.

 �
(2 � sec x) cos x � sin x (sec x tan x)

(2 � sec x)2

 
dy
dx

�
(2 � sec x) 

d
dx

 sin x � sin x 
d
dx

 (2 � sec x)

(2 � sec x)2

y �
sin x

2 � sec x
.

 � �2 sin x cos x.

 � cos x (�sin x) � (cos x)(�sin x)

 
dy
dx

� cos x 
d
dx

 cos x � cos x 
d
dx

 cos x

y � (cos x)(cos x).

y � cos2
 x.

 � x2
 cos x � 2 x sin x.

 
dy
dx

� x2 
d
dx

 sin x � sin x 
d
dx

 x2

y � x2
 sin x.

 
d
dx

 csc x � �csc x cot x.

 
d
dx

 sec x � sec x tan x.

and
sin x(sec x tan x) � sin2

 x>cos2
 x

sec x cos x � 1d
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For future reference we summarize the derivative formulas introduced in this section.

Exercises 3.4 Answers to selected odd-numbered problems begin on page ANS-000.

Theorem 3.4.1 Derivatives of Trigonometric Functions

The derivatives of the six trigonometric functions are

(11)

(12)

(13)
d
dx

 csc x � �csc x cot x.
d
dx

 sec x � sec x tan x,

d
dx

 cot x � �csc2
 x,

d
dx

 tan x � sec2
 x,

d
dx

 cos x � �sin x,
d
dx

 sin x � cos x,

NOTES FROM THE CLASSROOM

When working the problems in Exercises 3.4 you may not get the same answer as given
in the answer section in the back of this book. This is because there are so many trigono-
metric identities that answers can often be expressed in a more compact form. For exam-
ple, the answer in Example 3:

is the same as

by the double-angle formula for the sine function. Try to resolve any differences between
your answer and the given answer.

dy
dx

� �sin 2 x
dy
dx

� �2 sin x cos x

d
dx

Fundamentals

In Problems 1–12, find 

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

In Problems 13–22, find 

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

In Problems 23–26, find an equation of the tangent line to the
graph of the given function at the indicated value of x.

23. 24.

25. 26. f (x) � csc x; x � p>2f (x) � sec x; x � p>6
f (x) � tan x; x � pf (x) � cos x; x � p>3

f (x) �
1 � sin x

x cos x
f (x) � x4

 sin x tan x

f (x) �
1 � csc x
1 � sec x

f (x) �
sin x

1 � cos x

f (x) �
2 � sin x

x
f (x) �

x2

1 � 2 tan x

f (x) �
x2 � 6x

1 � cos x
f (x) �

cot x
x � 1

f (x) �
2

cos x cot x
f (x) � (csc x) 

�1

f ¿(x).

y � x3
 cos x � x3

 sin xy � cos2
 x � sin2

 x

y � csc x tan xy � (x2 � sin x) sec x

y � cos x cot xy � (x3 � 2) tan x

y � A41x � 313 x B cos xy � x sin x

y � 3 cos x � 5 cot xy � 1 � 7sin x � tan x

y � 4 x3 � x � 5 sin xy � x2 � cos x

dy�dx.

In Problems 27–30, consider the graph of the given function on
the interval Find the x-coordinates of the point(s) on
the graph of the function where the tangent line is horizontal.

27. 28.

29. 30.

In Problems 31–34, find an equation of the normal line to the
graph of the given function at the indicated value of x.

31. 32.

33.

34.

In Problems 35 and 36, find the derivative of the given func-
tion by first using an appropriate trigonometric identity.

35. 36.

In Problems 37–42, find the second derivative of the given
function.

37. 38.

39. 40.

41. 42. y � tan xy � csc x

f (x) �
1

1 � cos x
f (x) �

sin x
x

f (x) � 3x � x2
 cos xf (x) � x sin x

f (x) � cos2
 

x
2

f (x) � sin 2x

f (x) �
x

1 � sin x
; x �p�2

f (x) � x cos x; x � p

f (x) � tan2
 x; x � p�4f (x) � sin x; x � 4p�3

f (x) � sin x � cos xf (x) �
1

x � cos x

f (x) �
sin x

2 � cos x
f (x) � x � 2 cos x

[0, 2p ] .

3.4 Trigonometric Functions 147

59957_CH03a_121-190.qxd  9/25/09  7:54 PM  Page 147

© Jones and Bartlett Publishers, LLC.  NOT FOR SALE OR DISTRIBUTION. 



148 CHAPTER 3 The Derivative

In Problems 43 and 44, and are arbitrary real constants.
Show that the function satisfies the given differential equation.

43.

44.

Applications

45. When the angle of elevation of the sun is a telephone
pole 40 ft high casts a shadow of length s as shown in
FIGURE 3.4.2. Find the rate of change of s with respect to 
when radians. Explain the significance of the
minus sign in the answer.

46. The two ends of a 10-ft board are attached to perpendicular
rails, as shown in FIGURE 3.4.3, so that point P is free to move
vertically and point R is free to move horizontally.

(a) Express the area A of triangle PQR as a function of
the indicated angle 

(b) Find the rate of change of A with respect to 
(c) Initially the board rests flat on the horizontal rail.

Suppose point R is then moved in the direction of
point Q, thereby forcing point P to move up the
vertical rail. Initially the area of the triangle is

but then it increases for a while as 
increases and then decreases as R approaches Q.
When the board is vertical, the area of the triangle is
again Graph the derivative 
Interpret this graph to find values of for which A is
increasing and values of for which A is decreasing.
Now verify your interpretation of the graph of the
derivative by graphing 

(d) Use the graphs in part (c) to find the value of for
which the area of the triangle is the greatest.

FIGURE 3.4.3 Board in Problem 46

10 ft

rail

P

Q R rail

�

u

A(u).

u

u

dA�du.0 (u � p�2).

u0 (u � 0),

u.
u.

FIGURE 3.4.2 Shadow in Problem 45

40 ft

S

�

u � p�3
u

u,

x2y– � xy¿ � Ax2 � 1
4B y � 0y � C1 

cos x
1x

� C2 

sin x
1x

;

y– � y � sin xy � C1 cos x � C2 sin x �
1
2 

x cos x;

C2C1 Think About It

47. (a) Find all positive integers n such that

(b) Use the results in part (a) as an aid in finding

48. Find two distinct points and on the graph of
so that the tangent line at is perpendicular to

the tangent line at 

49. Find two distinct points and on the graph of 
so that the tangent line at Pl is parallel to the tangent line
at 

50. Use (1), (2), and the sum formula for the cosine to show that

51. Use (4) and (5) and the Quotient Rule to show that

52. Use (4) and the Quotient Rule to show that

Calculator/CAS Problems

In Problems 53 and 54, use a calculator or CAS to obtain the
graph of the given function. By inspection of the graph indi-
cate where the function may not be differentiable.

53. 54.

55. As shown in FIGURE 3.4.4, a boy pulls a sled on which his
little sister is seated. If the sled and girl weigh a total of
70 lb, and if the coefficient of sliding friction of snow-
covered ground is 0.2, then the magnitude F of the force
(measured in pounds) required to move the sled is

where is the angle the tow rope makes with the horizontal.

(a) Use a calculator or CAS to obtain the graph of F on
the interval 

(b) Find the derivative 
(c) Find the angle (in radians) for which 
(d) Find the value of F corresponding to the angle found

in part (c).
(e) Use the graph in part (a) as an aid in interpreting the

numbers found in parts (c) and (d).

F
�

FIGURE 3.4.4 Sled in Problem 55

dF�du � 0.
dF�du.

[�1, 1] .

u

F �
70(0.2)

0.2 sin u � cos u
,

f (x) � 0 x � sin x 0f (x) � 0.5(sin x � 0sin x 0 )

d
dx

 csc x � �csc x cot x.

d
dx

 cot x � �csc2
 x.

d
dx

 cos x � �sin x.

P2.

y � sin xP2P1

P2.
P1y � cos x
P2P1

d 
21

dx 
21

 sin x, d 
30

dx 
30

 sin x, d 
40

dx 
40

 cos x, and d 
67

dx 
67

 cos x.

d 
n

dx 
n cos x � sin x; d 

n

dx 
n sin x � cos x.

d 
n

dx 
n sin x � sin x; d 

n

dx 
n cos x � cos x;
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we know this from (2)

3.5 Chain Rule
Introduction As discussed in Section 3.2, the Power Rule

is valid for all real number exponents n. In this section we see that a similar rule holds for
the derivative of a power of a function Before stating the formal result, let us
consider an example when n is a positive integer.

Suppose we wish to differentiate

(1)

By writing (1) as we can find the derivative using the Product Rule:

(2)

Similarly, to differentiate the function we can write it as 
and use the Product Rule and the result given in (2):

(3)

In like manner, by writing as we can readily show by
the Product Rule and (3) that

(4)

Power Rule for Functions Inspection of (2), (3), and (4) reveals a pattern for differentiating
a power of a function g. For example, in (4) we see

bring down exponent as a multiple
T T derivative of function inside parentheses

c
decrease exponent by 1

For emphasis, if we denote a differentiable function by it appears that

The foregoing discussion suggests the result stated in the next theorem.

d
dx

[  ] n � n [  ] n�1
 

d
dx

 [  ] .

[ ] ,

4(x5 � 1)3 . 5x 4

d
dx

 (x5 � 1)4 � 4(x5 � 1)3 . 5x 
4.

y � (x5 � 1)3 . (x5 � 1)y � (x5 � 1) 
4

 � 3(x5 � 1)2 . 5x 
4.

 � (x5 � 1)2 . 5x 
4 � (x5 � 1) . 2(x5 � 1) . 5x 

4

 � (x5 � 1)2 . d
dx

 (x5 � 1) � (x5 � 1) . d
dx

 (x5 � 1)2

 
d
dx

 (x5 � 1)3 �
d
dx

 (x5 � 1)2 . (x5 � 1)

y � (x5 � 1)2 . (x5 � 1)y � (x5 � 1)3,

 � 2(x5 � 1) . 5x 
4.

 � (x5 � 1) . 5x 
4 � (x5 � 1) . 5x 

4

 
d
dx

 (x5 � 1)2 � (x5 � 1) . d
dx

 (x5 � 1) � (x5 � 1) . d
dx

 (x5 � 1)

y � (x5 � 1) . (x5 � 1),

y � (x5 � 1)2.

y � [g(x)]n.

d
dx

 x 
n � nx 

n�1

3.5 Chain Rule 149

Theorem 3.5.1 Power Rule for Functions

If n is any real number and is differentiable at x, then

(5)

or equivalently, (6)
d
dx

 un � nun�1 . du
dx

.

d
dx

[g(x)]n � n [g(x)]n�1 . g¿(x),

u � g(x)

⎞ ⎪ ⎬ ⎪ ⎠
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150 CHAPTER 3 The Derivative

n un�1 du>dx

Theorem 3.5.1 is itself a special case of a more general theorem, called the Chain Rule,
which will be presented after we consider some examples of this new power rule.

EXAMPLE 1 Power Rule for Functions
Differentiate 

Solution With the identification that we see from (6) that

EXAMPLE 2 Power Rule for Functions
To differentiate we could, of course, use the Quotient Rule. However, by
rewriting the function as it is also possible to use the Power Rule for
Functions with :

EXAMPLE 3 Power Rule for Functions

Differentiate 

Solution Write the given function as Identify 
and use the Power Rule (6):

EXAMPLE 4 Power Rule for Functions
Differentiate 

Solution For emphasis, we first rewrite the function as and then use (6) with

Recall from (6) of Section 3.4 that Hence,

EXAMPLE 5 Quotient Rule then Power Rule

Differentiate 

Solution We start with the Quotient Rule followed by two applications of the Power Rule
for Functions:

T
Power Rule for Functions

T

 �
(5x � 1)8 . 3(x2 � 1)2 . 2x � (x2 � 1)3 . 8(5x � 1)7 . 5

(5x � 1)16

 
dy
dx

�
(5x � 1)8 . d

dx
 (x2 � 1)3 � (x2 � 1)3 . d

dx
 (5x � 1)8

(5x � 1)16

y �
(x2 � 1)3

(5x � 1)8
.

 
dy
dx

� 3 tan2 x sec2 x.

(d>dx)tan x � sec2 x.

 
dy
dx

� 3(tan x)2 . d
dx

 tan x.

u � tan x and n � 3:
y � (tan x)3

y � tan3x.

dy
dx

� �10(7x5 � x4 � 2)�11 . d
dx

 (7x5 � x4 � 2) �
�10(35x4 � 4x3)

(7x5 � x4 � 2)11
.

n � �10
u � 7x5 � x4 � 2,y � (7x5 � x 

4 � 2)�10.

y �
1

(7x5 � x4 � 2)10
.

dy
dx

� (�1)(x2 � 1) 
�2 . d

dx
 (x2 � 1) � (�1)(x2 � 1) 

�2 2x �
�2x

(x2 � 1)2
.

n � �1
y � (x2 � 1) 

�1,
y � 1>(x2 � 1),

dy
dx

� 7(4x3 � 3x � 1)6 . d
dx

 (4x3 � 3x � 1) � 7(4x3 � 3x � 1)6(12x2 � 3).

u � g(x) � 4x3 � 3x � 1,

y � (4x3 � 3x � 1)7.

⎞ ⎪ ⎪ ⎬ ⎪ ⎪ ⎠ ⎞ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎠{
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EXAMPLE 6 Power Rule then Quotient Rule

Differentiate 

Solution By rewriting the function as

we can identify

and Thus in order to compute in (6) we must use the Quotient Rule:

Finally, we simplify using the laws of exponents:

Chain Rule A power of a function can be written as a composite function. If we identify
and then The Chain Rule gives us a way of dif-

ferentiating any composition of two differentiable functions f and g.f � g
f (u) � f (g(x)) � [g(x)] n.u � g(x),f (x) � x 

n

dy
dx

�
13

(2x � 3)1>2 (8x � 1)3>2.

 �
1
2

  Q2x � 3
8x � 1

R 

�1>2
. 26

(8x � 1)2
.

 �
1
2

 Q2x � 3
8x � 1

R 

�1>2
. (8x � 1) . 2 � (2x � 3) . 8

(8x � 1)2

 
dy
dx

�
1
2

 Q2x � 3
8x � 1

R 

�1>2
. d

dx
  Q2x � 3

8x � 1
R

du>dxn � 1
2.

u �
2x � 3
8x � 1

y � Q2x � 3
8x � 1

R 

1>2

y �
A

2x � 3
8x � 1

.

 �
(x2 � 1)2(�10x2 � 6x � 40)

(5x � 1)9
.

 �
6x(5x � 1)8(x2 � 1)2 � 40(5x � 1)7(x2 � 1)3

(5x � 1)16

3.5 Chain Rule 151

Theorem 3.5.2 Chain Rule

If the function f is differentiable at and the function g is differentiable at x, then the
composition is differentiable at x and

(7)

or equivalently, (8)
dy
dx

�
dy
du

. du
dx

.

d
dx

 f (g(x)) � f ¿(g(x)) . g¿(x)

y � ( f � g)(x) � f (g(x))
u � g(x),

PROOF FOR  In this partial proof it is convenient to use the form of the definition
of the derivative given in (3) of Section 3.1. For 

(9)

or In addition,

When x and are in some open interval for which we can write

¢y
¢x

�
¢y
¢u

. ¢u
¢x

.

¢u � 0,x � ¢x

¢y � f (u � ¢u) � f (u) � f (g(x � ¢x)) � f (g(x)).

g(x � ¢x) � g(x) � ¢u � u � ¢u.

¢u � g(x � ¢x) � g(x)

¢x � 0,
�u � 0
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Since g is assumed to be differentiable, it is continuous. Consequently, as 
and so from (9) we see that Thus,

From the definition of the derivative, (3) of Section 3.1, it follows that

The assumption that on some interval does not hold true for every differentiable
function g. Although the result given in (7) remains valid when the preceding proof
does not.

It might help in the understanding of the derivative of a composition to think
of f as the outside function and as the inside function. The derivative of

is then the product of the derivative of the outside function (evaluated at
the inside function u) and the derivative of the inside function (evaluated at x):

derivative of outside function

(10)

derivative of inside function

The result in (10) is written in various ways. Since we have and of
course The product of the derivatives in (10) is the same as (8). On the other
hand, if we replace the symbols u and in (10) by and we obtain (7).

Proof of the Power Rule for Functions As noted previously, a power of a function can
be written as a composition of where the outside function is and the 

inside function is The derivative of the inside function is 

and the derivative of the outside function is The product of these derivatives is then

This is the Power Rule for Functions given in (5) and (6).

Trigonometric Functions We obtain the derivatives of the trigonometric functions
composed with a differentiable function g as another direct consequence of the Chain Rule. For
example, if where then the derivative of y with respect to the variable u is

Hence, (8) gives

or equivalently,

.

Similarly, if where then and so

We summarize the Chain Rule results for the six trigonometric functions.

dy
dx

�
dy
du

. du
dx

� sec2 u  

du
dx

.

dy>du � sec2 uu � g(x),y � tan u

d
dx

 sin[  ] � cos[  ]
d
dx

[  ]

dy
dx

�
dy
du

. du
dx

� cos u 

du
dx

dy
du

� cos u.

u � g(x),y � sin u,

dy
dx

�
dy
du

. du
dx

� nu 
n�1

 

du
dx

� n [g(x)]n�1g¿(x).

du
dx

.

dy
dx

� nu 
n�1y � f (u) � u 

nu � g(x).

y � f (x) � x 
n( f � g)(x)

g¿(x)g(x)u¿
u¿ � du>dx.

f ¿(u) � dy>du,y � f (u),

c

d
dx

 f (u) � f ¿(u) . u¿.
T

y � f (g(x)) � f (u)
u � g(x)

y � f (g(x))

¢u � 0,
¢u � 0

dy
dx

�
dy
du

. du
dx

.

d note that ¢ ˛u S 0 in the first term� Q lim
¢uS0

¢y
¢u
R . Q lim

¢xS0

¢u
¢x
R.

lim
¢xS0

¢y
¢x

� Q lim
¢xS0

¢y
¢u
R . Q lim

¢xS0

¢u
¢x
R
¢u S 0.g(x � ¢x) S g(x),

¢x S 0,

152 CHAPTER 3 The Derivative
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3.5 Chain Rule 153

Theorem 3.5.3 Derivatives of Trigonometric Functions

If is a differentiable function, then

(11)

(12)

(13)
d
dx

 csc u � �csc u cot u  

du
dx

.
d
dx

 secu � sec u tan u  

du
dx

,

d
dx

 cot u � �csc2u  

du
dx

,
d
dx

 tan u � sec2u  

du
dx

,

d
dx

 cos u � �sin u  

du
dx

,
d
dx

 sin u � cos u  

du
dx

,

u � g(x)

EXAMPLE 7 Chain Rule
Differentiate 

Solution The function is with From the second formula in (11) of Theorem
3.5.3 the derivative is

EXAMPLE 8 Chain Rule
Differentiate 

Solution The function is with From the first formula in (12) of Theorem
3.5.3 the derivative is

EXAMPLE 9 Product, Power, and Chain Rule
Differentiate 

Solution We first use the Product Rule:

followed by the Power Rule (6) and the first formula in (11) of Theorem 3.5.3,

from (11) from (6)

In Sections 3.2 and 3.3 we saw that even though the Sum and Product Rules were stated
in terms of two functions f and g, they were applicable to any finite number of differentiable
functions. So too, the Chain Rule is stated for the composition of two functions f and g but
we can apply it to the composition of three (or more) differentiable functions. In the case of
three functions f, g, and h, (7) becomes

 � f ¿(g(h(x))) . g¿(h(x)) . h¿(x).

 
d
dx

 f (g(h(x))) � f ¿(g(h(x))) . d
dx

 g(h(x))

 � (9x3 � 1)(45x3 cos 5x � 5 cos 5x � 54x2 sin 5x).

 � (9x3 � 1)2 . 5 cos 5x � sin 5x . 2(9x3 � 1) . 27x2

 
dy
dx

� (9x3 � 1)2 . cos 5x . d
dx

 5x � sin 5x . 2(9x3 � 1) . d
dx

 (9x3 � 1)

TT

dy
dx

� (9x3 � 1)2 . d
dx

 sin 5x � sin 5x . d
dx

 (9x3 � 1)2

y � (9x3 � 1)2
 sin 5x.

dy
dx

� sec2(6x2 � 1) . d
dx

  (6x2 � 1) � 12x sec2 (6x 2 � 1).

u � 6x2 � 1.tan u

y � tan(6x2 � 1).

dy
dx

� �sin 4x . d
dx

 4x � �4 sin 4x.

u � 4x.cos u

y � cos 4x.

dy

du
du
dx

sec2u
du
dx

⎞ ⎬ ⎠⎞ ⎬ ⎠

⎞ ⎪ ⎪ ⎬ ⎪ ⎪ ⎠ ⎞ ⎪ ⎬ ⎪ ⎠
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EXAMPLE 10 Repeated Use of the Chain Rule
Differentiate 

Solution For emphasis we first rewrite the given function as 
Observe that this function is the composition where 

and We first apply the Chain Rule in the form of the Power
Rule (6) followed by the second formula in (11):

In the final example, the given function is a composition of four functions.

EXAMPLE 11 Repeated Use of the Chain Rule

Differentiate 

Solution The function is where and
In this case we apply the Chain Rule three times in succession

You should, of course, become so adept at applying the Chain Rule that you will not
have to give a moment’s thought as to the number of functions involved in the actual com-
position.

�
3x cos Atan23x2 � 4 B . sec223x2 � 4

23x 
2 � 4

.

� cos Atan23x2 � 4 B . sec223x2 � 4 . 1
2

 (3x2 � 4)�1>2 . 6x

� cos Atan23x2 � 4 B . sec223x2 � 4 . 1
2

 (3x2 � 4) 
�1>2 . d

dx
 (3x2 � 4)

� cos Atan23x2 � 4 B . sec223x2 � 4 . d
dx

  (3x2 � 4)1>2

� cos Atan23x2 � 4 B . sec223x2 � 4 . d
dx

23x2 � 4

dy
dx

� cos Atan23x2 � 4 B . d
dx

 tan23x2 � 4

k(x) � 3x 
2 � 4.

h(x) � 1x,g(x) � tan x,f (x) � sin x,f (g(h(k(x)))),

y � sin(tan23x 
2 � 4).

� �4(21x 
2 � 6) cos3(7x3 � 6x � 1) sin (7x3 � 6x � 1).

� 4 cos3(7x3 � 6x � 1) . c�sin(7x3 � 6x � 1) . d
dx

 (7x3 � 6x � 1)d

dy
dx

� 4[cos (7x3 � 6x � 1)]3 . d
dx

 cos (7x3 � 6x � 1)

h(x) � 7x3 � 6x � 1.g(x) � cosx,
f (x) � x4,( f � g � h)(x) � f (g(h(x)))

y � [cos(7x3 � 6x � 1)]  
4.

y � cos 
4(7x3 � 6x � 1).

154 CHAPTER 3 The Derivative

second Chain Rule: 
differentiate the cosined

first Chain Rule: 
differentiate the powerd

first Chain Rule: 
differentiate the sined

second Chain Rule: 
differentiate the tangentd

rewrite powerd

d
third Chain Rule: 
differentiate the 
power

simplifyd

NOTES FROM THE CLASSROOM

(i) Probably the most common mistake is to forget to carry out the second half of the Chain
Rule, namely the derivative of the inside function. This is the part in

For instance, the derivative of is not since
is only the part. It might help to consistently use the operation sym-

bol 

d
dx

 (1 � x) 
57 � 57(1 � x) 

56 . d
dx

 (1 � x) � 57(1 � x) 
56 . (�1).

d>dx:
dy>du57(1 � x) 

56
dy>dx � 57(1 � x) 

56y � (1 � x) 
57

dy
dx

�
dy
du

 
du
dx

.

du>dx

d
dx
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3.5 Chain Rule 155

(ii) A less common but probably a worse mistake than the first is to differentiate inside
the given function. A student wrote on an examination paper that the derivative of

was that is, the derivative of the cosine is the
negative of the sine and the derivative of is Both observations are correct,
but how they are put together is incorrect. Bear in mind that the derivative of the
inside function is a multiple of the derivative of the outside function. Again, it might
help to use the operation symbol The correct derivative of is
the product of two derivatives.

dy
dx

� �sin (x 
2 � 1) . d

dx
 (x 

2 � 1) � �2x sin (x 
2 � 1).

y � cos (x 
2 � 1)d>dx.

2x.x2 � 1
dy>dx � �sin (2x);y � cos (x2 � 1)

Exercises 3.5 Answers to selected odd-numbered problems begin on page ANS-000.

Fundamentals

In Problems 1–20, find 

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

In Problems 21–38, find 

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37.

38. f (x) � c x2 � a1 �
1
x
b�4 d 2

f (x) � (1 � (1 � (1 � x3)4)5)6

f (x) � sec (tan2
 x4)f (x) � sin3(4x2 � 1)

f (x) � tan(tan x)f (x) � cos Asin22x � 5 B
f (x) � tan Qcos 

x
2
Rf (x) � sin (sin 2x)

f (x) � csc2
 2x � csc 2x2f (x) � (sec 4x � tan 2x)5

f (x) � sin2 2x cos3 3xf (x) � sin 2x cos 3x

f (x) � x cot(5>x2)f (x) � tan(1>x)

f (x) �
(1 � cos 4x)2

(1 � sin 5x)3
f (x) � (2 � x sin 3x)10

f (x) �
sin 5x
cos 6x

f (x) � x3 cos x3

f ¿(x).

y � 4 cos21xy � sin3 5x

y � �2 cos (�3x � 7)y � sin(px � 1)

y � (2x � 1)323x2 �2xy � x (x�1 � x�2 � x 
�3)�4

y � c 1
(x3 � x � 1)2

d 4y � [x � (x2 � 4)3]  
10

y �
3x � 4

(5x � 2)3
y �

A

x2 � 1
x2 � 1

y � sec x2y � sin12x

y � x4(x2 � 1)6y � (3x � 1)4(�2x � 9)5

y �
10

2x2 � 4x � 1
y �

1
(x3 � 2x2 � 7)4

y � Qx �
1
x2
R 

5

y � (2x2 � x)200

y � (3>x)14y � (�5x)30

dy>dx.

In Problems 39–42, find the slope of the tangent line to the
graph of the given function at the indicated value of x.

39. 40.

41.

42.

In Problems 43–46, find an equation of the tangent line to the
graph of the given function at the indicated value of x.

43. 44.

45.

46.

In Problems 47 and 48, find an equation of the normal line
to the graph of the given function at the indicated value
of x.

47.

48.

In Problems 49–52, find the indicated derivative.

49.
50.

51. 52.

53. Find the point(s) on the graph of where
the tangent line is horizontal. Does the graph of f have any
vertical tangents?

54. Determine the values of t at which the instantaneous rate
of change of is zero.

55. If what is the slope of the tangent line to
the graph of at 

56. If what is the slope of the tangent line to
the graph of at x � 2?f –

f (x) � (1 � x)4,

x � 2p?f ¿
f (x) � cos(x>3),

g(t) � sin t � 1
2 cos 2t

f (x) � x>(x2 � 1)2

f (x) � cos x2; f –(x)y � x sin 5x; d 
3y>dx3

y � cos(2x � 1); d 
5y>dx5

f (x) � sin px; f ‡(x)

y � sin3
 

x
3

; x � p

y � sin Q p
6x
R cos (px2); x �

1
2

y � (�1 � cos 4x)3; x � p>8
y � tan 3x; x � p>4

y � x2(x � 1)3; x � 2y � a x
x � 1

b2

; x � �
1
2

y � 50x � tan3
 2x; x � p>6

y � sin 3x � 4x cos 5x; x � p

y �
1

(3x � 1)2
; x � 0y � (x2 � 2)3; x � �1
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Applications

57. The function gives the range of a
projectile fired at an angle from the horizontal with an
initial velocity If and g are constants, find those
values of at which 

58. The volume of a spherical balloon of radius r is 
The radius is a function of time t and increases at a
constant rate of 5 in/min. What is the instantaneous rate
of change of V with respect to t?

59. Suppose a spherical balloon is being filled at a constant
rate At what rate is its radius
increasing when in?

60. Consider a mass on a spring shown in FIGURE 3.5.1. In the
absence of damping forces, the displacement (or directed
distance) of the mass measured from a position called the
equilibrium position is given by the function

where k is the spring constant (an indicator of
the stiffness of the spring), m is the mass (measured in slugs
or kilograms), is the initial displacement of the mass
(measured above or below the equilibrium position), is the
initial velocity of the mass, and t is time measured in seconds.

FIGURE 3.5.1 Mass on a spring in Problem 60

x � 0

x � 0

Equilibrium

y0

y0

� � 1k>m,

x(t) � x0 cos �t �
y0

�
 sin �t,

r � 2
dV>dt � 10 in3/min.

V � 4
3pr 

3.

dR>du � 0.u

y0y0.
u

R � Ay 
2
0>gB sin 2u

156 CHAPTER 3 The Derivative

(a) Verify that satisfies the differential equation

(b) Verify that satisfies the initial conditions 
and 

Think About It

61. Let F be a differentiable function. What is 

62. Let G be a differentiable function. What is 

63. Suppose What is 

64. Suppose What is 

In Problems 65 and 66, the symbol n represents a positive
integer. Find a formula for the given derivative.

65. 66.

67. Suppose where and
What is ?

68. Suppose and

What is 

69. Given that f is an odd differentiable function, use the Chain
Rule to show that is an even function.

70. Given that f is an even differentiable function, use the
Chain Rule to show that is an odd function.f ¿

f ¿

d 
2

dx2
 f (g(x)) `

x�1
?f –(2) � 3.

g(1) � 2, g¿(1) � 3, g–(1) � 1, f ¿(2) � 4,

g¿(1)h¿(3) � �2.
f ¿(1) � 6,f (1) � 3,g(t) � h( f (t)),

d 
n

dxn11 � 2x
d 

n

dxn  (1 � 2x)�1

d
dx

 f (x3)?
d
dx

 f (x) �
1

1 � x2
.

d
dx

 f (�10x � 7)?
d

du
 f (u) �

1
u

.

d
dx

[G(�x2) ]2?

d
dx

 F(3x)?

x¿(0) � y0.
x(0) � x0x(t)

d 
2x

dt 
2

� �2x � 0.

x(t)

3.6 Implicit Differentiation
Introduction The graphs of many equations that we study in mathematics are not the graphs

of functions. For example, the equation

(1)

describes a circle of radius 2 centered at the origin. Equation (1) is not a function, since for
any choice of x satisfying there corresponds two values of y. See FIGURE 3.6.1(a).
Nevertheless, graphs of equations such as (1) can possess tangent lines at various points (x, y).
Equation (1) defines at least two functions f and g on the interval Graphically, the
obvious functions are the top half and the bottom half of the circle. To obtain formulas for
these functions we solve for y in terms of x:

(2)

and (3)d lower semicircley � g(x) � �24 � x2.

d upper semicircley � f (x) � 24 � x2,

x2 � y2 � 4

[�2, 2] .

�2 6 x 6 2

x2 � y2 � 4
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3.6 Implicit Differentiation 157

See Figures 3.6.1(b) and (c). We can now find slopes of tangent lines for by
differentiating (2) and (3) by the Power Rule for Functions.

In this section we will see how the derivative can be obtained for (1), as well as
for more complicated equations without the necessity of solving the equation for
the variable y.

Explicit and Implicit Functions A function in which the dependent variable is expressed
solely in terms of the independent variable x, namely, is said to be an explicit function.
For example, is an explicit function. On the other hand, an equivalent equation

is said to define the function implicitly, or y is an implicit function of x. We 
have just seen that the equation defines the two functions and

implicitly.
In general, if an equation defines a function f implicitly on some interval,

then is an identity on the interval. The graph of f is a portion or an arc (or all)
of the graph of the equation In the case of the functions in (2) and (3), note that
both equations

are identities on the interval 
The graph of the equation shown in FIGURE 3.6.2(a) is a famous curve called

the Folium of Descartes. With the aid of a CAS such as Mathematica or Maple, one of the
implicit functions defined by is found to be

(4)

The graph of this function is the red arc shown in Figure 3.6.2(b). The graph of another
implicit function defined by is given in Figure 3.6.2(c).x3 � y3 � 3xy

y �
2x

4
3

�4x3 � 42x6 � 4x3

�
1
2
4

3
�4x3 � 42x6 � 4x3.

x3 � y3 � 3xy

x3 � y3 � 3xy
[�2, 2] .

x2 � [ f (x)] 2 � 4 and x2 � [g(x)]2 � 4

F(x, y) � 0.
F(x, f (x)) � 0

F(x, y) � 0
g(x) � �24 � x2

f (x) � 24 � x2x2 � y2 � 4
2y � x3 � 2 � 0

y � 1
2 
x3 � 1

y � f (x),

F(x, y) � 0,
dy>dx

�2 6 x 6 2

FIGURE 3.6.1 Equation 
determines at least two functions

x2 � y2 � 4

x

y
x2 � y2 � 4 (x, y)

(x, �y)

2

2

(a) Not a function

�2

�2

x

y

2

2

(b) Function

�2

y �   4 � x2

x

y

2

(c) Function

�2

�2

y � �  4 � x2

FIGURE 3.6.2 The portions of the graph in (a) that are shown in red in (b) and (c) are graphs of two implicit functions of x

1

2

3

1

(a) Folium

�1
�1

�2�3

�2

�3

2 3

y

x

1

2

3

1�1
�1

�2�3

�2

�3

2 3

y

x

(b) Function

1

2

3

1

(c) Function

�1
�1

�2�3

�2

�3

2 3

y

x

Implicit Differentiation Do not jump to the conclusion from the preceding discussion that
we can always solve an equation for an implicit function of x as we did in (2), (3),
and (4). For example, solving an equation such as

(5)

for y in terms of x is more than an exercise in challenging algebra or a lesson in the use of
the correct syntax of a CAS. It is impossible! Yet (5) may determine several implicit func-
tions on a suitably restricted interval of the x-axis. Nevertheless, we can determine the deriv-
ative by a process known as implicit differentiation. This process consists of differ-
entiating both sides of an equation with respect to x, using the rules of differentiation, and
then solving for . Since we think of y as being determined by the given equation as a
differentiable function of x, the Chain Rule, in the form of the Power Rule for Functions,
gives the useful result

(6)
d
dx

 yn � nyn�1 
dy
dx

,

dy>dx

dy>dx

x4 � x2y3 � y5 � 2x � y

F(x, y) � 0

Although we cannot solve certain
equations for an explicit function, it
still may be possible to graph the
equation with the aid of a CAS. We
can then see the functions as we did
in Figure 3.6.2.

59957_CH03b_121-190.qxd  9/25/09  8:01 PM  Page 157

© Jones and Bartlett Publishers, LLC.  NOT FOR SALE OR DISTRIBUTION. 



where n is any real number. For example,

whereas

Similarly, if y is a function of x, then by the Product Rule,

and by the Chain Rule,

d
dx

 sin 5y � cos 5y . d
dx

 5y � 5 cos 5y  

dy
dx

.

d
dx

  xy � x  

d
dx

 y � y  

d
dx

 x � x  

dy
dx

� y,

d
dx

 y2 � 2y 
dy
dx

.
d
dx

 x2 � 2 x

158 CHAPTER 3 The Derivative

Guidelines for Implicit Differentiation

(i) Differentiate both sides of the equation with respect to x. Use the rules of
differentiation and treat y as a differentiable function of x. For powers of the
symbol y use (6).

(ii) Collect all terms involving on the left-hand side of the differentiated
equation. Move all other terms to the right-hand side of the equation.

(iii) Factor from all terms containing this term. Then solve for dy>dx.dy>dx

dy>dx

In the following examples we shall assume that the given equation determines at least
one differentiable implicit function.

EXAMPLE 1 Using Implicit Differentiation
Find if 

Solution We differentiate both sides of the equation and then utilize (6):

Solving for the derivative yields

(7)

As illustrated in (7) of Example 1, implicit differentiation usually yields a derivative that
depends on both variables x and y. In our introductory discussion we saw that the equation

defines two differentiable implicit functions on the open interval 
The symbolism represents the derivative of either function on the interval.
Note that this derivative clearly indicates that functions (2) and (3) are not differentiable at

and since for these values of x. In general, implicit differentiation yields
the derivative of any differentiable implicit function defined by an equation 

EXAMPLE 2 Slope of a Tangent Line
Find the slopes of the tangent lines to the graph of at the points corresponding
to 

Solution Substituting into the given equation gives or Hence, there
are tangent lines at and Although and are points on theA1, �13 BA1, 13BA1, �13 B.A1, 13 B

y � �13.y2 � 3x � 1

x � 1.
x2 � y2 � 4

F(x, y) � 0.
y � 0x � 2x � �2

dy>dx � �x>y
�2 6 x 6 2.x2 � y2 � 4

dy
dx

� �
x
y
.

 2x � 2y 
dy
dx

� 0.

 
d
dx

 x2 �
d
dx

 y2 �
d
dx

 4

T
use Power Rule (6) here

x2 � y2 � 4.dy>dx
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graphs of two different implicit functions, indicated by the different colors in FIGURE 3.6.3, (7)
of Example 1 gives the correct slope at each point for We have

EXAMPLE 3 Using Implicit Differentiation
Find if 

Solution In this case, we use (6) and the Product Rule:

Higher Derivatives Through implicit differentiation we determine By differentiating
with respect to x we obtain the second derivative If the first derivative contains

y, then will again contain the symbol we can eliminate that quantity by substi-
tuting its known value. The next example illustrates the method.

EXAMPLE 4 Second Derivative
Find if 

Solution From Example 1, we already know that the first derivative is The
second derivative is the derivative of and so by the Quotient Rule:

Noting that permits us to rewrite the second derivative as

EXAMPLE 5 Chain and Product Rules
Find if 

Solution From the Chain Rule and Product Rule we obtain

 
dy
dx

� �
2y sin 2x

cos y � cos 2x
.

 (cos y � cos 2x) 
dy
dx

� �2y sin 2x

 cos y . dy
dx

� y (�sin 2x . 2) � cos 2x . dy
dx

 
d
dx

 siny �
d
dx

 y cos 2x

sin y � y cos 2 x.dy>dx

d 
2y

dx2
� �

4
y3

.

x2 � y2 � 4

d 
2y

dx2
� �

d
dx

 QxyR � �
y . 1 � x . dy

dx

y2
� �

y � x Q�x
y
R

y2
� �

y2 � x2

y3
.

T
substituting for dy>dx

T

dy>dx,
dy>dx � �x>y.

x2 � y2 � 4.d 
2y>dx2

dy>dx;d 
2y>dx2

d 
2y>dx2.dy>dx

dy>dx.

 
dy
dx

�
2 � 4 x3 � 2 xy3

3 x2y2 � 5y4
.

 (3x2y2 � 5y4) 
dy
dx

� 2 � 4 x3 � 2 xy3

 4 x3 � x2 � 3y2 
dy
dx

� 2 xy3 � 5y4 
dy
dx

� 2

 
d
dx

 x4 �
d
dx

 x2y3 �
d
dx

 y5 �
d
dx

 2 x �
d
dx

 1

x4 � x2y3 � y5 � 2x � 1.dy>dx

dy
dx
`
A1, 13B

� �
1
13

  and  
dy
dx
`
A1, �13B

� �
1

�13
�

1
13.

(�2, 2).
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FIGURE 3.6.3 Tangent lines in 
Example 2 are shown in green

x

y

2

1

1�1

�1

�2

�2 2

(1,�  3)

(1,  3)

factor from 
second and fourth terms

dy>dxd

Product Rule here
T T

Power Rule (6) here
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Postscript—Power Rule Revisited So far we have proved the Power Rule 
for all integer exponents n. Implicit differentiation provides a way of proving this rule when the
exponent is a rational number where p and q are integers and In the case 
the function

gives

Now for implicit differentiation

Solving the last equation for and simplifying by the laws of exponents gives

Examination of the last result shows that it is (3) of Section 3.2 with n � p>q.

dy
dx

�
p
q

 
x 

p�1

y 
q�1

�
p
q

 
x 

p�1

(x 
p>q) 

q�1
�

p
q

 
x 

p�1

x 
p�p>q �

p
q

 x 
p>q�1.

dy>dx

d
dx

 y 
q �

d
dx

 x 
p  yields  qy 

q�1 
dy
dx

� px 
p�1.

y � 0,

yq � x 
p.y � x 

p>q

n � p>q,q � 0.p>q,

(d>dx)x 
n � nx 

n�1
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Exercises 3.6 Answers to selected odd-numbered problems begin on page ANS-000.

Fundamentals

In Problems 1–4, assume that y is a differentiable function of x.
Find the indicated derivative.

1. 2.

3. 4.

In Problems 5–24, assume that the given equation defines at
least one differentiable implicit function. Use implicit differen-
tiation to find 

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

In Problems 25 and 26, use implicit differentiation to find the
indicated derivative.

25. 26.

In Problems 27 and 28, find at the indicated point.

27.
28. y � sin xy; (p>2, 1)

xy2 � 4y3 � 3x � 0; (1, �1)

dy>dx

pr 
2h � 100; dh>drr2 � sin 2u; dr>du

x sin y � y cos x � 1x � sec y

x � y � cos(xy)xy � sin(x � y)

x

y2
�

y2

x
� 5y2 �

x � 1
x � 2

x � y
x � y

� x(x � 1)2 � (y � 4)2 � 25

y4 � y2 � 10x � 3y�3x6 � y6x�3 � 2x � 1

y � (x � y)2(x2 � y2)6 � x3 � y3

x5 � 6xy3 � y4 � 1x3y2 � 2x2 � y2

y3 � 2y � 3x3 � 4x � 13y � cos y � x2

(y � 1)2 � 4(x � 2)xy2 � x2 � 4 � 0

4x2 � y2 � 8y2 � 2y � x

dy>dx.

d
dx

 y sin 3y
d
dx

 cos y2

d
dx

 
x2

y2

d
dx

 x2y4

In Problems 29 and 30, find at the points that correspond
to the indicated number.

29. 30.

In Problems 31–34, find an equation of the tangent line at the
indicated point or number.

31. 32.

33. 34.

In Problems 35 and 36, find the point(s) on the graph of the
given equation where the tangent line is horizontal.

35. 36.

37. Find the point(s) on the graph of at which
the slope of the tangent is 

38. Find the point where the tangent lines to the graph of
at and intersect.

39. Find the point(s) on the graph of at which the
tangent line is perpendicular to the line 

40. Find the point(s) on the graph of at
which the tangent line is parallel to the line 

In Problems 41–48, find 

41. 42.

43. 44.

45. 46.

47. 48.

In Problems 49–52, first use implicit differentiation to find
Then solve for y explicitly in terms of x and differenti-

ate. Show that the two answers are equivalent.

49. 50.

51. 52. y sin x � x � 2yx3y � x � 1

4 x2 � y2 � 1x2 � y2 � x

dy>dx.

x3 � y3 � 27x2 � 2xy � y2 � 1

y2 � x2 � tan 2xx � y � sin y

x2 � 4y2 � 16x2 � y2 � 25

xy4 � 54y3 � 6x2 � 1

d 
2y>dx2.

y � 5.
x2 � xy � y2 � 27

y � 3x � 5 � 0.
y3 � x2

(�3, �4)(�3, 4)x2 � y2 � 25

1
2.

x2 � y2 � 25

y2 � x2 � 4 x � 7x2 � xy � y2 � 3

3y � cos y � x2; (1, 0)tan y � x; y � p>4
1
x

�
1
y

� 1; x � 3x4 � y3 � 24; (�2, 2)

y3 � 2x2 � 11y; y � 12y2 � 2xy � 1 � 0; x �
1
2

dy>dx
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In Problems 53–56, determine an implicit function from the given
equation such that its graph is the blue curve in the figure.

53. 54.

55. 56.

In Problems 57 and 58, assume that both x and y are differentiable
functions of a variable t. Find in terms of x, y, and 

57. 58.

59. The graph of the equation is the Folium of
Descartes given in Figure 3.6.2(a).

(a) Find an equation of the tangent line at the point in the
first quadrant where the Folium intersects the graph
of 

(b) Find the point in the first quadrant at which the tangent
line is horizontal.

60. The graph of shown in FIGURE 3.6.8
is called a lemniscate.

(a) Find the points on the graph that correspond to 
(b) Find an equation of the tangent line to the graph at

each point found in part (a).
(c) Find the points on the graph at which the tangent is

horizontal.

In Problems 61 and 62, show that the graphs of the given equa-
tions are orthogonal at the indicated point of intersection. See
Problem 64 in Exercises 3.2.

61.

62. (2, 1)2x2 � 2y2 � 3x;y3 � 3x2y � 13,

2 x2 � 3y2 � 5; (1, 1)y2 � x3,

FIGURE 3.6.8 Lemniscate in Problem 60

y

x

x � 1.

(x2 � y2)2 � 4(x2 � y2)

y � x.

x3 � y3 � 3xy

x2 � xy � y2 � y � 9x2 � y2 � 25

dx>dt.dy>dt

x

y

FIGURE 3.6.7 Graph for
Problem 56

x

y

FIGURE 3.6.6 Graph for
Problem 55

y2 � x2(2 � x)x2 � y2 � 4

x

y

FIGURE 3.6.5 Graph for
Problem 54

x

y

FIGURE 3.6.4 Graph for
Problem 53

x2 � xy � y2 � 4(y � 1)2 � x � 2
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If all the curves of one family of curves a con-
stant, intersect orthogonally all the curves of another family

a constant, then the families are said to be
orthogonal trajectories of each other. In Problems 63 and 64,
show that the families of curves are orthogonal trajectories of
each other. Sketch the two families of curves.

63. 64.

Applications

65. A woman drives toward a freeway sign as shown in
FIGURE 3.6.9. Let be her viewing angle of the sign and let
x be her distance (measured in feet) to that sign.
(a) If her eye level is 4 ft from the surface of the road, show

that

(b) Find the rate at which changes with respect to x.
(c) At what distance is the rate in part (b) equal to zero?

66. A jet fighter “loops the loop” in a circle of radius 1 km as
shown in FIGURE 3.6.10. Suppose a rectangular coordinate
system is chosen so that the origin is at the center of the
circular loop. The aircraft releases a missile that flies on
a straight-line path that is tangent to the circle and hits a
target on the ground whose coordinates are 

(a) Determine the point on the circle where the missile
was released.

(b) If a missile is released at the point on the
circle, at what point does it hit the ground?

Ground Target

FIGURE 3.6.10 Jet fighter in Problem 66

(�1
2, �

13
2 )

(2, �2).

FIGURE 3.6.9 Car in Problem 65

x

18 ft

4 ft

�

u

tan u �
4x

x2 � 252
.

u

x2 � y2 � c1, y � c2 
xx2 � y2 � c1, xy � c2

c2H(x, y) � c2,

c1G(x, y) � c1,
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f increasing and differentiable means
the tangent lines have positive slope.

3.7 Derivatives of Inverse Functions
Introduction In Section 1.5 we saw that the graphs of a one-to-one function f and its inverse

are reflections of each other in the line y � x. As a consequence, if is a point on the
graph of f, then is a point on the graph of . In this section we will also see that the
slopes of tangent lines to the graph of a differentiable function f are related to the slopes of tan-
gents to the graph of .

We begin with two theorems about the continuity of f and .

Continuity of Although we state the next two theorems without proof, their plausibility
follows from the fact that the graph of is a reflection of the graph of f in the line y � x.f 

�1
f �1

f 
�1

f 
�1

f 
�1(b, a)

(a, b)f 
�1

162 CHAPTER 3 The Derivative

Think About It

67. The angle between two curves is defined to
be the angle between their tangent lines at the point P of
intersection. If and are the slopes of the tangent lines
at P, it can be shown that 
Determine the angle between the graphs of 
and at 

68. Show that an equation of the tangent line to the ellipse
at the point is given by

x x0

a2
�

y y0

b2
� 1.

(x0, y0)x2>a2 � y2>b2 � 1

(1, 1).x2 � 2x � y2 � 4
x2 � y2 � 4y � 6

tan u � (m1 � m2)>(1 � m1 m2).
m2m1

u (0 6 u 6 p)

69. Consider the equation Make up another
implicit function defined by this equation for

different from the ones given in (2), (3), and
Problem 55.

70. For and the equation
defines a differentiable implicit function.

(a) Find in terms of y.
(b) Find in terms of x.dy>dx

dy>dx

x � sin y
�p/2 6 y 6 p/2,�1 6 x 6 1

�2 � x � 2
h(x)

x2 � y2 � 4.

Theorem 3.7.1 Continuity of an Inverse Function

Let f be a continuous one-to-one function on its domain X. Then is continuous on its
domain.

f 
�1

Theorem 3.7.2 Existence of an Inverse Function

Let f be a continuous function and increasing on an interval [a, b]. Then exists and is
continuous and increasing on [  f (a), f (b)] .

f 
�1

Increasing–Decreasing Functions Suppose is a function defined on an interval
I, and that are any two numbers in the interval such that Then from
Section 1.3 and Figure 1.3.4 recall that f is said to be

• increasing on the interval if and (1)
• decreasing on the interval if (2)

The next two theorems establish a link between the notions of increasing/decreasing and
the existence of an inverse function.

f (x1) 7 f (x2).
f (x1) 6 f (x2),

x1 6 x2.x1 and x2

y � f (x)

Theorem 3.7.2 also holds when the word increasing is replaced with the word decreas-
ing and the interval in the conclusion is replaced by See FIGURE 3.7.1. In addition,
we can conclude from Theorem 3.7.2 that if f is continuous and increasing on an interval

then exists and is continuous and increasing on its domain. Inspection of
Figures 1.3.4 and 3.7.1 also shows that if f in Theorem 3.7.2 is a differentiable function on

then:

• f is increasing on the interval if on and
• f is decreasing on the interval if on 

We will prove these statements in the next chapter.

(a, b).f ¿(x) 6 0[a, b ]
(a, b),f ¿(x) 7 0[a, b ]

(a, b),

f 
�1(�q, q),

[ f (b), f (a)] .
FIGURE 3.7.1 f (blue curve) and (red
curve) are continuous and increasing

f �1

(ƒ(a), a)

ƒ(a) ƒ(b)

(ƒ(b), b)

(b, ƒ(b))

(a, ƒ(a))

y �ƒ(x)

y �ƒ�1(x)
y � x

x

y

a b
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EXAMPLE 1 Existence of an Inverse
Prove that has an inverse.

Solution Since f is a polynomial function it is differentiable everywhere, that is, f is differ-
entiable on the interval Also, for all x implies that f is
increasing on It follows from Theorem 3.7.3 that f is one-to-one and hence 
exists.

Derivative of If f is differentiable on an interval I and is one-to-one on that interval, then
for a in I the point on the graph of f and the point on the graph of are mirror
images of each other in the line As we see next, the slopes of the tangent lines at 
and are also related.

EXAMPLE 2 Derivative of an Inverse
In Example 5 of Section 1.5 we showed that the inverse of the one-to-one function

is At 

Now from

we see This shows that the slope of the tangent to the graph of
f at and the slope of the tangent to the graph of at are reciprocals:

.

See FIGURE 3.7.2.

The next theorem shows that the result in Example 2 is no coincidence.

( f 
�1) ¿(5) �

1
f ¿(2)

  or  ( f 
�1) ¿(5) �

1
f ¿( f 

�1(5))

(5, 2)f 
�1(2, 5)

f ¿(2) � 4 and ( f 
�1) ¿(5) � 1

4.

f ¿(x) � 2x  and  ( f 
�1)¿(x) �

1
21x � 1

f (2) � 5  and  f 
�1(5) � 2.

x � 2,f 
�1(x) � 1x � 1.f (x) � x2 � 1, x � 0

(b, a)
(a, b)y � x.

f 
�1(b, a)(a, b)

f �1

f 
�1(�q, q).

f ¿(x) � 15x2 � 8 7 0(�q, q).

f (x) � 5x3 � 8x � 9
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Theorem 3.7.3 Existence of an Inverse Function

Suppose f is a differentiable function on an open interval If either on the
interval or on the interval, then f is one-to-one. Moreover, is differentiable for
all x in the range of f.

f 
�1f ¿(x) 6 0

f ¿(x) 7 0(a, b).

FIGURE 3.7.2 Tangent lines in 
Example 2

1

1

2

3

4

5

6
y

x
2 3 4 5 6

ƒ	(2) � 4

(5, 2)

(2, 5)

y � x2 � 1, x � 0

(ƒ�1)	(5) �        �
1

ƒ	(2)
1 y � x � 1
4

Theorem 3.7.4 Derivative of an Inverse Function

Suppose that f is differentiable on an interval I and is never zero on I. If f has an inverse
on I, then is differentiable at a number x and

(3)
d
dx

 f 
�1(x) �

1
f ¿( f 

�1(x))
.

f 
�1f 

�1
f ¿(x)

PROOF As we have seen in (5) of Section 1.5, for every x in the domain of
By implicit differentiation and the Chain Rule,

Solving the last equation for gives (3).

Equation (3) clearly shows that to find the derivative function for we must know
explicitly. For a one-to-one function solving the equation for y isx � f (y)y � f (x)f 

�1(x)
f 

�1

d
dx

 f 
�1(x)

d
dx

 f ( f 
�1(x)) �

d
dx

 x  or  f ¿( f 
�1(x)) . d

dx
 f 

�1(x) � 1.

f 
�1.

f ( f 
�1(x)) � x
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Read this paragraph a second time.

sometimes difficult and often impossible. In this case it is convenient to rewrite (3) using
different notation. Again by implicit differentiation

Solving the last equation for and writing yields

(4)

If (a, b) is a known point on the graph of f, the result in (4) enables us to evaluate the
derivative of at (b, a) without an equation that defines 

EXAMPLE 3 Derivative of an Inverse
It was pointed out in Example 1 that the polynomial function is differ-
entiable on and hence continuous on the interval. Since the end behavior of f is
that of the single-term polynomial function we can conclude that the range of f is
also Moreover, since for all x, f is increasing on its domain

Hence by Theorem 3.7.3, f has a differentiable inverse with domain 
By interchanging x and y, the inverse is defined by the equation but solv-
ing this equation for y in terms of x is difficult (it requires the cubic formula). Nevertheless,
using the derivative of the inverse function is given by (4):

(5)

For example, since we know that Thus, the slope of the tangent line to
the graph of at is given by (5):

In Example 3, the derivative of the inverse function can also be obtained directly from
using implicit differentiation:

Solving the last equation for gives (5). As a consequence of this observation implicit dif-
ferentiation can be used to find the derivative of an inverse function with minimum effort. In
the discussion that follows we will find the derivatives of the inverse trigonometric functions.

Derivatives of Inverse Trigonometric Functions A review of Figures 1.5.15 and 1.5.17(a)
reveals that the inverse tangent and inverse cotangent are differentiable for all x. However, the
remaining four inverse trigonometric functions are not differentiable at either or 
We shall confine our attention to the derivations of the derivative formulas for the inverse sine,
inverse tangent, and inverse secant and leave the others as exercises.

Inverse Sine: if and only if where and 
Therefore, implicit differentiation

and so (6)

For the given restriction on the variable y, and so 
By substituting this quantity in (6), we have shown that

(7)
d
dx

 sin�1
 x �

1

21 � x2
.

21 � x2.cos y � 21 � sin2
 y �cos y � 0

dy
dx

�
1

cos y
.

d
dx

 x �
d
dx

 sin y  gives  1 � cos y . dy
dx

�p>2 � y �p>2.�1 � x � 1x � sin y,y � sin�1
 x

x � 1.x � �1

dy>dx

d
dx

 x �
d
dx

 (5y3 � 8y � 9)  gives  1 � 15y2
  

dy
dx

� 8  

dy
dx

.

x � 5y3 � 8y � 9

dy
dx
`
x�4

�
1

15y2 � 8
`
y�1

�
1

23
.

(4, 1)f 
�1

f 
�1(4) � 1.f (1) � 4

dy
dx

�
1

15y2 � 8
.

dx>dy � 15y2 � 8,

x � 5y3 � 8y � 9,
(�q, q).f 

�1(�q, q).
f ¿(x) � 15x2 � 8 7 0(�q, q).

y � 5x3
(�q, q)

f (x) � 5x3 � 8x � 9

f 
�1(x).f 

�1

dy
dx

�
1

dx>dy
.

dx>dy � f ¿(y)dy>dx

d
dx

 x �
d
dx

 f (y)  gives  1 � f ¿(y) . dy
dx

.
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As predicted, note that (7) is not defined at and The inverse sine or arcsine
function is differentiable on the open interval 

Inverse Tangent: if and only if where and
Thus,

gives

or (8)

In view of the identity (8) becomes

(9)

Inverse Secant: For and or 

if and only if

Differentiating the last equation implicitly gives

(10)

In view of the restrictions on y, we have 
Hence, (10) becomes

(11)

We can get rid of the sign in (11) by observing in Figure 1.5.17(b) that the slope of the
tangent line to the graph of is positive for and positive for Thus,
(11) is equivalent to

(12)

The result in (12) can be rewritten in a compact form using the absolute value symbol:

(13)

The derivative of the composition of an inverse trigonometric function with a differen-
tiable function is obtained from the Chain Rule.u � g(x)

d
dx

 sec�1
 x �

1

0 x 02x2 � 1
.

d
dx

 sec�1
 x � μ

�
1

x2x2 � 1
, x 6 �1

1

x2x2 � 1
, x 7 1.

x 7 1.x 6 �1y � sec�1
 x

�

d
dx

 sec�1
 x � �

1

x2x2 � 1
.

�x� 7 1.tan y � �2sec2
 y � 1 � �2x2 � 1,

dy
dx

�
1

sec y tan y
.

x � sec y.y � sec�1
 x

p>2 6 y � p,0 � y 6 p>20 x 0 7 1

d
dx

 tan�1
 x �

1
1 � x2

.

sec2
 y � 1 � tan2

 y � 1 � x2,

dy
dx

�
1

sec2
 y

.

l � sec2
 y . dy

dx
d
dx

 x �
d
dx

 tan y

�p>2 6 y 6 p>2.
�q 6 x 6 qx � tan y,y � tan�1

 x

(�1, 1).
x � 1.x � �1

3.7 Derivatives of Inverse Functions 165

Theorem 3.7.5 Inverse Trigonometric Functions

If is a differentiable function, then

(14)

(15)

(16)
d
dx

  csc�1
 u �

�1

0u 02u2 � 1
 
du
dx

.
d
dx

  sec�1
 u �

1

0u 02u2 � 1
 
du
dx

,

d
dx

  cot�1
 u �

�1
1 � u2

 
du
dx

,
d
dx

 tan�1
 u �

1
1 � u2

 
du
dx

,

d
dx

  cos�1
 u �

�1

21 � u2
 
du
dx

,
d
dx

  sin�1
 u �

1

21 � u2
 
du
dx

,

u � g(x)

In the formulas in (14) we must have whereas in the formulas in (16) we must
have 0u 0 7 1.

0u 0 6 1,
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EXAMPLE 4 Derivative of Inverse Sine
Differentiate 

Solution With we have from the first formula in (14),

EXAMPLE 5 Derivative of Inverse Tangent
Differentiate 

Solution With we have from the first formula in (15),

EXAMPLE 6 Derivative of Inverse Secant
Differentiate 

Solution For we have from the first formula in (16),

(17)

With the aid of a graphing utility we obtain the graph of given in FIGURE 3.7.3.
Notice that (17) gives positive slope for and negative slope for 

EXAMPLE 7 Tangent Line
Find an equation of the tangent line to the graph of at 

Solution By the Product Rule and the second formula in (14),

Since the two functions f and evaluated at give:

By the point–slope form of a line, the unsimplified equation of the tangent line is

Since the domain of is the interval the domain of f is The corre-
sponding range is FIGURE 3.7.4 was obtained with the aid of a graphing utility.     [0, p ] .

[�1, 1] .[�1, 1]cos�1x

y �
p

6
� a� 1

213
�

2p
3
bax �

1
2
b.

d slope of tangent at (�1
2, p6) is � 1

213 � 2p
3 f ¿Q�1

2
R � �

1
213

�
2p
3

.

d point of tangency is (�1
2, p6) f  Q�1

2
R �
p

6

x � �1
2f ¿cos�1(�1

2) � 2p>3,

f ¿(x) � x2 a �1

21 � x2
b � 2x cos�1

 x.

x � �1
2.f (x) � x2

 cos�1
 x

x 6 �1.x 7 1
y � sec�1x2

 �
2x

x22x4 � 1
�

2

x2x4 � 1
.

 
dy
dx

�
1

0 x2 02(x2)2 � 1
. d

dx
 x2

x2 7 1 7 0,

y � sec�1
 x2.

 �
1

(2x � 2)12x � 1
.

 �
1

1 � (2x � 1)
. 1

2
 (2x � 1)�1>2 . 2

 
dy
dx

�
1

1 � A12x � 1 B 2 . d
dx

 (2x � 1)1>2

u � 12x � 1,

y � tan�112x � 1.

dy
dx

�
1

21 � (5x)2
. d

dx
 5x �

5

21 � 25x2
.

u � 5x,

y � sin�1
 5x.
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FIGURE 3.7.3 Graph of function in
Example 6

y

x
�2�3 �1 1 2 3

y � sec�1x2

�
2

FIGURE 3.7.4 Tangent line in Example 7.

x

y

�

�

�1 1

y � x2 cos�1 x�1
� ,

2

2 6�          �
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3.8 Exponential Functions 167

Exercises 3.7 Answers to selected odd-numbered problems begin on page ANS-000.

Fundamentals

In Problems 1–4, without graphing determine whether the
given function f has an inverse.

1.

2.

3.

4.

In Problems 5 and 6, use (3) to find the derivative of at
the indicated point.

5.

6.

In Problems 7 and 8, find Use (3) to find and then
verify this result by direct differentiation of 

7. 8.

In Problems 9–12, without finding the inverse, find, at the indi-
cated value of x, the corresponding point on the graph of
Then use (4) to find an equation of the tangent line at this
point.

9. 10.

11.

12.

In Problems 13–32, find the derivative of the given function.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. y � 2 sin�1
 x � x cos�1

 x

y �
sec�1

 x
x

y �
1

tan�1
 x2

y �
sin�1

 x
sin x

y �
sin�1

 2x

cos�1
 2x

y � (tan�1x)(cot�1x)y � 21x tan�11x

y � 2x � 10 sec�1
 5xy � 4 cot�1

 

x
2

y � cos�1 ax � 1
3
by � sin�1

 (5x � 1)

y � 8 � 613 x � 2; x � �3

y � (x5 � 1)3; x � 1

y �
2x � 1
4x � 1

; x � 0y �
1
3

 x3 � x � 7; x � 3

f 
�1.

f (x) � (5x � 7)3f (x) �
2x � 1

x

f 
�1.
( f 

�1) ¿f 
�1.

f (x) � �x3 � 3x � 7; ( f (�1), �1)

f (x) � 2x3 � 8; A f  A12, 12BB

f 
�1

f (x) � x4 � 2x2

f (x) � x3 � x2 � 2x

f (x) � �7x 5 � 6x3 � 2x � 17

f (x) � 10x3 � 8x � 12

24.

25. 26.

27. 28.

29. 30.

31. 32.

In Problems 33 and 34, use implicit differentiation to find

33. 34.

In Problems 35 and 36, show that Interpret the
result.

35.

36.

In Problems 37 and 38, find the slope of the tangent line to the
graph of the given function at the indicated value of x.

37.

38.

In Problems 39 and 40, find an equation of the tangent line to
the graph of the given function at the indicated value of x.

39.

40.

41. Find the points on the graph of 
at which the tangent line is parallel to the

line 

42. Find all tangent lines to the graph of that
have slope 

Think About It

43. If f and are differentiable, use (3) to find a formula
for ( f 

�1)–(x).
( f 

�1) ¿

1
4.

f (x) � arctan x

y � 13x � 1.
0 � x � 2p,

f (x) � 5 � 2 sin x,

f (x) � sin�1
 (x � 1); x �

1
2

f (x) � x tan�1
 x; x � 1

y � (cos�1
 x)2; x � 1>12

y � sin�1
 

x
2

; x � 1

f (x) � tan�1x � tan�1(1>x).

f (x) � sin�1x � cos�1x

f ¿(x) � 0.

sin�1
 y � cos�1

 x � 1tan�1
 y � x2 � y2

dy>dx.

f (x) � cos (x sin�1x)f (x) � tan (sin�1x2)

f (x) � arctan asin x
2
bf (x) � arcsin (cos 4x)

g(t) � arccos13t � 1F(t) � arctan a t � 1
t � 1

b
y � 2x � cos�1(x � 1)y � ax2 � 9 tan�1

 

x
3
b3

y � cot�1x � tan�1
 

x

21 � x2

3.8 Exponential Functions
Introduction In Section 1.6 we saw that the exponential function 

is defined for all real numbers, that is, the domain of f is Inspection of Figure 1.6.2
shows that f is everywhere continuous. It turns out that an exponential function is also differ-
entiable everywhere. In this section we develop the derivative of f (x) � bx.

(�q, q).
f (x) � bx, b 7 0, b � 1,
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Derivative of an Exponential Function To find the derivative of an exponential function
we will use the definition of the derivative given in (2) of Definition 3.1.1. We first

compute the difference quotient

(1)

in three steps. For the exponential function we have

(i)

(ii)

(iii)

In the fourth step, the calculus step, we let but analogous to the derivatives of 
and in Section 3.4, there is no apparent way of canceling the h in the difference quo-
tient (iii). Nonetheless, the derivative of is

(2)

Because does not depend on the variable h, we can rewrite (2) as

(3)

Now here are the amazing results. The limit in (3),

(4)

can be shown to exist for every positive base b. However, as one might expect, we will get
a different answer for each base b. So for convenience let us denote the expression in (4) by
the symbol m(b). The derivative of is then

(5)

You are asked to approximate the value of m(b) in the four cases and 5 in
Problems 57–60 of Exercises 3.8. For example, it can be shown that and
as a consequence if then

(6)

We can get a better understanding of what m(b) is by evaluating (5) at Since
we have In other words, m(b) is the slope of the tangent line to the

graph of at that is, at the y-intercept (0, 1). See FIGURE 3.8.1. Given that we
have to calculate a different m(b) for each base b, and that m(b) is likely to be an “ugly”
number as in (6), over time the following question arose naturally:

• Is there a base b for which (7)

Derivative of the Natural Exponential Function To answer the question posed in (7), we
must return to the definitions of e given in Section 1.6. Specifically, (4) of Section 1.6,

(8)

provides the means for answering the question posed in (7). We know that on an intuitive
level, the equality in (8) means that as h gets closer and closer to 0 then can
be made arbitrarily close to the number e. Thus for values of h near 0, we have the approx-
imation and so it follows that The last expression written in
the form

(9)
eh � 1

h
� 1

1 � h � eh.(1 � h)1>h � e

(1 � h)1>h

e � lim
hS0 

(1 � h)1>h

m(b) � 1?

x � 0,f (x) � bx
f ¿(0) � m(b).b0 � 1,

x � 0.

f ¿(x) � (2.302585p )10x.

f (x) � 10x,
m(10) � 2.302585p

b � 1.5, 2, 3,

f ¿(x) � bxm (b).

f (x) � bx

lim
hS0

 
bh � 1

h
,

f ¿(x) � bx . lim
hS0

 
bh � 1

h
.

bx

f ¿(x) � lim
hS0 

bx . bh � 1
h

.

f (x) � bx
cos x

sin xh S 0

f (x � h) � f (x)
h

�
bx(bh � 1)

h
� bx . bh � 1

h
.

d laws of exponents
      and factoringf (x � h) � f (x) � bx�h � bx � bxbh � bx � bx(bh � 1)

d laws of exponentsf (x � h) � bx�h � bxbh

f (x) � bx,

f (x � h) � f (x)
h

f (x) � bx

168 CHAPTER 3 The Derivative

FIGURE 3.8.1 Find a base b so that the
slope m(b) of the tangent line at (0, 1) is 1

y

x

Slope at (0, 1)
is m(b)

(0, 1)

y � bx
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suggests that

(10)

Since the left-hand side of (10) is m(e) we have the answer to the question posed in (7):

• The base b for which is (11)

In addition, from (3) we have discovered a wonderfully simple result. The derivative of
In summary,

(12)

The result in (12) is the same as Moreover, if is a constant, then the only
other nonzero function f in calculus whose derivative is equal to itself is since by
the Constant Multiple Rule of Section 3.2

Derivative of —Revisited In the preceding discussion we saw that but
left unanswered the question of whether has an exact value for each It has. From the
identity we can write any exponential function in terms of the e base:

From the Chain Rule the derivative of is

Returning to the preceding line shows that

(13)

Matching the result in (5) with that in (13) we conclude that For example,
the derivative of is Because we see 

is the same as the result in (6).
The Chain Rule forms of the results in (12) and (13) are given next.

10x(ln 10)
f ¿(x) �ln 10 � 2.302585f ¿(x) � 10x(ln 10).f (x) � 10x

m(b) � ln b.

d
dx

 bx � bx(ln b).

bx � ex(ln b),

f ¿(x) �
d
dx

 ex(ln b) � ex(ln b) . d
dx

 x(ln b) � ex(ln b)(ln b).

bx

f (x) � bx � (eln b)x � ex(ln b).

f (x) � bxb 7 0,eln b � b,
b 7 0.m(b)

m(e) � 1,f  (x ) � bx

dy
dx

�
d
dx

 cex � c 
d
dx

 ex � cex � y.

y � cex
c � 0f ¿(x) � f (x).

d
dx

 ex � ex.

f (x) � ex is ex.

b � e.m(b) � 1

lim
hS0

 
eh � 1

h
� 1.
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Theorem 3.8.1 Derivatives of Exponential Functions

If is a differentiable function, then

(14)

and (15)
d
dx

 bu � bu(ln b) 
du
dx

.

d
dx

 eu � eu 
du
dx

,

u � g(x)

EXAMPLE 1 Chain Rule
Differentiate 

(a) (b) (c)

Solution

(a) With we have from (14),

dy
dx

� e�x . d
dx

 (�x) � e�x(�1) � �e�x.

u � �x

y � 85x.y � e1>x3

y � e�x
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(b) By rewriting as we have from (14),

(c) With we have from (15),

EXAMPLE 2 Product and Chain Rule
Find the points on the graph of where the tangent line is horizontal.

Solution We use the Product Rule along with (14):

Since for all real numbers x, when Factoring the last 

equation gives and so and The corresponding
points on the graph of the given function are then and 
The graph of along with the three tangent lines (in red) are shown in
FIGURE 3.8.2.

In the next example we recall the fact that an exponential statement can be written in an
equivalent logarithmic form. In particular, we use (9) of Section 1.6 in the form

(16)

EXAMPLE 3 Tangent Line Parallel to a Line
Find the point on the graph of at which the tangent line is parallel to

Solution Let be the unknown point on the graph of 
where the tangent line is parallel to From the derivative the
slope of the tangent line at this point is then Since and the
tangent line are parallel at that point, the slopes are equal:

or or

From (16) the last equation gives Hence, the point is 
Since the point is In FIGURE 3.8.3 the given line is shown in green and the
tangent line in red.

(�ln 2, 4).eln 2 � 2,
(�ln 2, 2eln 2).�x0 � ln 2 or x0 � �ln 2.

e�x0 � 2.�2e�x0 � �4f ¿(x0) � �4

y � �4x � 2f ¿(x0) � �2e�x0.
f ¿(x) � �2e�xy � �4x � 2.

f (x) � 2e�x(x0, f (x0)) � (x0, 2e�x0)

y � �4x � 2.
f (x) � 2e�x

y � ex  if and only if  x � ln y.

y � 3x2e�x2
(1, 3e�1).(0, 0), (�1, 3e�1),

x � 1.x � �1,x � 0,x (x � 1)(x � 1) � 0

�6x3 � 6x � 0.
dy
dx

� 0e�x2

� 0

 � e�x2

(�6x3 � 6x).

 � 3x2(�2xe�x2

) � 6xe�x2

 
dy
dx

� 3x2 . d
dx

 e�x2

� e�x2 . d
dx

 3x2

y � 3 x2e�x2

dy
dx

� 85x . (ln 8) . d
dx

 5x � 5 . 85x
 (ln 8).

u � 5x

dy
dx

� e1>x3 . d
dx

 x�3 � e1>x3

(�3x�4) � �3 
e1>x3

x4
.

u � x�3u � 1>x3
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FIGURE 3.8.2 Graph of function in
Example 2

y
1

�1 1(0, 0)

(�1, 3e�1) (1, 3e�1)

x

y �3x2 e�x2

FIGURE 3.8.3 Graph of function and
lines in Example 3

y � 2e�x

y

x
1�1�2 2

(�ln 2, 4)

y � �4x � 2

1

2

3

4

5

NOTES FROM THE CLASSROOM

The numbers e and are transcendental as well as irrational numbers. A transcendental
number is one that is not a root of a polynomial equation with integer coefficients. For exam-
ple, is irrational but is not transcendental, since it is a root of the polynomial equation

The number e was proved to be transcendental by the French mathematician
Charles Hermite (1822–1901) in 1873, whereas was proved to be transcendental nine years
later by the German mathematician Ferdinand Lindemann (1852–1939). The latter proof
showed conclusively that “squaring a circle” with a rule and a compass was impossible.

p

x2 � 2 � 0.
12

p

d
dx
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Exercises 3.8 Answers to selected odd-numbered problems begin on page ANS-000.

3.8 Exponential Functions 171

Fundamentals

In Problems 1–26, find the derivative of the given function.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. Find an equation of the tangent line to the graph of
at 

28. Find the slope of the normal line to the graph of
at 

29. Find the point on the graph of at which the tangent
line is parallel to 

30. Find the point on the graph of at which the
tangent line is parallel to 

In Problems 31 and 32, find the point(s) on the graph of the
given function at which the tangent line is horizontal. Use a
graphing utility to obtain the graph of each function.

31. 32.

In Problems 33–36, find the indicated higher derivative.

33. 34.

35. 36.

In Problems 37 and 38, and are arbitrary real con-
stants. Show that the function satisfies the given differential
equation.

37.

38. y � C1e
�xcos 2x � C2e

�xsin 2x; y– � 2y ¿ � 5y � 0

y � C1e
�3x � C2e

2x;  y– � y ¿ � 6y � 0

C2C1

y � x2ex;  
d 

4y

dx4
y � sin e2x;  

d 
2y

dx2

y �
1

1 � e�x;  
d 

2y

dx2
y � ex2

;  
d 3y

dx3

f (x) � (3 � x2)e�xf (x) � e�x sin x

y � 6x.
y � 5x � e2x

3x � y � 7.
y � ex

x � 0.y � (x � 1)e�x

x � 0.y � (ex � 1)2

y � ex � ex�e�xex2

y � e

y � e 
x�2
x�2f (x) � ex2x2�1

f (x) � sec e2xf (x) � e�x tan ex

f (x) � (2x � 1)3e�(1�x)4

f (x) � ex1>3
� (ex)1>3

y � a 1
exb

100

y � (e3)x�1

y � e2xe3xe4xy �
e7x

e�x

y �
ex � e�x

ex � e�xy �
2

ex>2 � e�x>2

y � (e2x � e�2x)10y � 21 � e�5x

f (x) �
xex

x � exf (x) �
e�2x

x

y � e�xsin pxy � x3e4x

y � 10�3x2

y � 52x

y � e 
sin 10xy � e1x

y � e2x�3y � e�x

39. If and are real constants, show that the function
satisfies the differential equation 

40. Use Problem 39 to find a function that satisfies the given
conditions.

(a)

(b)

In Problems 41–46, use implicit differentiation to find 

41. 42.

43. 44.

45. 46.

47. (a) Sketch the graph of 
(b) Find 
(c) Sketch the graph of 
(d) Is the function differentiable at ?

48. (a) Show that the function is periodic with
period 

(b) Find all points on the graph of f where the tangent is
horizontal. 

(c) Sketch the graph of f.

Applications

49. The logistic function

where a and b are positive constants, often serves as a
mathematical model for an expanding but limited population.

(a) Show that satisfies the differential equation

(b) The graph of is called a logistic curve where
is the initial population. Consider the case

when and Find horizontal
asymptotes for the graph of by determining the
limits and 

(c) Graph 
(d) Find the value(s) of t for which 

50. The Jenss mathematical model (1937) represents one of
the most accurate empirically devised formulas for
predicting the height h (in centimeters) in terms of age t
(in years) for preschool-age children (3 months to 6 years):

(a) What height does this model predict for a 2-year-old?
(b) How fast is a 2-year-old increasing in height?
(c) Use a calculator or CAS to obtain the graph of h on

the interval 
(d) Use the graph in part (c) to estimate the age of a

preschool-age child who is 100 cm tall.

[ 1
4, 6].

h(t) � 79.04 � 6.39t � e3.26�0.99t.

P–(t) � 0.
P(t).

lim
tSq 

P(t).lim
tS �q 

P(t)
P(t)

P0 � 1.a � 2, b � 1,
P(0) � P0

P(t)

dP
dt

� P(a � bP).

P(t)

P(t) �
aP0

bP0 � (a � bP0)˛e�at ,

2p.
f (x) � ecosx

x � 0
f ¿.

f ¿(x).
f (x) � e� 0x 0.

ex � ey � yx � y2 � ex>y
y � e(x�y)2

y � cos exy

xy � eyy � ex�y

dy>dx.

dP
dt

� 0.15P � 0  and  P(0) � P0

y ¿ � �0.01y  and  y(0) � 100

y ¿ � ky.y � Cekx
kC
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3.9 Logarithmic Functions
Introduction Because the inverse of the exponential function is the logarithmic

function we can find the derivative of the latter function in three different ways:
(3) of Section 3.7, implicit differentiation, or from the fundamental definition (2) of Section
3.1. We will demonstrate the last two methods.

Derivative of the Natural Logarithm We know from (9) of Section 1.6 that is the
same as By implicit differentiation, the Chain Rule, and (14) of Section 3.8,

Therefore

Replacing by x, we get the following result:

(1)

Derivative of In precisely the same manner used to obtain (1), the derivative
of can be gotten by differentiating implicitly:

Therefore
dy
dx

�
1

by(ln b)
.

d
dx

 x �
d
dx

 by  gives  1 � by(ln b) 
dy
dx

.

x � byy � logb 
x

f  (x ) � logb 
x

d
dx

 lnx �
1
x

.

ey

dy
dx

�
1
ey.

d
dx

 x �
d
dx

 ey  gives  1 � ey 
dy
dx

.

x � ey.
y � lnx

y � logb x
y � bx

172 CHAPTER 3 The Derivative

Think About It

51. Show that the x-intercept of the tangent line to the graph
of at is one unit to the right of 

52. How is the tangent line to the graph of at 
related to the tangent line to the graph of at 

53. Explain why there is no point on the graph of at
which the tangent line is parallel to 

54. Find all tangent lines to the graph of that pass
through the origin.

In Problems 55 and 56, the symbol n represents a positive inte-
ger. Find a formula for the given derivative.

55. 56.

Calculator/CAS Problems

In Problems 57–60, use a calculator to estimate the value

for and by

filling out the given table.

57.

b � 5b � 1.5, b � 2, b � 3,m(b) � lim
hS0

 
bh � 1

h

dn

dxn xe�xdn

dxn2ex

f (x) � ex

2x � y � 1.
y � ex

x � 0?y � e�x
x � 0y � ex

x0.x � x0y � e�x

58.

59.

60.

61. Use a calculator or CAS to obtain the graph of

Show that f is differentiable for all x. Compute using
the definition of the derivative.

f ¿(0)

f (x) � e e�1>x2

,
0,

x � 0
x � 0.

h S 0 0.1 0.01 0.001 0.0001 0.00001 0.000001

(1.5)h � 1
h

h S 0 0.1 0.01 0.001 0.0001 0.00001 0.000001

2h � 1
h

h S 0 0.1 0.01 0.001 0.0001 0.00001 0.000001

3h � 1
h

h S 0 0.1 0.01 0.001 0.0001 0.00001 0.000001

5h � 1
h

Like the inverse trigonometric func-
tions, the derivative of the inverse of
the natural exponential function is an
algebraic function.
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Replacing by x gives

(2)

Because (2) becomes (1) when 

EXAMPLE 1 Product Rule
Differentiate 

Solution By the Product Rule and (1) we have

or

EXAMPLE 2 Slope of a Tangent Line
Find the slope of the tangent to the graph of at 

Solution By (2) the derivative of is

With the aid of a calculator, the slope of the tangent line at is

We summarize the results in (1) and (2) in their Chain Rule forms.

dy
dx
`
x�2

�
1

2 ln 10
� 0.2171.

(2, log10 2)

dy
dx

�
1

x (ln 10)
.

y � log10 x

x � 2.y � log10 x

f ¿(x) � x � 2 x ln x.

f ¿(x) � x2 . d
dx

 ln x � (ln x) . d
dx

 x2 � x2 . 1
x

� (ln x) . 2x

f (x) � x2
 ln x.

b � e.ln e � 1,

d
dx

 logb x �
1

x (ln b)
.

by

3.9 Logarithmic Functions 173

Theorem 3.9.1 Derivatives of Logarithmic Functions

If is a differentiable function, then

(3)

and (4)
d
dx

 logb 
u �

1
u (ln b)

 
du
dx

.

d
dx

 ln u �
1
u

 
du
dx

,

u � g(x)

EXAMPLE 3 Chain Rule
Differentiate 

(a) and (b)

Solution
(a) By (3), with we have

or

(b) Using (3) again, this time with we get

dy
dx

�
1

ln x
. d

dx
 ln x �

1
ln x

. 1
x

�
1

x ln x
.

u � ln x,

f ¿(x) � �tan x.

f ¿(x) �
1

cos x
. d

dx
 cos x �

1
cos x

. (�sin x)

u � cos x

y � ln(ln x).f (x) � ln(cos x)
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EXAMPLE 4 Chain Rule
Differentiate 

Solution Because must be positive it is understood that Hence by (3), with 
we have

Alternative Solution: From (iii) of the laws of logarithms (Theorem 1.6.1), 
and so we can rewrite as and then differentiate:

Although the domain of the natural logarithm is the set the domain of
extends to the set For the numbers in this last domain,

Therefore

(5)

The derivatives in (5) prove that for 

(6)

The result in (6) then generalizes by the Chain Rule. For a differentiable function 

(7)

EXAMPLE 5 Using (6)
Find the slope of the tangent line to the graph of at and at 

Solution Since (6) gives we have

and (8)

Because (8) gives, respectively, the slopes of the tangent lines at the points
Observe in FIGURE 3.9.1 that the graph of is symmetric with

respect to the y-axis; the tangent lines are shown in red.

EXAMPLE 6 Using (7)
Differentiate

(a) and (b)

Solution
(a) For or we have from (3),

(9)

(b) For or we have from (7),

(10)
dy
dx

�
1

2x � 3
. d

dx
 (2x � 3) �

2
2x � 3

.

x � 3
2,2x � 3 � 0,

dy
dx

�
1

2x � 3
. d

dx
 (2x � 3) �

2
2x � 3

.

x 7 3
2,2x � 3 7 0,

y � ln 02x � 3 0 .y � ln(2x � 3)

y � ln 0 x 0(�2, ln 2) and (2, ln 2).
ln 0�2 0 � ln 2,

dy
dx
`
x�2

�
1
2

.
dy
dx
`
x��2

� �
1
2

dy>dx � 1>x,

x � 2.x � �2y � ln 0 x 0

d
dx

 ln 0u 0 � 1
u

 
du
dx

.

u � 0,
u � g(x),

d
dx

 ln 0 x 0 � 1
x

.

x � 0,

for x 6 0, d
dx

 ln (�x) �
1

�x
. (�1) �

1
x

.

for x 7 0, d
dx

 ln x �
1
x

0 x 0 � e x, x 7 0
�x, x 6 0.

(�q, 0) ´ (0, q).y � ln 0 x 0
(0, q),y � ln x

f (x) � 3 
d
dx

 ln x � 3 . 1
x

�
3
x

.

y � 3 ln xy � ln x3
ln Nc � c ln N

f ¿(x) �
1
x3

. d
dx

 x3 �
1
x3

. (3x2) �
3
x

.

u � x3x 7 0.x3

f (x) � ln x3.

174 CHAPTER 3 The Derivative

FIGURE 3.9.1 Graphs of tangent lines
and function in Example 5

(2, ln 2)(�2, ln 2)

y
y � ln

x

1

1 2�2 �1

�1

|x|
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Although (9) and (10) appear to be equal, they are definitely not the same function. The dif-
ference is simply that the domain of the derivative in (9) is the interval whereas the
domain of the derivative in (10) is the set of real numbers except 

EXAMPLE 7 A Distinction
The functions and are not the same. Since for all 
the domain of f is the set of real numbers except The domain of g is the interval

Thus,

whereas

EXAMPLE 8 Simplifying Before Differentiating

Differentiate 

Solution Using the laws of logarithms given in Section 1.6, for we can rewrite the
right-hand side of the given function as

so that

or

Logarithmic Differentiation Differentiation of a complicated function that consists
of products, quotients, and powers can be simplified by a technique known as logarithmic
differentiation. The procedure consists of three steps.

y � f (x)

 
dy
dx

�
1
2x

�
8

2x � 7
�

12x

3x2 � 1
.

 
dy
dx

�
1
2

. 1
x

� 4 . 1
2x � 7

. 2 � 2 . 1
3x2 � 1

. 6x

d ln Nc � c ln N �
1
2

 ln x � 4 ln (2x � 7) � 2 ln(3x2 � 1)

d ln (MN) � ln M � ln N � ln x1>2 � ln(2 x � 7)4 � ln(3 x2 � 1)2

d ln (M>N) � ln M � ln N y � ln x1>2(2 x � 7)4 � ln(3 x2 � 1)2

x 7 0

y � ln 
x1>2(2x � 7)4

(3x2 � 1)2
.

g¿(x) �
4
x

, x 7 0.f ¿(x) �
4
x

,  x � 0

(0, q).
x � 0.

x � 0,x4 7 0g(x) � 4 ln xf (x) � ln x4

x � 3
2.

(3
2, q), 

3.9 Logarithmic Functions 175

Guidelines for Logarithmic Differentiation

(i) Take the natural logarithm of both sides of Simplify the right-hand
side of as much as possible using the general properties of log-
arithms.

(ii) Differentiate the simplified version of implicitly:

(iii) Since the derivative of the left-hand side is multiply both sides by y

and replace y by f (x).

1
y

 
dy
dx

,

d
dx

 ln y �
d
dx

 ln f (x).

ln y � ln f (x)

ln y � ln f (x)
y � f (x).

We know how to differentiate any function of the type

and

For example,

There are functions where both the base and the exponent are variable:

(11)y � (variable)variable.

d
dx

 p x � p x(ln p)  and  d
dx

 xp � pxp�1.

y � (variable)constant.y � (constant)variable
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For example, is a function of the type described in (11). Recall, in Section 1.6
we saw that played an important role in the definition of the number e.
Although we will not develop a general formula for the derivative of functions of the type
given in (11), we can nonetheless obtain their derivatives through the process of logarithmic
differentiation. The next example illustrates the method for finding 

EXAMPLE 9 Logarithmic Differentiation
Differentiate 

Solution Taking the natural logarithm of both sides of the given equation and simplifying yields

Then we differentiate implicitly:

We obtained the graph of in FIGURE 3.9.2 with the aid of a graphing utility. Note that
the graph has a horizontal tangent at the point at which Thus, the x-coordinate
of the point of horizontal tangency is determined from The last
equation gives 

EXAMPLE 10 Logarithmic Differentiation

Find the derivative of 

Solution Notice that the given function contains no logarithms. As such, we can find 
using the ordinary application of the Quotient, Product, and Power Rules. This procedure,
which is tedious, can be avoided by first taking the logarithm of both sides of the given equa-
tion, simplifying as we did in Example 9 by the laws of logarithms, and then differentiating
implicitly. We take the natural logarithm of both sides of the given equation and simplify the
right-hand side:

Differentiating the last line with respect to x gives

Postscript—Derivative of Revisited As stated in the introduction to this section
we can obtain the derivative of using the definition of the derivative. From (2) of
Section 3.1,

f (x) � logb x
f (x) � logb x

d
replace y by the
original expression �

2
3 x4 � 6x2 (8x � 3)5

(2x2 � 7)2>3 c 4x3 � 12x

3(x4 � 6x2)
�

40
8x � 3

�
8x

3(2x2 � 7)
d .

d multiply both sides by y 
dy
dx

� y c 4x3 � 12x

3(x4 � 6x2)
�

40
8x � 3

�
8x

3(2x2 � 7)
d

 
1
y

  

dy
dx

�
1
3

. 1
x4 � 6x2

. (4x3 � 12x) � 5 . 1
8x � 3

. 8 �
2
3

. 1
2x2 � 7

. 4x

 �
1
3

 ln (x4 � 6x2) � 5 ln (8x � 3) �
2
3

 ln (2x2 � 7).

 � ln23 x4 � 6x2 � ln (8x � 3)5 � ln (2x2 � 7)2>3
 ln y � ln 

2
3 x4 � 6x2

 (8x � 3)5

(2x2 � 7)2>3

dy>dx

y �
2

3 x4 � 6x2
 (8x � 3)5

(2x2 � 7)2>3 .

x � e�2.
2 � ln x � 0 or ln x � �2.
dy>dx � 0.

y � x1x

d common denominator
and laws of exponents�

1
2

 x1x�1
2

 (2 � ln x).

d now replace y by x1x
dy
dx

� y c 1
1x

�
ln x

21x
d

d Product Rule
1
y

 
dy
dx

� 1x . 1
x

�
1
2

 x�1>2 . ln x

d
property (iii) of the laws

      of logarithms, Section 1.6ln y � ln x1x � 1x  ln x.

y � x1x, x 7 0.

dy>dx.

f (x) � (1 � 1>x)x
f (x) � (1 � 1>x)x

176 CHAPTER 3 The Derivative

FIGURE 3.9.2 Graph of function in
Example 9

x

y
1

1

y � x x
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(12)

The last step, taking the limit inside the logarithmic function, is justified by invoking the con-
tinuity of the function on and assuming that the limit inside the brackets exists. If we
let in the last equation, then since x is fixed, implies Consequently, we
see from (4) of Section 1.6 that

Hence the result in (12) shows that,

(13)

When the “natural” choice of is made, (13) becomes (1) since 

Postscript—Power Rule Revisited We are finally in a position to prove the Power Rule
(3) of Section 3.2, for all real number exponents n. Our demonstration uses

the following fact: For is defined for all real numbers n. Then in view of the identity
we can write

Thus,

Substituting in the last result completes the proof for 

The last derivative formula is also valid for when is a rational number and
q is an odd integer.

n � p>qx 6 0

d
dx

 xn �
n
x

 xn � nxn�1.

x 7 0,en ln x � xn

d
dx

 xn �
d
dx

 en ln x � en ln x
 
d
dx

 (n ln x) �
n
x

 en ln x.

xn � (eln x)n � en ln x.

x � eln x
xnx 7 0,

(d>dx)xn � nxn�1,

loge e � ln e � 1.b � e

d
dx

 logb x �
1
x

 logb e.

lim
hS0  

a1 �
h
x
bx>h

� lim
tS0 

(1 � t)1>t � e.

t S 0.h S 0t � h>x
(0, q)

 �
1
x

 logb c lim
hS0 

a1 �
h
x
bx>h d .

d the laws of logarithms �
1
x

 lim
hS0

 logb a1 �
h
x
bx>h

d multiplication by x>x � 1 � lim
hS0

 
1
x

. x
h

 logb a1 �
h
x
b

d division of x � h by x � lim
hS0

 
1
h

 logb a1 �
h
x
b

d algebra and the laws of logarithms � lim
hS0

 
1
h

 logb 
x � h

x

 f ¿(x) � lim
hS0

  

logb (x � h) � logb x
h
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Those with sharp eyes and long
memories will have noticed that (13)
is not the same as (2). The results
are equivalent, since by the change
of base formula for logarithms
logb e � ln e>ln b � 1>ln b.

Exercises 3.9 Answers to selected odd-numbered problems begin on page ANS-000.

Fundamentals

In Problems 1–24, find the derivative of the given function.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12. y �
ln 4x
ln 2x

y � ln 

x
x � 1

y � x (ln x)2y �
ln x
x

y � x � ln 05x � 1 0y � x2
 ln x3

y � ln (x2 � 1)20y � ln (x4 � 3x2 � 1)

y � (ln x)1>2y � ln x1>2
y � ln 10 xy � 10 ln x

13. 14.

15. 16.

17. 18.

19. 20.

21.

22.

23. 24. f (x) � ln
B

(3x � 2)5

x4 � 7
f (x) � ln 

(x � 1)(x � 2)
x � 3

G(t) � ln15t � 1(t3 � 4)6

H(t) � ln t2
 (3t2 � 6)

w(u) � u sin (ln 5u)g(x) � 2ln1x

f (x) � ln (ln (ln x))f (x) � ln (x ln x)

y � ln 

1
x

y �
1

ln x

y �
1
3

 ln 0 sin 3x 0y � �ln 0 cos x 0
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25. Find an equation of the tangent line to the graph of 
at 

26. Find an equation of the tangent line to the graph of
at 

27. Find the slope of the tangent to the graph of
at 

28. Find the slope of the tangent to the graph of 
at 

29. Find the slope of the tangent to the graph of at the point
where the slope of the tangent to the graph of 
is 4.

30. Determine the point on the graph of at which the
tangent line is perpendicular to 

In Problems 31 and 32, find the point(s) on the graph of the
given function at which the tangent line is horizontal.

31. 32.

In Problems 33–36, find the indicated derivative and simplify
as much as possible.

33. 34.

35. 36.

In Problems 37–40, find the indicated higher derivative.

37. 38.

39. 40.

In Problems 41 and 42, and are arbitrary real constants.
Show that the function satisfies the given differential equation
for 

41.

42.

In Problems 43–48, use implicit differentiation to find 

43. 44.

45. 46.

47. 48. x2 � y2 � ln (x � y)2xy � ln (x2 � y2)

y � ln xy2x � y2 � ln 

x
y

y � ln (x � y)y2 � ln xy

dy>dx.

x2y– � 3xy¿ � 3y � 0

y � C1x
�1

 cos A12 ln xB � C2x�1
 sin A12 ln xB;

y � C1x
�1>2 � C2x

�1>2
 ln x; 4x2y– � 8xy¿ � y � 0

x 7 0.

C2C1

y � ln (5x � 3); 
d 4y

dx4
y � (ln 0 x 0 )2; 

d 2y

dx2

y � x ln x; 
d 2y

dx2
y � ln x; 

d3y

dx3

d
dx

 ln (csc x � cot x)
d
dx

 ln (sec x � tan x)

d
dx

 ln a1 � 21 � x2

x
bd

dx
 ln Ax � 2x2 � 1B

f (x) � x2
 ln xf (x) �

ln x
x

x � 4y � 1.
y � ln 2x

f (x) � ln x2
f ¿

x � 1.
y � ln (xe�x3

)

x � 0.y � ln (e3x � x)

x � 2.y � ln (x2 � 3)

x � 1.
y � ln x In Problems 49–56, use logarithmic differentiation to find

49. 50.

51. 52.

53. 54.

55. 56.

57. Find an equation of the tangent line to the graph of

58. Find an equation of the tangent line to the graph of

In Problems 59 and 60, find the point on the graph of the given
function at which the tangent line is horizontal. Use a graph-
ing utility to obtain the graph of each function on the interval

59. 60.

Think About It

61. Find the derivatives of
(a) (b) (c)

62. Find 

63. The function is not differentiable only at
The function is not differentiable at

and at one other value of What is it?

64. Find a way to compute 

Calculator/CAS Problems

65. (a) Use a calculator or CAS to obtain the graph of
on the interval 

(b) Explain why there appears to be no graph on certain
intervals. Identify the intervals.

66. (a) Use a calculator or CAS to obtain the graph of
on the interval 

(b) Determine, at least approximately, the values of x in
the interval for which the tangent to the graph
is horizontal.

67. Use a calculator or CAS to obtain the graph of
Then find the exact value of the least

value of f (x).
f (x) � x3 � 12 ln x.

[0, 5p ]

[0, 5p ] .y � 0 cos x 0 cos x

(0, 5p).y � (sin  x)ln x

d
dx

 logx e.

x 7 0.x � 0
g(x) � 0 ln x 0x � 0.

f (x) � ln 0 x 0
d 2y>dx2 for y � 1xx.

y � xx x

.y � xxex x

y � tan xx

y � x2xy � xx

[0.01, 1] .

y � x(ln x)x at x � e.

y � xx�2 at x � 1.

y � x1x � 1 23 x2 � 2y �
(x3 � 1)5(x4 � 3x3)4

(7x � 5)9

y �
x102x2 � 5

2
3 8x2 � 2

y �
1(2x � 1)(3x � 2)

4x � 3

y �
(x2 � 1)x

x2
y � x(x � 1)x

y � (ln 0 x 0 )xy � xsin x

dy>dx.

178 CHAPTER 3 The Derivative

3.10 Hyperbolic Functions
Introduction If you have ever toured the 630-ft-high Gateway Arch in St. Louis, Missouri,

you may have asked the question, What is the shape of the arch? and received the rather cryp-
tic reply: the shape of an inverted catenary. The word catenary stems from the Latin word
catena and literally means “a hanging chain” (the Romans used the catena as a dog leash). It
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can be demonstrated that the shape assumed by a long flexible wire, chain, cable, or rope hang-
ing under its own weight between two points is the shape of the graph of the function

(1)

for appropriate choices of the constants c and k. The graph of any function of the form given
in (1) is called a catenary.

Hyperbolic Functions Combinations such as (1) involving the exponential functions and
occur so often in applied mathematics that they warrant special definitions.e�x

ex

f (x) �
k
2

 (ecx � e�cx)

3.10 Hyperbolic Functions 179

The Gateway Arch in
St. Louis, MO.Definition 3.10.1 Hyperbolic Sine and Cosine

For any real number x, the hyperbolic sine of x is

(2)

and the hyperbolic cosine of x is

(3)cosh x �
ex � e�x

2
.

sinh x �
ex � e�x

2

Definition 3.10.2 Other Hyperbolic Functions

For a real number x, the hyperbolic tangent of x is

(4)

the hyperbolic cotangent of x, is

(5)

the hyperbolic secant of x is

(6)

the hyperbolic cosecant of x, is

(7)csch x �
1

sinh x
�

2
ex � e�x.

x � 0,

sech x �
1

cosh x
�

2
ex � e�x,

coth x �
cosh x
sinh x

�
ex � e�x

e x � e�x,

x � 0,

tanh x �
sinh x
cosh x

�
ex � e�x

e x � e�x,

Because the domain of each of the exponential functions is the set of real
numbers the domain of and of is From (2) and
(3) of Definition 3.10.1 it is also apparent that

and

Analogous to the trigonometric functions and that are defined in
terms of and we define four additional hyperbolic functions in terms of and
cosh x.

sinh xcos x,sin x
csc xtan x, cot x, sec x,

cosh 0 � 1.sinh 0 � 0

(�q, q).y � cosh xy � sinh x(�q, q),
ex and e�x

The shape of the St. Louis Gateway
Arch is based on the mathematical
model

where 
and x

and y are measured in feet. When
we get the approximate

height of 630 ft.
x � 0,

L � 299.2239, C � 3.0022,
A � 693.8597, B � 68.7672,

y � A � B cosh (Cx>L),

FIGURE 3.10.1 Graphs of hyperbolic sine
and cosine

y

x

y � sinh x

1 ex

(a) y � sinh x

e�x
�

2

1
2

(b) y � cosh x

y

x

y � cosh x

1 e�x

(0, 1)

2

1 ex

2

Graphs of Hyperbolic Functions The graphs of the hyperbolic sine and hyperbolic cosine
are given in FIGURE 3.10.1. Note the similarity of the graph in Figure 3.10.1(b) and the shape of
the Gateway Arch in the photo at the beginning of this section. The graphs of the hyperbolic
tangent, cotangent, secant, and cosecant are given in FIGURE 3.10.2. Note that is a vertical
asymptote of the graphs of and y � csch x.y � coth x

x � 0
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Identities Although the hyperbolic functions are not periodic, they possess many identities
that are similar to those for the trigonometric functions. Notice that the graphs in Figure
3.10.1(a) and (b) are symmetric with respect to the origin and the y-axis, respectively. In other
words, is an odd function and is an even function:

(8)

(9)

In trigonometry a fundamental identity is For hyperbolic functions the
analogue of this identity is

(10)

To prove (10) we resort to (2) and (3) of Definition 3.10.1:

We summarize (8)–(10) along with eleven other identities in the theorem that follows.

 �
e2x � 2 � e�2x

4
�

e2x � 2 � e�2x

4
� 1.

 cosh2 x � sinh2
 x � aex � e�x

2
b2

� aex � e�x

2
b2

cosh2
 x � sinh2

 x � 1.

cos2
 x � sin2

 x � 1.

 cosh (�x) � cosh x.

 sinh (�x) � �sinh x,

y � cosh xy � sinh x

180 CHAPTER 3 The Derivative

y

x

y � tanh x1

�1

(a) y � tanh x

y

x

y � coth x

�1

1

(b) y � coth x

x

y

y � sech x1

(c) y � sech x

y � csch x

x

y

(d) y � csch x
FIGURE 3.10.2 Graphs of the hyperbolic tangent, cotangent, secant, and cosecant

Theorem 3.10.1 Hyperbolic Identities

(11)

(12)

(13)

(14)

(15)

(16)

(17)cosh2
 x �

1
2

 (1 � cosh 2x)sinh2
 x �

1
2

 (�1 � cosh 2x)

cosh 2x � cosh2
 x � sinh2

 xcoth2
 x � 1 � csch2

 x

sinh 2x � 2 sinh x cosh x1 � tanh2
 x � sech2

 x

cosh (x � y) � cosh x cosh y � sinh x sinh ycosh2
 x � sinh2

 x � 1

cosh (x � y) � cosh x cosh y � sinh x sinh ytanh (�x) � �tanh x

sinh (x � y) � sinh x cosh y � cosh x sinh ycosh (�x) � cosh x

sinh (x � y) � sinh x cosh y � cosh x sinh ysinh (�x) � �sinh x

Derivatives of Hyperbolic Functions The derivatives of the hyperbolic functions follow
from (14) of Section 3.8 and the rules of differentiation; for example

That is, (18)

Similarly, it should be apparent from the definition of the hyperbolic cosine in (3) that

(19)
d
dx

 cosh x � sinh x.

d
dx

 sinh x � cosh x.

d
dx

 sinh x �
d
dx

 
ex � e�x

2
�

1
2
c d
dx

 ex �
d
dx

 e�x d �
ex � e�x

2
.
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To differentiate, say, the hyperbolic tangent, we use the Quotient Rule and the definition
given in (4):

In other words,

(20)

The derivatives of the six hyperbolic functions in the most general case follow from the
Chain Rule.

d
dx

 tanh x � sech2
 x.

 �
1

cosh2
 x

.

 �
cosh2

 x � sinh2
 x

cosh2
 x

 �
cosh x . d

dx
 sinh x � sinh x . d

dx
 cosh x

cosh2
 x

 
d
dx

 tanh x �
d
dx

 
sinh x
cosh x

3.10 Hyperbolic Functions 181

Theorem 3.10.2 Derivatives of Hyperbolic Functions

If is a differentiable function, then

(21)

(22)

(23)
d
dx

 csch u � �csch u coth u  
du
dx

.
d
dx

 sech u � �sech u tanh u  
du
dx

,

d
dx

 coth u � �csch2
 u 

du
dx

,
d
dx

 tanh u � sech2
 u  

du
dx

,

d
dx

 cosh u � sinh u  
du
dx

,
d
dx

 sinh u � cosh u  
du
dx

,

u � g(x)

d this is equal to 1 by (10)

You should take careful note of the slight difference in the results in (21)–(23) and the
analogous formulas for the trigonometric functions:

EXAMPLE 1 Chain Rule
Differentiate

(a) (b)

Solution
(a) From the first result in (21),

 �
cosh12x � 1

12x � 1
.

 � cosh12x � 1 a1
2

 (2x � 1)�1>2 . 2b
 
dy
dx

� cosh12x � 1 . d
dx

 (2x � 1)1>2

y � coth x3.y � sinh12x � 1

 
d
dx

 sec x � sec x tan x  whereas  d
dx

 sech x � �sech x tanh x.

 
d
dx

 cos x � �sin x   whereas  d
dx

 cosh x � sinh x
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(b) From the second result in (22),

EXAMPLE 2 Value of a Derivative

Evaluate the derivative of at 

Solution From the Quotient Rule,

Because and we have

Inverse Hyperbolic Functions Inspection of Figure 3.10.1(a) shows that is a one-
to-one function. That is, for any real number y in the range of the hyperbolic sine,
there corresponds only one real number x in its domain Hence, has an in-
verse function that is written See FIGURE 3.10.3(a). As in our earlier discussion of the
inverse trigonometric functions in Section 1.5, this later notation is equivalent to 
From Figure 3.10.2(a) it is also seen that with domain and range 
is also one-to-one and has an inverse with domain and range 
See Figure 3.10.3(c). But from Figures 3.10.1(b) and 3.10.2(c) it is apparent that 
and are not one-to-one functions and so do not possess inverse functions unless their
domains are suitably restricted. Inspection of Figure 3.10.1(b) shows that when the domain of

is restricted to the interval the corresponding range is The inverse
function then has domain and range See Figure 3.10.3(b). The
graphs of all the inverse hyperbolic functions along with their domains and ranges are summa-
rized in Figure 3.10.3.

[0, q).[1, q)y � cosh�1
 x

[1, q).[0, q),y � cosh x

y � sech x
y � cosh x
(�q, q).(�1, 1)y � tanh�1

 x
(�1, 1)(�q, q)y � tanh x

x � sinh y.
y � sinh�1x.

y � sinh x(�q, q).
(�q, q)

y � sinh x

dy
dx
`
x�0

�
15
25

�
3
5

.

cosh 0 � 1,sinh 0 � 0

dy
dx

�
(4 � cosh 2x) . 3 � 3x (sinh 2x . 2)

(4 � cosh 2x)2
.

x � 0.y �
3x

4 � cosh 2x

 � �csch2
 x3 . 3x2.

 
dy
dx

� �csch2
 x3 . d

dx
x3

182 CHAPTER 3 The Derivative

y

x

y � sinh�1 x

(a) y � sinh�1 x
     domain: (��, �)
     range: (��, �)

y

x

y � cosh�1 x

1

(b) y � cosh�1 x
     domain: [1, �)
     range: [0, �)

y

x

y � tanh�1 x

1�1

(c) y � tanh�1 x
     domain: (−1, 1)
     range: (��, �)

y

x

y � coth�1 x

1�1

(d) y � coth�1 x
     domain: (��, �1) � (1, �)
     range: (��, 0) � (0, �) 

y

x

y � sech�1 x

1

(e) y � sech�1 x
     domain: (0, 1]  
     range: [0, �) 

y

x

y � csch�1 x

(f) y � csch�1 x
     domain: (��, 0) � (0, �)
     range: (��, 0) � (0, �)

FIGURE 3.10.3 Graphs of the inverses of the hyperbolic sine, cosine, tangent, cotangent, secant, and cosecant
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Inverse Hyperbolic Functions as Logarithms Because all the hyperbolic functions are de-
fined in terms of combinations of it should not come as any surprise to find that the inverse
hyperbolic functions can be expressed in terms of the natural logarithm. For example,

is equivalent to so that

Because the last equation is quadratic in the quadratic formula gives

(24)

Now the solution corresponding to the minus sign in (24) must be rejected since but
Thus, we have

Similarly, for 

gives

or

We have proved two of the results in the next theorem.

 y � tanh�1
 x �

1
2

 ln a1 � x
1 � x

b.

 2y � ln a1 � x
1 � x

b
 e2y �

1 � x
1 � x

 ey(1 � x) � (1 � x)e�y

 x � tanh y �
ey � e�y

ey � e�y

0 x 0 6 1,y � tanh�1
 x,

ey � x � 2x 2 � 1  or  y � sinh�1
 x � ln Ax � 2x2 � 1B.

x � 2x2 � 1 6 0.
ey 7 0

ey �
2x � 24x2 � 4

2
� x � 2x2 � 1.

ey,

x �
ey � e�y

2
  or  2x �

e2y � 1
ey   or  e2y � 2xey � 1 � 0.

x � sinh y,y � sinh�1
 x

ex,

3.10 Hyperbolic Functions 183

Theorem 3.10.3 Logarithmic Identities

(25)

(26)

(27)csch�1
 x � ln a1

x
�

21 � x2

0 x 0 b, x � 0sech�1
 x � ln a1 � 21 � x2

x
b, 0 6 x � 1

coth�1
 x �

1
2

 ln ax � 1
x � 1

b, 0 x 0 7 1tanh�1
 x �

1
2

 ln  a1 � x
1 � x

b, 0 x 0 6 1

cosh�1
 x � ln Ax � 2x2 � 1 B, x � 1sinh�1

 x � ln Ax � 2x2 � 1 B

The foregoing identities are a convenient means for obtaining the numerical values of an
inverse hyperbolic function. For example, with the aid of a calculator we see from the first
result in (25) in Theorem 3.10.3 that when 

Derivatives of Inverse Hyperbolic Functions To find the derivative of an inverse hyperbolic
function, we can proceed in two different ways. For example, if

Using implicit differentiation, we can write

Hence
dy
dx

�
1

cosh y
�

1

2sinh2
 y � 1

�
1

2x2 � 1
.

 1 � cosh y  

dy
dx

.

 
d
dx

 x �
d
dx

 sinh y

y � sinh�1
 x  then  x � sinh y.

sinh�1 4 � ln A4 � 117 B � 2.0947.

x � 4
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The foregoing result can be obtained in an alternative manner. We know from Theorem 3.10.3
that

Therefore, from the derivative of the logarithm, we obtain

We have essentially proved the first entry in (28) in the next theorem.

 �
1

x � 2x2 � 1
 
2x2 � 1 � x

2x2 � 1
�

1

2x2 � 1
.

d by (3) of Section 3.9 
dy
dx

�
1

x � 2x2 � 1
  a1 �

1
2

 (x2 � 1)�1>2 . 2xb

y � ln Ax � 2x2 � 1B.

184 CHAPTER 3 The Derivative

Theorem 3.10.4 Derivatives of Inverse Hyperbolic Functions

If is a differentiable function, then

(28)

(29)

(30)
d
dx

 csch�1
 u �

�1

0u 021 � u2
 
du
dx

, u � 0.
d
dx

 sech�1
 u �

�1

u21 � u2
 
du
dx

, 0 6 u 6 1,

d
dx

 coth�1
 u �

1
1 � u2

 
du
dx

, 0u 0 7 1,
d
dx

 tanh�1
 u �

1
1 � u2

 
du
dx

,  0u 0 6 1,

d
dx

 cosh�1
 u �

1

2u2 � 1
 
du
dx

, u 7 1,
d
dx

 sinh�1
 u �

1

2u2 � 1
 
du
dx

,

u � g(x)

EXAMPLE 3 Derivative of Inverse Hyperbolic Cosine
Differentiate 

Solution With we have from the second formula in (28),

EXAMPLE 4 Derivative of Inverse Hyperbolic Tangent
Differentiate 

Solution With we have from the first formula in (29),

EXAMPLE 5 Product and Chain Rules
Differentiate 

Solution By the Product Rule and the first formula in (30), we have

by first formula in (30) by (14) of Section 3.8
T T

 � �
ex 2

x21 � x2
� 2xex 2

 sech�1 x.

 
dy
dx

� ex 2

 a �1

x21 � x2
b � 2xex 2

 sech�1 x

y � ex 2

 sech�1 x.

dy
dx

�
1

1 � (4x)2
. d

dx
 4x �

4
1 � 16x2

.

u � 4x,

y � tanh�1
 4x.

dy
dx

�
1

2(x2 � 5)2 � 1
. d

dx
 (x2 � 5) �

2x

2x4 � 10x2 � 24
.

u � x2 � 5,

y � cosh�1
 (x2 � 5).

59957_CH03d_121-190.qxd  9/25/09  8:36 PM  Page 184

© Jones and Bartlett Publishers, LLC.  NOT FOR SALE OR DISTRIBUTION. 



Exercises 3.10 Answers to selected odd-numbered problems begin on page ANS-000.
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FIGURE 3.10.4 Catenary in (a); catenoid
in (b)

FIGURE 3.10.5 Circle in (a); hyperbola
in (b)

(a) hanging wires

(b) soap film

y

P

O
t

x
(1, 0)

(a) circular sector

P

O

y

x
(1, 0)

(b) hyperbolic sector

NOTES FROM THE CLASSROOM

(i) As mentioned in the introduction to this section, the graph of any function of the form
k and c constants, is called a catenary. The shape assumed by a flex-

ible wire or heavy rope strung between two posts has the basic shape of a graph of a
hyperbolic cosine. Furthermore, if two circular rings are held vertically and are not too
far apart, then a soap film stretched between the rings will assume a surface having
minimum area. The surface is a portion of a catenoid, which is the surface obtained
by revolving a catenary about the x-axis. See FIGURE 3.10.4.

(ii) The similarity between trigonometric and hyperbolic functions extends beyond the
derivative formulas and basic identities. If t is an angle measured in radians whose
terminal side is OP, then the coordinates of P on a unit circle are

Now, the area of the shaded circular sector shown in FIGURE 3.10.5(a) is 
and so In this manner, the circular functions and can be considered
functions of the area A.

You might already know that the graph of the equation is called
a hyperbola. Because and it follows that the coordi-
nates of a point P on the right-hand branch of the hyperbola are 
Furthermore, it can be shown that the area of the hyperbolic sector in Figure 3.10.5(b)
is related to the number t by Whence we see the origin of the name hyper-
bolic function.

t � 2A.

(cosh t, sinh t).
cosh2 t � sinh2 t � 1,cosh t � 1

x2 � y2 � 1

sin tcos tt � 2A.
A � 1

2t(cos t, sin t).
x2 � y2 � 1

f (x) � k cosh cx,

d
dx

Fundamentals

1. If find the values of the remaining hyperbolic
functions.

2. If find the values of the remaining hyperbolic
functions.

In Problems 3–26, find the derivative of the given function.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22. f (x) �
ln x

x2 � sinh x
f (x) �

ex

1 � cosh x

f (x) � (ln(sech x))2f (x) � ln(cosh 4x)

f (x) � 14 � tanh 6xf (x) � (x � cosh x)2>3
y � cosh41xy � sinh3x

y �
sinh x

x
y � x cosh x2

y � sech x coth 4xy � sinh 2x cosh 3x

y � tanh (sinh x3)y � coth (cosh 3x)

y � sinh ex2

y � sech (3x � 1)2

y � csch 
1
x

y � tanh1x

y � sech 8xy � cosh 10x

cosh x � 3,

sinh x � �1
2,

23. 24.

25. 26.

27. Find an equation of the tangent line to the graph of
at 

28. Find an equation of the tangent line to the graph of
at 

In Problems 29 and 30, find the point(s) on the graph of the
given function at which the tangent is horizontal.

29.

30.

In Problems 31 and 32, find for the given function.

31. 32.

In Problems 33 and 34, are arbitrary real
constants. Show that the function satisfies the given differen-
tial equation.

33.

34.
y(4) � k4y � 0
y � C1 cos kx � C2 sin kx � C3 

cosh kx � C4 sinh kx;

y � C1 cosh kx � C2 sinh kx;  y– � k2y � 0

C1, C2, C3, C4 and k

y � sech xy � tanh x

d2y>dx2

f (x) � cos x cosh x � sin x sinh x

f (x) � (x2 � 2) cosh x � 2x sinh x

x � 1.y � cosh x

x � 0.y � sinh 3x

w(t) �
tanh t

(1 � cosh t)2
g(t) �

sin t
1 � sinh 2t

H(t) � et ecsch t2

F (t) � esinh t

59957_CH03d_121-190.qxd  9/25/09  8:37 PM  Page 185

© Jones and Bartlett Publishers, LLC.  NOT FOR SALE OR DISTRIBUTION. 



186 CHAPTER 3 The Derivative

In Problems 35–48, find the derivative of the given function.

35. 36.

37. 38.

39. 40.

41. 42.

43. 44.

45. 46.

47. 48.

Applications

49. (a) Assume that are real constants. Show that
the function

satisfies the differential equation 

(b) The function y represents the velocity of a falling mass
m when air resistance is taken to be proportional to the
square of the instantaneous velocity. Find the limiting
or terminal velocity of the mass.

(c) Suppose a 80-kg skydiver delays opening the parachute
until terminal velocity is attained. Determine the
terminal velocity if it is known that 

50. A woman, W, starting at the origin, moves in the direction
of the positive x-axis pulling a boat along the curve C,
called a tractrix, indicated in FIGURE 3.10.6. The boat,
initially located on the y-axis at (0, a), is pulled by a rope

k � 0.25 kg/m.

yter � lim
tSq 

y(t)

m 
dy
dt

� mg � ky2.

y(t) �
A

mg
k

 tanh a
A

kg
m

 tb

k, m, and g

y �
1

(tanh�1 2x)3
y � (cosh�1

 6x)1>2
y � x tanh�1x � ln21 � x2y � ln (sech�1 x)

y �
coth�1e2x

e2x
y �

sech�1 x
x

y � x2 csch�1 xy � x sinh�1 x3

y � sinh�1(sin x)y � coth�1(csc x)

y � coth�1
 

1
x

y � tanh�1(1 � x2)

y � cosh�1
 

x
2

y � sinh�1
 3x

of constant length a that is kept taut throughout the
motion. An equation of the tractrix is given by

(a) Rewrite this equation using a hyperbolic function.
(b) Use implicit differentiation to show that the equation

of the tractrix satisfies the differential equation

(c) Interpret geometrically the differential equation in
part (b).

Think About It

In Problems 51 and 52, find the exact numerical value of the
given quantity.

51. 52.

In Problems 53 and 54, express the given quantity as a rational
function of x.

53. 54.

55. Show that for any positive integer n,

(cosh x � sinh x)n � cosh nx � sinh nx.

tanh(3ln x)sinh(ln x)

sinh(ln 0.5)cosh(ln 4)

FIGURE 3.10.6 Tractrix in Problem 50

y

(0, a)
(x, y)

x

a

W

C

dy
dx

� �
y

2a2 � y2
.

x � a ln aa � 2a2 � y2

y
b � 2a2 � y2.

Chapter 3 in Review
Answers to selected odd-numbered problems begin on page ANS-000.

A. True/False__________________________________________________________

In Problems 1–20, indicate whether the given statement is true or false.

1. If is continuous at a number a, then there is a tangent line to the graph of f
at _____

2. If f is differentiable at every real number x, then f is continuous everywhere. _____

3. If has a tangent line at then f is necessarily differentiable at x � a. _____

4. The instantaneous rate of change of with respect to x at is the slope of the
tangent line to the graph at _____

5. At the tangent line to the graph of is parallel to the
line _____

6. The derivative of a product is the product of the derivatives. _____

7. A polynomial function has a tangent line at every point on its graph. _____

y � 2.
f (x) � x3 � 3x2 � 9xx � �1,

(x0, f (x0)).
x0y � f (x)

(a, f (a)),y �  f (x)

(a, f (a)).
y �  f (x)
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8. For an equation of the tangent line is _____

9. The function is differentiable on the interval _____

10. If then _____

11. If m is the slope of a tangent line to the graph of then _____

12. For for all x. _____

13. _____

14. The function has an inverse. _____

15. If on the interval then _____

16. If f is an increasing differentiable function on an interval, then is also increasing on
the interval. _____

17. The only function for which is _____

18. _____

19. _____

20. Every inverse hyperbolic function is a logarithm. _____

B. Fill in the Blanks ____________________________________________________

In Problems 1–20, fill in the blanks.

1. If is a polynomial function of degree 3, then ________.

2. The slope of the tangent line to the graph of is ________.

3. The slope of the normal line to the graph of at is ________.

4. then ________.

5. An equation of the tangent line to the graph of at is ________.

6. For the instantaneous rate of change of with respect to x at 
is ________.

7. If and then the slope of the tangent line to the graph of
at is ________.

8. If and then ________.

9. If and then 

_________.

10. If then ________.

11. If F is a differentiable function, then ________.

12. The function is not differentiable on the interval because _________.

13. The function

is differentiable at when ________ and _________.

14. If then _________.

15. The tangent line to the graph of is horizontal at the point _________.f (x) � 5 � x � ex�1

f (x) �f ¿(x) � sec2
 2x,

b �a �x � 3

f (x) � eax � b, x � 3
x2, x 7 3

[0, p ]f (x) � cot  x

d 2

dx2
 F (sin 4x) �

d
dx

 f (x3) �f ¿(x) � x2,

d 2

dx2
 f (g(x)) `

x�1
�f –(2) � 3,f ¿(2) � 4,g–(1) � �1,g¿(1) � 3,g(1) � 2,

d
dx

 
x2f (x)
g(x)

`
x�2

�g¿(2) � �3,g(2) � 2,f ¿(2) � 5,f (2) � 1,

x � 4y � 2 f (x) � 5g(x)
g ¿(4) � 3,f ¿(4) � 6

x � 0f ¿f (x) � 1>(1 � 3x)

x � 0y � (x � 3)>(x � 2)

f ¿(x) �f (x) �
xn�1

n � 1
, n � �1,

x � p>3f (x) � tan x

y � ln 0x 0  at x � �
1
2

d 4

dx4
 f (x) �y � f (x)

d
dx

 cosh2 x �
d
dx

 sinh2 x

d
dx

 ln 0x 0 � 1
0x 0

f (x) � ex.f ¿(x) � f (x)

f ¿(x)

f (3) 7 f (5).[2, 8] ,f ¿(x) 6 0

f (x) � x5 � x3 � x

d
dx

 cos�1x � �sin�1x

dy>dx 7 0y � tan�1x,

�1 � m � 1.f (x) � sin x,

f (x) � g(x).f ¿(x) � g ¿(x),

[�3, 3] .f (x) � x>(x2 � 9)

f ¿(x) � �2x � 5.f (x) � �x2 � 5x � 1

Chapter 3 in Review 187
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16. _________.

17. _________.

18. If the domain of is _________.

19. The graph of is called a ________.

20. _______.

C. Exercises __________________________________________________________

In Problems 1–28, find the derivative of the given function.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

In Problems 29–34, find the indicated derivative.

29. 30.

31. 32.

33. 34.

35. First use the laws of logarithms to simplify

and then find 

36. Find for 

37. Given that is a one-to-one function, find the slope of the tangent line to the
graph of the inverse function at 

38. Given that is a one-to-one function, find and ( f 
�1) ¿.f 

�1f (x) � 8>(1 � x3)

x � 1.
y � x3 � x

y � 5x2

xsin 2x.dy>dx

dy>dx.

y � ln ` (x � 5)4(2 � x)3

(x � 8)102
3 6x � 4

` ,

f ‡(x)f (x) � x2
 ln x;

d 2y

dx2
y � esin 2x;

d 3W

dy3
W �

y � 1
y � 1

;
d 4s

dt 4
s � t 2 �

1
t 2

;

d 2y

dx2
y � sin(x3 � 2x);

d 3y

dx3
y � (3x � 1)5>2;

y � (tanh 5x)�1y � sinh ex3

y � sinh�12x2 � 1y � xex cosh�1
 x

y � (tan�1x)(tanh�1x)y � sinh�1(sin�1x)

y � Aln cos2 xB2y � ln Ax14x � 1 B
y � (ex � 1)�ey � x7 � 7x � 7p � e7x

y � (e � e2)xy � xe�x � e�x

y � x2 tan�12x2 � 1y � 2 cos�1x � 2x21 � x2

y � arc sec(2x � 1)y � (cot�1x)�1

y � cos x cos�1 xy � sin�1
 

3
x

y � tan2(cos 2x)f (x) � x3 sin2 5x

y � 10 cot 8xy �
cos 4x

4x � 1

g(u) �
A

6u � 1
u � 7

y � 2
4 x4 � 16 23 x3 � 8

h(u) � u1.5(u2 � 1)0.5F (t) � At � 2t2 � 1 B10

y �
1

x3 � 4x2 � 6x � 11
f (x) �

4x0.3

5x0.2

cosh�1
 1 �

y � cosh x

f ¿(x)f (x) � ln 02x � 4 0 ,
d
dx

 log10 
x �

d
dx

 2x �

188 CHAPTER 3 The Derivative
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In Problems 39 and 40, find 

39. 40.

41. Find an equation of a tangent line to the graph of that is perpendicular to the
line 

42. Find the point(s) on the graph of at which
(a) and (b)

43. Find equations for the lines through that are tangent to the graph of 

44. (a) Find the x-intercept of the tangent line to the graph of at 
(b) Find an equation of the line with the same x-intercept that is perpendicular to the

tangent line in part (a).
(c) Find the point(s) where the line in part (b) intersects the graph of 

45. Find the point on the graph of at which the tangent line is parallel to the
secant line through and 

46. If what is the slope of the tangent line to the graph of at 

47. Find the x-coordinates of all points on the graph of 
at which the tangent line is horizontal.

48. Find the point on the graph of such that the tangent line passes through the
origin.

49. Suppose a series circuit contains a capacitor and a variable resistor. If the resistance at
time t is given by where and are positive known constants, then the
charge on the capacitor is given by

where C is a constant called the capacitance and is the impressed voltage.
Show that satisfies the initial condition and the differential equation

50. Assume that and are arbitrary real constants. Show that the function

satisfies the differential equation

In Problems 51 and 52, are arbitrary real constants. Show that the function
satisfies the given differential equation.

51.

52.

53. (a) Find the points on the graph of corresponding to 
(b) Find the slopes of the tangent lines at the points found in part (a).

54. Sketch the graph of from the graph of f given in FIGURE 3.R.1.

y

1

1
x

y �ƒ(x)

FIGURE 3.R.1 Graph for Problem 54

f ¿

x � 2.y3 � y � x2 � 4 � 0

y � C1cos x � C2 
sin x � C3 

x cos x � C4 
x sin x; y(4) � 2y– � y � 0

y � C1e
�x � C2e

x � C3xe�x � C4xex; y(4) � 2y– � y � 0

C1, C2, C3, and C4

(1 � x2)y– � 2xy ¿ � 2y � 0.

y � C1x � C2 c x2 ln ax � 1
x � 1

b � 1 d
C2C1

(k1 � k2t) 
dq
dt

�
1
C

 q � E0.

q(0) � q0q(t)
E(t) � E0

q(t) � E0C � (q0 � E0C ) a k1

k1 � k2t
b1>Ck2

,

q(t)
k2k1R � k1 � k2t,

y � ln 2x

0 � x � 2p,f (x) � 2 cos x � cos 2x,

x � 2?f –f (x) � (1 � x)>x,

(9, f (9)).(1, f (1))
f (x) � 1x

y � x2.

x � 1.y � x2

y � x2.(0, �9)

f –(x) � f ¿(x).f –(x) � f (x)
f (x) � 1

2 
x2 � 5x � 1

y � �3x.
f (x) � x3

y � ln(xy)xy2 � ex � ey

dy>dx.
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55. The graph of shown in FIGURE 3.R.2, is called a hypocycloid.*

Find equations of the tangent lines to the graph at the points corresponding to 

56. Find for the equation in Problem 55.

57. Suppose

Find for Use the definition of the derivative, (2) of Section 3.1, to determine
whether exists.f ¿(0)

x � 0.f ¿(x)

f (x) � e x2,
1x,

x � 0
x 7 0.

d 2y>dx2

FIGURE 3.R.2 Hypocycloid in Problem 55

y

x

x2/3 � y2/3 � 1

x � 1
8.

x2>3 � y2>3 � 1,

190 CHAPTER 3 The Derivative

*Go to the website http://mathworld.wolfram.com/Hypocycloid.html to see various kinds of hypocycloids and their
properties.

59957_CH03d_121-190.qxd  9/25/09  8:38 PM  Page 190

© Jones and Bartlett Publishers, LLC.  NOT FOR SALE OR DISTRIBUTION. 




