Phyllis B. Acosta

Corrections highlighted in yellow and red below.

Page 27

Table 2-1 Expected Analyte Profiles for MS/MS Newborn Screening Disorders

MS/MS ANALYTES	POSSIBLE DISORDER(S)	ACRONYM	McKUSICK NUMBER
↑Cit	Citrullinemia (argininosuccinate synthetase deficiency)	ASA	215700
	Argininosuccinic aciduria (argininosuccinate lyase deficiency)	CIT	207900
	Citron Defciency	CIT II	603471
↑Met	Homocystinuria (cystathionine β synthetase deficiency)	HCY	236200
11.100	Methionine adenosyltransferase deficiency	MET	250850
↑Phe, Phe/Tyr	Phenylketonuria (phenylalanine hydroxylase deficiency)	PKU	261600
Tine, The/Tyl	Biopterin synthesis defects	BIOPT-BS	261630
	Biopterin reg	21011 25	201000
↑Tyr	Tyrosinemia: Fumarylacetoacetic acid hydrolase deficiency	TYR Ia *	276700
1 J1	Methylacetoacetic acid isomerase deficiency	TYR Ib *	603758
	Tyrosine aminotransferase deficiency	TYR II	276600
	p-OH phenylpyruvatic acid dioxygenase deficiency	TYR III	276710
↑Leu (± Val)	Maple syrup urine disease (branched chain α-keto acid dehydrogenase	MSUD	248600
	deficiency)		
↓ C0	Primary carnitine deficiency (carnitine plasma membrane transporter	CUD	212140
	deficiency/ carnitine uptake deficiency)	2.67.75	271000
↑C3, C3/C2	Methylmalonic acidemia (methylmalonyl CoA mutase deficiency and cobalamin defects)	MUT	251000
	Cobalamin A	CblA	251100
	Cobalamin B	CblB	251110
	Cobalamin C	CblC	277410
	Cobalamin D	CblD	277400
	Propionic acidemia (propionyl CoA carboxylase deficiency)	PROP	606054
↑C4	Short chain acyl CoA dehydrogenase deficiency	SCAD	201470
	Isobutyryl CoA dehydrogenase deficiency	IBG	611283
↑C5	Isovaleric acidemia (isovaleryl CoA dehyrogenase deficiency)	IVA	243500
	2-methyl butyryl CoA dehydrogenase deficiency/ short branched chain	2MBG	600006
	CoA dehydrogenase deficiency	(SBCAD)**	(600301)
↑C5:1 (±C5OH)	β ketothiolase deficiency (acetoacetyl CoA thiolase deficiency)	BKT	248600
↑C5-DC	Glutaric acidemia type I (glutaryl CoA dehydrogenase deficiency)	GA I	231670
↑C5-OH (± C5:1)	3-methylcrotonyl glycinuria (3 methyl crotonyl CoA carboxylase deficiency)	3MCC	210200
↑C5-OH (± C6-DC)	3-OH-3-methyl-glutaryl-CoA lyase deficiency	HMG	246450
C5-OH (± C3)	Multiple carboxylase deficiency	MCD	253260
\ /	3-methylglutaconyl hydratase deficiency	3MGA	250950
↑C5-OH			
↑C8 and C8/C10 (±C6,C10:1)	Medium chain acyl CoA dehydrogenase deficiency	MCAD	201450
C14:1 and	Very long chain acyl CoA dehydrogenase deficiency	VLCAD	201475
↑C14:1/C12:1			
(± C14, C16, C18:1)			
↑C16, C18:1	Carnitine palmitoyl transferase II deficiency	CPTII	255110
. 010, 010.1	Carnitine acylcarnitine translocase deficiency	CACT	212138
↑C16-OH, C18:1-OH	Long chain hydroxy acyl CoA dehydrogenase deficiency	LCHAD	609016
10-011, С10.1-ОП	Trifunctional protein deficiency	TFP	609015
↑C4, C5, C5-DC, C6,	Glutaric acidemia type II (multiple acyl CoA dehydrogenase deficiency)	GA II	231680
C8, C12, C14, C16	111 1 1 1 MOMONDO (1 1 1 T		

^{*} TYR 1a and 1b may be missed by MS/MS NBS targeting elevated Tyr – see text **2MBG and SBCAD are two names for the same disorder

Figure 2.5 The Carnitine Transport Cycle (correct diagram below)

Page 69

Table 3-1. Recommended Daily Intakes [RDIs] for Patients Ingesting Elemental Diets

Nutrient	Recommended Intake at Age*								
	0 <6 mos	6 < 12 mos	1 < 4 yr	4 < 7 yr	7<11 yr	11 < 19 yr	Adult	Pregnant	
Protein†, g	4.5 -	3.0 /100 kcal	≥ 35	<u>≥</u> 40	≥ 50	<u>≥</u> 65	≥ 70	1st trim 70 2nd trim 85 3rd trim 100	
Fat, g	6.0 -	3.3 / 100 kcal	> 30	45	55	60	60-70	75	

	. (Phyllis I	B. Acosta		0. 1.10000	,110 2 1001 4	•10
Linoleic acid,	4.4	4.6	7.0	10.0	12.0	16.0	17.0	14.0
g								
□-linolenic	0.5	0.5	0.7	0.9	1.2	1.6	1.6	1.5
acid, g								
Energy [‡] , kcal	120/kg	110/kg	900-1800	1300-2300	1650-3300	1500-1900	2000-3300	1700-2700
Fluid, mL	1.5/kcal	1.5- 1.0/kcal	900-1800	1300-2300	1650-3300	1500-1900	2000-3300	1700-2700
Minerals								
Calcium, mg	400	600	800	800	1300	1300	1200	1300
Chloride								
mg	55-150/10	0 kcal	1500	1900	2300	2300	2300	2300
mEq	1.55-4.2/	100 kcal	42.3	54	65	65	65	65
Chromium, µg	0.2	5.5	11	15	25	35	30	3.0
Copper, mg	0.60	0.80	1.5	2.0	2.5	3.0	3.0	3.5
Iodine, μg	25-75 / 10	0 kcal	90	90	120	150	150	220
Iron§,¶, mg	10	15	15	15	15	18	18	48
Magnesium, mg	50	75	150	200	250	420	420	430
Manganese, mg	0.3	0.6	1.5	2.0	2.0	2.5	2.5	3.0
Molybdenum, μg	2.0	3.0	17	22	34	45	45	50
Phosphorus, mg	350	500	800	800	1250	1250	1000	1250
Potassium,								
mg	80-200/10	0 kcal	117	149	176	184	184	184
mEq	2.0-5.1/1	00 kcal	3.0	3.8	4.5	4.7	4.7	4.7
Selenium, µg Sodium	20	25	30	40	50	65	65	70
mg	20-60/100	kcal	1000	1200	1500	1500	1500	1500
mEq	0.87-2.61	/100 kcal	43	52	65	65	65	65
Zinc, mg Vitamins	5	5	10	10	15	15	15	20
A IU	250-750 / 1	00 kcal	400	500	700	900	900	1000
μg RAE	75 - 225 /	100 kcal	120	150	210	270	270	300
D								
IU	40-100/10	0 kcal	400	400	400	400	400	480
μg	1.0-2.5/1	00 kcal	10	10	10	10	10	12

Errata for Nutrition	Management of Patients	with Inherited	Metabolic Disorders

			Phyllis B	. Acosta				
E, mg	6	7	6	7	11	15	15	12
$K, \mu g$	5	10	30	55	60	75	90	90
Ascorbic acid, mg	40	50	45	45	45	75	60	60
Biotin, μg	35	50	50	50	50	50	50	50
B ₆ , mg	0.3	0.6	0.9	1.3	1.6	1.8	2.0	2.2
B_{12} , μg	0.6-0.9	0.9-1.8	2.0	2.5	3.0	3.0	3.0	3.0
Choline, mg	125	150	200	250	375	550	550	450
Folate, μg	65	80	150	200	300	400	400	800
Inositol, mg	4/100 kc	al	60	80	100	120	130	140-200
Niacin Equivalent**, ††, mg	6	8	9	11	16	18	19	20
Pantothenic acid, mg	2.0	3.0	2.0	3.0	4.0	5.0	5.0	6.0
Riboflavin, mg	0.4	0.6	0.8	1.0	1.4	1.6	1.7	1.7
Thiamin, mg	0.3	0.5	0.7	0.9	1.2	1.4	1.5	1.6

Figure 5-1 Synthesis of Tetrahydrobiopterin and Metabolism of Aromatic Amino Acids (correct diagram below)

Page 125

After 10 years of age, plasma PHE concentrations could be increased to > 600 umol/L and at 20 years to > 1200 umol/L.

Page 175

The disorders for which nutrition management are outlined in this chapter are MSUD, isovaleric acidemia (IVA), β -methylcrotonyl-CoA carboxylase deficiency (β MCC), β -hydroxy- β -methylglutaryl- CoA (HMG-CoA) lyase deficiency, and mitochondrial acetoacetyl- CoA thiolase deficiency, commonly known as β -ketothiolase (β KT) deficiency.

Figure 6.1 Metabolism of Branched-Chain Amino Acids (correct diagram below)

Page 201

Table 6-6 Nutrition Composition and Sources of LEU-Free Medical Foods (continued)

Medical Foods	Modified ^a Nutrient(s) (mg/100 g)	Protein Equiv ^b (g/100 g, source)	Fat (g/100 g, source)	Carbohydrate (g/100 g, source)	Energy (kcal/100 g/kJ/100 g)	Linoleic Acid/ α-Linolenic Acid (mg/100 g)
			Nutricia			
XLeu Analog™	Glycine 2050 L-camitine 10 Taurine 20	13 Amino acids	20.9 High oleic safflower, coconut, and soy oils	, ,	475/1985	3025/N A
XLeu Maxamaid [®]	Glycine 3990 L-camitine 20 Taurine 140	25 Amino acids	<0.1	56 Sugar, com syrup solids	324/1754	0
XLeu Maxamum®	Glycine 6300 L-camitine 39 Taurine 140	40 Amino acids	<1	34 Sugar, com syrup solids	305/1275	0

Notes:

Page 205

Increased concentrations of 3-hydroxyisovaleric acid and β - methylcrotonylglycine are found in urine with the absence of methylcitrate, and α -methyl- β -hydroxybutyrate is found in combined carboxylase deficiency. ¹²⁸

Page 238

CYS is used as an abbreviation for both cystine and cysteine since interconversion in the body is nonenzymatic.

Figure 7.1

NA = not available.

Values listed, although accurate at time of publication, are subject to change. For current information, refer to product labels.

LEU-free.

 $^{{}^{}b}$ Nitrogen, $g \times 6.25 = g$ protein.

Abbott Nutrition, 3300 Stelzer Road, Columbus, Ohio, 43219. 800-551-5838.

dAll except glycine are in the L-form.

Mead Johnson Nutritionals, 2400 West Lloyd Expressway, Evansville, Indiana 47721. 800-457-3550.

Nutricia North America, PO Box 117, Gaithersburg, Maryland 20884. 800-365-7354.

Page 242

Use of ratios, such as MET to leucine (LEU) and isoleucine (MET:LEU + ILE), can also help reduce false detection of hypermethioninemia.

Page 246

More recently, Picker and Levy suggested the following protocol:

Page 248

However, using current diagnostic criteria, review of these studies did not verify this diagnosis.⁶⁷

In addition, long-term biochemical control is necessary to maintain ocular health in patients with CBS deficiency.

Page 249

Another recent study suggested that abnormal HCY metabolites replace dehydroascorbic acid in connective tissue metabolism.⁸⁷

Page 260

The edema resolved when therapy was discontinued. 133

Page 261

Table 7.4 Diet Plan for a Neonate Who Weighs 3.5 kg Diagnosed with Vitamin B_6 Nonresponsive Homocystinuria

Food	Amount	MET (mg)	CYS (mg)	Protein (g)	Energy (kcal)
Similac® Advance® infant formula with iron, powder	26 g	71	42	2.8	137
Hominex®-1 powder	63 g	0	284	9.5	302
Cystine solution (13 mg/100 mL)ª	600 mL	0	78	0.0	0
Water to make ^b					615
Total		71	404	12.3	615 439
Per kg body weight		20	115	3.5	125

 $^{^{\}rm a}\text{L-CYS}$ has a solubility of ${\sim}13$ mg/100 g water at room temperature. Source: Ajinomoto, Amino Acid Handbook. Ajinomoto, Japan. 2004.

Page 268

However, severe MATI/III deficiency can cause demyelination with reduced cognitive function later in childhood. 165,168

 $[^]b\mathrm{Add}$ water to yield a total 615 mL (~21 fl oz @ 20 kcal/ fl oz).

Methionine Synthase (CBlG) Deficiency (OMIM 250940)¹³ and Methionine Synthese Reductase (CBlE) Deficiency (OMIM 236270)¹³

Figure 8.1 Metabolic Pathways for Isoleucine, Valine, Threonine, Methionine, and Odd-Chain Fatty Acids (correct diagram below)

Page 296

 $\begin{tabular}{ll} \textbf{Table 8.3} & Formulation, Nutrient Composition, and Sources of Medical Foods for Patients with Propionic Acidemia or Methylmalonic Acidemia (per 100 g powder), Continued \\ \end{tabular}$

Medical Foods	Modified Nutrient(s) (mg/100 g)	Protein Equiv ^a (g/100 g, source)	Fat (gl100 g, source)	Carbohydrate (g/100 g, source)	Energy (kcal/100 g/kJ/100 g)	Linoleic Acid/ \textsq. -Linolenic Acid (mg/100 g)
			Nutricia North A	merica		
X MTVI Analog®	MET 0, VAL 0 ILE trace, THR 0 L-carnitine 10 Taurine 20	13.0 Amino acids ^e	20.9 High oleic safflower, coconut, soy oils	59.0 Corn syrup solids,	475/1985	3025/ND
XMTVI Maxamaid®	MET 0, VAL 0 ILE trace, THR 0 L-carnitine 20 Taurine 48 140	25.0 Amino acids ^c	<0.1	56.0 Sugar, corn syrup solids	324/1354	0/0
XMTVI Maxamum®	MET 0, VAL 0 ILE trace, THR 0 L-carnitine 39 Taurine 140	40.0 Amino acids ^c	<1.0	34.0 Sugar, corn syrup solids	305/1275	0/0
Milupa OS2®	MET 0, VAL 0 ILE 0, THR 0 L-carnitine 0 Taurine 0	56.0 Amino acids ^c	0.0	18.9 Sugar	300/1254	0/0

Page 309

Figure 8.5 Metabolism of Lysine and Tryptophan (correct diagram below)

Page 320

Kolker et al. 153 recommended energy intakes at approximately 120% DRIs.

Page 322

Deficient trace mineral and vitamin intakes and plasma concentrations have been reported in children consuming elemental formulas. 56,180

Page 323

Researchers have reported nearnormal development in many patients treated neonatally. 158,163,173

Page 350

Proprietary infant formulas made with soy protein isolate contain fat and essential fatty acids (see Appendix F).

Page 394

Examples of an emergency letter can be found on the FAOD parent support website at http://www.fodsupport.org.

Page 396

For VLCAD, a sum of the long-chain C14:0, C14:1, C16:0, C16:1, C18:0, C18:1, and C18:2 plasma acylcarnitine esters can be calculated.

Figure 11.1Inherited Metabolic Disorders in the Urea Cycle and Nutrition Approaches to Their Management (correct diagram below)

